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ABSTRACT
We introduce a new high-level programming abstraction which
extends the concept of data collection. The new construct,
called GBF (for Group Based Data-Field), is based on an
algebra of index sets, called a shap e, and a functional exten-
sion of the array type, the �eld type. Shape constructions
are based on group theory and put the emphasis on the log-
ical neighborhood of the data structure elements. A �eld
is a function from a shape to some set of values. In this
study, we focus on regular neigh borhood structures and we
show that arrays of an y dimensions, cyclic array and trees
are special kind of GBF.
The recursive de�nitions of a GBF are then studied and

we provide some elements for an implementation and some
computability results in the case of recursive de�nition.

Keywords
recursiv e de�nition of data-structures, data-�eld, Cayley graph,
extension analysis

1. INTRODUCTION AND MOTIVATIONS:
DATA STRUCTURE AS SPACES

In Haskell or CAML, or more generally in functional lan-
guages, the array type is very di�erent in nature from the al-
gebraic data types that can be speci�ed by the programmer.
For instance, there is no pattern for case-based function def-
inition on an array. The reason is that there is no natural
constructor for the array type. In con tradiction with this
fact, it is possible to de�ne in a natural way the notion of
catamorphisms [9] for the arrays types. Therefore, there is
ob viously a need for a uni�ed formalism that enable the def-
inition of such functions smoothly on both data structures.
In this paper, we presen t a possible approach to answer this
need in a declarative framework.
In [13] we have developed a general framework for the re-

cursiv e de�nition of data structures. In this framework, we

rely upon the following intuitivemeaning of a data structure:
a data structure s is an organization or an arrangement o
performed on a data set D. It is customary to consider the
pair s = (o;D) and to say that s is a structure o of D (for
instance a list of int, an array of 
o at, etc.). How ever, we
w an t to stress the structureo as a set of places or positions,
independently of their occupation by elements of D. F ol-
lowing this perspective, a data structure in [13] is a function
from a set of places to a set of values.
Now, w e are interested to study various \set of places"

independently of the set of values. For example, one of our
motivations is to de�ne in the same framework the set of
places representing a tree or an array.

1.1 Data Structure and Elementary Moves
In order to separate sets places from values they contain,

our main idea is to abstract the data and computation move-

ments that occur within a data structure. The point of view
is geometric: a data structure can be seen as a space, the set
of places or positions betw een which the programmers, the
computation and the values, move.
The notion of move relies on some notion of neighbor-

hood: moving from one point to a neighbor point. Although
speaking of neighborhood in a data structure is notusual,
the relativ e accessibilit y fromone element to another is a
key point usually considered in a data structure. For exam-
ple:

� In a simply linked list, the elements are accessed lin-
early (the second after the �rst, the third after the
second, etc.).

� In a circular bu�er, or in a double-linked list, compu-
tation goes from one element to the follo wingor to the
previous one.

� From a node in a tree, we can access the sons.

� The neighbors of a vertex V in a graph are visited after
V when traveling through the graph.

� In a record, the various �eld are locally related and
this localization can be named by an identi�er.

� Neighborhood relationships betw een array elements are
left implicit in the arra ydata-structure. Implement-
ing neighborhood on arrays relies on an index algebra:
index computations are used to code the access to a
neighbor.
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For example (i � 1; j) is the index used to access the
\north neighbor" of point (i; j) (we assume that the
\north" direction is mapped to the �rst element of the
index tuple). The standard example of index algebra
is integer tuples with linear mappings �x:x � 1 along
each dimension (called \Von Neumann" or \Moore"
neighborhoods). More than 99% of array references
are aÆne functions of array indexes in scienti�c pro-
grams [11].

This list of examples can be continued to convince ourselves
that a notion of logical neighborhood is fundamental in the
de�nition of a data structure. The concept of logical neigh-
borhood in a data structure is not only an abstraction per-
ceived by the programmer and vanishing at the execution,
but it does have an actual meaning for the computation.
The computation indeed complies with the logical neighbor-
hood structure of the elements. For example, the recursive
de�nition of the map function on lists propagates an action
to be performed from the head to the tail. More generally,
recursive computations on data structure respect so often
the logical neighborhood, that standard high-order functions
can be automatically de�ned from the data structure orga-
nization (think about catamorphisms and others polytypic
functions on inductive types [9, 24]).

1.2 Formalizing the Elementary Displacements
in a Data Structure

Our goal is to make the neighborhood de�nition explicit
by specifying several spatial elementary moves (we will call
them equivalently shifts or displacements) to de�ne the neigh-
borhood for each element.
Such a structure of displacements will be called a shape.

A shape is part of the type of a data structure type, like
[100] is part of the C vector type int [100]. However, the
shape embeds much more information than just a size.
What we want is to give a uniform description of the

shapes appearing in various data structures focusing on the
geometrical nature of a shape. The purpose is to enable the
explicit representation and the reasoning on the data move-
ments and to develop a geometry of computation patterns.
The expected bene�ts are twofold:

� From the programmer's point of view, describing vari-
ous shapes in a uniform manner enhances the language
expressiveness and proposes a new programming style.

� From the implementor's point of view, a uniform han-
dling of the shapes enables to reason on dependencies
and data movements independently of the data struc-
ture.

In the following we restrict ourselves to regular data struc-
tures. A data structure is called regular if every element
of the data structure has the same neighborhood structure
(like for example a \right neighbor" and a \left neighbor").
The consequence of this assumption is examined below.

The Group Structure of Elementary Moves. To stress
the analogy made between a data structure and a (discrete)
space, we call points the elements of a data structure. Let
\a", \b", \c", : : : the directions taken on a point to go to
the point's neighbors and let P<a> be the \a" neighbor of
a point P . One can think about a as the displacement from
a point towards one of its neighbors (see Fig. 1). Displace-
ment operations can be composed: using a multiplicative

notation, we write P<a:b> for (P<a>)<b>. Displacement
composition is associative. We note e the null displacement,
i.e. P <e>= P . Furthermore we will de�ne a unique in-
verse displacement a�1 for each displacement a such that
P<a:a�1>= P<a�1:a>= P .
In other words, the displacements constitute a group for

the displacement composition, and the application of the
displacements to points is the action of the group over the
data structure elements.

