
Pergamon

Cornput. Lang. Vol. 22, No. 2,:3. pp. 165-179, 1996
Copyright 0 1996 Elsevier Science Ltd

SOO96-0551(96)00012-4
Printed in Great Britain. All rights reserved

0096-0551/96 $15.00 + 0.00

DESIGN AND IMPLEMENTATION OF 8,/z: A
DECLARATIVE DATA-PARALLEL LANGUAGE

OLIVIER MICHEL
LRI u.r.a. 410 du CNRS, Batiment 490, Universite de Paris-Sud, 91405 Orsay Cedex, France

(Received 18 March 1996; revision received 17 April 1996)

Abstract-In this article we advocate a declarative approach to data-parallelism to provide both
parallelism expressiveness and efficient execution of data intensive applications. 81.2, an experimental
language combining features of collection and stream oriented languages in a declarative framework, is
presented. A new structure, the web, allows the programmer to write programmes as mathematical
expressions and to implicitly express data and control parallelism. The first part of this paper proposes
a classification of the various expressions of parallelism in programming languages. We show that hybrid
execution models combining both data and control parallelism are possible and necessary to get an
effective speedup. We sketch the advantage of the declarative style with respect to parallelism expression
(application side) and exploitation (compiler side). In the second part we describe the 8,‘~ language and
the concepts of collection, stream and web. A web is a multi-dimensional object that represents the
successive values of a structured set of variables. Some 8,‘> programmes are given to show the relevance
of the web data structure for simulation applications (a resolution of O.D.P.E. and a simulation in artificial
life). Examples of 81.2 programmes, involving the dynamic creation and destruction of webs, are also given.
Such programmes are necessary for simulations of growing systems. In the third part, the implementation
of a compiler restricted to the static part of the language is described. We focus on the process of web
equations compilation towards a virtual SIMD machine. We also present the clock calculus, the scheduling
inference and the distribution of the computations among the processing elements of a parallel computer.
Copyright ‘Q 1996 Elsevier Science Ltd

data-parallelism declarative languages collection-oriented languages synchronous data-flow
recursive collection data-distribution and scheduling

1. INTRODUCTION

I. 1. A proposal for a taxonomy of parallelism expressions

Table 1 proposes a classification of the various expressions of parallelism in programming
languages. Such a framework is required for the analysis of existing languages and the development
of a new one. We propose to mimic the Flynn classification of parallel architectures [l] and to
compare parallel languages constructs following two criteria: the way they let the programmer
express the control and the way they let him manipulate the data. The programmer has three
choices to express the flow of computations:

l Implicit control: this is the declarative approach. The compiler (static extraction of the
parallelism) or the runtime environment (dynamic extraction by an interpreter or a hardware
architecture) has to build a computation order compatible with the data dependencies exhibited
in the programme.

a Explicit control which refines in:
-Express what has to be done sequentially: this is the classical sequential imperative execution

model, where control structures build only one thread of computation.
--Express what can be done in parallel: this is the concurrent languages approach. Such

languages offer explicit control structures like PAR, ALT, FORK, JOIN, etc.

For the data handling, we will consider two major classes of languages:

l Collection based languages allow the programmer to handle sets of data as a whole. Such
a set is called a collection [2]. Examples of languages of this kind are: APL, SETL,
SQL, *Lisp, C* . .

I65

166 Olivier Michel

l Scalar languages allow also the programmer to manipulate a set of data but only through
references to one element. For example, in standard Pascal, the main operation performed on
an array is accessing one of its elements.

Historically, the data-parallelism has been developed from the possibility of introducing parallelism
in sequential languages (this is the “starization” of languages: from C to C*, from Lisp to *Lisp
. . .). It relies on sequential control structures (*when . . .) and parallel data. However, Table 1
shows that the concept of collection can be freely mixed with other expressions of control. As a
consequence, collection based languages can be mixed with concurrent languages (multiple SIMD
model or MSIMD) and declarative languages (Gamma [3] or 81,2 [4]).

I .2. Declarative structure and massive parallelism

Now a short overview of the advantage of the declarative style with respect to the parallelism
expression and exploitation is going to be presented. Nowadays new architectures appear [S-S] to
efficiently support an SPMD or MSIMD execution model. This motivates the development of new
programming paradigms able to express more than one kind of parallelism. However, to quote [9]:
“simplicity and efficiency of the SIMD approach” must be preserved while acquiring the “processor
utilisation and the flexibility of control structure afforded by the MIMD approach”.

The development of a declarative framework supporting both data and control parallelism relies
on the construction of an adequate data structure and its subsequent algebra. As a matter of fact,
stream algebra is well fitted to control-parallelism [lo] while collection algebra supports implicit
data-parallelism [111. Consequently, this leads to merge streams and collections into a unique data
structure. The 8,,* language is based on webs which is such a combination. From the parallelism
point of view, managing streams and collections in a declarative framework exhibits several
advantages:

l There is no explicit construct for parallelism in the language, in accordance with the
“parallelism as an implementation property” point of view (i.e. parallelism is in the scope of
implementation, and is irrelevant at the semantic level).

l The declarative form of the language makes it easy to perform dependence analysis between
tasks and the subsequent exploitation of control parallelism.

l Collections are a natural support of the data-parallelism and collection operations between
webs naturally lead to a data-parallel implementation.

l Collections introduce a natural support for the distribution of data.
l Introducing collections corrects some of the drawbacks sustained against the stream oriented

data-flow model [12], mainly by adding some specific handling of arrays with a consistent
concept of time.

l Transparential references allow a formal treatment of programmes, and programme
optimization using programme transformations are possible (cf. for example [13, 141).

