

BacteriO'Clock

Create chassis for manufacturing of biomolecular machines that needs to be assembled in precise order

Intro

Analysis

Characterization >

The Flagella Machinery

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

From a complex natural flagella system to a minimal synthetic gene circuit

Coordinate **expression of genes** in a **repeated** manner the **BacteriO'Clock**

Implementation

Analysis

Characterization >

 Ensure the automatic switching ON and OFF by adding a negative feedback loop

Implementation

Intro

Characterization >

Testing the Negative Feedback Loop

Strain used and constructions built and characterized

Intro	Implementation	Analysis	Characterization	> Conclusion

Testing Feedback Loop and Promoter Strength

As expected mRFP is less expressed in presence of arabinose

Intro Implementation Analysis Characterization Co	nclusion
---	----------

Bacteria grown in a medium containing glucose are put in presence of Arabinose

This system should oscillate, wouldn't it ?

Intro

- The goals of our approach
 - Obtain qualitative predictions by using experimentally measured parameters
 - Help biologists by improving network design
- Principle of our model :
 - Linear effect & SUM functions for flagellar genes [1]
 - Using classical Hill functions otherwise
 - Time rescaling and normalization : reduce number of unknown parameters $\frac{d[FliA]}{dt} = -\gamma_{FliA} \times [FliA] + \beta_{FliA} \times [FlhDC] + \beta'_{FliA} \times [FliA]$

[1] S. KALIR et al. 2005

- Do you think that's too simple?
 - Models and parameters extracted from literature

From literature	8
From normalization	2
Estimation (EnvZ*)	2
Total	12

- Using Akaike criteria to discriminate between models
- We have all the information needed to develop simple experimentally-based models!

What About the FIFO?

FlhDC being the only regulator...

Hey, it's a LIFO! 😕

Intro

Implementation

Analysis

Characterization >

PARIS

Intro

Implementation

What about the FIFO?

FlhDC and FliA : FFL-based control

Parameters and models from the publications : It worked as a FIFO !

Analysis

Characterization >

What About the Oscillations?

With original parameters

Implementation

It does not oscillate

(+ solved analytically !)

Intro

Oriented parameter exploration (zoom on the key points)

Damped oscillationsThree indications for biologists

Analysis

Characterization

Improvements with Quorum Sensing

« Virtual Lab » Modeling for Fine Tuning

A modular and predictive model based on systematic parts characterizations

Proposal of an assay for generic characterization

Building of a modular and predictive model :

- (1) Decomposition of the system
- (2) Modeling of each part
- (3) Experimental measurements
- (4) Implementation in an integrated computational environment

Decomposition of the System

Small and independent modules, treated as «Black Boxes» : outputs= *functions* of inputs

Intro

Implementation

Analysis

Analytical expressions for each black box Model is a compromise between:

- Level of details considered for molecular reactions (favors predictibility)
- Available experimental data
- Complex mathematical development:
 - Can be simplified by the black box approach
 - Simplification renders the model specific

