Fundamenta Informaticae XXI (2002) 1001-1023 1001
I0S Press

The Topological Structures of Membrane Computing

Jean-Louis Giavitto
CNRS — LaMI umr 8042, giavitto@Ilami.univ-evry.fr

Olivier Michel
LaMI — University of Evry, michel@lami.univ-evry.fr

1.

Abstract. In its initial presentation, the P system formalism describes the topology of the mem-
branes as a set of nested regions. In this paper, we present an algebraic structure developped in
combinatorial topology that can be used to describe finer adjacency relationships between mem-
branes. Using an appropriate abstract setting, this technical device enables us to reformulate also the
computation within a membrane and proposes a unified view on several computational mechanisms
initially inspired by biological processes. These theoretical tools are instantiatss,imn exper-

imental programming language handling various types of membrane structures in a homogeneous
and uniform syntax.

Keywords: membrane computing, Gamma, CHAM, P system, L system, cellular automata, group
based fields, rewriting, topological collection, declarative programming language

Introduction and Motivations

The original motivation of this work lies in the modeling and the computer simulation of biologyeal
namical system@s) with a special focus obs with a dynamical structureStandards exhibit a static
structure, that is, the exact phase space obthean be known statically before the simulation. This is
usually not the case for thes found in biology [5, 6, 7] like the models conceived for developmental
processes (e.g. embryogenesis, plant growing), integrative cell models, protein transport and compart-
ment simulation, etc. In this kind of situation, the dynamic of the system is often specified as several
local competing transformations occurring in an organized set of simpler entities. The organization of
this set is subject to possible drastic changes in the course of time.

Address for corespondance: LaMI, umr 8042 CNRS — University of Evry, Tour Evry 2, 523 Place des terasses de I'Agora,
91000 Evry, FRANCE.

1002 J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI)

Considering the biological roots of this problem, the dynamical structure and the specification of the
dynamics, it is not surprising to consider the formalism of P system, and more generally the approach of
membrane computing, as a starting point for developping a dedicated programming language. P systems
are new distributed parallel computing models based on the notion of a membrane structure [20, 21].
A membrane structure is a nest of cells represented, e.g., by a Venn diagram without intersection and
with a unique superset: the skin. Objects are placed in the regions defined by the membranes and evolve
following various transformations subject to some conditions: an object can evolve into another object,
can pass trough a membrane or dissolve its enclosing membrane, etc. The computation is finished when
no object can further evolve.

The need of more accurate membrane structures. In its initial presentation, the P system formalism
describes the topology of the membranesasting The nested structures of the membranes can be
specified in several ways: as a tree, a Venn diagram, a string of matching parentheses, see figure 1. With
respect to the modeling and simulation of concrete biological processes, this description is too rough and
presents three main shortcommings.

e Only the nesting of membranes is taken into account, not their adjacency (see figure 2). However,
the adjacency relationships of cells are of prime importance in the organization of biological tissues
(e.g. for the diffusion of morphogenetic gradient).

e There is an artificial distinction between a membrane and its enclosed region: only the enclosed
region is decorated with evolving objects. But in real biological compartments (like cells, vesicles,
cargo, organs, etc.) the boundary that defines the compartment is itself the place of active and
specific processes (reaction between anchored proteins, hyperstructure [18], ionic chanels, etc.)
that need the same computational representation as the region.

e Biological compartmentalization localizes processes at regions of various dimensions (active sites
are points an@-dimensionnal, gene’s promoters are localized on one-dimensional molecules, cell
membranes are two-dimensional and lumens are three-dimensional regions).

The point we want to emphasize here is that the topological organization of the membrane structure is
not fully taken into account in the original formulation of the P systems. We use the term “topological
organization” to underline the topological nature of the characteristics we want to consider. Obviously,
such topological organization can be supported more or less directly in a genuine P systedinigy

Figure 3 sketches the coding of the adjacency relationships by specific evolution rules (left diagram), and
the coding of the membrane labeling (right diagram).

However, taking explicitly into account topological features in the computational model is interesting
per seand not only to ease the development of simulations of real biological processes. This has already
been acknowledged through the development of some P system generalizations, for example toward
graph structured membranes [22]. More generally, if we pinpoint “membrane computing models” as
computational devices able to:

1. store and move objects between regions (compartments, loci, positions, .. ., specified by the mem-
branes),

2. transform locally the objects stored in a region,

J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI) 1003

sin—{ 1
/l\
membrane<Z|____| 2 3 4
region<ij® /\
4 5 6
elementary
ooy~ (LG, GGG),

-

Figure 1. Some representation of the nesting structure of the membranes of a P system: as a Ven diagram, as a
tree of regions and as a string of matching parentheses. Regions are humberédafitom

e A

Figure 2. The two different topological situations give the same nesting structure. However, in the diagram to the
left, entities in regior? can pass directly to regidd) which is not the case in the diagram to the right.

G
&

@)

N
0

L]

(b) ()

=
[

Figure 3. The topological configuratidn) can be coded by the flat membrane structur¢. Specific transport

rules between adjacent compartments are coded by two elementary moves routed between the elementary regions
and the top regiof, and then to the final destination. Membranes holding objggt¢objects are given using

italic labels) can be simulated using additional membrdigs

1004 J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI)

3. create, delete and rearrange locally the organization of the regions,

then it is mandatory to study the organization of the regions, their representations and their handling.
In section 2 we introduce the notion ofchain complexhat can be used for this purpose. A chain
complex is a standard construction in the field of algebraic topology that formalizes a faithfull and com-
plete representation of the topological organization of a set of membranes. In addition, the algebraic
and combinatorial definition of the involved concepts makes them particularly suited for a computer
implementation.

Uniform description of the computational mechanisms. The above presentation shows that two ba-

sic computation mechanisms are at work in a membrane computing model: one to process the objects in
a region and the second to compute the regidiss is a two stages moddFrom this point of view, P
systems exhibit the following two characteristics.

e The type of objects and the evolution mechanism are supposed to be the same for all the regions
(e.g.: the evolution rules are based on multiset rewriting, or string rewriting, or splicing systems,
but not on both).

e A strict distinction is maintained between the global membrane structure (a tree) and the local
computational entities that take places into a region (multisets, strings, etc.).

These characteristics put a burden on the description obshespecially when the structure of the
system must intrinsically be computed together with its state. A biological motivation to relax these
constraints can be illustrated by the simulation of a string of DNA with its coat of activator and inhibitor
proteins. The DNA string in the nucleus can be modeled as the object of a splicing system in an enclosing
membrane, but it must also be conceived as a region itself endowed with some string rewriting process to
take into account the activities and sequential organization of the coat. This example shows that at some
level, an entity must be processed as an object in a multiset, while at the same time, at another level, it
must be processed as a string. To make this possible, one has to reify the two stages model into a single
framework describing with the same device both the computation on objects (of various kind) and the
computation on regions.

