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Abstract. An inaccessible cardinal κ is supercompact when (κ, λ)-ITP holds for all
λ ≥ κ. We prove that if there is a model of ZFC with two supercompact cardinals,
then there is a model of ZFC where simultaneously (ℵ2, µ)-ITP and (ℵ3, µ′)-ITP
hold, for all µ ≥ ℵ2 and µ′ ≥ ℵ3.

1. Introduction

One of the most intriguing research axes in contemporary set theory is the investiga-
tion into those properties which are typically associated with large cardinals, though
they can be satisfied by small cardinals as well. The tree property is a principle of
that sort. Given a regular cardinal κ, we say that κ satisfies the tree property when
every κ-tree has a cofinal branch. The result presented in the present paper concerns
the so-called strong tree property and super tree property, which are two combinatorial
principles that generalize the usual tree property. The definition of those properties
will be presented in §3, for now let us just discuss some general facts about their
connection with large cardinals. We know that an inaccessible cardinal is weakly
compact if, and only if, it satisfies the tree property. The strong and the super tree
properties provide a similar characterization for strongly compact and supercompact
cardinals, indeed an inaccessible cardinal is strongly compact if, and only if, it satisfies
the strong tree property, while it is supercompact if, and only if, it satisfies the super
tree property (the former result follows from a theorem by Jech [3], the latter is due to
Magidor [7]). In other words, when a cardinal satisfies one of the previous properties,
it “behaves like a large cardinal”.

While the previous characterizations date back to the early 1970s, a systematic
study of the strong and the super tree properties has only recently been undertaken
by Weiss (see [11] and [12]). He proved in [12] that for every n ≥ 2, one can define a
model of the super tree property for ℵn, starting from a model with a supercompact
cardinal. By working on the super tree property at ℵ2, Viale and Weiss (see [10] and
[9]) obtained new results about the consistency strength of the Proper Forcing Axiom.
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They proved that if one forces a model of PFA using a forcing that collapse κ to ω2 and
satisfies the κ-covering and the κ-approximation properties, then κ has to be strongly
compact; if the forcing is also proper, then κ is supercompact. Since every known
forcing producing a model of PFA by collapsing κ to ω2 satisfies those conditions, we
can say that the consistency strength of PFA is, reasonably, a supercompact cardinal.

It is natural to ask whether two small cardinals can simultaneously have the strong
or the super tree properties. Abraham defined in [1] a forcing construction producing
a model of the tree property for ℵ2 and ℵ3, starting from a model of ZFC + GCH
with a supercompact cardinal and a weakly compact cardinal above it. Cummings
and Foreman [2] proved that if there is a model of set theory with infinitely many
supercompact cardinals, then one can obtain a model in which every ℵn with n ≥ 2
satisfies the tree property. In the present paper, we construct a model of set theory in
which ℵ2 and ℵ3 simultaneously satisfy the super tree property, starting from a model
of ZFC with two supercompact cardinals κ < λ. We will collapse κ to ℵ2 and λ to
ℵ3, in such a way that they will still satisfy the super tree property. The definition of
the forcing construction required for that theorem is motivated by Abraham [1] and
Cummings-Foreman [2]. We also conjecture that in the model defined by Cummings
and Foreman, every ℵn (with n ≥ 2) satisfies the super tree property.

The paper is organized as follows. In §3 we introduce the strong and the super tree
properties. §4 is devoted to the proof of two preservation theorems. In §5, §6 and
§7 we define the forcing notion required for the final theorem and we discuss some
properties of that forcing. Finally, the proof of the main theorem is developed in §8.

2. Preliminaries and Notation

Given a forcing P and conditions p, q ∈ P, we use p ≤ q in the sense that p is
stronger than q; we write p||q when p and q are two compatible conditions (i.e. there
is a condition r ∈ P such that r ≤ p and r ≤ q). A poset P is separative if whenever
q 6≤ p, then some extension of q in P is incompatible with p. Every partial order can
be turned into a separative poset. Indeed, one can define p ≺ q iff all extensions of p
are compatible with q, then the resulting equivalence relation, given by p ∼ q iff p ≺ q
and q ≺ p, provides a separative poset; we denote by [p] the equivalence class of p.

A forcing P is κ-closed if, and only if, every descending sequence of conditions of P
of size less than κ has a lower bound; P is κ-directed closed if, and only if, for every
set of less than κ pairwise compatible conditions of P has a lower bound. We say that
P is < κ-distributive if, and only if, no sequence of ordinals of length less than κ is
added by P. P is κ-c.c. when every antichain of P has size less than κ; P is κ-Knaster
if, and only if, for all sequence of conditions 〈pα; α < κ〉, there is X ⊆ κ cofinal such
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that the conditions of the sequence 〈pα; α ∈ X〉 are pairwise compatible.

Given two forcings P and Q, we will write P ≡ Q when P and Q are equivalent,
namely:

(1) for every filter GP ⊆ P which is generic over V, there exists a filter GQ ⊆ Q
which is generic over V and V [GP] = V [GQ];

(2) for every filter GQ ⊆ Q which is generic over V, there exists a filter GP ⊆ P
which is generic over V and V [GP] = V [GQ].

If P is any forcing and Q̇ is a P-name for a forcing, then we denote by P ∗ Q̇ the
poset {(p, q); p ∈ P, q ∈ V P and p 
 q ∈ Q̇}, where for every (p, q), (p′, q′) ∈ P ∗ Q̇,
(p, q) ≤ (p′, q′) if, and only if, p ≤ p′ and p 
 q ≤ q′.

If P and Q are two posets, a projection π : Q→ P is a function such that:

(1) for all q, q′ ∈ Q, if q ≤ q′, then π(q) ≤ π(q′);
(2) π(1Q) = 1P;
(3) for all q ∈ Q, if p ≤ π(q), then there is q′ ≤ q such that π(q′) ≤ p.

We say that P is a projection of Q when there is a projection π : Q→ P.
If π : Q→ P is a projection and GP ⊆ P is a generic filter over V, define

Q/GP := {q ∈ Q; π(q) ∈ GP},

Q/GP is ordered as a subposet of Q. The following hold:

(1) If GQ ⊆ Q is a generic filter over V and H := {p ∈ P; ∃q ∈ GQ(π(q) ≤ p)},
then H is P-generic over V ;

(2) if GP ⊆ P is a generic filter over V, and if G ⊆ Q/GP is a generic filter over
V [GP], then G is Q-generic over V, and π[G] generates GP;

(3) if GQ ⊆ Q is a generic filter over V, and H := {p ∈ P; ∃q ∈ GQ(π(q) ≤ p)},
then GQ is Q/GP-generic over V [H]. That is, we can factor forcing with Q as
forcing with P followed by forcing with Q/GP over V [GP].

Some of our projections π : Q → P will also have the following property: for all
p ≤ π(q), there is q′ ≤ q such that

(1) π(q′) = p,
(2) for every q∗ ≤ q, if π(q∗) ≤ p, then q∗ ≤ q′.