(16) dTFlhDC]	
$\frac{1}{(35)} \Rightarrow \frac{dp \ln dr_{3}}{dt} = b_{36}[pTet]_{sq} - \gamma_{35}[FlhDC]$	(59u
$ \begin{array}{c} (55)\\ (56)\end{array} \Rightarrow \frac{d[F]hDC]}{dt} = \beta_W \cdot \frac{K_{12}^{a}}{K_{12}^{a} + \left(\frac{\kappa_{12}^{a}}{R_{12}^{a} + \left(R^{a}R\right)}\right)^{6g}} - \gamma_{25}[F]hDC \end{array} $] (59
specific to pPBC-clease	
$ \begin{array}{l} (17)\\ (22)\\ (35) \end{array} \Rightarrow \frac{d[FlhDC]}{dt} = b_{17}[\rho FlhDC^{her}]_{aq} + b_{22}[(FliA)_{a}] \Rightarrow \rho FlhDC]_{aq} - \gamma_{35}[\\ (35) \end{array} $	FlhDe
$\frac{d[FinDC]}{dt} = \frac{K_{11}^{h_{11}}}{K_{12}^{h_{21}} + [OmpR^{*}]^{h_{21}}} \left(\beta_{11} \cdot \frac{K_{n}^{h_{n}}}{K_{n}^{h_{n}} + [FilA]^{h_{n}}} + \beta_{22} \cdot \frac{[FilA]^{h_{n}}}{K_{n}^{h_{n}} + [FilA]^{h_{n}}} \right)$	(60u)-) (60
(18) (23) $\Rightarrow \frac{d[FliA]}{dt} = b_{13}[(FlhDC)_{\eta} p FliA]_{ieq} + b_{23}[(FliA)_{\eta} p FliA]_{ieq} - \gamma_3$	FliA
	(61a) (61)
$\begin{array}{l} (24)\\ (25)\\ (37) \end{array} \Rightarrow \frac{d[FP1]}{dt} = b_{24}[(FlhDC)_{n} p FliL]_{eq} + b_{25}[(FliA)_{n} p FliL]_{eq} - \gamma_{3} \\ \end{array}$	[FP1]
	(62a) 1] (62
quick traffictures	
$ \frac{d(FP2)}{dt} = b_{26}[(FlhDC)_n] = pFlgA]_{eq} + b_{22}[(FliA)_n] = pFlgA]_{eq} - \gamma $ $ (38) $	B FP
	(63a)
specific to pPagili currea	
$ \begin{array}{l} (28)\\ (29)\\ (38) \end{array} = \frac{d[FP2]}{dt} = b_{28}[(FlhDC)_{e_{s}} + pFlgB]_{eq} + b_{29}[(FliA)_{e_{0}} + pFlgB]_{eq} - \gamma \end{array} $	38[FP
	(64a) [] (64)
$ \begin{array}{l} (30)\\ (31)\\ (31)\\ \Rightarrow \frac{d[FP3]}{dt} = by_0[(FlhDC)_n] \neq pFlhB]_{eq} + by_1[(FliA)_{eq}] \neq pFlhB]_{eq} - p \\ \end{array} $	m[FP
(59) (52) (53)	(65a)
dogradgenese and with the second seco	1.0
(19) (32) $\Rightarrow d[TetR] = b_{20}[(FlhDC)_{10} \Rightarrow pFlhB]_{10} + b_{21}[(FliA)_{10} \Rightarrow pFlhB]_{10} - b_{10}$	re[Te
(40) dt	(66a)
$ \begin{array}{l} (52)\\ (53)\\ (53)\end{array} \Rightarrow \frac{d[TetR]}{dt} = \beta_{30} \cdot \frac{[FlhDC]^{96}}{K_5^{96} + [FlhDC]^{96}} + \beta_{31} \cdot \frac{[FliA]^{96}}{K_{11}^{96} + [FliA]^{96}} - \gamma_{46} [10] \\ \end{array} $	T etR] (66)
eqn.(55) gives then $[TetR^{tree}]$ in function of $[TetR^{out}] = [$	TetR]
and to PROTECT and	
(21)	y-u[Er
$\begin{array}{l} (21)\\ (34)\\ (42)\end{array} \Rightarrow \frac{d[EniZ]}{dt} = b_{33}[(FlhDC)_{u}] \approx \rho FlhB]_{uq} + b_{33}[(FlhA)_{u}] \approx \rho FlhB]_{uq} + \end{array}$	
$\begin{array}{l} (21)\\ (34)\\ (42)\end{array} \Rightarrow \frac{d[EmiZ]}{dt} = b_{34}[\{FlhDC)_{bq}\mu_{F}FlhB]_{bq} + b_{31}[\{FliA)_{bq}\mu_{F}FlhB]_{bq} + \\ (52)\\ (52)\\ (53) \Rightarrow \frac{d[EmiZ]}{dt} = \beta_{36} \cdot \frac{[FlhDC]^{a}}{K_{1}^{a} + F[EhDC]^{a}} + \beta_{33} \cdot \frac{[FliA]^{ba}}{K_{1}^{b} + F[EA]^{ba}} - \gamma_{a}[I] \\ \end{array}$	(67a) EnvZ]
$ \begin{array}{l} \begin{array}{l} \begin{array}{l} (1)\\ (2)\\ (d)\end{array} & = \begin{array}{l} \frac{d[Enz]}{dt} = b_R [FBDCh_{\mu} \mathbf{r} f^BBH_{\mu} + b_R [FFAh]_{\mu} \mathbf{r} f^BBH_{\mu} \\ (d)\end{array} & \\ \begin{array}{l} \begin{array}{l} (2)\\ (d)\end{array} & = \begin{array}{l} \frac{d[Enz]}{dt} = B_R \\ \frac{d}{dt} = b_R \end{array} & \\ \begin{array}{l} \frac{FBDC^{n}}{h_1^n} + FBDC^{n} + \theta_R \\ \frac{FBDC^{n}}{h_1^n} + (FBA) \\ \end{array} & \\ \begin{array}{l} \left[Enz C^{nn} \right] + [Enz] \end{array} \end{array} $	(67a) EnvZ] (67b) (67)
$ \begin{array}{c} \begin{pmatrix} (21)\\ (3)\\ (2)\\ (2)\\ (2)\\ (2)\\ (2)\\ (2)\\ (2)\\ (2$	(67a) EnvZ] (67b) (67)
$ \begin{array}{c} \begin{array}{c} (1)\\ (2)\\ (2)\\ (4)\\ (4)\\ (4)\\ (2)\\ (2)\\ (4)\\ (4)\\ (4)\\ (4)\\ (4)\\ (4)\\ (4)\\ (4$	(67a) EnvZ] (67b) (67)
$ \begin{array}{c} \begin{array}{c} (1)\\ (4)\\ (4)\\ (5)\\ (4)\\ (5)\\ (4)\\ (5)\\ (4)\\ (5)\\ (4)\\ (5)\\ (4)\\ (5)\\ (4)\\ (5)\\ (4)\\ (4)\\ (5)\\ (4)\\ (5)\\ (4)\\ (5)\\ (5)\\ (5)\\ (5)\\ (5)\\ (5)\\ (5)\\ (5$	(67a) 5nvZ] (67b) (67b) (67) (67) (67)