Furthermore, embedding collection in a synchronous data-flow model combines the advantages
of the synchronous and asynchronous parallel styles [9]. Consider for example the actor model: it
proposes a minimal kernel to deal with control parallelism but handling of homogeneous sets of
data, like arrays, is definitively inefficient [15]. From another point of view, the handling of
communications in sequential data-parallel oriented languages, like *LISP, forbids overlapping of
communications and computations because there is only one thread of control.

Table 1. A classification of lanrmaaes from the oarallel constructs ooint of view

Declarative Sequential Concurrent
languages languages languages

0 instruction counter 1 instruction counter n instructions counters

Scalar languages Sisal, Id, LAU, Fortran, C, Ada,
Actors Pascal Occam

Collection languages Gamma, *LISP, HPF, CM Fortran + multi-
81,~ CM Fortran threads

Design and implementation of 8, z 16;

These two examples show the advantage of combining data and control parallelism. Using
implicit data- and control-parallelism enables:

l the maximal expression of the parallelism inherent to an application (this does not imply the
maximal exploitation of parallelism);

l the use of the effective parallelism which implies cheaper implementation overheads (with
respect to the target architecture); and

l the hiding of communication costs by overlapping computations of independent activities.

The rest of the paper describes the language 8,,Z and its compilation. It is an embedding of
data-parallelism in a declarative framework. 8,,2 does not support all styles of parallel
programming, but we argue that it combines advantages of the two approaches for a large class
of applications. A stream is a direct representation of a trajectory of a dynamical system (i.e. the
sequence of the successive states of the system), a collection corresponds to the value of a
multidimensional state or to the discretization of a continuous parameter. In addition. the
declarative form of the language fits well with the functional description of a dynamical system.
Thus we advocate the use of 8,,? for the parallel simulation of dynamical systems (e.g. deterministic
discrete events systems [161).

2. THE DECLARATIVE DATA-PARALLEL LANGUAGE 8’:

8, 2 has a single data structure called a web. A web is the combination of the concept of stream
and collection. This section describes these three notions.

2.1. The collection in 8,.?

A collection is a data structure that represents a set of elements as a whole [17]. Several kinds
of aggregation structure exist: set in SETL [18] or in [19], list in LISP, tuple in SQL, ptlar in *LISP
[20] or evenjinite discrete space in Cellular Automata [21]. Data-parallelism is naturally expressed
in terms of collections [2, 221. From the point of view of the parallel implementation, the elements
of a collection are distributed over the processing elements (PEs).

Here we consider collections that are ordered sets of elements. An element of a collection, also
called a point in 8,,*, is accessed through an index. The expression T.n where T is a collection and
n an integer, is a collection with one point; the value of this point is the value of the rzth point
of T (point numbering begins with 0). If necessary, we implicitly coerce a collection with one point
into a scalar and vice-versa through a type inference system described in [23]. More generally, the
system is able to coerce a scalar into an array containing only the value of the scalar.

Geometric operators change the geometry of a collection, i.e. its structure. The geometry of a
collection of scalar is reduced to its cardinal (the number of its points). A collection can also be
nested: the value of a point is a collection. Collection nesting allows multiple levels of parallelism
and exists. for example, in ParalationLisp [24] and NESL [25]. The geometry of the collection is
the hierarchical structure of point values. The first geometric operation consists of packing some
webs together:

T = {a,b)

In the previous definition, a and b are collections resulting in a nested collection T. Elements of
a collection may also be named and the result is a system. Assuming

car = {oelocitj~ = 5,consumption = 10)

the points of this collection can be reached through the dot construct using uniformly their label.
e.g. car.z!elocity, or their index: car.0. The composition operator # concatenates the values and
merges the systems:

A = (a,b}; B = {c,d}; A # B*{a,b,c,d)
ferrari = car # {color = red}*{velocity = 5,consumption = 10,color = red}

168 Olivier Michel

The last geometric operator we will present here is the selection: it allows selection of some point
values to build another collection. For example:

Source = {a,b,c,d,e}
target = { 1,3,{0,4}}

Source(target)=>{b,d,{u,e}}

The notation Source(target) must be understood in the following way: a collection can be viewed
as a function from [O. .n] to some co-domain. Therefore, the dot operation corresponds to function
application. If the co-domain is a set of natural numbers, collections can be composed and the
following property holds: Source(target).i = Source(target.i), mimicking the function composition
definition. From the parallel implementation point of view, selection corresponds to a gather
operation and is implemented using communication primitives on a distributed memory
architecture.

Four kinds of function application can be defined:

Operator Signature Syntax
application: (collectionP+X) x collectionP+X f(c,, . . ., cp)

extension? (scalarP+scalar) x collectionP+collection f^(c,, . . ., c,)
reduction\: (scalar2+scalar) x collection -scalar f\c

scan\\: (scalar2+scalar) x collection +collection :f\\c

X means both scalar or collection; p is the arity of the functional parameter f.
The first operator is the standard function application. The second type of function application

produces a collection whose elements are the “pointwise” application of the function to the
elements of the arguments. Then, using a scalar addition, we obtain an addition between
collections. Extension is implicit for the basic operators (+, *, . . .) but is explicit for user-defined
functions to avoid ambiguities between application and extention (consider the application of the
reuerse function to a nested collection). The third type of function application is the reduction.
Reduction of a collection using the binary scalar addition results in the summation of all the
elements of the collection. Any associative binary operation can be used, e.g. a reduction with the
min function gives the minimal element of a collection. The scan application mode is similar to
the reduction but returns the collection of all partial results. For instance: + \\{ l,l, l}=~-{ 1,2,3}.
See [26] for a programming style based on scan. Reductions and scans can be performed in
0(log2(n)) steps on SIMD architecture, where n is the number of elements in the collection, if there
are enough PEs.

2.2. The stream in 8,,*

LUCID [27] is one of the first programming languages defining equations between infinite
sequences of values. Although 81,2 streams are also defined through equations between infinite
sequences of values, 8112 streams are very different from those of LUCID.

