
Group�based �elds

Jean�Louis Giavitto� Olivier Michel� Jean�Paul Sansonnet

LRI u�r�a� ��� du CNRS� B�atiment ���� Universit	e de Paris
Sud�
F
����� Orsay Cedex� France�

email� fmichel�giavitto�jpsg�lri�fr

� Introduction

This paper reports the preliminary work on extending the concept of collection
in ����� ���� is a declarative language that allows the functional de�nition of
streams and collections ��� 	
� In this paper� we focuss our interest on a high�
level programming abstraction which extends the concept of collection in �����
The new construct is based on an algebra of index set� called shape� and an
extension of the array type� the �eld type�

The rest of this paper has the following structure� Section 	 gives some back�
ground on collections and arrays� Some shortcommings of data�parallel arrays
are sketeched� Section � describes the ���� answers to the previous problem and
introduces group�based shapes and �elds� Section � is devoted to the shape alge�
bra� Section 
 introduces the main �eld operations and �eld de�nitions� Section
� sketches the implementation� Related and futur works are discussed in the last
section�

� Arrays and collections

A collection is an aggregate of elements handled as a whole� no index manipu�
lation or iteration loop appear in expressions over collections� Collections have
been advocated as a good support for data�parallelism ��
� Usual structures of
aggregationare sets �SETL ��
�� bags �Gamma �

�� relations �set of tuples� e�g� in
SQL�� vectors ��LISP�� nested vectors �NESL ��
�� and multidimensional arrays

�HPF� MOA ��
� new Lucid ��
�� Typical operations on �arrays as collections� are
pointwise applied scalar functions� reductions� scans and various permutations
or rearranging operations that can be interpreted as communication operations
in a data�parallel implementation�

Nowadays� simulation of large dynamical systems �resolutionof PDE� discrete
events simulations� etc�� represents the majority of supercomputer applications�
Collections are often used in these algorithms to represent the variation of some
quantity over a bounded spatial or temporal domain� for example a vector can
be used to record the temperature at the discretisation points of a uniform
rod in the simulation of heat di�usion� Indeed� collection managed as a whole
are very well �tted to such computation because the same physical laws apply
homogeneously to each point in space or in time� The array data structure is
the most expressive �with respect to set� bag� � � � to implement space or time



discretisation because it matches canonically the grid lattice� They have a simple
and fast implementation on homogeneous random�access memory architectures�
Yet this generality has its costs� High�performance architectures do not have
a homogeneous memory model� On vector architectures� access to sequential
elements is faster than to random elements� The optimal storage layout for an
array depends on its access pattern� and a poor layout can have a dramatic
impact on execution speed� Moreover� while traditional arrays are shaped like
n�dimensional box� de�ned by a lower and an upper bound in each dimension�
grids may have more complex shapes� And simulation of growing processes �like
plant growing� requires dynamically bounded arrays�

� Shapes and �elds

This motivates the development of a new collection structure� ���� abandons the
concept of a general�purpose array type� and specializes it towards two direc�
tions� The �rst one is a specialization towards �nite di�erence algorithms and
space discretisations by considering more general grid topology and grid shape�
The second specialization we consider is towards the simulation of growing pro�
cesses by considering partial data�structure� The goal of theses extensions is to
relieve the programmer from making many low�level implementation decisions
and to concentrate in a sophisticated data�structure the complexity of the algo�
rithms� Certainly this implies some loss of run�time performance but in return
for programming convenience� Futur work must establish how much loss we can
tolerate and and what we do get in exchange�

���� introduces two new primitive types� shapes and �elds � A shape repre�
sents a set of coordinates� An example of coordinates is integer tuples� but more
generally� ���� uses a group element to index a point� A �eld is an array whose
index set is an arbitrary set in a shape� Operations on �elds are data�parallel
ones� A �eld is virtually de�ned over its entire shape� even if the shape has
an in�nite number of elements� but the values of the �eld are computed only if

needed � that is� a �eld is a lazzy data�structure�

� Shape constructs

A shape specify both the group used to denote the array elements and the
neighbourhood of an element� LetG be a group and S a subset of G� Space�G� S �
denotes the directed graph having G as its set of vertices and G � S as its set
of edges� For each edge �g� s� � G � S� the starting vertex is g and the target
vertex is g�s� The direction or the label of edge �g� s� is s� Each element of the
subgroup generated by S corresponds either to a path �a succession of elementary
displacements� and a point �the point reached starting from the identity point
e of G and following this path�� We use P�s for the s neighbour of P � In other
words� Space�G� S � is a graph where� �
 each vertex represents a group element�
�
 an edge labelled s is between the nodes P and Q if P�s � Q� and �
 the labels



of the edges are in S� If S is a basis of G� Space�G� S � is called the Cayley graph
of the group G�

We use a �nite presentation to specify a group� A �nite presentation gives
a �nite list of group generators and a �nite list of equations constraining the
equality of two words� An equation takes the following form� v � w where v

and w are products of generators and their inverses� The presentation of a group
is not unique� di�erent presentations may de�ne the same group� However� a
presentation uniquely de�nes the shape Space�G� S �� we use the generator list
in the presentation to specify S� So the generators in the presentation are the
distinguished group elements representing the elementary displacements from a
point towards its neighbours�

We gives some example of shapes� A free abelian groups corresponds to a n�
dimensional grid �n is the number of generators�� The hexagonal lattice� H� �
ha� b� c � b � a�ci is an abelian shape that can be used for example in image
processing �the underlying space has the Jordan property� which is not the case
for NEWS meshes�� A �non abelian� free group is simply a tree �n generators for
n soons�� Another example of non abelian shape is the triangular neighbourhood �
the vertices of T are at the centre of equilateral triangles� and the neighbours of a
vertex are the nodes located at the centre of the triangles which are adjacent side
by side� A possible shape is� T � hja� b� c � a� � b� � c� � e� �a�b�c�� � eji� Such a
lattice occurs for example in �ow dynamics because its symmetry matches well
the symmetry of �uid laws�

� Field de�nitions

A �eld F can be thought as a function over a group that complies with the shape
structure� the value of a �eld in some point depends only on the values of the
neighbours points� That is� for each point P of Space�G� S � we have

F �P � � f�F �P�a�� F �P�b�� � � ��

with a� b� � � � � in S and f the functional dependency between a point value and
the values of its neighbours� Because such a relationship must hold for every
point P � we make it implicit and write�

F �E
 � f�F�a� F�b� � � ��

for a �eld F over a shape E� Field expressions f are of three kinds� extension of
scalar functions� geometric operations and reductions�

Extension of a scalar function is just the pointwise application of the function
to the value of a �eld in each point�

A geometric operation on a collection consists in rearranging the collection
values or in selecting some part of the collection to build a new one� A main
geometric operation is the translation of the �eld values along the displacement
speci�ed by a generator�F�a where a � S� The shape of F�a is the shape of F � The
value of F�a at point w is �F�a��w� � F �w�a�� When the �eld F is non�abelian�
it is necessary to de�ne another operation a�F speci�ed as� �a�F ��w� � F �a�w��



Reduction of an n�dimensional array in APL is parameterised by the axis of
the operation ��
 �e�g� a matrix can be reduced by row or by column�� A normal

subgroup is used for axis in the case of group based shape� More details are given
in ���
�

When using recursive de�nition� �terminal cases� stop the recursion� For
group�based �elds� we will make a partition of the shape and de�ne the �eld
giving an equation for each element of the partition� It implies that each element
of the partition can be viewed as a shape in itself� We use cosets to partition the
shape� Cosets may overlap� so additional constraints are put on the partition�
Cf� ���
�

� Implementation

For the sake of simplicity� we suppose that �eld de�nitions take the following
form�

F�C� � c�� � � � � F�Cn � cn� F �G
 � h�F�g�� F�g�� � � � � F�gp�

where Ci are cosets� ci are constants and h is some extension of a scalar function�
F�Ci � � � � is the equation de�ning the �eld F on coset Ci whilst F �G
 � � � � is
the general de�nition valid for the remaining points�

We assume the existence of a mechanism for ordering the cosets and to
establish if a given word w � G belongs to some coset� We suppose further
that we have a mechanism to decide if two words are equal� For example� these
mechanisms exist for free groups and for abelian groups� There is no general
algorithm to decide word equality in general non�abelian groups� So our proposal
is that non abelian shapes are part of a library and come equipped with the
requested mechanisms� A future work is then to develop useful families of �non
abelian� shapes�

With these restrictions� a �rst strategy to implement lazy �elds is the use
of memoised functions� A �eld F �G
 is stored as a dictionary with entry w � G

and value F �w�� If the value F �w� of w is required� we check �rst if w is in
the dictionary �this is possible because we have a mechanism to check word
equality�� If not� we have to decide which de�nition applies� that is� if w belongs
to some Ci or not� In the �rst case� we �nish returning ci and storing �w� ci� in
the dictionary� In the second case� we have to compute the value of F at points
w�g�� � � � � w�gp� recurring the process� and then the results are combined by h�

We can do better if each word w can be reduced to a normal form �w� For
instance� a normal form can be computed for abelian groups �the Smith Normal
Form� or for free groups� In this case� the dictionary can be optimised to an
hash�table with key �w for w�

In case of an abelian group G� we can further improve the implementation
using the fundamental isomorphism between G and a product of ZZ�modules�
Confer ���� �	
� As a matter of fact� a function over a ZZ�module is simply imple�
mented as a vector� The only di�culty here is to handle the case of ZZn which
corresponds to an unbounded array�



� Conclusions

We advocate in this paper the use of theoretical group constructions for the
index set of an array� The resulting data�structure� called group�based �eld � is
managed in a lazy way and extends the traditional array type� More details
are given in ���
� We currently implement a C�� library for the management
of sets of bounded rectangular regions in ZZ

n� This library will be used for the
implementation of abelian �elds� It is itself based on AVTL ���
� a portable MPI
���
 based parallel vector template library�

There is a small number of research e�orts to extend the concept of array�
Lucid ��
� LPARKX ��

� In�del ���
� AMR�� ���
� They all consider more
general shapes for arrays but always rely on grids �that is� a point is indexed by
a tuple of integer�� This forbidd for example the natural representation of a tree
or a triangular lattice�

In �eld de�nitions� the decomposition of a �eld into sub�elds is a funda�
mental mechanism� The need of powerful decomposition mechanisms appears in
quanti�cation of de�nitions and in reduction expressions� We use respectively
cosets and normal subgroups� It is interesting to compare this situation with
the approach of Bird�Meertens algebra ���
 or with the power�list algebra ���
�
These theories develop a basis for the �recursive� de�nition of lists or arrays�
The decomposition relies on the concatenation leading to a divide�and�conquer
computation strategy� In group based �elds� the decomposition relies on cosets
or on a normal subgroup �which decomposes naturally the group into a product��
A direction for future work is to investigate other possible and useful decompo�
sitions of shapes� The use of a group as the underlying domain of a �eld gives
a rich structure to the computation dependencies� they can be interpreted as
paths in well�handled spaces� Another direction of work is then the use of tools
from algebraic topology to characterise the domain of computation �homotopy
theory� etc��� Such mathematical tools have already be proved useful �	�� 	�
�

Acknowledgements� We are grateful to the members of the Parallel Architectures
team in LRI for many fruitful discussions� and we thank especially Dominique
De Vito and Abderrahmane Mahiout�

References

�� J�
L� Giavitto� A synchronous data
�ow language for massively parallel computer�
In D� J� Evans� G� R� Joubert� and H� Liddell� editors� Proc� of Int� Conf� on Par�
allel Computing �ParCo����� pages �������� London� �
� September ����� North

Holland�

�� O� Michel and J�
L� Giavitto� Design and implementation of a declarative data

parallel language� In post�ICLP��	 workshop W
 on Parallel and Data Parallel
Execution of Logic Programs� S� Margherita Liguria� Italy� �� June ����� Uppsala
University� Computing Science Department�

�� J� M� Sipelstein and G� E� Belloch� Collection
oriented languages� Proc� of the
IEEE� ����
� April �����



�� J� T� Schwartz� R� B� K� Dewar� E� Dubinsky� and E� Schonberg� Programming
with sets� and introduction to SETL� Springer
Verlag� �����

�� J�
P� B�anatre� A� Coutant� and D� Le Metayer� A parallel machine for multiset
transformation and its programming style� Future Generation Computer Systems�
���������� �����

�� G� E� Blelloch� NESL� A nested data
parallel language �version ���
� Technical
Report CMU
CS
��
���� School of Computer Science� Carnegie Mellon University�
April �����

�� G� Hains and L� M� R� Mullin� An algebra of multidimensional arrays� Technical
Report ���� Universit	e de Montr	eal� �����

�� E� Ashcroft� A� Faustini� R� Jagannatha� and W� Wadge� Multidimensional Pro�
gramming� Oxford University Press� February ����� ISBN �
��
������
��

�� K� E� Iverson� A dictionnary of APL� APL quote Quad� ����
� September �����
��� O� Michel� A guided tour to ���� and its dynamical extensions� Technical report�

Laboratoire de Recherche en Informatique� December �����
��� H� Cohen� A course in computational algebraic number theory� volume ��� of

Graduate Text in Mathematics� Springer
Verlag� �����
��� C� S� Iliopoulos� Worst
case complexity bounds on algorithms for computing the

canonical structure of �nite abelian groups and the hermite and smith normal
forms of an integer matrix� SIAM Journal on Computing� ����
��������� August
�����

��� T� J� Sche�er� A portable MPI
based parallel vector template library� Technical
Report ������ RIACS� �����

��� Message
Passing Interface Forum� MPI� a message
passing interface standard�
May �����

��� S� R� Kohn and S� B� Baden� A robust parallel programming model for dynamic
non
uniform scienti�c computation� Technical Report TR
CS
��
���� U� of Cali

fornia at San
Diego� March �����

��� L� Semenzato� An abstract machine for partial di�erential equations� PhD thesis�
U� of California at Berkeley� �����

��� D� Balsara� M� Lemke� and D� Quinlan� Adaptative
 Multilevel and hierachical
Computational strategies� chapter AMR��� a C�� object
oriented class library
for parallel adaptative mesh re�nment in �uid dynamics application� pages ����
���� Amer� Soc� of Mech� Eng�� November �����

��� R� S� Bird� An introduction to the theory of lists� In M� Broy� editor� Logic of
Programming and Calculi of Discrete Design
 NATO ASI Series
 vol� F�
� pages
�������� Springer
Verlag� �����

��� J� Misra� Powerlist� a structure for parallel recursion� ACM Trans� on Prog� Lan�
guages and Systems� ����
����������� November �����

��� E� Goubault and T� P� Jensen� Homology of higher
dimensional automata� In
Proc� of CONCUR���� Springer
Verlag� �����

��� C� C� Squiers and Y� Kobayashi� A �niteness condition for rewriting systems�
Theoretical Computer Science� �����
��������� �� September �����

This article was processed using the LaTEX macro package with LLNCS style