We denote by ext(q, p) any condition like q′ above (if a condition q′′ satisfies the
previous properties, then q′ ≤ q′′ ≤ q′). In this case, if GP ⊆ P is a generic filter
over V, we can define an ordering on Q/GP as follows: p ≤∗ q if, and only if, there is
r ≤ π(p) such that r ∈ GP and ext(p, r) ≤ q. Then, forcing over V [GP] with Q/GP
ordered as a subposet of Q, is equivalent to forcing over V [GP] with (Q/GP,≤∗).

Let κ be a regular cardinal and λ an ordinal, we denote by Add(κ, λ) the poset of
all partial functions f : λ → 2 of size less than κ, ordered by reverse inclusion. We
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use Add(κ) to denote Add(κ, κ).

If V ⊆ W are two models of set theory with the same ordinals and η is a cardinal
in W, we say that (V,W ) has the η-covering property if, and only if, every set X ⊆ V
in W of cardinality less than η in W, is contained in a set Y ∈ V of cardinality less
than η in V.

Assume that P is a forcing notion, we will use 〈P〉 to denote the canonical P-name
for a P-generic filter over V.

Lemma 2.1. (Easton’s Lemma) Let κ be regular. If P has the κ-chain condition and
Q is κ-closed, then

(1) 
Q P has the κ-chain condition;
(2) 
P Q is a < κ-distributive;
(3) If G is P-generic over V and H is Q-generic over V, then G and H are mutually

generic;
(4) If G is P-generic over V and H is Q-generic over V, then (V, V [G][H]) has

the κ-covering property;
(5) If R is κ-closed, then 
P×Q R is < κ-distributive.

For a proof of that lemma see [2, Lemma 2.11].

Let η be a regular cardinal, θ > η be large enough and M ≺ Hθ of size η. We say
that M is internally approachable of length η if it can be written as the union of an
increasing continuous chain 〈Mξ : ξ < η〉 of elementary submodels of H(θ) of size less
than η, such that 〈Mξ : ξ < η′〉 ∈Mη′+1, for every ordinal η′ < η.

Lemma 2.2. (∆-system Lemma) Assume that λ is a regular cardinal and κ < λ is
such that α<κ < λ, for every α < λ. Let F be a family of sets of cardinality less than
κ such that |F | = λ. There exists a family F ′ ⊆ F of size λ and a set R such that
X ∩ Y = R, for any two distinct X, Y ∈ F ′.

For a proof of that lemma see [5].

Lemma 2.3. (Pressing Down Lemma) If f is a regressive function on a stationary set
S ⊆ [A]<κ (i.e. f(x) ∈ x, for every non empty x ∈ S), then there exists a stationary
set T ⊆ S such that f is constant on T.

For a proof of that lemma see [5].

We will assume familiarity with the theory of large cardinals and elementary em-
beddings, as developed for example in [4].
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Lemma 2.4. (Laver) [6] If κ is a supercompact cardinal, then there exists L : κ→ Vκ
such that: for all λ, for all x ∈ Hλ+ , there is j : V →M such that j(κ) > λ, λM ⊆M
and j(L)(κ) = x.

Lemma 2.5. (Silver) Let j : M → N be an elementary embedding between inner
models of ZFC. Let P ∈M be a forcing and suppose that G is P-generic over M, H is
j(P)-generic over N, and j[G] ⊆ H. Then, there is a unique j∗ : M [G]→ N [H] such
that j∗ �M = j and j∗(G) = H.

Proof. If j[G] ⊆ H, then the map j∗(ẋG) = j(ẋ)H is well defined and satisfies the
required properties. �

3. The Strong and the Super Tree Properties

We start by recalling the definition of the tree property, for a regular cardinal κ.

Definition 3.1. Let κ be a regular cardinal,

(1) a κ-tree is a tree of height κ with levels of size less than κ;
(2) we say that κ has the tree property if, and only if, every κ-tree has a cofinal

branch (i.e. a branch of size κ).

In order to define the strong tree property and the super tree property for a regular
cardinal κ ≥ ℵ2, we need to define the notion of (κ, λ)-tree, for an ordinal λ ≥ κ.

Definition 3.2. Given κ ≥ ω2 a regular cardinal and λ ≥ κ, a (κ, λ)-tree is a set F
satisfying the following properties:

(1) for every f ∈ F, f : X → 2, for some X ∈ [λ]<κ

(2) for all f ∈ F, if X ⊆ dom(f), then f � X ∈ F ;
(3) the set LevX(F ) := {f ∈ F ; dom(f) = X} is non empty, for all X ∈ [λ]<κ;
(4) |LevX(F )| < κ, for all X ∈ [λ]<κ.

When there is no ambiguity, we will simply write LevX instead of LevX(F ). The
main difference between κ-trees and (κ, λ)-trees is the following: in the former, levels
are indexed by ordinals, while in the latter, levels are indexed by sets of ordinals,
which are not totally ordered.

Definition 3.3. Given κ ≥ ω2 a regular cardinal, λ ≥ κ, and F a (κ, λ)-tree,

(1) a cofinal branch for F is a function b : λ→ 2 such that b � X ∈ LevX(F ), for
all X ∈ [λ]<κ;

(2) an F -level sequence is a function D : [λ]<κ → F such that for every X ∈ [λ]<κ,
D(X) ∈ LevX(F );

(3) given an F -level sequence D, an ineffable branch for D is a cofinal branch
b : λ→ 2 such that {X ∈ [λ]<κ; b � X = D(X)} is stationary.

Definition 3.4. Given κ ≥ ω2 a regular cardinal and λ ≥ κ,

(1) (κ, λ)-TP holds if every (κ, λ)-tree has a cofinal branch;
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(2) (κ, λ)-ITP holds if for every (κ, λ)-tree F and for every F -level sequence D,
there is an an ineffable branch for D;

(3) we say that κ satisfies the strong tree property if (κ, µ)-TP holds, for all µ ≥ κ;
(4) we say that κ satisfies the super tree property if (κ, µ)-ITP holds, for all µ ≥ κ;

4. The Preservation Theorems

It will be important in what follows that certain forcings cannot add ineffable
branches. The following proposition is due to Silver (see [5, chap. VIII, Lemma
3.4] or [11, Proposition 2.1.12]), we include the proof for completeness.

Theorem 4.1. (First Preservation Theorem) Let θ be a regular cardinal and µ ≥ θ
be any ordinal. Assume that F is a (θ, µ)-tree and Q is an η+-closed forcing with
η < θ ≤ 2η. For every filter GQ ⊆ Q generic over V, every cofinal branch for F in
V [GQ] is already in V.

Proof. We can assume, without loss of generality, that η is minimal such that 2η ≥ θ.
Assume towards a contradiction that Q adds a cofinal branch to F, let ḃ be a Q-name
for such a function. For all α ≤ η and all s ∈ α2, we are going to define by induction
three objects aα ∈ [µ]<θ, fs ∈ Levaα and ps ∈ Q such that:

(1) ps 
 ḃ � aα = fs;
(2) fsa0(β) 6= fsa1(β), for some β < µ;
(3) if s ⊆ t, then pt ≤ ps;
(4) if α < β, then aα ⊂ aβ.