A metaphor to explain 8112 streams is the sequence of values of a register. If you observe a register
of a computer during a programme run, you can record the successive store operations on this
register, together with their dates. The (timed) sequence of stores is an 8,12 stream. At the beginning,
the content of the register is uninitialized (a kind of undefined value). Then it receives an initial
value. This value can be read and used to compute other values stored elsewhere, as long as the
register is not the destination of another store operation.

The time used to label the changes of values of a register is not the computer physical time, it
is the logical time linked to the semantics of the programme. The situation is exactly the same
between the logical time of a discrete-events simulation and the physical time of the computer which
runs the simulation. Therefore, the time to which we refer is a countable set of “events” meaningful
for the programme.

8112 is a declarative language which operates by making descriptive statements about data and
relations between data rather than describing how to produce them. For instance, the definition
C = A + B means the value in register C is always equal to the sum of the values in register A
and B. We assume that the changes of the values are propagated instantaneously. When A (or B)

Design and implementation of 8, I

Table 2. Examples of streams

169

0 I 2 3 4 5 6 7 8

I 1
1+2 3
Clock 2 1rue 1rue flue li-ue fi-I&
Assuming A 1 2 3 4 5 6
Assuminy B I 2 I 1
C=A+B 2 3 5 6 6 7 7
$C 2 3 5 6 6 7

changes, so do C at the same logical instant. Note that C is uninitialized as long as A or B are
uninitialized.

Table 2 gives some examples of 81/z streams. The first row gives the instants of the logical clock
which counts the events in the programme. The instants of this clock are called a tick (a tick is
a column in the table). The date of the “store” operations of a particular stream are called the
tack of this stream (because a clock is thought to make “tick-tack”): they represent the set of events
meaningful for that stream (a tack is a non-empty cell in the table). At a tick t, the value of a
stream is: the last value stored at tack t’ I t if t’ exists, the uninitialized value otherwise. For
example, the value of $C at tick 0 is undefined. whilst its value at tick 4 is 3.

A scalar constant stream is a stream with only one “store” operation, at the beginning of time,
to compute the constant value of the stream. A constant n really denotes a scalar constant stream.
Constructs like Clock n denote another kind of constant streams: they are predefined sequences
of true values with an infinite number of tacks. Scalar operations are extended to denote
elementwise application of the operation on the values of the streams. The delay operator $ shifts
the entire stream to give access, at the current time, to the previous stream value. This operator
is the only operator that does not act in a pointwise fashion. The tacks of the delayed stream are
the tacks of the arguments with the exception of the first one.

The last kind of stream operator is the sampling operator. The most general one is the “trigger”,
which is very close to the T-gate in data-flow languages [28]. It corresponds to the temporal version
of the conditional. The values of T when B are those of T sampled at the tacks where B takes
a true value (see Table 3). A tick t is a tack of A when B if A and B are both defined and t is
a tack of B and the current value of B is true.

8, ? streams present several advantages:

l 8li2 streams are manipulated as a whole, using filters, transducers . . . [29].
l Like other declarative streams, this approach represents imperative iterations in a

“mathematically respectable way” [30] and to quote [13]: “. . series expressions are to loops
as structured control constructs are to gotos.”

l The tacks of a stream really represent the logical instants where some computation must occur
to maintain the relationships stated in the programme.

l The 8, 2 stream algebra verifies the causality assumption: the value of a stream at any tick t
may only depend upon values computed for previous tick t’ < t. This is definitively not the
case for LUCID (LUCID includes the inverse of $, an “uncausal” operator).

l The 8, z stream algebra verifies the finite memory assumption: it exists as a finite bound such
that, the number of past values that are necessary to produce the current values remains smaller
than that bound.

The last two assumptions have been investigated in two real-time programming languages derived
from LUCID: LUSTRE [31] and SIGNAL [32]. Such streams enable a static execution model: the
successive values making a stream are the successive values of a single memory location and we
do not have to rely on a garbage collector to free the unreachable past values (as in Haskell [33]

Table 3. Example of a sampling expression

A I 2 3 4 5 6 I 8 9

B false false false WU.? false true IIW? ,false ww
A when B 4 6 I 9

170 Olivier Michel

for example). In addition, we do not have to compute the value of a stream for each tick, but only
for the tacks.

2.3. Combining streams and collections into webs

A web is a stream of collections or a collection of streams. In fact, we distinguish between two
kinds of webs: static and dynamic. A static web is a collection of streams where every element has
the same clock (the clock of a stream is the set of its tacks). In an equivalent manner, a static web
is a stream of collections where every collection has the same geometry. Webs that are not static
are called dynamic. The compiler is able to detect the kind of the web and compiles only the static
ones. Programmes involving dynamic webs are interpreted.

Collection operations and stream operations are easily extended to operate on static webs
considering that the web is a collection (of streams) or a stream (of collections).

8,,* is a declarative language: a programme is a system representing a set of web definitions. A
web definition takes a form similar to:

T=A+B (1)

Equation (1) is an 81/z expression that defines the web T from the web A and B (A and B are
the parameters of T). This expression can be read as a dejinition (the naming of the
expression A + B by the identifier T) as well as a relationship, satisfied at each moment and
for each collection element of T, A and B. Figure 1 gives a three-dimensional representation
of the concept of web.

Running an 8,/z programme consists of solving the web equations. Solving a web equation means
“enumerating the values constituting the web”. This set of values is structured by the stream and
collection aspects of the web: let a web be a stream of collections; in accordance with the time
interpretation of stream, the values constituting the web are enumerated in the stream’s ascending
order. So, running a 8,,* programme means enumerating, in sequential order, the values of the
collections making the stream. The enumeration of the collection values is not subject to some
predefined order and may be done in parallel.

2.4. Declarative definition of recursive collections

A definition is recursive when the identifier on the left-hand side appears also directly or
indirectly on the right-hand side. Two kinds of recursive definitions are possible.