1.3 Rationales of Using a Group Structure to
Model the Displacements

The reader who follows our analogy between space and
data structure may be surprised by the choice of a group
structure to formalize the displacements. For instance, why
choosing a group structure instead of a monoid? Another
example, is the approach taken in [10], that rephrased in our
perspective, uses a regular language to model the displace-
ments resulting from following pointers in C data structures.
The group structure seems to have two drawbacks:

1. A group structure implies inverse displacements. But
in a simply linked list, if we know how to go from the
head to the tail, we cannot go back from the tail to the
head (else, the structure will be a doubly linked list).
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2. The group structure implies regular displacement: each
displacement must apply on every point (e.g. on every
element of the data structure). This does not seem to
be the case for trees for example, where a distinction
is usually made between interior nodes (from which a
displacement is possible) and leaves (which are dead
ends).

The �rst remark relies implicitly on the idea that all the
possible displacements are coded in some way in the data
structure itself (e.g. by pointers). This is not the case: when
reversing a simply linked list, the inverse displacement is rep-
resented in a stack which dynamically records from where
the computation comes. This makes possible to access the
previous cons cell although there is only a forward pointer.
In a vector, accessing the element next to the element in-
dexed by i is done by computing its index, e.g. i + 1. The
inverse of function �i:i+1 can be computed given access to
the previous element (and at the same cost).
The second remark outlines that the parts of a (recur-

sive) data structure are generally not of the same kind and
considering regular displacements is a rough approximation.
However, consider more closely the case of a binary tree data
type T de�ned by:

T = A [ (B � T � T ) (1)

The interior nodes are valuated by elements of type B and
the leaf by elements of typeA. Intuitively, the corresponding
displacements are gl = \go to the left son" and gr = \go
to the right son" corresponding to the two occurrences of
T on the right hand side of the equation (1). These two
displacements cannot be applied to the leaves nodes. Now,
note that in an updatable data structure, a leaf may be
substituted to a sub-tree. So, from the shape point of view,
which focuses on the geometry of the structure and not on
the type of the elements, the organization of the elements is
similar to a regular binary tree

T = C � T � T (2)

where C = A [ B. In a point valuated by A, applying a
displacement gl or gr is an error. Errors are exceptional
cases that derogate from the regular case. Checking at run
time if the value is of type A or B to avoid an error is
not di�erent from checking if the node is of type A or B �
T � T (in languages like ML, this check is done through the
dispatch mechanism of pattern matching the arguments of
a function).
What we have lost between equation (1) and equation (2)

is the relationship between the A type and the inapplica-
bility of the displacement. But we have gained a regular
description of the displacement structure.
To summarize the previous discussion, the idea is to em-

bed an irregular structure into a regular one and to avoid
some moves. In other words, the group structure does not
overconstrain the elementary displacements that can be ex-
pressed. In addition, the group structure is suÆciently gen-
eral and provides an adequate framework to unify data-
structures like arrays and trees (Cf. sections 2.2 and 2.3).

1.4 The Representation of the Points
The �rst important decision we have made is to consider

regular displacements. We have now to decide on what kind
of sets operates the group of displacements.

Our idea is that the value of an element, or point, P may
depend only on the value at the points reachable from P .
That is to say, the value at a point may depend only on
the value at the points of its orbit. The orbit of the point
P 2 E under the action of the elements of the group G is
the set fP <g>; g 2 Gg. The action of G on E is said
to be transitive if all elements of E have the same orbit.
If there are several distinct orbits, then the computation
involved in these sub-data structures are always completely
independent, and therefore, it is rather arti�cial to merge
all these sub data structures into a bigger one.
This leads to considering a set of points on which the

group of displacements acts transitively, which means that
there is a possible path between any two points.
The simplest choice is to consider the group itself as this

set of points and let

P<a> = P:a

as the group action on itself.

1.5 Collection, Data Field and Group Based
Field

We have now all the necessary notions to de�ne a data
structure: informally, a data structure D associates a value
of some type V to the element of a group G. The group
G represents both the places of the data structure and the
displacements allowed between these places.
In consequence, a data structure s is a partial function:

s 2 SG = G ! V and a data structure type SG is the set
of partial functions from a given G to some set V. Because
the set G is a group, we call our model of data structures:
GBF for Group Based Field.
Because we use partial functions, a concrete data struc-

ture represents a bounded domain in the space de�ned by its
shape: the element of the shape with a de�nite image. For
instance, this enable the representation of usual (bounded)
arrays over an in�nite grid de�ned by an abelian group.
The formalization of a data structure as a function is not

new; it constitutes for instance, the basement of the theory
of data �elds [20] and is heavely used in [13]. In computer
science, it is usual to think about a function as a rule to be
performed in order to obtain a result starting from an ar-
gument. This is the intensional notion of functions studied
for instance by the � calculus. However, the current stan-
dard de�nition of a function in mathematics is a set of pairs
relating the argument and the result. This representation is
termed as extensional and is closer to the concept of a data
structure. For example, an array tabulates the relationship
between the set of indices and the array elements. So, we
insist here that the view of data structures as functions is
only logical and appears only at the level of the data struc-
ture de�nition. It does not assume anything on the data
structure implementation.

Organization of the paper. The rest of this work is de-
voted to a �rst study of the consequences of considering a
data structure under the geometric point of view of a group
operating on itself. It can be conceived as a study in data
�eld theory, where we have equipped the domain of the func-
tion with a group structure.
Shapes are de�ned in section 2. GBF and their operations

are introduced in section 3.
In section 4 we consider the recursive de�nition of GBF.
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A clear distinction is made between GBF and functions, so
we do not accept any recursive de�nition scheme and we
consider only recursions that propagate the computations
along a natural displacement.
The implementation problems of recursive GBF are con-

sidered in section 6. The basis for an optimized implemen-
tation dedicated to abelian GBF are provided (a possible
underlying parallel virtual machine is described in [14]).
The tabulation of the GBF values require the computa-

tion or the approximation of the de�nition domain. Some
theoretical results are provided for this problem in section 7.
Finally, section 8 reviews some related works on data

�elds, collections and the representation of discrete spaces
in computer science.

2. THE DEFINITION OF A SHAPE
Let the group G represent the set of all possible moves

within a data structure. Furthermore, we characterize a
subset S � G of elementary displacements.
Let Shape(G;S) denotes the directed graph having G as

its set of vertices and G � S as its set of (directed) edges.
For each edge (g; s) 2 G � S, the starting vertex is g and
the target vertex is g:s. The direction or the label of edge
(g; s) is s. Each element of the subgroup generated by S
corresponds at the same time to a path (a succession of el-
ementary displacements) and to a point: the point reached
starting from the identity point e of G and following this
path:

e<P> = P<e> = P

(from here we use P:s instead of P<s> for the s neighbor
of P ). In other words, Shape(G;S) is a graph where:

1. each vertex represents a group element,

2. an edge labeled s is between the nodes P and Q if
P:s = Q, and

3. the labels of the edges are in S.