Let α < η, assume that aα, fs and ps have been defined for all s ∈ α2. We define
aα+1, fs, and ps, for all s ∈ α+12. Let t be in α2, we can find an ordinal βt ∈ µ
and two conditions pta0, pta1 ≤ pt such that pta0 
 ḃ(βt) = 0 and pta1 
 ḃ(βt) = 1.

(otherwise, ḃ would be a name for a cofinal branch which is already in V ). Let
aα+1 := aα ∪ {βt; t ∈ α2}, then |aα+1| < θ, because 2α < θ. We just defined, for
every s ∈ α+12, a condition ps. Now, by strengthening ps if necessary, we can find
fs ∈ Levaα+1 such that

ps 
 ḃ � aα+1 = fs.

Finally, fta0(βt) 6= fta1(βt), for all t ∈ α2 : because pta0 
 fta0(βt) = ḃ(βt) = 0, while

pta1 
 fta1(βt) = ḃ(βt) = 1.

If α is a limit ordinal ≤ η, let t be any function in α2. Since Q is η+-closed, there is
a condition pt such that pt ≤ pt�β, for all β < α. Define aα :=

⋃
β<α

aβ. By strengthening

pt if necessary, we can find ft ∈ Levaα such that pt 
 ḃ � aα = ft. That completes the
construction.

We show that |Levaη | ≥ η2 ≥ θ, thus a contradiction is obtained. Let s 6= t be two
functions in η2, we are going to prove that fs 6= ft. Let α be the minimum ordinal less
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than η such that s(α) 6= t(α), without loss of generality r a 0 @ s and r a 1 @ t, for
some r ∈ α2. By construction,

ps ≤ pra0 
 ḃ � aα+1 = fra0 and pt ≤ pra1 
 ḃ � aα+1 = fra1,

where fra0(β) 6= fra1(β), for some β. Moreover, ps 
 ḃ � aη = fs and pt 
 ḃ � aη = ft,
hence fs � aα+1(β) = fra0(β) 6= fra1(β) = ft � aα+1(β), thus fs 6= ft. That completes
the proof. �

The following proposition is rather ad hoc. It will be used several times in the final
theorem.

Theorem 4.2. (Second Preservation Theorem) Let V ⊆ W be two models of set
theory with the same ordinals and let P ∈ V be a forcing notion and κ a cardinal in
V such that:

(1) P ⊆ Add(ℵn, τ)V , for some τ > ℵn,
and for every p ∈ P, if X ⊆ dom(p), then p � X ∈ P;

(2) ℵVm = ℵWm , for every m ≤ n, and W |= κ = ℵn+1;
(3) for every set X ⊆ V in W of size < ℵn+1 in W, there is Y ∈ V of size < κ in

V, such that X ⊆ Y ;
(4) in V, we have γ<ℵn < κ, for every cardinal γ < κ.

Let F ∈ W be a (ℵn+1, µ)-tree with µ ≥ ℵn+1, then for every filter GP ⊆ P generic
over W, every cofinal branch for F in W [GP] is already in W.

Proof. Work in W. Let ḃ ∈ W P and let p ∈ P such that

p 
 ḃ is a cofinal branch for F.

We are going to find a condition q ∈ P such that q||p and for some b ∈ W, we have

q 
 ḃ = b. Let χ be large enough, for all X ≺ Hχ of size ℵn, we fix a condition pX ≤ p
and a function fX ∈ LevX∩µ such that

pX 
 ḃ � X = fX .

Let S be the set of all the structures X ≺ Hχ, such that X is internally approachable
of length ℵn. Since every condition of P has size less than ℵn, there is, for all X ∈ S,
a set MX ∈ X of size less than ℵn such that

pX � X ⊆MX .

By the Pressing Down Lemma, there exists M∗ and a stationary set E∗ ⊆ S such
that M∗ = MX , for all X ∈ E∗. The set M∗ has size less than ℵn in W, hence
A := (

⋃
X∈E∗

pX) � M∗ has size less than ℵn in W. By the assumption, A is covered by

some N ∈ V of size γ < κ in V. In V, we have |[N ]<ℵn| ≤ γ<ℵn < κ. It follows that in
W there are less than ℵn+1 possible values for pX �M∗. Therefore, we can find in W
a cofinal E ⊆ E∗ and a condition q ∈ P, such that pX � X = q, for all X ∈ E.
Claim 4.3. fX � Y = fY � X, for all X, Y ∈ E.
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Proof. LetX, Y ∈ E, there is Z ∈ E withX, Y, dom(pX), dom(pY ) ⊆ Z. Then, we have
pX∩pZ = pX∩(pZ � Z) = pX∩q = q, thus pX ||pZ and similarly pY ||pZ . Let r ≤ pX , pZ
and s ≤ pY , pZ , then r 
 fZ � X = ḃ � X = fX and s 
 fZ � Y = ḃ � Y = fY . It
follows that fX � Y = fZ � (X ∩ Y ) = fY � X. �

Let b be
⋃
X∈E

fX . The previous claim implies that b is a function and

b � X = fX , for all X ∈ E.

Claim 4.4. q 
 ḃ = b.

Proof. We show that for every X ∈ E, the set BX := {s ∈ P; s 
 ḃ � X = b � X}
is dense below q. Let r ≤ q, there is Y ∈ E such that dom(r), X ⊆ Y. It follows
that pY ∩ r = pY � Y ∩ r = q ∩ r = q, thus pY ||r. Let s ≤ pY , r, then s ∈ BX ,

because s 
 ḃ � X = fY � X = fX = b � X. Since
⋃
{X ∩ µ;X ∈ E} = µ, we have

q 
 ḃ = b. �

That completes the proof. �

5. The Main Forcing

Definition 5.1. Let η be a regular cardinal and let θ be any ordinal, we define

P(η, θ) := {p ∈ Add(η, θ); for every α ∈ dom(p), α is a successor ordinal },
P(η, θ) is ordered by reverse inclusion.

For E ⊆ θ, we denote by P (η, θ) � E the set of all functions in P (η, θ) with domain
a subset of E. The following definition is due to Abraham [1].

Definition 5.2. Assume that V ⊆ W are two models of set theory with the same or-
dinals, let η be a regular cardinal in W and let P := P(η, θ)V , where θ is any ordinal.
We define in W the poset M(η, θ, V,W ) as follows:

(p, q) ∈M(η, θ, V,W ) if, and only if,

(1) p ∈ P(η, θ)V ;
(2) q ∈ W is a partial function on θ of size ≤ η such that for every α ∈ dom(q),

α is a successor ordinal, q(α) ∈ W P�α, and 
WP�α q(α) ∈ Add(η+)V [〈P�α〉].

M(η, θ, V,W ) is partially ordered by (p, q) ≤ (p′, q′) if, and only if,

(1) p ≤ p′;
(2) dom(q′) ⊆ dom(q);
(3) p � α 
WP �α q(α) ≤ q′(α), for all α ∈ dom(q′).