This unification is not out of reach, because at a sufficiently abstract level, the regions nested in a
region R can be conceived as first-citizen objects belonging ttike the ordinary objects stored in the
region. For example, the regidnin schemaa’) of figure 3, can be seen as a multiset of multisets, and
then, subject to the same computational mechanism (multiset rewriting) that applies to the atomic objects
in an elementary membrane.

It appears that the mathematical device we will introduce to represent adequately arbitrary topologi-
cal organization of membranes, is also able to support such an uniform specification.

The rest of the paper is organized as follows. Section 2 gives some informations about the notion
of chain complexes and defines the notion of topological collection. Based on these notiafgs the
language is described informally in section 3. The topological organization underlying the Gamma
programming language and the chemical abstract machine (CHAM), P systems, L systems and cellular
automata are formally defined in section 4. M&S presentation is then completed by some examples
covering the previous formalisms in section 5. All examples are processed using the current version of
theMGS interpreter. The last section finishes by the review of some directions opened by this research.

J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI) 1005

2. Cell Complex, Chain Complex and Topological Collections

2.1. Cell Complex

Instead of using a partial order to represent the hierarchichal structure of the membrane’s containments,
our idea is to use a partial order to represent the adjacency relationships between the various parts
of the membranes. Membranes are supposed to be of any dimension. The mathematical tools we will
use are the basic definitions at the start of homology theory. A good introduction is [13] and a standard
reference textis [17].

It is convenient to describe the complex shape formed by the membranes together as build from basic
blocs calledk-cells A k-cell is an homeomorphic image of an open balRif. However, the precise
nature of the celt is not stressed in a purely combinatorial approach until no link is made with point set
topology notion. Here, we need only to grad the cells by their dimension and to focus on the connection
of cells. A0-cell is also called @ointor avertex al-cell is anedgeand a2-cell is aface A collection
of cells that are fitted together in an appropriate way forms larger structures caftgrdexesExamples
of complexes are given in Fig. 4. If an edgés a side of a facg, we say that and f areincidentand
we writee < f. The incidence relation is a partial order between cells. 2.&e the poset of cells and
z,y € P suchthatr < y and there is na such thatr < z andz < y. Then we writezr < y and we say
thatx is apredecessoof y or thaty is asuccessoof x.

Definition 2.1. (Abstract Complex)

An abstract complexC is a poset with a functiodim : £ — Z such thate < ¢’ impliesdime’ =
1+ dime. The set, = {e | e € K,dime = p} are thep-cells of . Thedimensiondim S of a subset
S C K is the biggest of the dimensions of the element§ dfit exists.

Given a poset and its partial order, we define the derived and= relationships. We defines now
some operations on subsets of complexes. For a s$bsetP, the smallest poset containirfgis its
closureS. There is two ways for a celt to be connected with a cejt because they share a common
boundary or because they are both boundaries of a “ bigger " cell. Finally, considering an infinite complex
may be useful, for instance to represent an unbounded grid. However, each element (vertex or edge) in
this grid is connected to only a finite set of other elements. Then, we say that the grid is locally finite.

Definition 2.2. (Subcomplex, Star and Shape, Connections and Local Finiteness)

Let (K, <) be an abstract complex asdC K be asubset of. Thenthesef = {y| y € K,y <z € S}
with the relation< is the subcomplex generated By It is called theclosureof S. Thestar St x of a
cellz € KisStz = {y| <y € K}. We define the star of a subsgtC K to beSt S = J, ¢St
and theclosed staiis St S = St S. An elementz is abovea setS C K iff z € S or if the elements of
the set{y | y < «} are all above5. TheshapeShape(S) of a subsetS C K is the set of the elements
aboveS. These notions are illustrated in figure 5.

Two cellsxz andy of an abstract compleX areconnectedand we writer » y, iff it exists a cellz
such that bothr andy belongs tdSt z. In other wordsyz connected tg requires that: N 77 # () or that
Stz NSty # 0. Given asetS C K, we defineg(»\S) as the restriction of on S: (;\S) = > N(S x 5).
Let (-\.S)* be the transitive closure of this relation. A subSeidf I is connectedf (-\S)* has only one
equivalence class.

A complexXC is closure-finiteif for all cell x € IC, T is a finite set. It isstar-finiteif St «x is a finite
set for allz in K. A complex which is both closure-finite and star-finite, is said tdooally finite

1006 J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI)
A B C
- %§§§%§£f§7;

-1
A AN ;

Figure 4. Top diagramsThe schema in the right hand side gives the Hasse diagram of the incidence relation of
the complex in the left hand side. Faces are denoted by capital letters A, B and C. Edges are denoted by small
letters and vertices by numbers. For instance, the face B is bounded by two edges i and j which are themselves
bounded by vertice® and3. This example shows also that an abstract complex is generally latitcz: there

is for instance no least upper bound for edges e and f: both faces A and C are incomparable successors of e and
f. Bottom diagramsThe moebius strip on the left gives the same poset as the cylinder on the right (they are both
composed of 3 faces, 3 edges and 6 vertices).

{
¥

Figure 5. Connection and shape of a $efft figure.We figure symbolically a posét by a triangle. The coloured
triangle below element is the subcomplex generated by. It is also called the&eonebelowa. An elementz

is in the cone below iff < y. The set{a, b, c,d, e} is connected because elements are connected two by two.
Fo exampleg andb are connected becausge< b, idem forc andb. The elements ande are connected because

d < candd <e. LetA =a, C =c¢andFE = € be the closure ofa}, {c} and{e} respectively. Then the set
AUCUE U {b} is also connected because a closure of a connected set is conreigktfigure. The setS
consists of three internal vertices of a line graph. We have figsresl) andShape(.S).

J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI) 1007

2.2. Chain Complex

Figure 4 shows that the poset structure alone is not enough to represent the connections of cells. A
cell is not completely described by the simple set of its predecessors. One must represent also some
organisation of these predecessors: for example an orientation, or a count if some subcells are identified,
etc. This organisation of the set of the predecessors is represented by the natiainof chain is a
“structured set” of cells. This structure is specified through an abelian group structure and a boundary
operator. The abelian group structure is used to describe the gluing of two cells using the group operation
(written additively). The boundary operator gives the chain that describes the boundary of a cell, and by
extension, the boundary of any chain.