This graph is called a Cayley graph. The following dictio-
nary, illustrated in �gure 2, gives the translation between
graph theory and group related concepts:

Cayley graphs Groups
vertex $ group element

labeled edge $ generator
path composition $ word multiplication

closed path (cycle) $ word equating to e
connexity $ solvability of P:x = Q

We can state some properties that link the global struc-
ture of Shape(G; S) and the relations between G and S. Let
us say that S is a basis of G if an element of G is a product
of elements of S. Let S�1 = fs�1; s 2 Sg. We say that S
generates G if S [ S�1 is a basis of G (this terminology is
not standard). Then, the following facts are well known:

{ For Shape(G;S) to be connected, it is necessary and
suÆcient that S generates G. The connected compo-
nents of Shape(G;S) are the cosets g:H where H is
the subgroup generated by S (a coset g:H is the set
fg:h : h 2 Hg).

{ For Shape(G;S) to contain a loop (a directed cycle of
length 1), it is necessary and suÆcient that e belongs
to S.

{ A circuit is a directed cycle. Shape(G;S) has no circuit
of length � 2, if and only if S \ S�1 = ;.

In the following, we restrict ourselves to the case where the
subset S generates G. Usually the name Cayley graph for
Shape(G;S) is used if S is a basis of G. If S is not a basis
of G, Shape(G;S) is a subgraph of the Cayley graph of G.
Note that there exist regular connected graphs, i.e., graphs
where each vertex has the same number of adjacent nodes,
which are not the Cayley graphs of a group [30].

2.1 Specification of a Shape by a Presentation
What we want is to specify Shape(G;S), that is, the group

G and the generator set S, in an abstract manner.
We use a �nite presentation to specify the group. A �nite

presentation gives a �nite set of group generators and a �nite
set of equations constraining the equality of two words. An
equation takes the following form: v = w where v and w are
products of generators and their inverses.
The presentation of a group is given between enclosing hj

and ji:

hj g1; : : : ; gd ; w1 = w01; : : : ; wp = w0p ji

where gi are the generators of the presentation and wj = w0j
are the equations. A free group is a group without equation.
We associate to a presentation G = hjS ; : : : ji the shape

Shape(G;S). So the generators in the presentation are the
distinguished group elements representing the elementary
displacements from a point towards its neighbors in a shape.
In the following, a presentation denotes the corresponding

shape or the underlying group following the context.
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b
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b
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b

e

w = a.b.a

w.(b-1.a)

b.a.a-1.b-1

a.b-1.a-1.b

P

w

Q

Figure 2: Graphical representation of the relation-
ships between Cayley graphs and group theory. A
vertex is a group element. The label a of an edge
corresponds to the generator a of the group. There
is an edge between vertices P and Q labelled by a
i� P:a = Q. A word (a product of generators) can
be seen a path. Starting from vertex P , a path
w ends in P:w. Path composition corresponds to
word multiplication. A closed path (a cycle) is a
word equal to e (the identity of the multiplication).
An equation v = w can be rewritten v:w�1 = e and
then corresponds to a cycle in the graph. There are
two kinds of cycles in the graph: the cycles that
are present in all Cayley graphs and correspond-
ing to group laws (intuitively: a backtracking path
like b:a:a�1:b�1) and closed paths speci�c to the own
group equations (e.g.: a:b�1:a�1:b). The graph con-
nexity (there is always a path going from P to Q) is
equivalent to say that there is always a solution x to
equation P:x = Q.
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2.2 Examples of Abelian Shapes
Abelian groups are groups with a commutative law (that

is, the product of two generators commutes). Abelian groups
are of special interest and we speci�cally use the h i brackets
for the presentation of abelian groups, skipping the commu-
tation equations as they are implicitly declared.
For example,

G2 = hNorth ; East ; West ; South ;

South = North�1; West = East�1i

Because the last two equations, South and West are aliases
for the inverses of North and East and only two generators
are necessary to enumerate the group element. The corre-
sponding abstract group can be presented without equation
by

G2 0 = hNorth ; East i

and therefore, is a free group. These shapes correspond to
an in�nite NEWS grid. The di�erence between G2 and G2 0

is that in the shape G2 , two adjacent nodes are linked by an
edge and its opposite (the grid is \bidirectional"), while in
the shape G2 ', there is only one edge between two neighbors.

Here is another example that shows that the e�ect of
adding an equation to a presentation is to identify some
points. We start from the free abelian group with one gen-
erator: h a i that describes a discrete line. If we add the
equation aN = e, the presentation becomes:

ha ; aN = ei

which speci�es a cyclic group of order N . The shape can
be pictured by the discretization of a circle where N is the
number of points of the discretization. Along the circle,
we can always move in the same direction a and after N
a-moves, we are back to the starting position. The points
fak:N ; k 2 Zg are all identi�ed with the point e.
Since arrays (like PASCAL arrays) are essentially �nite

grids, our de�nition of group-based �elds naturally embeds
the usual concept of array as the special case of a bounded
region over a free abelian shape. For example, multidimen-
sional LUCID �elds, systolic arrays, Lisper's data-�elds [21]
and even lazy lists, �t into this framework. Furthermore,
this allows the reuse of most of the achievements in the im-
plementations of arrays (e.g. [8, 28]) to implement (bounded
regions over) in�nite abelian �elds, and with some additional
work, to adapt them to the handling of �nite abelian �elds.

2.3 An Example of a Non Abelian Shape
Abelian groups are an important but special case of groups.

We give here one signi�cant example of a non abelian shape.
The �rst example is simply a free group. The free non

abelian shape:

F2 = hjx; y ji

is pictured in Fig. 3. We see that the corresponding shape
can be pictured as a tree (i.e. a connected non-empty graph
without circuit). Actually, there is a general result stating
that if Shape(G;S) is a tree, thenG is a free group generated
by S.
This enables the embedding of some class of trees in our

framework. Let Shape(G;S) where G is a free group and
S is a minimal set of generators, i.e. no proper subset of

S generates G. Then Shape(G;S) is a tree. Observe that
this tree has no node without predecessor. This situation
is unusual in computer science where (in�nite) trees have a
root and \grow" by the leaves, but this graph embeds any
�nite binary tree by rooting them at some point. Figure 3.b
gives an illustration of the points accessed starting from a
point w in F2 : it is a binary tree with root w. We cannot
�nd a unique generator acting as the father accessor (for
node w:x, the father accessor is x�1, while it is y�1 for the
node w:y).