Values
t

Time

Space=

Fig. 1. A web specified by an 81,~ equation is an object in the (time, space, value) axis. A stream is a
value varying in time. A collection is a value varying in space. The variation of space in time determines

the dynamical structure (cf. Section 2.6).

Design and implementation of 8, ? 171

1.4.1. Temporal recursion. Temporal recursion allows the definition of the current value of a
web using past values of it. For example, the definition

T@O = 1
T=$T+ I when Clock 1

specifies a counter which starts at 1 and counts at the speed of the tacks of Clock 1. The (U 0 is
a temporal guard that quantifies the first equation and means “for the first tack only”. In fact.
T counts the tacks of Clock 1.

The order of equations in the previous programme does not matter: the unquantified equation
applies only when no quantified equations apply. The language for expressing guards is restricted
to ‘alw with the meaning “for the nth tack only”.

Z.d.2. Spatial recursion. Spatial recursion is used to define the current value of a point usmg
current values of other points of the same web. For example,

iota = 0 # (1 + iota:[2])

is a web with three elements such that iota.i is equal to i. The operator: [n] truncates a collection
to II elements so we can infer from the definition that iota has 3 elements (0 is implicitly coerced
into a one-point collection). Let {iotal,iota2,iota3} be the value of the collection iota. The definition
states that

{iofal,iotaz.iotai) = {O}#({l,l) + (iotal,iotaz})

which can be rewritten as:

i

iota, = 0
iota: = 1 + iota,

iota? = I + iota?

which proves our previous assertion.

-7.5. E.uarnples ?f webs with static structure

2.5.1. Numerical resolution of a parabolic partial difSerentia1 equation. We want to simulate the
diffusion of heat in a thin uniform rod. Both extremities of the rod are held to O’C. The solution
of the parabolic equation:

au aw -=)
at a.Y-

(2)

gives the temperature U(.x,t) at a distance x from one end of the rod after time t. An explicit
method of solution uses finite-difference approximation of equation (2) on a mesh
(X, = ih,c = jk) which discretizes the space of variables [34]. One finite-difference approximation
to equation (2) is:

u 1.1 + I - u,,, _ u, i 1.r - 2 ui., + U! - l.1

k - h?
(31

which can be rewritten as

U ,,,+, = rU,-I,, + (1 - 2r)U,,, + rU,+l,, (4,

where r = k/h’. It gives a formula for the unknown temperature U rJ+l at the (ij + 1)th mesh point
in term of known temperatures along the jth time-row. Hence, we can calculate the unknown
pivotal values of U along the first time-row T = k, in terms of known boundary and initial values
along T = 0, then the unknown pivotal values along the second time-row in terms of the first
calculated values, and so on.

The corresponding 8,,‘? programme is very easy to derive and simply corresponds to the
description of initial values, boundary conditions and the specification of the relation (4). The

172 Olivier Michel

stream aspect of a web corresponds to the time axis, while the collection aspect represents the rod
discretization.

start = some initial temperature distribution;
LeftBorder = 0;

RightBorder = 0;
U@O = start;

U = LeftBorder # inside # RightBorder;
float inside = 0.4*pU(left) + 0.2*pU(middle) + 0.4*pU(right);

pU = $U when Clock;
left = ‘6;

right = left + 2;
middle = left -I- 1;

The second argument of the when operator is Clock which represents the time discretization (cf.
Fig. 2). The expression ‘n generates a vector of n elements where the ith has a value i.

2.5.2. The simulation of a reactive system. Here is an example of a hybrid dynamical system,
a “wlumf” which is a “creature” whose behaviour (eating) is triggered by the level of some internal
state (see [35] for such model in ethological simulation).

More precisely, a wlumf is hungry when its glycaemia is under 3. It can eat when there is some
food in its environment. Its metabolism is such that when it eats, the glycaemia goes up to 10 and
then decreases to zero at a rate of one unit per time step. All these variables are scalar. Essentially,
the wlumf is made of counters and flip-flop triggered and reset at different rates.

boolean FoodInNeighbourhood = Random;
System wlumf = {Hungry@0 = false;

Hungry = (Glycaemia < 3);
Glycaemia@O = 6;
Glycaemia = if Eating then 10 else max (0, $Glycaemia - 1) when Clock fi:
Eating = $Hungry && FoodZnNeighbourhood;}

The result of an execution is given in Fig. 3.

2.6. Examples of web with dynamic structure

Webs with a static structure cannot describe phenomena that grow in space (like plants). To
describe these structures, we need dynamically structured webs. The rest of this section gives some

inside = .,.

f--X-+ Thin uniform rod
0°C

t
0°C

u (x, t)
Values already computed
Constant web

Fig. 2. Diffusion of heat in a thin uniform rod.

Design and implementation of 8, 2 173

behaviour

L-

12 _ food in the nei

10'

* - .I ..I .T1

6:
_1 s _ - r '; *

time
4. 1 ,,

Fig. 3. Behaviour of an hybrid dynamical system

examples of this kind of web. Note that we do not need to introduce new operators; actual web
definitions already enable the construction of dynamically shaped webs.

2.6.1. Pascal’s triangle. The numbers in Pascal’s triangle give the binomial coefficients. The
value of the point (line, col) in the triangle is the sum of the point value (line - 1, co/) and point
value (line - 1, co1 - 1). We decide to map the rows in time, thus the web representation of Pascal’s
triangle is a stream of growing collections. This web is dynamic because the number of elements
in the collection varies in time.

