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Chapitre 1

Introduction :
La modélisation des
systèmes concurrents

Cette dissertation présente les principaux travaux scientifiques que j’ai ef-
fectués pendant les neuf dernières années, après l’obtention de mon doctorat.
Ces travaux portent sur différents aspects de la sémantique de la concurrence.
Quatre directions sont identifiées : la sémantique causale de la mobilité, les
systèmes de types pour la mobilité, la spécification et vérification des systèmes
concurrents et les protocoles de communication.

Pour chacune de ces directions, plusieurs articles ont été publiés dans des
conférences et journaux internationaux. Une réorganisation de ces articles est
présentée en annexe. Ces annexes, en langue anglaise, contiennent tous les détails
techniques, mais également des explications sur le contexte et les motivations
des recherches.

Ce texte en langue française loin d’être un simple résumé des articles, a
comme but la présentation de mes travaux de façon synthétique, avec le moins
de détails techniques possibles, permettant à un chercheur débutant ou non-
spécialiste d’apprécier la portée de mes contributions. Il devrait également per-
mettre à un lecteur plus expert de s’orienter, d’avoir une vision globale qui
puisse l’aider à se plonger plus aisément dans la lecture des articles.

Avant de décrire les travaux qui constituent l’objet de cette dissertation, je
voudrais décrire brièvement le contexte dans lequel ces travaux se situent.

1.1 Le calcul concurrent

On parle de calcul concurrent quand plusieurs unités de calcul exécutent
certaines opérations de façon indépendante, tout en partageant des informations.
Ces unités de calcul peuvent être physiquement séparées (quand il s’agit de
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2 CHAPITRE 1. INTRODUCTION

différents processeurs dans une machine, ou même de différentes machines) ou
peuvent être juste virtuellement séparées, comme des threads ou des processus
étant exécutés sur un seul processeur. Beaucoup de calculs sont aujourd’hui
exécutés de façon concurrente et il est très important de bien comprendre leur
fonctionnement.

Par rapport à d’autres sciences, comme la physique et la chimie, on pourrait
penser l’étude de l’informatique est plus aisée, car elle est une création originale
de l’être humain. Pourtant ce n’est pas plus simple de comprendre un gros pro-
gramme, avec des millions de lignes de code et des centaines d’auteurs différents,
que de comprendre l’écoulement d’un fluide, ou la cristallisation d’un hydrocar-
bure. Pour cette raison, l’utilisation des mêmes méthodes est nécessaire : on crée
des modèles mathématiques de la réalité, en simplifiant les détails qui semblent
être d’importance secondaire.

On distingue souvent les entités mathématiques utilisées dans l’étude du cal-
cul (concurrent ou pas) en syntaxiques et sémantiques. Il s’agit d’une distinction
où la ligne de démarcation n’est pas clairement dessinée, mais intuitivement les
éléments syntaxiques sont ceux qui nous permettent de décrire le calcul : lan-
gages de programmation, langages de processus, types, formules logiques. Les
objets syntaxiques sont généralement finis et ils peuvent être visualisés sur pa-
pier ou sur écran. Les éléments sémantiques sont les objets mathématiques qui
nous permettent de représenter le comportement d’un calcul. Ils peuvent être
infinis et sont des structures mathématiques plus abstraites, comme des graphes,
des espaces topologiques, des jeux.

Dans leur travail quotidien, les programmeurs manipulent des objets syntax-
iques. Ces éléments syntaxiques sont utilisés pour générer des instructions qui
permettent aux processeurs d’exécuter les calculs : par exemple, un programme
C est compilé vers des instructions binaires. Les objets sémantiques sont une
façon de représenter le calcul lui même, en faisant abstraction de plusieurs petits
détails : par exemple, dans un graphe qui représente une machine, les nœuds
correspondent aux états de la machine et les arcs correspondent aux possibles
changements entre états.

Les modèles mathématiques permettent de prouver formellement des pro-
priétés d’un système qui exécute un calcul. Ils permettent également de vérifier
de façon automatique si un système satisfait certaines propriétés. Par exemple,
on voudrait pouvoir prouver ou vérifier qu’un programme produit les résultats
désirés, ou que la communication entre un client et un serveur se déroule tou-
jours correctement, ou encore que des informations secrètes ne sont pas révélées
pendant l’exécution d’un calcul.

Mais la compréhension obtenue à l’aide de modèles mathématiques per-
met aussi d’avoir des intuitions, de concevoir de nouvelles façons de réaliser
des calculs concurrents. Il arrive parfois qu’un nouveau langage de programma-
tion issu des intuitions théoriques soit ensuite utilisé par un grand nombre de
programmeurs. On veut citer ici, en tant qu’exemple notable, le langage ES-
TEREL [BG92], qui a été conçu dans le domaine académique par un chercheur
expert en sémantique formelle (Gérard Berry de l’INRIA) et qui est devenu
un outils important dans la création de systèmes critiques, dans des domaine
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comme l’aérospatiale ou le nucléaire.

1.2 Le non-déterminisme et la probabilité

Plusieurs notions mathématiques sont utilisées dans les modèles de la concur-
rence. Le premier concept qu’on veut mentionner ici est celui de non-détermini-
sme. Un modèle mathématique possède du non-déterminisme s’il représente la
possibilité de faire un choix pendant un calcul, sans donner d’indications sur la
manière dont ce choix est résolu. On utilise ce concept pour plusieurs raisons.

D’abord, dans les modèles de concurrence, on modélise la planification (schedul-
ing de différentes unités de calcul à l’aide du non-déterminisme : à chaque mo-
ment du calcul, il y a un choix parmi toutes les unités qui peuvent exécuter
une étape de calcul. Ce choix peut représenter une vraie alternative, quand les
unités sont des threads exécutés par un seul processeur, ou bien juste une façon
de modéliser une séparation spatio-temporelle entre unités. Dans le deuxième
cas, on dit qu’on utilise le non-déterminisme pour représenter l’entrelacement
des exécutions des unités concurrentes.

Le non-déterminisme est également utilisé pour obtenir des modèles com-
positionnels. On dit qu’un modèle est compositionnel s’il permet de décrire le
comportement d’un système à partir des comportements des ses parties. Un
modèle compositionnel permet de raisonner de façon modulaire : les propriétés
satisfaites par les parties d’un système nous permettent de dériver les propriétés
du système entier. Pour pouvoir être compositionnel, le modèle d’un système
S doit pouvoir représenter toutes les interactions possibles entre S, considéré
comme partie d’un système plus grand T , et les autres parties de T . En par-
ticulier, on doit pouvoir représenter les choix qui seront résolus par ces autres
parties et pour représenter ces choix, le système doit être non-déterministe. Dans
ce cas le non-déterminisme représente une partie encore inconnue du système.

Finalement, on veut pouvoir utiliser le même formalisme pour représenter à
la fois un système et sa spécification. La spécification doit représenter le com-
portement désiré d’un système. Elle a donc le droit d’être moins détaillée que le
système, car elle peut s’abstraire de certains détails qui sont pourtant nécessaires
pour une implémentation complète. En particulier, dans une spécification, la
façon de résoudre certains choix n’a aucune importance et pour cette raison ces
choix peuvent rester non-déterministes.

Un modèle de concurrence qui utilise le non-déterminisme est celui des
systèmes de transitions étiquetées. Ils l’utilisent à la fois pour représenter l’en-
trelacement, pour être compositionnel et pour pouvoir décrire des spécifications,
Un système de transitions étiquetées est essentiellement un graphe dont les
noeuds représentent les états du système, tandis que les arcs représentent les
transitions et sont dotés d’étiquettes qui dénotent la nature de la transition. À
partir de chaque état, plusieurs transitions sont possibles, mais le modèle ne
spécifie pas quel choix sera effectivement pris pendant une exécution. Dans un
système de transitions étiquetées, les étiquettes représentent aussi l’interaction
possible avec les composantes inconnues et elles sont souvent utilisées pour in-
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diquer la manière dont les différentes parties d’un système se composent entre
elles.

Si le non-déterminisme est utilisé pour des raisons différentes, il peut aussi
avoir plusieurs formes. On parle parfois de non-déterminisme angélique si c’est
le système qui contrôle la façon dont les choix sont résolus. On parle de non-
déterminisme démoniaque si les choix ne sont pas sous le contrôle du système,
et s’il sont en plus contrôlés par une entité ennemie cherchant à empêcher le
système de satisfaire sa spécification. Entre ces deux extrêmes il y plusieurs
nuances. En particulier, on décrira (dans le Chapitre 4) une notion de non-
déterminisme équitable.

Une façon de résoudre les choix qui se présentent pendant une exécution est
de choisir “au hasard” c’est-à-dire selon une distribution de probabilité. Il y a
plusieurs motivations pour représenter des choix probabilistes dans un modèle de
calcul. Une motivation est de pouvoir représenter l’interaction du système avec
un environnement qui a un comportement aléatoire. On pourrait, par exemple,
vouloir représenter dans le modèle le fait que, avec une certaine probabilité, la
communication entre serveur et client échoue, ou bien que, avec une certaine
probabilité, elle contient des erreurs.

Mais on veut également pouvoir activement faire des choix de façon proba-
biliste : plusieurs algorithmes utilisent le choix probabiliste pour gagner en effi-
cacité. On utilise également le choix probabiliste dans les protocoles de sécurité :
très souvent, un protocole de sécurité complètement déterministe se prête plus
facilement à des attaques.

Une partie de mon travail de thèse de doctorat consistait en l’étude d’une
façon de combiner dans un même modèle le choix non-déterministe et le choix
probabiliste. Le choix probabiliste est encore sujet d’étude dans cette disserta-
tion, dans les Chapitres 2 et 4.

1.3 Modéliser la causalité

La modélisation de la concurrence à l’aide de l’entrelacement non-déterministe
a d’un coté l’avantage d’être conceptuellement simple et de permettre de prouver
plus facilement certaines propriétés de comportement. D’un autre coté, l’utili-
sation de l’entrelacement engendre un grand nombre d’exécutions possibles et
ne peut pas représenter directement des notions comme la causalité entre les
événements qui constituent l’exécution. Dans plusieurs applications, il est utile
de savoir tracer la cause d’un événement intéressant. Par exemple, dans un
protocole de sécurité, on voudrait savoir quelle action a révélé une information
secrète.

Une question strictement liée à celle de la causalité est celle de l’indépendance.
Si deux étapes d’un calcul sont indépendantes, il est en principe possible de les
exécuter en parallèle, sur deux processeurs différents, en gagnant en efficacité.

Les modèles mathématiques qui représentent directement les liens de causalité
et l’indépendance entre les événements sont appelés modèles causaux. (Le terme
de concurrence vraie est également utilisé. Nous n’aimons pas ce terme qui
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suggère que les autres sont des modèles de concurrence fausse.) Un des modèles
causaux les plus simples est le modèle des structures d’événements, en par-
ticulier les structures d’événements premières [NPW81], où la causalité n’est
qu’une relation d’ordre partiel entre événements.

Les structures d’événements premières ont été à l’origine pensées comme
un maillon entre les réseaux de Petri, un modèle des systèmes concurrents
des années 60, et la théorie des domaines, développée dans les années 70 pour
modéliser les langages de programmation. Comme les réseaux de Petri, elles sont
un modèle causal, mais elle proposent aussi la simplicité de définition et le haut
niveau d’abstraction de la théorie des domaines. Une structure d’événements
première est constituée d’un ensemble d’événements, une relation de causalité
entre eux, une relation de conflit et une fonction d’étiquetage qui associe à
chaque événement une étiquette qui révèle la nature de l’événement. Les struc-
tures d’événements forment également une catégorie (dans le sens de la théorie
des catégories [Mac71]).

Un grand nombre de variantes du modèle présenté dans [NPW81] ont été
étudiées et nous ne pouvons pas toutes les mentionner. En général, ces variantes
permettent d’exprimer plus facilement certains comportements, mais au prix de
définitions plus complexes. Nous voulons tout de même évoquer les structures
d’événement stables [Win87] qui sont très proches des structures premières.

Le travail présenté dans le Chapitre 2 et dans les Annexes A and B porte
sur un modèle de structures d’événements premières pour un calcul de processus
concurrents.

1.4 Le rôle des types

Il n’existe aucune méthode pour décider si un programme donné a une cer-
taine propriété de comportement. Le problème dans sa généralité est indécidable.
Pour contourner cet obstacle, une possibilité est de restreindre la classe des
programmes, de façon à ce que certaines propriétés de comportement soient
garanties “par construction”. Une des techniques qui permettent cela est l’util-
isation des types. Les types “imposent des contraintes qui aident à garantir la
correction” [CW85].

Dans les langages de programmation, on construit des termes complexes en
composant des termes plus simples. Pour restreindre la classe des programmes
possibles, on peut restreindre la composition des termes. Pour cela, on associe
à chaque terme un type. Si un terme est associé à un certain type, il ne pourra
pas être composé avec de termes incompatibles avec ce type. Cette limitation
peut donner des garanties en ce qui concerne le comportement.

Différents systèmes de types sont étudiés pour garantir des propriétés com-
portementales différentes. Le rôle premier du typage est d’éviter certaines er-
reurs pendant l’exécution. Dans le cas des langages de processus concurrents par
exemple, on peut garantir qu’un processus qui veut communiquer une paire de
nombres ne puisse pas se synchroniser avec un processus qui s’attend à n’en re-
cevoir qu’un seul [Mil99]. Mais les types sont aussi utilisés pour garantir des pro-
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priétés de sécurité [HY02], ou de séquentialité [BHY01], ou encore pour garantir
qu’un calcul se termine. Une utilisation plus technique des types concerne les
encodages : la traduction d’un langage vers un autre langage. Les types peu-
vent garantir la correction d’un encodage, par rapport à différents critères de
correction [SW02].

Le travail présenté dans le Chapitre 3 et dans l’Annexe C porte sur un
système de types pour un calcul de processus concurrents, qui garantit l’absence
d’erreurs de communication et qui permet un encodage correct d’un langage
fonctionnel. Les types jouent aussi un rôle dans les travaux des Chapitres 2 et
5.

1.5 Spécification et vérification

Lorsqu’on a un modèle mathématique d’un système de calcul et une spécifi-
cation du comportement désiré, on souhaite savoir si le système en question
satisfait la spécification. Si le système et la spécification sont simples, il est pos-
sible de trouver une preuve mathématique qui peut être exécutée manuellement.
Mais pour des systèmes et des spécifications plus complexes, le recours à des
outils automatiques devient indispensable.

On peut utiliser des programmes qui sont capable soit de nous guider dans
la recherche de la preuve, soit de rechercher la preuve à notre place. On a donc
deux types d’outils : les assistants de preuve, comme Coq [HKP04], et les outils
de vérification automatique [CES09] qui vérifient l’ensemble des exécutions pos-
sibles afin de déceler celles qui ne satisfont pas la spécification. Parfois, système
et spécification peuvent être représentés dans le même formalisme : dans ce cas,
il faut vérifier que le système raffine la spécification, c’est-à-dire qu’il en est
une implémentation. Parfois, la spécification est exprimée dans une logique, par
exemple une logique temporelle [MP92].

Une des logiques temporelles utilisées est la logique temporelle linéaire (LTL).
Une formule de cette logique exprime une propriété d’une seule exécution du
système. On dit que le système satisfait la formule si toutes les exécutions
possibles du système satisfont la formule. Les études sur la notion de non-
déterminisme équitable du Chapitre 4 et dans l’Annexe D sont basées sur une
notion de spécification linéaire et sur différentes techniques de vérification au-
tomatique.

1.6 Aperçu de mes contributions

Ce document présente quatre contributions que j’ai apporté à la sémantique
de la concurrence. Dans le Chapitre 2, je présente mes recherches sur un modèle
causal pour un langage de processus concurrents. Les publications concernées
sont [VY06, VY07, VY10, CVY07, CVY12]. Dans le Chapitre 3, je présente
mes recherches sur un système de types pour un langage de processus concur-
rents [CDV05, CDV08, CDV06]. Dans le Chapitre 4, je présente mes recherches
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sur la formalisation de la notion d’équité pour la vérification [VVK05, VV06,
VV12]. Finalement, dans le Chapitre 5, je présente mes recherches sur la modé-
lisation d’un protocole de communication [FV08, FV09]. Pour chaque chapitre,
les annexes contiennent une version révisée et réorganisée des articles concernés.

1.7 Reconnaissance de collaboration

Les collaborations scientifiques que j’ai eues pendant mes recherches sont
facilement identifiables en lisant les noms des coauteurs des mes articles. Je
tiens tout de même à les mentionner explicitement.

J’ai connu Hagen Völzer pendant mes travaux de thèse car nous avions
travaillé indépendamment sur un sujet similaire. Notre première collaboration
a été un article où l’on joignait nos efforts. Par la suite Hagen a voulu partager
avec moi ses idées sur l’équité — idées dont il avait en partie discuté avec
Ekkart Kindler. Bien que nos discussions aient été continues, je considère que
l’impulsion première de nos articles sur l’équité vient de lui. C’est lui qui avait
la vision initiale que nous avons par la suite formalisée et précisée ensemble.
Hagen a eu la chance de trouver en Matthias Schmalz un étudiant très fort et
très motivé, qui a travaillé sur le coté algorithmique de l’équité. De mon coté,
j’ai co-encadré avec Eugène Asarin le Master de Rapahel Chane-Yack-Fa en
étendant la définition d’équité à un contexte plus général.

Beppe Castagna m’a offert un poste de post-doc à l’ENS de Paris pour
travailler sur le projet européen “MyThs”, sur le typage pour la sécurité. En
même temps, Beppe dirigeait la thèse de Alain Frisch qui a donné lieu à la notion
de sous-typage sémantique. Une visite de Rocco de Nicola à Paris a été la source
des discussions qui nous ont menés à l’application du sous-typage sémantique au
π-calcul. Une visite de Mariangiola Dezani est également à l’origine de l’article
sur le codage de CDuce.

Deux ans plus tard, Nobuko Yoshida a bien voulu m’embaucher comme post-
doc à l’Imperial College de Londres. Le sujet sur lequel nous avons collaboré
était la sémantique à structure d’événements du π-calcul. Suite à notre travail
sur le cas typé, nous avons décidé de discuter aussi avec Silvia Crafa : une
collaboration qui a continué pendant des années.

Finalement, sur demande de Pierre-Louis Curien, j’ai co-dirigé les travaux
de thèse de Luca Fossati, en me focalisant sur un sujet sur lequel il avait déjà
commencé à travailler depuis quelques années. Cela a donné lieu à nos travaux
sur les protocoles Handshake.



Chapitre 2

La sémantique à structures
d’événements pour le
π-calcul

2.1 La sémantique à structures d’événements de
CCS

Les structures d’événements premières ont été utilisées par Winskel [Win82]
pour donner une sémantique à CCS, un langage de processus concurrents qui
se synchronisent à l’aide de canaux de communication. Syntaxiquement, un
processus CCS de la forme a.P est prêt à se synchroniser sur le lien (ou canal)
a et ensuite continuer comme P . Les synchronisations dans ce langage sont
binaires, c’est-à-dire que chaque synchronisation a lieu entre deux processus.
(Dans d’autres langages il est possible une synchronisation entre plus que deux
processus.) Chaque canal a a donc un seul canal “dual” ā et le processus a.P
se synchronisera avec un processus de la forme ā.Q. Pour que cela soit possible,
les deux processus doivent être mis en parallèle. Tout cela est représenté par la
règle de réduction :

a.P | ā.Q→ P | Q

Cette réduction représente le fait que la synchronisation entre les processus
entrâıne une modification de l’état du système. La syntaxe des processus est
certes plus complexe que cela, mais la composition parallèle et la synchronisation
sont le coeur de la sémantique de CCS.

La sémantique de réduction est suffisante pour décrire l’évolution d’un sys-
tème de processus de CCS, mais elle n’est pas compositionnelle : on ne réussit pas
à décrire le comportement d’un processus en fonction du comportement des sous-
processus. En particulier, pris individuellement les processus a.P et ā.Q n’ont

8
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aucun comportement. Dans ce cas, la réduction est engendrée “magiquement”
par la rencontre des deux.

Pour pouvoir obtenir une sémantique compositionnelle, il faut pouvoir décrire
le comportement “incomplet” de chaque processus. Il faut une notation qui
puisse permettre de dire qu’un processus est prêt à se synchroniser. C’est ce
que permettent les systèmes de transitions étiquetées. Les étiquettes indiquent
quelles sont les synchronisations auxquelles un processus est prêt à participer.
Dans CCS, ces étiquettes sont précisément les canaux. On a donc des transitions
étiquetées de la forme

a.P
a
−−→ P

et pour la synchronisation on a la règle

(Comm)

P
a
−−→ P ′ Q

ā
−−→ Q′

P | Q
τ
−−→ P ′ | Q′

qui définit la transition étiquetée d’une composition parallèle en fonction des
transitions des deux sous-processus. Pour que toute transition soit étiquetée,
on utilise l’étiquette τ pour représenter les réductions. On peut aussi voir la
synchronisation comme une opération algébrique partielle entre étiquettes. La
“multiplication” de a et de ā donne τ , tandis que la “multiplication” de a et de
b est indéfinie.

La sémantique à transitions étiquetées est aussi à la base de la théorie de la
bisimulation [Mil89] et elle permet d’étudier les propriétés des processus con-
currents, notamment à l’aide d’outils automatisés.

Comme indiqué dans l’introduction, la sémantique à systèmes de transitions
étiquetées ne peut pas représenter de façon explicite les relations de concurrence
et causalité entre transitions. En particulier, la concurrence est représentée par
le choix non-déterministe entre les différentes actions concurrentes, ce qui est
connu sous le nom d’entrelacement. La représentation explicite de la concurrence
(ainsi que du conflit et de la causalité) devient possible dans les modèles causaux,
comme les structures d’événements.

Dans la sémantique proposée par Winskel, à chaque terme du langage corre-
spond une structure d’événements et cette correspondance est obtenue de façon
compositionnelle : la structure d’événements d’un terme est construite à partir
des structures d’événements de sous-termes. Par exemple, la sémantique d’un
processus de la forme a.P a un événement étiqueté par a comme minimum de
l’ordre partiel, suivi par la structure d’événements du processus P . Intuitive-
ment, l’événement étiqueté par a est la cause des tous les événements de P .

Les deux processus

a.a.stop a.stop | a.stop

ont le même système de transitions étiquetées, mais deux structures d’événements
différentes. La structure d’événements du premier processus a un événement
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minimal étiqueté par a suivi dans l’ordre partiel par un autre événement étiqueté
par a. La structure d’événements du deuxième processus a deux événements
étiquetés par a qui ne sont pas dans la relation d’ordre : ils sont concurrents.

Les constructions nécessaires pour obtenir une sémantique compositionnelle
ont toutes une explication canonique et élégante dans la théorie des catégories,.
En particulier, la sémantique de la composition parallèle est obtenue à partir du
produit cartésien dans la catégorie des structures d’événements. Les événements
du produit cartésien des deux structures d’événements représentent toutes les
synchronisations imaginables entre paires d’événements, y compris la possibilité
de ne pas se synchroniser, à condition de respecter causalité et conflit. Ce produit
contient beaucoup trop de synchronisations. Encore faut-il enlever les synchroni-
sations qui ne respectent pas la discipline du calcul de processus. Par exemple, un
événement étiqueté a ne pourra pas se synchroniser avec un événement étiqueté
b, mais il pourra se synchroniser avec tout événement étiqueté ā. Toute synchro-
nisation interdite est donc effacée de la structure, tandis que les synchronisations
restantes sont réétiquetées en τ . Pour résumer, les trois ingrédients utilisés pour
la sémantique de la composition parallèle sont le produit cartésien, l’effacement
(appelé aussi restriction) et le réétiquetage.

Cette description informelle montre l’importance des étiquettes dans la défini-
tion d’une sémantique compositionnelle, dans les systèmes de transitions tout
comme dans les structures d’événements. Les étiquettes sont également néces-
saires pour établir une correspondance entre les deux sémantiques : on peut
facilement définir un système de transitions étiquetées à partir d’une structure
d’événements étiquetés et montrer que celui-ci est équivalent (le terme exacte
est bisimilaire) au système de transition “standard”.

2.2 Le passage de CCS au π-calcul

L’élégance de la sémantique de Winskel est en partie due à la simplicité du
langage considéré. En particulier, les étiquettes utilisées en CCS sont relative-
ment simples. Cette simplicité est possible au prix d’une expressivité réduite.
Comme déjà observé par Milner [Mil99], la topologie des liens de communica-
tion en CCS est fixée au départ. Il est impossible pour un processus de créer
des liens de façon dynamique.

Pour dépasser ces limites, Engberg et Nielsen [EN00] ont proposé une ex-
tension de CCS où les processus peuvent s’échanger les liens de communication,
en modifiant dynamiquement la topologie. Ce calcul a évolué jusqu’à devenir ce
qu’on appelle actuellement le π-calcul [MPW92]. Dans le π-calcul, comme dans
CCS, les processus se synchronisent à l’aide de canaux, mais en plus, pendant la
synchronisation, les processus peuvent envoyer ou recevoir des noms de canaux.
La sémantique par réduction du π calcul est en conséquence une extension sim-
ple de la sémantique par réduction de CCS. Mais comme dans le cas de CCS,
le point faible de cette sémantique est qu’elle n’est pas compositionnelle.

La vraie difficulté dans la conception du π calcul a en effet été de donner
une sémantique compositionnelle, et donc étiquetée. La solution qui fût trouvé
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finalement par Nielsen and Engberg, bien que parfaitement adaptée, n’est pas
simple à comprendre à un premier regard. D’abord, il y a une distinction en-
tre deux types de sémantique : précoce (early) et tardive (late), qui génèrent
deux notions d’équivalence différentes. Ensuite, on a une distinction entre en-
voi ouvert et envoi lié d’un nom de canal. Informellement, un envoi est ouvert
si le nom envoyé est déjà connu par le reste du système, tandis que il est lié
s’il s’agit d’un nouveau nom, frâıchement créé par le processus. La création
d’un nouveau nom est syntaxiquement représentée par l’opérateur de restric-
tion. L’envoi lié d’un nouveau nom produit le phénomène appelé extrusion de
portée : la portée de l’opérateur de restriction est étendue après une commu-
nication du nouveau nom. Les étiquettes sont aussi sujettes à l’α-renommage,
pour garantir qu’un canal frais ne puisse pas être identifié à aucun autre canal.
Finalement, la sémantique fait intervenir une notion de substitution, qui est la
façon de représenter syntaxiquement la possibilité, pour un processus, d’utiliser
un nom qu’il reçoit.

La sémantique étiquetée du π-calcul est satisfaisante : elle est composition-
nelle et elle induit une bonne notion d’équivalence. Pourtant, la signification
des étiquettes n’est plus très intuitive et simple. Les complications syntaxiques
produites par l’extrusion de portée, l’α-renommage et la substitution ont tou-
jours rendu difficile l’extension de la sémantique de Winskel au π-calcul. Notre
travail est allé dans ce sens et nous allons le présenter par étapes, dans l’ordre
dans lequel il a été développé.

2.3 Le π-calcul typé

Le premier pas de notre travail a été l’étude d’un modèle pour le π-calcul
linéairement typé [VY06, VY10].

Plusieurs systèmes de types ont été proposé pour restreindre et contrôler le
comportement des processus du π-calcul. Le typage linéaire ou affine [YHB02],
qui contraint l’utilisation des canaux de communication, garantit que les proces-
sus sont déterministes, c’est-à-dire qu’aucun conflit n’est crée par les synchro-
nisations. Le fragment du π-calcul ainsi typé reste assez expressif pour pouvoir
simuler le comportement des langages de programmation fonctionnels (comme
PCF [Plo77]).

L’idée du système de types est que chaque canal peut être utilisé soit de façon
linéaire, soit de façon répliquée. Un canal linéaire pourra être utilisé exactement
une fois pour l’envoi et une fois pour la réception. Les règles de typage garan-
tissent qu’il ne puisse pas y avoir de conflit entre deux différents envois ou deux
différentes réceptions sur un même canal. Un canal répliqué peut être utilisé
zéro, une ou plusieurs fois en envoi, tandis qu’en réception il doit apparaitre
une seule fois en dessous de l’opérateur de réplication. Cet opérateur modélise
un serveur qui fournit toujours le même service à un nombre quelconque de
requêtes.

De plus, dans le cas typé on peut considérer juste un fragment du π-calcul,
sans qu’il y ait perte d’expressivité. Le fragment considéré s’appelle le π-calcul



12 CHAPITRE 2. STRUCTURES D’ÉVÉNEMENTS

interne. Dans le π-calcul interne, les processus peuvent seulement envoyer comme
messages des canaux qu’ils ont crée et cela une seule fois. Il n’y a donc pas d’en-
voi ouvert.

Cette restriction simplifie largement la sémantique étiquetée : il s’agit d’une
sémantique beaucoup plus proche de celle de CCS. De plus, il n’est pas nécessaire
de créer dynamiquement des liens à l’exécution : le système de types nous dit,
d’une certaine façon, avec qui on communiquera et tous les canaux qui seront
utilisés (peut-être un nombre infini) peuvent être créés au début de l’exécution,
au moment de la compilation pour ainsi dire.

Le calcul linéairement typé est déterministe dans le sens où aucun conflit
n’est engendré pendant l’exécution : d’un côté sur les canaux linéaires il n’y a
pas de choix sur la synchronisation à effectuer, de l’autre côté, pour les canaux
répliqués, toute requête est satisfaite de la même façon par le serveur.

Pour formaliser cette intuition, on voulait que dans la structure d’événements
correspondante à un processus typé, la relation de conflit soit vide. Cela n’est
pas automatique, car il faut faire attention à la modélisation des serveurs.
Dans la sémantique entrelaçante, le fait que les serveurs actifs sur un canal
répondent à toutes les requêtes de la même façon amène facilement à un résultat
de déterminisme. Moralement, toutes les requêtes seront finalement satisfaites,
peu importe l’ordre. Dans la sémantique à structures d’événements, des conflits
peuvent quand même apparaitre.

Pour comprendre la nature de ces conflits, imaginons que le serveur soit le
bureau de poste et que les clients soient les personnes qui veulent envoyer des
lettres. 1 Le bureau de poste accepte la lettre de la part du client et il procède
aux opérations nécessaires pour l’envoyer. La spécification est qu’à tout moment
le bureau de poste est prêt à recevoir une lettre et que toutes les lettres auront
le même traitement.

Comment cette spécification est-elle implémentée ? On peut imaginer qu’au
bureau il n’y ait qu’un employé qui reçoit les lettres. Il va traiter toutes les
lettres bien sûr, mais si deux clients veulent envoyer une lettre en même temps,
un conflit aura lieu pour décider qui des deux clients sera servi en premier.
On peut donc imaginer que le bureau soit une série infinie d’employés, chacun
capable d’accepter et envoyer une seule lettre. Cela ne garantit pas l’absence de
conflit, car rien ne garantit que deux employés cherchent à servir le même client 2

ou que deux clients cherchent à déposer leur lettre chez le même employé 3.
Tous ces conflits apparaissent effectivement si on utilise näıvement la séman-

tique de Winskel. Pour résoudre ce problème on utilise à nouveau l’intuition que
toute synchronisation est décidée au moment de la compilation.

L’idée est toujours que le bureau de poste est constitué d’un nombre infini
d’employés, mais cette fois à chaque client est donné un ticket, un numéro, qui
lui signale, avant même qu’il ait envie d’envoyer sa lettre, quel sera l’employé
qui va la recevoir. Au moment de l’envoi, il n’y aura donc aucun conflit.

1. Même si au jour d’aujourd’hui en France les bureaux de poste font tout sauf accepter
des lettres – pour cela il y a des machines.

2. car ils savent qu’il va laisser un bon pourboire.
3. car ils savent qu’il est très efficace.



2.4. LE π-CALCUL PROBABILISTE 13

Cette intuition est réalisée en pratique avec une extension du système de
types linéaires, qui garantit l’unicité de ces “tickets”. Le calcul ainsi obtenu
est réellement très proche de CCS et cela rend plus facile la définition d’une
sémantique en termes de structures d’événements. L’unicité des “tickets” permet
aussi de décider avant l’exécution quels processus vont se synchroniser. Cela
permet de créer tous les noms de canaux pendant l’exécution (techniquement
cela est réalisé à l’aide d’un langage de processus intermédiaire).

Pour garantir que toute structure d’événements d’un processus typé ait
une relation de conflit vide, on a créé un système de types pour structures
d’événements. La propriété d’avoir une relation de conflit vide n’est pas banale
car en général elle n’est pas préservée par composition parallèle : la composition
de structures sans conflit n’est pas sans conflit. Le système de types contraint
la composition de structures, de façon à préserver cette propriété.

Après avoir préparé le terrain de cette façon, la sémantique est définie es-
sentiellement comme dans le cas de Winskel, en prenant en compte les “tickets”
dans la définition de l’algèbre de synchronisation.

La correction de cette sémantique par rapport à la sémantique à transi-
tions est prouvée en utilisant les propriétés des structures typées. Pour pouvoir
réaliser cette preuve, on a dû donner une nouvelle caractérisation du produit
cartésien dans la catégorie des structures d’événement. En particulier, cette nou-
velle définition nous permet d’effectuer des preuves par induction sur la hauteur
(dans le sens de l’ordre causal) des événements.

2.4 Le π-calcul probabiliste

Une application assez simple de l’étude décrite ci-dessus à été l’étude d’une
sémantique pour une variante probabiliste du π-calcul [VY07].

Un petite modification du langage et du système de types permet de garan-
tir une propriété de comportement plus faible que l’absence de conflit. Cette
propriété est connue sous le nom d’absence de confusion. Intuitivement, dans
une structure d’événements sans confusion, tous les choix non-déterministe sont
“localisés”. Les lieux de ces choix sont appelés cellules. Pour résoudre ces choix
localisés de façon probabiliste, on associe à chaque cellule une distribution de
probabilité. Cela nous donne un cas particulier de structure d’événement prob-
abiliste, un modèle que j’ai proposé est étudié dans ma thèse [Var03, VVW06].
Ce que j’avais montré, c’est qu’en associant à chaque cellule une distribution de
probabilité, on obtient une mesure de probabilité sur l’ensemble des exécutions.
Une mesure de probabilité sur les exécution peut être vue comme une seule
exécution probabiliste.

Le système de types qui garantit que la sémantique d’un processus est une
structure sans confusion est utilisé pour définir un calcul où tous les choix prob-
abilistes sont localisés dans les cellules. Chaque processus typé a donc une seule
exécution causale probabiliste. Cela peut être vue comme une extension du
résultat de déterminisme au calcul probabiliste.
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2.5 Le π-calcul interne

Dans le suite de notre travail, on s’est penchés sur l’étude d’une variante non
typé du π-calcul. La variante choisie est celle qu’on appelle le π-calcul interne,
ou πI-calcul. Comme on a précédemment évoqué, la sémantique du π-calcul
interne est simplifiée par rapport au π-calcul non restreint. Envoi et réception
sont complètement duales et symétriques, au point où il n’y a plus beaucoup de
sens à parler d’envoi ou de réception : on dit que pendant une synchronisation,
les deux processus partagent un nom connu seulement par eux. Cette symétrie
entraine une simplification du point de vue de la sémantique. Il existe une seule
étiquette pour l’envoi et aucune distinction n’existe entre sémantique précoce
ou tardive. Finalement, ce n’est pas nécessaire de définir la substitution car tout
le travail de communication est fait par l’α-renommage.

Toutes ces caractéristiques rendent le π-calcul interne assez proche de CCS.
Cependant, ce calcul reste très expressif et, sous certaines conditions, on peut
définir un codage du π-calcul complet dans le π-calcul interne [Bor98], ce qui
n’est définitivement pas le cas pour la variante typée linéairement.

La sémantique à structures d’événements du π-calcul interne est également
très proche de celle de CCS. Tous les opérateurs ont essentiellement la même
sémantique, sauf pour la composition parallèle. On rappelle qu’en CCS, la
sémantique de la composition parallèle est obtenue à partir du produit cartésien,
suivi par un renommage et une restriction. En CCS, le renommage dépend ex-
clusivement des étiquettes, grâce à la notion d’algèbre de synchronisation. In-
tuitivement, pour savoir si deux événements peuvent se synchroniser, il suffit
de regarder leurs étiquettes. Dans le π-calcul interne, deux événements peuvent
se synchroniser aussi parce que leurs étiquettes ont été identifiées par une syn-
chronisation précédente. Par exemple, si un processus P s’est synchronisé avec
Q1 en partageant un nom, il pourra ensuite utiliser ce nom pour continuer à se
synchroniser avec Q1, mais si P avait choisi de se synchroniser plutôt avec Q2,
alors les synchronisations ultérieures avec Q1 seraient devenues impossibles.

Pour représenter ce phénomène dans les structure d’événements, il a fallu
changer la façon de renommer les événements. Pour décider si, dans un produit
cartésien, une synchronisation est légale, il n’est plus suffisant de regarder les
étiquettes des événements et faire appel à l’algèbre de synchronisation, mais
il faut regarder aussi dans l’histoire causale des événements (c’est-à-dire dans
l’ensemble des événements au dessous dans l’ordre causale), pour voir si une
synchronisation précédente l’a rendue possible.

Grâce toujours à notre caractérisation explicite du produit cartésien dans la
catégorie des structures d’événements, de façon très similaire au cas typé, on
prouve un résultat de correspondance entre la sémantique à structures d’événe-
ments et la sémantique à transitions étiquetées.
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2.6 Le π-calcul complet

La dernière étape de notre étude a été de proposer une sémantique à struc-
tures d’événements du π calcul complet. Le π calcul complet diffère du π calcul
interne en deux aspects :

– les processus peuvent communiquer des noms de canal libres. Cela im-
plique qu’une vraie notion de substitution est nécessaire ;

– les processus peuvent “ouvrir” la portée de l’opérateur de restriction.
Pour gérer la substitution, il faut que, dans une composition parallèle, le

réétiquetage des événements soit fait de façon incrémentale, en tenant compte de
l’histoire causale des événements. Mais une précaution ultérieure est nécessaire :
On ne peut pas effacer immédiatement toutes les synchronisations qui ne re-
spectent pas l’algèbre de synchronisation. Une synchronisation qui n’est pas
permise, car les noms des canaux sont différents, pourrait le devenir si une com-
munication identifiait les deux canaux. Ce phénomène est dû à la possibilité
de communiquer des noms de canaux libres et ne se présente pas dans le π-
calcul interne. Ces synchronisations “inachevées”, restent donc dans la structure
d’événements. Elles ne sont pas simplement prises en compte dans la correspon-
dance avec la sémantique a systèmes de transitions, car elles n’existent pas dans
ce contexte.

Cette utilisation de synchronisations temporairement suspendues peut sem-
bler un peu artificiel aux chercheurs familiers avec la théorie de la concurrence.
Pour justifier leur apparition, on s’appuie sur deux arguments. D’abord, on
observe que les structures d’événements sont des objets très statiques : tout
événement même très éloigné dans le futur doit y être représenté au moment où
la structure est créée. Si une synchronisation est rendue possible par une commu-
nication de noms, une trace de cette synchronisation doit être toujours présente
si on veut obtenir une sémantique compositionnelle. Deuxièmement, notre point
de vue est que tout événement étiqueté soit, dans un certain sens, un événement
inachevé. Même les événements avec des étiquettes “classiques” représentent des
synchronisations partielles, en attente de trouver un partenaire. Les seuls “vrais”
événements sont les réductions, c’est-à-dire les transitions étiquetés avec τ . Le
fait que d’autres types d’étiquettes soient nécessaires c’est juste une conséquence
de la nature des structures d’événements.

Le traitement de l’ouverture de portée a été plus difficile. Plusieurs solutions
ont été essayées, qui sont discutées en détails dans l’Annexe B, mais aucune ne
semblait être la bonne. Le problème à résoudre était que dans la sémantique
à entrelacement, l’opération d’extension de portée est toujours “unique”. Un
premier envoi “ouvre” cette portée et amène vers un processus où le nom envoyé
est maintenant “libre” : tout envoi ultérieure est donc libre. En particulier,
cela signifie que deux envois en parallèle d’un même nom frais ne pourraient
pas se faire vraiment en parallèle : le premier ouvrira la portée et le deuxième
sera libre. Presque toutes les sémantiques causales du π-calcul (basées sur des
extensions des systèmes de transitions étiquetées) [BS98, DP99, CS00] ont opté
pour garder cette unicité de l’ouverture de portée. Nous voulions qu’il y ait une
parfaite symétrie et que deux envois en parallèle ne puissent pas engendrer un
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conflit pour décider qui est celui qui ouvre la portée.
La seule solution qu’on a trouvé a été celle de sortir du modèle de structures

d’événements premières : un débordement contrôlé, mais qu’on a jugé nécessaire.
Pourquoi faut-il sortir des structures premières ? Une des caractéristiques des
structures premières est d’être stables. La stabilité implique que si un événement
e peut être causé par e′ ou par e′′ alors ces derniers doivent être en conflit, de
façon qu’au moment où e arrive on sache toujours si c’était à cause de e′ ou
de e′′. Dans le cas du π-calcul, un envoi ou une réception sur un canal lié
y dépendent d’une ouverture de portée. Mais deux ouvertures de portée en
parallèle ne devraient pas être en conflit. Quand deux envois du canal lié y sont
possibles, ce ne devrait pas être important de savoir lequel était la cause de
l’envoi/réception sur y. Cette raison intuitive est confirmée par des exemples
plus techniques qui nous ont convaincu qu’il fallait sortir des structures stables.

Une fois cette démarche acceptée, l’idée est assez simple — on associe à une
structure d’événement un ensemble de noms qui correspondent aux noms liés
d’un processus. Cet ensemble n’a que le rôle d’interdire certaines exécutions
de la structure. En particulier, tout événement utilisant en envoi/réception un
nom lié ne pourra pas arriver si une ouverture de porté n’a pas eu lieu avant.
Avec cette limitation des exécutions, on obtient une correspondance avec la
sémantique étiquetée standard.

2.7 Conclusion et perspectives

Cette ligne de recherche avait plusieurs objectifs. Dans le cas du π calcul
linéairement typé, on voulait montrer comment un résultat de confluence peut
se traduire en absence de conflit dans un modèle causal. Cela est effectivement
le cas, mais il a fallu quelques précautions pour éviter l’apparition de conflits
“cachés”. En généralisant le typage linéaire à un calcul probabiliste, on a montré
comment ce typage assure une forme de “confluence probabiliste”. Bien que ce
résultat soit intuitivement vrai, il est très difficile de le formaliser dans un con-
texte traditionnel [DHW05]. On a également montré que le π-calcul linéairement
typé est très proche de CCS. En particulier, la création des noms de canaux ne
doit par forcément avoir lieu de façon dynamique, pendant l’exécution, mais
peut être faite statiquement, au début de l’exécution.

Ensuite, on a voulu étudier si la sémantique de Winskel pouvait s’étendre
ultérieurement. C’était un défi intellectuel intéressant, en particulier en ce qui
concerne le calcul complet, mais qui pourrait aussi ouvrir de nouvelles perspec-
tives de recherche. En particulier, j’envisage deux directions pour la poursuite
de mon travail. Une première direction consiste à appliquer l’expérience acquise
à la recherche d’une sémantique réversible pour le π calcul. Il est connu [PU07]
que les modèles qui représentent des exécutions concurrentes réversibles sont
liés aux modèles causaux de la concurrence. Il n’est pas forcement possible de
transférer directement la sémantique causale vers une sémantique réversible,
mais certaines techniques probablement seront les mêmes.

La deuxième direction porte sur une meilleure identification du type de
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modèles causaux qu’on a abordé dans la sémantique du π-calcul. On a dit qu’on
s’est eloigné des structures d’événement premières et même de toute structure
stable. Le tout est maintenant de savoir “combien” s’en éloigne-t-on. Peut-on
caractériser de façon plus abstraite les structures qu’on a utilisées dans notre
sémantique ?



Chapitre 3

Le sous-typage sémantique
et la concurrence

3.1 Introduction au sous-typage sémantique

Les systèmes de types contraignent les langages de programmation pour lim-
iter les erreurs et garantir certaines propriétés de comportement. Il y a toujours
une tension entre la force des contraintes imposées par un système de types et
l’expressivité du langage. Plusieurs techniques ont été étudiées qui permettent la
création de systèmes de types plus expressifs et flexibles. Un de ces mécanismes
est la notion de sous-typage, une relation d’ordre partiel entre les types.

Normalement, si un terme syntaxique a un certain type, il ne pourra pas
être utilisé dans un contexte qui attend un terme de type différent. En présence
du sous-typage, on peut utiliser des termes du langage qui ont un certain type s
dans un contexte qui attend un terme de type t, dans le cas où s est un sous-type
de t. Pour paraphraser Cardelli et Wegner [CW85], on peut dire que “FIAT”
est un sous-type de “voiture” et, en conséquence, on peut agir sur une FIAT
avec toutes les opérations qu’on peut utiliser sur les voitures.

Les systèmes de types avec sous-typage sont particulièrement fréquents pour
les langages de programmation orientés objets comme Java ou Scala, mais ils
sont utilisés aussi dans des cadres plus théoriques.