F2 = 〈|x, y|〉

x

y

ew.x-1

w

w.x2

x

x y

w

x y x y

x y

x y x y

y

w.x

w.x.y

w.y

w.y.x
w.y2

Figure 3: A free non abelian group with two gener-
ators. Bold lines correspond to the points that can
be reached starting from a point w and following the
elementary displacements x and y.

3. GROUP BASED FIELDS
A group based �eld (or �eld in short) is a partial function

from a shape to some values set. The elements of the shape
with a well de�ned value are called the index set of the GBF.
If g : F ! V, we write g[F ] to specify that g is a GBF on
shape F and g(x) denotes the value of g at point x 2 F .
Because a shape F is simply a graph, a GBF is a function

over the vertices of this graph. The supplementary structure
of the graph is used to specify automatically some operations
that are available on a GBF over F .
Operations de�ned on �elds are intensional. We present

three kinds of GBF expressions: extensions of scalar func-
tions, geometric operations and reductions.
These operations are given as a �rst account to show how

a rich algebra of shape parameterized operations can be in-
troduced on GBF. In addition, all these operations have a
data parallel interpretation because they lead to manage
GBF as a whole.

3.1 Extension
Extension of a scalar function is just the point-wise appli-

cation of the function to the value of a �eld at each point.
So, if F has shape G, f(F ) denotes the �eld of shape G
which has value f(F (w)) for each point w 2 G. Similarly,
n-ary scalar functions are extended over �elds with the same
shape.
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3.2 Geometric operations
A geometric operation on a collection consists in rear-

ranging the collection values or in selecting some part of the
collection to build a new one.

Translation. The �rst geometric operation is the transla-
tion of the �eld values along the displacement speci�ed by a
generator: F:a where a 2 S. The shape of F:a is the shape of
F . The value of F:a at point w is (F:a)(w) = F (w:a). When
the �eld F is non-abelian, it is necessary to de�ne another
operation a:F speci�ed as: (a:F )(w) = F (a:w). Obviously,
this de�nition extends to the case where a 62 S: if u =
a1: : : : :an; ai 2 S, then (F:u)(w) = ((: : : (F:a1): : : : ):an)(w) =
F (w:u).

Direct Product. Several group constructions enable the
construction of a group from previous ones. We just men-
tion the direct product of two groups that gives rise to the
direct product of two �elds: F1[G1]�h F2[G2]. Its shape is
the direct product G1 �G2 = f(u1; u2) : u1 2 G1; u2 2 G2g
equipped with multiplication (u1; u2):(v1; v2) = (u1:v1; u2:v2).
The value of the direct product F1 �h F2 at point (u; v) is
h(F1(u); F2(v)). This operation corresponds to the outer
product on vector space.

Restriction and Asymmetric Union. We say that a shape
F = Shape(G;S) is in�nite if G is not a �nite set. Only the
values of a �eld on a �nite set are practically computable.
This raises the problem of specifying the parts of a �eld
where the �eld values have to be computed. Our approach
is similar to the one of B. Lisper for data �elds on Zn: we in-
troduce an operation of restriction that speci�es the domain
of a �eld.
The restriction gjp of a �eld g by a boolean valuated �eld

p, speci�es a �eld unde�ned for the point x where p(x) is
false. For the point x where p(x) is true, the restriction
coincides with g. We de�ne also the restriction of a �eld g
to a coset C: gjC where C = u:H. The result is a GBF of
shape H such that (gjC)(x) = g(u�1:x).
It is convenient to introduce simultaneously to the restric-

tion, an operator for asymmetric union: (f#g)(x) = f(x) if
f has a de�ned value at point x and g(x) elsewhere.

Remark. In [14], we do not admit any predicate p but we re-
strict to expressions corresponding to some simple domains
with good properties: the points of such a domain can be
enumerated, and predicate expressions are closed for domain
intersection.
Translation, restriction and asymmetric union of such do-

mains are the basis of the implementation of data �elds on
Z
n studied in [14, 7].

3.3 Reductions
Reduction of a n-dimensional array in APL is parameter-

ized by the axis of the operation [16] (e.g. a matrix can be
reduced by row or by column). The projection of the array
shape along the axis is another shape, of dimension n-1, and
this shape is the shape of the reduction. We generalize this
situation in the following way (consider Fig. 4).

Normal Subgroup and Quotient Group. Let H be a sub-
group of G, speci�ed by its set of generators S0; we write

H = 〈 East 〉:G2

G2/H

h East

North

H = 〈 North.East 〉:G2

East

North

G2/H

h

East

North

H = 〈 East.East 〉:G2G2/H

h

Ea
st

North

h

Figure 4: Three examples of reduction over the G2
shape.

H = S0 : G. H will be the axis of the reduction.
For u; v 2 G, we de�ne the relation u �H v if there exists

x 2 H such that u:x = v. Let the quotient of G by H,
denoted by G=H, be the equivalence classes of �H . An
element w of G=H is the set u:H where u is any element in
w.
We need to ensure that G=H is a group. This is always

possible, through a standard construction, if we assume that
H is a normal subgroup of G, that is, for each x 2 G; x:H =
H:x (for an abelian group, any subgroup is normal). Then,
a possible presentation of G=H is the presentation of G aug-
mented by the set of equations fg = e; g 2 S0g.

The Reduction. The expression hnH F denotes the reduc-
tion of a �eld F [G] following the axis H and using a com-
bining function h.
It is assumed thatH is a normal subgroup of G and that h

is a commutative and associative binary function. The shape
of hnH F is G=H. The value of hnH F on a point w 2 G=H
is the reduction of fF (v) : v 2 wg by h (this set has no
canonical order, this is why we impose the commutativity
of h).
See �gure 4 for some examples of reductions over the G2

shape. Only the �rst example can be expressed in APL. An
interesting point is that H is not restricted to be generated
by only one generator; as an example, +nG F where G is
the shape of F computes the global sum of all elements in
G (G is always normal in itself).

Remark. As usual in data �elds, there is a problem with
the handling of reductions over an in�nite domain. The
idea is that unde�ned values are not taken into account. So
hnH (gjp) is de�ned even if G is in�nite, if the set fx; p(x) =
trueg is �nite.