We can identify that the row I (1> 0) is the sum of row (I - 1) concatenated with 0 and 0
concatenated with row (I - 1). The 81/l programme is straightforward.

t = (St # 0) + (0 # St) when Clock;
r@j 0 = 1;

The first five values of Pascal’s triangle are:

7’op:O : {l):int[l]
Top:1 : {l.l}:int[2]
Top:2 : {1,2,1):int[3]
Top:3 : (1,3,3,1):int[4]
Top:4 : (1,4,6,4,lf:int[5]

-7.6.1’. Eratosthenes’s sieve. We present a modified version of the famous Eratosthenes’s sieve
to compute prime numbers. It consists of a generator producing increasing integers and a list of
known prime numbers (starts with a single element, 2). Each time we generate a new number, we
try to divide it with all known prime numbers. A number that is not divided by a prime number
is a prime number itself and is added to the list of prime numbers.

Generator is a web that produces a new integer at each tack. Extend is the number generated
with the same size as the web of already known prime numbers. Module is the web where each
element is the modulo of the produced number and the prime number in the same column. Zero
is the web containing boolean values that are true every time that the number generated is divided
by a prime number. Finally, reduced is a reduction with an or operation, that is, the result is true
if one of the prime numbers divides the generated number. The .u:(yl operator shrinks the web Y
to the rank specified by _v. The rank of a collection is a vector where the ith element represents
the number of element of x in the ith dimension.

generator@0 = 2;
penerator = Sgenerator + 1 when Clock;

extend = generator:l$cribIe/;
module = extend O/O Scrible;

zero = (module = =(O:lmodzdoI));
reduced = or\zero;

174 Olivier Michel

crible = $crible #generator when (not reduced);
crible@O = generator;

The first five steps of the execution give for crible:

Top:0 : {2}:int[l]
Top:1 : {2,3}:int[2]
Top:2 : (2,3}:int[2]
Top:3 : {2,3,5}:int[3]
Top:4 : {2,3,5}:int[3]

3. IMPLEMENTATION OF THE 8,,2 COMPILER

The compiler described hereafter is restricted to programmes defining webs with a static
structure. A high-level block diagram of the compiler is shown in Fig. 4. The output can either
be a sequential C code or a code for a virtual SIMD machine (similar to CVL [36]).

3.1. The structure of the compiler

We describe briefly the various phases of the compiler written in a dialect of ML [37]:
Parsing: parses the input file and creates the programme graph representation used in the

remaining modules of the compiler. This is a conventional two-pass parser implemented using the
ML version of lex and yacc.

Binding: the compiler enforces static scoping of all variables. This phase is also responsible for
inline expansion of functions, removal of unused definitions and the detection of undefined
variables.