L’interprétation plus intuitive du sous-typage est la suivante : si un type s
est un sous-type de t, alors tout terme qui a type s a aussi type t. Cette intuition
est souvent formalisé par une règle de subsomption

e . s s ≤ t
e . t

Une des questions fondamentales pour la conception d’un système avec sous-
typage est la définition de la relation d’ordre. En général l’intuition qu’on a sur
la signification des types d’un langage peut nous guider à formuler des règles
(inductives ou coinductives) pour définir cette relation.

18
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Par exemple, dans un système de types avec un opérateur d’union (ou dis-
jonction) de types, on pourrait définir la règle suivante :

s ≤ s ∪ t

Les opérateurs syntaxiques utilisés pour construire les types peuvent en
général se classifier en covariant, contravariant ou invariant, selon leur com-
portement par rapport à la relation de sous-typage. Pour un opérateur con-
travariant la règle serait :

s ≤ t
op(t) ≤ op(s)

Dans un système de types avec plusieurs opérateurs, il est parfois délicat de
trouver des règles qui définissent un sous-typage raisonnable. Il est aussi difficile
de dire si certaines équations entre types sont satisfaites. Un choix différent
est d’utiliser l’intuition décrite plus haut comme définition de sous-typage. En
particulier, on se focalise sur les types des termes qu’on appelle valeurs. Les
valeurs ou formes normales, sont les termes qui ne peuvent pas être évalués
ultérieurement. Ce sont les points terminaux d’un calcul. Souvent, c’est ce qu’on
observe d’un calcul : les résultats finaux. C’est pour cela que les valeurs jouent
un rôle important.

On dira donc qu’un type s est sous-type de t si toute valeur de type s est aussi
de type t. Au sens strict, cette définition crée un cercle vicieux : pour définir
le sous-typage, il faut avoir donné des types aux termes. Mais pour donner des
types aux termes, il faut utiliser la règle de subsomption et donc connâıtre la
relation de sous-typage. Ce cercle peut être cassé si l’attribution des types aux
valeurs est plus simple que l’attribution des types aux termes quelconques.

Dans le langage XDUCE [Hos03], les valeurs sont des documents XML et
les types sont (essentiellement) des schémas XML (comme par exemple ceux de
la classe DTD). Pour savoir si un document XML appartient à un schéma, il
ne faut pas connâıtre tous les termes du langage. La relation de sous-typage est
donc définie comme inclusion des ensembles des valeurs. Tous les autres termes
du langage (des fonctions qui agissent sur les documents XML) sont typés en
utilisant, entre autres, une variante de la règle de subsomption.

XDUCE est ce qu’on appelle un langage du premier ordre. Les fonctions
agissent sur des valeurs, mais elles ne sont pas des valeurs elles mêmes. Il existe
aussi des langages qu’on appelle d’ordre supérieur, où les fonctions peuvent agir
sur d’autres fonctions et peuvent être considérées comme des valeurs. Parmi
ces langages on trouve par exemple le λ-calcul, PCF, OCAML, HASKELL et
beaucoup d’autres.

Pour étendre la notion de sous-typage de XDUCE à un langage d’ordre
supérieur, il fallait définir la relation pour les types des valeurs fonctionnelles.
Par conséquent, on aurait dû considérer les ensembles de fonctions sur docu-
ments XML, les ensembles de fonctions sur ces fonctions, et ainsi de suite. Or,
l’ensemble de toutes ces fonctions n’existe pas (en conséquence du théorème
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de Cantor). Une solution serait de considérer des domaines plutôt que des en-
sembles, comme a fait Scott [Sco72] pour donner un modèle du λ-calcul. Cette
solution, qui fait appel à certains sous-ensembles d’un domaine (par exemple les
idéaux ) ne s’applique pas bien à tous les opérateurs (par exemple, la négation
d’un idéal n’est pas un idéal).

Frisch, Castagna et Benzaken [FCB08] ont observé qu’il n’est pas important
d’avoir un modèle ensembliste qui contienne toutes les fonctions mais qu’il suffit
de définir un modèle ensembliste qui, du point de vue de la relation de sous-
typage, se comporte comme si il contenait toutes les fonctions. Sans entrer
dans tous les détails techniques, il suffit de mentionner ici qu’un tel modèle
est construit en considérant les fonctions à graphe fini. On peut construire un
ensemble dénombrable D qui contient (à isomorphisme près) toutes les fonctions
finies deD enD. De plus siX,X ′, Y, Y ′ sont des sous-ensembles deD, l’ensemble
des fonctions finies entre X et Y est contenu dans l’ensemble des fonction finies
entre X ′ et Y ′ si et seulement si cela est le cas lorsqu’on considère toutes les
fonctions au lieu des fonctions finies.

À partir de cette intuition, on peut construire un modèle ensembliste pour
les types de CDuce et on définit le sous-typage comme inclusion d’ensembles.
Ce modèle n’a rien à voir avec les termes du langage, mais ce n’est pas un
problème car le but est de définir la relation de sous-typage et non de donner
une sémantique aux termes du langage. On appelle ce modèle, le modèle de
démarrage (bootstrap en anglais). Ayant défini le sous-typage, on peut main-
tenant donner des types aux termes en utilisant la règle de subsomption. Ensuite,
on regarde les valeurs typées. Pour chaque type, on considère le modèle ensem-
bliste des valeurs : à chaque type correspond l’ensemble des valeurs qui ont
ce type. Ce modèle définit également une notion de sous-typage par inclusion
d’ensembles.

A priori les deux notions de sous-typage définies par les deux modèles (de
démarrage et des valeurs) sont différentes. Mais CDuce a été conçu de façon
qu’on puisse prouver a posteriori que les deux notions cöıncident.

Un des avantages de la définition sémantique de sous-typage est qu’elle
s’étend automatiquement aux opérateurs booléens (intersection, union, complé-
ment — ou pour utiliser la terminologie logique, conjonction, disjonction, négation).
Bien qu’en XDUCE le système de types ne contienne pas d’opérateurs booléens,
l’approche ensembliste permet facilement de les définir. Le système de types de
CDuce contient explicitement des opérateurs booléens.

Parmi les équations satisfaites par la relation de sous-typage définie ainsi,
on a toutes les lois booléennes comme par exemple :

¬¬¬(τ ∧∧∧ σ) = ¬¬¬τ ∨∨∨¬¬¬σ

Mais il y a des relations moins évidentes. Par exemple, si τ →→→ σ est le type
des fonctions de τ dans σ, on a que

τ →→→ (σ ∨∨∨ σ′) ≤ (τ →→→ σ)∨∨∨ (τ →→→ σ′)
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mais la relation inverse n’est pas toujours satisfaite. Pour comprendre l’intuition
qui justifie cette relation, on renvoie le lecteur aux articles cités.

3.2 Le soustypage sémantique pour le π-calcul

L’utilisation du sous-typage dans le π-calcul a été introduite par Pierce et
Sangiorgi [PS93]. Les types sont donnés aux canaux et aux variables. Ils in-
diquent quelles sont les valeurs que un canal peut communiquer. Ils précisent
aussi si un processus peut utiliser un canal seulement pour envoyer des messages,
ou seulement pour en recevoir, ou bien pour les deux utilisations. Le sous-typage
est défini avec des règles syntaxiques qui suivent les intuitions suivantes :

– les types d’envoi sont contravariants : un canal qui est utilisé pour envoyer
des messages de type τ , peut aussi être placé dans un contexte qui l’utilise
pour envoyer des messages d’un type plus petit que τ ;

– les types de réception sont covariants : un canal qui est utilisé pour recevoir
des messages de type τ , peut aussi être placé dans un contexte qui l’utilise
pour recevoir des messages d’un type plus grand que τ ;

– les types d’envoi et réception sont invariants.
Un processus qui décide d’appliquer le sous-typage limite sa liberté : dans

un cas, en pouvant envoyer moins des messages, dans l’autre, en restreignant
l’utilisation qu’il peut faire des messages reçus. En conséquence, les types qui
indiquent qu’un canal peut être utilisé en envoi et en réception sont invariants
car il doivent à la fois être covariants et contravariants.

À partir de ces intuitions, Pierce et Sangiorgi construisent un système de
types qui satisfait les propriétés de préservation de typage (subject reduction),
de sûreté, etc.

Pierce et Sangiorgi observent que le type invariant peut être considéré comme
une conjonction des types covariant et contravariant. Il n’est pas questions pour-
tant dans leur papier d’introduire les combinaisons booléennes de types dans
leur généralité. Sans même encore parler de l’opérateur de négation, qui est as-
sez problématique, il est déjà difficile de décider quelles équations les opérateurs
booléens devraient satisfaire. Par exemple, si on dénote par ch–(τ) le type d’en-
voi seul, par ch+(τ) le type de réception seule et par ch(τ) le type d’envoi et
réception, alors l’équation

ch–(τ ∧∧∧ σ) = ch–(τ)∨∨∨ ch–(σ)

est-elle correcte ? Autrement dit, est-ce qu’un canal sur lequel on peut en-
voyer des messages qui sont à la fois de type τ et de type σ est la même chose
qu’un canal sur lequel on peut envoyer des messages de type τ ou un canal
sur lequel on peut envoyer des messages de type σ ? Et si l’égalité n’est pas
satisfaite, y a-t-il une relation d’ordre, dans un sens ou dans l’autre ?

Notre but était d’utiliser le cadre du sous-typage sémantique, pour définir
un système de types pour le π-calcul avec tous les opérateurs booléens. Pour
cela, il a fallu d’abord chercher une intuition sémantique qui puisse nous guider
dans la définition de modèle ensembliste. En particulier, on cherchait à définir
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l’interprétation ensembliste des trois types : envoi seul, réception seule et envoi
et réception. L’intuition qu’on a décidé de suivre est la suivante : un canal est
comme une bôıte qui contient des valeurs. La bôıte a une certaine forme qui
détermine quelles valeurs elle peut contenir. Les canaux ont aussi un nom, mais
pour ce qui est des types, deux bôıtes avec la même forme sont indistinguables,
car elles peuvent transporter les mêmes valeurs. Donc, on peut identifier le type
des bôıtes (canaux) qui peuvent transporter les valeurs de type t avec la forme
de ces bôıtes. Ensuite, on peut identifier cette forme avec l’ensemble des valeurs
qu’elle peut contenir. Mais l’intuition est que cet ensemble est l’interprétation
du type t, dénotée [[t]]. En conclusion, la sémantique de ch(τ) est le singleton
{[[t]]}.

Ensuite, les canaux sur lesquels un processus peut envoyer des valeurs de
type t sont tous ceux dont la forme permet de contenir au moins les valeurs de
type t. Cela inclut donc tous les canaux dont la forme permet de contenir les
valeurs d’un type t′ plus grand que t. En conclusion, la sémantique de ch–(τ) est
l’ensemble {[[t′]] | t′ ≥ t}. De façon similaire, si un processus attend en réception
des valeurs de type t, pour qu’il n’y ait pas d’erreur, il faut et il suffit que le
canal puisse transporter au plus des valeurs de type t. On en déduit que la
sémantique de ch+(τ) est l’ensemble {[[t′]] | t′ ≤ t}. Cette intuition nous permet
déjà de dériver plusieurs égalités, en particulier ch–(τ)∧∧∧ ch+(τ) = ch(τ).

Pour construire un modèle qui respecte à la lettre l’intuition décrite, il
faudrait un ensembleD tel que tous les sous-ensembles deD soient aussi éléments
de D. Comme l’énonce le Theorème de Cantor, ceci est impossible. Mais, comme
pour le cas de types fonctionnels de CDuce, il suffit de donner une sémantique
qui, du point de vue de la définition du sous-typage, se comporte comme la
sémantique intuitive. La construction d’un tel modèle est possible, bien que
techniquement assez complexe. L’idée est que le domaine D ne doit pas contenir
tous ses sous-ensembles en tant qu’éléments, mais seulement ces sous-ensembles
qui sont dénotation de types. Cela résout le problème de cardinalité. Le modèle
ainsi construit définit donc une notion de sous-typage qui s’étend à tous les com-
binateurs booléens. Cela, en particulier, nous permet de répondre à la question
posée plus haut : dans notre modèle on a

ch–(τ ∧∧∧ σ) ≥ ch–(τ)∨∨∨ ch–(σ)

mais en général pas l’inverse.

On utilise ce sous-typage pour typer les processus d’une variante du π-calcul
enrichi avec le filtrage (“pattern matching”) en entrée. Les règles sont assez
naturelles et ressemblent aux règles de Pierce et Sangiorgi. On peut aussi définir,
comme dans le cas de CDuce, un modèle des valeurs. Dans ce cas, les valeurs sont
les canaux, non pas les processus. Ce modèle a donc moins d’intérêt que dans
le cas fonctionnel. Une question intéressante est de savoir si la relation de sous-
typage est décidable, c’est-à-dire s’il y a un algorithme qui, étant donnés deux
types s, t peut dire si s ≤ t. La réponse est oui et dans l’Annexe C on montre un
tel algorithme, qui suit les lignes générales de l’algorithme de CDuce, mais qui
est conceptuellement plus compliqué. En effet, dans son exécution, l’algorithme
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doit parfois vérifier si un type donné est un atome, c’est-à-dire s’il n’existe aucun
autre type entre lui et le type vide dans la relation de sous-typage.

Non seulement cette condition est complexe à vérifier, mais elle a comme
conséquence l’impossibilité de définir une sémantique pour les types récursifs :
en se basant sur ces types atomiques, on définit un type récursif paradoxal qui
est vide si et seulement si il n’est pas vide.

On montre une solution possible à ces problèmes : il faut se restreindre
à la variante locale du π-calcul, qui ne permet pas à un processus d’utiliser en
réception un canal reçu d’un autre processus. On montre que dans cette variante,
il n’est plus nécessaire d’utiliser les types ch+(τ) et ch(τ). La relation de sous-
typage en est grandement simplifiée car les types atomiques n’interviennent plus.
Cela permet aussi d’utiliser les types récursifs sans engendrer de paradoxe.

3.3 Le codage des fonctions surchargées

Une des premières applications du π-calcul avait été la définition d’un codage
du λ-calcul, en particulier des stratégies d’appel par nom et par valeur. Cela
était d’ailleurs une des motivations principales pour la création du π-calcul : on
avait pas réussi à encoder le λ-calcul dans le calcul de processus CCS.

Le codage du λ-calcul dans le π-calcul ressemble au codage du λ-calcul en
passage par continuations. Une fonction est représentée par un canal (le “nom”
de la fonction) qui peut être appelé par l’envoi de la valeur d’entrée et un canal
sur lequel la valeur de sortie doit être retournée. Ces deux paramètres sont
utilisés par un processus répliqué (le “corps” de la fonction) qui retourne la
valeur de sortie à la fin du calcul. Dans le codage de l’application, le codage de
la fonction est appelée sur le codage de l’argument et la valeur retournée est
retournée comme la valeur de toute l’expression. Le canal sur lequel on envoie
la valeur d’une expression représente la continuation du calcul.

Pierce et Sangiorgi [PS93] définissent une version typée de l’encodage : à
des termes typés du λ-calcul correspondent des termes typés du π-calcul. En
particulier, ils définissent une traduction des types du λ-calcul vers les types du
π-calculs :

(|σ→→→ τ |) = ch–((|σ|)××× ch–((|τ |))) .

Intuitivement on appelle une fonction en lui envoyant deux messages : un
message contenant l’argument de la fonction et un message contenant le canal
sur lequel la fonction est censée envoyer le résultat.

Une traduction similaire a également été proposée par Turner [Tur95] et une
discussion extensive se trouve dans le livre de Sangiorgi et Walker [SW02]. Il est
important de noter que ce codage respecte aussi le sous-typage : en effet le type
fonctionnel du λ-calcul est contravariant sur le type de l’argument et covariant
sur le type du résultat, ce qui est exactement le cas pour le codage dans les
types canaux (on observe que le codage de l’argument se trouve en dessous d’un
opérateur contravariant, tandis que le type du résultat est en dessous de deux
opérateurs contravariants.)
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Notre idée a été d’appliquer la même traduction entre les deux formalismes
du sous-typage sémantique : CDuce et Cpi. Remarquons ici que la sémantique de
CDuce est en appel par valeur. L’intérêt de notre travail demeure dans le fait que
le codage de Pierce et Sangiorgi ne respecte plus le sous-typage une fois qu’on
ajoute les opérateurs booléens. En effet, il existe deux types de CDuce, σ et τ tels
que σ ≤ τ et (|σ|) 6≤ (|τ |). Plus spécifiquement, en CDuce on a (σ→→→ τ)∧∧∧(σ→→→ τ ′) ≤
σ→→→ τ∧∧∧τ ′, tandis que, en général ch–(s×××ch–(t))∧∧∧ch–(s×××ch–(t′)) 6≤ ch–(s×××ch–(t∧∧∧t′)).
En conséquence, le codage de Pierce et Sangiorgi ne pourra pas marcher si on
veut coder CDuce en Cpi, car il échoue déjà au niveau des types.

A quoi est dû ce problème ? Une des caractéristiques de CDuce est la présence
de fonctions surchargées, qui peuvent choisir le code à exécuter en fonction
du type de l’argument qu’elles reçoivent. Dans le codage de Milner (et donc
de Pierce et Sangiorgi), l’appel d’une fonction commence par l’envoi de deux
canaux au processus qui encode la fonction : un canal sur lequel on enverra
l’argument et un canal sur lequel le processus devra envoyer la réponse. Ces
deux canaux sont bien évidemment typés. Le processus qui encode la fonction
connâıt donc le type de l’argument, mais aussi le type attendu du résultat. Cette
connaissance pourrait être utilisée afin de choisi le code à exécuter, option que
n’ont pas les fonctions de CDuce. Naturellement, les processus qui encodent de
vraies fonctions CDuce n’utilisent pas cette option, mais l’existence de cette
possibilité est perceptible au niveau des types. (Plus de détails techniques se
trouvent dans l’Annexe C.)

Notre solution a été de modifier le codage des fonctions de façon à ce que le
type du canal de réponse ne puisse pas donner d’indication sur le type attendu du
résultat. Le canal de réponse peut transporter toutes les valeurs attendues, mais
aussi d’autres valeurs. En conséquence, le processus qui encode une fonction ne
peut pas se baser sur le type du canal de réponse pour décider quel code exécuter.
Ce nouveau codage respecte toutes les égalités entre les types de CDuce, et est
très proche du codage de Milner pour ce qui concerne les termes. Les détails
techniques ne sont pas aussi simples que cette description semble le suggérer et
se trouvent dans l’Annexe C.



Chapitre 4

L’équité dans les systèmes
concurrents

4.1 Une notion intuitive

Dans un modèle non-déterministe d’un système informatique, plusieurs exé-
cutions sont possibles. Chaque exécution correspond à une façon de résoudre les
choix non-déterministes. Un tel modèle satisfait une spécification quand toutes
les exécutions possibles satisfont à leur tour la spécification. Il arrive parfois
qu’un le modèle d’un système ne satisfasse pas la spécification souhaitée, mais
que les “mauvaises” exécutions ne puissent pas avoir lieu, en pratique. Dans ce
cas, on pourrait dire que le modèle ne représente pas correctement la réalité des
choses. En particulier, le fait que toute résolution possible des choix soit prise
en compte ne correspond pas forcément à la réalité. Dans la réalité, il pourrait y
avoir des contraintes qui limitent la façon dont les choix sont résolus. Également,
cela peut dépendre des objectifs de l’entité qui résout les choix. La résolution de
certains choix peut être guidée pour obtenir des objectifs spécifiques ; ou bien
la résolution pourrait être faite sans connâıtre complètement l’état du système ;
parfois, les choix sont résolus en partie par une entité hostile et en partie par
une entité collaborative. Toutes ces différentes nuances de non-déterminisme
pourraient être représentées en modélisant explicitement le processus qui fait
les choix. Cela pourtant nuirait à la simplicité du modèle et en réduirait le
niveau d’abstraction.

Il faut donc utiliser un autre système pour contraindre le non-déterminisme.
Une des solutions possibles est d’ajouter une hypothèse d’équité (fairness en
anglais) au modèle. La notion d’équité est basée sur l’observation suivante :
si un processus demande l’accès à une ressource et si cet accès dépend d’un
choix non-déterministe, il est tout-à-fait acceptable que l’accès à la ressource
soit refusé ; mais si le processus continue à demander cet accès encore et encore,
alors il semble “équitable” qu’il lui soit accordé à un moment donné. Ce fait
est garanti par une hypothèse d’équité. Intuitivement, utiliser une hypothèse
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d’équité signifie que l’entité qui résout le non-déterminisme a le droit d’être
hostile, mais pas pour toujours.

L’exemple le plus simple d’une situation où on ferait appel à une hypothèse
d’équité est celui de deux processus en parallèle. Dans ce cas, chaque processus
demande juste de faire une action, n’importe laquelle. Un non-déterminisme sans
contrainte pourrait laisser exécuter un seul des deux processus. Cela n’est pas
considéré comme équitable. D’ailleurs, dans l’exemple donné, le non-déterminisme
est en pratique résolu par un gestionnaire de taches (scheduler). Ces gestion-
naires sont en général programmés pour donner droit d’exécution à tout pro-
cessus qui le demande.

Suivant cette intuition, plusieurs notions d’équité ont été définies. En général,
on définit une exécution équitable par rapport à une transition du système. Il
est souvent plus facile de définir les exécutions qui ne sont pas équitables. Une
exécution n’est pas faiblement équitable par rapport à une transition t, si à
partir d’un certain moment dans le temps, dans tous les états dans lesquels se
trouve le système, la transition t est possible, mais elle n’est jamais exécutée.
Une exécution n’est pas fortement équitable si la transition t est possible dans
un nombre infini d’états de l’exécution mais n’est jamais exécuté.

Pour que cette description informelle devienne une vraie définition mathéma-
tique il faut préciser plusieurs concepts. Il faut formellement définir les notions
de système, d’exécution et de transition. Il faut dire ce qu’est être “possible”, etc.
Plusieurs définitions sont donc imaginables et elles ont été en effet imaginées par
les chercheurs. Pourtant, bien que la définition intuitive soit assez générale, elle
n’avait jamais été formalisée : qu’est-ce qu’une propriété d’équité en général ?
Notre travail a été de répondre à cette question.

4.2 Trois définitions équivalentes

Dans les exemples montrés ci-dessus, il y a une structure commune de la
définition d’exécution équitable par rapport à une transition t : si t est souvent
possible, alors t doit être souvent exécutée. Cette structure devient pour nous
la base d’une définition formelle, en généralisant le plus possible les notions de
“transition”, “souvent” et “possible”. D’abord, il faut fixer la notion de système
et d’exécution. Un notion simple de système n’est rien d’autre qu’un graphe, les
nœuds en étant les états. Une exécution est une suite finie ou infinie d’états telle
que deux états successifs sont reliés par un arc. Comme notion de transition, on
est amené à considérer d’abord un arc du graphe. Pour généraliser la notion,
on commence par observer qu’on peut identifier une transition (arc) t avec
l’ensemble des exécutions finies qui se terminent par t. Il semble assez naturel
donc de généraliser la notion de transition à tout ensemble d’exécutions finies.

Ensuite, il faut définir la notion de “possible”. La première idée est qu’un
arc t (vu comme transition) est possible dans un état a si l’arc t a l’état a
comme source. Pour généraliser la notion, on peut dire qu’une transition t est
possible après une exécution finie x, si elle est possible dans le dernier état de x.
Finalement, dans la version plus généralisée, un ensemble d’exécutions finies Q
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est possible dans une exécution finie x, si on peut ajouter un état à la fin de x en
obtenant une exécution de Q. Plusieurs exemples concrets, ainsi qu’un souci de
généralité, nous amènent à considérer toute extension à un nombre arbitraire
d’états. En conclusion, on dit qu’une transition généralisée Q est “possible”
après une exécution x, s’il existe une extension de x, de longueur quelconque,
qui appartient à Q.

Finalement, la notion la plus faible de “souvent” qui semble raisonnable est
“infiniment souvent”.

Avec ces trois généralisations, on obtient la définition suivante d’équité (ou
l’implication devient une disjonction pour faciliter la lecture) : une exécution x
est équitable par rapport à une transition généralisée Q si

un nombre infini de préfixes de x appartient à Q ou il existe un préfixe y de x
tel qu’aucune exécution qui étend y n’est dans Q.

Cette définition est très raisonnable mais elle a deux défauts : premièrement,
on peut montrer que certaines notions d’équité ne sont pas incluses, notamment
l’équité forte ne satisfait pas la définition (on note que l’équité forte parle d’ex-
tensions avec un seul état supplémentaire) ; deuxièmement la classe des pro-
priétés qui satisfont la définition n’est pas fermée par élargissement (ou affaib-
lissement), ce qui est aussi désirable pour plus de souplesse. Pour résoudre ces
deux problèmes, la solution est la même : imposer la clôture par affaiblissement
par définition.

Soit F (Q) l’ensemble des exécutions équitables selon la définition ci dessus.
On dit qu’un ensemble d’exécutions est une propriété d’équité s’il contient un
ensemble F (Q) pour un Q quelconque.

Pour montrer que cette définition est raisonnable, on donne deux caractérisa-
tions différentes de la même notion.

D’abord, il y a une version topologique. On note que l’ensemble des exécutions
finies et infinies d’un système peut être vu comme une ordre partiel directe-
ment complet (DCPO). Sur cet ensemble on peut donc considérer une topolo-
gie standard appelée la topologie de Scott. Déjà Alpern et Schneider [AS85]
avaient observé que certaines notions utilisées en vérification ont une définition
topologique. En particulier, les propriétés de sécurité sont les fermés de la
topologie de Scott, les propriétés de garantie sont les ouverts et les propriétés
de vivacité (liveness) sont les ensembles denses.

Ce qu’est prouvé dans nos travaux, est que les propriétés d’équité sont
précisément les ensembles co-maigres dans la topologie de Scott. La définition
d’ensemble co-maigre étant un peu technique, on renvoie le lecteur à l’Annexe
D. Il suffit de rappeler ici l’intuition : les ensembles co-maigres sont les ensem-
bles topologiquement “gros”. Le complémentaire d’un ensemble co-maigre est
un ensemble maigre ou topologiquement petit. L’intuition est que, d’un point
de vue topologique, il y a “très peu” d’exécutions qui ne sont pas équitables.

La troisième définition d’équité est très liée à la deuxième, mais elle apporte
un nouvel et très intéressant point de vue. On peut définir un jeu sur un graphe
(modèle d’un système) qui se joue entre deux joueurs : Banach (le Bon) et Mazur
(le Méchant). Le but du jeu est un ensemble G d’exécutions infinies. Mazur
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commence en choisissant une exécution finie. Banach continue en choisissant une
extension finie de l’exécution choisie par Mazur. Mazur étend l’exécution ainsi
obtenue et ainsi de suite. L’alternance des deux joueurs produit une exécution
infinie. Si cette exécution appartient au but G, c’est Banach qui gagne sinon
c’est Mazur.

Ce jeu avait été proposé par (le vrai) Mazur et ce fut (le vrai) Banach qui
prouva que Banach a une stratégie gagnante si et seulement si G est co-maigre
dans la topologie de Scott [Mau81]. Une exécution est donc équitable si elle a
été obtenue pendant une partie gagnante pour Banach. Ici, l’intuition est que
Banach et Mazur s’alternent pour résoudre le non-déterminisme du système. Le
joueur méchant peut forcer le système à faire de mauvaises choses de temps à
autres, mais il ne peut pas empêcher au bon joueur de lui faire faire aussi de
bonnes choses de temps à autres.

4.3 Propriétés

Caractérisée par trois définitions indépendantes, la classe des propriétés
d’équité a pareillement plusieurs attributs intéressants :

– Si un ensemble contient une proprieté d’équité, il est une propriété d’équité.
En conséquence la classe des propriétés d’équité est fermée par union.

– La classe des propriétés d’équité est fermée par intersection dénombrable.
– Toute propriété d’équité est vivace.
– La plupart des notions d’équité étudiées en littérature définissent une pro-

priété d’équité.

La fermeture par élargissement est intéressante parce qu’elle correspond à
la notion logique d’affaiblissement. On utilise l’équité comme hypothèse pour
prouver qu’un système satisfait une spécification et pour renforcer le résultat,
on pourrait vouloir affaiblir l’hypothèse. La fermeture par intersection permet
de définir les notions d’équité de façon modulaire, par exemple en spécifiant
différentes notions par rapport à différentes parties du système. Le fait que
toute propriété d’équité soit vivace est une condition proposé par Apt, Francez
and Katz [AFK88]. Cette condition s’appelle également fermeture par machine
(machine-closure en anglais). Essentiellement, elle postule qu’un système doit
pouvoir avoir toujours la possibilité de se comporter de façon équitable.

Une question qu’on pourrait se poser est : a-t-on été suffisamment général ?
Pourrait-on ajouter d’autres propriétés à la classe qu’on a définie ? On ne connait
pas de réponse définitive, mais si on se restreint à une classe très raisonnable de
propriétés, on peut alors donner une réponse négative. La classe qu’on considère
est celle des propriétés déterminées, c’est-à-dire les propriétés pour lesquelles soit
Banach soit Mazur a une stratégie gagnante dans le jeu de Banach-Mazur. Cette
classe est très grande et elle contient tous les ensembles Boreliens [Oxt71]. Le
résultat qu’on prouve est que la classe des propriétés d’équité est la plus grande
classe de propriétés déterminées qui contient seulement des propriétés de vivacité
et qui soit fermée par intersection.
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Finalement pour le dernier attribut décrit ci-dessus, il faut mentionner que
Kwiatkowska avait proposé une notion d’équité [Kwi91] qui était fermée par
intersection et qui était incluse dans la vivacité, mais qui ne capturait pas toutes
les propriétés étudiées en littérature. En particulier, on montre que l’équité forte
ne satisfait pas la définition de Kwiatkowska.

4.4 Relation avec la probabilité

Une autre façon de restreindre le non-déterminisme est d’imposer que tout
choix non-déterministe soit fait de façon aléatoire. Dans un graphe, on peut
obtenir cela en ajoutant pour chaque nœud une distribution de probabilité sur
les arcs sortants. Ce qu’on obtient s’appelle une châıne de Markov. Une châıne
de Markov définit une distribution de probabilité sur les exécutions du système.
En présence d’une châıne de Markov, on peut donc proposer une autre notion
d’équité : une propriété d’équité probabiliste est un ensemble qui a probabilité 1.
Cette définition a plusieurs analogies avec la définition d’équité décrite ci-dessus.
En particulier :

– si un ensemble contient une propriété d’équité probabiliste, il est une pro-
priété d’équité probabiliste ;

– la classe des propriétés d’équité probabiliste est fermée par intersection
dénombrable ;

– si la définition d’équité correspond aux ensembles “topologiquement très
gros”, les ensembles de probabilité 1 peuvent être vus comme “probabil-
isitiquement très gros”.

Mises à part ces similarités, pouvons-nous trouver une correspondance formelle
entre ces deux notions ? On peut montrer qu’en général elles sont différentes,
car il existe un système pour lequel il y a une propriété d’équité qui n’est pas
une propriété d’équité probabiliste et une propriété d’équité probabiliste qui
n’est pas une propriété d’équité. Mais on a prouvé que dans certaines condi-
tions assez raisonnables, les deux notions cöıncident. Les conditions sont les
suivantes : le système doit être fini, c’est-à-dire il doit avoir un nombre fini de
nœuds ; la propriété doit être ω-régulière, c’est-à-dire acceptée par un automate
de parité [Tho90]. La classe des propriétés ω-régulières est très grande : elle
inclut, par exemple, toutes les propriétés qu’on peut exprimer à l’aide de la
logique temporelle LTL.

Le théorème qu’on a prouvé dit que pour un système probabiliste fini, une
propriété ω-régulière est une propriété d’équité probabiliste si et seulement si
elle est un propriété d’équité. Ce résultat est assez intéressant en soi, mais
il a des conséquences pratiques : cela nous permet en particulier d’appliquer
les techniques de vérification probabiliste (qui sont bien développés depuis des
années) à la vérification équitable qu’on va introduire ci dessous.
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4.5 Vérification

Traditionnellement en vérification, on utilise l’équité comme hypothèse qu’on
ajoute à un système pour lui permettre de satisfaire une spécification qui serait
violée autrement. Mais il faut souvent exprimer explicitement cette hypothèse
d’équité : on dit “sous l’hypothèse d’équité forte, la spécification est satisfaite”.
Parfois il n’est pas évident de trouver la bonne hypothèse.

Pour vérifier automatiquement une spécification sous une hypothèse d’équité,
il y a plusieurs possibilités. Si l’hypothèse peut s’exprimer dans le même formal-
isme que la spécification, alors on peut vérifier une spécification conditionnelle
de la forme “si hypothèse alors spécification”. Mais parfois l’équité n’est pas
exprimable dans le formalisme de spécification. Dans ce cas, on peut modifier
l’algorithme de vérification pour qu’il prenne en compte l’hypothèse.

On propose une autre approche : on propose de vérifier si une spécification est
satisfaite sous une quelconque hypothèse d’équité qui ne doit pas forcement être
connue. En effet si une spécification est satisfaite sous une hypothèse d’équité,
c’est que la spécification (vue comme ensemble d’exécutions) contient l’équité.
Mais cela implique que la spécification même peut être vue comme une propriété
d’équité au sens de notre définition.

Le problème qu’on se pose est le suivant : étant donné un système et une
spécification, est-ce que la spécification est une propriété d’équité du système ?
On appelle ça le problème de la vérification équitable. Dans nos articles, on
propose plusieurs algorithmes pour répondre à cette question. Pourtant l’algo-
rithme le plus efficace qu’on connait est emprunté à la vérification probabiliste.
Il s’agit d’un algorithme proposé par Courcoubetis and Yannakakis [CY95] qui
s’exécute en temps exponentiel en la taille de la formule logique qui exprime la
spécification et en temps linéaire par rapport à la taille du système.

La correspondance avec l’équité probabiliste nous permet aussi de connâıtre
exactement la complexité du problème de la vérification équitable. Pour une
spécification exprimée en LTL, il s’agit d’un problème PSPACE-complet en
la taille de la formule logique. Cela correspond exactement à la complexité
du problème de la vérification “classique”. Matthias Schmalz [Schdf] a trouvé
que cette correspondance vaut aussi pour plusieurs fragments intéressants de la
logique et que pour un fragment en particulier (appelé “formules de Müller”),
la vérification équitable est algorithmiquement plus simple que la vérification
classique.

On a aussi montré un algorithme pour la vérification équitable qui utilise
la caractérisation de l’équité en termes de jeux de Banach-Mazur, mais cet
algorithme est doublement exponentiel en la taille de la formule et donc pas
optimal. Il reste encore à trouver un algorithme optimal basé sur le jeu de
Banach-Mazur.
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4.6 Extensions à d’autres domaines

Ajouter une hypothèse d’équité à un système non-déterministe est une façon
de réduire le non-déterminisme. Il s’agit dans ce cas d’un non-déterminisme
qu’on ne contrôle pas, ou qu’on ne peut pas connâıtre exactement, mais dont on
sait au moins qu’il ne joue pas contre nous. On pourrait dire qu’on modélise des
systèmes fermés, mais dont les composantes ne sont pas complètement spécifiées.

Mais il y a d’autres interprétations du non-déterminisme. Les choix non-
déterministes peuvent être partagés en ceux qui sont contrôlés par le système et
ceux qui sont contrôlés par l’environnement. En ce cas, le formalisme qu’on vient
de décrire n’est pas satisfaisant. Pour modéliser cette forme de non-déterminisme
il faut utiliser la notion de jeu. Les états d’un système sont partagés deux : ceux
contrôlés par Adam (“nous”) et ceux contrôlés par Eve (“eux”). Les exécutions
du système sont obtenues par une partie où chaque joueur choisit l’état suivant
quand le système se trouve dans un des états qu’il/elle contrôle. Ce jeu diffère
du jeu de Banach-Mazur en plusieurs aspects. Cependant, les deux jeux peuvent
être combinés comme on l’a montré récemment [ACV10]

Le cadre qu’on a étudié se restreint aussi par l’utilisation d’exécutions totale-
ment ordonnées. Il serait intéressant d’étudier l’équité aussi dans un contexte
d’exécutions partiellement ordonnées, comme par exemple dans le cas des struc-
tures d’événements. L’ensemble des exécutions d’une structure d’événement
forme aussi un ordre partiel directement complet et en conséquence il est doté
d’une topologie de Scott. On aimerait étudier à quoi correspondent les ensembles
co-maigre dans ce cas plus général. Est-ce qu’ils capturent une notion d’équité
intéressante ? Est-ce qu’ils correspondent à une variation du jeu de Banach-
Mazur ?



Chapitre 5

Le Protocole de Handshake

5.1 Introduction

Dans le contexte du calcul concurrent, il est important que les différents
sujets qui prennent part au calcul soient en accord sur la façon de communiquer
l’un avec l’autre. Il y a plusieurs niveaux d’abstraction sur lesquels les sujets
doivent se trouver d’accord. Ils doivent tous utiliser des châınes de bits, ils
doivent être d’accord sur le codage de données, sur la façon de vérifier les erreurs
de transmission, etc. Au niveau le plus élevé, ils doivent se trouver d’accord sur
le protocole de communication : est-ce qu’ils communiquent de façon synchrone
ou asynchrone ? Est-ce que le temps de transmission est pris en compte ? Est-ce
qu’on doit envoyer un récépissé pour tout message reçu ?

Un des protocoles qui ont été utilisés en pratique pour organiser le calcul
concurrent est le protocole Handshake [VB93]. Intuitivement, les sujets qui com-
muniquent en respectant ce protocole disposent chacun d’un ensemble de portes.
Chaque porte est partagée par exactement deux sujets. À chaque instant, chaque
porte se trouve en mode d’envoi pour un sujet et de réception pour l’autre. Le
sujet en mode réception doit être prêt à accepter le message qui lui sera en-
voyé. Le sujet en mode envoi décide de manière autonome si et quand envoyer
un message. Les communications sur deux portes différentes sont concurrentes.
Après qu’un message a été envoyé sur une porte, le sujet en mode envoi entre
en mode réception et dualement.

Bien qu’utilisé en pratique, peu d’études théoriques s’étaient penchées sur
ce protocole. Van Berkel [VB93] donne une définition formelle de langage Hand-
shake en termes de mots finis sur un alphabet de portes et qui satisfont un
certain nombre d’axiomes. Un langage handshake représente un processus qui
communique avec l’environment. Un mot de ce langage représente une exécution
du protocole.

Deux processus qui suivent le protocole Handshake communiquent en se syn-
chronisant sur les portes communes. Cette intuition amène Van Berkel à définir
une notion de composition parallèle de deux langages Handshake. Un mot du
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langage composé est obtenu en entrelaçant deux mots des deux langages et par
la suite en effaçant tous les caractères qui correspondent aux portes communes.
Fossati [Fos07] a pourtant montré que cette définition de composition n’est pas
associative. Il a donc entrepris de donner une autre description formelle de ces
protocoles dans laquelle une notion de composition plus satisfaisante soit pos-
sible.

Cela a d’abord amené à un modèle à jeux des protocoles Handshake [Fos07].
Cependant dans ce modèle, certains protocoles au comportement non-détermi-
niste ne peuvent pas être représentés. Notre collaboration a eu pour but de
trouver d’autres modèles qui puissent surmonter cet obstacle.

5.2 Un modèle à réseaux de Petri

Le premier travail qu’on a réalisé a été la proposition d’un modèle à réseaux
de Petri des sujets qui communiquent en respectant le protocole Handshake. Les
deux ingrédients fondamentaux sont

– la définition d’un sous-réseau qui représente une porte. Il faut que ce réseau
alterne entre mode réception et mode envoi et il faut qu’en mode réception
il soit toujours prêt à recevoir.

– une notion de composition de réseaux. Deux réseaux se composent en
connectant les portes qui ont le même nom (à condition qu’elles soient en
mode dual)

Les transitions du réseau se divisent en internes (non observables) et externes
(observables). Les transitions externes sont exactement les transitions des portes
qui ne sont pas encore connectées. Une observation représente donc la communi-
cation avec l’environnement. On définit le langage d’un réseau comme l’ensemble
des séquences de repos de transitions externes. Une séquence est dite de repos
si elle se termine dans un marquage où aucun envoi n’est possible. On montre
que le langage d’un réseau ainsi défini est toujours un langage Handshake selon
la définition de Van Berkel, mais aussi que tout langage Handshake est le lan-
gage d’un certain réseau Handshake, bien que ce réseau soit en général infini.
Naturellement, on ne peut pas espérer représenter tous les langages Handshake
par des réseaux finis, car il y a des langages non-récursifs.

La composition de réseaux est obtenue en mettant en communication les
portes communes. Les transitions de ces portes deviennent internes et elle ne
contribuent plus à la définition du langage. À cause de la nature “graphique” de
cette définition, la composition de réseaux Handshake est naturellement asso-
ciative. On pourrait donc vouloir définir la composition des langages à l’aide de
la notion de composition de réseaux, mais cela n’est pas possible, car en général
pour un langage donné, il y a plusieurs réseaux qui le définissent. Pour un lan-
gage donné, il n’y a pas de réseau canonique. L’intuition est que les réseaux
expriment mieux certaines relations entre choix et concurrence qui ne peuvent
pas être représentées par les langages. Il faut souligner que cela n’est pas a priori
une évidence. Il est vrai que la sémantique à traces des langages de processus est
moins expressive que les systèmes de transitions étiquetées, mais les langages
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Handshake de Van Berkel sont plus expressifs qu’une sémantique de trace : il
peuvent en effet définir quelques notions de choix plus complexe.

5.3 Un calcul de processus

Nous avons par la suite proposé une deuxième façon de formaliser la notion
de protocole Handshake, à l’aide d’un calcul de processus avec deux formes de
communication. Une communication par synchronisation semblable à celle de
CCS, qui représente la synchronisation sur les portes Handshake et une syn-
chronisation par ressources partagées, qui modélise le comportement purement
interne d’un processus. Les envois de messages sur les portes Handshake con-
somment des ressources internes, tandis que la réception ajoute des ressources.
Un système de types garantit que chaque porte est soit externe et visible, soit
partagée par exactement deux processus. Il garantit aussi l’alternance entre les
modes d’envoi et de réception. Un processus en mode d’envoi peut ne pas en-
voyer, car il lui manque les ressources, tandis qu’un processus en mode réception
est toujours prêt à recevoir, ce qui est conforme avec la discipline Handshake.

Il y a deux façons de composer les processus. On a une composition qui
permet de partager les ressources et qui est utilisée pour construire les “briques”
de base du protocole. Ensuite, les processus se composent en se synchronisant
sur les portes Handshake communes, comme pour les langages et les réseaux.

Tout comme dans le cas des réseaux de Petri, on définit la notion de trace
de repos : une trace qui se termine dans un état du processus où aucun envoi
n’est possible, parce que toute porte qui n’est pas en mode réception n’a pas
assez de ressources pour envoyer son message.

Nous montrons que pour tout processus de ce calcul, l’ensemble de traces de
repos constitue un langage Handshake.

Finalement, nous définissons une sémantique du calcul de processus à l’aide
des réseaux de Petri. On montre que la correspondance ne se limite pas aux
langages des mots de repos : un processus Handshake et le réseau de Petri
correspondant sont également faiblement bisimilaires. De plus, pour tout réseau
de Petri fini, il existe un processus Handshake qui lui est bisimilaire.

5.4 Questions ouvertes

Avec nos modèles des réseaux de Petri et des processus, on a proposé une
formalisation des protocoles Handshake alternative à celle de VanBerkel. Cepen-
dant, peut-on définir un autre une autre notion de composition parallèle entre
langages Handshake qui soit associative ? Ou au contraire, peut-on prouver qu’
une telle composition ne peut pas exister ? La question reste ouverte.

Dans ce contexte, les exécutions infinies jouent un rôle important. Dans la
définition de Van Berkel, on obtient un mot du langage composé en synchro-
nisant deux mots finis, mais aussi en prenant la partie visible (finie) d’une syn-
chronisation infinie (c’est-à-dire d’une châıne infinie de synchronisations). Cette
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définition n’étant pas satisfaisante, car non associative, on a cherché à réduire
les cas où cette synchronisation infinie était permise, en ajoutant différentes
conditions d’équité. Pourtant, aucune définition parmi celles qu’on a essayées
n’est associative. Ceci nous amène à penser qu’une définition raisonnable de
composition de langages est impossible et on cherche actuellement à le prouver.



Chapitre 6

Quelques mots finaux

Ce mémoire a comme but de convaincre le lecteur que je suis apte à “diriger
la recherche”. J’ai voulu exposer mes principales contributions à la recherche en
informatique théorique et j’ai également évoqué le fait qu’il y a des questions
ouvertes, des résultats entrevus, mais pas encore formalisés, que je me promet
d’explorer dans les années à venir.

Mais que signifie vraiment l’expression “diriger la recherche”. Pour pouvoir
diriger, il faut connâıtre la direction, mais si on savait au préalable où se trouve
ce nous recherchons, nous aurions presque déjà le résultat. C’est la recherche
qui dirige les chercheurs et non pas le contraire. Certes, cette affirmation n’est
pas complètement valide dans des domaines où l’expérimentation joue le rôle
principal. Faire marcher une sonde martienne ou un accélérateur de particules,
tester un médicament sur les souris, excaver dans la cordillère, toutes ces ac-
tivités impliquent outre l’idée première, une organisation, une programmation
définie.