Poculting Tomporal ODEs with th

• Our black boxes =

Input: Transcription Factor (TF) concentration Output: Promoter Activity

- → construction of a generic plasmid that allows
 - Controlling TF concentration with inducible promoters
- Measuring promoter activity with fluorescence
- Measurements in specific conditions for improved predictability

But: Bio-Brick Compatible !!

Experimental data + Analytical Expressions

 Least-square
 Optimization Program
 Estimated Parameters

 Towards a Virtual Lab: Final modular program allowing *in silico* experiments :

* Save time and money! *

Intro

Parts Realized

Intro

Implementation >

Analysis

Characterization

- We designed a chassis that can be used to build complex genetically engineered machines
- We **tested experimentally** that our promoters and the negative feedback loop behaved as predicted
- Thanks to **our models we tested and improved our system**. In particular, the synchronization at population level was added to maintain the oscillations
- We developed a new standard tool for parallel characterization of complex BioBricks
- Perspectives

Intro

10

- Control of injectisome construction
 - Injectisome is a nanomachine that injects bacterial proteins into eucaryotic cells Injectisome shares many similarities with flagellar system at gene level
- Optimization of biosynthetic pathways

Example of an environmentally-friendly plastic: polyhydroxyalkanoate synthesis

The Paris Team

Contact us: igem08paris@ml.free.fr

Special Acknowledgement

Thank you for your attention!

Contact us: igem08paris@ml.free.fr