Geometry inference: the geometry of a web is inferred at compile time by the “geometric type
system” (see [23]). Programmes involving dynamic webs are detected by the geometry inference and
rejected. For example, the following programme: T@O = 0; T = ($T#$T) when Clock defines a
web T with a number of elements growing exponentially in time:

~~~(~};(~,~>;(~,~,~,~}; . . .> 

every collection of the stream has twice as many elements as the previous one. This kind of 
programme implies dynamic memory allocation and dynamic load balancing and is rejected by the 
compiler (but such programmes can be interpreted). 

Scheduling inference: to solve the 81,2 equations between webs, we have to extract the sequencing 

/Y //\ 
Iota Y + C-3 

._ _-. --.- 

{ 

‘5+x-‘5+2+x+2+y-x+2 

Fig. 4. Block diagram of the compiler. Ellipses indicate source or target code, and 
processing modules. 

rectangles are 



Design and implementation of 8,~ 17s 

of the computations of the various right-hand sides from the data flow graph. Once the scheduling 
of the instructions is done, the compiler computes the memory storage required by a programme 
execution. 

Code generation: the compiler generates a standalone sequential C code running on work-stations 
or a code to be executed by the SIMD virtual machine. However, all the compiler phases assume 
a full MIMD execution model and we are working on the MIMD code generation. The sequential 
C code is stackless and does not use malloc or any other dynamic runtime features. 

3.2. The clock calculus 

The clock calculus of a web is needed to decide whether the computation of a collection has to 
take place at some tick or not (a static web is viewed as a stream of collections for the 
implementation). The clock of a web X is a boolean stream holding the value true at tick t if t 
is a tack of X. Let .Y be the value of X at a tick t, and clock(x) the value of the clock associated 
with X at the same tick. Every definition 

X = ,I’( Y) 

in the initial programme is translated into the assignment: 

.Y: = if clock(X) then,f‘(_r) (5) 

This statement is synthesized by induction on the structure of the definition of X. For example: 

clock(A when B) = b A clock(B) 

c/ock(clock(X)) = True 

This transformation produces a normal form from the original web definition. Roughly, the 
compiler will generate for any expression of the programme, a task performing the assignment 
shown in equation (5). It is still necessary to compute the dependencies between the tasks to 
determine their relative order of activation. 

3.3. The scheduling inference 

The data-flow graph associated with an 8,,* programme is directly extracted from the programme 
in normal form. Unfortunately, this graph cannot be directly used to generate the task scheduling. 
In the case of a scalar data flow programme, the data-flow graph is the same as the dependencies 
graph. It is no longer true with collections. For example, in the following programme: 

A=B 

every point of A (i.e. every element of the collection of the web A) depends on the corresponding 
point of B. On the other hand, the following programme that sums all elements of B: 

A = +\B 

produces a web A of only one point, depending on all the points of B. Nevertheless, both 
programmes give the same data flow graph where the nodes A and B are connected. 

The data flow graph can be viewed as an approximation of the real dependencies graph. This 
approximation is too rough; for example, on this basis, we cannot compile spatial recursive 
programmes. The work of the compiler is to annotate the data-flow graph to get a finer 
approximation of the dependencies graph. The true graph of the dependencies cannot be explicitly 
built because it has as many nodes as points in the web of the programme (for example, in numerical 
computation, matrices of size 1000 x 1000 are usual and would give dependency graphs of over 
1 O6 nodes). 

We call task sequencing graph the approximation of the dependencies graph annotated in the 
following way (Fig. 5): 

l An expression e depends on the web X if X appears syntactically in e. However, we 
remove the dependencies of variables appearing in the scope of a delay: those dependencies 
correspond to a past value and the compiler is scheduling the computation of the present 
iteration only. 



176 Olivier Michel 

The three basic annotations: 

T.2-L 5.2 T.2 s.2 

T.l----+ S.l T.l s.l 

T.O- S.0 T.0 s.0 

Dependency graph corresponding to the annotations 

Program with a spatial recursion: 
if101 = 0 # (1 + i:[9]) 

Program in a fatal deadlock: 
A=B 
B=A 

0 # (1 + i:[9]) 
A 

P 

P CJ 

P 

B 

I J 
Fig. 5. Representation of the three possible annotations used to build the sequencing graph. Two examples 
are given. i is a vector such that the jth element of i has value j. A and B correspond to empty streams 

which can be interpreted as a fatal deadlock. 

l The (instantaneous) dependency between an expression and a variable is labelled p if the value 
of point i of e depends only on the value of point i of X (point-to-point dependency). 

l The dependency is labelled t if a point i from e depends on the value of all points of X (total 
dependency). 

l The dependency is labelled + if the value of point i depends on the values of point j of X 
with j < i. 

In the sequencing graph, the cycle with an edge of type t or no edge of type + are dead cycles. 
The webs defined in those cycles have always undefined values. The remaining cycles (with edges 
+ and no edge t) correspond to spatial recursive expression requiring a sequential implementation. 
An expression not appearing in a cycle is a data-parallel expression. It can be computed as soon 
as its ancestors have been computed. Here, we are dealing with recursive definitions of collections 
but see [38] for a similar approach which handles recursive streams and [39] for recursive lists. 

In fact, the complete processing of the sequencing graph is a bit more complicated. We made 
the assumption that the calculus of the instantaneous value of $X does not depend on the 
instantaneous value of X, but the clock of $X depends on the clock of X (it is the same one, but 
the first tack). So, the sequencing graph might have instantaneous cycles between boolean 
expression representing clock expressions. The computation of this value is based on a finite Iixed 
point computation in the lattice of clocks. One of the benefits of this approach, besides being fully 
static, is that it allows us to detect the expression that will remain constant (we can therefore 
optimize the generated code), or that will never produce any computation and generates tasks in 
dead-lock (that might be a programming error). 

Using the sequencing graph of the tasks as an approximation of the true dependencies graph, 



Design and implementation of 8, ? 177 

we might detect as incorrect some programmes with an effective value. With some refinements of 
the method, it is possible to handle additional programmes. Anyway, the sequencing graph method 

effectively schedules any collections defined as the first n values of a primitive recursive function, 