4. RECURSIVE DEFINITION OF A GBF
We can see scan operations [5], or catamorphisms and

their variations, as computations propagating along the data
structure neighborhood. The recursive de�nition of a GBF,
introduced in the next section, is then a possible generaliza-
tion of such operations.
Here declarative de�nitions of GBF are considered. So
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we restrict to recursive de�nitions of GBF preserving the
neighborhood relationships. This kind of GBF speci�cation
induces computation 
owing from a point to the neighbor
points, in a way reminiscent from the systolic computation
paradigm.
Let g[F ] be a GBF such that F = Shape(G; fs1; : : : ; sng).

If g complies with the elementary neighborhood speci�ed by
F , then the value of g on a point x depends only on the
value of g at points x:si via a �xed function h. That is

9h; 8x 2 G; g(x) = h(g(x:s1); : : : ; g(x:sn)) (3)

where h is a scalar function that establishes the functional
relationship between the value at a point and the values at
its neighbors.
Equation (3) holds for all x 2 G so we make that implicit

and write

g[F ] = h(g:s1; : : : ; g:sn) (4)

(the generators s1; : : : ; sn appearing in the equation are not
always suÆcient to infer the shape of g, for instance in g = 0;
this is why we may explicitly indicate [F ]). This equation is
a functional equation between GBF and not between values.
The GBF g is said to be recursively de�ned or simply a
\recursive GBF". An example is given in Fig. 5.

Quantification of Definitions. Obviously equation (4) is a
kind of recursive de�nition and we need some \base case" to
stop the recursion. So, we introduce quanti�ed de�nitions;
the two equations:

g@C = 0 (5)

g[F ] = 1 + g:d (6)

de�ne a GBF g on shape F . The equation (5) speci�es the
value of g(x) on a point x 2 C. In our example, the value of
g on C is 0. For point x 62 C, the equation (6) is used and
g(x) = (1 + g:d)(x).
We say that equation (5) is quanti�ed and that equation

(6) is the default equation. It is the set of these two equations
that makes the de�nition of g.
Using quanti�ed de�nitions do not enhance the expres-

sive power of recursive GBF. Indeed, equations (5+6) are
equivalent to

g[F ] = (0 jC) # (1 + g:d)

Coset Quantified Definition. The problem is to specify
the kinds of domains we admit for the expression of C. Ide-
ally, we would make a partition of the shape and de�ne the
�eld giving an equation for each element of the partition. It
implies that each element of the partition can be viewed as
a shape itself. We may use subgroups of the initial group to
split the initial domain, but this is somewhat too restrictive,
thus we will use cosets.
A coset g:H = fg:h; h 2 Hg is the \translation" by g

of the subgroup H. In a non-abelian group, we distinguish
the right coset g:H and the left coset H:g. To specify a
coset we give the word g and the subgroup H. The notation
fg1; g2; : : : ; gpg : G de�nes a subgroup of G generated by
fg1; g2; : : : ; gpg (the gi are words of G). There is no speci�c
equation linking the generators of the subgroup but they are
subject to the equations of the enclosing group, if applicable.

Well formed shape partitions. The intersection of two
cosets is empty or a coset. For that reason, in a coset quan-
ti�ed de�nition like8>>><

>>>:

g@C1 = : : :

: : :

g@Cn = : : :

g[G] = : : :

(7)

there are ambiguities in the de�nition of g if Ci \ Cj 6= ;
for i 6= j. To avoid these ambiguities, we suppose that if
Ci\Cj 6= ; for i 6= j, then there exists k such that Ci\Cj =
Ck. That is, the set fCig is closed for the intersection. Then,
the value of g on a point x 2 Ci is de�ned by the equation
corresponding to the smallest Ck containing x.

Remarks:
� Note that the set of points where the default de�nition
applies is not a coset but the complement of a union
of cosets.

� The ambiguities involved by multiple cosets quanti�-
cation is similar to the ambiguities involved by the def-
inition of a function through overlapping patterns. For
instance, in the following ML-like function de�nition

let f = function (true, ) -> 0 | ( , ) -> 1

the value of f(true, true) is either 0 or 1. An ad-
ditional rule giving the precedence to the �rst pattern
that matches in the pattern list, is used to �x the am-
biguity. The rule of cosets inclusion is used in the case
of GBF, but a rule based on the de�nition order can
be used if checking the inclusion of cosets has to be
avoided.

� The form (4) extends obviously to handle arbitrary
translation. This does not contradict the neighbor-
hood compliance because the introduction of interme-
diate �elds recovers the locality. For example,

g = 1 + g:d3

can be rewritten as8><
>:

g0 = g:d

g00 = g0:d

g = 1 + g00:d

5. A DENOTATIONAL SEMANTICS FOR
RECURSIVE GBF DEFINITIONS

As a matter of fact, a GBF is a function. Then, the seman-
tics of a system of recursive equations de�ning a set of GBF
is the same as the semantics of a system of recursive equa-
tions de�ning functions in the framework of denotational
semantics [29].
Let F be the Scott domain of functions over a group F .

The recursive expression g[F ] = '(g) de�nes a continuous
operator ' on F , because ' is a composition of continuous
operators like: translation, restriction, asymmetric union
and extension of continuous functions. Therefore, solutions
of g[F ] = '(g) exist and are called �xpoints of '. The least
�xed point of ' can be computed by �xpoint iteration from
�x: ? and is the limit of 'n(�x: ?) when n goes to in�nity.
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Computability. An immediate question is to know if the
�xpoint iteration converges on a point in a �nite number
of steps. For general functions this amounts to solve the
halting problem but here we are restricted to group based
�elds. However, the expressive power of group based �elds
is enough to confront to the same problem: suppose a �eld
de�ned by:

g[F ] = h(g:a; g:b; : : : )

the points accessed for the computation of the value of w
are: w:a; w:b; : : : ; w:a:a; w:a:b; : : : . As a matter of fact, if
the computation of a �eld value on a point w depends on
itself, the �xpoint iteration cannot converge; so we face the
problem of deciding if w:a = w, w:b = w, : : : ; w:a:b = w,
etc. That is to say, we have to decide if two words in a
�nite presentation represent the same group element. This
problem is known as the word problem for groups and is not
decidable (but it is decidable for �nitely presented abelian
groups, free groups and some other interesting families).