Using an abelian group operation to represent the “gluingf two cells z in positiong andy
in positiong’ means that we can write = g + ¢’ or ¢ = ¢’ + g: the order of the gluing does not
matter. The neutral elemefitcorresponds to the empty set. And if we add a eelb a parte, one
must be able to “detach” latter the cellfrom c. This justifies the use of a group structure for the
set of chains. Furthermore, one of the main objectives of the theory is to compute the boundary of an
arbitrary part of a space, from the boudary defined for an “isolated” cell (to compute the neighbors of
an arbitrary membrane). Then, it is natural to require the boundary opéraidye an homomorphism:
d(g+¢') = 0(g9) + 9(g’). These considerations motivate the following definitions.

Definition 2.3. (Chain Group with Coefficients and Chain Complex)
Let K be an abstract complex, and {&denotes an arbitrary abelian group written additively. The neutral
element oG is written0. The set’, (I, G) of p-chain on the compleX with coefficients irG is the set
of total functionsc, from the setlC, to G that are zero almost everywhere, thatjgz) = 0 for all but
a finite number op-cells of . The setC), (K, G) is an abelian group for the addition of functiorihe
chain group with coefficients it¥ is defined by:Chains(K,G) = Co(K,G) & C1(K,G) @ ... where
@ is the direct sum of abelian groups.
A chain complexC(IC, G, 0) is a sequenceC, (K, G), 0,) ez Of the abelian groups), and connect-
ing homomorphisnd, : C}, — C,_1, calledboundary maps

An elementc of C,(KC,G) is called ap-chain C,(K,G) represents all the way to glyecells
together. Sometimes we use a subsgifii indicate that a chaiais ap-chain:c,. In the opposite, for
convenience in notation, we shall sometimes delete the dimensional supsaritite boundary operator
Jp, and rely on the context to make clear which of these operators is intended. We also abbreviate
Cp(K,G) by Cp,, C(K,G,0) by C and use uniformly to denote the neutral element of any abelian
group.

An abelian groug’,, is trivial when its onlyp-chain is0 (the element zero of the group of functions).
It this case we writeC;, = 0. A finite dimensionathain complexC' is such that the”, are trivial
except for at most a finite number pf If C, is the trivial group forp < 0, we say thatC' is anon-
negativechain complex. Thearrier of ¢, is the set ofp-cells with a nonzero coefficient in the chain:
lep| = {x € Ky [¢p(2) # 0}

It is customary to use a linear additive notation for a chgine, = >_.¢|. &(z).z . Indeed,
Cp(K, G) can alternatively be defined as the formal sums with variabe I, and coefficients irG.
Letc, = a1z + - -+ + azy, be a chain o0, (K, G). Thena; € G and we suppose in addition that
a; # 0 for all 7 and thati # j impliesz; # x;.

1008 J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI)

Example of the C'(KC, Z/2,0) Chain Complex. Z/2 denotes the module of relative integers modulo
2. UsingZ/2 as the chain coefficients enables the representation of the presgfice~= 1, or the
absenceg,(x) = 0, of ap-cell z in a chainc,. A chain of C(K,Z/2) is then simply the characteristic
function of a subset of’. An example is given in figure 6. A chain= e+ f corresponds to the function
c defined byc(e) = ¢(f) = 1 ande(x) = 0 for x # e andx # f. This chain can also be written
c=1le+1.f+0.g+0.h+.... Itiscustomary not to write thg-cells with a zero coefficient (in
accordance with the additive notation). Thus we have 1.e + 1.f or more ambiguously = e¢ + f.
Suppose that the chaine C,(KC, Z/2) is composed of twé-cellss ands’; this is denoted by = s+ s'.
Suppose thar ands’ share only one cell € KC,,_;, see Fig. 6. Thed is not in the border of because
s ands’ are glued along: d is an interior cell. But/ is in the boundary of and in the boundary of .
Letdps = d+) 2} anddys’ = d+) z). Then we must havel + >z’ +d+ 3wy = > 2 + >)
which isautomaticallyachieved becausé+ d = 2d = 0.

2.3. Arbitrary Labeling the Cells of a Complex

Suppose we want to labsbmeof the cells of a complex with values taken in an arbitraryléét Such
labeling can be represented bpartial function/ from C to Val. This partial function can be extended
into a total function given the valuge, | ¢ Val, to the cells that have no image byThen, the function
¢ can be seen as a chaifwe give an abelian group structureltal U { L }.

A natural choice is to us&bel(Val) the free abelian group generated by the elemeritalofWe rely
on the injectionz — z to represent an element Bé! by an element oAbel(Val) and_L is represented
by 0. This group has a richer structure thé# and enables the association of a cell to a “generalized
multiset” of Val elements. In a generalized multiset, an element can have a negative multiplicity. Alter-
natively, Abel(Val) can be defined as the set of total functions frigmto Z.

Remark that ifVal has already a group structuste the operation imAbel(Val) does not coincide
with the operationtane In Abel(Val). Take for exampl&al = Z, thenz +apel (—z) # Oapel- INdeed,
bothz and(—z) are generators ofbel(Z) and they are distinct.

Boundary and Coboundary as Transport Operation. In an arbitrary labeling of a complex, we can

interpret thed operations agransportoperations, see figure 8 and the references [24, 25, 19].
Suppose that we want to valuate the cells of the chains by an elem&at. diVe use the previous

encoding based oAbel(Val) for the chain coefficients. We define the boundary of a cell x by:

dz=>y andextend linearly: 0> o,x) =) 0,0z

y<x

Consider a celk that has several successors in the chain. Then the effécasfa transport operation
is to send tar the coefficients of theses successors. The result is conveniently gathered as a formal sum
in Abel(Val) and no coefficients are lost. We can then further interpret “the collision ata#ithe
transported values” using an homomorphism to resolve the “collisions” and to compute the final value
of x.

If operatorsg, transport values from a cell to its predecessor, it exists a family of dual operator that
moves values from a cell to its successor. Such operators are the dual (in a precise sense, see [17]) of the
boundary map8),,.

J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI) 1009

Figure 6. Example of the application of the boundary operator 6148, Z/2) chain.d(s + s') = 9s + 9s' =
(a+b+c+d)+(d+e+ f)=a+b+c+e+ fbecause + d = 0.

) /8

2, a3 ((1)=6, (2)=a .
={1,2,3,4,5} \\ ﬁg?’; =0, 5((;1)) =7 | \\
Ky ={a,b,c,dye, f} b S d S o4 l(a) = p, =k " T
Ky = {s,5') = ggcg —0, Ud) =7 | \/
1. c .5 S)=w o y

and{(z) undefined for the others.

Figure 7. The labeling of the cells of an abstract complex. The figure in the left gives the abstract cimplex
and itsp-cellsIC,, (for p = 0,1, 2). The labeling/ is defined on the right. In this diagram, we indicate the images
of the function? by writing next to each cell the value of the function on that cell. This function has for codomain
the setVal = {«, 8,7, 9, p, 7, 0, k,w} Which a priori do not have an abelian group structure. The functican

be written as a chain af (K, Abel(Val)): £ = 0.1 + .2+ 8.3+ 7.4 + p.a + k.b+ o.c + 7.d + w.s. However,

note that inC(IC, Abel(Val)) there are also chains likgr +apei(var) 3).1 Which would represents a functigh
such thatf(1) = {«, 5} and undefined elsewhere.