If θ is a weakly compact cardinal, then M(ℵn, θ, V, V ) corresponds to the forcing
defined by Mitchell for a model of the tree property at ℵn+2 (see [8]). Weiss proved
that a variation of that forcing with θ supercompact, produces a model of the super



STRONG TREE PROPERTIES FOR TWO SUCCESSIVE CARDINALS 9

tree property for ℵn+2. Let us discuss a naive attempt to build a model of the super
tree property for two successive cardinals ℵn, ℵn+1 (with n ≥ 2). We start with two
supercompact cardinals κ < λ in a model V, then we force with M(ℵn−2, κ, V, V ) over
V obtaining a model W ; finally, we force over W with M(ℵn−1, λ,W,W ). The problem
with this approach is that the second stage might introduce an (ℵn, µ)-tree F with
no cofinal branches. Therefore, we have to define the first stage of the iteration so
that it will make the super tree property at ℵn “indestructible”. The forcing notion
required for that will “anticipate a fragment” of the forcing at the second stage, namely
M(ℵn−1, λ,W,W ).

Definition 5.3. For V,W and η, θ like in Definition 5.2, we define

Q∗(η, θ, V,W ) := {(∅, q); (∅, q) ∈M(η, θ, V,W )}.
The poset defined hereafter is a variation of the forcing construction defined by

Abraham in [1, Definition 2.14].

Definition 5.4. Let V be a model of set theory, and suppose that θ > ℵn is an
inaccessible cardinal. Let P := P(ℵn, θ)V and let L : θ → Vθ be any function. Define

R := R(ℵn, θ, L)

as follows. For each β ≤ θ, we define by induction R � β and then we set R = R � θ.

R � 0 is the trivial forcing.
(p, q, f) ∈ R � β if, and only if

(1) p ∈ P � β(= P(ℵn, β)V );
(2) q is a partial function on β of size ≤ ℵn, such that for every α ∈ dom(q), α is

a successor ordinal, q(α) ∈ V P�α and 
P�α q(α) ∈ Add(ℵn+1)
V [〈P�α〉];

(3) f is a partial function on β of size ≤ ℵn such that for all α ∈ dom(f), α is a
limit ordinal, f(α) ∈ V R�α and


R�α L(α) is an ordinal such that f(α) ∈ Q∗(ℵV [〈R�α〉]
n+1 , L(α), V, V [〈R � α〉]).

R � β is partially ordered by (p, q, f) ≤ (p′, q′, f ′) if, and only if:

(1) p ≤ p′;
(2) dom(q′) ⊆ dom(q);
(3) p � α 
P �α q(α) ≤ q′(α), for all α ∈ dom(q′).
(4) dom(f ′) ⊆ dom(f);
(5) for all α ∈ dom(f ′), if (p, q, f) � α := (p � α, q � α, f � α), then

(p, q, f) � α 
R�α f(α) ≤ f ′(α)

Assume that V is a model of ZFC with two supercompact cardinals κ < λ, and
L : κ→ Vκ is the Laver function. Let R := R(ℵ0, κ, L) and let GR ⊆ R be any generic
filter over V. Assume that GM is an M(ℵ1, λ, V, V [GR])-generic filter over V [GR], we
will prove in §8 that both ℵ2 and ℵ3 satisfy the super tree property in V [GR][GM].
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6. Factoring Mitchell’s Forcing

In this section, V,W, η, θ are like in Definition 5.2. None of the result of this section
are due to the author. For more details see [1].

Remark 6.1. The function π : M(η, θ, V,W )→ P(η, θ)V defined by π(p, q) := p is a
projection. If P := P(η, θ)V and if GP is a P-generic filter over W, then we define in
W [GP] the poset

Q(η, θ, V,W,GP) := M(η, θ, V,W )/GP.

Lemma 6.2. The function σ : P(η, θ)V × Q∗(η, θ, V,W ) → M(η, θ, V,W ) defined by
σ(p, (∅, q)) := (p, q) is a projection. If GM is a W -generic filter over M(η, θ, V,W ),
then we define in W [GM] the poset:

S(η, θ, V,W,GM) := (P(η, θ)V ×Q∗(η, θ, V,W ))/GM.

Proof. Let P := P(η, θ)V and Q∗ := Q∗(η, θ, V,W ). It is clear that σ preserves the
identity and respect the ordering relation. Let (p′, q′) ≤ σ(p, (∅, q)). Define q∗ as
follows: dom(q∗) = dom(q′) and for α ∈ dom(q′), if α /∈ dom(q), then q∗(α) := q′(α);
if α ∈ dom(q), we define q∗(α) ∈ W P�α such that the following hold:

(1) p′ � α 
 q∗(α) = q′(α),
(2) if r ∈ P � α is incompatible with p′ � α, then r 
 q∗(α) = q(α).

So 
WP�α q∗(α) ≤ q(α), hence (p′, (∅, q∗)) ≤ (p, (∅, q)) in P × Q∗ and σ(p′, (∅, q∗)) =
(p′, q∗). Moreover [(p′, q∗)] = [(p′, q′)], that completes the proof. �

Lemma 6.3. Q∗(η, θ, V,W ) is η+-directed closed in W.

Proof. See [1] for a proof of that lemma. �

Lemma 6.4. Assume that P := P(η, θ)V is η+-cc in W, for every filter GM ⊆
M(η, θ, V,W ) generic over W, if GP ⊆ P is the projection of GM to P, then all sets of
ordinals in W [GM] of size η are in W [GP].

Proof. By Lemma 6.2 it is enough to prove that if GP ×GQ ⊆ P×Q∗(η, θ, V,W ) is a
generic filter over W, then every set of ordinals in W [GP ×GQ] of size η is already in
W [GP]. This is an easy consequence of Easton’s Lemma. �

Proposition 6.5. Assume that θ is inaccessible in W and let M := M(η, θ, V,W ).
The following hold:

(i) |M| = θ and M is θ-c.c.;
(ii) If P(η, θ)V is η+-cc in W, then M preserves η+;

(iii) If P(η, θ)V is η+-c.c. in W, then M makes θ = η++ = 2η.

Proof. (i) The proof that |M| = θ is omitted. The key point is that κ is inaccessible,
so P(η, θ) has size θ and for every (p, q) ∈ M, there are fewer than θ possibilities for
q(α). The proof that M is θ-c.c. is a standard application of the ∆-system Lemma.

(ii) It follows from Lemma 6.4.
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(iii) For every cardinal α ∈]η, θ[, M projects to P(η, α)V which makes 2η ≥ α and
then adds a Cohen subset of η+. That forcing will collapse α to η+. By the previous
claims, η+ is preserved and θ remains a cardinal after forcing with M. So, M makes
θ = η++. �

Lemma 6.6. The following hold:

(1) Assume that P := P(η, θ)V . If P adds no new < η sequences to W, then


WP Q(η, θ, V,W, 〈P〉) is η-closed;

(2) Assume that P := P(η, θ)V and M := M(η, θ, V,W ). If P adds no new < η
sequences to W, then 
WM S(η, θ, V,W, 〈M〉) is η-closed.