Mais les sciences plus théoriques, telles l’informatique, les mathématiques,
la philosophie, la littérature, suivent un parcours de recherche différent. Dans
certains cas, la formulation et la rédaction d’un projet de recherche complet
constituent déjà un travail quasi-abouti, où le résultat est d’emblée soupçonné.
Dans ces conditions, “diriger” la recherche devient presque la même chose que
“mener” la recherche. Ce mémoire, je l’espère, montre que je suis capable de le
faire.

Toutefois “diriger la recherche” peut aussi signifier diriger le travail des
étudiants en thèse, accompagner les recherches des jeunes chercheurs. On peut
conseiller, encourager, suggérer, tout en affirmant le travail personnel. Ma par-
ticipation au travail doctoral portant sur le protocole Handshake, ainsi que le
suivi des travaux de Master, démontrent mon aptitude à le faire. Et c’est finale-
ment ainsi, je pense, la seule vraie façon de “diriger la recherche” dans notre
domaine.
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Systèmes (PPS), Univ. Paris 7, 2009.

[FP07a] Claudia Faggian and Mauro Piccolo. A graph abstract machine describing
event structure composition. In GT-VC workshop, ENTCS, 2007.

[FP07b] Claudia Faggian and Mauro Piccolo. A graph abstract machine describing
event structure composition. In Proceedings of the workshop GT-VC 06,
volume 175 :4 of Electr. Notes Theor. Comput. Sci., pages 21–36, 2007.

[FP07c] Claudia Faggian and Mauro Piccolo. Ludics is a model for the (finitary)
linear pi-calculus. In Proceedings of TLCA’07, LNCS. Springer, 2007.

[FR03] Faith E. Fich and Eric Ruppert. Hundreds of impossibility results for dis-
tributed computing. Distributed Computing, 16(2-3) :121–163, 2003.

[Fra86] Nissim Francez. Fairness. Springer, 1986.
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objects. PhD thesis, École des Mines de Paris, 2004.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil92] Robin Milner. Functions as processes. Mathematical Structures in Computer
Science, 2(2) :119–141, 1992.

[Mil99] Robin Milner. Communicating and Mobile Systems : The Pi Calculus. Cam-
bridge University Press, 1999.

[MP90] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In
Proceedings of the 9th Annual ACM Symposium on Principles of Distributed
Computing, pages 377–408. ACM, 1990.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Con-
current Systems – Specification. Springer, 1992.

[MP95] Ugo Montanari and Marco Pistore. Concurrent semantics for the pi-
calculus. Electr. Notes Theor. Comput. Sci., 1 :411–429, 1995. Proceedings
of MFPS ’95.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes. Inf. Comput., 100(1) :1–77, 1992.

[MS] Robin Milner and Davide Sangiorgi. Techniques for “weak bisimulation up-
to”. Revised version of a paper appeared in Proc. of CONCUR ’92, LNCS
630. Available on Sangiorgi’s webpage.

[MS04] Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing
calculi. MSCS, 14 :715–767, 2004.

[Mur89] Tadao Murata. Petri nets : Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4) :541–580, 1989.

[D+00] Rocco De Nicola, Gian Luigi Ferrari, Rosario Pugliese, and Betti Venneri.
Types for access control. Theor. Comput. Sci., 240(1) :215–254, 2000.

[NPW81] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event
structures and domains, part I. Theoretical Computer Science, 13(1) :85–
108, 1981.

[Oxt57] John C. Oxtoby. The Banach-Mazur game and Banach category theorem.
In Contributions to the theory of games, Vol. III, volume 39 of Annals of
Mathematical Studies, pages 159–163. Princeton University Press, 1957.

[Oxt71] John C. Oxtoby. Measure and Category. A Survey of the Analogies between
Topological and Measure Spaces. Springer, 1971.

[Pal03] Catuscia Palamidessi. Comparing the expressive power of the synchronous
and asynchronous pi-calculi. Mathematical Structures in Computer Science,
13(5) :685–719, 2003.

[Pet81] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 1981.

[Plo77] Gordon D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5 :223–257, 1977.



BIBLIOGRAPHIE 45

[Pnu83] Amir Pnueli. On the extremely fair treatment of probabilistic algorithms.
In Proceedings of the 15th STOC, pages 278–290. ACM, 1983.

[PS93] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile
processes. In Proceedings of 8th LICS, pages 376–385, 1993.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile
processes. Mathematical Structures in Computer Science, 6(5), 1996.

[PU07] Iain Phillips and Irek Ulidowski. Reversibility and models for concurrency.
Electr. Notes Theor. Comput. Sci., 192(1) :93–108, 2007. Proceedings of
SOS 2007.

[PV03] Marco Pistore and Moshe Y. Vardi. The planning spectrum - one, two,
three, infinity. In Proceedings of 18th LICS, pages 234–243. IEEE Computer
Society, 2003.

[RE96] Grzegorz Rozenberg and Joost Engelfriet. Elementary net systems. In
Dagstuhl Lecturs on Petri Nets, volume 1491 of LNCS, pages 12–121.
Springer, 1996.

[Rei85] Wolfgang Reisig. Petri Nets : An Introduction, volume 4 of Monographs in
Theoretical Computer Science. An EATCS Series. Springer, 1985.

[RP02] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads
of probability distributions. In Proceedings of 29th POPL, pages 154–165,
2002.

[RT86] Grzegorz Rozenberg and P.S. Thiagarajan. Petri nets : Basic notions, struc-
ture, behaviour. In Current Trends in Concurrency, volume 224 of LNCS,
pages 585–668. Springer, 1986.

[San94] Davide Sangiorgi. Locality and true-concurrency in calculi for mobile pro-
cesses. In Proceedings of TACS, volume 789 of LNCS, pages 405–424.
Springer, 1994.

[San95] Davide Sangiorgi. Internal mobility and agent passing calculi. In
Proc. ICALP‘95, 1995.

[Sch07] Matthias Schmalz. Extensions of an algorithm for generalised fair model
checking. Master’s thesis, Univeristy of Lübeck, 2007.
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Annexe A

Event structure semantics
of the linearly typed
π-calculus

A.1 Introduction

Models for concurrency can be classified according to different criteria. One pos-
sible classification distinguishes between interleaving models and causal mod-
els (also known as true concurrent models). In interleaving models, concur-
rency is reduced to the nondeterministic choice between all possible sequen-
tial schedulings of the concurrent actions. Instances of such models are traces
and labelled transition systems [WN95]. Interleaving models are very success-
ful in defining observational equivalences, by means of bisimulation [Mil89]. In
causal models, causality and concurrency are explicitly represented. Instances
of such models are Petri nets [RT86], Mazurkiewicz traces [Maz86] and event
structures [NPW81]. True concurrent models can easily represent interesting
behavioural properties such as absence of conflict, independence of the choices
and sequentiality [RT86].

In this chapter we address a particular true concurrent model : the model
of event structures [NPW81, Win87]. Event structures have been used to give
semantics to concurrent process languages. The earliest and possibly the most
intuitive is Winskel’s semantics of Milner’s CCS [Win82].

The first contribution of this document is to present a compositional typing
system for event structures that ensures two important behavioural properties :
conflict freeness and confusion freeness.

Conflict freeness is the true concurrent version of confluence. In a conflict free
system, the only nondeterminism allowed is due to the scheduling of independent
components. To illustrate the less familiar notion of confusion freeness, let us
suppose that a system is composed of two processes P and Q. Suppose the
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system can reach a state where P has a choice between two different actions
a1, a2, and where Q, independently, can perform action b. We say that such
a state is confused if the occurrence of b changes the choices available to P
(for instance by disabling a2, or by enabling a third action a3). Intuitively the
choice of process P is not local to that process in that it can be influenced by
an independent action. We say that the system is confusion free if none of its
reachable states is confused. Intuitively, in a confusion free system, all choices
are localised. The locations of the choices are called the cells.

Confusion freeness was first identified in the context the theory of Petri
nets [RT86]. It has been studied in that context, in the form of free choice
nets [DE95]. Confusion free event structures are also known as concrete data
structures [BC82], and their domain-theoretic counterpart are the concrete do-
mains [KP93].

Confusion freeness has been recognised as an important property also in
the context of probabilistic models. Probabilistic models for concurrency have
an extensive literature : most of the studies concern interleaving models [LS91,
Seg95, DEP02], but recently, true concurrent ones have also been studied [Kat96,
FMW02, AB06, VVW06, Vol01].

In a confusion free system, the intuition is that local choices can be resolved
by a probability distribution within each cell. The results in [VVW06] show that
by assigning probability distributions to cells one obtains a unique probability
measure over the set of maximal configurations.

If confluence entails the property of having only one maximal computation,
up to the order of concurrent events, it is then reasonable to define probabilistic
confluence as the property of having only one maximal probabilistic computa-
tion, where a probabilistic computation is defined as a probability measure over
the set of computations. The results in [VVW06] can then be interpreted as
saying that probabilistic confusion free systems are probabilistically confluent.

The second contribution of this document is to give the first direct event
structure semantics of a fragment of the π-calculus [Mil99]. Various causal
semantics of the π-calculus existed before [JJ95, BG95, Eng96, BS98, DP99,
CS00], but none was given in terms of event structures. The technical dif-
ficulty in extending CCS semantics to the π-calculus lies in the handling of
α-conversion, which is the main ingredient to represent dynamic creation of
names. We are able to solve this problem for a restricted version of the π-
calculus, a linearly typed version of Sangiorgi’s πI-calculus (more precisely, the
extension of the calculus in [BHY01] to the nondeterministic one). This frag-
ment is expressive enough to encode the typed λ-calculus (in fact, to encode it
fully abstractly [BHY01, YBH01]). We argue that in this fragment, α-conversion
need not be performed dynamically (at “run time”), but can be done during
the typing (at “compile time”), by choosing in advance all the names that will
be created during the computation. This is possible because the typing system
guarantees that, in a sense, every process knows in advance which processes it
will communicate with.

To substantiate this intuition, we provide a fully abstract encoding of the
linearly typed fragment of the π-calculus into an intermediate process language,
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which is syntactically similar to the π-calculus except that α-conversion is not
allowed. We devise a typing system for this language that makes use of the
event structure types. We then provide the language with a semantics in terms
of typed event structures. Via this fully abstract intermediate translation, we
thus obtain a sound event structure semantics of the π-calculus, which follows
the same lines as Winskel’s : syntactic nondeterministic choice is modelled by
conflict, prefix is modelled using causality, and parallel composition generates
concurrent events. Moreover, since our semantics is given in terms of typed
event structures, we obtain that all processes of this fragment are confusion free.
Our typing system generalises an early idea by Milner, who devised a syntactic
restriction of CCS (a kind of a typing system) that guarantees confluence of
the interleaving semantics [Mil89]. As a corollary of our work we show that a
similar restriction applied to the π-calculus guarantees the property of conflict
freeness.

We then extend the above setting to a probabilistic variant of the π-calculus
We introduce a probabilistic variant of the π-calculus, similar to the ones pre-
sented in [HP00, CP05], which it is obtained by adding a probabilistic primitive
to the linearly typed fragment.

We then provide an interleaving and a true concurrent semantics to this
probabilistic extension of the lineraly typed π-calculus. The interleaving se-
mantics is given, as in [HP00, CP05], as Segala automata [Seg95], which are
an operational model that combine probability and nondeterminism. The non-
determinism is necessary to account for the different possible schedulings of
the independent parts of a system. The true concurrent semantics is given as
probabilistic event structures. In this model, we do not have to account for
the different schedulings, and that leads to the probabilistic confluence result
(Theorem A.10.2).

In order to relate the two semantics, we show how a probabilistic event
structure generates a Segala automaton. This allows us to show an operational
correspondence between the two semantics.

Structure of the chapter This chapter is a fusion of the two papers [VY10,
VY07], with slight modifications. As in [VY10], we provide the full definition
of the intermediate language which was omitted from the conference verision
[VY06].

Section A.2 presents a linearly typed version of the πI-calculus. This section is
inspired from [YBH01], but our fragment is extended to allow nondeterminis-
tic choice. Section A.3 introduces the basic definitions of event structures and
defines formally the notion of confusion freeness. We briefly introduce the cate-
gory of event structures and we explicitly describe the categorical product. The
product of event structures is one of the basic ingredients in the definition of
the parallel composition. The explicit definition we present allows us to carry
out the proofs in the following sections. Section A.4 presents our new typing
system and an event structure semantics of the types. We then define a notion
of typing of event structures by means of the morphisms of the category of
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event structures. Typed event structures are confusion free by definition. The
main theorem of this section is that the parallel composition of typed event
structures is again typed, and thus confusion free. In Section A.5, we present
the intermediate process language which is used to bridge between the typed
event structures and the linear π-calculus. We call this calculus Name Shar-
ing CCS or NCCS. We define a notion of typing for NCCS processes and its
typed operational semantics. In Section A.6, we give a semantics of typed NCCS
processes in terms of event structures. The main result of this section is that
the semantics of a typed process is a typed event structure. We also show that
this semantics is sound with respect to bisimulation. In Section A.7, we provide
a fully abstract translation of the the typed πI-calculus, into NCCS. Through
the sound event structure semantics of NCCS, we obtain a sound semantics of
the π-calculus in terms of event structures. The main result of the section is
that the semantic of a πI-calculus term is a typed event structure, and thus it
is confusion free. In Section A.8, we present the probabilistic extension of the
π-calculus, obtained by adding a probability distribution on outputs. We give
its operational semantics in temrs of Segala automata. In Section A.9, we recall
the probabilistic event structures of [VVW06], with some minor modifications,
and we use them to give a semantics to the calculus. In Section A.10, we show
the correspondence between the event structures semantics and the Segala au-
tomata semantics, and we state the probabilistic confluence result. Section A.11
presents some related and future works. Finally, in Section A.12 we detail the
proofs of the theorems and propositions.

A.2 A linear version of the π-calculus

This section briefly summarises an extension of linear version of the π-calculus
in [BHY01] to non-determinism [Yos02]. The reader may refer to [BHY01, Yos02]
for a more detailed description and more examples.

A.2.1 Syntax and reduction

As anticipated, we consider a restricted version of the π-calculus [Mil99], where
only bound names are passed in interaction. The resulting calculus is called the
πI-calculus in the literature [San95]. Syntactically we restrict all outputs to be
of the form (ν ỹ)x〈ỹ〉.P (where ỹ represents a tuple of pairwise distinct names),
which we henceforth write x(ỹ).P . We consider a version of the calculus more
general than the one presented in [BHY01], in that both input and output are
nondeterministic. Nondeterministic input is called branching, and it is already
present in [BHY01], while nondeterministic output, called selection, is a nov-
elty of this work. Branching is similar to the “case” construct and selection is
“injection” in the typed λ-calculi ; these constructs have been studied in other
typed π-calculi [Vas94]. The formal grammar of the calculus is defined below.
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P ::= x
�
i∈I ini(ỹi).Pi | x

⊕
i∈I ini(ỹi).Pi

| P |Q | (ν x)P | 0 | !x(ỹ).P

The process x
�
i∈I ini(ỹi).Pi (resp. x

⊕
i∈I ini(ỹi).Pi) is a branching input

(resp. selecting output), where I denotes a finite or countably infinite indexing
set. The names in ỹi are bound in the continuation Pi. The process !x(ỹ).P
is a replicated input, binding ỹ. P | Q is a parallel composition and (ν x)P is
a restriction that binds x. We omit the empty tuple : for example, x stands
for x(). When the index in the branching indexing set is a singleton we use the
notation x(ỹ).P when it is binary, we write x((ỹ1).P1&(ỹ2).P2) (and similarly for
selection). Notions of bound/free names, α− and structural equivalences, and
of evaluation contexts are defined as usual [Mil99, BHY01, YBH01, HY95].

Processes where all selection indexing sets are singletons are called determin-
istic. Deterministic processes where also branching indexing sets are singletons
are called simple.

The reduction semantics is as follows :

x
�
i∈I ini(ỹi).Pi | x

⊕
j∈J inj(ỹj).Qj −→ (ν ỹh)(Ph |Qh) (h ∈ I ∩ J)

!x(ỹ).P | x(ỹ).Q −→ !x(ỹ).P | (ν ỹ)(P |Q)

closed under evaluation contexts and structural equivalence. A nondeterminis-
tic branching synchronises with a selection on one of the common branches, the
communicated names are restricted, and the continuations triggered. An out-
put can also synchronise with a replicated server which is still present after the
reduction. Note that α-conversion may be necessary for two processes to syn-
chronise. For instance, consider the process x(y).P | x(z).Q. Assuming y is fresh
for Q, it can be α-converted to x(y).P | x(y).Q[y/z], allowing synchronisation.

A.2.2 Types and typings

The linear type discipline restricts the behaviour of processes as follows.

(A) for each linear name there are a unique input and a unique output ; and

(B) for each replicated name there is a unique replicated input with zero or
more dual outputs.

In the context of deterministic processes, the typing system guarantees conflu-
ence. We will see that in the presence of nondeterminism this typing system
guarantees confusion freeness.

As an example for the first condition, let us consider :

Q1
def
= x.y | x.z | x Q2

def
= y.x | z.y | x.(z | w)

Then Q1 is not typable as x appears twice as output, while Q2 is typable since
each channel appears at most once as input and output. Typability of simple
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processes such as Q2 offers only deterministic behaviour. However branching
and selection can provide non-deterministic behaviour, preserving linearity :

Q3
def
= x.(y ⊕ z) | x.(w & v)

Q3 is typable, and we have either Q3 −→ (y |w) or Q3 −→ (z |v). As an example
of the second constraint, let us consider the following two processes :

Q4
def
= ! y.x | ! y.z Q5

def
= ! y.x | y | ! z.y

Q4 is untypable because y is associated with two replicators : but Q5 is typable
since, while output at y appears twice, a replicated input at y appears only
once.

Channel types are inductively made up from type variables and action modes :
the two input modes ↓, !, and the two output modes ↑, ?. We let p, p′, . . . denote
modes. We define p, the dual of p, by : ↓ =↑, ! = ? and p = p. Then the syntax
of types is given as follows :

σ ::=
�
i∈I (σ̃i)

↓ |
⊕

i∈I (σ̃i)
↑ | (σ̃)! | (σ̃)?

(branching) (selection) (offer) (request)
τ ::= σ | l (closed type)

where σ̃ is a tuple of types. We write MD(τ) for the outermost mode of τ . The
dual of τ , written τ , is the result of dualising all action modes, with l being
self-dual. A type environment Γ is a finite mapping from channels to channel
types. Sometimes we will write x ∈ Γ to mean x ∈ Dom(Γ).

Types restrict the composability of processes : if P is typed under envi-
ronment Γ1, Q is typed under Γ2 and if Γ1,Γ2 are “compatible”, then a new
environment Γ1 � Γ2 is defined, such that P |Q is typed under Γ1 � Γ2. If the
environments are not compatible, Γ1�Γ2 is not defined and the parallel compo-
sition cannot be typed. Formally, we introduce a partial commutative operation
� on types, defined as follows :

(1) τ � τ = l with MD(τ) =↓
(2) τ � τ = τ , τ � τ = τ with MD(τ) =?

Then, the environment Γ1�Γ2 is defined homomorphically. Intuitively, the rules
in (2) say that a server should be unique, but an arbitrary number of clients can
request interactions. The rules in (1) say that once we compose input-output
linear channels, the channel becomes uncomposable. Other compositions are
undefined. The definitions (1) and (2) ensure the two constraints (A) and (B).

The rules defining typing judgments P .Γ are defined in Figure A.1. They are
identical to the affine π-calculus [BHY01] except a straightforward modification
to deal with the non-deterministic output. We refer to [BHY01] for an informal
discussion on the meaning of the rules. We just note here that, in the rule
(Par) the use of Γ1 � Γ2 guarantees the consistent channel usage. For instance
it guarantees that linear inputs are only composed with linear outputs.
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P . Γ, x : τ x 6∈ Γ MD(τ) = !, l
(ν x)P . Γ

Res
0 .∅ Zero

P . Γ x 6∈ Γ

P . Γ, x :l WeakCl

Pi . Γ, ỹi : τ̃i x 6∈ Γ I ⊆ J

x
⊕

i∈I ini(ỹi).Pi . Γ, x :
⊕

i∈J(τ̃i)
↑ LOut

P . Γ x 6∈ Γ

P . Γ, x : (τ̃)?
WeakOut

Pi . Γ, ỹi : τ̃i x 6∈ Γ

x
�
i∈I ini(ỹi).Pi . Γ, x :

�
i∈I(τ̃i)

↓ LIn
Pi . Γi (i = 1, 2)

P1 | P2 . Γ1 � Γ2
Par

P . Γ, ỹ : τ̃ x 6∈ Γ ∀(z :τ) ∈ Γ. MD(τ) =?

!x(ỹ).P . Γ, x : (τ̃)!
RIn

P . Γ, x : (τ̃)? , ỹ : τ̃

x(ỹ).P . Γ, x : (τ̃)?
ROut

Figure A.1 – Linear Typing Rules

A.2.3 A typed labelled transition relation

Typed transitions describe the observations a typed observer can make of a typed
process. The typed transition relation is a proper subset of the untyped tran-
sition relation, while not restricting τ -actions : hence typed transitions restrict
observability, not computation.

Labels are generated by the following grammar :

α, β ::= xini〈ỹ〉 | xini〈ỹ〉 | x〈ỹ〉 | x〈ỹ〉
(branching) (selection) (offer) (request)

τ ::= (x, x)ini〈ỹ〉 | (x, x)〈ỹ〉 (synchronisation)

With the notation above, we say that x is the subject of the label β, de-
noted as subj(β), while ỹ = y1, . . . , yn are the object names, denoted as obj(β).
For branching/selection labels, the index i is the branch of the label. The
notation “ini” comes from the injection of the typed λ-calculus. The par-
tial operation α • β is defined as follows : xini〈ỹi〉 • xini〈ỹi〉 = (x, x)ini〈ỹi〉,
x〈ỹ〉 •x〈ỹ〉 = (x, x)〈ỹ〉, and undefined otherwise. It is convenient, for the proofs,
to use synchronisation labels that keep track of which synchronisation took
place. However, as it is customary, we consider synchronisation transitions not
to be observable. Thus for the purpose of defining observational equivalences,
all τ -labels will be identified.

The standard untyped transition relation is defined in Figure A.2. We de-
fine the predicate “Γ allows β” which represents how an environment restricts
observability :

– for all Γ, Γ allows τ ;
– if MD(Γ(x)) =↓, then Γ allows xini〈ỹ〉 ;
– if MD(Γ(x)) =↑, then Γ allows xini〈ỹ〉 ;
– if MD(Γ(x)) = !, then Γ allows x〈ỹ〉 ;
– if MD(Γ(x)) = ?, then Γ allows x〈ỹ〉.
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x
⊕

i∈I(ỹi).Pi
x̄inj〈ỹj〉−→ Pj x

�
i∈I(ỹi).Pi

xinj〈ỹj〉−→ Pj

!x(ỹ).P
x〈ỹ〉−→P | !x(ỹ).P x(ỹ).P

x〈ỹ〉−→P

P
β−→P ′

P |Q β−→P ′ |Q

P
α−→P ′ Q β−→Q′ obj(α) = ỹ

P |Qα•β−→(ν ỹ)(P ′ |Q′)

P
β−→P ′ subj(β) 6= x

(ν x)P
β−→(ν x)P ′

P ≡α P ′ P
β−→Q

P ′
β−→Q

Figure A.2 – Labelled Transition System for the πI-Calculus

Whenever Γ allows β, we define a new environment Γ \ β as follows :
– for all Γ, Γ \ τ = Γ ;
– if Γ = ∆, x :

�
i∈I (τ̃i)

↓, then Γ \ xini〈ỹ〉 = ∆, ỹ : τ̃ ;

– if Γ = ∆, x :
⊕

i∈I(τ̃i)
↑, then Γ \ xini〈ỹ〉 = ∆, ỹ : τ̃ ;

– if Γ = ∆, x : (τ̃)! , then Γ \ x〈ỹ〉 = Γ, ỹ : τ̃ ;
– if Γ = ∆, x : (τ̃)? , then Γ \ x〈ỹ〉 = Γ, ỹ : τ̃ .

The environment Γ\β represents what remains of Γ after the transition labelled
by β has happened. Linear channels are consumed, while replicated channels are
not consumed. The new previously bound channels are released.

The typed transition, written P . Γ
β−→ Q . Γ′ is defined by

if P
β−→Q and Γ allows β then P . Γ

β−→Q . Γ \ β

The above rule does not allow a linear input action and an output action
when there is a complementary channel in the process. For example, if a process
has x : (τ̃)! in its action type, then output at x is excluded since such actions can
never be observed in a typed context – cf. [BHY01]. For a concrete example,
consider the process x.y | y.x which is typed in the environment x :l, y :l.
Although the process has some untyped transitions, none of them is allowed by
the environment.

By induction on the rules in Figure A.2, we can obtain :

Proposition A.2.1.

– If P . Γ, P
β−→Q and Γ allows β, then Q . Γ \ β.

– (Subject reduction) If P . Γ and P
τ−→Q, then Q . Γ.
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– (Church Rosser for deterministic processes) Suppose P .Γ and P is deter-

ministic. Assume P
τ−→Q1, and P

τ−→Q2. Then Q1 ≡α Q2 or there exists
R such that Q1

τ−→R and Q2
τ−→R.



58 ANNEXE A. EVENT STRUCTURES FOR TYPED π

Finally we define the notion of typed bisimulation. Let R be a symmetric
relation between judgments such that if (P .Γ)R (P ′ .Γ′), then Γ = Γ′. We say
that R is a bisimulation if the following is satisfied :

– whenever (P . Γ)R (P ′ . Γ), P . Γ
β−→Q . Γ \ β, then there exists Q′ such

that P ′ . Γ
β−→Q′ . Γ \ β, and (Q . Γ \ β)R (Q′ . Γ \ β).

As anticipated, in the above definition we allow a τ label to be matched by a
different τ label. The identities of different τ labels are considered only in some
of the proofs.

If there exists a bisimulation between two judgments, we say that they are
bisimilar (P . Γ) ≈ (P ′ . Γ). It can be proved that ≈ is a congruent relation.
The proof is analogous to the one in Appendix C.3 of [YBH01].

A.3 Event structures

Event structures were introduced by Nielsen, Plotkin and Winskel [NPW81,
Win80], and have been subject of several studies since. They appear in different
forms. The one we introduce in this work is sometimes referred to as prime event
structures [Win87]. For the relations of event structures with other models for
concurrency, the standard reference is [WN95].

A.3.1 Basic definitions

An event structure is a triple E = 〈E,≤,^〉 such that
– E is a countable set of events ;
– 〈E,≤〉 is a partial order, called the causal order ;
– for every e ∈ E, the set [e) := {e′ | e′ < e}, called the enabling set of e, is

finite ;
– ^ is an irreflexive and symmetric relation, called the conflict relation,

satisfying the following : for every e1, e2, e3 ∈ E if e1 ≤ e2 and e1 ^ e3

then e2 ^ e3.
The reflexive closure of conflict is denoted by �. We say that the conflict e2 ^ e3

is inherited from the conflict e1 ^ e3, when e1 < e2. If a conflict e1 ^ e2 is
not inherited from any other conflict we say that it is immediate, denoted by
e1 ^µ e2. The reflexive closure of immediate conflict is denoted by �µ. If two
events are not causally related nor in conflict they are said to be concurrent.
The set of maximal elements of [e) is denoted by parents(e). A configuration
x of an event structure E is a conflict free downward closed subset of E, i.e. a
subset x of E satisfying : (1) if e ∈ x then [e) ⊆ x and (2) for every e, e′ ∈ x, it
is not the case that e ^ e′. Therefore, two events of a configuration are either
causally dependent or concurrent, i.e., a configuration represents a run of an
event structure where events are partially ordered. The set of configurations of
E , partially ordered by inclusion, is denoted as L(E). It is a coherent ω-algebraic
domain [NPW81], whose compact elements are the finite configurations.

A labelled event structure is an event structure E together with a labelling
function λ : E → L, where L is a set of labels. Events should be thought of
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as occurrences of actions. Labels allow us to identify events which represent
different occurrences of the same action. Labels are also essential in defining
the parallel composition, and play a major role in the typed setting. A labelled
event structure generates a labelled transition system as follows.

Definition A.3.1. Let E = 〈E,≤,^, λ〉 be a labelled event structure and let
e be one of its minimal events. The event structure Ebe = 〈E′,≤′,^′, λ′〉 is
defined by : E′ = {e′ ∈ E | e′ 6� e}, ≤′=≤|E′ , ^′=^|E′ , and λ′ = λE′ .

Roughly speaking, Ebe is E minus the event e, and minus all events that are
in conflict with e. We can then generate a labelled transition system on event
structures as follows : if λ(e) = β, then

E β−→Ebe .

The reachable transition system with initial state E is denoted as TS(E).

A.3.2 Conflict free and confusion free event structures

An interesting subclass of event structures is the following.

Definition A.3.2. An event structure is conflict free if its conflict relation is
empty.

Conflict freeness is the true concurrent version of confluence. Indeed it is
easy to verify that if E is conflict free, then TS(E) is confluent.

As informally explained, in a confusion free event structure every conflict is
localised. To specify what “local” means in this context, we need the notion of
cell, a set of pairwise conflicting events with the same causal predecessors.

Definition A.3.3. A partial cell is a set c of events such that e, e′ ∈ c implies
e �µ e′ and [e) = [e′). A maximal partial cell is called a cell.

In general, two events in immediate conflicts need not belong to the same
cell. If a cell is thought of as a location, this means that not all conflicts are
localised. This leads us to the following definition.

Definition A.3.4. An event structure is confusion free if its cells are closed
under immediate conflict.

Equivalently, in a confusion free event structure reflexive immediate conflict
is an equivalence relation with cells as its equivalence classes [VVW04].

A.3.3 A category of event structures

Event structures form the class of objects of a category [WN95]. The morphisms
are defined as follows. Let E1 = 〈E1,≤1,^1〉, E2 = 〈E2,≤2,^2〉 be two event
structures. A morphism f : E1 → E2 is a partial function f : E1 → E2 such that
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– f preserves configurations : if x is a configuration of E1, then f(x) is a
configuration of E2 ;

– f is locally injective : let x be a configuration of E1, if e, e′ ∈ x and
f(e), f(e′) are both defined with f(e) = f(e′), then e = e′.

It is straightforward to verify that the identity is a morphism and that
morphisms compose, so that what we obtain is indeed a category.

Morphisms reflect conflict and causality and preserve concurrency. They can
be equivalently characterised as follows.

Proposition A.3.5 ([WN95]). A partial function f : E1 → E2 is a morphism
of event structures f : E1 → E2 if and only if the following are satisfied :

– f reflects causality : if f(e1) is defined, then [f(e1)] ⊆ f([e1]) ;
– f reflect reflexive conflict : if f(e1), f(e2) are defined, and if f(e1) � f(e2),

then e1 � e2.

There are various ways of dealing with labels. For the general treatment we
refer to [WN95]. Here we present the simplest notion : take two labelled event
structures E1 = 〈E1,≤1,^1, λ1〉, E2 = 〈E2,≤2,^2, λ2〉 on the same set of labels
L. A morphism f : E1 → E2 is said to be label preserving if, whenever f(e1) is
defined, λ2(f(e1)) = λ1(e1).

A.3.4 Operators on event structures

We can define several operations on labelled event structures.
– Prefixing α.E , where E = 〈E,≤,^, λ〉. It is the event structure 〈E′,≤′
,^′, λ′〉, where E′ = E ] {e′} for some new event e′, ≤′ coincides with ≤
on E and moreover, for every e ∈ E we have e′ ≤ e, the conflict relation
^′ coincides with ^, that is e′ is in conflict with no event. Finally λ′

coincides with λ on E and λ′(e′) = α. Intuitively, we add a new initial
event, labelled by α.

– Prefixed sum
∑
i∈I αi.Ei. This is obtained by disjoint union of copies of

the event structures αi.Ei, where the order relation is the disjoint union
of the orders, the labelling function is the disjoint union of the labelling
functions, and the conflict is the disjoint union of the conflicts extended
by putting in conflict every two events in two different copies. This is a
generalisation of prefixing, where we add an initial cell, instead of an initial
event.

– Restriction E \X where E = 〈E,≤,^, λ〉 and X ⊆ L is a set of labels. This
is obtained by removing from E all events with label in X and all events
that are above one of those. On the remaining events, order, conflict and
labelling are unchanged.

– Relabelling E [f ]. This is just composing the labelling function λ with a
function f : L → L. The new event structure has thus labelling function
f ◦ λ.

It is easy to verify that all these constructions preserve the class of confusion
free event structures. Also, with the obvious exception of the prefixed sum, they
preserve the class of conflict free event structures
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A.3.5 The parallel composition

The parallel composition of event structures is defined in [WN95] as the categor-
ical product followed by restriction and relabelling. The existence of the product
is deduced via general categorical arguments, but not explicitly constructed.

In order to carry out our proofs, we needed a more concrete representation
of the product. We have devised such a representation, which is inspired by the
one given in [DDM88], but which is more suitable to an inductive reasoning.

Let E1 := 〈E1,≤1,^1〉 and E2 := 〈E2,≤2,^2〉 be two event structures.
Let E∗i := Ei ] {∗}. Consider the set Ẽ obtained as the initial solution of the
equation X = Pfin(X) × E∗1 × E∗2 . Its elements have the form (x, e1, e2) for x

finite, x ⊆ Ẽ. Initiality allows us to define inductively a notion of height of an
element of Ẽ as

h(∅, e1, e2) = 0 and h(x, e1, e2) = max{h(e) | e ∈ x}+ 1

Most of our reasoning will be by induction on the height of the elements. We now
carve out of Ẽ a set E which will be the support of our product event structure
E . At the same time we define the order relation and the conflict relation on E .

Base : we have that (∅, e1, e2) ∈ E if
– e1 ∈ E1, e2 ∈ E2, and e1 minimal in E1, e2 minimal in E2 or
– e1 ∈ E1, e2 = ∗ and e1 minimal in E1 or
– e1 = ∗, e2 ∈ E2 and e2 minimal in E2.
The order on the elements of height 0 is trivial.
Finally we have (∅, e1, e2) � (∅, d1, d2) if e1 � d1 or e2 � d2.
Inductive Case : assume that all elements in E of height ≤ n have been

defined. Assume that an order relation and a conflict relation has been defined
on them. Let (x, e1, e2) be of height n+ 1. Let y be the set of maximal elements
of x. Let y1 = {d1 ∈ E1 | (z, d1, d2) ∈ y} and y2 = {d2 ∈ E2 | (z, d1, d2) ∈ y},
be the projections of y onto the two components. We have that (x, e1, e2) ∈ E
if x is downward closed and conflict free, and furthermore :

– Suppose e1 ∈ E1, e2 = ∗. Then it must be the case that y1 = parents(e1).
– Suppose e2 ∈ E2, e1 = ∗. Then it must be the case that y2 = parents(e2).
– Suppose e1 ∈ E1, e2 ∈ E2. Then

– if (z, d1, d2) ∈ y, then either d1 ∈ parents(e1) or d2 ∈ parents(e2) ;
– for all d1 ∈ parents(e1), there exists (z, d1, d2) ∈ x ;
– for all d2 ∈ parents(e2) there exists (z, d1, d2) ∈ x.

– Let x1 = {d1 ∈ E1 | (z, d1, d2) ∈ x} and x2 = {d2 ∈ E2 | (z, d1, d2) ∈ x}.
Then for no d1 ∈ x1, d1 � e1 and for no d2 ∈ x2, d2 � e2.

The partial order is extended by e ≤ (x, e1, e2) if e ∈ x, or e = (x, e1, e2).
Note that if e < e′ then h(e) < h(e′).

For the conflict, let e = (x, e1, e2) and d = (z, d1, d2), with either h(e) = n+1
or h(d) = n+ 1 or both. Then we define e ^ d if one of the following holds :

– e1 � d1 or e2 � d2, and e 6= d ;
– there exists e′ = (x′, e′1, e

′
2) ∈ x such that e′1 � d1 or e′2 � d2, and e′ 6= d ;

– there exists d′ = (z′, d′1, d
′
2) ∈ z such that e1 � d′1 or e2 � d′2, and e 6= d′ ;

– there exists e ∈ x, d ∈ z such that e ^ d.
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As the following lemma shows, some of the clauses above are redundant, but
are kept for simplicity.

Lemma A.3.6 (Stability). If (x, e1, e2), (x′, e1, e2) ∈ E and x 6= x′, then there
exist d ∈ x, d′ ∈ x′ such that d ^ d′.

Now we are ready to state the main new result of this section : take two
event structures E1, E2, and let E = 〈E,≤,^〉 be defined as above. Then we
have :

Theorem A.3.7. The structure E is an event structure and it is the categorical
product of E1, E2.

We will not make explicit use of the properties of the categorical product,
except that projections preserve configurations. However Theorem A.3.7 is nec-
essary to fit in the general framework of models for concurrency, and to avoid
building “ad hoc” models.

For event structures with labels in L, the labelling function of the prod-
uct takes on the set L∗ × L∗, where L∗ := L ] {∗}. We define λ(x, e1, e2) =
(λ∗1(e1), λ∗2(e2)), where λ∗i (ei) = λi(ei) if ei 6= ∗, and λ∗i (∗) = ∗. A synchronisa-
tion algebra S is given by a partial binary operation •S defined on L∗ [WN95].
Given two labelled event structures E1, E2, the parallel composition E1‖SE2
is defined as the categorical product followed by restriction and relabelling :
(E1×E2 \X)[f ] where X is the set of pairs (α1, α2) ∈ L∗×L∗ for which α1 •S α2

is undefined, while the function f : is defined as f(α1, α2) = α1 •S α2. The
subscripts S are omitted when the synchronisation algebra is clear from the
context.

The simplest possible synchronisation algebra is defined as α•∗ = ∗•α = α,
and undefined in all other cases. In this particular case, the induced parallel
composition can be represented as the disjoint union of the sets of events, of
the causal orders, and of the conflict. This can be also generalised to an arbi-
trary family of event structures (Ei)i∈I . In such a case we denote the parallel
composition as

∏
i∈I Ei.

Parallel composition does not preserve in general the classes of conflict free
and confusion free event structures. New conflicts can be created through syn-
chronisation. One of the main reasons to devise a typing system for event struc-
tures is to guarantee the preservation of these two important behavioural prop-
erties.

A.3.6 Examples of event structures

We collect in this section a series of examples, with graphical representation.

Example A.3.1. Consider the following event structures E1, E2, E3, defined on
the same set of events E := {a, b, c, d, e}. In E1, we have a ≤ b, c, d, e and
b ^µ c, c ^µ d, b ^µ d. In E2, we do not have a ≤ d, while in E3, we do
not have b ^µ d. The three event structures are represented in Figure A.3,
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where curly lines represent immediate conflict, while the causal order proceeds
upwards along the straight lines.

The event structure E1 is confusion free, with three cells : {a}, {b, c, d}, {e}.
In E2, there are four cells : {a}, {b, c}, {d}, {e}. E2 is not confusion free, because
some cells are not closed under immediate conflict. This is an example of asym-
metric confusion [RE96]. In E3 there are four cells : {a}, {b, c}, {c, d}, {e}. E3
is not confusion free, because immediate conflict is not transitive. This is an
example of symmetric confusion.
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&f&f&f d
x8 x8 x8 e b /o/o/o/o/o/o

&f&f&f d
x8 x8 x8 e b

&f&f&f d
x8 x8 x8 e

c c c

a

44444444

									

xxxxxxxxxxxxx
a

44444444

xxxxxxxxxxxxx
a

44444444

									

xxxxxxxxxxxxx

E1 E2 E3

Figure A.3 – Event structures
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Figure A.4 – Parallel composition of event structures
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Example A.3.2. Next we show an example of parallel composition, see Fig-
ure A.4. Consider the two labelled event structures E4, E5, where E4 = {a, b}, E5 =
{a′}, conflict and order being trivial, and λ(a) = α, λ(b) = β, λ(a′) = α. Con-
sider the symmetric synchronisation algebra α • α = τ , α • ∗ = α, α • ∗ = α,
β • ∗ = β and undefined otherwise. Then E6 := E4‖E5 is as follows : E6 = {e :=
(∅, a, ∗), e′ := (∅, ∗, a′), e′′ := (∅, a, a′), d := ({e}, a′, ∗), d′′ := ({e′′}, a′, ∗)},
with the ordering defined as e ≤ d, e′′ ≤ d′′, while the conflict is defined as
e ^ e′′, e′ ^ e′′, e ^ d′′, e′ ^ d′′, e′′ ^ d, d ^ d′′. The labelling function is
λ(e) = α, λ(e′) = α, λ(e′′) = τ , λ(d) = λ(d′′) = β. Note that, while E4, E5 are
confusion free, E6 is not, since reflexive immediate conflict is not transitive.

Example A.3.3. Finally we show two examples of morphisms. First, consider
the two event structures E7, E8 defined as follows :

– E7 = {a′, b′, c′, d′, e′, a′′, b′′, c′′, d′′} with a′ ^µ a
′′ b′ ^µ c

′, d′ ^µ e
′, b′′ ^µ

c′′ and a′ ≤ b′, c′, d′, e′ and a′′ ≤ b′′, c′′, d′′.
– E8 = {b, c, d, e} with b ^µ c, d ^µ e, and trivial ordering.

Note that both E7 and E8 are confusion free.
We define a morphism f : E7 → E8 by putting f(x′) = f(x′′) = x for

x = b, c, d, e while f is undefined on a′, a′′. Note that b′ and b′′ are mapped to
the same element b, and they are indeed in conflict, because they inherit the
conflict a′ ^ a′′.

For another example consider the two event structures E9, E10, where E9 =
E10 = {a, b}, both have empty conflict, and in E9 we have a ≤ b. The identity
function on {a, b} is a morphism E9 → E10 but not vice versa. We can say that
the causal order of E9 refines the causal order of E10.

A.4 Typed event structures

In this section we present a notion of types for an event structure, which are
inspired from the types for the linear π-calculus. Every such type is represented
by an event structure which interprets the causality between the names con-
tained in the type. We then assign types to event structures by allowing a more
general notion of causality.

A.4.1 Types and environments

Types and type environments are generated by the following grammar

Γ,∆ ::= y1 : σ1, . . . , yn : σn (type environment)
τ, σ ::=

�
i∈I Γi (branching)

|
⊕

i∈I Γi (selection)
|

⊗
i∈I Γi (offer)

|
⊎
i∈I Γi (request)

| l (closed type)

A type environment Γ is well formed if any name appears at most once. Only well
formed environments are considered for typing event structures. An environment
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can also be thought of as a partial function from names to types. In this view
we can talk of domain and range of an environment.

We say a name is confidential for a type environment Γ if it appears inside
a type in the range of Γ. A name is public if it is in the domain of Γ. Intuitively,
confidential names are used to identify different occurrences of events that have
the same public label. We will see this explicitly when we introduce the event
structure semantics. Technically, in client and server types, we also require the
enviroments Γi to be nonempty in order to distinguish different components.
This is not restrictive, as we can always introduce “dummy” names.

The form of event structures types and environments is similar to those of the
π-calculus. In the π-calculus we only keep track of the types of the object names,
as their precise identity is irrelevant. In event structure types we recursively keep
track not only of the types, but also of the identity of the confidential names.
Moreover server and client types explicitly represent each copy of the resource.

Branching types represent the notion of “environmental choice” : several
choices are available for the environment to choose. Selection types represent
the notion of “process choice” : some choice is made by the process. In both
cases the choice is alternative : one excludes all the others. Server types represent
the notion of “available resource” : I offer to the environment something that is
available regardless of whatever else happens. Client types represent the notion
of “concurrent request” : I want to reserve a resource that I may use at any
time.

It is straightforward to define duality between types by exchanging branch-
ing and offer, with selection and request, respectively. Therefore, for every type
τ and environment Γ, we can define their dual τ , Γ. However types and environ-
ments enjoy a more general notion of duality that is expressed by the following
definition. We define a notion of matching for types. The matching of two types
also produces a set of names that are to be considered as “closed”, as they have
met their dual. Finally, after two types have matched, they produce a “residual”
type.

We define the relations match[τ, σ]→ S, match[Γ,∆]→ S symmetric in the
first two arguments, and the partial function res[τ, σ] as follows :

– let Γ = x1 : σ1 . . . xn : σn and ∆ = y1 : τ1 . . . ym : τm. Then match[Γ,∆]→
S if n = m, for every i ≤ n xi = yi, match[σi, τi]→ Si and S =

⋃
i≤n Si ∪

{xi} ;
– let τ =

�
i∈I Γi and σ =

⊕
j∈J ∆j . Then match[τ, σ]→ S if I = J , for all

i ∈ I, match[Γi,∆i]→ Si and S =
⋃
i∈I Si In such a case res[τ, σ] =l ;

– let τ =
⊗

i∈I Γi and σ =
⊎
j∈J Γj Then match[τ, σ] → S if J ⊆ I,

for all j ∈ J , match[Γj ,∆j ] → Sj , and S =
⋃
j∈J Sj In such a case

res[τ, σ] =
⊗

i∈I\J Γi.