[uj .\(ﬁ/\ | 3 .\
V) CranN > g —

w w_ﬂjw &') K 0’+K+Qp/7- T °
° w o/w/ ° o °

Figure 8. Depiction of the boundary and coboundary operation on chains. We consider the abstract complex
already used in figure 7. The effect of taking the boundary opedatar; = w.s+w’.s’ is pictured by the diagram

in the left. The figure in the right gives the effect of taking the coboundafythe1-chainl; = p.a+k.b+0.c+7.d.

The coboundary operatofig are the dual homomorphisms of the operatgy$see [17]). In these two figures, the
curved arrow indicate values (in bold) being transferred fropacall to the precedindp — 1)-cells (for 9) and

from a(p — 1)-cell to the succeeding-cells (foré).

1010 J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI)

To be more concrete, suppose that the cells in figure 8 (left) are valuated by reals, that is, we consider
chains inC(KC, Abel(R)). For instance, take = 1.6 andw’ = 3.1 in chain/,. Then

8(1.65 + 3.15') = 1.6a 4 1.6b + 1.6¢ + (1.6 +ape1 3.1)d + 3.1f + 3.1e

We say that the valug.6 coming froms and the value3.1 coming froms’, collide at celld. We want

to combine colliding values into a real to get again a real valued chain. Suppose that the combination
function is the sum of reals. Then we would use the homomorphigrom Abel(R) to (R, +) that
interprets thet e as the usualtr. The homomorphisnk between the groups of values, is easily
extended into an homomorphism on chains, by defifit@r) = h(«)x for all cell x and then using
linearity. Instead of using a functioh to combine the colliding values, we can work directly with
chains inC(K, (R, +)). In this way, the combining function is directly the group operation of the chain
coefficients. However, usingbel(R) and then ara posteriorihomomorphisnt is more general. For
instance, suppose that we work with coefficient§l+) but we want to combine the colliding values

by multiplication. This is not easily expressed. But usikigel(R) at the first place, we have just to
change the functioh. The combination function must not depend on the order of the combinations and
then the chaifa+ 3)x must be equal to the chaf¥ + «)x. Intuitively, one can see the interest of using

an abelian group for the coefficients.

2.4. Topological Collection

A “snapshot” of a P system will be described by a topological collection. A topological collection
associates a value to some cells of a complex. In addition, we must be able to speak of the carrier of
the collection (the cells that have a value), of the neighbors of an element, of subcollections and of the
boundary of a subcollection. All these notions can be developed on top of the notion of chain complex
presented above.

Definition 2.4. (Simple Topological Collection)

A simple topological collection tyge a quadrupld = (K, B, 9, Val) such thafC is a finite-dimensional,
non-negative, locally-finite abstract complex afigiC, B, 9) is a chain complex. Aimple topologi-
cal collectionis a pair(7, c) where7 is a topological collection typ€K, B, 9, Val) andc is a chain:
¢ € Chains(IC, B ® Val). The productB © Val denotes the cartesian produgt< Abel(Val).

Often we omit to mention the typ€ of the topological collection when it is clear from the context;
we says directly that a chainis a simple topological collection (or more simply is a collection) and we
write ¢ € 7 if 7 is the type of. The chain complex’(C, B, 0) is called theform of the type.

If ¢is a collection, and: € K, thenc(z) = (g,u) with g € B andu € Abel(Val) and we say
thatthe value ofc at x is u. The functionse, andc, are the first and second projectionof That is,
ep(x) = g andey(x) = u for ¢(z) = (g,u). The functions, andc, associate an element of a group
to a cell and then are chaing, € Chains(KC, B) andc, € Chains(IC, Abel(Val)). For all collectione
we havelc,| C [c| and|cy| C [c|. The seResidu(c) = {z € K| cy(x) = 0p andc,(z) # Oapelva }
is called theresidueof the collection. A collectiore is residue-fredf Residu(c) =). A topological
collectionc isflatif ¢,(z) = 0 or ¢,(x) € Val for all z € K.

J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI) 1011

2.5. Simple Transformation of a Topological Collection

Now, we want to state precisely the notionle¢al computationA local computation would be done by
some kind of rewriting mechanism that substitutes a subcolleetionc by another one. If only’/, is
changed, then there is no change in the structure of the P system. Deleting or creating new membranes
corresponds to a changedj(and accordingly in}).

Therestrictionc\S of a topological collectior by a setS is the chainc\\S defined by(c\S)(z) =
c(z) if z € S and by(c\S)(z) = 0 elsewhere. A restriction is too general to represent a subcollection:
a subcollection is a connected part of a collection. It must be represented by a chain too.

Definition 2.5. (Split, Patch and Subcollection)

Let ¢ be a chain and’ and¢” be two chains such thit'| N || = 0 andc = ¢’ + ¢”. Then we say that
¢ and¢” are asplit of the chainc and we writec > ¢/, ¢ > ¢’ and¢” = C.¢’ or ¢ = C.c¢”. A chainc
is apatchof the chainc € Chains(KC,G), if ¢ > ¢ and if Shape || is a connected set df. Letc be a
collection; a collectior’ is a subcollection of if ¢ = ¢\|c'| and if ¢, is a patch of,.

Now, we can define the basic transformation step which is used iM@hdanguage. The basic
intuition hidden behind this definition is sketched in figure 9. Note that we do not describe a device
to select a subcollection into a collection, neither we give conditions on the gluing of the substituted
subcollection. We just specify that untouched parts of the collection must remain unchanged, both from
the value point of view (condition 1) and the shape point of view (condition 2).

Definition 2.6. (Simple Transformation)
Let ¢ andd be collections with respective subcollectiangndd’. Thend is asimple transformatiof
¢ by d' if the two following conditions hold:

1. CCC/ = Cdd/
2. Shape |C.c/| = Shape |Cqd|
If a function f such that?’ = f(c\| St ¢|) exists, then the substitution is saidmputed by .

Note that there is several possible variations on the notion of “ computgd tiyaccommodate the
possible variation on the neighborhood notion.

3. MGS: a Programming Language based on Topological Collections and
their Transformations

The experimental programming languags® instantiates the idea of topological collections and their
transformations into the framework of a simple dynamically typed functional language. Collections are
just new kinds of values and transformations are functions acting on collections and defined by a specific
syntax using rulesMGS is an applicative programming language: operators acting on values combine
values to give new values, they do not act by side-effect. In our context, dynamically typed means that
there is no static type checking and that type errors are detected at run-time during evaluation. Although

1MGS is the acronym of (encore) unModele Géneral deSimulation (de systme dynamique) {yet another General Model for
the Simulation of dynamical systems).