Proof. See [1]. �

For any ordinal α ∈]η, θ[, the function (p, q) 7→ (p � α, q � α) is a projection from
M(η, θ, V,W ) to Mα := M(η, α, V,W ). We want to analyse

M(η, θ, V,W )/GMα ,

where GMα ⊆Mα is any generic filter over W. Consider the following definition.

Definition 6.7. Let θ′ ∈]η, θ[ be any ordinal and let P := P(η, θ)V . Let Mθ′ :=
M(η, θ′, V,W ) and assume that GMθ′

⊆ Mθ′ is any generic filter over W, then we
define in W ′ := W [GMθ′

], the following poset M(η, θ − θ′, V,W ′).

(p, q) ∈M(η, θ − θ′, V,W ′) if, and only if,

(1) p ∈ P � (θ − θ′);
(2) q ∈ W ′ is a partial function on ]θ′, θ[ of size ≤ η such that for every

α ∈ dom(q), α is a successor ordinal, q(α) ∈ (W ′)P�(α−θ
′), and


W
′

P�(α−θ′) q(α) ∈ Add(η+)W
′[〈P�(α−θ′)〉].

M(η, θ − θ′, V,W ) is partially ordered as in Definition 5.2.

Lemma 6.8. [1, Lemma 2.12] Let θ′ ∈]η, θ[ be any ordinal and let Mθ′ := M(η, θ′, V,W )
with GMθ′

⊆ Mθ′ a generic filter over W. Assume that P(η, θ) is η+-cc in W and in
W [GMθ′

], then

M(η, θ, V,W ) ≡Mθ′ ∗M(η, θ − θ′, V,W [〈Mθ′〉]).

Proof. One can prove that Mθ′ ∗M(η, θ− θ′, V,W [〈Mθ′〉]) contains a dense set isomor-
phic to M(η, θ, V,W ). The proof is omitted, for more details see [1] Lemma 2.12. �

Remark 6.9. Lemma 6.2 and Lemma 6.3, can be generalized in the following way.
Assume that θ′ < θ, P := P(η, θ)V � (θ− θ′), Mθ′ := M(η, θ′, V,W ) and GMθ′

⊆Mθ′ is
a generic filter over W, define

Q∗(η, θ − θ′, V,W [GMθ′
]) := {(∅, q); (∅, q) ∈M(η, θ − θ′, V,W [GMθ′

])}.
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Then, M(η, θ − θ′, V,W [GMθ′
]) is a projection of P × Q∗(η, θ − θ′, V,W [GMθ′

]) and
Q∗(η, θ − θ′, V,W [GMθ′

]) is η+-directed closed in W [GMθ′
].

7. Factoring the Main Forcing

In this section θ, V, L are like in Definition 5.4. We want to analyse the forcing
R(ℵ0, θ, L). As we said, that poset is a variation of the forcing defined by Abraham
in [1, Definition 2.14], we have just to deal with the function L. The proofs of the
lemmas presented in this section are very similar to the proofs of the corresponding
lemmas in [1].

Remark 7.1. (p, q, f) 7→ (p, q) is a projection of R(ℵ0, θ, L) to M(ℵ0, θ, V, V ) and for
every limit ordinal α < θ, if L(α) is an R � α-name for an ordinal and Q∗ is the
canonical R � α-name for Q∗(ℵ1, L(α), V, V [〈R � α〉]), then

R � α + 1 = R � α ∗Q∗.
Indeed, the functions in M(ℵ0, θ, V, V ) are not defined on limit ordinals.

Lemma 7.2. Let U(ℵ0, θ, L) := {(∅, q, f); (∅, q, f) ∈ R} ordered as a subposet of R.
The following hold:

(i) the function π : P(ℵ0, θ)× U(ℵ0, θ, L)→ R defined by π(p, (∅, q, f)) = (p, q, f)
is a projection;

(ii) U(ℵ0, θ, L) is σ-closed.

Proof. (i) Let (p′, q′, f ′) ≤ π(p, (∅, q, f)). By Lemma 6.2, the function (p, (∅, q)) 7→
(p, q) is a projection and we can find (∅, q∗) ≤ (∅, q) such that [(p′, q∗)] = [(p′, q′)].
We define a function f ∗ as follows: dom(f ∗) = dom(f ′) and for all α ∈ dom(f ′), if
α /∈ dom(f), then f ∗(α) := f ′(α); if α ∈ dom(f), we define f ∗(α) ∈ V R�α such that
the following hold:

(1) (p′, q′, f ′) � α 
R�α f
∗(α) = f ′(α),

(2) if r ∈ R � α is incompatible with (p′, q′, f ′) � α, then r 
R�α f
∗(α) = f(α).

Since (p′, q′, f ′) � α 
R�α f
′(α) ≤ f(α), we have 
R�α f

∗(α) ≤ f(α). One can prove
by induction on α that [(p∗, q∗, f ∗) � α] = [(p′, q′, f ′) � α], and we have (∅, q∗, f ∗) ≤
(∅, q, f).

(ii) Let 〈(∅, qn, fn); n < ω〉 be a decreasing sequence of conditions in U(ℵ0, θ, L).
By definition, 〈(∅, qn); n < ω〉 is a decreasing sequence of conditions in Q∗(ℵ0, θ, V, V )
which is σ-closed by Lemma 6.3. So there is (∅, q) such that (∅, q) ≤ (∅, qn), for every
n < ω. We define a function f with dom(f) =

⋃
n<ω

dom(fn) as follows. We define

f � α + 1 by induction on α, so that

(∅, q � α + 1, f � α + 1) ≤ (∅, qn, fn) � α + 1,

for all n < ω. Assume f � α has been defined. For every m > n, we have

(∅, qm, fm) � α 
R�α fm(α) ≤ fn(α),
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so by the inductive hypothesis we have (∅, q � α, f � α) 
 fm(α) ≤ fn(α). By Lemma
6.3, if Gα ⊆ R � α is a generic filter over V, then Q∗(ℵ1, L(α), V, V [Gα]) is ℵ2-closed
in V [Gα]. It follows that for some f(α) ∈ V R�α, we have

(∅, q � α, f � α) 
 f(α) ≤ fm(α), for every m < ω.

Finally, the condition (∅, q, f) is a lower bound for 〈(∅, qn, fn); n < ω〉. �

Lemma 7.3. Assume that V is a model of ZFC with two supercompact cardinals
κ < λ, and L : κ → Vκ is the Laver function. Let R := R(ℵ0, κ, L), and let Ṁ be the
canonical R-name for M(ℵ1, λ, V, V [〈R〉]). The following hold:

(1) R has size κ and it is κ-c.c.;
(2) 
R λ is inaccessible;
(3) For every filter GR ⊆ R generic over V, if G0 is the projection of GR to

P0 := P(ℵ0, κ), then all countable sets of ordinals in V [GR] are in V [G0];
(4) R preserves ℵ1 and makes κ = ℵ2 = 2ℵ0 ;
(5) If GR ⊆ R is a generic filter over V, then P1 := P(ℵ1, λ)V does not introduce

new countable subsets to V [GR];
(6) 
R P(ℵ1, λ)V is κ-c.c. (and even κ-Knaster).