– match[l, l]→ ∅, res[l, l] =l.
A branching type matches a corresponding selection types, all their names

are closed and the residual type is the special type recording that the matching
has taken place. A client type matches a server type if every request corresponds
to an available resource. The residual type records which resources are still
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available.
We now define the composition of two environments. Two environments

can be composed if the types of the common names match. Such names are
given the residual type by the resulting environment. All the closed names are
recorded. Client types can be joined, so that the two environments are allowed
to independently reserve some resources. Given two type environments Γ1,Γ2

we define the environment Γ1 � Γ2
def
= Γ and the set of names cl(Γ1,Γ2) as

follows :
– if x 6∈ Dom(Γ1) and no name in Γ2(x) appears in Γ1, then Γ(x) = Γ2(x),
Sx = ∅ and symmetrically ;

– if Γ1(x) = τ,Γ2(x) = σ and match[τ, σ] → S, then Γ(x) = res[τ, σ] and
Sx = S ;

– if Γ1(x) =
⊎
i∈I ∆i and Γ2(x) =

⊎
j∈J ∆j and no name appears in both ∆i

and ∆j for every i, j ∈ I ∪J we have then Γ(x) =
⊎
i∈I∪J ∆i and Sx = ∅ ;

– if any of the other cases arises, then Γ is not defined ;
– cl(Γ1,Γ2) =

⋃
x∈Dom(Γ1,Γ2) Sx.

A.4.2 Semantic of types

Type environments are given a semantics in terms of labelled confusion free
event structures.

The labels are the ones described in the Section A.2. Labels can be allowed
or disallowed by a type environments, similarly to the π-calculus case, but re-
cursively considering the confidential names. Consider a label α, an environment
Γ, and suppose Γ(x) = σ, then :

– if α = xinj〈ỹ〉, and if σ =
�
i∈I Γi where ỹ is the domain of Γj , then α is

allowed by Γ ;
– if α = xinj〈ỹ〉, and if σ =

⊕
i∈I Γi where ỹ is the domain of Γj then α is

allowed by Γ ;
– if α = x〈ỹ〉, and if σ =

⊗
i∈I Γi where ỹ is the domain of Γj then α is

allowed by Γ ;
– if α = x〈ỹ〉, and if σ =

⊎
i∈I Γi where ỹ is the domain of Γj then α is

allowed by Γ ;
– if α = τ , then α is allowed by Γ ;
– if α is allowed by any of the environments appearing in the types in the

range of Γ, then α is allowed by Γ.
Note that if a label is allowed, the definition of well-formedness guarantees

that it is allowed in a unique way. Note also that if a label α has subject x and
x does not appear in Γ, then α is not allowed by Γ. Let Dis(Γ) be the set of
labels that are not allowed by the environment Γ.

The semantics of types is presented in Figure A.6, where we assume that
ỹi represents the sequence of names in the domain of Γi. A name used for
branching/selection identifies a cell. A name used for offer/request identifies a
“cluster” of parallel events. The semantics of selection and branching is obtained
using the sum of event structures. The semantics of client and server is given
using the parallel composition. To define the parallel composition, we use a sym-
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[[y1 : σ1, . . . , yn : σn]] = [[y1 : σ1]]‖ . . . ‖[[yn : σn]]

[[x :
�
i∈I Γi]] =

∑
i∈I xini〈ỹi〉.[[Γi]] [[x :

⊕
i∈I Γi]] =

∑
i∈I xini〈ỹi〉.[[Γi]]

[[x :
⊗

i∈I Γi]] =
∏
i∈I x〈ỹi〉.[[Γi]] [[x :

⊎
i∈I Γi]] =

∏
i∈I x〈ỹi〉.[[Γi]]

[[x :l]] = ∅

Figure A.6 – Denotational semantics of types

metric synchronisation algebra which extends the one defined in Section A.2 :
α • ∗ = α, xini〈ỹi〉 • xini〈ỹi〉 = (x, x)ini〈ỹi〉, x〈ỹ〉 • x〈ỹ〉 = (x, x)〈ỹ〉, and unde-
fined otherwise. Also the semantics of an environment is obtained as the parallel
composition of the semantics of the types, with initial events labelled using the
corresponding names. Such parallel compositions do not involve synchronisation
due to the condition on uniqueness of names and thus, as we already explained,
they can be thought of as disjoint unions.

The following result is a sanity check for our definitions. It shows that match-
ing of types corresponds to parallel composition with synchronisation.

Proposition A.4.1. Take two environments Γ1,Γ2, and suppose Γ1 � Γ2 is
defined. Then ([[Γ1]]‖[[Γ2]]) \ (Dis(Γ1 � Γ2) ∪ τ ) = [[Γ1 � Γ2]].

A.4.3 Typing event structures

Given a labelled confusion free event structure E on the same set of labels as
above, we define when E is typed in the environment Γ, written as E . Γ. A
type environment Γ defines a general behavioural pattern via its semantics [[Γ]].
The intuition is that for an event structure E to have type Γ, E should follow
the pattern of [[Γ]], possibly “refining” the causal structure of [[Γ]] and possibly
omitting some of its actions.

Definition A.4.2. We say that E . Γ, if the following conditions are satisfied :
– each cell in E is labelled by x, x or (x, x), and labels of the events corre-

spond to the label of their cell in the obvious way ;
– there exists a label-preserving morphism of labelled event structures
f : E → [[Γ]] such that f(e) is undefined if and only if λ(e) ∈ τ .

Roughly speaking a confusion free event structure E has type Γ if cells are
partitioned into branching, selection, request, offer and synchronisation cells,
all the non-synchronisation events of E are represented in Γ and causality in E
refines causality in [[Γ]].

As we said, the parallel composition of confusion free event structures is not
confusion free in general. The main result of this section shows that the parallel
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Figure A.7 – Typed event structure

composition of typed event structures is still confusion free, and moreover is
typed.

Lemma A.4.3. Suppose E . Γ, and let e, e′ ∈ E be distinct events.
– If λ(e) = λ(e′) 6= τ , then e ^ e′.
– If λ(e), λ(e′) 6= τ and λ(e) and λ(e′) have the same subject and different

branch,then e ^ e′.
– If e ^µ e

′, then λ(e) and λ(e′) have the same subject and different branch.

Theorem A.4.4. Take two labelled confusion free event structures E1, E2. Sup-
pose E1.Γ1 and E2.Γ2. Assume Γ1�Γ2 is defined. Then (E1‖E2)\(Dis(Γ1�Γ2))
is confusion free and (E1‖E2) \ (Dis(Γ1 � Γ2)) . Γ1 � Γ2 .

The proof relies on the fact that the typing system, in particular the unique-
ness condition on well formed environments, guarantees that no new conflict is
introduced through synchronisation.

Special cases are obtained when some or all cells are singletons. We call
a typed event structure deterministic if its selection cells and its τ cells are
singletons. We call a typed event structure simple if all its cells are singletons.
In particular, a simple event structure is conflict free.

Theorem A.4.5. Take two labelled deterministic (resp. simple) event structures
E1 . Γ1 and E2 . Γ2. Suppose Γ1 � Γ2 is defined. Then (E1‖E2) \Dis(Γ1 � Γ2) is
deterministic (resp. simple).

A.4.4 Examples

In the following, when the indexing set of a branching type is a singleton, we
use the abbreviation (Γ)↓. Similarly, for a singleton selection type we write (Γ)↑.
When the indexing set of a type is {1, 2}, we write (Γ1&Γ2) or (Γ1 ⊗ Γ2).

Example A.4.1. Consider the types τ1 = (x : ()↓ & y : ()↓), σ1 =
⊎
i∈{2}(zi :l)

τ2 = (x : ()↑ ⊕ y : ()↑), σ2 =
⊗

i∈{1,2,3}(zi :l). We have match[τ1, τ2], with

res[τ1, τ2] =l ; and match[σ1, σ2], with res[σ1, σ2] =
⊗

i∈{2}(zi :l). If we put
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Γ1 = a : τ1, b : σ1, and Γ2 = a : τ2, b : σ2, we have that Γ1 � Γ2 = a :l, b :⊗
i∈{1,3}(zi :l).

Example A.4.2. As an example of typed event structures, consider the envi-
ronment Γ = a : (x : ()↓ & y : ()↓), b :

⊎
i∈{1}(zi : ()↑). Figure A.7 shows an

event structure E , such that E . Γ, together with a morphism E → [[Γ]]. Note
that the two events in E labelled with b〈z1〉 are mapped to the same event and
indeed they are in conflict.

A.5 Name sharing CCS

Our goal is to use typed event structures to interpret the linearly typed π-
calculus. We would like this interpretation to be similar, in a sense to extend,
Winskel’s semantics of CCS [Win82]. However we face two main difficulties.

The first problem is that Winskel’s semantics is strictly related to the la-
belled transition semantics of CCS. The labelled transition semantics of the
π-calculus is more complex, and in particular the communication rule involves α-
conversion. This rule seems difficult to represent using the available techniques.
The second problem is that we want to use typed, and therefore confusion free,
event structures. However, even if we applied Winskel’s semantics to a frag-
ment of the π-calculus without name passing, we would obtain confused event
structures. This is due to the replicated server. If we interpret the replicated
sever as an infinite parallel composition of copies of the resource, Winskel’s se-
mantics allows each of such components to compete for the same client. This
competition creates some spurious conflicts that break confusion freeness. Al-
ternatively, we can model the server as one single resource that, after providing
its service, spawns another copy of itself. This would create another spurious
conflict between two clients to decide who is going to be served first.

To see this with an example, imagine the server to be a post office. A post
office allows a client to post a letter. How do we implement this service ? If the
post office has only one employee, that accepts one letter at a time, then two
clients could end up fighting for the right of going first. If the post office has
infinitely many employees, still two clients may fight over the same one (for
instance because she is more efficient), or two employees could fight over the
same client (because their salary is proportional to their activity).

Our solution to this problem would be to assign in advance an employee for
each client, so that when the client decides to post his letter, he knows which till
to go to. This solution has also the advantage to solve the α-conversion problem.
If we know in advance whom we are going to communicate with, we can also
decide in advance which “private” channels we are going to share. In a sense
we perform α-conversion before we start the computation, or, one could say, at
compile time.

To formalise this intutition we first introduce a variant of CCS that will
be interpreted using typed event structures. Our language differs from CCS in
many technical details, but the only relevant difference is that synchronisation
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between actions happens only if the actions share the same confidential names.
In a second moment we will see the correspondence between this calculus, and
the π-calculus.

A.5.1 Syntax

Syntactically the calculus we present is very similar to the π-calculus. Com-
munication happens along channels, and information is “passed” along such
channels. The difference between the two is in the semantics. In our variant
of CCS names are not sent from a process to another : processes decide their
confidential names before communicating, and there is not α-conversion. If the
chosen names do not coincide, the processes do not synchronise.

Another important technical difference from standard π-calculus and CCS
is that we allow infinite parallel composition and infinite restriction. The former
is necessary in order to translate replicated processes of the π-calculus. The
standard intuition in the π-calculus is that the process !P represents the parallel
composition of infinitely many copies of P . We need to represent this explicitly in
order to be able to provide each copy with different confidential names. Infinite
restriction is also necessary, because we need to restrict all confidential names
that are shared between two processes in parallel, and these are in general
infinitely many.

We call this language Name Sharing CCS, or NCCS. The syntax is as follows :

P ::= x
�
i∈I ini〈ỹi〉.Pi branching

| x
⊕

i∈I ini〈ỹi〉.Pi selection
| x〈ỹ〉.P single offer
| x〈ỹ〉.P single request
|

∏
i∈I Pi parallel composition

| P \ S restriction
| 0 zero

For the notation, we use conventions analogous to the π-calculus. Processes
are identified up to a straightforward structural congruence, which includes the
rule (P \S)\T ≡ P \(S∪T ), but no notion of α-equivalence. Names of a process
are partitioned into public and confidential, similarly to the free/bound partition
in the π-calculus. The change of name undelines the fact that α-conversion is
not allowed.

As for the π-calculus, the fragment of NCCS where the indexing sets of
branching and selection are singleton is called simple. The fragment where the
selection is always a singleton, but the branching is arbitrary is called deter-
ministic. The general language is for clarity denoted as the nondeterministic
fragment.

The operational semantics is completely analogous to the one of CCS, and it
is shown in Figure A.8. Labels are the same as for the π-calculus, and synchro-
nisation labels are globally denoted by τ . The main difference with CCS is the
presence of the confidential names that are used only for synchronisation. Note
also that only the subject of an action is taken into account for restriction.
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x
⊕

i∈I ini〈ỹi〉.Pi
xinj〈ỹj〉−→ Pj x

�
i∈I ini〈ỹi〉.Pi

xinj〈ỹj〉−→ Pj

x〈ỹ〉.P x〈ỹ〉−→P x〈ỹ〉.P x〈ỹ〉−→P

P
β−→P ′ subj(β) 6∈ S

P \ S β−→P ′ \ S
P

τ−→P ′

P \ S τ−→P ′ \ S

Pn
β−→P ′∏

i∈N Pi
β−→(
∏
i∈N\{n} Pi) | P ′

Pn
α−→P ′ Pm

β−→P ′′∏
i∈N Pi

α•β−→(
∏
i∈N\{n,m} Pi) | P ′ | P ′′

Figure A.8 – Labelled Transition System for Name Sharing CCS

Example A.5.1. For instance the process

(x〈y〉.P | x〈z〉.R) \ {x}

cannot perform any transition, because y and z do not match. The process

(x〈y〉.P | x〈y〉.Q | x〈y〉.R) \ {x}

can perform two different initial τ transitions. Since the name x is not bound,
it does not become private to the subprocesses involved in the communication.
The process

(x
�
i∈{1,2} ini.Pi | x

⊕
i∈{1,2} ini.Ri) \ {x}

can perform, nondeterministically, two τ transitions to (P1 | R1) \ {x} or to
(P2 |R2) \ {x}.

A.5.2 Typing rules

Using the notions of type and type enviroment presented in Section A.4,
we are going to present a typing system for NCCS. This typing system is very
similar to the one of the π-calculus.

Before introducing the typing rules, we have to define the operation of “par-
allel composition of environments”. This operation intuitevly combine environ-
ments for which the only possible shared public names are client requests.

Let Γh h ∈ H be a family of enviroments such that for every name x,
either for every h, Γh(x) =

⊎
kh∈Kh ∆kh , or x ∈ Dom(Γh) for at most one

h. We define Γ =
∏
h∈H Γh as follows. If for every h, Γh(x) =

⊎
kh∈Kh ∆kh ,

then Γ(x) =
⊎
kh∈Kh,h∈H ∆kh , assuming all the names involved are distinct. If

x ∈ Dom(Γh) for at most one h, then Γ(x) = Γh(x).
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A special case, which will be of particular interest when encoding the π-
calculus, is when all the Γh are different instances of the same environment,
up to renaming of the confidential names. For any set K, let FK : Names →
P(Names) be a function such that, for every name x, there is a bijection between
K and FK(x). Concretely we can represent FK(x) = {xk | k ∈ K}. In the
following we assume that each set K is associated to a unique FK , and that for
distinct x, y, FK(x) ∩ FK(y) = ∅.

Given a type τ , and an index k, define τk as follows :

•
⊗

h∈H(ỹh : τ̃h)k =
⊗

h∈H(ỹkh : τ̃kh ), where ỹh = (yi,h)i∈I and ỹkh =

(yki,h)i∈I ;

• and similarly for all other types.

Given an environment Γ, we define Γk where for every name x ∈ Dom(Γ),
Γk(x) = Γ(x)k. The environment Γ[K] is defined as

∏
k∈K Γk, and is thus defined

only when for every x ∈ Dom(Γ), MD(Γ(x)) = ?. We will also assume that all
names in the range of the substitution are fresh, in the sense that no name in the
range of FK appears in the domain of Γ. Under this assumption we easily have
that if Γ is well formed and if Γ[K] is defined, then Γ[K] is also well formed.

We are now ready to write the rules : see Figure A.9. The rule for weakening
of the client type tells us that we can request a resource even if we are not
actually using it. The rule for the selection tells us that we can choose less
than what the types offers. The parallel composition is well typed only if the
names used for communication have matching types, and if the matched names
are restricted. This makes sure that communication can happen, and that the
shared names are indeed private to the processes involved.

A.5.3 Typed semantics

The relation Γ allows β was defined in Section A.4. We also need a definition
of the environment Γ \ β, similar to the one defined in Section A.2.

– Γ \ τ = Γ ;
– if Γ = ∆, x :

�
i∈I(ỹi : τ̃i), then Γ \ xini(ỹi) = ∆, ỹi : τ̃i ;

– if Γ = ∆, x :
⊕

i∈I(ỹi : τ̃i), then Γ \ xini(ỹi) = ∆, ỹi : τ̃i ;
– if Γ = ∆, x :

⊗
h∈H]{j}(ỹh : τ̃h), then Γ\x(ỹj) = ∆, ỹj : τ̃j , x :

⊗
h∈H(ỹh :

τ̃h) ;
– if Γ = ∆, x :

⊎
h∈H]{j}(ỹh : τ̃h), then Γ \ x(ỹj) = ∆, ỹj : τ̃j , x :

⊎
h∈H(ỹh :

τ̃h).

Note that Γ \ β is defined precisely when Γ allows β. We have the following

Proposition A.5.1. If P . Γ, P
β−→Q and Γ allows β, then Q . Γ \ β.

Corollary A.5.2 (Subject Reduction). If P . Γ, P
τ−→Q then Q . Γ.
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0 .∅ Zero
P . Γ x 6∈ Γ

P . Γ, x :
⊎
h∈H Γh

WeakReq
P . Γ x 6∈ Γ

P . Γ, x :l WeakCl

Pi . Γ, ỹi : τ̃i x 6∈ Γ

x
�
i∈I ini〈ỹi〉.Pi . Γ, x :

�
i∈I(ỹi : τ̃i)

Branch

Pi . Γ, ỹi : τ̃i x 6∈ Γ I ⊆ J
x
⊕

i∈I inipi〈ỹi〉.Pi . Γ, x :
⊕

i∈J(ỹi : τ̃i)
Sel

P . Γ, w̃j : τ̃j , x :
⊎
h∈H(w̃h : τ̃h) w̃j fresh

x〈w̃j〉.P . Γ, x :
⊎
h∈H]{j}(w̃h : τ̃h)

Req

Ph . Γh, ỹh : τ̃h a 6∈ Γ∏
h∈H x〈ỹh〉.Ph .

∏
h∈H Γh, a :

⊗
h∈H(ỹh : τ̃h)

Offer

P . Γ, x : τ MD(τ) = !, l
P \ x . Γ

Res
Pi . Γi (i = 1, 2) S = cl(Γ1,Γ2)

(P1‖P2) \ S . Γ1 � Γ2
Par

Figure A.9 – Typing Rules for NCCS

Proposition A.5.1 allows us to define the notion of typed transition, written

P . Γ
β−→ Q . Γ′ by adding the constraint :

P
β−→Q Γ allows β

P . Γ
β−→Q . Γ \ β

We are going to define a notion of bisimulation which is slightly different from
one might expect. The reason is that labels, as we have presented them, contain
somehow too much information, more than a typed context should recognise.
Normal CCS bisimulation would be too fine and our full abstraction result would
fail. In principle a label should represent what a context can observe. But a typed
context cannot really take apart two processes with different confidential names.
Either the context does not synchronise on the subject of the label, and then
the confidential names do not matter. Or, if it does synchronise, the typing
rules ensure it must do it with the proper confidential names, whatever they
are. We want thus to allow processes that use different confidential names to be
identified.

In the following ρ will be a fresh injective renaming of the confidential names
of an environment ∆. In such a case then ∆[ρ] is also a well formed environment.

Definition A.5.3. Let R be a symmetric relation between judgments such that
if (P .Γ)R (P ′ .Γ′), then Γ′ = Γ[ρ], for some injective renaming ρ. We say that
R is a bisimulation up to renaming if the following is satisfied :



74 ANNEXE A. EVENT STRUCTURES FOR TYPED π

[[0 .∅]] = ∅

[[P . Γ, x :
⊎
h∈H Γh]] = [[P . Γ]]

[[P . Γ, x :l]] = [[P . Γ]]

[[P \ x . Γ]] = [[P . Γ, x : τ ]] \ {x}
[[x
⊕

i∈I ini〈ỹi〉.Pi . Γ, x :
⊕

i∈I(ỹi : τ̃i)]] =
∑
i∈I xini〈ỹi〉.[[Pi . Γ, ỹi : τ̃i]]

[[x
�
i∈I ini〈ỹi〉.Pi . Γ, x :

�
i∈I(ỹi : τ̃i)]] =

∑
i∈I xini〈ỹi〉.[[Pi . Γ, ỹi : τ̃i]]

[[x〈ỹ〉.P . Γ, x :
⊎
k∈K]{j}(ỹk : τ̃k)]] = x〈ỹ〉.[[P . Γ, x :

⊎
k∈K(ỹk : τ̃k), ỹj : τ̃j ]]

[[
∏
k∈K x〈ỹk〉.Pk .

∏
k∈K Γk, x :

⊗
k∈K(ỹk : τ̃k)]] =

∏
k∈K x〈ỹk〉.[[Pk . Γk, ỹk : τ̃k]]

[[(P1‖P2) \ S . Γ1 � Γ2]] = [[P1 . Γ1]] | [[P2 . Γ2]] \ (Dis(Γ1 � Γ2))

Figure A.10 – Denotational semantics of simple Name Sharing CCS

– whenever (P . Γ) R (P ′ . Γ′), P . Γ
β−→Q . Γ \ β, then there exists a

renaming ρ and a process Q′ such that P ′[ρ] . Γ′[ρ]
β−→Q′ . Γ[ρ′ ◦ ρ] \ β,

and (Q . Γ \ β)R (Q′ . Γ′[ρ] \ β).
If there exists a bisimulation up to renaming between two judgments, we say
that they are bisimilar (P . Γ) ≈ (P ′ . Γ′).

A.6 Event structure semantics of Name Sharing
CCS

A.6.1 Semantics of nondeterministic NCCS

The event structure semantics of typed NCCS is presented in Figure A.10.
It is given in terms of labelled event structures, using the operations, in par-
ticular the parallel composition, as defined in Section A.3.5. This construction
is perfectly analogous to the one in [WN95], the only difference being the syn-
chronisation algebra. However, since the synchronisation algebra is the same for
both the operational and the denotational semantics, we obtain automatically
the correspondence between the two, as in [WN95].

In the parallel composition, we have to restrict all the channels that are
subject of communication. More generally, we need to restrict all the actions
that are not allowed by the new type environment.

The main property of the semantics is that the denotation of a typed pro-
cess is a typed event structure. In particular all denoted event structures are
confusion free.

Theorem A.6.1. Let P be a process and Γ an environment such that P . Γ.
Then [[P . Γ]] is confusion free, and [[P . Γ]] . [[Γ]].
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A.6.2 Semantics of deterministic NCCS

The syntax of NCCS introduces the conflict explicitly, therefore we cannot
obtain conflict free event structures. The result above shows that no new conflict
is introduced through synchronisation. Moreover, in the deterministic fragment,
synchronisation does indeed resolve the conflicts.

First it is easy to show that the semantics of deterministic NCCS is in term
of deterministic event structures :

Proposition A.6.2. Suppose P is a deterministic process, and that P .Γ. Then
[[P . Γ]] is deterministic.

The main theorem is the following, which justifies the term “deterministic”.
It states that once all choices have been matched with selections, or cancelled
out, what remains is a conflict free event structure.

Theorem A.6.3. If let X be the set of names in P , then [[P .Γ]]\X is a conflict
free event structure.

Corollary A.6.4. If [[Γ]] = ∅, then [[P . Γ]] is conflict free.

A.6.3 Semantics of simple NCCS

Although the syntax of NCCS does not introduce directly any conflict, there
is in principle the possibility that conflict is introduced by the parallel compo-
sition. The typing system is designed in such a way that this is not the case.

Theorem A.6.5. Suppose P is a simple process such that P . Γ. Then [[P . Γ]]
is conflict free.

A.6.4 Correspondence between the semantics

In order to show the correspondence between the operational and the deno-
tational semantics, we invoke Winskel and Nielsen’s handbook chapter [WN95].
Note that our semantics are a straightforward modification of the standard CCS
semantics. This is the main reason why we chose the formalism presented here :
we wanted to depart as little as possible from the treatment of [WN95].

The main difference is that typed semantics modifies the behaviour, by for-
bidding some of the actions. However this modification acts precisely as a special
form of name restriction : in the labelled transition system it blocks some action,
while in event structures it cancel them out (together with all events enabled
by them). With a straightforward generalisation of the notion of restriction,
we then preserve the correspondence between the two semantics and the proof
technique of [WN95] carries over. In particular we have

Theorem A.6.6. Take two typed NCCS processes P . Γ, Q . Γ. Suppose that
[[P . Γ]] = [[Q . Γ]], then P . Γ ≈ Q . Γ.
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This theorem is the best result we can get : indeed, as for standard CCS, we
cannot expect the event structure semantics to be fully abstract. Bisimilarity
is a “interleaving” semantics, equating the two processes τ‖τ and τ .τ , which
have different event structure semantics.

A more direct correspondence is described next. Recall the way we derive
a transition system from an event structure, as presented in Section A.3 : if

λ(e) = β, then E β−→Ebe. We can therefore state the following correspondence :

Theorem A.6.7. Let ∼= denote isomorphism of labelled event structures ;

– if P . Γ
β−→P ′ . Γ \ β, then [[P . Γ]]

β−→ ∼= [[P ′ . Γ \ β]].

– if [[P . Γ]]
β−→E ′ then P . Γ

β−→P ′ . Γ \ β and E ′ ∼= [[P ′ . Γ \ β]].

The proof is by induction on the operational rules. The only difficult case is
the parallel composition.

A.7 Correspondence between the calculi

A.7.1 Translation

We are now going to present a fully abstract translation of the π-calculus into
Name Sharing CCS. The translation is parametrised over a fixed choice for
the confidential names. This parametrisation is necessary because π-calculus
terms are identified up to α-conversion, and so the identity of bound names is
irrelevant, while in Name Sharing CCS, the identity of confidential names is
important. Also, since servers are interpreted as infinite parallel compositions,
every bound name of a server must correspond to infinitely many names in the
interpretation.

The translation is a family of functions pc[[−]]ρ, that take a judgment of the
π-calculus and return a process of NCCS. The semantic functions are indexed
by a “choice” function ρ that for every bound name assigns a set (possibly a
singleton) of fresh distinct names. In order to make this work, we have to use the
convention that all bound names in the π-calculus are distinct, and different from
the free names. In this way ρ cannot identify two different bindings. Although
the translation is defined for all ρ, the target process will not always be typable.
In particular, for some choice of renaming, the parallel composition in NCCS
will not be typed.

We define the translation by induction on the derivation of the typing judg-
ment. Without loss of generality, we will assume that all the weakenings are
applied to the empty process. The translation is defined in Figure A.11.

The notation has to be explained. The notation ρ, y → S denotes the function
ρ extended on a name y not already in the domain of ρ, and such that all names
in S are fresh and distinct from any other name in the range of ρ. In the
translation of the server, we use Y to denote the set of confidential names of
the translation of P . We also use the choice function ρ[K] defined as follows :
assume the range of ρ are only singletons, say for every name x in the domain,
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pc[[0 . xi : (τi)
? , yj :l]]ρ = 0

pc[[(ν x)P . Γ]]ρ = pc[[P . Γ, x : τ ]]ρ \ x

pc[[P1‖P2 . Γ1 � Γ2]]ρ1∪ρ2 = (pc[[P1 . Γ1]]ρ1‖pc[[P2 . Γ2]]ρ2) \ S

pc[[x
⊕

i∈I ini(ỹi).Pi . Γ, x :
⊕

i∈I(τ̃i)
↑]]ρ,(ỹi→z̃i)i∈I =

x
⊕

i∈I ini〈z̃i〉.pc[[Pi[z̃i/ỹi] . Γ, z̃i : τi]]
ρ

pc[[x
�
i∈I ini(ỹi).Pi . Γ, x :

�
i∈I(τ̃i)

↓]]ρ,(ỹi→z̃i)i∈I =

x
�
i∈I ini〈z̃i〉.pc[[Pi[z̃i/ỹi] . Γ, z̃i : τi]]

ρ

pc[[!x(ỹ).P . Γ, x : (τ̃)! ]]ρ[K],ỹ→{ỹk}k∈K =
∏
k∈K x〈ỹk〉.pc[[P . Γ]]ρ[ỹk/ỹ][Y k/Y ]

pc[[x(ỹ).P . Γ, x : (τ̃)? ]]ρ,ỹ→w̃ = x〈w̃〉.pc[[P . Γ, x : (τ̃)? [w̃/ỹ]]]ρ

Figure A.11 – Translation from π to NCCS

ρ(x) = {y}. Then ρ[K](x) = {yk | k ∈ K}, where yk are obtained by a function
FK : Names→ P(Names) as in Section A.5. In the translation of the parallel
composition, S denotes the set of names that are in the range of both ρ1 and
ρ2.

Once past the rather heavy notation, the translation is rather simple. Note
the way bound variables become confidential names. Observe also that the server
is translated into an infinite parallel composition.

We said that the translation is not always typable. In particular, for the
wrong choice of ρ1, ρ2, the parallel composition may not be typed because the
chosen confidential names may not match. However it is always possible to find
suitable ρ1, ρ2. Intuitively we can say that in translating typed π into typed
NCCS, we perform α-conversion “at compile time”.

Lemma A.7.1. For every judgment P .Γ in the π-calculus, there exists a choice
function ρ and a type environment ∆ such that pc[[P . Γ]]ρ . ∆. Moreover, for
every injective fresh renaming ρ′, if pc[[P . Γ]]ρ .∆ then pc[[P . Γ]]ρ

′◦ρ .∆[ρ′].

Example A.7.1. We demonstrate how the process which generates an infinite
behaviour with infinite new name creation is interpreted into NCCS. Consider
the process Fw〈ab〉 =!a(x).b(y).y.x . This agent links two locations a and b and
it is called a forwarder. It can be derived that Fw〈ab〉.a : τ, b : τ with τ = (()↑)! .
Consider the process Pω = Fw〈ab〉 |Fw〈ba〉 so that Pω . (a : τ, b : τ)� (b : τ, a : τ),
that is Pω . a, b : τ . One possible translation for Fw〈ab〉 . a : (()↑)! , b : (()↓)? is

Q1 =
∏
k∈K a〈xk〉.b〈yk〉.yk.x

k . a :
⊗

k∈K(xk : ()↑), b :
⊎
k∈K(yk : ()↓)
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while for Fw〈ba〉 . b : (()↑)! , a : (()↓)? is

Q2 =
∏
h∈H b〈zh〉.a〈wh〉.wh.z

h . b :
⊗

h∈H(zh : ()↑), a :
⊎
h∈H(()?wh : ()↓)

Assuming there are two “synchronising” injective functions f : K → H, g :
H → K, such that yk = zf(k), wh = xg(h) (if not, we can independently perform
a fresh injective renaming on both environments), we obtain that the corre-
sponding types for a, b match, so that we can compose the two environments.
Therefore the translation of Pω . a, b : τ is (Q1 |Q2) \ S .∆ for

∆ = a :
⊗

k∈K\g(H)(x
k : ()↑), b :

⊗
h∈H\f(K)(z

h : ()↑).

The reader can check that any transition of Pω is matched by a corresponding
transition of its translation. This is what we formally show next.

A.7.2 Full abstraction

To show the correctness of the translation, we first prove the correspondence
between the labelled transition semantics. If ρ is a choice function and S is a
set of names, by ρ \ S we denote the function ρ restricted to the names not in
S.

Theorem A.7.2. Suppose P .Γ
β−→P ′ .Γ\β in the π-calculus, then there exists

ρ and ∆ such that pc[[P .Γ]]ρ.∆ and pc[[P .Γ]]ρ.∆
β−→pc[[P ′.Γ\β]]ρ\obj(β).∆\β.

Conversely, suppose pc[[P . Γ]]ρ .∆
β−→Q .∆ \ β. Then there exists P ′ such

that P . Γ
β−→P ′ . Γ \ β and pc[[P ′ . Γ \ β]]ρ\obj(β) = Q.

The full abstraction is then a corollary.

Theorem A.7.3 (Full abstraction). We have P . Γ ≈ P ′ . Γ if and only if for
some ρ, ρ′,∆,∆′ we have pc[[P . Γ]]ρ .∆ ≈ pc[[P ′ . Γ]]ρ

′
.∆′.

Recall that in NCCS we use bisimilarity up to renaming.

A.7.3 Event structure semantics of the π-calculus

By composing the translation obtained in this section with the event structure
semantics of Section A.6, we obtain an event structure semantics of the π-
calculus.

Given a π-calculus judgment P . Γ, we define

[[P . Γ]]ρ∆ = [[pc[[P . Γ]]ρ .∆]]

We thus have

Lemma A.7.4. For every judgment P . Γ in the π-calculus, there exist ρ and
∆ such that [[P . Γ]]ρ∆ is defined. When this is the case [[P . Γ]]ρ∆ is a confusion
free event structure, and [[P . Γ]]ρ∆ .∆.
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Proposition A.7.5 (Soundness). Suppose that for some ρ, ρ′,∆,∆′, [[P .Γ]]ρ∆ =

[[P ′ . Γ]]ρ
′

∆′ . Then P . Γ ≈ P ′ . Γ.

Note that the event structure semantics of CCS is already not fully abstract
with respect to bisimulation [Win82], hence the other direction does not hold
in our case either.

However, there is another kind of correspondence between the labelled tran-
sition systems and the event structures, analogous to the one discussed in Sec-
tion A.6.4. Combining Theorem A.6.7 with Theorem A.7.2, we obtain :

Theorem A.7.6. Suppose P .Γ
β−→P ′.Γ\β in the π-calculus, and that [[P .Γ]]ρ∆

is defined. Then [[P . Γ]]ρ∆
β−→ ∼= [[P ′ . Γ \ β]]

ρ\obj(β)
∆\β .

Conversely, suppose [[P . Γ]]ρ∆
β−→E ′. Then there exists P ′ such that P .

Γ
β−→P ′ . Γ \ β and [[P ′ . Γ \ β]]

ρ\obj(β)
∆\β

∼= E ′.

A.8 A probabilistic π-calculus

A.8.1 Syntax and Operational Semantics

In this section we modify the π-calculus as presented in A.2, by replacing the
nondeterministic choice on output with a probabilistic choice. As in the non
probabilistic case, input is similar to the “case” construct and selection is “in-
jection” in the typed λ-calculi. The formal grammar of the calculus is defined
below with pi ∈ [0, 1].

P ::= x
�
i∈I ini(ỹi).Pi | x

⊕
i∈I piini(ỹi).Pi | P |Q | (ν x)P | 0 | !x(ỹ).P

The construct x
⊕

i∈I piini(ỹi).Pi is a probabilistic selecting output, and
the events are given probability denoted by the pi, with the requirement that∑
i∈I pi = 1.

To give an operational semantics to the probabilistic π-calculus we use Segala
automata, a model that combines probability and nondeterminism. Segala au-
tomata can be seen as an extension both of Markov chains and of labelled
transition systems. They were introduced by Segala and Lynch [SL95, Seg95].
A recent presentation of Segala automata can be found in [Sto02]. The name
“Segala automata” appears first in [BSV03]. It is non standard in the literature,
but we prefer it to the more common, but ambiguous, “probabilistic automata”.

A probability distribution over a finite or countable set X is a function ξ :
X → [0, 1] such that

∑
x∈X ξ(x) = 1. The set of probability distributions over

X is denoted by V (X). By P(X), we denote the powerset of X.

A Segala automaton over a set of labels A is given by a finite or countable
set of states X together with a transition function t : X → P(V (A×X)). This
model represents a process that, when it is in a state x, nondeterministically
chooses a probability distribution ξ in t(x) and then performs action a and
enters in state y with probability ξ(a, y).
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b aa

1/3

c b

a

x3 x5

1/2 1/2

x4

x0

x1 x2

2/3 1− ε

ε

In the initial state x0 there are three pos-
sible transition groups, corresponding to its
three hollow children. The left-most transition

group is x0{
ai

pi
// xi}i∈I where I = {1, 2},

a1 = a, a2 = b and p1 = p2 = 1/2. The right-

most transition group is x0{
aj

pj
// xj}j∈J

where J = {0, 5}, a0 = a, a5 = b and p0 =
ε, p5 = 1− ε.

Figure A.12 – A Segala automaton

The notation we use comes from [HP00]. Consider a transition function t.
Whenever a probability distribution ξ belongs to t(x) for a state x ∈ X we will
write

x{ ai

pi
// xi}i∈I (A.1)

where xi ∈ X, i 6= j ⇒ (ai, xi) 6= (aj , xj), and ξ(ai, xi) = pi. Probability
distributions in t(x) are also called transition groups of x.

A good way of visualising probabilistic automata is by using alternating
graphs [Han91]. In Figure A.12, black nodes represent states, hollow nodes rep-
resent transition groups.

The operational semantics of the probabilistic version of the π calculus is
given in terms of Segala automata. The rules for deriving the transitions are
presented in Figure A.13.

In particular, the selecting output synchronises with the branching input,
and a synchronisation step takes place, with the probability chosen by the output
process.

A.8.2 Linear types for the probabilistic π-calculus

The rules defining typing judgements P .Γ are identical to the non-probabilistic
case, except a straightforward modification to deal with the generative output,
which is still basically the same rule as for confusion free processes, without any
additional complexity due to the probability.

As in the nonprobabilistic case, we obtain a typed version of the operational
semantics by restricting the actions that are not allowed by the type environ-
ment.

The typed automaton, P . Γ{
βi

pi
// Pi . Γi}i∈I , is defined by adding the

following constraint :

if P{
βi

pi
// Pi}i∈I and Γ allows βi for all i ∈

I then P . Γ{
βi

pi
// Pi . Γi}i∈I
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x
⊕

i∈I piini(ỹi).Pi{
x̄ini〈ỹj〉

pi
// Pi}i∈I x

�
i∈I ini(ỹi).Pi{

xinj〈ỹj〉

1
// Pj}

!x(ỹ).P{
x〈ỹ〉

1
// P | !x(ỹ).P} x(ỹ).P{

x〈ỹ〉

1
// P}

P{
βi

pi
// Pi}i∈I subj(βi) 6= x

(ν x)P{
βi

pi
// (ν x)Pi}i∈I

P{
βi

pi
// Pi}i∈I

P |Q{
βi

pi
// Pi |Q}i∈I

P{ αi

pi
// Pi}i∈I Q{

βi

1
// Qi} obj(αi) = ỹ

P |Q{
αi•βi
pi

// (ν ỹ)(Pi |Qi)}i∈I

P ≡α P ′ P{
βi

pi
// Qi}i∈I

P ′{
βi

pi
// Qi}i∈I

Figure A.13 – Segala automaton for the probabilistic πI-Calculus

The nature of the typing system is such that for every transition group, either
all actions are allowed, or all are not, and therefore the above semantics is well
defined.

A.8.3 Example of a probabilistic process

We consider the model of traffic lights from [RP02]. Let a be a driver, and let
inred, inyell, ingreen represent colours of the traffic light. The process ainred(y)
represents the traffic light signalling to the driver it is red, at the same time
communicating the name y of the crossing. The behaviour of the driver at the
crossing is either braking, staying still, or driving ( inbrake, instill, indrive).

A cautious driver is represented by the process :

Da
c = a

�
i∈{red,yell,green} ini(y).Pi with

Pred = y(0.2inbrake ⊕ 0.8instill)
Pyell = y(0.9inbrake ⊕ 0.1indrive)
Pgreen = y(indrive)

A cautious driver watches what colour the light is and behaves accordingly. If
it is red, she stays still, or finishes braking. If it is yellow, most likely she brakes.
If it is green, she drives on.

A driver in a hurry is represented by the process

Da
h = a

�
i∈{red,yell,green} ini(y).Qi with

Qred = y(0.3inbrake ⊕ 0.6instill ⊕ 0.1indrive)
Qyell = y(0.1inbrake ⊕ 0.9indrive)
Qgreen = y(indrive)
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This is similar to the cautious driver, but he is more likely to drive on at red
and yellow. In fact, both have the same type, they check the light, and they
choose a behaviour :

Da
c , D

a
h . a :

�
i∈{red,yell,green} (

⊕
j∈{brake,still,drive}()

↑)↓

where
�
i∈I (τi)

↓ is a branching type which inputs a value of type τi and⊕
i∈I (τi)

↑ is a selection type which selects a branch i with a value of type
τi. Note that the type actually states that the driver chooses the behaviour
after seeing the light. We can represent two independent drivers :

D2 = (νa, a′)(ainred(y).R |Da
c | a′ingreen(y).R |Da′

h )

where R = y
�
i∈{brake,still,drive} ini() represents the traffic light accepting the

behaviour of the driver. We have that D2 has two transition groups, correspond-
ing to the two drivers. Note that the typing system guarantees that each driver
can perform only one of three actions, i.e. either brake, still or drive at any
one time.

A.9 Probabilistic event structure semantics

A.9.1 Untyped probabilistic event structures

We now present the model of probabilistic event structures, that we use to
give an alternative semantics to the probabilistic π-calculus. Probabilistic event
structures were first introduced by Katoen [Kat96], as an extension of the so
called bundle event structures. A probabilistic version of prime event structures
was introduced in [VVW06]. In this work we use prime event structures as we
think they are the simplest and easiest to understand of all variants of event
structures. Moreover the confluence theorem uses results of [VVW06].

Given a confusion-free event structure, we can associate a probability distri-
bution with some cells. Intuitively it is as if, for every such cell, we have a die
local to it, determining the probability with which the events at that cell occur.

We can think of the cells with a probability distribution as generative, while
the other cells will be called reactive. Reactive cells are awaiting a synchronisa-
tion with a generative cell in order to be assigned a probability.

Definition A.9.1. Let E = 〈E,≤,^〉 be a confusion free event structure, let
G be a set of cells of E and let G′ be the set of events of the cells in G. The
cells in G are called generative. The cells not in G are called reactive. A cell
valuation on (E , G) is a function µ : G′ → [0, 1] such that for every c ∈ G, we
have

∑
e∈c µ(e) = 1. A partial probabilistic event structure is a confusion free

event structure together with a cell valuation. It is called simply probabilistic
event structure if G′ = E.

This definition generalises the definition given in [VVW06], where it is as-
sumed that G′ = E. Note also that a confusion free event structure can be seen
as a probabilistic event structure where the set G is empty.
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x1in
p1

1
/o/o/o x1in

p2

2 x2in
q1
1

/o/o/o x2in
q2
2 z1

τ b〈z1〉

KKKKKKKKK

b〈z1〉

wwwwwwwww

KKKKKKKKK

ain1〈x1〉 /o/o/o/o/o/o/o/o/o/o/o

TTTTTTTTTTTTTTTTTT
ain2〈x2〉

Figure A.14 – A typed event structure

Beside the standard operator on event structures, as defined in Section A.3,
we also have the probabilistic prefixed sum

∑
i∈I piai.Ei, where Ei are partial

probabilistic event structures. This is obtained as adding a new initial generative
cell with the condition that the probability of the new initial events are pi.

All constructors, except the parallel composition, preserve the class of partial
probabilistic event structures. The linear typing allows parallel composition to
preserve that class.

A.9.2 Typed probabilistic event structures

To type a partial probabilistic event structure, we type it as a non prob-
abilistic event structure. We also make sure that only the branching cells are
reactive, as they are waiting to synchronise with a dual selection cell.

Definition A.9.2. Let E = 〈E,≤,^, λ,G, µ〉 be a partial probabilistic event
structure. We say that E . Γ, if the following conditions are satisfied :

– E . Γ as for the non-probabilistic case ;
– G includes all cells, except the branching ones.

From the fact that the parallel composition of typed event structures is
typed, one can easily derive that the parallel composition of typed probabilistic
event structures is still a probabilistic event structure, and that it is typed.