An Example. A possible program for a �eld on a one-
dimensional line, where the value at a point increases by
one between two neighbors, is:

G1 = hlefti (8)

A = left2:(hi : G1 ) (9)

iota@A = 0 (10)

iota[G1 ] = 1 + iota:left (11)

Equation (8) de�nes a one-dimensional, one-directional line.
Equation (9) de�nes the coset A = fleft2g because the sub-
group hi : G1 is reduced to feg by convention. Equation (10)
speci�es that the �eld iota has the value 0 for each point of
coset A and equation (11) is valid for the remaining points.
To de�ne a �eld iota with the value 0 �xed at the point

e, we set \iota@hi = 0" instead of (10). We write hi for
e:(hi : G1 ) because a subgroup H is also the coset e:H and
because here, after iota@, hi denotes necessarily a subgroup
of G1 .
The previous equations for iota de�ne a function over G1

that can be speci�ed in a ML-like style as:

let rec iota(leftn) = if n == 2 then 0

else 1 + iota(leftn+1);;

This function has a de�ned value for the points fleftn; n � 2g
and the value ? for the other points. Note that the use of
a displacement a instead of a�1 is mainly a convention.

6. IMPLEMENTING THE COMPUTATION
OF A RECURSIVE GBF

For the sake of simplicity, we suppose that �eld de�nitions
take the following form:

8>>><
>>>:

g@C1 = c1

: : :

g@Cn = cn

g[G] = h(g:r1; g:r2; : : : ; g:rp)

where Ci are cosets, ci are constants and h is some extension
of a scalar function. The set Rg = fr1; : : : ; rpg is called the
dependency set of g.

We assume the existence of a mechanism for ordering the
cosets and to establish if a given word w 2 G belongs to
some coset. We also suppose that we have a mechanism to
decide if two words are equal. For example, these mecha-
nisms exist for free groups and for abelian groups. There
is no general algorithm to decide word equality in any non-
abelian groups. So our proposal is that non abelian shapes
are part of a library and come equipped with the requested
mechanisms. A future work is then to develop useful families
of (non abelian) shapes.
With these restrictions, a �rst strategy to tabulate the

�eld values is the use of memoized functions. A �eld g[G]
is stored as a dictionary with entries w 2 G associated to
values g(w). If the value g(w) of w is required, we �rst
check if w is in the dictionary (this is possible because we
have a mechanism to check word equality). If not, we have
to decide which de�nition applies, that is, if w belongs to
some Ci or not. In the �rst case, we �nish returning ci and
storing (w; ci) in the dictionary. In the second case, we have
to compute the value of g at points w:r1; : : : ; w:rp, (that is
recursion) and then the results are combined by h.

Optimization when a Word Normal Form Exists. We
can do better if each word w can be reduced to a normal
form w. A normal form can be computed for abelian groups
(the Smith Normal Form) or for free groups. In this case,
the dictionary can be optimized into an hash-table with key
w for w.

Implementation of Recursive Abelian GBF. In the case
of an abelian group G, we can even improve the implemen-
tation using the fundamental isomorphism between G and
a product of Z-modules, see [6, 15]. As a matter of fact, a
function over a Z-module is simply implemented as a vec-
tor. The diÆculty here is to handle the case of Zn which
corresponds to an unbounded array. The computation and
implementation of data �elds over Zn is studied in [22, 12,
14].

7. APPROXIMATION OF THE DOMAIN OF
A RECURSIVE GBF

The algorithm presented in section 6 corresponds to a
demand-driven evaluation strategy. For example, to evalu-
ate iota(e), we have to compute iota(left) which triggers the
computation of iota(left2) which returns 0. So, there is a de-
pendency between the computation of iota(e) and iota(left)
that can be pictured by a dependency between e and left.
More generally, for a de�nition g[G] = h(g:r1; : : : ) we can

associate to each point w 2 G a set Pw of directed paths
corresponding to the points visited to compute g(w). An
element p of Pw is a word of the subgroup generated by
Rg = fr1; : : : g (the converse is not true). These notions are
illustrated in �gure 5.
The evaluation of g(w) fails if some p 2 Pw has an in�nite

length. Two cases can arise:

� p is cyclic;

� p has an in�nite number of distinct vertices.

Bounding the number of vertices in a computation path is
similar to the \stack over
ow" limit. Static analysis can
be used to characterize the domains of G with �nite paths
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H = <a,b,c; a.c = b>

F@<c>:H = …
F@<a>:H = …

F =  F.a-2  +  F.b-1  +  F.c-1
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Figure 5: This schema �gures a GBF based on an
hexagonal shape H = ha; b; c ; b = a:ci. The �eld F is
de�ned by a recursive expression. The cosets hai : H
and hci : H are the base case of the recursion. The
dependency set is RF = fa�2; b�1; c�1g. The integer
that appears in a cell corresponds to the maximal
length of a dependency path starting from the cell
and reaching a coset. This integer can be thought
as the early instant where the cell value can be pro-
duced (in a free schedule). The arrows picture the
inverse of a dependency: this translation can be used
to compute new points value starting from known
points. In this example, only one value can be pro-
duced at each time. The cells that have a value
di�erent from ? are in bold: they correspond to the
de�nition domain of F . The in�nite path that starts
from one cell shows the beginning of an in�nite de-
pendency path: this path \jump" over the cosets
and goes to in�nity, that is, the starting cell does
not have a de�ned value.

(Cf. [21] for a study in this line). SuÆcient conditions can
also be checked at compile-time to detect cyclic paths (e.g. a
raw criterion can be Rg\R

�1
g = ;) and/or it can be detected

at run-time using an occur-check mechanism.

The development of a data driven evaluation strategy, or
the development of some optimizations in the computation
of a GBF, require the computation or the characterization
of the de�nition domain of a recursive GBF. The de�nition
domain of a GBF is the set of points w such that 8p 2 Pw,
p is �nite (the set Pw is �nite if each of its element is �nite,
because on any point w there is only a �nite number of
neighbors that can be used to continue a path).
In the rest of this section, we give some results about this

problem.

7.1 Computability
The decidability of the word problem is not a suÆcient

condition to decide if a GBF g has a de�ned value on point
x. For instance, in Zn where the word problem is decidable
(Cf. section 6), the problem of deciding if a GBF g de�ned
by an equation of form (4) has a de�ned value on a point x
is still undecidable.
Informally, the example of iota shows that some kind

of primitive recursion is implementable in the GBF for-
malism. The equations g[hrighti] = if p then c else g:right
shows that some kind of minimization is also possible. Thus,

intuitively, arithmetic functions can be coded in the GBF
formalism. Note that for minimization, we use a conditional
which is the extension of a non strict function.
Note also that for �nite groups this problem is decidable

because it is suÆcient to explicitly compute the dependency
graph between the group elements. This graph is �nite and
it is suÆcient to check for the absence of cycle.