Proof. (1) The proof is similar to the proof of Lemma 6.5 (i) and it is omitted.
(2) It follows from the previous claim.
(3) By Lemma 7.2, it is enough to prove that if G0 ×H ⊆ P0 × U(ℵ0, κ, L) is any

generic filter over V, then every countable set of ordinals in V [G0 ×H] is already in
V [G0]. This is an easy consequence of Easton’s Lemma.

(4) Since P(ℵ0, κ) is c.c.c., Claim 3 implies that ℵ1 is preserved. The forcing R
is κ-c.c., hence κ remains a cardinal after forcing with R. Moreover, R projects on
M(ℵ0, κ, V, V ) which, by Proposition 6.5, collapses all the cardinals between ℵ1 and κ
and adds κ many Cohen reals. Therefore R makes κ = ℵ2 = 2ℵ0 .

(5) By Lemma 7.2, R is a projection of P0 × U0, where P0 := P(ℵ0, κ) and U :=
U(ℵ0, κ, L). By Easton’s Lemma 
P0×U P1 is < ℵ1-distributive, so no countable se-
quence of ordinals is added by P1 to V [G0 × H], where G0 ⊆ P0 and H ⊆ U are
generic filters over V such that GR is the projection of G0 × H to R. Moreover, we
proved in Claim 3, that every countable sequence of ordinals in V [G0 ×H] is already
in V [G0]. Since V [G0] ⊆ V [GR], this completes the proof.

(6) Let GR ⊆ R be a generic filter over V. Work in V [GR]. Assume that 〈fα; α < κ〉
is a sequence of conditions in P1 := P(ℵ1, λ)V . Let D :=

⋃
α<κ

dom(fα), then there is

a bijection h : D → κ. Since every condition of the sequence is a countable function
we have, for every α < κ of uncountable cofinality sup(h[dom(fα)] ∩ α) < α. So the
function α 7→ sup(h[dom(fα)] ∩ α) is regressive. By Fodor’s Theorem, there is an
ordinal τ and a stationary set S ⊆ κ such that sup(h[dom(fα)] ∩ α) = τ, for every
α ∈ S. The set h−1(τ) has size < κ in V [GR] and R is κ-c.c., so there is a set E ∈ V of
size < κ in V such that h−1(τ) ⊆ E. Since κ is inaccessible in V, we can find in V [GR]
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a stationary set S ′ ⊆ S such that fα � E has a fixed value, for every α ∈ S ′. Then the
sets in {dom(fα) \ E; α ∈ S ′} can be assumed to be pairwise disjoint, hence fα ∪ fβ
is a function for every α, β ∈ S ′. �

Lemma 7.4. [1, Lemma 2.18] Assume that α < θ is a limit ordinal, let P := P(ℵ0, θ) �
(θ− α), R := R(ℵ0, θ, L) and let Gα ⊆ R � α+ 1 be a generic filter over V. We define
in V [Gα+1] the following set:

Uα+1(ℵ0, θ, L,Gα+1) := {(0, q, f) ∈ R(ℵ0, θ, L); (0, q, f) � α + 1 ∈ Gα+1}.
Then R/Gα+1 is a projection of P× Uα+1(ℵ0, θ, L,Gα+1), and Uα+1(ℵ0, θ, L,Gα+1) is
σ-closed in V [Gα+1].

Proof. The proof is very similar to the proof of Lemma 2.18 in [1] and it is omitted. �

8. The Main Theorem

Theorem 8.1. Assume that V is a model of ZFC with two supercompact cardinals
κ < λ, and suppose that L : κ → Vκ is the Laver function. If R := R(ℵ0, κ, L), and

Ṁ is the canonical R-name for M(ℵ1, λ, V, V [〈R〉]), then for every filter G ⊆ R ∗ Ṁ
generic over V, both ℵ2 and ℵ3 satisfy the super tree property in V [G].

The proof that the model obtained is as required consists of three parts:

(1) V [G] |= ℵV1 = ℵ1, κ = ℵ2 and λ = ℵ3;
(2) ℵ3 satisfies the super tree property.
(3) ℵ2 satisfies the super tree property;

Proof of (1)

First we show that ℵ1 is preserved. Let GR be the projection of G to R and let GM
be the projection of G to M := ṀGR . By Lemma 7.3, ℵ1 is preserved by R. Moreover,
P(ℵ1, λ)V does not introduce new countable subsets to V [GR] (see Lemma 7.3 (5)). So,
by Lemma 6.6 (1) M does not introduce new countable sequences, hence ℵ1 remains
a cardinal in V [G]. Now, we show that κ remains a cardinal in V [G]. By Lemma 7.3,
we know that κ remains a cardinal in V [GR] and becomes ℵ2. By Lemma 7.3 (6),
P(ℵ1, λ)V is κ-c.c. in V [GR], so κ remains a cardinal after forcing with P(ℵ1, λ)V over
V [GR] and it is equal to ℵ2. By applying Lemma 6.4, we get that all sets of ordinals in
V [G] of cardinality ℵ1 are in V [GR][GP], where GP is the projection of GM to P(ℵ1, λ)V .

Therefore, κ remains a cardinal in V [G]. Finally, λ remains a cardinal because R ∗ Ṁ
is λ-c.c., and it becomes ℵ3.

Proof of 2

By (1), we know that λ = ℵ3 in V [G], so we want to prove that λ has the super
tree property in that model. Let µ ≥ λ be any ordinal, we fix, in V [G], a (λ, µ)-tree
F and an F -level sequence D. Fix an elementary embedding j : V → N with critical
point λ such that:
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(1) if σ := |µ|<λ, then j(λ) > σ,
(2) σN ⊆ N.

The structure of the proof is the following. First, we find H ⊆ j(R ∗ Ṁ) generic
over N such that j lifts to an elementary embedding j∗ : V [G] → N [H]. Then, we
prove that N [H] has an ineffable branch b for D. Finally, we show that b ∈ V [G].

Claim 8.2. We can lift j to an elementary embedding j∗ : V [G] → N [H], with

H ⊆ j(R ∗ Ṁ) generic over N.

Proof. To simplify the notation we will denote all the extensions of j by “j” also. We
let GR be the projection of G to R and let GM be the projection of G to M := ṀGR .

As λ > κ and |R| = κ, we have j(R) = R, so we can lift j to an elementary
embedding

j : V [GR]→ N [GR].

Observe that j(M) � λ = M(ℵ1, λ,N,N [GR]) = M(ℵ1, λ, V, V [GR]) = M. Force over
V [GR] to get a j(M)-generic filter Hj(M) such that Hj(M) � λ = GM. By Lemma 6.5
and Lemma 7.3 (2), M is λ-c.c. in V [GR], so j � M is a complete embedding from M
into j(M), hence we can lift j to an elementary embedding

j : V [GR][GM]→ N [GR][Hj(M)].