The distinction between reactive branching input and generative selecting
output is akin to the one in [ABG04].
Figure A.14 represents a typed (partial) probabilistic event structure E . Γ,
where

Γ = a :
�
i∈{1,2}(xi :

⊕
k∈{1,2}()), b :

⊗
i∈{1}(zi :

⊎
k∈{1}())

The selection cells x1in1, x1in2 and x2in1, x2in2 are generative. The branch-
ing cell ain1〈x1〉, ain2〈x2〉 is reactive. Every other cell is generative, and con-
tains only one event, that has probability 1. We can see that the causality in E
refines the name causality in Γ : for instance, Γ forces the labels with subject xi
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[[0 . xi : (τi)
? , yj :l]]ρ = ∅

[[(ν x)P . Γ]]ρ = [[P . Γ, x : τ ]]ρ \ x

[[P1‖P2 . Γ1 � Γ2]]ρ1∪ρ2 =

([[P1 . Γ1]]ρ1‖[[P2 . Γ2]]ρ2) \ S

[[x
⊕

i∈I ini(ỹi).Pi . Γ, x :
⊕

i∈I(τ̃i)
↑]]ρ,(ỹi→z̃i)i∈I =∑

i∈I xini〈z̃i〉.[[Pi[z̃i/ỹi] . Γ, z̃i : τi]]
ρ

[[x
�
i∈I piini(ỹi).Pi . Γ, x :

�
i∈I(τ̃i)

↓]]ρ,(ỹi→z̃i)i∈I =∑
i∈I pixini〈z̃i〉.[[Pi[z̃i/ỹi] . Γ, z̃i : τi]]

ρ

[[!x(ỹ).P . Γ, x : (τ̃)! ]]ρ[K],ỹ→{ỹk}k∈K =∏
k∈K x〈ỹk〉.[[P . Γ]]ρ[ỹk/ỹ][Y k/Y ]

[[x(ỹ).P . Γ, x : (τ̃)? ]]ρ,ỹ→w̃ =

x〈w̃〉.[[P . Γ, x : (τ̃)? [w̃/ỹ]]]ρ

Figure A.15 – Event Structure Semantics of the probabilistic π-Calculus

to be above the label aini〈xi〉, but does not force the causal link between the
events labelled by aini〈xi〉 and b〈z1〉.

A.9.3 Semantics of the calculus

We now present the event structure semantics of the π-calculus and its prop-
erties. As before, the semantics is given by a family of partial functions [[−]]ρ,
parametrised by a choice function ρ, that take a judgement of the π-calculus
and return an event structure.

It is a slight modification of the nonprobabilistic case, to take into account
the generative cells.

As in the non-probabilistic case, we have the following result.

Theorem A.9.3. For every judgement P . Γ in the π-calculus, there exist a
choice function ρ and a type environment ∆ such that [[P . Γ]]ρ .∆. Moreover,
for every injective fresh renaming ρ′, if [[P . Γ]]ρ .∆ then [[P . Γ]]ρ

′◦ρ .∆[ρ′].

Theorem A.9.4. Let P be a process and Γ an environment such that P . Γ.
Suppose that [[P . Γ]]ρ is defined. Then there is a environment ∆ such that
[[P . Γ]]ρ .∆.
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This theorem means that all denoted event structures are indeed partial proba-
bilistic event structures. Note that the set of generative cells includes all synchro-
nisation cells. Therefore a closed process denotes a probabilistic event structure.

Corollary A.9.5. The event structure [[P.∅]]ρ is a probabilistic event structure.

This implies that there exists a unique probability measure over the set of
maximal runs [VVW06]. In other words, for closed processes, the scheduler only
influences the order of independent events, in accordance with the intuition that
probabilistic choices are local and not influenced by the environment.

A.10 Event structures and Segala automata

In this section we show a formal correspondence between Segala automata
and probabilistic event structures. We first introduce the notion of scheduler.

A.10.1 Runs and schedulers

An initialised Segala automaton, is a Segala automaton together with an initial
state x0. A finite path of an initialised Segala automaton is an element in (X ×
V (X × A) × A)∗X, written as x0ξ1a1x1 . . . ξnanxn, such that ξi+1 ∈ t(xi). An
infinite path is defined in a similar way as an element of (X ×V (X ×A)×A)ω.

The probability of a finite path τ := x0ξ1a1x1 . . . ξnanxn is defined as

Π(τ) =
∏

1≤i≤n

ξi(ai, xi) .

The last state of a finite path τ is denoted by l(τ). A path τ is maximal if it is
infinite or if t(l(τ)) = ∅.

A scheduler for a Segala automaton with transition function t is a partial
function S : (X×V (X×A)×A)∗X → V (X×A) such that, if t(l(τ)) 6= ∅ then
S(τ) is defined and S(τ) ∈ t(l(τ)). A scheduler chooses the next probability
distribution, knowing the history of the process. Using the representation with
alternating graphs, we can say that, for every path ending in a black node, a
scheduler chooses one of his hollow sons.

Given an (initial) state x0 ∈ X and a scheduler S for t, we consider the
set B(t, x0,S) of maximal paths, obtained from t by the action of S. Those are
the paths x0ξ1a1x1 . . . ξnanxn such that ξi+1 = S(x0ξ1a1x1 . . . ξiaixi). The set
of maximal paths is endowed with the σ-algebra generated by the finite paths.
A scheduler induces a probability measure on such σ-algebra as follows : for
every finite path τ , let K(τ) be the set of maximal paths extending τ . Define
ζS(K(τ)) := Π(τ), if τ ∈ B(t, x0,S), and 0 otherwise. It can be proved [Seg95]
that ζS extends to a unique probability measure on the σ-algebra generated by
the finite paths.

Given a set of labels B ⊆ A we define ζS(B) to be ζS(Z), where Z is the set
of all maximal paths containing some label from B.
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A.10.2 From event structures to Segala automata

Definition A.10.1. Let E = 〈E,≤,^, λ〉 be a labelled event structure and let
e be one of its minimal events. The event structure Ebe = 〈E′,≤′,^′, λ′〉 is
defined by : E′ = {e′ ∈ E | e′ 6� e}, ≤′=≤|E′ , ^′=^|E′ , and λ′ = λ|E′ .

Roughly speaking, Ebe is E minus the event e, and minus all events that are
in conflict with e. We can then generate a Segala automaton on event structures
as follows :

E{ ai

pi
// Ebei}i∈I

if there exists a minimal generative cell c = {ei | i ∈ I}, such that µ(ei) = pi
and λ(ei) = ai. We also put

E{ a

1
// Ebe}

if there exists an event e belonging to a minimal reactive cell, such that λ(e) = a.
The initialised Segala automaton generated by an event structure E is the above
automation initialised at E .

A probabilistic event structure (where every cell is generative) generates a
somewhat “deterministic” Segala automaton. The general formalisation of this
property requires several technicalities (see [VVW06], for instance). Here we
state a simplified result.

Let E be a probabilistic event structure, and consider the Segala automaton
(t, x0), generated as above. Consider a scheduler S for such a Segala automaton.
We say that S is fair if for every path τ ∈ B(t, x0,S), there does not exist a
generative cell c of the event structure, and an index j, such that for all i > j,
the transition group corresponding to c is enabled but it is not chosen by S.

Theorem A.10.2. Let E be a probabilistic event structure, and consider the
corresponding Segala automaton. For all sets of labels B, and for all fair sched-
ulers S, T , we have ζS(B) = ζT (B).

In a non-probabilistic confluent system, all (fair) resolutions of the nonde-
terministic choices give rise to the same set of events, possibly in different order.
In this sense we can see Theorem A.10.2 as expressing probabilistic confluence.

Figure A.16 shows an example of a (partial) probabilistic event structure.
The generative cells are {α′, α′′}, {β′′, γ′′} and the probability is indicated as
superscript of the label. Figure A.17 shows the Segala automaton corresponding
to the event structure of Figure A.16.

A.10.3 The adequacy theorem

The correspondence between the two semantics of the π-calculus is for-
malised by the following theorem.
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Figure A.16 – A probabilistic event structure

α′

3/4

1/3
1

γ′
1

β′

β′′ 1/4

3/4

1

δ′′

1

1/4

1

α′′
2/3

δ′′

γ′′

γ′′

δ′′

β′′

Figure A.17 – The corresponding Segala automaton

Theorem A.10.3. Let ∼= denote isomorphism of probabilistic event structures.

Suppose P . Γ{
βi

pi
// Pi . Γi}i∈I in the π-calculus. Then there exist ρ, ρi

such that [[P . Γ]]ρ is defined and [[P . Γ]]ρ{
βi

pi
// ∼= [[Pi . Γi]]

ρi}i∈I .

Conversely, suppose [[P . Γ]]ρ{
βi

pi
// Ei}i∈I , for some ρ. Then there exist

Pi, ρi such that P . Γ{
βi

pi
// Pi . Γ \ βi}i∈I and [[Pi . Γ \ βi]]ρi ∼= Ei, for all

i ∈ I.

The proof is completely analogous to the one for the non-probabilistic case by
induction on the operational rules, the difficult case being the parallel compo-
sition.

A.10.4 Example of probabilistic confluence

Theorem A.10.3 and Theorem A.10.2 together show that the linearly typed
probabilistic π-calculus is “probabilistically confluent”. Note that Theorem A.10.2
applies only to fully probabilistic event structures, that is event structures which
do not contain reactive cells. In particular, in light of Corollary A.9.5, it applies



88 ANNEXE A. EVENT STRUCTURES FOR TYPED π

to closed processes. More generally it applies to processes whose free names do
not include linear inputs.

To exemplify the confluence theorem, consider a process P such that P . a :⊕
i∈I ∅. This is a process that emits only one visible action, whose subject is a.

For every j ∈ I we can define the probability P emits ainj as pS(ainj) for some
fair scheduler S. By Theorem A.10.2, we have that this probability is indepen-
dent from the scheduler, so we can define it as p(ainj). This independence from
the scheduling policy is what we call probabilistic confluence.

Note also that it can be shown that
∑
i∈I p(aini) ≤ 1. When the inequa-

tion is strict, the missing probability is the probability that the process does
not terminate. This reasoning relies on the typing in that there exist untyped
processes that are not probabilistically confluent. For instance consider

(νb)(b | b.a
⊕

i∈{1,2} piini | b.a
⊕

i∈{1,2} qiini)

The above process also emits only one visible action, whose subject is a. The
probability of ain1 is p1, or q1, depending on which synchronisation takes place,
i.e. depending on the scheduler. Note, however, that this process is not typable.

A.11 Conclusions and related work

In this chapter we have provided a typing system for event structures and ex-
ploited it to give an event structure semantics of the π-calculus. As far as we
know, this work offers the first formalisation of a notion of types in event struc-
tures, and the first direct event structure semantics of the π-calculus.

The work is quite technical and it requires a little effort to be read. The
readers may ask themselves what they gain from this effort. We think the main
contributions are as follows.

– It is a standard intuition that confluence means absence of conflict, de-
terminism. In this work we have formalised this intuition. In the process
of this formalisation some conflict situations that are hidden by the inter-
leaving semantics were discovered. This fact can be underlined by noting
that the standard event structure semantics of the so called confluent
CCS [Mil89] is not conflict free.

– Similarly, we have formalised the notion of probabilistic conflence, and we
have shown that the same typing system that guarantees confluence in the
non probabilistic case can be used to enforce probabilistic confluence.

– It is well known how to compose event structures in order to obtain event
structures. However it was not known how to compose confusion free event
structures in order to obtain confusion free event structures. Our work
offers a solution to this problem. Concrete data structures, a fundamental
concept in various fields of semantics, can be seen as confusion free event
structures. Therefore our work also shows how to compose concrete data
structures.

– Although several causal semantics of the π-calculus exist (see related work
below), no one ever gave a direct event structure semantics, that could be
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seen as an extension of Winskel’s semantics of CCS. We believe the main
difficulty of an event structures semantics of the π-calculus lies in the
handling of name generation. Name generation is an inherently dynamic
operation, while event structures have a more static, denotational flavour.
We have shown that, by restricting the amount of concurrency to that
permitted by the linear type discipline, we can deal with name generation
statically, and thus we can extend Winskel’s semantics. This restricted
π-calculus is still very expressive, in that it can encode fully abstractly
functional programming languages.

A.11.1 Possible lines of research

The typed λ-calculus can be encoded into the typed π-calculus. This provides
an event structure semantics of the λ-calculus, that we want to study in detail.
Also the types of the λ-calculus are given an event structure semantics. We aim
at comparing this “true concurrent” semantics of the λ-types with concurrent
games [Mel05], and with ludics nets [FM05].

An event structure terminates if all its maximal configurations are finite. It
would be interesting to study a typing system of event structures that guarantees
termination applying the idea of the strongly normalising typing system of the
π-calculus [YBH01].

In the probabilistic case we have shown a correspondence between event
structures and Segala automata. We would have liked to extend this corre-
spondence to a categorical adjunction between two suitable categories, ideally
extending the setting presented in [WN95]. It is possible to do so, by a sim-
ple definition of morphisms for Segala automata, and by extending the notion
of probabilistic event structures. Unfortunately neither category has products,
which are used in [WN95] to define parallel composition. The reason for this
is nontrivial and it is has to do with the notion of stochastic correlation, a
phenomenon already discussed in [VVW06] in the context of true concurrent
models. This issue needs to be investigated further.

The linearly typed π-calculus is the target of a sound and complete encodings
of functional language [BHY01, YBH01]. Our traffic light example in Section
5 suggests that our calculus captures the core part of the expressiveness repre-
sented by the Stochastic Lambda Calculus [RP02]. We plan to perform similar
encodings in the probabilistic version, notably the probabilistic functional lan-
guage [RP02], probabilistic λ-calculus [DHW05] and Probabilistic PCF [DH02].
Since the linear type structures are originated from game semantics [HO00], this
line of study would lead to a precise expressive analysis between the probabilis-
tic event structures, Segala automata, probabilistic programming languages and
probabilistic game semantics [DH02], bridged by their representations of or en-
codings into probabilistic π-calculi. Finally, there are connections between event
structures, concurrent games [Mel04], and ludics [FM05, FP07a] that should be
investigated also in the presence of probabilities.
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A.11.2 Related work

There are several causal models for the π-calculus, that use different techniques.
In [BS98, DP99], the causal relations between transitions are represented by
“proofs” of the transitions which identify different occurrences of the same
transition. In our case a similar role is played by names in types. In [CS00], a
more abstract approach is followed, which involves indexed transition systems.
In [JJ95], a semantics of the π-calculus in terms of pomsets is given, following
ideas from dataflow theory. The two papers [BG95, Eng96] present Petri nets
semantics of the π-calculus. Since we can unfold Petri nets into event struc-
tures, these could indirectly provide event structure semantics of the π-calculus.
In [BCM99], an event structure unfolding of double push-out rewriting systems
is studied, and this could also indirectly provide an event structure semantics
of the π-calculus, via the double push-out semantics of the π-calculus presented
in [MP95]. In [BS01], Petri Nets are used to provide a type theory for the Join-
calculus, a language with several features in common with the π-calculus. None
of the above semantics directly uses event structures and no notion of composi-
tional typing systems in true concurrent models is presented. In addition, none
of them is used to study a correspondence between semantics and behavioural
properties of the π-calculus in our sense.

A recent work [BMM06] claims to provide an event structure semantics of
the full π-calculus. However they cater only for the reduction semantics. Conse-
quently their semantics is not compositional, nor it is an extension of Winskel’s
semantics of CCS.

In [Win05b], event structures are used in a different way to give semantics to
a process language, a kind of value passing CCS. That technique does not apply
yet to the π-calculus where we need to model creation of new names, although
recent work [Win05a] is moving in that direction.

Some interesting results connecting game semantics and event structures can
be found in [FP07b]. A fundamental work on the connections between the linear
π-calculus and polarised linear logic is [HL10]. See also [FP07c].

Infinite behaviour is introduced in our version of CCS by means of the infinite
parallel composition. Infinite parallel composition is similar to replication in that
it provides infinite behaviour “in width” rather that “in depth”. Recent studies
on recursion versus replication are [BGZ03, GSV04].

For the probabilistic case, the natural comparison is with the probabilistic
π-calculus by Herescu and Palamidessi [HP00]. Their and our calculi both have a
semantics in terms of Segala automata, while we also provide an event structure
semantics. The key of our construction is the typing system, which allows us to
stay within the class of probabilistic event structures.

Our typing system is designed to provide a “probabilistically confluent” cal-
culus, and therefore their calculus is more expressive, as it allows non-confluent
computations. At the core of their calculus, there is a renormalisation of prob-
abilities, which is absent in our setting, i.e. in our calculus, all probabilistic
choices are local, and are not influenced by the environment.

A simpler calculus, without renormalisation, is presented in [CP05]. This
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version is very similar to ours, in that all choices are local ; in fact, the proto-
col example presented in [CP05] (via an encoding into our calculus) is linearly
typable. We believe we could apply a typing system similar to ours to the cal-
culus in [CP05], prove the same results in this paper and identify a good class
of probabilistic name-passing behaviours.

A.12 Proofs

A.12.1 Proof of Lemma A.3.6

We prove it by induction on the joint size of x, x′. The base case is vacuously
true. Now take (x, e1, e2), (x′, e1, e2) ∈ E with x 6= x′. Since x, x′ are downward
closed sets, if their maximal elements coincide, they coincide. Therefore, w.l.o.g.
there must be a maximal element (y, d1, d2) ∈ x such that (y, d1, d2) 6∈ x′.
By definition of E, and without loss of generality, we can assume that d1 ∈
parents(e1). Therefore, by definition of E, there must be a (y′, d1, d

′
2) ∈ x′.

Suppose d2 6= d′2. Then by definition of conflict (y, d1, d2) ^ (y′, d1, d
′
2). If

d2 = d′2 then it must be y 6= y′. Then by induction hypothesis there exist
f ∈ y, f ′ ∈ y′ such that f ^ f ′. And since x, x′ are downward closed, we have
f ∈ x, f ′ ∈ x′.

A.12.2 Proof of Theorem A.3.7

Recall the the definition of (E,≤,^). In order to show that it is an event
structure, we first o have to show that the relation ≤ is a partial order. We have
that

– it is reflexive by construction ;
– it is antisymmetric : suppose e′ ≤ e = (x, e1, e2). If e′ 6= e, then, by

construction h(e′) < h(e), so that it cannot be e ≤ e′.
– it is transitive : suppose e′ ≤ e ≤ d = (y, d1, d2). This means that e ∈ y.

Since, by construction, y is downward closed, this means that e′ ∈ y, so
that e′ ≤ d.

Next, for every event e = (x, e1, e2), we have that [e) is finite, as it coincides
with x.

Then we need to show that the conflict is irreflexive and hereditary. It is
hereditary essentially by definition : suppose e := (x, e1, e2) ^ d := (y, d1, d2),
and let d ≤ d′ := (y′, d′1, d

′
2). By considering all the cases of the definition of

e ^ d, we derive e ^ d′. For instance, suppose there exists e′ := (x′, e′1, e
′
2) ≤ e

such that e′1 � d1, and e′ 6= d. This means that e′ ^ d. Notice that e′ ≤ e,
and d ≤ d′. By the fourth clause of the definition, e ^ d′. The other cases are
analogous.

To prove that the conflict relation is irreflexive, suppose (x, e1, e2) ^ (x, e1, e2).
There are two possible ways of deriving this. First, if there are e, d ∈ x such
that e ^ d, but this contradicts the fact that x is a configuration. The other
possibility is that, there exist (x′, e′1, e

′
2) ∈ x such that (x′, e′1, e

′
2) ^ (x, e1, e2).
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Take a minimal such. Then it must be e′1 � e1 or e′2 � e2. But this contradicts
the definition of E.

Now we have to show that such event structure is the categorical product of
E1, E2. First thing to show is that projections are morphisms. Using Proposition
A.3.5, it is enough to show that they reflect reflexive conflict and preserves
downward closure.

– Take e, e′ ∈ E and suppose by that π1(e) � π1(e′). Then, by definition we
have e � e′.

– To show that π1 preserves downward closure let e = (x, e1, e2) suppose
e′1 ≤ e1 = π1(e). Then we show that there is a e′ ≤ e such that π1(e′) = e′1.
By induction on the height of e : the basis is vacuously true, since e1 is
minimal. For the step, consider first the case where e′1 ∈ parents(e1).
Then, by definition of E, we have that there exists e′ = (x′, e′1, e

′
2) ∈ x.

Therefore e′ ≤ e and π1(e′) = e′1. If e′1 6∈ parents(e1), then there is a e′′1 ∈
parents(e1) such that e′1 ≤ e′′1 ≤ e1 so that there is e′′ = (x′′, e′′1 , e

′′
2) ∈ x.

By induction hypothesis there is e′ ∈ x′′ such that π1(e′) = e′1. And by
transitivity, e′ ≤ e.

Now we want to show that E enjoys the universal property that makes it
a categorical product. That is for every event structure D, such that there are
morphisms f1 : D → E1, f2 : D → E2, there exists a unique f : D → E such that
π1 ◦ f = f1 and π2 ◦ f = f2.

Clearly, if such f exists, it must be defined as f(d) = (x, f1(d), f2(d)), for
some x. By this we mean f(d) = (x, f1(d), ∗), if f2(d) is undefined, f(d) =
(x, ∗, f2(d)), if f1(d) is undefined, and undefined if both are undefined. We now
define x, by induction on the size of [d). Suppose d is minimal. Then, since f1, f2

are morphisms and thus preserve downward closure, we have that f1(d), f2(d)
are both minimal. Since every maximal element of x must contain the parent of
at least one of them, the only possibility is that x be empty.

Putting f(d) = (∅, f1(d), f2(d)), we obtain, that, on element of height 0,

– f(d) is uniquely defined : we have seen that all choices are forced
– f reflects reflexive conflict : suppose (∅, f1(d), f2(d)) � (∅, f1(d′), f2(d′)),

then either f1(d) � f1(d′) or f2(d) � f2(d′). In the first case, since f1 is a
morphism, and thus reflects reflexive conflict, we have d � d′. Symmetri-
cally for the other case.

– f preserves downward closure vacuously

Now suppose f is uniquely defined for all elements of height less or equal
than n, it reflects reflexive conflict and preserves downward closure. Consider d
of height n+ 1. We want to define f(d) = (x, f1(d), f2(d)). Define x as follows.
For a set A, let ↓A be the downward closure of A. Let X = {f(d′) | d′ <
d & [ f1(d′) ∈ parents(f1(d)) or f2(d′) ∈ parents(f2(d)) ]} and define x as ↓X.
First of all we should check that this is indeed an element of E. x is downward
closed by definition. It is finite because X is and each element of X has finitely
many predecessors. Suppose there are d′, d′′ < d such that f(d′) ^ f(d′′). We
know by induction that f reflects reflexive conflict on elements of height smaller
than d, which means that d′ ^ d′′, contradiction.
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Now the maximal elements of x contain either a parent of f1(d) or a parent
of f2(d) by construction. Take a parent e1 of f1(d). I claim that e1 is of the form
f1(d′) for some d′ < d. Since e1 ∈ parents(f1(d)), in particular e1 ≤ f1(d). since
f1 preserves downward closure, there must exists d′ as above. Thus all parents
are represented inX. Finally, suppose there is (z, e1, e2) ∈ x such that e1 � f1(d)
or e2 � f2(d). If (z, e1, e2) ∈ X, then (z, e1, e2) = f(d′) for some d′ < d. So that
e1 = f1(d′), and e2 = f2(d′). Since f1, f2 reflect reflexive conflict, we would
have d′ ^ d, contradiction. Otherwise there must be f(d′) ∈ X such that
(z, e1, e2) < f(d′). Since f preserves downward closure on elements of height
less or equal than n, there must be d′′ < d′ such that f(d′′) = (z, e1, e2). As
above we conclude d′′ ^ d, contradiction.

Thus putting f(d) = (x, f1(d), f2(d)), we have that f is well defined on d.
Moreover

– f(d) is uniquely defined : suppose we have another possible x. Since f
must preserve downward closure, for all e ∈ x, we have that e = f(d′) for
some d′ < d. Now, suppose there is an element f(d′) ∈ X which is not
in x. W.l.o.g assume that f1(d′) ∈ parents(f1(d)). Then, there must be
an element e′ = (y, f1(d′), d′2) maximal in x. By the observation above it
must be e′ = f(d′), contradiction.

– f preserves downward closure : take d, and consider e ≤ f(d). By construc-
tion, either e ∈ X, in which case we have e = f(d′) for some d′ < d, of
e ≤ e′ ∈ X, in which case we have e′ = f(d′) for d′ < d. Since, by induction
f preserves downward closure, we have e = f(d′′) for d′′ < d′ < d.

– f reflects reflexive conflict : suppose (x, f1(d), f2(d)) � (x′, f1(d′), f2(d′)),
then
– either f1(d) � f1(d′) or f2(d) � f2(d′). In either case, since f1, f2 reflects

reflexive conflict, we have d � d′.
– there exists (x′′, e1, e2) ≤ (x′, f1(d′), f2(d′), such that f1(d) � e1 or
f2(d) � e2. Since f preserves downward closure, we have (x′′, e1, e2) =
f(d′′) for some d′′ < d′ and we reason as above.

– the symmetric case is similar
– there exists (y, e1, e2) ≤ (x, f1(d), f2(d)) and there exists

(y′, e′1, e
′
2) ≤ (x′, f1(d′), f2(d′)), and the reasoning is as above, using

that f preserves downward closure.
Thus f is a morphism, is uniquely defined for every d ∈ D, and commutes

with the projections. This concludes the proof.

A.12.3 Proof of Proposition A.4.1

Consider a minimal element of [[Γ1]].
– If it synchronises, by the condition on the definition of Γ1 � Γ2, it must

synchronise with a dual minimal element in [[Γ2]]. Every event above these
two events is either a τ , or it is not allowed, therefore it is deleted by the
restriction.

– If it does not synchronise it is left alone, with all above it not synchronising
either, and not being restricted.
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We can think of [[Γ1�Γ2]], as a disjoint union of [[Γ1]], [[Γ2]], plus some hiding.

A.12.4 Proof of Lemma A.4.3

Suppose E . Γ, witnessed by a morphism f : E → [[Γ]].
– Let e, e′ ∈ E be such that λ(e) = λ(e′) 6= τ . Therefore, by uniqueness of

the labels in [[Γ]], f(e) = f(e′), and since f reflects reflexive conflict, we
have e ^ e′.

– A similar reasoning applies for the case when λ(e) = aini〈x̃〉 and λ(e′) =
ainj〈ỹ〉. Then f(e), f(e′) belong to the same cell, and thus they are in
conflict. Since f reflects conflict, we have e ^ e′.

– Suppose E.Γ, and let e, e′ ∈ E be such that e ^µ e
′. Then they belong to

the same cell, and by definition they must have same subject but different
branch.

A.12.5 Proof of Theorem A.4.4

Define Γ = Γ1 � Γ2 Suppose E1 . Γ1, and E2 . Γ2. Let E = (E1‖E2) \Dis(Γ).
We invite the reader to review the definition of the product of event structures,
and the consequent definition of parallel composition.

Lemma A.12.1. Let (x, e1, e2), (y, d1, d2) be two events in E. Suppose (x, e1, e2) ^
(y, d1, d2). Then there exists (x′, e′1, e

′
2) ≤ x, (y′, d′1, d

′
2) ≤ y such that either

e′1 ^µ d
′
1 or d′1 ^µ d

′
2.

We check this by cases, on the definition of conflict.
– e1 ^ d1. In this case there must exists e′1 ≤ e1 and e′2 ≤ e2 such that
e′1 ^µ e

′
2. Since projection are morphisms of event structures, and since

in particular preserve configurations, for every event f below e1 there must
be an event in E below (x, e1, e2) that is projected onto f . And similar for
d1. Therefore there are (x′, e′1, e

′
2) ∈ x, (y′, d′1, d′2) ∈ y for some x′, y′, e′2, d

′
2.

Note also that (x′, e′1, e
′
2) ^ (y′, d′1, d

′
2).

– e2 ^ d2 is symmetric.
– e1 = d1 and e2 6= d2. This is the crucial case, where we use the typing. In

this case it is not possible that e2 = ∗ and d2 6= ∗ (nor symmetrically).
This is because of the typing. If the label dual of e1 is not in Γ2 then both
e2, d2 = ∗. If the label dual of e1 is in Γ2, then the label of e1 is matched
and thus it becomes disallowed, so that the event (x, e1, ∗) is removed. So
both e2 and d2 have the same label (the dual of the label of e1). Thus they
are mapped on the same event in [[Γ2]], and thus they must be in conflict.
Then we reason as above.

– e2 = d2 and e1 6= d1 is symmetric.
– e1 = d1 and e2 = d2. Then the conclusion follow from stability (Lemma

A.3.6).
– suppose there exists (x̄, ē1, ē2 ∈ x such that ē1 � d1 or ē2 � d2. Then

we reason as above to find (x′, e′1, e
′
2) ∈ x̄, (y′, d′1, d′2) ∈ y such that either

e′1 ^µ d
′
1 or d′1 ^µ d

′
2. Note that, by transitivity, (x′, e′1, e

′
2) ∈ x.
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– the symmetric case is analogous.
– Suppose there is e ∈ x, and d ∈ y such that e ^ d. By wellfoundedness

this case can be reduce to one of the previous ones.

Lemma A.12.2. If (x, e1, e2) �µ (y, d1, d2), then their labels have the same
subject, but different branch and different confidential names.

By Lemma A.12.1, either e1 �µ d1 or e2 �µ d2 (or both). In the first case,
the labels of e1, d1 have the same subject. Thus the labels of (x, e1, e2), (y, d1, d2)
also have the same subject (whether they are synchronisation labels or not). The
second case is symmetric.

Lemma A.12.3. If (x, e1, e2) �µ (y, d1, d2), then x = y

First suppose e2 = d2 = ∗. Then e1 �µ d1. Dually when e1 = d1 = ∗.
Finally, suppose e1, d1, e2, d2 6= ∗. Without loss of generality we have e1 �µ d1.
But then e2 � d2, because they have dual labels. Then it must be e2 �µ d2

because otherwise we would not have (x, e1, e2) �µ (y, d1, d2).
In all cases we have that (x, d1, d2) ∈ E. Indeed it satisfies the condition for

being in the product (because parents(e1) = parents(d1) and parents(e2) =
parents(d2)), and it is allowed if and only if (x, e1, e2) is allowed. Suppose x 6= y.
By stability we have that there are e′ ∈ x, d′ ∈ y such that e′ ^ d′. Which
contradicts (x, e1, e2) �µ (y, d1, d2).

Lemma A.12.4. The relation �µ is transitive in E.

Suppose (x, e1, e2) �µ (y, d1, d2), and (y, d1, d2) �µ (z, g1, g2), Then reason-
ing as above we have that e1 �µ d1 �µ g1 and e2 �µ d2 �µ g2. Which implies
e1 �µ g1 and e2 �µ g2, from which we derive (x, e1, e2) �µ (z, g1, g2).

Lemmas A.12.3, and A.12.4 together prove that E is confusion free.
To prove that E .Γ, suppose f1 : E1 → [[Γ1]] and f2 : E2 → [[Γ2]]. Recall that

[[Γ]] = ([[Γ1]]‖[[Γ2]]) \ (Dis(Γ) ∪ τ ). As we observed we can think of [[Γ]] as the
disjoint union of [[Γ1]] and [[Γ2]], plus some hiding.

We define the following partial function f : E → [[Γ]]. f(x, e1, ∗) = f1(e1),
f(x, ∗, e2) = f2(e2) (where by equality we mean weak equality), and undefined
otherwise. We have to check that f satisfies the conditions required. The first
two conditions are a consequence of (the proof) of the first part of the theorem.
It remains to show that f is a morphism of event structures. This follows from
general principles, but we repeat the proof here.

We have to check that if d ≤ f(x, e1, e2) in [[Γ]], then there exists (y, d1, d2)
in E such that f(y, d1, d2) = d. Without loss of generality, we assume e2 = ∗,
so that f(x, e1, e2) = f1(e1). Let d ≤ f1(e1). Since f1 is a morphism, then
there is d1 ≤ e1 such that f1(d1) = d. Since projections are morphisms, there
must be a (y, d1, d2) ≤ (x, e1, e2). I claim that d2 must be equal to ∗, so that
f(y, d1, d2) = f1(d1) = d. If d2 were not ∗, then its label would be dual to
label of d1. This means that both labels are in Dis(Γ), and that no event in
[[Γ]], and in particular the d, can be labelled by either of them. This contradicts
f1(d1) = d.
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Then we have to check that f reflects�. So, suppose f(x, e1, e2) � f(x′, e′1, e
′
2).

By the structure of [[Γ]] it cannot be that f(x, e1, ∗) � f(x′, ∗, e′2), because they
are mapped to disjoint concurrent components. Therefore, w.l.o.g, the only case
to consider is f(x, e1, ∗) � f(x′, e′1, ∗). This means f1(e1) � f1(e′1). Since f1 is
a morphism, then e1 � e′1, which implies (x, e1, ∗) � (x′, e′1, ∗).

A.12.6 Proof of Proposition A.5.1

By a straightforward case analysis.

A.12.7 Proof of Theorem A.6.1

The proof is by induction on the semantics. All the cases are easily done
directly, with the exception of the parallel composition. The case of the parallel
composition is a direct consequence of Theorem A.4.4.

A.12.8 Proof of Theorem A.6.7

The proof is by induction on the rules of the operational semantics. All cases
are rather straightforward, except the parallel composition. For this we need the
following lemma. To avoid distinguishing different cases, lets say that, for every
event structure E , we have E ∗−→Eb∗ = E .

Lemma A.12.5. Let ∼= denote isomorphism of event structures. We have that

E1
α−→E1be1, and E2

β−→E2be2 if and only if E1‖E2
α•β−→E1‖E2b(∅, e1, e2). Moreover,

in such a case, we have E1‖E2b(∅, e1, e2) ∼= (E1be1)‖(E2be2).

The first part of theorem is straightforward : if e1, e2 are minimal in E1, E2,
then (∅, e1, e2) is a minimal event in E1‖E2, and vice versa. Assuming this is
the case, we are now going to prove that E1‖E2b(∅, e1, e2) ∼= (E1be1)‖(E2be2).
We will define a bijective function f : E1‖E2b(∅, e1, e2)→ (E1be1)‖(E2be2), such
that both f and f−1 are morphism of event structure. We define f by induction
on the height of the events. Also by induction we show the properties required.
That is we prove that

– for every n, f is bijective on elements of height n ;
– f preserves and reflects the conflict relation ;
– f preserves and reflects the order relation ;
– Π1 ◦ f = Π1 and Π2 ◦ f = Π2, where Π1,Π2 denote the projections in the

parallel composition.

In particular. the above properties imply that both f , and f−1 are morphisms
of event structure. The preservation of the labels follows from the last point,
noting that the labels of an event in the product depend only on the labels of
the projected events.

Base : height = 0
Events of height 0 in E1‖E2b(∅, e1, e2) are of two forms :
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– the form (∅, d1, d2), with d1 minimal in E1 and d2 minimal in E2 (when
different from ∗) 1. In such a case we define f(∅, d1, d2) = (∅, d1, d2).

– the form ((∅, e1, e2), d1, d2), with e1 ≤ d1 and d2 minimal in E2, or e2 ≤ d2

and d1 minimal in E1, or both e1 ≤ d1, e2 ≤ d2. In such a case we define
f(∅, d1, d2) = (∅, d1, d2).

Note that from the discussion above, it follows that the events (∅, d1, d2) and
((∅, e1, e2), d1, d2) cannot be both in E1‖E2b(∅, e1, e2). We prove that f is well
defined on events of height 0. Consider d = (∅, d1, d2). Then both d1, d2 are
minimal in E1, E2 respectively. Also it is not the case that d1 � e1, nor d2 � e2,
as otherwise we would have (∅, d1, d2) � (∅, e1, e2). This means that d1, d2

belong to E1be1, E2be2 and are minimal there. So that f(d) = (∅, d1, d2) ∈
(E1be1)‖(E2be2). A similar reasoning applies when d = ((∅, e1, e2), d1, d2). Now
we prove

– f is bijective on events of height 0 ; it is surjective : take an event (∅, d1, d2)
in (E1be1)‖(E2be2). There are several cases. If both d1 is minimal in E1 and
d2 is minimal in E2, and it is not the case that e1 � d1 nor e2 � d2, then
(∅, d1, d2) ∈ E1‖E2b(∅, e1, e2). Similarly, in the other cases, it is easy to
see that ((∅, e1, e2), d1, d2) ∈ E1‖E2b(∅, e1, e2). Also f is injective. The
only thing to check is that (∅, d1, d2) and ((∅, e1, e2), d1, d2) cannot be
both events in E1‖E2b(∅, e1, e2), which, as we have observed, is the case.

– f preserves and reflects conflict on events of height 0. This is easily verified
by checking all the cases of definition of conflict. Note that it cannot be
the case that (∅, d1, d2) � (∅, e1, e2), as such events do not belong to
E1‖E2b(∅, e1, e2).

– f preserves and reflects order on events of height 0, trivially.
– Π1 ◦ f = Π1 and Π2 ◦ f = Π2, by definition.

Step : height = n+ 1
We assume that f is defined for all events of height ≤ n, and that it satisfies
the required properties there. On events of height n+ 1, we define f as follows.
f(x, d1, d2) = (f(x), d1, d2). We prove that f is well defined. Note that in order
to show that (f(x), d1, d2) is an event, we only use properties of Π1(f(x)) and
Π2(f(x)), by induction hypothesis they coincide with Π1(x),Π2(x) respectively.
We consider one case, the others being similar. Suppose d1 ∈ E1, d2 ∈ E2. Then
let y be the set of maximal elements of x. Since f preserves and reflects order,
we have that f(y) is the set of maximal elements of f(x). Let y1 = Π1(y), y2 =
Π2(y). Note that we also have y1 = Π1(f(y)), y2 = Π2(f(y)). Since (x, d1, d2) is
an event, we have

– if (z, d1, d2) ∈ y, then either d1 ∈ parents(e1) ord2 ∈ parents(e2) ;
– for all d1 ∈ parents(e1), there exists (z, d1, d2) ∈ x ;
– for all d2 ∈ parents(e2) there exists (z, d1, d2) ∈ x.
– for no d1 ∈ Π1(x), d1 � e1 and for no d2 ∈ Π2(x), d2 � e2.

These conditions, show that (f(x), d1, d2) is also an event.

We now prove that

– f is bijective on event of height n + 1. First, if (x, d1, d2) is of height

1. We omit this remark in the following : it will be considered implicit throughout.
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n + 1, so is (f(x), d1, d2), because by induction hypothesis, f is bijec-
tive on events of height n, so that x contains one such event if and
only if f(x) does. To prove that f is surjective, consider now an event
(y, d1, d2) ∈ (E1be1)‖(E2be2). Since f is biejctive on events of height ≤ n,
we have that there exists x such that y = f(x), and moreover since
f preserves and reflects order and conflict, x is a configuration if and
only if f(x) is. We have to argue that if (f(x), d1, d2) is an event of
(E1be1‖E2be2) then (x, d1, d2) is an event of E1‖E2b(∅, e1, e2). This is done
in a similar way than the base case. To prove that f is injective, consider
(x, d1, d2), (x′, d1, d2), such that f(x) = f(x′). By induction hypothesis f
is injective, so that x = x′ and we are done.

– f preserves and reflects conflict. This is done as in the base case.
– f preserves and reflects order. In fact by definition d ∈ x if and only if
f(d) ∈ f(x), which is precisely what we need.

– Π1 ◦ f = Π1 and Π2 ◦ f = Π2, by definition.
This concludes the proof.

A.12.9 Proof of Lemma A.7.1

Given a NCCS type σ, we define its erasure er(σ) to be the π type obtained
from σ by removing all confidential names. It is a partial function defined as
follows

– er(y1 : σ1, . . . , yn : σn) = er(σ1), . . . , er(σn)
– er(

�
i∈I Γi) = (

�
i∈I er(Γi))

↓

– er(
⊕

i∈I Γi) = (
⊕

i∈I er(Γi))
↑

– er(
⊗

i∈I Γi) = (er(Γ))! if for all i ∈ I, er(Γi) = er(Γ).

– er(
⊎
i∈I Γi) = (er(Γ))? if for all i ∈ I, er(Γi) = er(Γ).

– er(l) =l

Lemma A.12.6. Suppose er(σ) = er(τ), and suppose σ, τ have disjoint sets
of names. Suppose for every type of the form

⊗
k∈K Γk, the set K is infinite.

Then there is a renaming ρ, such that match[τ, σ[ρ]] → S and if res[τ, σ[ρ]] =⊗
k∈K Γk, then K is infinite.

By induction on the structure of the types.
We want to prove that for every judgement P . Γ, there exists a choice

function ρ and an environment ∆, such that pc[[P . Γ]]ρ . ∆. We will prove it
by induction on the typing rules. However we need a stronger statement for the
induction to go through. We prove that a ∆ exists such that it has the following
properties

– if ∆(x) = τ , then Γ(x) = er(τ)
– if Γ(x) = τ , then there exists τ ′ such that ∆(x) = τ ′ and er(τ ′) = τ .
– for every type of the form

⊗
k∈K Γk, the set K is infinite.

Finally we prove that if pc[[P . Γ]]ρ . ∆, then for every fresh renaming ρ′,
pc[[P . Γ]]ρ

′◦ρ .∆[ρ′].
The proof is trivial for Zero, WeakCl, WeakOut, Res, LIn, LOut, Rout.

For Rin, one has just to take care to choose K to be infinite. For the parallel



A.12. PROOFS 99

composition, assume pc[[P1 .Γ1]]ρ1 .∆1 and pc[[P2 .Γ2]]ρ2 .∆2. First rename all
the variables in ∆1,∆2, so that they are disjoint. In this way we can substitute
a name of ∆1 for a name in ∆2, and ∆2 would still be well formed.

Then consider a judgement a : τ in Γ1 such that there is a matching
judgement a : σ in Γ2. Consider the type τ ′ such that a : τ ′ is in ∆1. Since
er(τ) = er(τ ′), by Lemma A.12.6 we find a ρa such that match[τ, σ[ρa]] → S.
For every matching name, we obtain such a renaming. All renamings can be
joined to obtain a fresh injective renaming ρ, because no name is involved in
two different renamings. Therefore ∆1 �∆2[ρ] is defined.

A.12.10 Proof of Theorem A.7.2

The proof is by structural induction on P . Γ. All the cases are rather easy,
taking into account that π-calculus terms can perform any fresh α-variant of
an action. For the parallel composition, one has to notice that names that are
closed after the transition in the π-calculus are closed before the transition in
NCCS.

A.12.11 Proof of Theorem A.7.3

One direction of the proof (soundness) is easy and it is left to the reader.
To prove full abstraction we define a relation as follows (we omit the en-

vironments for simplicity) : (pc[[P ]]ρ, pc[[Q]]ρ
′
) ∈ R if and only if P ≈ Q. We

want to prove it is a bisimulation. Suppose pc[[P ]]ρ
β−→R. Then P

β−→P ′ and

R = pc[[P ′]]ρ\obj(β). Since P ≈ Q, then Q
β−→Q′ with P ′ ≈ Q′. Then there exists

ρ′′ such that pc[[Q]]ρ
′′ β−→pc[[Q′]]ρ′′\obj(β). The choice function ρ′′ can be obtained

from ρ′ via a bijection of names ρ′′′ (note that the cardinality of the Ks is always

the same). Then we can write pc[[Q]]ρ
′
[ρ′′′]

β−→pc[[Q′]]ρ′′\obj(β). We conlcude by
noting that (pc[[P ′]]ρ\obj(β), pc[[Q′]]ρ

′′\obj(β)) ∈ R.

A.12.12 Proof of Theorem A.10.2

Before proving Theorem A.10.2, we need a lemma. Consider the Segala au-
tomaton (t, x0) generated by a probabilistic event structure E . Transition groups
correspond to certain sets of events. A path of the Segala automaton can be seen
as performing a sequence of events.

Recall that a configuration of an event structure is a set of events that is
conflict free and downward closed.

Lemma A.12.7. The set of events along a path of (t, x0) form a configuration
of E. The probability of a path is the same as the probability of the corresponding
configuration.

A scheduler creates paths, and therefore configurations. A infinite path can-
not be extended further, but the corresponding configuration is not maximal in
general. However this is the case for fair schedulers.
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Lemma A.12.8. The set of events along a path in B(t, x0,S), for S fair, is
a maximal configuration. Conversely, given a fair scheduler S and a maximal
configuration, there exists a corresponding path in B(t, x0,S).

Proof of Theorem A.10.2. Consider a fully probabilistic event structure E .
According to Theorem 4.2 in [VVW06], there exists a unique probability distri-
bution µ over the set of maximal configurations. Consider a label a. We define
p(a) := µ(Xa), where Xa is the set of maximal configurations that contain the
label a (it is easy to show this set is indeed measurable).

We want to prove that, given a fair scheduler S for the Segala automaton
generated by E , we have pS(a) = p(a), and therefore it is independent from S.
Consider the set of paths in B(t, x0,S) that contain a label a. This is the disjoint
union of the paths that contain the first a at the i-th position, for i > 0. Let Bi
be such sets. The measure of Bi is the sum of the probabilities of the finite paths
of length i that contain the label a in the last position. Let such paths form
the set Fi. The configurations corresponding to the paths in Fi have the same
probability. Using Lemma A.12.8, we show that every maximal configuration
containing an event labelled by a is above a unique configuration in some Fi.
This shows that the measure of the set of maximal configurations containing an
a coincides with the set of infinite paths in B(t, x0,S).



Annexe B

Event structure semantics
of the untyped π-calculus

B.1 Introduction

In the previous chapter we have used event structures to give a causal and
compositional semantics to a very restricted fragment of the π-calculus. In this
chapter we present an event structure semantics of the full, unrestricted ver-
sion of the calculus. It is the first compositional event structure semantics of
the π-calculus. The semantics we propose generalises Winskel’s semantics of
CCS [Win82], it is operationally adequate with respect to the standard labelled
transition semantics, and consequently it is sound with respect to bisimilarity.