7.2 Approximation of the Definition Domain
of a strict GBF

We call strict GBF a recursive GBF g speci�ed by case on
cosets but without using restriction, asymmetric union and
with the help of only strict functions h in right hand side of
equation (4). The computability of a strict GBF does not
become a trivial problem. We give here some results on the
approximation of the de�nition domain of a strict GBF g
de�ned by

8>>><
>>>:

g@C1 = c1

:::

g@Cp = cp

g[G] = h(g:r1; : : : ; g:rq)

(12)

where h is a strict function. Let:

Rg = fr1; : : : ; rqg and D0 =
[
j

Cj

In the sequel, we reserve the index j to enumerate the cosets
Cj and the index i to enumerate the shifts ri.
We know that the solution g of equation (12) is the least

�xpoint of ' de�ned by:

'(f) = �x: if x 2 Ci then ci else h(f:r1; : : : ; f:rq)

Def (g) denotes the de�nition domain of g. As a matter
of fact, '(f)(x) is de�ned if x 2 D0. Because h is strict,
if x 62 D0 then x 2 Def (g) ) x:ri 2 Def (g). That is,
the de�nition domain Def (g) is the least solution (for the
inclusion order) of equation

D = D0 [
\
i

(D=D0):ri (13)

where D=D0 = fx such that x 2 D ^ x 62 D0g.

7.2.1 The Lower Approximation Dn

The solution g is the limit of the sequence gn = 'n(�x:?).
If x 2 Def (gn), then we have two possibilities: x 2 D0 or
x:ri 2 Def (gn�1) because h is a strict function. In the last
case, it means that x 2 Def (gn�1):r

�1
i .

Suppose that the domain of gn�1 is a set Dn�1. We can
propagate the value to Dn�1:r

�1

i and because of the strict-
ness of h we need to satisfy all the dependencies ri. Thus,
we may compute new values on the set

T
iDn�1:r

�1
i .

We then obtain the de�nition domain of g as the limit D1
of the sequence:

D0 =
[
j

Cj (14)

Dn+1 = Dn [
\
i

Dn:r
�1

i (15)

Starting from the de�nition of Dn we have immediately:

D0 � D1 � ::: � Dn � ::: � D1 = Def (g) (16)
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Therefore, the sequence Dn gives a lower approximation of
Def (g).

7.2.2 The Greater Approximation En

A Geometric Interpretation. To obtain a greater approxi-
mation of Def (g), we �rst interpret geometrically the prop-
erty of belonging to the de�nition domain of g. To each
point w 2 G we associate a set Pw of directed paths corre-
sponding to the points visited for the computation of g(w).
An element p of Pw is a word of the monoid Rg generated
by Rg:

Rg = f r
�i1

i1
: ::: : r

�i
k

ik
; with ril 2 Rg and �il 2 N g

The computation of g(w) fails if there exists a p 2 Pw with
an in�nite length. We have already noted that there are two
classes of in�nite path: cyclic paths and the others.

Computing a Greater Approximation E0. If g(w) is de-
�ned, then all the paths p 2 Pw starting from w must end on
a coset Cj . Amongst all these paths, there are some paths
made only with ri shifts. Let:

Ri = f r�ni ; n 2 N g (17)

E0 = D0 [
\
i

D0:Ri

The set Ri is the monoid generated by r�1i (warning: we
take the inverse of the dependency). The set E0 is made
of the points w 2 G that either belong to D0 or are such
that there exists a path made only from ri starting from
w and reaching D0. This last property is simply expressed
as: 8i; 9ni; w:r�nii 2 D0. This property is true for all
w 2 Def (g) and then:

Def (g) � E0 :

Refining the Approximation E0. The greater approxima-
tion E0 is a little rude. We can re�ne them on the basis of
the following remark. If w 2 Def (g), then we have either
w 2 D0 or w:ri 2 Def (g). We can deduce that:

Def (g) � E1 = D0 [ (E0 \
\
i

E0:ri)

Obviously E1 � E0. Moreover, this construction starting
from E0 can be iterated, which introduces the sequence

E0 = D0 [
\
i

D0:Ri (18)

En+1 = D0 [ (En \
\
i

En:ri) (19)

We always have Def (g) � En+1 � En.
Let E1 be the limit of En. For each w 2 E1, we have

either w 2 D0 or w:ri 2 E1. Therefore, E1 is a solution of
the equation (13). It should be checked that it is the least
solution which we admit (intuitively, the element of G are
equivalence classes of �nite words of generators and then, if
x 2 E1 it can be checked by induction on the number of
occurrences of ri in x that x 2 Def (g)).

7.3 Summary and a Conjecture
We can summarize the previous results by the formula:

D0 � ::: � Dn � ::: � D1 = Def (g) = E1 � :::

::: � En � ::: � E0 (20)

These results hold for any strict GBF (abelian or non abelian).
The recursive de�nition of a GBF g[G] can be generalized
without diÆculty by considering more general base case do-
mains. That is, we may replace the coset Ci by arbitrary
set Si in equation (7). Relations (20) remain true.
A monoid M generated by element g1; :::; gp of a group

G is the set of elements that can be written as product of
positive powers of the gi's. We call comonoid the translation
of a monoid, that is, a set x:M = fx:m;m 2 Mg where M
is a monoid. For all the examples we have worked out on
Z
n, we have veri�ed that the de�nition domain of a GBF g

is a �nite union of comonoids. We conjecture that this is
always true.

8. CONCLUSION
This paper reports some e�orts to extend the concept of

collection, in the line of [13], by specifying a structure for
an index set and independently of the element's value.
Considering a data structure independently of its underly-

ing set is interesting for many purposes. For instance, this is
the essence of the approach taken in the theory of species of
structures [3] for combinatorial enumeration. The approach
is functorial, which is also the case in [17], where B. Jay
develops a concept of shape polymorphism. In his point of
view, a data structure is also a pair (shape, set of data).
As above, the shape describes the organization of the data
structure and the set of data describes the content of the
data structure. However, his main concern is the develop-
ment of shape-polymorphic functions and their typing. Ex-
amples of shape polymorphic functions are the generalized
map or the generalized scan, that can be computed without
changing the data structure organization. More generally,
the shape of the result of a shape-polymorphic function ap-
plication depends only on the shape of the argument, not of
its content.
The framework presented here uni�es the tree and the

array data structures. There is a number of researches
to extend the concept of array: Indexical Lucid [1], In�-
del [27], AMR++ [2]. These approaches consider more gen-
eral shapes for arrays than n-dimensional bounding box, but
always rely on grids (that is, a point is indexed by a tuple of
integers). This forbids for example the natural representa-
tion of a tree or a triangular lattice. Cellular automata on a
Cayley graph have been studied by [25] but no �eld algebra
is worked out and the problem of recursive de�nition is out
of their scope.
Here, we propose to consider a collection as a partial func-