1012 J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI)

Figure 9. Parts of a complex involved in a substitution. We have pictured symbolically the abstract c&implex

as a Hasse diagram (cf. Fig. 5). The carrier of the chaionsists in all the:-cells pictured as circle (diagram

(a)). The three black circles in the middle specify the carrier of the subcolle¢ti@onsequently, the four empty

circles are the carrier of’ = C.c'. o

The shap&Shape(c’) of ¢’ is sketched as the gray region in diagram (a): the subconglespanned by’ is in

dark gray while thep-cells above this subcomplex are in light gray. The sHapepe(c”) is sketched in gray in

diagram (b). This part of the complex must remain unchanged across a simple transformation.

The diagram (c) has two gray regions, one near the top and one near the bottom (each is composed of several parts).
The region near the bottom, corresponds to the interseftiape(c¢’) N Shape(c”). Cells in this region have a
dimension less than. The definition of a simple transformation says that this region must remain unchanged in

the final result (because it belongs to the shap€ @nd then must not be touched by the transformation).
The region near the top corresponds to gheellsz, p > n, such thatt has an intersection both |o’| and|c”|.
The definition of a simple transformation does not say anything about such cells.

J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI) 1013

dynamically typed, the set of values has a rich type structure used in the definition of pattern-matching,
rules and transformations.

The approach dfiGs, focusing on the notion of topological collection, emphasizes the spatial aspect
of a data structure: a collection is seen as a splaafesor positionsorganized by &opologydefining the
neighborhoodf each element in the collection. This approach is part of a long term research effort [12]
developed for instance in [8] where the focus is on the substructure and in [9] where a general tool for
uniform neighborhood definition is developed.

We will see in section 4 that several usual data structures have a natural topology. In the rest of this
section, we sketch some of the language constructs without relying on a particular collection type. Thus,
by collection we understand a topological collection, as described formally in the previous section. In
section 5, some examples illustrate the expressive power of the approach and give a more concrete flavor
of the language.

3.1. Computing with Topological Collections

The computation of a new collection is done by a structural combination of the results of more elemen-
tary local computations involving only a small and static subset of the initial collecti®méil and static

subset makes explicit that only a fixed subset of the initial elements are used to compute a new element
value. “Structural combinatiofi, means that the elementary results are combined into a new collec-
tion, irrespectively of their precise value. The global organization of the new collection results of the
combination of these local changes. These characteristics lead to the following abstract computational
mechanism:

1. asubcollectioM is selected in a collectiof;
2. a new subcollectio® is computed fromd and a local neighborhood;
3. the collectionB is substituted fo in C.

This process is pictured in Fig. 10 and is formalized by the notiagirple transformationeveloped in
the previous section.

A transformation, without the “ simple " qualifier, consists in several non interacting simple transfor-
mations applied in parallel to a collection. Back to our application area (Cf. section 1) a transformation
corresponds to one evolution step of a spatially distribtedThen, the iteration of transformations
builds the entires trajectory, Cf. Fig. 11.

Figure 10. A simple transformation of a collection. Collecti@is of some kind (set, sequence, array, cyclic grid,
tree, term, etc). A ruld” specifies that a subcollectioh of C' has to be substituted by a collectiGhcomputed
from A. The right hand side of the rule is computed from the subcollection matched by the left handasidés
possible neighbors’ in the collectionC.

1014 J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI)

y % T(C) T(T(C))

K . -
—> m i

—> A

Figure 11. Transformation and iteration of a transformation. A transformdtiena set of simple transforma-
tions applied “in parallel” to make one evolution step. The simple transformations do not interact together. A
transformation is then iterated to build the successive states of the system.

In addition to the specification of the underlying organization, the definition of a simple transforma-
tion requires the specification of the subcollectiband the replacemem. This specification defines a
rule and must adapt several constraints and variations.

3.2. Patterns, Rules and Transformations
A transformatior” is a set of rules:

trans T ={ ... rule; ..}

When there is only one rule in the transformation, the enclosing braces can be dropped. A rule is a basic
transformation taking the following form:

pattern => expression

wherepatternin the left hand side (lhs) of the rule matches a subcollectiofithe collection” on which
the transformation is applied. The subcollectidris substituted irC' by the collectionB computed by
the expressiorin the right hand side (rhs) of the rule. Each collection kind comes with its own specific
behavior for the pasting @8 into Cc A.

We present the pattern expressions that have a generic meaning, thatis, they can be interpreted against
any collection kind. The grammar of such pattern expressions is the following

Patz=x | {..} | pp' | p+ | px | p:P | plexp | pasz | (p)

wherep, p’ are patternsy ranges over the pattern variablds,s a predicate andzp is an expression
with a boolean value. The explanations below give an informal semantics for these patterns.

variable: a pattern variable matches exactly one element in the collection (i.&-cell). The name:
can then occurs elsewhere in the rule.

state pattern: {...} are used to match one element{aell) whose value is a record. The content of the
brackets can be used to match records with or without a specific field (eventually constrained to a
given field type or field value). For instance,

{a, b: string, ¢ =3, d}

J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI) 1015

is a pattern that matches a record with field$é andc but no fieldd. In addition, the type of field
b must be “string” and the value of the fiekdmust be the integes.

neighbor: p,p’ is a pattern that matches two connected collectipasdyp’. For exampleyg, y matches
two connected elements. The connection relationship is introduced in section 2 and depends of the
collection kind.

repetition: patternp+ (resp.px) matches a non empty aggregate of connected elements (resp. a possibly
empty aggregate).

binding: a bindingp as x gives the name: to the collection matched hby. This name can be used in
the rest of the rule. For example;+ as x identifies under the namethe subcollection matched
by p+.

guard: p/exp matches the collections matchedbyerifying the conditiorexp For instancey /y > 3
matches a cell valued by an integer greater thapatterrp : P abbreviategp as x)/P(z) where
x is a fresh variable.

Here is a contrived example. Pattern
(z:int/r <3)+ asS / 10 <Fold((\a,b.a+b), 0, S)

selects a connected collectidnof integers less than 3, such that the sum of the elemersissmgreater
than 10. (The generic operat®sld reduces a collection using a binary function, which is supposed to be
associative and commutative, and an initial value. The notatioh exp denotes the lambda abstraction
of the variables andb over the expressionazp.) If this pattern is used against a linear sequerite,
denotes a subsequence. If this pattern is used against a sef, desiotes a subset. Etc. See section 4.