B.1.1 The internal π calculus

As a first step we give a semantics of a very expressive subcalculus, the
πI-calculus [San95], that we presented in its typed version in the previous chap-
ter. Recall that the distinctive feature of theπI-calculus is that the output of
free names is disallowed. The symmetry of input and output prefixes, that are
both binders, simplifies considerably the theory, while preserving most of the
expressiveness of the calculi with free name passing [Bor98, MS04, Pal03]. The
πI-calculus comes in two variants : synchronous and asynchronous. Contrary
to the full calculus, the asynchronous variant is not a subcalculus of the syn-
chronous one and therefore they have to be treated independently.

In order to provide an event structure semantics of any version of the π-
calculus, one has in particular to be able to represent dynamic creations of new
synchronisation channels, a feature that is not present in traditional process
algebras. In Winskel’s event structure semantics of CCS [Win82], the parallel
composition is defined as product in a suitable category followed by relabelling
and hiding. The product represents all conceivable synchronisations, the hiding
removes synchronisations that are not allowed, while the relabelling chooses

101
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suitable names for synchronisation events. In CCS one can decide statically
whether two events are allowed to synchronise, whereas in the π-calculus, a
synchronisation between two events may depend on which synchronisations took
place before.

Consider for instance the π-process a(x).x(u).0 | a(z).z(v).0 where a(x).P
is an input at a, a(z).Q is an output of a new name z to a and 0 denotes the
inaction. This process contains two synchronisations, first along the channel a
and then along a private, newly created, channel z. The second synchronisation
is possible only since the names x and z are made equal by the previous syn-
chronisation along a. To account for this phenomenon, we define the semantics
of the parallel composition by performing hiding and relabelling not uniformly
on the whole event structure, but relative to the causal history of events.

The full symmetry underlying the πI-calculus theory has a further advan-
tage : it allows a uniform treatment of causal dependencies. Causal dependencies
in the π-processes arise in two ways [BS98, DP99] : by nesting prefixes (called
structural or prefixing or subject causality) and by using a name that has been
bound by a previous action (called link or name or object causality). While
subject causality is already present in CCS, object causality is distinctive of
the π-calculus. In the synchronous πI-calculus, object causality always appears
under subject causality, as in a(x).x(y).0 or in (νc)a(x).(c(z).0 | c(w).x(y).0),
where the input on x causally depends in both senses from the input on a. As
a result, the causality of synchronous πI-calculus can be naturally captured by
the standard prefixing operator of the event structures, as in CCS.

On the other hand, in the asynchronous πI-calculus, the bound output pro-
cess is no longer a prefix : in a(x)P , the continuation process P can perform
any action α before the output of x on a, provided that α does not contain
x. Thus the asynchronous output has a looser causal dependency. For exam-
ple, in (νc)a(x)(c(z).0 | c(w)x(y).0), a(x) only binds the input at x, and the
interaction between c(z) and c(w) can perform before a(x), thus there exists
no subject causality. Representing this output object causality requires a novel
operator on event structures that we call rooting, whose construction is inspired
from a recent study on Ludics [CF05b].

In this chapter, we present these new constructions, and use them to ob-
tain compositional, sound and adequate semantics for both synchronous and
asynchronous πI-calculus.

B.1.2 Free Name Passing and Scope Extrusion

After having dealt with the simpler case of the πI-calculus we then provide
the semantics for the full calculus.

The main issues when dealing with the full π-calculus are name passing
and the extrusion of bound names. These two ingredients are the source of
the expressiveness of the calculus, but they are problematic in that they allow
complex forms of causal dependencies, as detailed below.
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Free name passing Compared to pure CCS, (either free or bound) name
passing adds the ability to dynamically acquire new synchronization capabilities.
For instance consider the π-calculus process P = n(z).(z〈a〉 | m(x)), that reads
from the channel n and uses the received name to output the name a in parallel
with a read action on m. Hence a synchronization along the channel m is possible
if a previous communication along the channel n substitutes the variable z
exactly with the name m. Then, in order to be compositional, the semantics of
P must also account for “potential” synchronizations that might be activated
by parallel compositions, like the one on channel m.

To account for this phenomenon, we define the parallel composition of event
structures so that synchronization events that involve input and output on dif-
ferent channels, at least one of which is a variable, are not deleted straight away.
Moreover, the events produced by the parallel composition are relabelled by tak-
ing into account their causal history. For instance, the event corresponding to
the synchronization pair (z〈a〉,m(x)) is relabelled into a τ action if, as in the
process P above, its causal history contains a synchronization that substitutes
the variable z with the name m.

Causal dependencies in π-calculus processes arise in two ways [BS98, DP99] :
by nesting prefixes (called structural or prefixing or subject causality) and by
using a name that has been bound by a previous action (called link or name
or object causality). While subject causality is already present in CCS, object
causality is distinctive of the π-calculus. The interactions between the two forms
of causal dependencies are quite complex. We illustrate them by means of ex-
amples.

Parallel Scope extrusion. Consider the two processes P = (νn)(a〈n〉.n(x))
and Q = (νn)(a〈n〉 | n(x)). The causal dependence of the action n(x) on the
output a〈n〉 is clear in the process P (i.e. there is a structural causal link),
however, a similar dependence appears also in Q since a process cannot syn-
chronize on the fresh name n before receiving it along the channel a (i.e. there
is an objective causal link). Now consider the process P1 = (νn)(a〈n〉 | b〈n〉) :
in the standard interleaving semantics of π-calculus only one output extrudes,
either a〈n〉 or b〈n〉, and the other one does not. As a consequence, the second
(free) output depends on the previous extruding output. However, in a true con-
current model we can hardly say that there is a dependence between the two
parallel outputs, which in principle could be concurrently executed resulting in
the parallel/simultaneous extrusion of the same name n to two different threads
reading respectively on channel a and on channel b.

Dynamic Addition of New Extruders. We have seen that a bound name
may have multiple extruders. In addition, the coexistence of free and bound
outputs allows the set of extruders to dynamically change during the compu-
tation. Consider the process P2 = (νn)(a〈n〉 |n(z)) | a(x).(x〈b〉 | c〈x〉). It can
either open the scope of n by extruding it along the channel a, or it can evolve
to the process (νn)(n(z) | n〈b〉 | c〈n〉) where the output of the variable x has
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become a new extruder for both the actions with subject n. Hence after the
first synchronization there is still the possibility of opening the scope of n by
extruding it along the channel c.

The lesson we learned. The examples above show that the causal dependen-
cies introduced by the scope extrusion mechanisms distinctive of the π-calculus
can be understood in terms of the two ingredients of extrusion : name restriction
and communication.

1. The restriction (νn)P adds to the semantics of P a causal dependence
between every action with subject n and one of the outputs with object
n.

2. The communication of a restricted name adds new causal dependencies
since both new extruders and new actions that need an extrusion may be
generated by variable substitution.

A causal semantics for the π-calculus should account for such a dynamic
additional objective causality introduced by scope extrusion. In particular, the
first item above hints at the fact that we have to deal with a form of disjunctive
(objective) causality. Prime event structures are stable models that represent
disjunctive causality by duplicating events and so that different copies causally
depend on different (alternative) events. In our case this amounts to represent
different copies of any action with a bound subject, each one causally depending
on different (alternative) extrusions. However, the fact that the set of extruders
dynamically changes complicates the picture since new copies of any action with
a bound subject should be dynamically spawned for each new extruder. In this
way the technical details quickly become intractable, as discussed in Section C.7.

In this work we eventually chose to follow a completely different approach
that leads to an extremely simple technical development. The idea is to repre-
sent the disjunctive objective causality in a so-called inclusive way : in order to
trace the causality introduced by scope extrusion it is sufficient to ensure that
whenever an action with a bound subject is executed, at least one extrusion of
that bound name must have been already executed, but it is not necessary to
record which output was the real extruder. Clearly, such an inclusive-disjunctive
causality is no longer representable with stable structures like prime event struc-
tures. However, we show that an operational adequate true concurrent semantics
of the π-calculus can be given by encoding a π-process simply as a pair (E , X)
where E is a prime event structure and X is a set of (bound) names. Intu-
itively, the causal relation of E encodes the structural causality of a process.
Instead, the set X affects the computation on E : we define a notion of per-
mitted configurations, ensuring that any computation that contains an action
whose subject is a bound name in X, also contains a previous extrusion of that
name. Hence a further benefit of this semantics is that it clearly accounts for
both forms of causality : subjective causality is captured by the causal relation
of event structures, while objective causality is implicitly captured by permitted
configurations.
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Structure of the chapter. This chapter is the fusion of the two papers
[CVY07, CVY12] with some modifications. in Section B.2, we recall the def-
initions of the π-calculus, the internal variant, and the asynchronous internal
variant. In Section B.3, we briefly recall the definition of event structure as al-
ready presented in Section A.3. In Section B.4, we present the semantics of the
internal π-calculus (synchronous and asyncrhonous). In Section B.5, we see how
to handle the substitution of free names. In Section B.6 ; we see how to handle
the parallel scope extrusion, and we provide the semantics of the full calculus.
Section B.7 contains some discussions about our modeling choices. Section B.8
discusess related and future work.

B.2 The π-Calculus

B.2.1 The full calculus

In this section we illustrate the synchronous, monadic π-calculus that we
consider. We presuppose a countably-infinite set of names and a countably-
infinite set of variables ranged over by m, .., q and by x, .., z, respectively. We
use a, b, c to range over both names and variables.

Prefixes π ::= a(x) | a〈b〉

Processes P,Q ::=
∑
i∈I πi.Pi | P | Q | (νn)P | A〈x̃, p̃ | z,n〉

Definitions A(x̃, p̃ | z,n) = PA

The syntax consists of the parallel composition, name restriction, finite summa-
tion of guarded processes and recursive definition. In

∑
i∈I πi.Pi, I is a finite

indexing set ; when I is empty we simply write 0 and denote with + the binary
sum. A process a(x).P can perform an input at a and the variable x is the
placeholder for the name so received. The output case is symmetric : a process
a〈b〉.P can perform an output along the channel a. Notice that an output can
send a name (either free or restricted) or else a variable.

We assume that every constantA has a unique defining equationA(x̃, p̃ | z,n) =
PA. The symbol p̃, resp. x̃, denotes a tuple of distinct names, resp. variables,
that correspond to the free names, resp. variables, of PA. n, resp. z, represents
an infinite sequence of distinct names N → Names, resp. distinct variables
N → V ariables, that is intended to enumerate the (possibly infinite) bound
names, resp. bound variables, of PA. The parameters n and z do not usually
appear in recursive definitions in the literature. The reason we add them is that
we want to maintain the following Basic Assumption :

Every bound name/variable is different from any other name/variable, either
bound or free.

In the π-calculus, this policy is usually implicit and maintained along the com-
putation by dynamic α-conversion : every time the definition A is unfolded, a
copy of the process PA is created whose bound names and variables must be
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(In Late)

a(x).P
a(x)

−−−→ P

(Out)

a〈b〉.P
a〈b〉
−−−→ P

(Comm)

P
a(x)

−−−→ P ′ Q
a〈b〉
−−−→ Q′

P | Q
τ
−−→ P ′{b/x} | Q′

(Par)

P
α
−−→ P ′

P | Q
α
−−→ P ′ | Q

(Open)

P
a〈n〉
−−−→ P ′ n 6= a

(νn)P
a(n)

−−−→ P ′

(Close)

P
a(x)

−−−→ P ′ Q
a(n)

−−−→ Q′

P | Q
τ
−−→ (νn)(P ′{n/x} | Q′)

(Res)

P
α
−−→ P ′ n /∈ fn(α)

(νn)P
α
−−→ (νn)P ′

(Sum)

Pi
α
−−→ P ′

i i ∈ I∑
i∈I Pi

α
−−→ P ′

i

(Rec)

PA{ỹ,q̃/x̃,p̃}{w,m/z,n}
α
−−→ P ′ A(x̃, p̃ | z,n) = PA

A〈ỹ, q̃ | w,m〉
α
−−→ P ′

Figure B.1 – Labelled Transition System of the π-calculus

fresh. This dynamic choice is difficult to interpret in the event structures. Hence,
in order to obtain a precise semantic correspondence, our recursive definitions
prescribe all the names and variables that will be possibly used in the recursive
process. Notice that this assumption has no impact on the process behaviour
since every π-process can be α-renamed so that it satisfies that assumption.

The sets of free and bound names and free and bound variables of P , denoted
by fn(P ), bn(P ), fv(P ), bv(P ), are defined as usual but for constant processes,
whose definitions are as follows : fn(A〈x̃, p̃ | z,n〉) = {p̃}, bn(A〈x̃, p̃ | z,n〉) =
n(N), fv(A〈x̃, p̃ | z,n〉) = {x̃} and bv(A〈x̃, p̃ | z,n〉) = z(N).

Example B.2.1. Consider A(x | z) = x(z0).A〈z0 | z′〉 | x(z1).A〈z1 | z′′〉, where
z′(n) = z(2n + 2) and z′′(n) = z(2n + 3) (we omit to mention n). In this
case the sequence of variables z is partitioned into two infinite subsequences
z′ and z′′ (corresponding to even and odd variable occurrences), so that the
bound variables used in the left branch of A are different from those used in the
right branch. Intuitively A〈a | z〉 partially “unfolds” to a(z0).(z0(z2).A〈z2 | z′1〉
| z0(z4).A〈z4 | z′2〉) | a(z1).(z1(z3).A〈z3 | z′′1〉 | z1(z5).A〈z3 | z′′2〉) with suitable
z′1, z

′
2, z
′′
1 , z
′′
2 .

The operational semantics is given in Figure B.1 in terms of an LTS (in late
style) where we let α, β range over the set of labels {τ, a(x), a〈b〉, a(n)}. The
syntax of labels shows that the object of an input is always a variable, whereas
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the object of a free output is either a variable (e.g. b(x) or a〈x〉) or a name. On
the other hand, the object of a bound output is always a name, since it must
occur under a restriction. The definition of the substitution {w/z} is as follows.
Let A(x̃ | z) = PA be a recursive definition. The sequence z contains all bound
names of PA, and in particular the names of all sequences z′ that appear in
PA. For each such sequence, there exists an injective function f : N → N such
that z′(n) = z(f(n)). To obtain the process PA{w/z}, for each bound name of
the form z(n) we substitute w(n), and for each sequence z′ we substitute the
sequence w′ defined as w′(n) = w(f(n)).

The symmetric rules to (Comm)(Par)(Close) are omitted. Note also that
the use of Assumption B.2.1, makes it unnecessary to have the side condition
that usually accompany (Par).

B.2.2 The synchronous internal calculus

This section gives basic definitions of the πI-calculus [San95]. This subcalculus
captures the essence of name passing with a simple labelled transition relation.

Syntax. The syntax of the monadic, synchronous πI-calculus [San95] is the
following. In this calculus, we do not need to distinguish between names and
variables — as is the case already for the original presentation of the full calculus.

Definitions A(x̃ | z) = PA

Prefixes π ::= a(x) | a(x)

Processes P,Q ::=
∑
i∈I πi.Pi | P | Q | (νa)P | A〈x̃ | z〉

It is very similar to the full π-calculus. The only difference are the out-
put prefix. The process a(x).P corresponds to (νx)a〈x〉.P . Therefore, in the
πI-calculus only bound names can be communicated, modelling the so called
internal mobility.

Operational Semantics. The operational semantics is given in the following
in terms of an LTS (in late style) where we let α, β range over the set of labels
{τ, a(x), a(n)}.

The rules of Fig B.2 illustrate the internal mobility characterising the πI-
calculus communication. In particular, according to (Comm), we have that

a(x).P | a(y).Q
τ−→ (νy)(P{y/x} | Q) where the fresh name y appearing

in the output is chosen as the “canonical representative” of the private value
that has been communicated.

Proposition B.2.1. Let P be a process that satisfies the Basic Assumption.
Suppose P

α−→ P ′. Then P ′ satisfies the Basic Assumption.

We end this section with the definition of strong bisimilarity in the πI-
calculus.
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(In)

a(x).P
a(x)

−−−→ P

(Out)

a(x).P
a(x)

−−−→ P

(Comm)

P
a(x)

−−−→ P ′ Q
a(y)

−−−→ Q′

P | Q
τ
−−→ (νy)(P ′{y/x} | Q′)

(Par)

P
α
−−→ P ′

P | Q
α
−−→ P ′ | Q

(Sum)

Pi
α
−−→ P ′

i∑
i∈I Pi

α
−−→ P ′

i

i ∈ I

(Res)

P
α
−−→ P ′

(νa)P
α
−−→ (νa)P ′

a /∈ fn(α)

(Rec)

PA{ỹ/x̃}{w/z}
α
−−→ P ′ A(x̃ | z) = PA

A〈ỹ | w〉
α
−−→ P ′

Figure B.2 – Labelled Transition System of the π-calculus

Definition B.2.2 (πI strong bisimilarity). A symmetric relation R on πI pro-
cesses is a strong bisimulation if P R Q implies :

– whenever P
τ
−−→ P ′, there is Q′ s.t. Q

τ
−−→ Q′ and P ′RQ′.

– whenever P
a(x)
−−−→ P ′, there isQ′ s.t.Q

a(y)
−−−→ Q′ and P ′{z/x}RQ′{z/y}.

– whenever P
a(x)
−−−→ P ′, there isQ′ s.t.Q

a(y)
−−−→ Q′ and P ′{z/x}RQ′{z/y}.

with z being any fresh variable/name. Two processes P,Q are bisimilar, written
P ∼ Q, if they are related by some strong bisimulation.

This definition differs from the corresponding definition in [San95] because we
do not have the α-conversion rule, and thus we must allow Q to mimic P using
a different bound name. The relation ∼ is a congruence.

B.2.3 The asynchronous internal calculus

We now present the asynchronous πI-calculus [Bou92, HT91, MS04].

Processes P,Q ::=
∑
i∈I ai(xi).Pi | a(x)P

| P | Q | (νa)P | A〈x̃ | z〉

Definition A(x̃ | z) = PA

The new syntax of the bound output reflects the fact that there is a looser
causal connection between the output and its continuation. A process a(x)P is
different from a(x).P in that it can activate the process P even if the name x
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has not been emitted yet along the channel a. The operational semantics can
be obtained from that of the synchronous calculus by removing the rule (Out)
and adding the following three rules :

(Out)

a(x)P
a(x)
−−−→ P

(Async)

P
α
−−→ P ′

a(x)P
α
−−→ a(x)P ′

n /∈ fn(α)

(Asynch Comm)

P
a(x)
−−−→ P ′

a(y)P
τ
−−→ (νy)P ′{y/x}

Relying on this LTS, the definition of strong bisimilarity for the asynchronous
πI-calculus is identical to that in Section B.2.2.

B.3 Event structures

This section reviews basic definitions of event structures, as presented more
extensively in Section A.3.

Definition B.3.1 (Event Structure). An event structure is a triple E = 〈E,≤
,^〉 s.t.

– E is a countable set of events ;
– 〈E,≤〉 is a partial order, called the causal order ;
– for every e ∈ E, the set [e) := {e′ | e′ < e}, called the enabling set of e, is

finite ;
– ^ is an irreflexive and symmetric relation, called the conflict relation,

satisfying the following : for every e1, e2, e3 ∈ E if e1 ≤ e2 and e1 ^ e3

then e2 ^ e3.

The reflexive closure of conflict is denoted by �. We say that the conflict
e2 ^ e3 is inherited from the conflict e1 ^ e3, when e1 < e2. If a conflict
e1 ^ e2 is not inherited from any other conflict we say that it is immediate. If
two events are not causally related nor in conflict they are said to be concurrent.

Definition B.3.2 (Labelled event structure). Let L be a set of labels. A labelled
event structure E = 〈E,≤,^, λ〉 is an event structure together with a labelling
function λ : E → L that associates a label to each event in E.

Definition B.3.3. Let E = 〈E,≤,^, λ〉 be a labelled event structure and let
e be one of its minimal events. The event structure Ebe = 〈E′,≤′,^′, λ′〉 is
defined by : E′ = {e′ ∈ E | e′ 6� e}, ≤′=≤|E′ , ^′=^|E′ , and λ′ = λE′ . If

λ(e) = β, we write E β−→ Ebe .

The reachable LTS with initial state E corresponds to the computations
over E . It is usually defined using the notion of configuration [WN95]. However,
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by relying on the LTS as defined above, the adequacy theorem has a simpler
formulation. A precise correspondence between the two notions of LTS can be
easily defined.

Event structures have been shown to be the class of objects of a cate-
gory [WN95], whose morphisms are defined as follows. Let E1 = 〈E1,≤1,^1〉,
E2 = 〈E2,≤2,^2〉 be event structures. A morphism f : E1 → E2 is a partial
function f : E1 → E2 such that (i) f reflects causality : if f(e1) is defined, then[
f(e1)

)
⊆ f

(
[e1)
)

; (ii) f reflects reflexive conflict : if f(e1), f(e2) are defined,
and if f(e1) � f(e2), then e1 � e2.

It is easily shown that an isomorphism in this category is a bijective function
that preserves and reflects causality and conflict. In the presence of labelled
event structures E1 = 〈E1,≤1,^1, λ1〉, E2 = 〈E2,≤2,^2, λ2〉 on the same set of
labels L, we will consider only label preserving isomorphisms, i.e. isomorphisms
f : E1 → E2 such that λ2(f(e1)) = λ1(e1). If there is an isomorphism f : E1 → E2,
we say that E1, E2 are isomorphic, written E1 ∼= E2.

We recall briefly the main operations that can be defined on labelled event
structures :

– Prefixing a.E ;
– Prefixed sum

∑
i∈I ai.Ei.

– Restriction (or Hiding) E \X where X ⊆ L is a set of labels.
– Relabelling E [f ] where L and L′ are two sets of labels and f : L→ L′.

B.3.1 The parallel composition

The parallel composition of two event structures E1 and E2 gives a new event
structure E ′ whose events model the parallel occurrence of events e1 ∈ E1 and
e2 ∈ E2. In particular, when the labels of e1 and e2 match according to an
underlying synchronisation model, E ′ records (with an event e′ ∈ E′) that a
synchronisation between e1 and e2 is possible, and deals with the causal effects
of such a synchronisation.

The parallel composition is defined as the categorical product followed by
restriction and relabelling [WN95]. The categorical product is unique up to
isomorphism, but it can be explicitly constructed in different ways. One that is
useful for our purpose was presented in Section A.3.

The synchronisation model underlying the relabelling operation needed for
parallel composition is formalised by the notion of synchronisation algebra [WN95].
A synchronisation algebra S is a partial binary operation •S defined on L∗. If
αi are the labels of events ei ∈ Ei, then α1 •S α2 is the label of the event e′ ∈ E′
representing the synchronisation of e1 and e2. If α1 •S α2 is undefined, the syn-
chronisation event is given a distinguished label bad indicating that this event
is not allowed and should be deleted.

Definition B.3.4 (Parallel Composition of Event Structures). Let E1, E2 two
event structures labelled over L, let S be a synchronisation algebra, and let
fS : L∗ → L′ = L∗ ∪ {bad} be a function defined as fS(α1, α2) = α1 •S
α2, if S is defined on (α1, α2), and fS(α1, α2) = bad otherwise. The parallel
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composition E1‖SE2 is defined as the categorical product followed by relabelling
and restriction 1 : E1‖SE2 = (E1 ×E2)[fS ] \ {bad}. The subscripts S are omitted
when the synchronisation algebra is clear from the context.

A large CPO of event structures. We say that an event structure E is a
prefix of an event structure E ′, denoted E ≤ E ′ if there exists E ′′ ∼= E ′ such that
E ⊆ E′′ and no event in E′′ \ E is below any event of E.

Winskel [Win82] has shown that the class of event structures with the prefix
order is a large CPO, and thus the limits of countable increasing chains exist.
Moreover all operators on event structures are continuous. We will use this fact
to define the semantics of the recursive definitions.

B.4 Semantics of πI-Calculus

This section defines the denotational semantics of πI-processes in terms of la-
belled event structures. Given a process P , we associate to P an event structure
EP whose events e represent the occurrence of an action λ(e) in the LTS of P .
Our main issue is compositionality : the semantics of the process P | Q should
be defined as EP || EQ so that the operator || satisfactorily models the parallel
composition of P and Q.

B.4.1 Generalised relabelling

It is clear from Definition B.3.4 that the core of the parallel composition of
event structures is the definition of a relabelling function encoding the intended
synchronisation model. As discussed in the Introduction, name dependences
appearing in πI-processes let a synchronisation between two events possibly de-
pend on the previous synchronisations. We then define a generalised relabelling
operation where the relabelling of an event depends on (the labels of) its causal
history. Such a new operator is well-suited to encode the πI-communication
model and allows the semantics of the πI-calculus to be defined as an extension
of CCS event structure semantics.

Definition B.4.1 (Generalised Relabelling). Let L and L′ be two sets of labels,
and let Pom(L′) be a pomset (i.e., partially ordered multiset) of labels in L′.
Given an event structure E = 〈E,≤, conf(, )λ〉 over the set of labels L, and a
function f : Pom(L′)×L −→ L′, we define the relabelling operation E [f ] as the
event structure E ′ = 〈E,≤, conf(, )λ′〉 with labels in L′, where λ′ : E −→ L′ is
defined as follows by induction on the height of an element of E :

if h(e) = 0 then λ′(e) = f(∅, λ(e) )

if h(e) = n+ 1 then λ′(e) = f(λ′([e)), λ(e) )

1. In [WN95], the definition of parallel composition is (E1 × E2 \X)[f ], where X is the set
of labels (pairs) for which f is undefined. We can prove that such a definition is equivalent to
ours, which is more suitable to be generalised to the π-calculus.
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In words, an event e is relabelled with a label λ′(e) that depends on the
(pomset of) labels of the events belonging to its causal history [e).

The set of labels we consider is L = {a(x), a(x), τ | a, x ∈ Names}. In
order to define the parallel composition we also need an auxiliary set of labels
L′ = {a(x), a(x), τx=y | a, x, y ∈ Names}∪{bad, hide}, where bad and hide are
distinguished labels.

In L′, the silent action τ is tagged with the couple of bound names that get
identified through the synchronisation. This extra piece of information carried
by τ -actions is essential in the definition of the generalised relabelling function.
Let for instance e encode the parallel occurrence of two events e1, e2 labelled,
resp., x(x′) and y(y′), then e1 and e2 do synchronise only if x and y are equal,
that is only if in the causal history of e there is an event labelled with τx=y ; in
such a case e can then be labelled with τx′=y′ .

The distinguished label bad denotes, as before, synchronisations that are not
allowed, while the new label hide denotes the hiding of newly generated names.
Both labels are finally deleted.

Let fπ : Pom(L′) × (L ] {∗} × L ] {∗}) −→ L′ be the relabelling function
defined as :

fπ(X, 〈a(y), a(z)〉) = fπ(X, 〈a(z), a(y)〉) = τy=z

fπ(X, 〈a(y), b(z)〉) = fπ(X, 〈b(z), a(y)〉) =

{
τy=z if τa=b ∈ X
bad otherwise

fπ(X, 〈α, ∗〉) = fπ(X, 〈∗, α〉) =

 hide if τa=b ∈ X
& α = a(y), a(y)

α otherwise
fπ(X, 〈α, β〉) = bad otherwise

The function fπ encodes the πI-synchronisation model in that it only allows
synchronisations between input and output over the same channel, or over two
channels whose names have been identified by a previous communication. The
actions over a channel a that has been the object of a previous synchronisation
are relabelled as hide since, according to internal mobility, a is a bound name.

The extra information carried by the τ -actions is only necessary in order
to define the relabelling, but it should later on be forgotten, as we do not
distinguish τ -actions in the LTS. Hence we apply a second relabelling er that
simply erases the tags :

er(α) =

{
τ if α = τx=y

α otherwise

B.4.2 Definition of the semantics

The semantics of the πI-calculus is then defined as follows by induction on
processes, where the parallel composition of event structure is defined by

E1‖πE2 = ((E1 × E2) [fπ][er]) \{bad, hide}
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To deal with recursive definitions, we use an index k to denote the level of
unfolding.

{|0 |}k = ∅

{| (νa)P |}k = {|P |}k\{l ∈ L | a is the subject of l}

{|P | Q |}k = {|P |}k ‖π {|Q |}k
{|
∑
i∈I πi.Pi |}k =

∑
i∈I πi.{|Pi |}k

{|A〈x̃ | z〉 |}0 = ∅

{|A〈x̃ | z, 〉 |}k+1 = {|PA{ỹ/x̃}{w/z} |}k
Recall that all operators on event structures are continuous with respect to the
prefix order. It is thus easy to show that, for any k, {|P |}k ≤ {|P |}k+1. We define
{|P |} to be the limit of the increasing chain ...{|P |}k ≤ {|P |}k+1 ≤ {|P |}k+2... :

{|P |} = supk∈N{|P |}k

Since all operators are continuous w.r.t. the prefix order we have the following
result :

Theorem B.4.2 (Compositionality). The semantics {|P |} is compositional, i.e.
– {|P | Q |} = {|P |} ‖π {|Q |},
– {|

∑
i∈I πi.Pi |} =

∑
i∈I πi.{|Pi |}, and

– {| (νa)P |}k = {|P |}\{l ∈ L | a is the subject of l}.

B.4.3 Examples

Example B.4.1. As a first example, consider the process P = a(x).x(u) | a(z).z(v)
discussed in the Introduction. We show in the following the two event structures
E1, E2 associated to the basic threads, as well as the event structure correspond-
ing to {|P |} = E1 ‖π E2. Figure B.3 shows two intermediate steps involved in
the construction of {|P |}, according to the definition of the parallel composition
operator.

E1 :

x(u)

a(x)

E2 :

z(v)

a(z)

E1 ‖π E2 :

x(u) τ z(v)

a(x) τ /o/o/oo/ o/ o/ o/ a(z)

Example B.4.2. As a second example, consider Q = a(w) | P , where P is
the process above. In Q two different communications may take place along the
channel a : either the fresh name w is sent, and the resulting process is stuck, or
the two threads in P can synchronise as before establishing a private channel for
a subsequent communication. The behaviour of Q is illustrated by the following
event structure which corresponds to {|Q |} = E3 ‖π {|P |}, where E3 = {| a(w) |}
is a simple event structure consisting of a single event labeled by a(w).
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(x(u), z(v))

(∗, z(v)) (x(u), ∗)

>>>>>>>>>>>>
/o (x(u), z(v)) (∗, z(v))

������������
o/ (x(u), ∗)

(x(u), ∗) /o (x(u), a(z))

ooooooo

-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m (a(x), z(v))

q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1

NNNNNNN (∗, z(v))o/

(a(x), ∗) (a(x), a(z)) /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oo/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ (∗, a(z))

Step 1. E1 × E2

bad

(∗, z(v)) hide

555555555555
/o/o τu=v hide

												
o/ o/ (x(u), ∗)

x(u) /o/o/o bad

rrrrrrr

-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m bad

q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1

LLLLLLL z(v)o/ o/ o/

a(x) τx=z /o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/oo/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ a(z)

Step 2. (E1 × E2)[fπ]

Figure B.3 – Event structure corresponding to a(x).x(u) | a(z).z(v)

x τ z

a(w) τ /o/o/oo/ o/ o/
(h )i *j ,l -m .n /o 0p 1q 3s 4t 5u 6va(x) /o/o/o τ /o/o/o a(z)

Example B.4.3. As a further example, consider the process
R = a(x).

(
x(y).y | x(y′).y′

)
| a(z).

(
z(w).(w | w)

)
whose two threads correspond

to the following two event structures :

E1 :

y y′

x(y)

KKKKKK x(y′)

rrrrrr

a(x)

E2 :

w

JJJJJJ τ /o/o/o/oo/ o/ o/ o/ w

tttttt

z(w)

a(z)

R allows a first communication on a that identifies x and z and triggers a further
synchronisation with one of the outputs over x belonging to E1. This second
communication identifies w with either y or y′, which can now compete with
w for the third synchronisation. The event structure corresponding to {|R |} =
E1 ‖π E2 is the following.
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τ

JJJJJJJ τ τ τ

ttttttt

τ /o/o/o/o/o/o/o/o τ

E1 /o/o/o/o/o/o/o/o τ

HHHHHH
vvvvvv

E2o/ o/ o/ o/ o/ o/ o/ o/

Example B.4.4. Consider the recursive process, seen in Example B.2.1,A(x | z) =
x(z0).A〈z0 | z′〉 | x(z1).A〈z1 | z′′〉, where z′(n) = z(2n+2) and z′′(n) = z(2n+3).
In the following, we draw the first approximations of the semantics of P =
A〈a | z〉 :

{|P |}0 : {|P |}1 : {|P |}2 :

z0(z2) z0(z4) z1(z3) z1(z5)

a(z0) a(z1) a(z0)

CCCCCC

a(z1)

{{{{{{

z2(z6) z2(z10) z4(z8) z4(z12) z3(z7) z3(z11) z5(z9) z5(z13)

{|P |}3 : z0(z2)

EEEEEE
z0(z4)

yyyyyy
z1(z3)

EEEEEE
z1(z5)

yyyyyy

a(z0)

RRRRRRRRRRR

EEEEEE
a(z1)

lllllllllll

yyyyyy

B.4.4 Properties of the semantics

The operational correspondence is stated in terms of the labelled transition
system defined in Section B.3.

Theorem B.4.3 (Operational Adequacy). Suppose P
β
−−→ P ′ in the πI-

calculus. Then {|P |}
β
−−→ ∼= {|P ′ |}. Conversely, suppose that {|P |}

β
−−→ E ′.

Then there exists P ′ such that P
β
−−→ P ′ and {|P ′ |} ∼= E ′.

The proof technique is similar to the one used in [VY06], but it takes into
account the generalised relabelling. As an easy corollary, we get that if two πI
processes have isomorphic event structure semantics, their LTSs are isomorphic
too. This clearly implies soundness w.r.t. bisimilarity.

Theorem B.4.4 (Soundness). If {|P |} ∼= {|Q |}, then P ∼ Q.

The converse of the soundness theorem (i.e. completeness) does not hold. In
fact this is always the case for event structure semantics (for instance the one
in [Win82]), because bisimilarity abstracts away from causal relations, which
are instead apparent in the event structures. As a counterexample, we have
a.b+ b.a ∼ a | b but {| a.b+ b.a |} 6∼= {| a | b |}.

Isomorphism of event structures is indeed a very fine equivalence, however
it is, in a sense behavioural, as it is strictly coarser than structural congruence.
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Proposition B.4.5. If P ≡ Q then {|P |} ∼= {|Q |}

The converse of the previous proposition does not hold : {| (νa)a.P |} ∼= {|0 |} = ∅
but (νa)a.P 6≡ 0. Also, the two processes (νa)(a(x).x(u) | a(y).y(v)) and
(νa, b)(a(x).b(u) | a(y).b(v)) are not structurally congruent, but they both corre-
spond to the same event structure containing only two events e1, e2 with e1 ≤ e2

and λ(e1) = λ(e2) = τ .

B.4.5 Semantics of the asynchronous calculus

The event structure semantics of the asynchronous πI-calculus requires to en-
code the output process a(x)P , introducing the following novel operator, called
rooting.

Definition B.4.6 (Rooting a[X].E). Let E be an event structure labelled over
L, let a be a label and X ⊆ L be a set of labels. We define the rooting operation
a[X].E as the event structure E ′ = 〈E′,≤′, conf(′), λ′〉, where E′ = E ] {e′} for
some new event e′, ≤′ coincides with ≤ on E and for every e ∈ E such that
λ(e) ∈ X we have e′ ≤′ e, the conflict relation conf(′) coincides with conf(),
that is e′ is in conflict with no event. Finally, λ′ coincides with λ on E and
λ′(e′) = a.

The rooting operation adds to the event structure a new event, labeled by
a, which is put below the events with labels in X (and any event above them).
This operation is used to give the semantics of asynchronous bound output :
given a process a(x)P , every action performed by P that depends on x should
be rooted with a(x). In addition to that, in order to model asynchrony, we
need to also consider the possible synchronisations between a(x) and P (for
example, consider a(x)a(z).b.x, whose operational semantics allows an initial
synchronisation between a(x) and a(z).b.x).

The formal construction is then obtained as follows. Given a process a(x)P ,
every action performed by P that has x as subject is rooted with a distinctive
label ⊥. The resulting structure is composed in parallel with a(x), so that (i)
every “non-blocked” action in P , (i.e. every action that does not depend on x)
can synchronise with a(x), and (ii) the actions rooted by ⊥ (i.e. those depending
on x) become causally dependent on the action a(x).

Such a composition is formalised the parallel composition operator ‖Aπ built
around the generalised relabelling function fAπ : Pom(L′) × (L ] {∗,⊥} × L ]
{∗,⊥}) −→ L′ that extends fπ with the following two clauses dealing with the
new labels :

fAπ (X, 〈⊥, a(x)〉) = fAπ (X, 〈a(x),⊥〉) = a(x)

fAπ (X, 〈⊥, ∗〉) = fAπ (X, 〈∗,⊥〉) = bad

The denotational semantics of asynchronous πI-processes is then identical to
that in Section B.4, with a new construction for the output :

{| a(x)P |}k = a(x) ‖Aπ ⊥[X].{|P |}k X = {α ∈ L | x is the subject of α}
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Example B.4.5. Let R be the process a(y)(a(x).b.y) ; its semantics is defined
by the following event structure :

y

666666666666

a(y) ‖Aπ b =

a(x) ⊥

y

;;;;;;;;;;;;

b b

τ /o/o/o
)i *j +k ,l -m .n /o 0p 1q 2r 3s 4t

a(x) a(y)

First a new event labelled by ⊥ is added below any event whose label has y
as subject. In this case there is only one such event, labelled by y. Then the
resulting event structure is put in parallel with the single event labelled by a(y).
This event can synchronise with the ⊥ event or with the a(x) event. The first
synchronisation simply substitutes the label a(y) for ⊥. The second one behaves
as a standard synchronisation.

Example B.4.6. Consider the process P = a(y)(n(x) | y) | n(z)(a(w).w).
The semantics of P is the following event structure :

y

‖π
w

=

y τ w

a(y) n(x) n(z) a(w) n(x) /o/o τ /o/o n(z) a(y) /o/o τ /o/o a(w)

Note that the causality between the a(w) event and the w event is both object
and subject, and it is due to the prefix constructor. The causality between the
a(y) event and the y event is only object, and it is due to the rooting.

As for the synchronous case, the semantics is adequate with respect to the
labelled transition system.

Theorem B.4.7 (Operational Adequacy). Suppose P
β
−−→ P ′ in the ayn-

chronous πI-calculus. Then {|P |}
β
−−→ ∼= {|P ′ |}. Conversely, suppose that

{|P |}
β
−−→ E ′. Then there exists P ′ such that P

β
−−→ P ′ and {|P ′ |} ∼= E ′.

The proof is analogous to the synchronous case, with a case analysis for the
rooting.

Theorem B.4.8 (Soundness). If {|P |} ∼= {|Q |}, then P ∼ Q.

B.5 Free names

We present the event structure semantics of the full π-calculus in two phases,
dealing separately with the two main issues of the calculus. We start in this
section discussing free name passing, and we postpone to the next section the
treatment of scope extrusion.
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The core of a compositional semantics of a process calculus is parallel com-
position. When a process P is put in parallel with another process, new syn-
chronizations can be triggered. Hence the semantics of P must also account for
“potential” synchronizations that might be activated by parallel compositions.
In Winskel’s event structure semantics of CCS [Win82], the parallel composition
is defined as a product in a suitable category followed by relabelling and hiding,
as we have presented in Section B.3. For the semantics of the π-calculus, when
the parallel composition of two event structures is computed, synchronisation
events that involve input and output on different channels cannot be hidden
straight away. If at least one of the two channels is a variable, then it is possible
that, after prefixing and parallel composition, the two channels will be made
equal.

We then resort to a technique similar to the one used in [CVY07] : we
consider a generalized notion of relabelling that takes into account the history of
a (synchronization) event. Such a relabelling is defined according to the following
ideas :

– each pair (a(x), a〈b〉) made of two equal names or two equal variables is
relabelled τx→b, indicating that it represents a legal synchronization where
b is substituted for x. Moreover, such a substitution must be propagated
in all the events that causally depend on this synchronization. Anyway,
after all substitution have taken place, there is no need to remember the
extra information carried by the τ action, than the subscripts of the τ
events are erased.

– Synchronisations pairs, like (a(x), b〈c〉), that involve different channels (at
least) one of which is a variable, is relabelled (a(x), b〈c〉)x→c, postponing
the decision whether they represent a correct synchronization or not.

– Each pair (n(x),m〈b〉) made of two different names is relabelled bad to
denote a synchronization that is not allowed.

Definition B.5.1 (Generalised Relabelling). Let L and L′ be two sets of labels,
and let Pom(L′) be a pomset (i.e., partially ordered multiset) of labels in L′.
Given an event structure E = 〈E,≤,^, λ〉 over the set of labels L, and a function
f : Pom(L′) × L −→ L′, we define the relabelling operation E [f ] as the event
structure E ′ = 〈E,≤,^, λ′〉 with labels in L′, where λ′ : E −→ L′ is defined as
follows by induction on the height of an element of E : if h(e) = 0 then λ′(e) =
f(∅, λ(e) ), if h(e) = n+ 1 then λ′(e) = f(λ′([e)), λ(e) ).

In words, an event e is relabelled with a label λ′(e) that depends on the
(pomset of) labels of the events belonging to its causal history [e).

In the case of π-calculus with free names, let L = {a(x), a〈b〉, τ | a, b ∈
Names ∪ V ariables, x ∈ V ariables} be the set of labels used in the LTS
of π-calculus without restriction. We define the relabelling function needed by
the parallel composition operation around the extended set of labels L′ = L ∪
{(α, β)x→b | α, β ∈ L} ∪ {τx→b, bad}, where bad is a distinguished label. The
relabelling function fπ : Pom(L′) × (L′ ] {∗} × L′ ] {∗}) −→ L′ is defined as



B.5. FREE NAMES 119

follows (we omit the symmetric clauses) :

fπ(X, 〈a(y), a〈b〉〉) = τy→b

fπ(X, 〈a(x), y〈c〉〉) =

{
τx→c if αy→a ∈ X
(a(x), y〈c〉)x→c otherwise

fπ(X, 〈n(y),m〈b〉〉) = bad

fπ(X, 〈y(x), a〈n〉〉) =

{
τx→n if αy→a ∈ X
(y(x), a〈n〉)x→n otherwise

fπ(X, 〈y(x), ∗〉) =

{
a(x) if αy→a ∈ X
y(x) otherwise

fπ(X, 〈y〈b〉, ∗〉) =

{
a〈b〉 if αy→a ∈ X
y〈b〉 otherwise

fπ(X, 〈α, ∗〉) = α

fπ(X, 〈α, β〉) = bad otherwise

The extra information carried by the τ -actions, differently from that of “incom-
plete synchronization” events, is only necessary in order to define the relabelling,
but there is no need to keep it after the synchronization has been completed.
Hence we apply a second relabelling er that simply erases the subscript of τ
actions.
The semantics of the π-calculus is then defined as follows by induction on pro-
cesses, where the parallel composition of event structure is defined by

E1‖πE2 = ((E1 × E2) [fπ][er]) \{bad}

To deal with recursive definitions, we use an index k to denote the level of
unfolding.

{|0 |}k = ∅

{|
∑
i∈I πi.Pi |}k =

∑
i∈I πi.{|Pi |}k

{|P | Q |}k = {|P |}k ‖π {|Q |}k
{|A〈ỹ, q̃ | w,m〉 |}0 = ∅

{|A〈ỹ, q̃ | w,m〉 |}k+1 = {|PA{ỹ,q̃/x̃,p̃}{w,m/z,n} |}k

Recall that all operators on event structures are continuous with respect to the
prefix order. It is thus easy to show that, for any k, {|P |}k ≤ {|P |}k+1. We define
{|P |} to be the limit of the increasing chain ...{|P |}k ≤ {|P |}k+1 ≤ {|P |}k+2...,
that is {|P |} = supk∈N{|P |}k
Since all operators are continuous w.r.t. the prefix order we have :

Theorem B.5.2 (Compositionality). The semantics {|P |} is compositional, i.e.
{|P | Q |} = {|P |} ‖π {|Q |}, {|

∑
i∈I πi.Pi |} =

∑
i∈I πi.{|Pi |},
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z〈a〉
RRRRRRR (z〈a〉,m(x))x→a m(x)

kkkkkkk

n(z)

p〈a〉 m(x) m〈a〉
KKK
τx→a m(x)

sss
n〈p〉 τz→p

III
EP τz→m n〈m〉

Figure B.4 –

Example B.5.1. As an example, consider the process P = n(z).(z〈a〉 | m(x)) .
The synchronization along the channel m can be only performed if the previous
synchronization along n substitutes the variable z with the name m. Accord-
ingly, the semantics of the process P is the first event structure in Figure B.4,
denoted by EP . Moreover, the second structure in Figure B.4 corresponds to the
semantics of the process P | n〈m〉 | n〈p〉.

The following theorem shows that the event structure semantics is opera-
tionally correct. Indeed, given a process P , the computational steps of P in the
LTS of Section B.2 are reflected by the semantics {|P |}.