�

Rename j∗ by j. We define N1 := N [G] and N2 := N [GR][Hj(M)]. In N2, j(F ) is a
(j(λ), j(µ))-tree and j(D) is a j(F )-level sequence. By the closure of N, the tree F
and the F -level sequence D are in N1.

Claim 8.3. In N2, there is an ineffable branch b for D.

Proof. Let a := j[µ], clearly a ∈ [j(µ)]<j(λ). Consider f := j(D)(a), let b : µ → 2
be the function defined by b(α) := f(j(α)), we show that b is an ineffable branch for
D. Assume for a contradiction that in N2 there is a club C ⊆ [µ]<|λ| ∩N1 such that
b � X 6= D(X), for all X ∈ C. Then by elementarity,

j(b) � X 6= j(D)(X),

for all X ∈ j(C). But a ∈ j(C) and j(b) � a = f = j(D)(a), so we have a contradiction.
�

We have found an ineffable branch b for D in the model N2. We conclude the
proof by proving that b is already in N [G] (if b ∈ N [G], then b is ineffable since
{X ∈ [µ]<|λ| ∩ N [G]; b � X = D(X)} is stationary in N2, hence it is stationary in
N [G]), hence in V [G]. We assume, towards a contradiction, that b /∈ N [G]. Step by
step, we want to prove that b /∈ N2, that will lead us to a contradiction.

By Remark 6.9, M(ℵ1, j(λ)− λ,N,N [G]) is a projection of

P×Q∗(ℵ1, j(λ)− λ,N,N [G]),
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where P := P(ℵ1, j(λ))N � (j(λ)−λ), and Q∗ := Q∗(ℵ1, j(λ)−λ,N,N [G]) is ℵ2-closed
in N [G]. In N [G], we have λ = ℵ3 = 2ℵ1 and F is an (ℵ3, µ)-tree, so we can apply the
First Preservation Theorem, thus

b /∈ N [G][HQ∗ ],

where HQ∗ is the projection of Hj(M) to Q∗. The filter HQ∗ collapses λ (which is ℵN [G]
3 )

to have size ℵ2, so now F is an (ℵ2, µ)-tree. The model N2 = N [GR][Hj(M)] is the
result of forcing with P over N [G][HQ∗ ]; we want to apply the Second Preservation
Theorem. Every set X ⊆ N in N [G][HQ∗ ] which has size < ℵ2 in N [G][HQ∗ ] is covered
by a set Y ∈ N which has size < λ in N, so the hypothesis of the Second Preservation
Theorem are satisfied, hence b /∈ N [GR][HQ∗ ] = N2, a contradiction.

This completes the proof of (2).

Proof of 3

By (1), we know that κ = ℵ2 in V [G], so we want to prove that κ has the super
tree property in that model. Let µ ≥ κ be any ordinal, we fix, in V [G], a (κ, µ)-tree
F and an F -level sequence D. Since L is the Laver function, there is an elementary
embedding j : V → N with critical point κ such that:

(1) if σ := max(λ, |µ|<κ), then j(κ) > σ,
(2) σN ⊆ N,
(3) j(L)(κ) = λ.

Claim 8.4. We can lift j to an elementary embedding j∗ : V [G] → N [H], with

H ⊆ j(R ∗ Ṁ) generic over N.

Proof. To simplify the notation we will denote all the extensions of j by “j” also. Let
GR be the projection of G to R and let GM be the projection of G to M := ṀGR .
Observe that j(R) = R(ℵ0, j(κ), j(L))N = R(ℵ0, j(κ), j(L))V , and j(R) � κ = R.
Force over V to get a j(R)-generic filter Hj(R) such that Hj(R) � κ = GR. By Lemma
7.3 (1) R is κ-c.c. So j � R is a complete embedding from R into j(R), hence we can
lift j to get an elementary embedding

j : V [GR]→ N [Hj(R)].

By Lemma 6.2, in V [GR], the forcing M is a projection of

P(ℵ1, λ)V ×Q∗(ℵ1, λ, V, V [GR])

(moreover, P(ℵ1, λ)V = P(ℵ1, λ)N and Q∗(ℵ1, λ, V, V [GR]) = Q∗(ℵ1, λ,N,N [GR])).
Recall that

S(ℵ1, λ, V, V [GR], GM) = (P(ℵ1, λ)V ×Q∗(ℵ1, λ, V, V [GR]))/GM,

so by forcing with S(ℵ1, λ, V, V [GR], GM) over V [G] we obtain a model V [GR][GP×GQ∗ ]
with GP × GQ∗ generic for P(ℵ1, λ)V × Q∗(ℵ1, λ, V, V [GR]) over V [GR] and such that
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GM is the projection of GP ×GQ∗ to M.

If P := P(ℵ1, λ)V , then P is κ-c.c. in V [GR] (Lemma 7.3 (6)), hence j � P
is a complete embedding of P into j(P). Moreover, P is isomorphic via j � P to
P(ℵ1, j[λ])N = P(ℵ1, j[λ])V . By forcing with P(ℵ1, j(λ))V � (j(λ)− j[λ]) over V [Hj(R)]
we get a j(P)-generic filter Hj(P) such that j[GP] ⊆ Hj(P). Then j lifts to an elementary
embedding

j : V [GR][GP]→ N [Hj(R)][Hj(P)].

Let Q∗ := Q∗(ℵ1, λ, V, V [GR]). By Remark 7.1 and since j(R) � κ = R, we have

j(R) � κ+ 1 = R ∗ Q̇∗ where Q̇∗ is an R-name for Q∗(ℵ1, j(L)(κ), V, V [GR]). We chose
j so that j(L)(κ) = λ, therefore forcing with j(R) � κ+1 over V is the same as forcing
with R followed by forcing with Q∗ over V [GR]. It follows that, by the closure of N, we
have j[GQ∗ ] ∈ N [Hj(R)]. By Lemma 6.3, Q∗ is ℵ2-directed closed in V [GR], hence j(Q∗)
is ℵ2-directed closed in N [Hj(R)]. Moreover, the filter Hj(R) collapses λ to have size ℵ1,
thus j[GQ∗ ] has size ℵ1 in V [Hj(R)]. Therefore, we can find t ≤ j(q), for all q ∈ GQ∗ . We
force over V [Gj(R)] with j(Q∗) below t to get a j(Q∗)-generic filter Hj(Q∗) containing
j[GQ∗ ]. The filter Hj(P)×Hj(Q∗) generates a filter Hj(M) generic for j(M) over N [Hj(R)].

It remains to prove that j[GM] ⊆ Hj(M) : let (p, q) be a condition of GM, there
are p̄ ∈ GP and (0, q̄) ∈ GQ∗ such that (p̄, q̄) ≤ (p, q). We have j(p̄) ∈ Hj(P) and
(0, j(q̄)) ∈ Hj(Q∗), hence (j(p̄), 0) and (0, j(q̄)) are both in Hj(M). The condition j(p̄, q̄)
is the greatest lower bound1 of (j(p̄), 0) and (0, j(q̄)); it follows that j(p̄, q̄) ∈ Hj(M).
We also have j(p̄, q̄) ≤ j(p, q), hence j(p, q) ∈ Hj(M) as required. Therefore, j lifts to
an elementary embedding

j : V [GR][GM]→ N [Hj(R)][Hj(M)].