3.3. Managing the Applications of a Transformation

A transformation is a set of rules. When a transformation is applied to a collection, the strategy is to
apply as many rules as possible in parallel. A rule can be applied if its pattern matches a subcollection.
Several features are used to have a control over the choice of the rules applied within a transformation.
For instance, a priority can be associated to each rule to specify a precedence order within each class (the
priority of inclusive rules may be used to specify the relative order of their applications).
A transformationl” can be used like a unary function. For instance, a transformation can be passed
as an argument to another function. It makes able to sequence and compose transformations very easily.
The expressiofl’(c) denotes the application of one transformation step to the collectiéws said
above, a transformation step consists in the parallel application of the rules (modulo the rule application’s
features). A transformation step can be easily iterated:

T[n](c) denotes the application aftransformation steps t©
T[fixpoint|(c) application of the transformatidhi until a fixpoint is reached
T[fixrule|(c) idem but the fixpoint is detected when no rule applies
In addition to the standard transformation step strategy, two atbglication mode®xist. In the
stochastic modethe choice of the exclusive rule to apply is made randomly. The priorities of the ex-

clusive rules are then considered as the relative probability of their effective application (when they can
apply). Inasynchronous mogenly one exclusive rule is applied in one transformation step.

1016 J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI)

4. The Topology of Sets, Multisets, Sequences and Arrays

In this section, we show that several classical data structures can be seen from a topological point of
view. The notion of transformation introduced in the previous section on such collection, allows us to
recover some well-known computational models. More precisely:

e using transformation on multisets, we recover Gamma [1] and P system like models;
e using transformation on sequences, we recover the L system formalism [23];
e using transformation on arrays, we retrieve cellular automata [26].

We sketch how these well known models can be roughly rephrased and mimicked in the framework of
topological collections. The representations given are only approximations of the exact computation
mechanisms, because we do not fully consider the very basic details (they are very relevant for the
study of the formal expressive power of each formalism but are not considered here, as a programming
language always embeds a lot of small extensions required to facilitate the programmer’s life). Section 5
gives examples ofiGS programs that have been initially proposed as paradigmatic examples of these
formalisms.

4.1. Monoidal Collections

Consider a monoid/ over an alphabetl with an operation written;”. Let m be an element of/. If
M is free, thenn is a representation of a sequence of elements iNoreover, if M is not free because
operation, is commutative, them represents a multiset of elements4n And if » is also idempotent
(i.e.z > x = x), thenm represents a set. See [14].

It is not a coincidence that the neighborhood relationship in definition 2.2 and the join operation
here are denoted by the same comma. We sayaittaid y belonging toA are neighbors inn iff
m=u->x->y>v0rm=u-y-x>vWwithuandv elements of\/. This implies that:

¢ In a set, an elementis neighbor of any other element

e The neighborhood relationship in a multiset is the same as the neighborhood relationship in a set:
two arbitrary elements are always neighbors. The difference is that the same element may appear
more than one time in the multiset.

e The neighborhood relationship in a sequence is the expected one: if the sequence has at least two
elements, then all elements except the first and the last have two neighbors (caléftiathe the
right neighbor). The first and the last element have only one neighbor (respectively a right and a
left neighbor). If the sequence is reduced to a singleton, then this singleton as no neighbor.

These topologies can be described as abstract complexes in the following manner.
The topology of sets. A setV is represented by a topologidaicollection on a one dimensional form

with verticesl” and only one edgé . The functior; is defined by, T = > V. With this definition, an
element ofV is connected with any other element. The chain group describing a set is then particularly

J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI) 1017

simple: C,, = 0forp # 0, Ko = V andCy = Cy(K,Z/2 ® V). A setV corresponds to the chain
Y sey T

Let ¢’ be the subcollection to be replaced d#yinto the collectiorn: to give a new collectioa. The
fixed strategy used to buildfrom d’ andc” = C.c/, is simply to sefl 4 = |¢”| U |d'|.

This description is only combinatorial and does not admit a geometric realization. Indeed, a geomet-
ric 1-cell is homeomorphic to the intervdl, 1] and then admits only twe-cells in its boundary. If one
insists to have a geometric realization of topological sets, then shifting the dimension of the cells by one
is enough: the elements bf are the many edges of a unique polygonal face.

The topology of multisets. A multiset M of elements: € E can be represented by a tC N x E.
If e € M with multiplicity n, then then elementgpy, e), (p2,€), ..., (pn, €) Where thep; aren arbitrary
distinct integers, belong tb/. The multiset)/ is represented as thecollection associated to the set.

With this encoding, two arbitrary multiset elements are connected, in accordance with the fact that
any submultiset can be matched and replaced in a Gamma rule. Furthermore, the application of one
Gamma rule on a multisét/ is the parallel application of simple transformation and thereforlGan
transformation.

The topology of sequences. A sequenced = </1,/{, ..., ¢,> is a0-collection whose form is a chain
complex of dimension. Leti; ben rationals in increasing order; the underlying comptéis defined

by

Ko = {il,...7in} suchthaﬁj<ij+1
Ki = {(i1,i2), (i2,73), - ., (in-1,n) }
i, j) = i+

(the last sum is a formal sum, the operatois not the addition of rationals). The form of the sequences
is C(K,Z/2,0). Hence(is represented by the chay, ., _,, ¢;.4; .

An MGS ruled => d’ applied to a topological sequenceorresponds to a substitution with resdilt
The strategy used to glue the new subcollectivandc” = C.c into the result is the following:

e if d = 0 (that is, theMGs rule cancel’) thenShape(d) = Shape(c”);

o if d' # 0, thendd’ = §d’ (operators is the coboundary operator defined By, = (ix_1,x) +
(ig, i + 1) if ix_q1 andig,q exist; thed in the left hand side must be taken in the formcafhile
the § in the right hand side must be takendh This condition, together witld = d’ + ¢”, is
sufficient to specify completelyhape(d): Shape(d) = Shape(d') U Shape(c”) U |6¢/].

These rules are just the formal expression of inserdinig place ofc’ and corresponds to the behavior

of L system rules on a word.

4.2. Arrays and their Extensions

We have showed in [12, 9] that usual arrays are a special case of labelled Cayley graphs. These structures
are called “group based fields” (GBF) and subsume arrays, trees, circular buffer, etc. There is no room

1018 J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI)

to develop this approach here, but it is sufficient to consider the case of free abelian groups to handle
standard grids of cellular automata in any dimension.

Let G" be the free abelian group generateddyy. . ., d,,. We associate to this group the abstract
complex(G™, <) defined by:

Gy =G"
G ={(z,y) |z € G,y €{dr,... . dn}}
01 (7,y) = T +g, (T +gn y)

The abstract compleg™, which is simply the Cayley graph @™, is not finite but locally-finite. The
strategy used iNGS to paste the result of a simple transformation into the colleatignvery simple:
only the values of the chains are allowed to change, there is no change in

5. Examples

The following examples are freely inspired by examples given for Gamma, P systems and L systems and
term rewriting.