Theorem B.5.3 (Operational Adequacy). Let β ∈ L = {a(x), a〈b〉, τ}. Suppose

P
β
−−→ P ′ in the π-calculus. Then {|P |}

β
−−→ ∼= {|P ′ |}. Conversely, suppose

{|P |}
β
−−→ E ′. Then there exists P ′ such that P

β
−−→ P ′ and {|P ′ |} ∼= E ′.

Note that the correspondence holds for those labels that appear in the LTS
of the calculus. Labels that identify ”incomplete synchronizations” have been
introduced in the event structure semantics for the sake of compositionality, but
they are not considered in the theorem above since they do not correspond to
any operational step.

B.6 Scope extrusion

In this section we show how the causal dependencies introduced by scope
extrusion can be captured by event structure-based models. As we discussed in
Section B.1, the communication of bound names implies that any action with a
bound subject causally depends on a dynamic set of possible extruders of that
bound subject. Hence dealing with scope extrusion requires modelling some form
of disjunctive causality. Prime event structures are stable models that represent
an action α that can be caused either by the action β1 or the action β2 as
two different events e, e′ that are both labelled α but e causally depends on the
event labeled β1 while e′ is caused by the event labelled β2. In order to avoid the
proliferation of events representing the same action with different extruders, we
follow here a different approach, postponing to the next section a more detailed
discussion on the use of prime event structures.
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B.6.1 Event structure with bound names

We define the semantics of the full π-calculus in terms of pairs (E , X), where
E is a prime event structure, and is a X a set of names. We call such a pair an
event structure with bound names. Intuitively, the causal relation of E encodes
the structural causality of a process, while the set X records bound names. The
names in the set X affect the notion of computation on E : for instance, if a
minimal event in E has a label whose subject is in X, then such a minimal
event cannot be executed since it requires a previous extrusion. In other terms,
given a pair (E , X) we define a notion of permitted configurations, ensuring that
any computation that contains an action whose subject is a bound name, also
contains a previous extrusion of that name. Objective causality is then implicitly
captured by permitted configurations.

Definition B.6.1 (Semantics). The semantics of the full π-calculus is induc-
tively defined as follows, where k denote the level of unfolding of recursive
definitions, and we write EkP , resp. Xk

P , for the first, resp. the second, projection
of the pair {|P |}k

{|0 |}k = (∅,∅)

{|
∑
i∈I πi.Pi |}k = (

∑
i∈I πi.EkPi ,

⊎
i∈I X

k
Pi

)

{|P | Q |}k = ( EkP ‖π EkQ , Xk
P ]Xk

Q )

{| (νn)P |}k = ( EkP , Xk
P ] {n} )

{|A〈ỹ, q̃ | w,m〉 |}0 = (∅, {w(N)})

{|A〈ỹ, q̃ | w,m〉 |}k+1 = ( EkPA{ỹ,q̃/x̃,p̃}{w,m/z,n}, {w(N)} )

It is easy to show that, for any k, EkP ≤ E
k+1
P and Xk

P = Xk+1
P = XP . Then the

semantics of a process P is defined as the following limit :

{|P |} = ( supk∈N EkP , XP ) .

This semantics is surprisingly simple : a restricted process like (νn)P is
represented by a prime event structure that encodes the process P where the
scope of n has been opened, and we collect the name n in the set of bound
names. As for parallel composition, the semantics {|P | Q |} is a pair (E , X)
where X collects the bound names of both {|P |} and {|Q |} (remind that we
assumed that bound names are pairwise different), while the event structure E
is obtained exactly as in the previous sections. This is since the event structures
that get composed correspond to the processes P and Q where the scope of any
bound name has been opened. It is immediate to prove the following property.

Proposition B.6.2. Let P,Q be any two processes of the π-calculus, then
{| (νn)P | Q |} = {| (νn)(P | Q) |}.

Example B.6.1. Consider the process P = (νn)(a〈n〉 | n(z)) | a(x).(x〈b〉 | c〈x〉),
whose first synchronization produces a new extruder c〈n〉 for the bound name
n. The semantics of P is the pair (EP , {n}), where EP is the following e.s. :
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τ n〈b〉 c〈n〉 x〈b〉 c〈x〉

n(z) a〈n〉 τ

BBBB vvvv
a(x)

vv

In order to study the operational correspondence between the LTS semantics
of the π-calculus and the event structure semantics above, we first need to adapt
the notion of computational steps of the pairs (E , X). The definition of labelled
transitions between prime event structures, i.e., Definition B.3.3, is generalized
as follows.

Definition B.6.3 (Permitted Transitions). Let (E , X) be a labelled event struc-
ture with bound names. Let e be a minimal event of E with λ(e) = β. We define
the following permitted labelled transitions :

– (E , X)
β−→ (Ebe, X), if β ∈ {τ, a(x), a〈b〉} with a, b 6∈ X.

– (E , X)
a(n)−→ (Ebe, X\{n}), if β = a〈n〉 with a 6∈ X and n ∈ X.

According to this definition, the set of bound names constrains the set of
transitions that can be performed. In particular, no transition whose label has
a bound subject is allowed. On the other hand, when a minimal event labeled
a〈n〉 is consumed, if the name n is bound, the transition’s labels records that
this event is indeed a bound output. Moreover, in this case we record that the
scope of n is opened by removing n from the set of bound names of the target
pair. Finally, observe that the previous definition only allows transitions whose
labels are in the set L = {τ, a(x), a〈b〉, a(n)}, which is exactly the sets of labels
in the LTS of Section B.2.

Theorem B.6.4 (Operational Adequacy). Let β ∈ L = {a(x), a〈b〉, a(n), τ}.

Suppose P
β
−−→ P ′ in the π-calculus. Then {|P |}

β
−−→ ∼= {|P ′ |}. Conversely,

suppose {|P |}
β
−−→ E ′. Then there exists P ′ such that P

β
−−→ P ′ and {|P ′ |} ∼=

E ′.

B.6.2 Subjective and objective causality

Given an event structure with bound names (E , X), Definition B.6.3 shows
that some configuration of E is no longer allowed. For instance, if e is minimal
but its label has a subject that is a name in X, e.g, λ(e) = n(x) with n ∈ X, then
the configuration {e} is no longer allowed since the event e requires a previous
extrusion of the name n.

Definition B.6.5 (Permitted Configuration). Let (E , X) be an event structure
with bound names. Given a configuration C of E , we say that C is permitted in
(E , X) whenever, for any e ∈ C whose label has subject n with n ∈ X,

– C \ {e} is permitted, and
– C \ {e} contains an event e′ whose label is an output action with object
n.
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The first item of the definition above is used to avoid circular definitions that
would allow wrong configurations like {n〈m〉,m〈n〉} with X = {n,m}. Now, the
two forms of causality of the π-calculus can be defined using event structures
with bound names and permitted configurations.

Definition B.6.6 (Subjective and Objective Causality). Let P be a process of
the π-calculus, and {|P |} = (Ep, XP ) be its semantics. Let be e1, e2 ∈ EP , then

– e2 has a subjective dependence on e1 if e1 ≤EP e2 ;
– e2 has a objective dependence on e1 if (i) the label of e1 is the output of

a name in X which is also the subject of the label of e2, and if (ii) there
exists a configuration C that is permitted in (E , X) and that contains both
e1 and e2.

Example B.6.2. Let consider again the process P in Example B.6.1. The
configurations C1 = {a〈n〉, n(z)} and C2 = {τ, c〈n〉, n(z)} are both permitted by
{|P |}, and they witness the fact that the action n(z) has an objective dependence
on a〈n〉 and 2 on c〈n〉.

Example B.6.3. Let be P = (νn)(a〈n〉 | b〈n〉 | n(x)), then {|P |} = (EP , {n})
where EP has three concurrent events. In this process there is no subjective
causality, however the action n(x) has an objective dependence on a〈n〉 and
on b〈n〉 since both C1 = {a〈n〉, n(x)} and C2 = {b〈n〉, n(x)} are permitted
configurations.

Example B.6.4. Let be P = (νn)(a〈n〉.b〈n〉.n(x)), then {|P |} = (EP , {n})
where EP is a chain of three events. According to the causal relation of EP ,
the action n(x) has a structural dependence on both the outputs. Moreover, the
permitted configuration C = {a〈n〉, b〈n〉, n(x)} shows that n(x) has an objective
dependence on a〈n〉 and on b〈n〉 3.

B.6.3 The meaning of labelled causality

In this work we focus on compositional semantics, studying a true concur-
rent semantics that operationally matches the LTS semantics of the π-calculus.
Alternatively, one could take as primitive the reduction semantics of the π-
calculus, taking the perspective that only τ -events are “real” computational
steps of a concurrent system. Therefore one could argue that the concept of
causal dependency makes only sense between τ events. In this perspective, we
propose to interpret the causal relation between non-τ events as an anticipation
of the causal relations involving the synchronizations they will take part in. In
other terms, non-τ events (from now on simply called labelled events) represent
”incomplete” events, that are waiting for a synchronization or a substitution to
be completed. Hence we can prove that in our semantics two labelled events e1

and e2 are causally dependent if and only if the τ -events they can take part in

2. We could also say that n(z) objectively depends either on a〈n〉 or on c〈n〉.
3. In this case we do not know which of the two outputs really extruded the bound name,

accordingly to the inclusive disjunctive causality approach we are following.
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are causally dependent. This property is expressed by the following theorem in
terms of permitted configurations. Recall that the parallel composition of two
event structures is obtained by first constructing the cartesian product. There-
fore there are projection morphisms π1, π2 on the two composing structures.
Let call τ -configuration a configuration whose events are all τ -events. Note that
every τ -configuration is permitted.

Theorem B.6.7. Let P be a process. A configuration C is permitted in {|P |} if
and only if there exists a process Q and a τ -configuration C ′ in {|P | Q |} such
that π1(C ′) = C.

Let e1, e2 be two labelled events of {|P |} = (Ep, Xp). If e1, e2 are structurally
dependent, i.e., e1 ≤EP e2, then such a structural dependence is preserved and
reflected in the τ -actions they are involved in because of the way the parallel
composition of event structures is defined. On the other hand, let be e1, e2

objectively dependent. Consider the parallel composition (EP ||πEQ, XP ∪ XQ)
for some Q such that there is a τ events e′2 in EP || πEQ with π1(e′2) = e2

and [e′2) is a τ -configuration. Then there must be an event e′1 ∈ [e′2) such that
π1(e′1) = e1.

B.7 Discussion

As we discussed in Section B.1, objective causality introduced by scope ex-
trusion requires for the π-calculus a semantic model that is able to express some
form of disjunctive causality. In the previous section we followed an approach
that just ensures that some extruder (causally) precedes any action with a bound
subject. However, we could alternatively take the effort of tracing the identity
of the actual extruders. We could do it by duplicating the events corresponding
to actions with bound subject and letting different copies depend on different,
alternative, extruders. Such a duplication allows to use prime event structures as
semantics models. In this section we discuss this alternative approach showing
to what extent it can be pursued.

As a first example, the semantics of the process P = (νn)(a〈n〉 | b〈n〉 | n(x)),
containing two possible extruders for the action n(x), can be represented by
left-most prime event structure in Figure B.5. When more than a single ac-
tion use as subject the same bound name, each one of these actions must
depend on one of the possible extruders. Then the causality of the process
(νn)(a〈n〉 | b〈n〉 | n(x).n(y)), represented by the rightmost event structure in
Figure B.5, shows that the two read actions might depend either on the same
extruder or on two different extrusions.

Things get more complicate when dealing with the dynamic addition of
new extruders by means of communications. In order to guarantee that there
are distinct copies of any event with a bound subject that causally depend
on different extruders, we have to consider the objective causalities generated
by a communication. More precisely, when the variable x is substituted with
a bound name n by effect of a synchronization, (i) any action with subject
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Figure B.5 –

x appearing in the reading thread becomes an action that requires a previ-
ous scope extrusion, and (ii) the outputs with object x become new extrud-
ers for any action with subject n or x. To exemplify, consider the process
P ′ = (νn)(a〈n〉 | b〈n〉 | n(z)) | a(x).(x〈a〉 | c〈x〉) that initially contains two
extruders for n, and with the synchronization along the channel a evolves to
(νn)(b〈n〉 | n(z) | n〈a〉 | c〈n〉). Its causal semantics can be represented with the
following prime event structure :

n〈a〉 n(z)

ttttt

c〈x〉 x〈a〉 c(n)

IIIII n τz→a n(z) n(z)

a(x)

FFFF
τx→(n)
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a(n) b(n)
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The read action n(z) may depend on one of the two initial extruders a〈n〉 and
b〈n〉, or on the new extruder c〈n〉 that is generated by the first communication.
Accordingly, three different copies of the event n(z) appear over each of the
three extruders. On the other hand, the output action on the bound name
n is generated by the substitution entailed by the communication along the
channel a, hence any copy of that action keeps a (structural) dependence on the
corresponding τ event. Moreover, since it is an action with bound subject, there
must be a copy of it for each of the remaining extruders of n, that is b〈n〉 and
c〈n〉. To enhance readability, the event structure resulting from the execution
of the communication along the channel a is the leftmost e.s. in Figure B.6.

So far so good, in particular it seems possible to let the causal relation
of prime event structures encode both structural and objective causality of
π-processes. However, this is not the case. To see this, consider the process
P = (νn)(a〈n〉.b〈n〉.n(z)) of Example B.6.4. If we just duplicate the event n(z)
to distinguish the fact that it might depend on an extrusion along a or along b,
we obtain the rightmost structure in Figure B.6, that we denote Ep. In particu-
lar, even if the two copies intends to represent two different objective causalities,
nothing distinguishes them since since they both structurally depend on both
outputs. This is a problem when we compose the process P in parallel with,
e.g., Q = a(x).c〈x〉 | b(y).d〈y〉. After the two synchronizations we would like
to obtain two copies of the read actions on n that depend on the two different
remaining extruders c〈n〉 and d〈n〉. However, in order to obtain such an event
structure as the parallel composition of the semantics of P and the semantics
of Q we must be able to record somehow the different objective causality that
distinguishes the two copies of n(z) in the semantics of P .
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The technical solution would be to enrich the event labels so that the label
of an event e also records the identity of the extruder events that e (objectively)
causally depends on. A precise account of this approach is technically wired and
intractable, so that the intuition on the semantics gets lost. Moreover, we think
that this final example sheds light on the fact that structural and objective
causality of π-processes cannot be expressed by the sole causal relation of event
structures. To conclude, at the price of losing the information about which
extruder an event depends on, the approach we developed in the previous section
brings a number of benefits : it is technically much simpler, it is operationally
adequate, it gives a clearer account of the two forms of causality distinctive of
π-processes.

B.8 Related and future work

There are several causal models for the π-calculus, that use different techniques.
There exist noninterleaving semantics in terms of labelled transition systems,
where the causal relations between transitions are represented by “proofs” which
allow to distinguish different occurrences of the same transition [San94, BS98,
DP99]. In [CS00], a more abstract approach is followed, which involves indexed
transition systems. In [JJ95], a semantics of the π-calculus in terms of pomsets
is given, following ideas from dataflow theory. The two papers [BG95, Eng96]
present Petri nets semantics of the π-calculus. However, none of these aproaches
accounts for parallel extrusion. We finally recall [MP95] that introduces a graph
rewriting-based semantics of the π-calculus that allows parallel extrusions.

[BMM06] gives an unlabelled event structure semantics of the full calculus
which only corresponds to the reduction semantics, hence which is not compo-
sitional.

We plan for future work the application of the present semantics to the study
of a labelled reversible semantics of the π-calculus that would extend the work
of Danos and Krivine [DK04]. Phillips and Ulidowski [PU07] noted the strict
correspondence between reversible transition systems and event structures. A
first step in this direction is [LMS10], which proposes a reversible semantics of
the π-calculus that only considers reductions. It would also be interesting to
study which kind of configuration structures [vGP09] can naturally include our
definition of permitted configuration.



Annexe C

Semantic subtyping for the
π-calculus

C.1 Introduction and motivations

C.1.1 Semantic subtyping

The language CDuce [FCB08, Fri04] is a functional programming language
for XML manipulation, with a very rich type system. Types and subtyping play
a central role in CDuce : for its design (patterns and pattern matching are
built around types), for its execution (functions can be overloaded with run-
time code selection), and for its implementation (pattern matching compila-
tion and query computation use static type information to optimise execution).
All these usages of types rely on a common foundational core : the seman-
tic subtyping framework. An introduction to semantic subtyping can be found
in [CF05a], while [Cas05] discusses several aspects and perspectives ; technical
details are given in [FCB08, Fri04]. In a nutshell, given a typed language with
some (possibly recursive) type constructors (e.g., →, ×, list(), . . . ), seman-
tic subtyping is a technique to enrich the language with type combinators, i.e.
set-theoretic union, intersection, and negation types. The behaviour of combi-
nators is specified via the subtyping relation (rather than via the typing of the
terms). The subtyping relation is “semantic” since instead of axiomatising it
by a set of inference rules, one describes a set-theoretic interpretation of the
types [[ ]] : Types→ P(D) (where P denotes the powerset operator and D some

domain) and then defines the subtyping relation as s ≤ t
def⇔ [[s]] ⊆ [[t]]. Such a

set-theoretic interpretation must satisfy at least three design goals.

1. It must ensure that type combinators have a set-theoretic interpretation.
This is done by imposing that union, intersection, and negation types
are respectively interpreted as the set-theoretic union, intersection, and
complement operations of P(D).

2. It must ensure that type constructors have a “natural” interpretation

127
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(at least, for what concerns subtyping), e.g., that product types are in-
terpreted as set-theoretic products, function types as sets of maps from
domain to co-domain, and so on.

3. It must allow for an interpretation of types as sets of values. This means
that if we take as D the set of values of the language and as interpretation
the function that maps a type to the set of all values of that type, then
this new interpretation must induce the very same subtyping relation as
the one used to type values.

Finding a domain D and an interpretation function [[−]] that satisfy the last
two points is far from being trivial : a set-theoretic interpretation of functional
and recursive types or the circularity between the typing of values and definition
of subtyping are difficult constraints. As described in [CF05b] and outlined later
on, semantic subtyping provides a technique to do so.

C.1.2 Subtyping for processes

In this work we apply the semantic subtyping framework to define a type
system for a concurrent process language in which values are exchanged between
agents via communication channels that can be dynamically generated. The
language we consider is a variant of the asynchronous π-calculus [Bou92, HT91],
in which communication is subjected to pattern matching.

There exists a well established literature on typing and subtyping for the
π-calculus (e.g. [PS96, Sew98, YH99, SW02]). However, all the approaches we
are aware of rely on subtyping relations or on type equivalences that are defined
syntactically, by means of structural rules. In our view, such syntactic formal-
isations of typing relations miss a clean semantic intuition of types. Consider,
for example, the type system defined by Hennessy and Riely [HR02], which is
one of the most advanced type systems for variants of the π-calculus. It includes
read-only and write-only channels, as well as union and intersection types. In
that system the following equality is used to define the union type :

ch+(t1)∨∨∨ ch+(t2) = ch+(t1 ∨∨∨ t2) (C.1)

where ch+(t) is the type of channels from which we can only read values of
type t, and ∨∨∨ denotes union. We would like to understand the precise semantic
intuition that underlies an equation such as (C.1).

Channels as boxes. In order to understand how channels and channel types
relate, we have to provide a semantic account of channels. Our intuition is that
a channel is a box in which we can put things (write) and from which we can
take things (read). The type of a channel, then, is characterised by the set of the
things the box can contain. That is, a channel of type ch+(t) is a box in which
we must expect to find objects of type t and, similarly, a channel of type ch–(t)
is a box in which we are allowed to put objects of type t. This is a particular
interpretation (see Section C.5.5 for alternative intuitions), but if one takes this
stand, then equality (C.1) does not seem to be justified. Consider the types
ch+(candy) ∨∨∨ ch+(coal) and ch+(candy ∨∨∨ coal). Both represent boxes. If we
have a box of the first type, then we expect to find in it either a candy or a
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piece of charcoal, but we know it is always one of the two. For instance, if we
use the box twice, the second time we will know what present it contains. A
box of the second type, instead, is a “surprise box” as it can always give us
both candies and charcoal. Our intuition suggests that the two types above are
different because they characterise two different kinds of objects.

The role of the language. So why did Hennessy and Riely require (C.1) ?
The point is that, if in the language under consideration there is no syntactic
construction that can tell apart a candy from a coal and then branch, that is,
if it is not possible to branch to different pieces of code for messages of different
types (e.g. a typecase, an exception trapping, an overloaded function, . . . ), then
it is not possible to operationally observe any difference between the types in
(C.1). Hennessy and Riely do not have such a construction, therefore (C.1) is
sound.

On the contrary, suppose we are sent a channel c of type ch+(candy) ∨∨∨
ch+(coal) If it is possible to test whether c is of type ch+(candy) or of type
ch+(coal), then we can continue assuming that on c we will receive messages of
only one of the two types. In this case a rule such as (C.1) would be unsound,
because it would make it possible to receive on c both candy and coal and this
could make the code crash.

We define a variant of the π-calculus that exploits the full power of our
new type system, and in particular that permits dynamically testing the type
of values received on a channel. We implement the dynamic test by endowing
input actions with patterns, and allowing synchronisation when pattern match-
ing succeeds. The result is a simple and elegant formalism that can be easily
extended with product types, to obtain a polyadic π-calculus, and with a re-
stricted form of recursive types. To allow for full recursive types, the calculus
must be restricted to the local variant, where channels received in input can
only be used in output position. Finally we show that in that setting the typing
and subtyping relations are decidable

C.1.3 Functions as processes

It would be possible to extend the Cπ-calculus with functional types and
values, the semantic machinery should be able the scale. However the question
arises whether this extension is necessary or whether it is possible to encode
functions as processes. It is well known that several such encodings are possible
from the λ-calculus into the π-calculus [Mil92, SW02, YBH01]. In the Join-
calculus language [F+96], the functional part is simply syntactic sugar for its
coding in the concurrent part.

In this work, we describe an encoding of CDuce into the Cπ-calculus. The
encoding turned out not to be so straightforward as one may expect. The dif-
ficulty arises in finding an encoding of the types that respects the subtyping
relation. The Milner-Turner translation of arrow types [SW02] respects the sub-
typing relation in the context of the simply typed λ-calculus, but it breaks down
in the presence of intersection types.
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As we detail in Sections C.7 and C.8, the translation we propose sheds new
light on the Milner-Turner encoding as it shows the respective roles of argument
and return channel that are used to simulate functions in a concurrent world.
In particular, it shows that in the presence of type-case, the latter must be
scrambled by introducing some noise at the type level so that the receiver can-
not gain information by testing the type of the return channel. The translation
is a further confirmation of the validity of the equational laws for union and
intersection types in the π-calculus, since a different axiomatisation proposed
in the literature is incompatible with the Milner-Turner technique. This is not
the only contribution to the type theory of the π-calculus, since the encoding
also outlines the different roles played by the two contra-variant constructors
of Cπ, namely input channel and negation, and shows how they interplay when
considering them from a logical point of view. Finally, at term level the trans-
lation formalises the nice correspondence between functional pattern matching
and π-calculus guarded sums on a same input channel.

C.1.4 Related work

The first work on subtyping for π was done by Pierce and Sangiorgi [PS96]
and successively extended in several other works [Sew98, D+00, YH99].

The work closest to ours, at least for the expressiveness of the types, is
the already cited work of Hennessy and Riely [HR02]. As far as π-types are
concerned, our work subsumes their system in the sense that it defines a richer
subtyping relation ; this can be checked by observing that their type rw〈s, t〉
corresponds to the intersection ch+(s)∧∧∧ ch–(t) of our formalism.

The works of Acciai and Boreale [AB05] and of Brown et al. [BLM05], define
languages similar to ours, with XDuce-like pattern matching. However their type
systems are less rich than ours and, most importantly, their subtyping relations
are defined syntactically.

As for the technical issues of semantic subtyping, our starting point is the
work developed by Frisch et al. for functional programming languages [FCB08,
Fri04], that led to the design of CDuce.

C.1.5 Structure of the chapter

This chapter is a fusion of the papers [CDV08, CDV06].
In Section C.2 we describe the types, their semantics, and subtyping relation

whose decidability is shown in Section C.3. In Section C.4 we introduce Cπ, a
variant of π-calculus tailored on the previous types, and show examples of its
usage. In Section C.5 we discuss possible extensions of Cπ and in particular we
we present the local variant of the Cπ-calculus. In Section C.6 we present the
functional core of CDuce. Section C.7 is devoted to explaining the main diffi-
culties we encountered when encoding CDuce types into Cπ types. Section C.8
contains the formalisation of the encoding of the language, while Section C.9
presents the correctness results. In Section C.10 we conclude by giving some
insight on more general aspects of this work and trying to convey the intuition
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of why we believe that the main contribution lie well beyond the technical re-
sult we present. In order to lighten the presentation, we postpone the proofs to
Section C.11.

C.2 Types and subtyping

We shall present in detail a relatively simple system with just base types,
channels, and boolean combinators. In Section C.5, we will then sketch how to
add the product type constructor, recursive types, and functional types.

C.2.1 Types

In the simplest of our type systems, a type is inductively built by applying
type constructors, namely base type constructors (e.g. integers, strings, etc...),
the input or the output channel type constructor, or by applying a boolean
combinator , i.e., union, intersection, and negation :

Types t ::= b | ch+(t) | ch–(t) constructors
| 0 | 1 | ¬¬¬t | t∨∨∨ t | t∧∧∧ t combinators

Combinators are self-explaining, with 0 being the empty type and 1 the type of
all values. The “set difference” combinator s\\\t will be used as a shorthand for
s ∧∧∧ ¬¬¬t. For what concerns type constructors, ch+(t) denotes the type of those
channels that can be used to input only values of type t. Symmetrically ch–(t)
denotes the type of those channels that can be used to output only values of
type t. The read and write channel type ch(t) is absent from our definition. We
shall use it only as syntactic sugar for ch–(t)∧∧∧ch+(t), that is the type of channels
that can be used to read only and to write only values of type t. The set of all
types (sometimes referred to as “type algebra”) will be denoted by T .

In our approach channels are physical boxes where one can insert and with-
draw objects of a given type. Our intuition is that there is not such a thing as a
read-only or write-only box : each box is associated with a type t and one can
always write and read objects of that type into and from such a box. Thus the
type of ch+(t) can be considered just a constraint telling that a variable of that
type will be bound only to boxes from which one can read objects of type t. If
we know that a message has type ch+(t), it does not mean that we cannot write
into it, we simply do not have any information about what can be written in it :
for instance this message could be a box that cannot contain any object. What
the type tells us is simply that we had better avoid writing into it since, in the
absence of further information, no writing will be safe. Similarly, if a message is
of type ch–(t), then we know that it can only be a box in which writing an object
of type t is safe, but we have no information about what could be read from
that channel, since the message might be a box that can contain any object.
Therefore we had better avoid reading from it, unless we are ready to accept
anything. However, if we are ready to accept anything, then our type system
guarantees that we can read on a channel with type ch–(t) because, as we will
see later, we have ch–(t) ≤ ch+(1).
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C.2.2 Semantics of types

Our leading intuition is that a type should denote the set of values of that
type. That is :

[[t]] = {v | ` v : t} .
The basic types (integers, strings) should denote subsets of a set of basic values
B. The boolean operators over types should be interpreted by using the boolean
operators over sets. By following our intuition we shall have that the interpre-
tation of the type ch(t) has to denote the set of all boxes (i.e. channels) that
can contain objects of type t :

[[ch(t)]] =
{
c | c is a box for objects in [[t]]} . (C.2)

Since every box is uniquely associated to a type, then the interpretations of
channel types are pairwise disjoint. This already gives invariance of channel
types : [[ch(t)]] ⊆ [[ch(s)]] if and only if [[t]] = [[s]].

Starting from the above interpretation of ch(t), we can now provide a se-
mantics for ch+(t) and ch–(t). As said, the former should denote the set of all
boxes from which one can safely expect to get only objects of type t. Thus we
require that ch+(t) denotes all boxes for objects of type t, but also all boxes for
objects of type s, for any s ≤ t. Indeed, by subsumption, objects of types s are
also of type t. Dually, ch–(t) should denote the set of all boxes in which one can
safely put objects of type t. Therefore it will denote all boxes that can contain
objects of type s, for any s ≥ t. Let us write ct to denote a box for objects of
type t. We have

[[ch+(t)]] =
{
cs | s ≤ t

}
, [[ch–(t)]] =

{
cs | s ≥ t

}
.

Given the above semantic interpretation, from the viewpoint of types all the
boxes of one given type t are indistinguishable, because either they all belong to
the interpretation of one type or they all do not. This implies that the subtyping
relation is insensitive to the actual number of boxes of a given type. We can
thus assume that for every equivalence class of types, there is only one such
box, which may as well be identified with [[t]], so that the intended semantics of
channel types would be

[[ch+(t)]] =
{

[[s]] | s ≤ t
}
, [[ch–(t)]] =

{
[[s]] | s ≥ t

}
. (C.3)

We have that this semantics induces covariance of input types and contravari-
ance of output types. Moreover, as anticipated, we have that ch(t) = ch–(t) ∧∧∧
ch+(t) since the types on both sides of the equality have the same semantics—
namely, the singleton {[[t]]}—and therefore it is justified to consider ch(t) as
syntactic sugar for ch–(t)∧∧∧ ch+(t), rather than a type constructor.

According to the discussion above, in order to define the semantics of a
channel type, we need to know the subtyping relation. And here we are again
in the presence of a circle. We use the subtyping relation in order to build the
interpretation that we need in order to define the subtyping relation. We devote
the next section to solve this problem.
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C.2.3 Building a model

The minimal requirement for an interpretation function is that boolean com-
binators should be interpreted in the corresponding set-theoretical operators,
and that basic values and channels should have disjoint interpretations.

Definition C.2.1 (Pre-model). Let D,and B be sets such that B ⊆ D, and let
[[ ]] be a function from T to P(D). The pair (D, [[ ]]) is said to be a pre-model if

– [[b]] ⊆ B, [[ch+(t)]] ∩ B = ∅, [[ch–(t)]] ∩ B = ∅ ;
– [[1]] = D, [[0]] = ∅ ;
– [[¬¬¬t]] = D \ [[t]] ;
– [[t1 ∨∨∨ t2]] = [[t1]] ∪ [[t2]], [[t1 ∧∧∧ t2]] = [[t1]] ∩ [[t2]].

We use this interpretation to build another interpretation, according to the
intended meaning of equations (C.3). The symbol + will denote disjoint union
of sets.

Definition C.2.2 (Extensional interpretation). Let (D, [[ ]]) be a pre-model. Let
[[T ]] denote the image of the function [[ ]]. The extensional interpretation of the
types is the function E( ) : T → P(B+ [[T ]]), defined as follows :

– E(b) = [[b]] ;
– E(1) = B+ [[T ]], E(0) = ∅ ;
– E(¬¬¬t) = E(1) \ E(t) ;
– E(t1 ∨∨∨ t2) = E(t1) ∪ E(t2), E(t1 ∧∧∧ t2) = E(t1) ∩ E(t2) ;
– E(ch+(t)) = {[[s]] | [[s]] ⊆ [[t]]} ;
– E(ch–(t)) = {[[s]] | [[s]] ⊇ [[t]]}.

A pre-model and its extensional interpretation induce, in principle, different
preorders on types. We could use the extensional interpretation to build yet
another interpretation, and so on. In order to close the circle, we shall consider
a pre-model “acceptable” if it is a fixed point of this process, that is, if it induces
the same containment relation as its extensional interpretation. This amounts
to the following definition :

Definition C.2.3 (Model). A pre-model (D, [[ ]]) is a model if for every t1, t2,
we have [[t1]] ⊆ [[t2]] if and only if E(t1) ⊆ E(t2).

The last (and quite hard) point is to show that there actually exists a model,
that is, that the condition imposed by Definition C.2.3 can indeed be satisfied.
Paradoxically the model itself is not important. The subtyping relation is essen-
tially characterised by the definition of extensional interpretation E [[ ]]. So what
really matters is the proof that there exists at least one model. As the case of
recursive types proves (see § C.5.2), the existence of such a model is far from
being trivial, and naive syntactic solutions —such as a term model— cannot be
used.

Theorem C.2.4. There exists a model (D, [[ ]]).
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Types are stratified according to the nesting of the channel constructor.
The model (D, [[ ]]) is obtained as the limit of a chain of models (Dn, [[ ]]n), built
exploiting this stratification. The long and technical proof can be found in Ap-
pendix C.11.2.

Finally, given a model for the types, we define

s ≤ t def⇐⇒ [[s]] ⊆ [[t]] , s = t
def⇐⇒ [[s]] = [[t]] .

C.2.4 Examples of type (in)equalities and graphical rep-
resentation

We list here some interesting equations and inequations between types that
can be easily derived from the set-theoretic interpretation of types. A first simple
example of equality and inequality is

ch(t) ≤ ch–(0) = ch+(1) (C.4)

which states that every channel c of whatever type ch(t) can always be safely
used in a process that does not write on c (since it has also type ch–(0)) and
that does not care about what c returns (since it has type ch+(1)).

Besides these fiddling relations, far more interesting relations can be deduced
and, quite remarkably, in many cases this can be done graphically. Consider the
definitions in (C.3) : they tell us that the interpretation of ch+(t) is the set
of the interpretations of all types smaller than or equal to t. As such, it can
be represented by the downward cone starting from t. Similarly, the upward
cone starting from t represents ch–(t). This illustrated in Figure C.1 where the
upward cone B represents ch–(s) and the downward cone C represents ch+(t). As
the reader can easily verify, this representation immediatly gives covariance of
input types and contravariance of output types.

If we now pass to Figure C.2 we see that ch–(s) is the upward cone B+C
and ch–(t) is the upward cone C+D. Their intersection is the cone C, that is the
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upward cone starting from the least upper bound of s and t which yields the
following equation

ch–(s)∧∧∧ ch–(t) = ch–(s∨∨∨ t) . (C.5)

This states that if on a channel we can write values of type s and values of type
t, this means that we can write on it values of type s ∨∨∨ t. Dually, by turning
Figure C.2 upside down it is easy to check the following equation :

ch+(s)∧∧∧ ch+(t) = ch+(s∧∧∧ t) (C.6)

which states that if a channel is such that we always read from it values of type
s but also such that we always read from it values of type t, then what we read
from it are actually values of type s∧∧∧ t.

Similarly, note that the union of ch–(s) and ch–(t) is given by B+C+D and that
this is strictly contained in the upward cone starting from s∧∧∧ t, since the latter
also contains the region A, whence the strictness of the following containment :

ch–(s)∨∨∨ ch–(t) � ch–(s∧∧∧ t) . (C.7)

Actually, the difference of the two types in the above inequality is the region A
which represents ch+(s∨∨∨ t)∧∧∧ ch–(s∧∧∧ t), from which we deduce

ch–(s∧∧∧ t) = ch–(s)∨∨∨ ch–(t)∨∨∨ (ch+(s∨∨∨ t)∧∧∧ ch–(s∧∧∧ t)) .

By turning Figure C.2 upside down again we can check the dual of equation
(C.7) :

ch+(s)∨∨∨ ch+(t) � ch+(s∨∨∨ t) (C.8)

As a final example consider the type ch+(s)∧∧∧ch–(t), that is the type of a channel
on which we can write values of type t and from which we expect to read values
of type t. We have ch+(s)∧∧∧ ch–(t) = 0 (C.9)

if and only if t 6≤ s, i.e. we should expect to read at least what we can write. Once
more this can be checked graphically on Figure C.1, but in order to show the
role of our definitions, let us formally deduce this last equation. By definition,
(C.9) holds if and only if [[ch+(s) ∧∧∧ ch–(t)]] = [[0]]. By definition of model and
the antisymmetry of ⊆ this holds if and only if E(ch+(s) ∧∧∧ ch–(t)) = E(0). By
definition of E() this holds if and only if {[[s]]′|[[s]]′ ⊆ [[s]]}∩{[[t]]′|[[t]] ⊆ [[t′]]} = ∅.
By the reflexivity and transitivity of ⊆ this holds if and only if [[t]] 6⊆ [[s]], that
is, by definition of subtyping if and only if t 6≤ s.

C.3 Decidability of subtyping

For practical applications, it is essential that subtyping relations are decid-
able. The subtyping relation defined in Section C.2 is indeed decidable. The
decision procedure is however a bit involved. As we show in details later in this
section, we can always reduce the problem of deciding the subtyping between
two types to deciding an inclusion of the following form :

ch+(t1)∧∧∧ ch–(t2) ≤
∨∨∨
h∈H

ch+(th3 )∨∨∨
∨∨∨
k∈K

ch–(tk4) . (C.10)

While in some cases it is easy to decide the inclusion above (for instance, when
t2 6≤ t1 since then the left-hand side is empty), in general, this requires checking
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whether a type is atomic, that is whether its only proper subtype is the empty
type (for sake of simplicity the reader can think of the atomic types as the
singletons of the type system 1). To have an idea of why we have to push the
check at the level of atomic types let us once more resort to the graphical
representation. Consider the equation (C.10) above with only two types s and t
with t � s (note the strictness of inclusion, which implies that s\\\t is not empty),
and try to check whether :

ch+(s)∧∧∧ ch–(t) ≤ ch–(s)∨∨∨ ch+(t) .

The situation is represented in Figure C.1 where the region A represents the
left-hand side of the inequality, while the region B+C is the right hand side.
So to check the subtyping above we have to check whether A is contained in
B+C. At first sight these two regions look completely disjoint, but observe that
they have at least two points in common, marked in bold in the figure (they
are respectively the types ch(s) and ch(t)). Now, the containment holds if the
region A does not contain any other type besides these two. This holds true if
and only if there is no other type between s and t, that is if and only if s\\\t is
an atomic type.

Let us now present the technical details of the decision procedure (proofs
can be found in Section C.11). First of all we need to define the notions of finite
and atomic types.

Definition C.3.1 (Atomic and finite types). An atom is a minimal non-empty
type. A type is finite if it is equivalent to a finite union of atoms.

We start the description of the decision procedure by noting that deciding
subtyping is equivalent to deciding the emptiness of a type.

s ≤ t⇔ s∧∧∧¬¬¬t = 0 (C.11)

which can be derived as follows :

s ≤ t⇔ [[s]] ⊆ [[t]] ⇔ [[s]] ∩ {[[t]] = ∅⇔ [[s∧∧∧¬¬¬t]] = [[0]] ⇔ s∧∧∧¬¬¬t = 0 .

Thanks to the semantic interpretation we can directly apply set-theoretic equiv-
alences to types (in the rest of the chapter we will do it without explicitly passing
via the interpretation function). We then deduce that every type can be (effec-
tively) represented in disjunctive normal form, i.e. as the union of intersections
of literals, where a literal is a base type or a channel type, possibly negated.
Since a union is empty only if all its addenda are empty, then in order to decide
emptiness of a type —and thus in virtue of (C.11) to decide subtyping— it
suffices to be able to decide whether an intersection of literals is empty. Since
base types and channel types are interpreted in disjoint sets, intersections that
involve literals of both kinds are either trivial, or can be simplified to intersec-
tions involving literals of only one kind. The problem is therefore reduced to
decide whether

1. Nevertheless, notice that according to their definition, atomic types may be neither
singletons nor finite. For instance, ch(0) is atomic, but in the model defined by equation
(C.2)—more precisely, in the model of values of Theorem C.4.5—it is the set of all the syn-
chronisation channels ; these are just token identifiers on a countable alphabet, thus the type
is countable as well.



C.3. DECIDABILITY OF SUBTYPING 137

(
∧∧∧
i∈P

bi)∧∧∧ (
∧∧∧
j∈N
¬¬¬bj) and (

∧∧∧
i∈P

chνi(ti))∧∧∧ (
∧∧∧
j∈N
¬¬¬chνj(tj))

are equivalent to 0 (where ν stands for either “+” or “−” and we grouped literals
according to whether they are negated or not). The decision of emptiness of the
left-hand side depends on the basic types that are used. For what concerns the
right-hand side, we decompose this problem into simpler subproblems. More
precisely, we reduce this problem to the problem of deciding subtyping between
boolean combinations of the ti’s and tj ’s. This problem is simpler, in the sense
that it involves a strictly smaller nesting of channel types.

Using set-theoretic manipulations—in the case in point De Morgan’s laws—
the problem of deciding

(
∧∧∧
i∈P

chνi(ti))∧∧∧ (
∧∧∧
j∈N
¬¬¬chνj(tj)) = 0

can be shown to be equivalent to

(
∧∧∧
i∈P

chνi(ti)) ≤ (
∨∨∨
j∈N

chνj(tj)) . (C.12)

Because of equations (C.5) and (C.6), we can push the intersection on the left-
hand side inside the constructors and reduce (C.12) to the equation (C.10) we
met in the previous section, and that we recall below :

ch+(t1)∧∧∧ ch–(t2) ≤
∨∨∨
h∈H

ch+(th3 )∨∨∨
∨∨∨
k∈K

ch–(tk4) (C.10)

where we grouped covariant and contravariant types together. In this way we
simplified the left-hand side. Similarly we can get rid of redundant addenda on
the right-hand side of (C.10) by eliminating :

1. all the covariant channel types on a th3 for which there exists a covariant
addendum on a smaller or equal th

′

3 (since the former channel type is
contained in the latter) ;

2. all contravariant channel types on a tk4 for which there exists a contravari-
ant addendum on a larger or equal tk

′

4 (for the same reason as the above) ;

3. all the covariant channels on a th3 that is not larger than or equal to t2
(since then ch–(t2) ∩ ch+(th3 ) = 0, so it does not change the inequation) ;

4. all contravariant channels on a tk4 that is not smaller than or equal to t1
(since then ch+(t1) ∩ ch–(tk4) = 0).

Then the key property for decomposing the problem (C.10) into simpler
subproblems is given by the following theorem :

Theorem C.3.2. Suppose t1, t2, t
h
3 , t

k
4 ∈ T , k ∈ K, h ∈ H. Suppose moreover

that the following conditions hold :
c1. for all distinct h, h′ ∈ H, th3 6≤ th

′

3 ;

c2. for all distinct k, k′ ∈ K, tk4 6≤ tk
′

4 ;

c3. for all h ∈ H, t2 ≤ th3 ;

c4. for all k ∈ K, tk4 ≤ t1.
Then

ch+(t1)∧∧∧ ch–(t2) ≤
∨∨∨
h∈H

ch+(th3 )∨∨∨
∨∨∨
k∈K

ch–(tk4) (C.10)

if and only if one of the following conditions holds
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LE. t2 6≤ t1 or

R1. ∃h ∈ H such that t1 ≤ th3 or

R2. ∃k ∈ K such that tk4 ≤ t2 or

CA. for every choice of atoms ah ≤ t1\\\th3 , with h ∈ H, there exists k ∈ K such
that tk4 ≤ t2 ∨∨∨

∨∨∨
h∈H ah.

The four hypotheses c1–c4 simply state that the right-hand side of the in-
equation was simplified according to the rules (1–4) described right before the
statement of the theorem. The first condition (LE) says that ch+(t1) ∧∧∧ ch–(t2)
is empty. The second condition (R1) and the third condition (R2) respectively
make sure that one of the ch+(th3 ) and, respectively, one of the ch–(th4 ) contains
ch+(t1) ∧∧∧ ch–(t2). Finally the fourth and more involved 2 condition (CA) says
that, every time we add to t2 atoms of t1 so that we are no longer below any th3
then we must end up above some of the tk4 .

We have already shown at the beginning of this Section an example of the
sensitivity of the subtyping relation to atoms. To obtain another, more concrete
example of this fact, suppose there are three atoms err1, err2, exc and consider
the case where t2 = int, t1 = t2 ∨∨∨ err1 ∨∨∨ err2 ∨∨∨ exc, t3 = t2 ∨∨∨ exc, t4 =
t2 ∨∨∨ err1 ∨∨∨ err2. It is easy to see that ch+(t1) ∧∧∧ ch–(t2) 6≤ ch+(t3) ∨∨∨ ch–(t4)
since, for example, the type ch(t2 ∨∨∨ err1) is a subtype of the left-hand side,
but not of the right-hand side. However if err1 = err2, the subtyping relation
holds, because of condition (CA). Indeed in that case the indexing set H of
Theorem C.3.2 is a singleton. The only atom in t1\\\t3 is err1, and it is true that
t4 ≤ t2 ∨∨∨ err1.

As announced, Theorem C.3.2 decomposes the subtyping problem of (C.10)
into a finite set of subtyping problems on simpler types (we must simplify the
right hand side of inequation (C.10) by verifying the inequalities of conditions
c1–c4, and possibly perform the |H| + |K| + 1 checks for LE, R1 and R1) and
into the verification of condition (CA).

The condition (CA) involves a universal quantification on possibly infinite
sets t1\\\th3 , and therefore it is not possible to use it for a decision algorithm as
it is. This problem can be avoided thanks to the following proposition

Proposition C.3.3. If we replace condition (CA) with
CA∗. Let Hf ⊆ H be the set of those indices h for which t1\\\th3 is finite. For

every choice of atoms ah ≤ t1\\\th3 , with h ∈ Hf , there exists k ∈ K such
that tk4 ≤ t2 ∨∨∨

∨∨∨
h∈Hf ah.

then Theorem C.3.2 still holds.