tion over a �nitely presented group. This approach makes
the de�nition of point neighborhood explicit and gives a
very rich algebra of function built on group theoretic con-
structions: examples of direct product, free product and
quotient have been given. It remains to extend these con-
structions (e.g. de�ning an amalgamated product) and to
check if, starting from groups owning the required proper-
ties (e.g. existence of a mechanism to test coset member-
ship), these properties can be constructively lifted through
the group constructions. Computational group theory is an
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extensively studied area, see for example [26] and a large cor-
pus of results is available. The reader may �nd in [22, 12] a
review of the theoretical tools needed to solve the implemen-
tation problems we have discussed for abelian �elds. These
constitutes the basis of a parallel platform in JAVA [14] for
the computation of data �elds.
Shape speci�cation and construction �t naturally the frame-

work of type theory. For instance, presentations correspond
to ground types and group constructions to type expres-
sions. The parameterized shape D(N) in section 2.2 is an
example of a value dependent type. The group foundation of
shapes o�ers several tools to formulate various type equality.
For example, group isomorphism, which is solvable for �nite
abelian presentation, is a candidate for observational equal-
ity. But group isomorphism does not preserve the neighbor-
hood structure of a shape, which is central in our approach:
we have to check in addition that the image of a generator
is a generator, and conversely. There is also a natural in-
terpretation for subtyping: a shape S0 is a subtype of shape
S if they de�ne the same group and if the generators of S
are included in those of S0 (all �eld operations de�ned on
S are available on S0). This is decidable for abelian pre-
sentation. These examples corroborate our opinion that, in
addition to the gain in expressive power for the programmer,
the use of group theory gives also a gain for managing the
type structure.
For recursive �eld de�nitions, the decomposition of a �eld

into sub�elds is a fundamental mechanism. The need of
powerful decomposition mechanisms appears in quanti�ca-
tion of de�nitions and in reduction expressions. We use re-
spectively cosets and normal subgroups. It is interesting to
compare this situation with the approach of Bird-Meertens
algebra [4] or with the power-list algebra [23]. These theo-
ries develop a basis for the (recursive) de�nition of lists or
arrays. The decomposition relies on the concatenation: ap-
pending two lists gives another list and concatenating two
homogeneous arrays gives another array, leading to a divide-
and-conquer computation strategy. In group-based �elds,
the decomposition relies on cosets (the sets Lt giving the
decomposition of the computations) or on a normal sub-
group (which decomposes naturally the group into a prod-
uct). A direction for future work is to investigate other
possible and useful decompositions of shapes. An analogous
for the concept of list-homomorphism must also be worked
out for group based �elds.
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APPENDIX

A. COMPUTING THE DOMAIN APPROX-
IMATIONS OF AN ABELIAN GBF US-
ING THE OMEGA CALCULATOR

Equations (14, 15, 17, 18, 19) enable the explicit construc-
tion of Dn and En if it is known how to compute intersec-
tion, union and product of comonoid. We call comonoid a
set x:M = fx:m;m 2Mg where M is a monoid.
Indeed, a coset is a special kind of comonoid. Note that

the intersection of a comonoid is either empty or a comonoid.
If the product D:M of a comonoid D by a monoidM is also
a monoid (which is the case for abelian shape or if the ri
commutes with all group elements), then all arguments of
the intersections and unions in the previous equations are
comonoids. We may then express Dn and En for a given
n has a �nite union of comonoids. It is then clear that
the de�nition domain of g is an union of comonoids. The
conjecture only says that this union is �nite.
We have used the omega calculator, a software package

[18] that enables the computation of various operations on
convex polyhedra to make linear algebra in Zn and represent
comonoids. Linear algebra is not enough to compute Dn

and En because we have to compute the Ri. Fortunately,
the omega calculator is able to determine in some cases
the transitive closure of a relation [19] which enables the
computation of Ri as the transitive closure of [x, x.ri] (we
use here the syntax of the omega calculator). We plan to

develop a dedicated library under Mathematica to compute
these approximations systematically.
Here is in example, based on the de�nition illustrated in

�gure 5. Please refer to [18] for the omega calculator con-
cepts and syntax. We �rst de�ne the cosets in Z2

C1 := f [n, 0] g;
C2 := f [0, n] g;

then three relations that correspond to the dependencies:

r1 := f [x, y] -> [x, y+1] g;
r2 := f [x, y] -> [x+2, y] g;
r3 := f [x, y] -> [x+1, y+1] g;

and we need also the inverse of the dependencies:

ar1 := f [x, y] -> [x, y-1] g;
ar2 := f [x, y] -> [x-2, y] g;
ar3 := f [x, y] -> [x-1, y-1] g;

We may now de�nes the Di:

D0 := C1 union C2;

H1 := r1(D0) intersection r2(D0) intersection r3(D0);
D1 := D0 union H1;

H2 := r1(D1) intersection r2(D1) intersection r3(D1);
D2 := D1 union H2;

H3 := r1(D2) intersection r2(D2) intersection r3(D2);
D3 := D2 union H3;

We can ask omega to compute a representation of D3

f[x,0]g union f[0,y]g union f[4,1]g union
f[6,1]g union f[2,1]g

which is what it is expected. For the approximation Ei we
need to represent the monoids Ri which is done through a
transitive closure:

R1 := r1*;
R2 := r2*;
R3 := r3*;

The de�nition of E0 raise the computation of

E0 := R1(D0) intersection R2(D0) intersection R3(D0);

(we have ommited the union with D0 to avoid too compli-
cated term in the result). The evaluation of this de�nition
returns

f[x,y]: Exists (alpha : 0 = x+2alpha
&& 1 <= y && 2 <= x)g union f[x,0]g union f[0,y]g

This approximation is too large, we may re�ne it by com-
puting E1:

E1:= r1(ar1(E0) intersection E0) intersection
r2(ar2(E0) intersection E0) intersection

r3(ar3(E0) intersection E0);

The evaluation of E1 gives:

f[x,1]: Exists ( alpha : 0 = x+2alpha
&& 4 <= x)g union f[2,1]g

which is also E1 minus D0.

Extensions. We may extend the result (20) to non abelian
forms simply by carefully taking care of the right or left
applications of a shift ri. We may also extend the previ-
ous results to the case of a system of recursive strict GBF
g; g0; g00; ::: by using Dn;D

0

n;D
00

n; ::: and En;E
0

n;E
00

n; ::: instead
of only Dn and En.
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