Erastothene’s Sieve on a Set. The idea is to generate a set with integers from 2Vtgwith rules
Generateand Succeefland to replace am and any such thatr dividesy by x (rule Eliminate. The
result is the set of the prime integers less than

trans Generate = {x,true} => x,{z+ 1,true};
trans Succed = {z,true} => ux;
trans Eliminate = (z,y/ymodz =0) => x;

With these definitions, the expression
Eliminate[fixrule] (Succed (Generate[N]({2, true}, set : ()))>

computes the primes up t¥. The expressiolfia, set : ()) build a set by joining the elementto the
empty setset : (). So the expressioienerate[N|({2,true},set : ()) appliesN times the trans-
formation Generate to a singleton. The transformatiosucced is applied only one times and then
transformationEliminate is applied until a fixpoint is reached.

Sorting a Sequence. A kind of bubble-sort is immediate:
trans Sort = (v,y/y<z) => y,x;

(This is not really a bubble-sort because swapping of elements can take at arbitrary places; hence an
out-of-order element does not necessarily bubble to the top in the characteristic way.)

J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI) 1019

Eratosthene’s Sieve on a Sequence.The idea is to refine the previous algorithm using a sequence.
Each element in the sequence corresponds to the previously compititigatime P; and is represented

by a record{prime = P;}. This element can receive a candidate numbewhich is represented by

a record{prime = P;, candidate = n}. If candidate is divisible by the stored numbeir-ime, (rule

Test), then the candidate number is deleted. If the candidate number passes the td&s{@yléhen

the element transforms itself into a record= {prime = P;, ok = n}. If the right neighbor ofr
matches{prime = P, 1} without a field candidate nor ok, then the candidate skips fromr to the

right neighbor. When there is no right neighbortahenn is prime and a new element is added at the

end of the sequence. The first element of the sequence is distinguished (it is just an integer, not a record)
and generates the candidates.

trans Eratos = {

Generel = n:integer /‘rightn
=> n, {prime = n};
Genere2 = n:integer,{prime as x, candidate, ok}
=> n+ 1, {prime = z, candidate = n};
Test1 = {prime as x, candidate as y, ok} / ymodz = 0
=> {prime = z};
Test2 = {prime as x, candidate as y, ok} / ymodz <> 0
=> {prime =z, ok = y};
Next = {prime as x1, ok as y}, {prime as x2, ok, candidate}
=> {prime = z1}, {prime = 22, candidate = y};
NextCreate = {prime as x,0k asy} as s / right s
=> {prime = z}, {prime = y};
}
prime=7 Tf{;l prime=7
candidate = 14
prime=7 TEE prime=7
candidate = 23 ok=23
prime=7 prime=11 Nfﬁ prime=7 prime=11
ok =23 candidate = 23
prime=7 prime =11 prime=13 prime=17 prlme:19
ok = 23 | candidate = 23 ok=19 o

i

Figure 12. Theeratosprogram. Some rule instantiations and a fragment of the sequence built by the transforma-
tion Eratos

1020 J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI)

Each rule has a name, and some rule applications are illustrated in figure 12. The far¢tianesp.
right) gives the left (resp. right) neighbor of its argument, if it exists, or else the undefined value.
Thus, this transformation can be applied only to topological collection which have a defined left and
right neighborhood relation. The expression

Erasto[N]((2,seq: ()))

executesV steps of the Erastothene’s sieve. For instaBcesto[100]((2, seq : ())) computes the se-
quence42, {candidate = 42, prime = 2}, {ok = 41, prime = 3}, {prime = 5}, {prime = 7}, {prime =
11}, {prime = 13}, {ok = 37, prime = 17}, {prime = 19}, {prime = 23}, {prime = 29}, {prime =
31}, seq: ().

The game of life. The game of life is a special kind of cellular automata. A cell of the cellular au-
tomaton (a vertex of the corresponding topological collection) takes one of the two values 0 and 1. The
evolution of this value depends on the values of the neighbors (if the sum of the neighbor’s value is be-
tween two given level, the current state is set to 1 and else it is set to 0). The correspasiprggram

is the following. It begins by the declaration of a new topological collection type:

ghf Grid2 = <X,Y >

this statement declares a new collection type, based on the group based field topology described in
section 4.2, with arX and anY” neighborhood relation. In this case, this declaration simply specify the
topology of an infinite grid with two dimensions nam&dandY . The evolution function of the cellular
automata is given by the transformation:

trans evolve = x => let s = FoldNeighbors((\a,b.a +b), 0, x)
in if (s < 3)or (s >4) then(elsel fi

the functionFoldNeighbors(f, e, z) makes a fold between the values of the neighbors wiith the

binary functionf and the initial value: (f is supposed to be an associative-commutative function with
neutral element). The operatoFoldNeighbors is applicable in all topology (in a set it gives all the
elements in the set, in a sequence it gives the considered element together with its left and right neighbors,
etc.).

6. Summary and Final Remarks

We have shown in section 2 that most of the notions used to describe P systems (membrane structures,
local computations, moves between adjacent membranes) find a natural setting and a smooth extension
in the framework provided by topological notions developed in the field of homology theory.

We have defined a topological collectioto be a chain on a given chain complex that describes the
topology of the collection and a labeling of the cells. A simple transformation replaces a suiddhain
another subchain, preserving the topological structure of the compleménnaf

This abstract view enabls the unification in a same programming language of several biologically or
biochemically inspired computational models, namely: Gamma and the CHAM, P systems, L systems
and cellular automata. These models can be rephrased as the iteration of simple transformations on a

J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI) 1021

topological collection; the difference coming from the topology of the collection (section 4). However,
we do not claim that we have achieved a useful theoretical framework encompassing the four cited
formalisms. We advocate that few notions and a single syntax can be consistently used to allow the
merging of these formalisnfer programmingpurposes.

It leads to the development of an experimental programming language HaBe#Gs is a vehicle
used to investigate general notions of collections and transformations and to study their adequacy to the
simulation of various biological processes. Simple examplé&®fprograms are given in section 5. All
examples are processed using the current version ofd®interpreter.

Currently, two versions of aMGS interpreter exist: one written i0CAML (a dialect ofML) and one
written in C++. There are some slight differences between the two versions. For instan©€Attie
version is more complete with respect to the functional part of the language. These interpreters are freely
availablé. In these currenMGS implementations, sets, multisets, sequences and group based fields
(which generalize functional arrays) of elements are supported. The elements in a collection can be any
kind of values: basic types, records or arbitrary nesting of collections. The values of the record’s fields
are also of any kind, thus achieving complex objects in the sense of [3].