which represents a large class of arrays. 

In fact, this corresponds to the use of a prefix-ordered domain on vectors, instead of a more 
general Scott domain. The use of a Scott order on vectors (which identifies de facto vectors with 
functions from [O,n] to some domain) allows more general recursive definition. This is at the expense 
of efficiency. For example, in the following 8, 2 programme computing the H first Fibonnaci 
numbers: 

,fih[n] = if iota = =0 

then 1 
else if iota = =2 

then 1 
else (1 #jb:[n - 11) + ({l.l}#fib:[n - 21) 

the time-complexity of the evaluation process remains linear with n because we know that we can 
compute the element value in a strict ascending order (in comparison, the time-complexity of the 
fimctional evaluation of Jib is exponential, but can be simulated in polynomial time by 

memoization). 
In the current compiler, the sequencing graph method is used to determine if the evaluation of 

the vector element can be done in parallel, in a strict ascending order, or in a strict descending 
order. 

3.4. The data-flow distribution and scheduling 

After the scheduling inference, the compiler is able to distribute the tasks on to the PEs of a 
target architecture and to choose for every PE a scheduling compatible with the sequencing graph. 
To solve this problem, we limit ourselves to c_rclic scheduling. In our case, such a scheduling is the 
repetition by the PEs of some code named pattern. The pattern corresponds to the computation 
of the values of a web for one tick. The last operation of the compiler is therefore to generate such 

a pattern from the scheduling constraints. 
To generate a pattern, the compiler associates to every task a rectangular area in a Gantt chart 

(a time x space). The width of the rectangle corresponds to the execution time of the task and its 

height to the number of PE ideally required for a fully parallel execution of the task (cf. Fig. 6). 
For example, if the task corresponds to the data-parallel addition of two arrays of 100 elements. 

the height of the associated rectangle will be 100. 
With the representation, the problem of the optimal distribution and the minimal scheduling of 

the tasks is to find a distribution of the rectangles that will minimize the makespan and that is 

Split 

4 
Forbidden 

Height : 
number of 

required 
processing 

elements 

: 

The sequency graph to fold 

Width : 
task execution 

duration 

4 
Processors 

border of 
ticks 

border of 
ticks 

Scheduling Time 

Fig. 6. Scheduling and distribution of a sequencing graph using a two-dimensional bin-packing method. 



178 Olivier Michel 

bound in height by the number of PEs in the architecture. Some very efficient heuristics exist for 
this problem known under the name “bin-packing” in two dimensions (which is NP-complete in 
the general case [40]). 

At the moment, we are testing a greedy strategy [41,42] consisting of placing as soon as possible 
the largest ready task on the critical path. A task becomes ready at the time when all the tasks 
from which it depends are done, time plus the communication time needed to transfer the data 
between PEs. If more than one task is available at the same time, an additional criterion is given 
to choose which one has to be taken first (for example, a task being on the critical path). 

If the width of the chosen task is bigger than the number of available PE, we “split” the task 
in two pieces. The first one is scheduled and the other one is put back in the pool of available 
tasks (to be scheduled and distributed later). We only admit the split in the horizontal direction 
(cf. Fig. 6). In fact, that is possible because a data-parallel task requiring n PEs corresponds to 
n independent scalar tasks. Vertical split corresponds to pre-emptive scheduling. 

A well-known result in [43] can be used to bound the worst case performance of this strategy. 
It guarantees the good quality of the heuristic used here. 

4. CONCLUSIONS 

The current compiler is written in C and in an ML dialect. It generates a code for a virtual SIMD 
machine implemented on a UNIX workstation. However, all the compiler phases assume a full 
MIMD execution model and we are working on the MIMD code generation. Evaluation of webs 
with dynamic structure is done through a sequential interpreter. 

It is interesting to evaluate the quality of the sequential C code to estimate the overhead induced 
by the high-level form of the language. This comparison was done on the example of heat diffusion 
(cf. Section 2.5.1) against a hand-coded C programme (the parameters are the size of the rod which 
varies from 10 to lo5 and the number of iterations from 100 to 10’). The ratio between the two 
programmes is less than 2 in favour of the C programme for any parameters. However, the code 
generated from the 8,,* programme is not optimized and especially the concatenation involves 
copying instead of sharing and communications are not translated into vector shifts. Optimizing 
by hand the communications lowers the ratio to 1.3 which proves the efficiency of our compilation 
scheme (more results are given in [44]). 

As a matter of fact, our concept of collection relies on nested vectors. Nested vectors differ in 
many ways from the multidimensional arrays generally used in space-time simulations. For 
example, assuming a row-column representation of a two-dimensional array by a two-nested 
vector, it is not possible to define an evaluation process propagating along the diagonal. This is 
because of the prefix or suffix ordering of vector-domains. More generally, the problem is to define 
the neighbourhood of a collection element and to enable arbitrary moves from neighbour to 
neighbour. A possible answer relies on the extension of collection on a rich structure based on 
groups [45]. 

Acknowledgemenrs-The author wishes to thank Jean-Louis Giavitto, Jean-Paul Sansonnet, Dominique De Vito, 
Abderrahmane Mahiout, Dan Truong, Laurence Cathala and the anonymous reviewers for their constructive comments. 

REFERENCES 

1. Flynn, M. J. Some computers organizations and their effectiveness. IEEE Trans. on Computers C21: 948-960; 1972. 
2. Sipelstein, J. and Blelloch, G. E. Collection-oriented languages. Proc. of the IEEE 79(4): 504-523. 
3. Banatre, J.-P., Coutant, A. and Le Metayer, D. A. Parallel machine for multiset transformation and its programming 

style. Future Generaiion Computer Systems 4: 133-144; 1988. 
4. Giavitto, J.-L. A synchronous data-flow language for massively parallel computer. In Proc. of Znt. Conf. on Parallel 

Computing (ParCo’91) (Edited by Evans, D. J., Joubert, G. R. and Liddell, H.), pp. 391-397, London 3-6 September 
1991. Amsterdam: North-Holland; 1991. 

5. Siegel, H., Siegel, L., Kemmerer, F., Mueller, P. Jr, Smalley, H. Jr and Smith, D. PASM: A partitionable SIMD/MIMD 
system for image processing and pattern recognition. IEEE Transactions on Computers C-30(12): 934-947; 1981. 

6. Cornu-Emieux, R., Mazare, G. and Objois, P. A VLSI asynchronous cellular array to accelerate logical simulations. 