�

Rename j∗ by j. We define N1 := N [G] and N2 := N [Hj(R)][Hj(M)]. In N2, j(F ) is
a (j(κ), j(µ))-tree and j(D) is a j(F )-level sequence. By the closure of N, the tree F
and the F -level sequence D are in N1.

Claim 8.5. In N2, there is an ineffable branch b for D.

Proof. Let a := j[µ], clearly a ∈ [j(µ)]<j(κ). Consider f := j(D)(a), let b : µ → 2 be
the function defined by b(α) := f(j(α)), we show that b is an ineffable branch for D.
Assume for a contradiction that for some club C ⊆ [µ]<|κ|∩N1 we have b � X 6= D(X),
for all X ∈ C. Then by elementarity,

j(b) � X 6= j(D)(X),

1j(p̄, q̄) = (j(p̄), j(q̄)) is clearly a lower bound. Suppose that (p1, q1) is also a lower bound, then
by definition p1 ≤ j(p̄) and p1 � α 
 q1(α) ≤ j(q̄)(α), for every α. That is (p1, q1) ≤ (j(p̄), j(q̄)).
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for all X ∈ j(C). But a ∈ j(C) and j(b) � a = f = j(D)(a), so we have a contradiction.
�

We conclude the proof by showing that b is already in N1.

Claim 8.6. b ∈ N1.

Proof. Assume towards a contradiction that b /∈ N1. Step by step, we are going to
prove that b /∈ N2, that will lead us to a contradiction. By Lemma 7.3 (5) and
Lemma 6.6 (2), the poset S := S(ℵ1, λ,N,N [GR], GM) is σ-closed in N1. In N1, we
have κ = ℵ2 = 2ℵ0 , hence F is a (ℵ2, µ)-tree and we can apply the First Preservation
Theorem to S, thus

b /∈ N [GR][GP ×GQ∗ ]

(we defined GP × GQ∗ in Claim 8.4 as an S-generic filter). S is < ℵ2-distributive in
N1 (this is a standard application of Easton’s Lemma, see [2, Lemma 3.20] for more
details) so F is still an (ℵ2, µ)-tree after forcing with S. Now, the forcing that takes
us from P to j(P) is

Ptail := P(ℵ1, j(λ))N � (j(λ)− λ)).

The pair (N,N [GR][GP × GQ∗ ]) has the κ-covering property, because S is < ℵ2-
distributive and R is κ-c.c. Since κ is inaccessible in N, we can apply the Second
Preservation Theorem to Ptail, so

b /∈ N [GR][GQ∗ ][Hj(P)].

We already observed in the proof of the first claim that forcing with j(R) � κ + 1
over V is the same as forcing with R followed by forcing with Q∗ over V [GR]. So, if
Hκ+1 is the projection of Hj(R) to j(R) � κ + 1, then N [GR][GQ∗ ] = N [Hκ+1]. This
means that we proved

b /∈ N [Hκ+1][Hj(P)].

Consider Rtail := j(R)/Hκ+1, by Lemma 7.4, Rtail is a projection of P0×U0, where
P0 := P(ℵ0, j(κ))N � (j(κ)− κ) and U0 := Uκ+1(ℵ0, j(κ), j(L), Hκ+1), moreover, U0 is
σ-closed in N [Hκ+1]. Forcing with j(P) does not add countable sequences to N [Hκ+1]
(the proof is analogous to the proof of Lemma 7.3 (5)) hence U0 is still σ-closed in
N [Hκ+1][Hj(P)].

We want to apply the First Preservation Theorem to U0, so consider the following
facts. In N [Hκ+1][Hj(P)], we have 2ℵ0 = j(κ) > κ = ℵ2 but now F is not exactly an
(ℵ2, µ)-tree because N [Hκ+1][Hj(P)] was obtained by forcing with Ptail over N [GR][GP×
GQ∗ ] and Ptail is not < ℵ2-distributive. Neverthless, Ptail is ℵ2-c.c. in N [GR][GP×GQ∗ ]
(the proof is analogous to the proof of Lemma 7.3 (6), see [2] for more details), so F
“covers” an (ℵ2, µ)-tree, namely there is in N [Hκ+1][Hj(P)] a (ℵ2, µ)-tree F ∗ such that
for cofinally many X ∈ [µ]<ℵ2 , LevX(F ) ⊆ LevX(F ∗). Let N [HU0 ][Hj(P)] be the generic
extension obtained by forcing with U0 over N [Hκ+1][Hj(P)]. If b ∈ N [HU0 ][Hj(P)], then
b provides a cofinal branch for F ∗ in that model, hence by the First Preservation
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Theorem, b ∈ N [Hκ+1][Hj(P)]. But we already proved that b does not belong to that
model, so we must have

b /∈ N [HU0 ][Hj(P)].

The filter HU0 collapses κ (hence ℵ2) to have size ℵ1, so now F ∗ is an (ℵ1, µ)-tree in
W := N [HU0 ][Hj(P)]. The model N [Hj(R)][Hj(P)] is the result of forcing with P0 over
W. Observe that P0 and (W,W ) satisfy all the hypothesis of the Second Preservation
Theorem: indeed, P0 ⊆ Add(ℵ0, j(κ))W and in W, we have γ<ω < ω1 for every cardinal
γ < ω1. Therefore,

b /∈ N [Hj(R)][Hj(P)].

P0 is c.c.c. in W (the proof is analogous to the proof of Lemma 7.3 (6)), so F ∗

covers an (ℵ1, µ)-tree in N [Hj(R)][Hj(P)], we rename it F ∗. N2 is the result of forcing
with

Q(ℵ1, j(λ), N,N [Hj(R)], Hj(P)) = M(ℵ1, j(λ), N,N [Hj(R)])/Hj(P)

over N [Hj(R)][Hj(P)] and by Lemma 6.6 (1), that poset is σ-closed in N [Hj(R)][Hj(P)].
The function b, which is in N2, provides a cofinal branch for F ∗ in N2. It follows, from
the First Preservation Theorem, that b /∈ N2, a contradiction. �

This completes the proof of (3).

9. Conclusion

Cummings and Foreman [2] defined a model of the tree property for every ℵn
(n ≥ 2), starting with an infinite sequence of supercompact cardinals 〈κn〉n<ω. Their
forcing Rω is basically an iteration with length ω of our main forcing. We conjecture
that Rω produces a model in which every ℵn (n ≥ 2) satisfies even the super tree
property. If we want to prove that stronger result, we have to deal with the following
fact: every κn-tree in the Cummings-Foreman model appears in some intermediate
stage, that is after forcing with Rω � m for some m; in the case of a (κn, µ)-tree, that
is not necessarily true.
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