The interested reader will find in [10] a more complete presentation of the language. The technical
report [11] gives more details on the topological formalization of collections and transformations. As a
matter of fact, we have simplified the presentation given here. For instance, for the sake of the simplicity,
we have restricted ourself to avoid the dual notions of cochains and coboundaries. However, this is the
right general formal setting to fully develop the notion of topological collection.

The report [11] also develops several examplesas programs (the tokenization of a sequence of
letters, the computation of the convex hull of a set of point®#n the computation of the maximal
segment sum, a Turing diffusion-reaction process, a grow model of cellular tissues, the computation of a
disjonctive normal form of a set of clauses represented as nested sets, etc.).

At the language level, the study of the topological collections concepts must continue with a finer
study of transformations. Several kinds of restriction can be put on the transformations, leading to various
kind of pattern languages and rules. The complexity of matching such patterns has to be investigated. We
also want to develop a type system that can handle nested collections, along the lines developed in [2]. At
last but not least, we want to know if the topological spaces built by transformations can be characterized
through a non standard type system. We also begin the study of a generic implementation of topolog-
ical chain complex, based on tif&map data structure [15] to represent arbitrary join/neighborhood
relationships. The efficient compilation of&s program is a long-term research effort.

The applications opened by this preliminary work are numerous. From the applications point of view,
we are challenged by the simulation of the topological changes at the early development of the embryo.
This is an actual example of tissues formation and fusion requiring complex topology beyond what is
accessible using simple data-structures. Another motivating application is the case of a spatially dis-
tributed biochemical interaction networks, for which some extension of rewriting have been advocated,
see [4, 16].

Acknowledgments

The authors would like to thanks the members of the “Simulation and Epigenesis” group at Genopole for
fruitful discussions and biological motivations. They are also grateful to F. Delaplace and J. Cohen for

2seehttp://www.lami.univ-evry.fr/mgs

1022 J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI)

numerous challenging questions and useful comments. The friendly atmosphere of WMC'01 has raised
many stimulating questions that have greatly improved an earlier version of this paper and suggested
many future developments. This research is supported in part by the CNRS, the GDR ALP, IMPG and

Genopole/Evry.

References

[1] Banatre, J. P., Metayer, D. LA new computational model and its discipline of programmifigchnical
Report RR-0566, Inria, 1986.

[2] Blelloch, G.: NESL: A nested data-parallel language (version 2.@echnical Report CMU-CS-93-129,
School of Computer Science, Carnegie Mellon University, April 1993.

[3] Buneman, P., Naqgvi, S., Tannen, V., Wong, L.: Principles of programming with complex objects and collec-
tion types, Theoretical Computer Scienck491), 18 September 1995, 3—-48.

[4] Fisher, M., Malcolm, G., Paton, R.: Spatio-logical processes in intracellular signdion§ystem$5, 2000,
83-92.

[5] Fontana, W.: Algorithmic ChemistryProceedings of the Workshop on Artificial Life (ALIFE '9@. G.
Langton, C. Taylor, J. D. Farmer, S. Rasmussen, Eds.), 5, Addison-Wesley, Redwood City, CA, USA, Febru-
ary 1992, ISBN 0-201-52570-4.

[6] Fontana, W., Buss, L.: "The Arrival of the Fittest”: Toward a Theory of Biological Organizat&uletin of
Mathematical Biology1994.

[7] Fontana, W., Buss, L.Boundaries and Barriers, Casti, J. and Karlgvist, A. edthapter The barrier of
objects: from dynamical systems to bounded organizations, Addison-Wesley, 1996, 56-116.

[8] Giavitto, J.-L.: A framework for the recursive definition of data structurégceedings of the 2nd Imter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP-00)
ACM Press, September 20-23 2000.

[9] Giavitto, J.-L., Michel, O.: Declarative definition of group indexed data structures and approximation of their
domains.,Proceedings of the 3nd Imternational ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP-0O,LACM Press, September 2001.

[10] Giavitto, J.-L., Michel, O.: MGS: a Rule-Based Programming Language for Complex Objects and Collec-
tions, Electronic Notes in Theoretical Computer Scielfee van den Brand, R. Verma, Eds.), 59, Elsevier
Science Publishers, 2001.

[11] Giavitto, J.-L., Michel, O.:GS: a Programming Language for the Transformations of Topological Collec-
tions Technical Report 61-2001, LaMI — Univemsit’Evry Val d’Essonne, May 2001.

[12] Giavitto, J.-L., Michel, O., Sansonnet, J.: Group-Based FieRtallel Symbolic Languages and Systems
(Int. Workshop PSLS'95).NCS 1068, Springer, 1996.

[13] Henle, M.: A combinatorial introduction to topologyDover publications, New-York, 1994.

[14] Hoogendijk, P. F., Backhouse, R. C.: Relational Programming Laws in the Tree, List, Bag, Set Hierarchy,
Science of Computer Programmirg®(1-2), April 1994, 67—105.

[15] Lienhardt, P.: Topological models for boundary representation : a comparison with n-dimensional general-
ized mapsComputer-Aided Desigr23(1), 1991, 59-82.

[16] Manca, V.: Logical string rewritingTheoretical Computer Scienc264, 2001, 25-51.

[17]
[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]
[26]

J.-L. Giavitto, O. Michel/ Topological Structures of Membrane Computing (submitted to FI) 1023

Munkres, J.Elements of Algebraic Topologpddison-Wesley, 1984.

Norris, V., Fralick, J., Danchin, A.: /SegAhyperstructure and its interactions direct the replication and
sequestration of DNAMolecular Microbiology 37, 2000, 696—702.

Palmer, R. S., Shapiro, V.. Chain Models of Physical Behavior for Engineering Analysis and D&sgn,
search in Engineering Desigb, 1993, 161-184, Springer International.

Paun, G.Computing with Membrane3echnical Report TUCS-TR-208, TUCS - Turku Centre for Computer
Science, November 11 1998.

Paun, G.: From Cells to Computers: Computing with Membranes (P systeWisdkshop on Grammar
SystemsBad Ischl, austria, July 2000.

Paun, G., Sakakibara, Y., Yokomori, T.: P Systems on Graphs of Restricted FBubk,Math. Debrecen
2001, (to appear).

Rozenberg, G., Salomaa, A.indenmayer SystemSpringer, Berlin, 1992.

Tonti, E.: The algebraic-topological structure of physical theor@&snmetry, similarity and group theoretic
methods in mechani¢®. G. Glockner, M. C. Sing, Eds.), Calgary, Canada, August 1974.

Tonti, E.: The reason for analogies between physical theohippl. Math. Modelling1, June 1976, 37-50.
Von Neumann, J.Theory of Self-Reproducing Automataniv. of lllinois Press, 1966.