In Proc. of the 30th Midwest International Symposium on Circuit and Systems; 1987. 

7. Koren, I. and Mendelson, B. A data-driven VLSI array for arbitrary algorithms. IEEE Computers, 3&43; October 
1988. 

8. Cappello, F., Bechennec, J.-L., Delaplace, F., Germain, C., Giavitto, J.-L., Neri, V. and Etiemble, D. Balanced 



Design and tmplementation of 8,: I 79 

9. 

IO. 
I I. 
12. 

13. 

14. 
15. 

16. 

17. 

18 

19 
20 
21 
22 
23 

24 

25 

26 
27 

28 

29 

30 
31 

32 

33 
34 
35 

36 

31 
38 
39 

40 

41. 

42. 

43. 

44. 

45. 

distributed memory parallel computers. In Int. Conf: on Parallel Processing. Sr Charles, Ill., pp. 72-76. Boca Raton, 
FL: CRC Press; 1993. 
Steele, G. Making asynchronous parallelism safe for the world. In Secenteenrh Annual Symposium on Principles o/ 
Programming Languages, pp. 218-231. San Francisco, January 1990. San Francisco: ACM Press; 1990. 
Davis, A. L. and Keller, R. M. Data-flow graphs. Computer, pp. 26-41; February 1982. 
Skillicorn, D. Architecture-independent parallel computation. Compufers, 38-49; December 1990. 
Gajski. D. D., Padua, D. A., Kuck, D. J. and Kuhn, R. H. A second opinion on data flow machines and languages. 
IEEE Computer, 489-500; February 1982. 
Waters, R. C. Automatic transformation of series expressions into loops. ACM Trans. on Prog. Languages and SJsrem.5 
13(l): 52-98; January 1991. 
Leiserson. C. and Saxe, J. Optimizing synchronous systems. Journal of‘ VLSI and Computer S_vstems l( 1): 41-67: 1983. 
Giavitto, J.-L.. Germain, C. and Fowler, J. OAL: an implementation of an actor language on a massively parallel 
message-passing architecture. In 2nd European Distributed Memor!, Computing Conf. (EDMCC?). volume 492 ot’ 
LNCS, Miinich. 22-24 April 1991. Berlin: Springer-Verlag; 1991. 
Michel, O., Giavitto, J.-L. and Sansonnet, J.-P. A data-parallel declarative language for the simulation of large 
dynamical systems and its compilation. In SMS-TPE’94: Software&r Multiprocessors and Supercomputers, Moscow, 
II-23 September, 1994. Moscow: Office of Naval Research USA & Russian Basic Research Foundation; 1994. 
Blelloch, G. E. and Sabot, G. W. Compiling collection-oriented languages onto massively parallel computers. Journal 
of Parallel and Distributed Computing 8: 119-134; 1990. 
Schwartz, J. T.. Dewar, R. B. K., Dubinsky, E. and Schonberg, E. Programming M.ilh Sets: and lnfroduction /o SETL 
Berlin: Springer-Verlag; 1986. 
Jayaraman, B. Implementation of subset-equational program. Journal oj Logic Programming 12: 299-324: April 1992. 
Thinking Machines Corporation, Cambridge, MA. The Essential *Lisp Manual; 1986. 
Tofooli. T. and Margolus, N. Cellular Automata Machine. Cambridge, MA: MIT Press; 1987. 
Hillis, W. D. and Steele, G. L. Data parallel algorithms. Communication of rhe ACM 29(12): 1170-l 183; December 1986. 
Giavitto, J.-L. Typing geometries of homogeneous collection. In 2nd Inf. Workshop on Array Manipulation (.4 TABLE). 
Montreal; 1992. 
Sabot. G. W. The Paralarion Model: Architecture, Independent Parallel Programming. Cambridge. MA: MIT Press: 
1988. 
Blelloch, G. E. NESL: A nested data-parallel language (version 2.6). Technical Report CMU-CS-93-129. School of 
Computer Science. Carnegie Mellon University; April 1993. 
Blelloch, G. E. Scans primitive parallel operation. IEEE Trans. on Compurers 38(1 I): 1526-1538: November 1989. 
Wadge, W. W. and Ashcroft, E. A. LUCID-a formal system for writing and proving programs. SIAM Journal on 
Computing 3: 336~ 354; September 1976. 
Denis. J. B. First version of a data flow procedure language. In Proceedings I$ the Programming Svmpo.yium. 
Aprd 9-I 1 1974. Berlin: Springer-Verlag; 1974. 
Arvind and Brock. J. D. Streams and managers. In Proceedings ofthe 14/h IBM Cornpurer Sciencr Swwposrum. Berlin: 
Springer-Verlag; 1983. 
Wadge, W. W. and Ashcroft, E. A. Lucid, the Data Flow Programming Language. London: Academic Press; 1985. 
Caspi, P., Pilaud, D., Halbwachs, N. and Plaice, J. Lustre: a declarative language for programming synchronous 
systems. In Fourteenth annual symposium on Principles qf Programming languages. Munich, Germany: ACM Press: 
January 1987. 
Le Guernic. P., Benveniste. A., Bournai, P. and Gautier, T. Signal, a dataflow oriented language for signal processing. 
IEEE-ASSSP 34(2): 362-374; 1986. 
Hudak, P. and Wadler, P. Report on the programming language haskell version I, 1. SIGPLAN Nofices 27(5); April 1992. 
Smith. D. A basis algorithm for finitely generated abelian groups. Murh. Algorithms 1( 1): 13-26; January 1966. 
Maes, P. A bottom-up mechanism for behavior selection in an artificial creature. In Proceedings of the First International 
Conference on Simulation qf Adaptke Behavior (Edited by Bradford). Cambridge, MA: MIT Press. 1991. 
Blelloch, G. E.. Chatterjee. S., Hardwick, J. C., Reid-Miller, M., Sipelstein, J. and Zagha, M. CVL: A C vector library. 
Technical Report CMU-CS-93-114, School of Computer Science, Carnegie Mellon University; February 1993. 
Leroy, X. The Caml Light S_vstem Release 0.6. INRIA; September 1993. 
Wadge, W. W. An extensional treatment of dataflow deadlock. Theoretical Computer Science 13( I ): 3- 15; 1981 
Sijtsma, B. A. On the productivity of recursive list definitions. ACM Transactions on Programming Languages and 
Svsrems ll(4): 633-649; October 1989. 
Carey, M. R., Graham. R. L. and Johnson, D. S. Performance guarantees for scheduling algorithms. Operational 
Reseurch 26( 1): 3-20: January-February 1978. 
Mahiout. A.. Giavitto, J.-L. and Sansonnet, J.-P. Distribution and scheduling data-parallel dataflow programs on 
massively parallel architectures. In SMS-TPE’94: Sqftware ,for Mulriprocessors and Supercomputers. Moscow. 
September, 1994. Office of Naval Research USA & Russian Basic Research Foundation. 
Mahiout. A. Integrating the automatic mapping and scheduling for data-parallel dataflow applications on MIMD 
parallel architectures. In Parallel Computing: Trends and Applications. 19-22 September, Gent. Belgium. 1995. 
Amsterdam: Elsevier: 1995. 
Hawang. J.-J., Chow, Y.-C., Angers, F. and Lee, C.-Y. Scheduling precedence graphs in systems with interprocessor 
communication times. SIAM J. Comp. 18(2): 244257; April 1989. 
De Vito, D. Compilation portable d’un langage dtclaratif g flat de don&es synchrones. Juin 1994. Rapport de stage 
du DEA Informatique le I’Universiti de Paris-Sud; 1994. 
Giavitto, J.-L., Michel, 0. and Sansonnet, J.-P. Group based fields. In Proceedings of the Parallel Symbolic Languages 
and Sysrems (PSLS’95) (Edited by Halstead, R. H., Takayasu, I. and Queinnec, C.), volume 1068 of LNCS. p. 204-215. 
Beaune (France), 24 October 1995. Springer-Verlag. 

About the Author-OLIVIER MICHEL, born in 1969, received his Masters degree from the University Paris VI, Pierre 
et Marie Curie in 1992. He is currently a Ph.D. student at the University Paris XI in L.R.I. Since 1992, he worked on 
the extension of 81:. a declarative data-parallel language. His research interests include the design and implementation of 
new data structures for simulations with a special interest in the representation of growing processes. 