Therefore it suffices to check the condition just for the t1\\\th3 that are finite.
This can be done effectively provided that we are able to :

1. decide whether a type is finite and

2. if it is the case, list all its atoms.
We will assume that this is possible for base types and prove that this implies
that it is possible for all types.

2. The original condition (CA) as it can be found in [CDV05] was even more involved. We
renew our gratitute to the anonymous referee who suggested a major simplification.
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Lemma C.3.4. There is an algorithm that decides whether a type t is finite
and if it is the case, outputs all its atoms.

Theorem C.3.5. The subtyping relation is decidable.

We do not discuss here the complexity of the decision algorithm, nor the
possibility of finding more efficient ways of doing it. We leave it for future work.

C.4 The Cπ calculus

We shall present a variant of the π-calculus, that exploits the type system
of Section E.3.2. We will present its syntax, semantics, and typing rules, and
prove the decidability of the typing relation.

C.4.1 Patterns

As we explained in the introduction, if we want to fully exploit the expres-
siveness of the type system, we must be able to check the type of the messages
read on a channel. The simplest solution would be to add an explicit type-case
process (e.g. [M : t]P which reduces to P or 0 according whether M is of type
t or not). Here, instead, we choose a more general approach, by endowing input
actions with CDuce patterns. Pattern matching includes dynamic type checks
as a special case, and fits nicely in the semantic subtyping framework.

Definition C.4.1 (Patterns). Given a type algebra T , and a set of variables
V, a pattern p on (V, T ) is a term generated by the following grammar

Patterns p : := x capture, x ∈ V
| t type constraint, t ∈ T
| p∧∧∧ p conjunction
| p ||| p alternative

such that for every subterm p1 ∧∧∧ p2 of p we have (〈p〉1) ∩ (〈p〉2) = ∅, and for
every subterm p1|||p2 of p we have (〈p〉1) = (〈p〉2) (where (〈p〉) denotes the set of
variables of V occurring in p).

Patterns are rather basic : they can test if a value is of a given type, capture
it, and combine these tests via conjunctions and disjunctions. So for instance
x∧∧∧ t is the pattern that captures a value in x if it is of type t. As a matter of
fact, the patterns above lack the main capability peculiar of general patterns
that is to deconstruct values. The reason is that here we consider a minimal
type system in which the only type constructors are for channel types, and their
values are not “constructed” from simpler values (e.g. pairs of values for product
constructor) but are constants. So here patterns act more as a placeholder and
they are interesting in view of the extension of our language with recursive types
(Section C.5.2) product types (Section C.5.1) or other type constructors.

Following [FCB08] we define the semantics of patterns directly on models.
A pattern is matched against an element of the domain D of a model of the
types and the matching returns either a substitution for the free variables of the
pattern, or a failure, denoted by Ω :
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Definition C.4.2. Given a model [[ ]] : T → D, an element d ∈ D, and a pattern
p, the matching of d with p, noted by d/p, is the element of D(〈p〉)∪{Ω} defined
as follows :

d/t = {} if d ∈ [[t]]
d/t = Ω if d ∈ [[¬¬¬t]]
d/x = {x 7→ d}

d/p1 ∧∧∧ p2 = d/p1 ⊗ d/p2

d/p1|||p2 = d/p1 if d/p1 6= Ω
d/p1|||p2 = d/p2 if d/p1 = Ω

where γ1 ⊗ γ2 is Ω when γ1 = Ω or γ2 = Ω and the union of the two otherwise.

A quite useful property of the pattern matching above is that the set of all
elements for which a pattern p does not fail is the denotation of a type. Since
this type is unique, we denote it by ***p+++. In other terms, for every (well-formed)
pattern p, there exists a unique type ***p+++ such that [[***p+++]] = {d ∈ Dom | d/p 6=
Ω}. Not only, but this type can be calculated. Similarly, consider a pattern p
and a type t ≤ ***p+++, then there is also an algorithm that calculates the type
environment t/p that associates to each variable x of p the exact set of values
that x can capture when p is matched against values of type t. Formally

Theorem C.4.3. There is an algorithm mapping every pattern p to a type ***p+++
such that [[***p+++]] = {d ∈ D | d/p 6= Ω}.

Theorem C.4.4. There is an algorithm mapping every pair (t, p), where p is
a pattern and t a type such that t ≤ ***p+++, to a type environment (t/p) ∈ T (〈p〉)

such that [[(t/p)(x)]] = {(d/p)(x) | d ∈ [[t]]}.

For such basic patterns the proofs of the properties above are really straight-
forward. What is remarkable is that these properties hold for polyadic Cπ with
recursive types, as well (Section C.5.2).

C.4.2 The language

The syntax of our calculus is very similar to that of the asynchronous π-
calculus a variant of the π-calculus for which message emission is non-blocking.
The latter is generally considered as the calculus representing the essence of
name passing with no redundant operation. The variant we consider is very sim-
ilar to the original calculus, but we permit patterned input prefix and guarded
choice between different patterns on the same input channel.

Channels α ::= x variables
| ct constant

Messages M ::= n constant
| α channel

Processes P ::= αM output
|

∑
i∈I α(pi).Pi patterned input

| P1‖P2 parallel
| (νct)P restriction
| !P replication

where I is a possibly empty finite set of indexes, t ranges over the types defined
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in Section C.2.1 and pi are patterns as given in Definition C.4.1. As customary
we use the convention that the empty sum corresponds to the inert process,
denoted by 0.

We want to comment on the presence of the simplified form of summation
we have adopted : guarded sum of inputs on a single channel with possibly dif-
ferent patterns. Choice operators are very useful for specifying nondeterministic
behaviours, but give rise to problems when considering implementation issues.
Two main kinds of choice have to be considered : external choice that leaves the
decision about the continuation to the external environment (usually having it
dependent on the channel used by the environment to communicate) and inter-
nal choice that is performed by the process regardless of external interactions.
Thanks to patterns we can offer an externally controllable choice, where the
type of the received message, not the used channel, determines the continua-
tion. Internal choice can also be modelled by specifying processes that perform
input on the same channel according to the same pattern.

The other important difference with standard asynchronous π-calculus is
that we distinguish between channel variables and channel constants and that
the latter are decorated by the type of messages they communicate. This cor-
responds to our intuition that every box is intimately associated to the type
of the objects it can contain. In what follows we will call channel constants
also “typed channels”, “boxes”, or “channel values” to distinguish them from
channel variables.

The values of the language are the closed messages, that is to say the typed
channels and the constants : v ::= n | ct.

We use V to denote the set of all values. Every value is associated to a type :
every constant n is associated to an atomic basic type bn (we also assume that
every atomic basic type bn has its corresponding basic value n), while every
channel value is associated with the channel type that transport messages of
the type indicated in the index. So all the values can be typed by the rules
(const), (chan), and (subs) of Figure C.3 (actually with an empty Γ) where
in the (subs) subsumption rule the ≤ is the subtyping relation induced by the
model built to prove Theorem C.2.4 (see Section C.11.2).

C.4.3 Semantics

Let M(=)(DM(, )[[ ]]M()) be any model (that is, it satisfies Definition C.2.3). M()

induces a subtyping relation ≤M () defined as s ≤M (t)
def⇔ [[s]]M(⊆)[[t]]M(). Consider

the typing rules for Message in Figure C.3, use for the subsumption rule (subs)
the ≤M () relation, and denote by Γ `M (M) : t the corresponding typing relation.

Now consider this new interpretation function [[ ]]V : T → P(V) defined
as [[t]]V = {v | Γ `M (v) : t}. It turns out that this interpretation, whatever
the model is, satisfies the model conditions of Section C.2.3 and furthermore it
generates the same subtyping relation as ≤M (). The circle we mentioned in the
Introduction is now closed.
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Messages

Γ ` n : bn
(const)

Γ ` ct : ch(t)
(chan)

Γ ` x : Γ(x)
(var)

Γ `M : s ≤ t
Γ `M : t

(subs)

Processes
Γ ` P

Γ ` (νct)P
(new) Γ ` P

Γ `!P
(repl)

Γ `M : t Γ ` α : ch–(t)

Γ ` αM
(output)

t≤
∨∨∨
i∈I***pi+++

***pi+++∧t 6=0

Γ ` α : ch+(t) Γ, t/pi ` Pi
Γ `

∑
i∈I α(pi).Pi

(input)
Γ ` P1 Γ ` P2

Γ ` P1‖P2

(para)

Figure C.3 – Typing rules

Theorem C.4.5 (Model of values). Let (D, [[ ]]) be a model and ≤ and Γ `M : t
be, respectively, the subtyping and typing relations it induces. Let [[t]]V = {v | Γ `
v : t}. Then (V, [[ ]]V) is a model and s ≤ t⇐⇒ [[s]]V ⊆ [[t]]V .

Since values are elements of a model of the types, Definition C.4.2 applies
for d being a value. We can thus use it to define the reduction semantics of our
calculus :

ctv ‖
∑
i∈I

ct(pi).Pi −→ Pj [v/pj ]

where P [σ] denotes the application of substitution σ to process P . The asyn-
chronous output of a value on the box ct synchronises with an input on the
same box only if at least one of the patterns guarding the sum matches the
communicated value. If more than one pattern matches, then one of them is
non-deterministically chosen and the corresponding process executed, but be-
fore its execution the pattern variables are replaced by the captured values.
More refined matching policies (best match, first match, . . . ) can be easily en-
coded by a proper use of type combinators in patterns. As usual the notion of
reduction must be completed with reductions in evaluation contexts and up to
structural congruence, whose definitions are summarised in Figure C.4.

This operational semantics is the same as that of π-calculus but the ac-
tual process behavior has been refined in two points : (i) communication is
subjected to pattern matching and (ii) communication can happen only along
values (boxes).

The use of pattern matching is what makes it necessary to distinguish be-
tween typed channels and variables : matching is defined only for the formers as
they are values, while a matching on variables must be delayed until they will
be bound to a value.

Since we distinguish between variables and typed channels, it is reasonable to
require that communication takes place only if we have a physical channel that
can be used as a support for it ; thus, we forbid synchronisation if the channel
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R[ ] ::= [ ] | R[ ]‖P | P‖R[ ] | (νct)R[ ]
P −→ Q ⇒ R[P ] −→ R[Q] P ′ ≡ P −→ Q ⇒ P ′ −→ Q

P‖0 ≡ P P‖Q ≡ Q‖P P‖(Q‖R) ≡ (P‖Q)‖R
(νct)0 ≡ 0 (νct)P ≡ (νdt)P{ct ; dt} !P ≡!P‖P

(νct11 )(νct22 )P ≡ (νct22 )(νct11 )P for c1 6= c2

(νct)(P‖Q) ≡ P‖(νct)Q for ct 6∈ fn(P )

where P{ct ; dt} is obtained from P by renaming all free occurrences of the
box ct into dt, and assumes dt is fresh.

Figure C.4 – Context and congruence closure

is still a variable. However there is a more technical reason to require this.
Consider an environment Γ = x : 0. By subsumption we have Γ ` x : ch(int)
and Γ ` x : ch–(string). Then, according to the typing rules of our system (see
later on) the process x ciao ‖ x(y).x(y ÷ y) is well typed, in the environment
Γ, but it would give rise to a run time error by attempting to divide the string
ciao by itself :

x ciao ‖ x(y).x(y ÷ y) −→ x(ciao÷ ciao)

This reduction cannot happen in our calculus, because we can never instantiate
a variable of type 0 (from a logical viewpoint, this corresponds to the classical
ex falso quodlibet deduction rule).

C.4.4 Typing

In Figure C.3, we summarise typing rules that guarantee that, in well typed
processes, channels communicate only values that correspond to their type.

The rules for messages do not deserve any particular comment. As customary,
the system deduces only good-formation of processes without assigning them
any type. The rules for replication and parallel composition are standard. The
rule for restriction is slightly different since we do not need to store in the type
environment the type of the channel 3. In the rule for output we check that the
message is compatible with the type of the channel.

The rule for input is the most involved one. The premises of the rule first
infer the type t of the message that can be transmitted over the channel α, then
for each summand i they use this type to calculate the type environment of the
pattern variables (the environment (t/pi) of Theorem C.4.4) and check whether
under this environment the summand process Pi is typeable. This is all that
is needed to have a sound type system. However the input construct is like a
typecase/matching expression, so it seems reasonable to perform a check that

3. Strictly speaking, we do not restrict variables but values, so it would be formally wrong
to store it in Γ. For the same reason, α-conversion is handled as a structural equivalence rule.
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(i) patterns are exhaustive and (ii) there is no useless case 4. The first check
is performed by the side condition of the (input) rule : t ≤

∨∨∨
i∈I***pi+++ checks

whether pattern matching is exhaustive, that is if for whatever value (of type
t) sent on α there exists at least one pattern pi that will accept it (the cases
cover all possibilities). For the second condition one could naively think to add
a second side condition such as ***pi +++∧t 6= 0 for all i ∈ I (we did this naivety
in [CDV05]), which should check that the pattern matching is not redundant,
by verifying that there does not exists a pattern pi that will fail with every
value of type t (no case is useless). However such a check is meaningful only if
t is the best possible type we can deduce for the messages arriving on α. In a
system with subsumption this condition can be always satisfied by considering a
larger t (e.g., t =

∨∨∨
i∈I***pi+++), thus, without ensuring that all cases of the pattern

matching are useful. Therefore we postpone the verification of this property till
the definition of the typing algorithm (Section C.4.5) when this “best” type will
be available.

As usual the basic result is the subject reduction, preceded by a substitution
lemma. The proof of the theorem relies on the semantics of channel types as set
of boxes, and can be found in Section C.11.5

Lemma C.4.6 (Substitution).
– If Γ, t/p `M ′ : t′ and Γ ` v : t, then Γ `M ′[v/p] : t′.
– If Γ, t/p ` P and Γ ` v : t, then Γ ` P [v/p].

Lemma C.4.7 (Congruence). If Γ ` P and P ≡ Q, then Γ ` Q.

Theorem C.4.8 (Subject reduction). If Γ ` P and P → P ′, then Γ ` P ′.

C.4.5 Typing algorithm

The decidability of the subtyping relation does not directly imply decidabil-
ity of the typing relation (only semi-decidability is straightforward). The type
algorithm is obtained from the typing rules in a standard way, namely by delet-
ing the subsumption rule and embedding the checking of the subtyping relation
in the elimination rules, in our case the (output) rule. As it is often the case, the
typing algorithm also requires to compute a least upper bound of some given
form. In particular, the algorithmic version of the (input) rules requires us to
compute the least type of the form ch+(s) which is above a given type t, and it
is not so evident that such a type exists (observe that our type algebra is not a
complete lattice). Nevertheless, it turns out that such a type does exist (which
gives us the minimum typing property) and furthermore it can be effectively
computed.

Lemma C.4.9 (Upper bound channel). For every type s ≤ ch+(1) there exists
a least type t such that ch+(t) is an upper bound of s. We denote such type by
C(s).

4. In functional programming these checks are necessary for soundness since an expression
non-complying to them may yield a type-error. In process algebræ non-compliance would just
block synchronisation.
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Messages

Γ ` n : bn
(const)

Γ ` ct : ch(t)
(chan)

Γ ` x : Γ(x)
(var)

Processes

Γ ` P
Γ ` (νct)P

(new) Γ ` P
Γ `!P

(repl)
Γ `M : t Γ ` α : s s ≤ ch–(t)

Γ ` αM
(output)

C(s)≤
∨∨∨
i∈I***pi+++

Γ ` α : s Γ , C(s)/pi ` Pi
(input)

Γ `
∑
i∈Iα(pi).Pi

Γ ` P1 Γ ` P2
(para)

Γ ` P1‖P2

Figure C.5 – Algorithmic rules

The algorithmic rules are then defined as in Figure C.5. Soundness and
completeness of these rules with respect to those in Figure C.3 are completely
straightforward : soundness is obtained by a trivial application of the subsump-
tion rule, while completeness can be easily deduced thanks to the fact that no
type is inferred for processes (only good formation is checked), by using the
fact that the type C(s) in the algorithmic (input) rule is always smaller than or
equal to the type used by the corresponding rule in Figure C.3. Lemma C.4.9
and the decidability of (C(s)/p) (given by Theorem C.4.4) immediatly yield the
following result.

Theorem C.4.10. The typing relation is decidable.

Finally, recall that in Section C.4.4 we hinted that we cannot statically check
that all the branches of a pattern match are useful until we do not deduce the
minimum type of the message that a channel can transport. Note that the
algorithmic rules deduce for a channel its minimum type, and if this minimum
type is, say, s, then by definition C(s) is the minimum type of the messages
that the channel trasports. Therefore in order to check the usefulness of every
branch it suffices to add to both the (input) rules in Figure C.3 and C.5 the
side condition ∀i ∈ I,***pi +++∧C(s) 6= 0, and all the previous results carry along.

C.4.6 An example

We present here an example of a Cπ process. Consider the following situation.
A web server is waiting on a channel α. The client wants the server to perform
some computation on values it will send to the server. The server is able to
perform two different kinds of computation, on values of type t1 (say arithmetic
operations), or on values of type t2 (say list sorting). At the beginning of each
session, the client can decide which operations it wants the server to perform, by
sending a channel to the server, along which the communication can happen. The
server checks the type of the channel, and provides the corresponding service.



146 ANNEXE C. SEMANTIC SUBTYPING FOR THE π-CALCULUS

P = α(x : ch+(t1)).!x(y).P1 + α(x : ch+(t2)).!x(y).P2

where we used the CDuce convention for patterns according to which x : t is
syntactic sugar for x∧∧∧t In the above process the channel α has type ch+(ch+(t1)∨∨∨
ch+(t2)). Note that, as explained in Section C.2.4 (equation (C.8)), ch+(t1) ∨∨∨
ch+(t2) 6= ch+(t1 ∨∨∨ t2). This means that the channel the server received on α
will communicate either always values of type t1 or always values of type t2,
and not interleaved sequences of the two, as ch+(t1 ∨∨∨ t2) would do.

As we discussed in the Introduction, this distinction is not present in analo-
gous versions of process calculi where the axiom ch+(t1)∨∨∨ch+(t2) = ch+(t1∨∨∨t2)
is present. If such an axion were added to our theory, then we would program
P defensively, as if α had the (morally larger) type ch+(ch+(t1 ∨∨∨ t2))

P ′ = α(x).!(x(y : t1).P1 + x(y : t2).P2)
which is a less efficient server, since it performs pattern matching every time it
receives a value.

C.5 Extensions and variations

C.5.1 Polyadic version

The first extension we propose consists in adding product to our type con-
structors. This is pretty straightforward. It requires adding t ::= t××× t to the
productions of types, M ::= (M,M) to the productions of messages, and p ::=
(((p1,,,p2))) to the productions of patterns with the condition that for every subterm
(((p1,,,p2))) of a pattern we have (〈p〉1) ∩ (〈p〉2) = ∅.

The extensional interpretation becomes E( ) : T → P(B + D2 + [[T ]]) and
requires E(t1 ××× t2) = [[t1]] × [[t2]]. This completely characterises the subtyping
relation. A semantic model can be built, in analogy with Section C.2.2. The
subtyping relation is still decidable, as well as the typing relation.

The extensions described above suffice to obtain the polyadic calculus. In
particular projections can be encoded by pattern matching. By using product
types, together with the partially recursive types we show next, we can also
encode more structured data, like lists or XML documents.

C.5.2 Partially recursive types

The types introduced so far can be represented as finite labelled trees. Re-
cursive types are obtained without changing the syntax, by allowing trees to
be infinite. As in the type system of CDuce we require such trees to be regular
(so as they are finitely representable) and with the property that every infinite
branch contains infinitely many nodes labelled by the product constructor (so
as to avoid meaningless recursive definitions such as t = t∧∧∧ t).

Moreover we require that every branch can contain only finitely many nodes
labelled with channel constructor. This amounts to require that the number of
nested channel constructors is always bound. Or equivalently, if we were to define
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recursive types with equations, this amounts to forbid the recursive variable
being defined to be used inside a channel constructor (such as x = ch(x)∨∨∨int).

The reason for this is that, without this restriction, it is not possible to find
a model. To see why, observe that we could have a recursive type t such that

t = b∨∨∨ (ch(t)∧∧∧ ch(b))

for some nonempty base type b. If we have a model, either t = b or t 6= b.
Suppose t = b, then ch(t) ∧∧∧ ch(b) = ch(b) and b = t = b ∨∨∨ ch(b). The latter
implies ch(b) ≤ b which is not true when b is a base type. Therefore it must be
t 6= b. According to our semantics this implies ch(t) ∧∧∧ ch(b) = 0, because they
are two distinct atoms. Thus t = b∨∨∨ 0 = b, contradiction.

Types are therefore stratified according to how many levels of nesting of
the channel constructor there are and this stratification allows us to construct
the model using the same ideas as presented in Section C.2. There are two
main usages for arbitrary nested recursion of channels : one is to type “self
application”, that is a channel that can carry itself ; the other is for the definition
of typed encodings. In our type system, we can already type self application
by using, for instance, the type ch(1) : a channel that can carry everything,
can clearly carry itself. Alternatively we can recover fully recursive types if we
restrict to a local version of Cπ (see Section C.5.4 below) which is also enough
for encoding functional languages.

Furthermore, note that recursion is still allowed with other type constructors,
and a recursive type can appear inside a channel constructor provided that the
number of occurrences of channel constructors is finite. For instance we are
allowed to define the type ch(IBlist), where IBlist is the type of heterogeneous
lists of booleans and integers, defined as

IBlist = ((int∨∨∨ bool)× IBlist)∨∨∨ ch(0)

(we use ch(0) as the type of the empty list). Formally we have :

Definition C.5.1 (Types). A type t is a possibly infinite regular tree generated
by the following productions

Types t ::= b | ch+(t) | ch–(t) | t××× t | 0 | 1 | ¬¬¬t | t∨∨∨ t | t∧∧∧ t
and such that on every infinite branch it has infinitely many occurrences of the
product constructor and finitely many occurrences of the channel constructors.

With such recursive types it becomes interesting to use recursive patterns. If
we relax the condition defined in Section C.5.1 for pair patterns and introduce
a “constant pattern” as a case base for recursive pattern, then we can express
the powerful patterns of CDuce.

Definition C.5.2 (Patterns). A pattern p is a possibly infinite regular tree
generated by the following productions

Patterns p ::= x | t | (((p,,,p))) | (((x :=:=:= n))) | p∧∧∧ p | p|||p
where x denotes a variable, t a type, and n a basic value. Additionally we require
that on every infinite branch of p there are infinitely many occurrences of the
pair pattern, that for every subterm p1∧∧∧p2 of p (〈p〉1)∩(〈p〉2) = ∅, and that for
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every subterm p1|||p2 of p (〈p〉1) = (〈p〉2). Their semantics is defined as follows
d/t = {} if d ∈ [[t]]

d/t = Ω if d ∈ [[¬¬¬t]]
d/p1|||p2 = d/p1 if d/p1 6= Ω

d/p1|||p2 = d/p2 if d/p1 = Ω

d/x = {x 7→ d}
d/(((x :=:=:= d))) = {x 7→ d}
d/p1 ∧∧∧ p2 = d/p1 ⊗ d/p2

d/(((p1,,,p2))) = d/p1 ⊗ d/p2

where γ1 ⊗ γ2 is Ω when γ1 = Ω or γ2 = Ω and otherwise is the element
γ ∈ DDom(γ1)∪Dom(γ2) such that :

γ(x) =


γ1(x) if x ∈ Dom(γ1)\Dom(γ2),

γ2(x) if x ∈ Dom(γ2)\Dom(γ1),

(γ1(x), γ2(x)) if x ∈ Dom(γ2) ∩Dom(γ1).

Let us give an example of recursive pattern that uses a constant pattern
(((x :=:=:= n))). If we match a value of the type IBlist defined above, against the
recursively defined pattern p = (((x : int,,,p)))|||((( ,,,p)))|||(((x :=:=:= nil0))), then we capture
in x the list of all integers occurring in the matched value. More in details,
the pattern is composed of three alternative subpatterns, each subpattern being
applied only if the preceding ones fail. The first subpattern matches if the head
of the list is of type int. In that case it captures the head in x and recursively
applies the pattern to the tail. If the head is not of type int, then the second
patterns skips it, and recursively applies the pattern to the tail. The constant
pattern is applied only if the previous two patterns failed, that is if the matched
value is not a pair (head,tail). This means that the value is the empty list,
and therefore we associate nil0 to x. The third case of the the definition of
γ states that for the whole pattern, x is associated to the list—actually the
pair (head,tail)—of the values captured by x in each pair subpattern. Both
Theorems C.4.3 and C.4.4 hold also for this extension (the proofs are similar to
those found in [FCB08]) and the algorithm of the latter deduces for x the type
t = (int× t)∨∨∨ ch(0), that is the type of the lists of integers.

This kind of recursive types and patterns are enough to encode XML data
types and manipulate them à la CDuce. The reader can refer to [BCF03] for
more details.

C.5.3 Arrow types

We can extend the type system further by adding function types, so that
processes could send CDuce expressions as messages. To construct the model,
we need to combine the techniques used for CDuce with the ones presented in
this work.

However, we still cannot get full recursive types, due to the limitation de-
scribed above. Moreover, we do not know whether the subtyping relation for
this system is decidable. The techniques used for the simple system cannot be
extended here, because we do not know how to decide whether an arrow type
denotes a finite set.
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C.5.4 The local calculus

We do not investigate in detail the lextensions proposed above, because,
although theoretically challenging, they do not have much practical interest.
In the applications, we may not want to have the full power of the π-calculus.
In particular it has been observed [Mer04] that the input capability, the ability
to use in input a received channel, is difficult to implement. In practice it is
convenient to restrict to the so-called local variant of the π-calculus [Mer04],
where the input capability is not allowed.

In our case this restriction has other important consequences :
– the covariant channel type ch+(t) is no longer necessary. The example of

Section C.5.2 cannot be constructed, and indeed it is possible construct a
model of the types with full recursion. The absence of input channel types
makes also the decision algorithm considerably simpler, as condition CA
is invoked only when channel types of different polarity are present. In
particular the subtyping of channel types can be reduced to the following
condition : ch–(t) ≤

∨
i∈I ch–(ti) if and only if there exists i ∈ I such that

ti ≤ t.
– it is possible to define a type-respecting encoding of CDuce into Cπ, sim-

ilar to the Milner-Turner encoding of the simply typed λ-calculus in π
(see for instance [SW02]). This makes explicit arrow types not necessary.
However the standard translation of arrow types into channel types does
not respect equality, therefore to devise a type-respecting encoding a more
subtle approach was needed.

The syntax of types is restricted to the following one

Local Cπ Types t ::= b | ch–(t) | t××× t constructors
| 0 | 1 | ¬¬¬t | t∨∨∨ t | t∧∧∧ t combinators

Note the lack of input type. For these restricted set of types, the decision
algorithm is much simpler than the one for the full Cπ-calculus, as for intance,
the condition CA is never checked.

The syntax of the local Cπ is a restriction of the full variant in that input
can only happen on constant channels, and not on variables.This ensures that
channels sent by other processes cannot be used in input.

Processes P ::= αM output
|

∑
i∈I c

t(pi).Pi patterned input
| P ‖ P parallel
| (νct)P restriction
| !P replication

C.5.5 Alternative models

Hitherto, the whole discussion is based on the intuition that channels always
have both input and output capabilities, intuition that we materialised with the
definition of the model given in Section C.11.2. However, this is just a partic-
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Messages

Γ ` n : bn
(const)

si 6≤ t
Γ ` ct : ch–(t)∧∧∧¬¬¬ch–(s1)∧∧∧ . . .∧∧∧¬¬¬ch–(sn)

(chan)

Γ ` x : Γ(x)
(var)

Γ `M : s ≤ t
Γ `M : t

(subs)
Γ `M1 : t1, Γ `M2 : t2
Γ ` (M1,M2) : t1××× t2

(pair)

Processes

Γ ` P
Γ ` (νct)P

(new) Γ ` P
Γ `!P

(repl)
Γ ` P1 Γ ` P2

Γ ` P1‖P2

(para)

t≤
∨∨∨
i∈I***pi+++ Γ, (t∧∧∧ ***pi+++)/pi ` Pi

Γ `
∑
i∈I c

t(pi).Pi
(input)

Γ `M : t Γ ` α : ch–(t)

Γ ` αM
(output)

Figure C.6 – Local Cπ typing rules

ular model based on a particular intuition. As a matter of fact, the semantic
subtyping approach provides two degrees of freedom in the definition of a model
and, thus, of a subtyping relation :

1. We can give different definitions of the extensional interpretation (i.e.,
Definition C.2.2).

2. Once the extensional definition is set, there may exist different models,
that is, different premodels that satisfy Definition C.2.3 for the given E .

Both knobs can be turned to tune the subtyping relation, but between them the
one that really matters is the first one.

The extensional interpretation is the one that devises the characteristics
of the subtyping relation : from our experience, different models induce slight
variations to the subtyping relation, if any at all. For instance, in the definition of
CDuce the chosen extensional interpretation admits models that induce different
subtyping relations [FCB08]. These models, however are rather difficult to find
and differ only in the degree of sharing in recursive types [Fri04]. For this reason,
we believe that, once the extensional interpretation is defined, the existence of a
model matters much more than its definition. Moreover in our case we conjecture
that all models for the extensional interpretation of Definition C.2.2 induce
the same subtyping relation. This explains why we focused on the extensional
interpretation and relegated the definition of the model to Section C.11.2.

On the contrary it can be very interesting to study alternative definitions
of the extensional interpretation, since they correspond to different intuitive
semantics and induce substantially different subtyping relations. The reason
why we chose our current definition for the extensional interpretation is that it
allows us to mix and compare channels of different polarities. This interpretation
pushed the approach to its limits, as the issues with recursion and atomic types
clearly show. But it is possible to consider different interpretations, in order to
either recover existing subtyping relations, or make the subtyping relation more
robust with respect to some features. As an example, let us briefly hint at four
alternative definitions of the extensional interpretation.

1. We can define the extensional interpretation so that it reflects an intuitive
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model in which not only read-and-write channels but also read-only chan-
nels and write-only channels are present. Here we would interpret ch+(t)
as the set of all read-only and read-and-write channels for a type s smaller
than or equal to t (and similarly for ch–(t)). Although ch(t) would still be
the intersection of ch+(t) and ch–(t), this would substantially change the
subtyping relation (there no longer is a type of all channels, channels of
different polarities are less comparable, etc.) yielding a subtyping relation
closer to the one defined by Pierce and Sangiorgi [PS96].

2. We can define an extensional interpretation sensitive to the identity of
individual channels, that is, an interpretation in which the read-and-write
channel type no longer is atomic. We would then obtain a subtyping rela-
tion which would be compatible with a language in which pattern matching
can also test the name of a channel.

3. We can draw inspiration from the models of CDuce and interpret ch+(t)
as the set of (the interpretations of) functions of type unit→→→ t, ch–(t) as
the set of (the interpretations of) functions of type t→→→ unit, and ch(t) as
their intersection. Once more this would induce a substantially different
subtyping relation. In particular, this interpretation is compatible with an
unconstrained definition of recursive types : since in CDuce the intersection
of two function spaces is never empty, then the counterexample given in
Section C.5.2 no longer works (b � t holds in all models).

4. We can define a variant of the previous interpretation which instead of sin-
gle functions uses records of functions to interpret channels. In particular
we would interpret ch+(t) as the record type {read: unit→→→ t}, ch–(t) as
the record type {write: t→→→ unit}, and finally ch(t) as the record type
{read: unit→→→ t, write: t→→→ unit}. This interpretation, too, is com-
patible with full recursion (as an aside, this is the way in which references
types are encoded and implemented in the language CDuce, which explains
why pointers are possible even if CDuce features fully recursive types) but
keeps the interpretation of read-only, write-only, and read-and-write chan-
nel types, distinct. This interpretation should also induce a conservative
extension of the Pierce and Sangiorgi’s subtyping relation.

The four above are just some of the possible different interpretations for channel
types. Although in this work we considered one particular interpretation, we did
not do so with the purpose to fix it as the best possible interpretation, but rather
with the purpose to use it to illustrate how to apply the technique of semantic
subtyping to mobile processes.

C.6 The functional language CDuce

CDuce is a very efficient functional language for rapid design and devel-
opment of applications that manipulate XML data [BCF03]. In this work we
concentrate on the foundational aspects of CDuce [FCB08] a detailed survey
of which can be found in [CF05b]. In that respect, CDuce features the same
syntactic types as Cπ, with just a single exception, namely, the channel type
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constructor is replaced by the function type constructor :

CDuce Types τ ::= b | τ →→→ τ | τ ××× τ constructors
| 0 | 1 | ¬¬¬τ | τ ∨∨∨ τ | τ ∧∧∧ τ combinators

where the same regularity and contractivity restrictions as in Section C.2.1 ap-
ply. We use σ, τ to range over CDuce types and to typographically distinguish
them from Cπ ones, these latter still ranged over by s and t.

Subtyping is characterised in the same way as for Cπ, by defining an in-
terpretation from the above types into a domain D (that we leave unspeci-
fied, see [FCB08]) which satisfies Definition (C.2.3). Definition C.2.2 is modified
to account for the new type constructor for functions. We have E(−) : T →
P(D+D×D+P(D×DΩ)) (where DΩ = D+ {Ω}, the disjoint union of the do-
main and of a distinguished error element Ω) while point (d.) of Definition C.2.2
becomes :

d. E(σ→→→ τ) = P

(
[[σ]]× [[τ ]]

DΩ
D×DΩ

)
where X

Y
denotes the complement of X with respect to Y (i.e., Y \ X). In

words, the extensional interpretation of σ →→→ τ is the set of graphs such that
if the first element is in [[σ]], then the second element is in [[τ ]] (otherwise the
second element can be anything, in particular the error Ω). Therefore, for what
concerns subtyping , we can consider that arrow types are interpreted as follows :

[[σ→→→ τ ]] = {f ⊆ D ×DΩ | ∀(din, dout) ∈ f. din ∈ [[σ]]⇒ dout ∈ [[τ ]]}
As we did for Cπ, we can use this characterisation to deduce several interesting
type equality and containment relations. 5 For instance, we have (σ1 ∨∨∨ σ2 →→→
τ1 ∧∧∧ τ2) � (σ1→→→ τ1)∧∧∧ (σ2→→→ τ2), where the strictness of containment indicates
that we have functions that can have different behaviours according to whether
the argument is of type σ1 or σ2 (e.g., overloaded functions). For the goals of
this work an utmostly interesting equation is

(σ→→→ τ)∧∧∧ (σ → τ ′) = σ→→→ τ ∧∧∧ τ ′ (C.13)

whose validity can be easily checked by the reader, by applying the definition
of E(−).
CDuce is a λ-calculus with pairs, overloaded recursive functions, and pattern

matching. This is reflected by the following syntax :

e ::= x | n | ee | (e,e) | µf
∧∧∧
i∈I(σi→→→τi)(x).e | match e with p⇒e|p⇒e

where patterns p are (but use CDuce types). The type-case expression (x =
e ∈∈∈ τ)???e1:e2 can be added as syntactic sugar for the matching expression
match e with x∧∧∧ τ⇒e1|x∧∧∧¬¬¬τ⇒e2.

Function abstractions use a µ-abstracted name for recursion and specify at
their index several arrow types, indicating that the function has all these types

5. The error Ω is included in the codomain of the functions since without it every function
would have type 1→→→ 1, therefore every application would be well-typed (with type 1). The
error element Ω stands for the result of ill-typed applications. Thanks to it σ → τ ≤ 1→→→ 1
does not hold in general, hence, it explicitly avoids the problem above.
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∆; Γ ` n : bn
(const)

∆; Γ ` x : Γ(x)
(var)

∆; Γ ` f : ∆(f)
(fvar)

∆; Γ ` e : σ ≤ τ
∆; Γ ` e : τ

(subs)

∆; Γ ` e1 : τ1 ∆; Γ ` e2 : τ2
∆; Γ ` (e1,e2) : τ1××× τ2

(pair)

∆; Γ ` e1 : σ→→→ τ ∆; Γ ` e2 : σ

∆; Γ ` e1e2 : τ
(appl)

(for σ1 ≡ σ ∧∧∧ ***p1+++, σ2 ≡ σ ∧∧∧¬¬¬ *** p1+++)

∆; Γ ` e : σ ≤ ***p1 +++∨∨∨ *** p2 +++ ∆; Γ, (σi/pi) ` ei : τi

∆; Γ ` match e with p1⇒e1|p2⇒e2 :
∨∨∨
{i|σi 6'0} τi

(match)

(for τ ≡
∧∧∧
i∈I(σi→→→ τi)) (∀i∈I, h∈I, j∈J)

σh ∧∧∧ σi = 0 τ 6≤ σ′j →→→ τ ′j ∆, f : τ ; Γ, x : σi ` e : τi

∆; Γ ` µfτ (x).e : τ ∧∧∧
∧∧∧
j∈J ¬¬¬(σ′j →→→ τ ′j)

(abstr)

Figure C.7 – CDuce typing rules

(i.e., their intersection). This is formally stated by the rule (abstr) in Figure C.7
which for each i ∈ I checks that the body e has type τi under the hypothesis
that x has type σi. Note that the types of µ-abstracted variables are recorded
in a distinct environment ∆. The distinction here is totally useless (we could
have used a unique Γ) but it will be handy when we define the encoding (since
µ-abstracted variables are translated into channel constants, then the encoding
will be parametric only in Γ).

The only difficult rule is (match). It first deduces the type σ of the matched
expression and checks whether patterns cover all its possible results (i.e., σ ≤
***p1+++∨∨∨***p2+++) ; then it separately checks the first branch under the hypothesis that
p1 is selected (i.e. e is in σ∧∧∧ ***p1+++) and the second branch under the hypothesis
that p2 is selected (i.e., e in σ ∧∧∧¬¬¬ *** p1+++) ; finally it discards the return types of
the branches that cannot be selected , which is safely approximated by the fact
that the corresponding σi is empty. 6

The rules in Figure C.7 are the same as those defined in [FCB08] (to which
the reader can refer for more details) with just a single exception : in rule
(abstr) we require that the arrows specified at the index of the function have
disjoint domains : ∀i, h < i.σh ∧∧∧ σi = 0. This restriction is necessary (but not

6. The reader may wonder why the system does not return a type error when one of
the two branches cannot be selected. As a matter of fact this is a key feature for typing
overloaded functions, where the body is repeatedly checked under different hypothesis for
some of which the σi of some typecase may be empty. This simple function should clarify the
point : µf(Int→→→Int;Bool→→→Bool)(x).(y = x ∈∈∈ Int)???(y + 1):not(y)
when we type the body under the hypothesis x : Int, then the second branch cannot be
selected, while under x : Bool is the first one that cannot be selected. Without the selective
union in the typing rule the best type we could have given to this function would have been
(Int∨∨∨ Bool)→→→ (Int∨∨∨ Bool).
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sufficient) in order to avoid the problem of output-driven overloading explained
in Section C.7.2. However, it causes no loss of generality, since every CDuce
function µf

∧∧∧
i∈I(σi→→→τi)(x).e can be put into this form by iterating on its index

the rewriting that replaces (σh∧∧∧σk →→→ τh∧∧∧ τk)∧∧∧ (σk∧∧∧¬¬¬σh→→→ τk)∧∧∧ (σh∧∧∧¬¬¬σk →→→
τh) for every pair of arrows σh →→→ τh, σk →→→ τk such that σh ∧∧∧ σk 6= 0. This
rewriting is sound and it is easy to show that the two functions are operationally
indistinguishable (e.g., by applicative bisimilarity).

As the intersection of negated channels in the rule (chan) ensures that values
of Cπ yield a model that induces the same subtyping relation as the initial one,
so does for CDuce the intersection of negated arrows in the rule (abstr) : the
interpretation defined by sets of values, where values are closed terms gener-
ated by v ::= n | µf

∧∧∧
i∈I(σi→→→τi)(x).e | (v, v) and types are CDuce types, enjoys

the same properties.Therefore, we can again use the pattern semantics of Sec-
tion C.4.1 to define the call-by-value operational semantics of CDuce (we omit
the straightforward context rules that can be found in [FCB08]).

v1v2 −→ e[v1/f ; v2/x] if v1 = µfτ (x).e
match v with p1⇒e1|p2⇒e2 −→ e1[v/p1] if v/p1 6= Ω
match v with p1⇒e1|p2⇒e2 −→ e2[v/p2] if v/p1 = Ω, v/p2 6= Ω

The calculus satisfies the subject reduction property [BCF03].

C.7 Roadmap to the encoding

In this section we discuss the main difficulties encountered in the definition
of an encoding of CDuce into the local Cπ-calculus. It lists some failed attempts
which will clarify the reasons behind the successful attempt.

C.7.1 The Milner-Turner encoding

Since our encoding involves languages with subtyping, the first approach we
tried was to adapt the Milner-Turner (MT) encoding of the call-by-value typed
λ-calculus with subtyping into the typed π-calculus with subtyping, as presented
in [SW02]. The translation of arrow types presented there is :

(|σ→→→ τ |) = ch–((|σ|)××× ch–((|τ |))) .
The encoding of λ-terms, decorated by their minimum types, is :

(|xτ |)Γ,x:τ
c = c(x)

(|λxσ.eτ |)Γ
c = ν ñ(|σ|)×××ch–((|τ |))(c(ñ) ‖ !(ñ(x, b).(|eτ |)Γ,x:σ

b ))
(|eσ→→→τ1 eρ2|)Γ

c = ν ñ(|σ|)×××ch–((|τ |))ν b(|ρ|)((|eσ→→→τ1 |)Γ
ñ ‖ ñ(w).((|eρ2|)Γ

b ‖ b(h).w(h, c)))

The encoding of an expression e is parametrised by a type environment Γ such
that Γ ` e : τ and by a channel c(|τ |) on which the value of the expression is re-
turned to the environment. A function is represented by a channel (the “name”
of the function) which can be called by sending the input value and a channel on
which the output value should be returned. These two parameters are used by a
replicated process (the “body” of the function) which returns the output value
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upon termination. In the encoding of the application, the encoding of the func-
tion is called on the encoding of the argument, and the returned value is returned
as the value of the whole expression. This encoding bears a strong resemblance
with the continuation passing style transform. In this sense, the return channel
of an expression could be seen as the address of the continuation.

Since we translate only well-typed terms, in the case of the application we
must have ρ ≤ σ. The encoding of the application (in particular, the w(h, c)
subterm) is well-typed only if this implies (|ρ|) ≤ (|σ|). This holds true in the
simply typed λ-calculus with subtyping, but fails as soon as we add intersection
types. In that case, the translation of the types does not preserve the identity
of types : in CDuce, we have seen that the identity (C.13) holds (i.e., (σ →→→
τ)∧∧∧ (σ→→→ τ ′) = σ→→→ τ ∧∧∧ τ ′), while the same does not hold on the encodings of
the types at issue since, in general, it is not true that

ch–(s××× ch–(t))∧∧∧ ch–(s××× ch–(t′)) ≤ ch–(s××× ch–(t∧∧∧ t′)) .
Using this observation we can indeed show that the MT encoding maps a well-
typed CDuce expression into an ill-typed Cπ process. Take ρ = (int→→→ int)∧∧∧
(int→→→ B), σ = int→→→ 0, τ = (σ→→→ int)→→→ ρ→→→ int, and e = λτx.λρ→→→inty.xy.
The expression e is well-typed with type τ since ρ ≤ σ. The translation of
x : σ→→→ int, y : ρ ` xy : int on channel c′ is :

P ′ = ν ñ′(|σ|)×ch
–(int)ν b′(|ρ|)(ñ

′
(x) ‖ ñ′(w).(b

′
(y) ‖ b′(h′).w(h′, c′)))

but the subterm w(h′, c′) is not well-typed. This is because the variable h′ must
have type (|ρ|) being received on b′. However it cannot be sent on d′ as (|ρ|) 6≤ (|σ|).
The translation of ` e : τ contains a ill-typed term and, therefore, is ill-typed .

C.7.2 Output-driven overloading

In order to give an operational intuition of why the MT encoding does not
work, recall that intersections of arrow types are commonly assimilated to the
types of overloaded functions. In CDuce, the identity (σ→→→ τ)∧∧∧(σ→→→ τ ′) = σ→→→
τ ∧∧∧ τ ′ is justified because overloaded functions can perform a type-case only on
the type of the input. Therefore, if on the same input a function returns values
of type τ and values of type τ ′ it must return only values that have both types.

In Cπ, however, a process that encodes a function receives in input also
the return channel. In principle such process could perform a type-case on this
extra piece of information and then execute different computations according to
whether the expected result is of type τ or τ ′. Such “output-driven” overloaded
function can, on the same input, return a value of type τ and a different value
of type τ ′ (and not in τ). This is a function that is in (|(σ→→→ τ)∧∧∧ (σ→→→ τ ′)|) and
not in (|σ→→→ τ∧∧∧τ ′|), therefore we expect that (|σ→→→ τ∧∧∧τ ′|) � (|(σ→→→ τ)∧∧∧(σ→→→ τ ′)|)
which is indeed the case.

C.7.3 The distributive law

At a first analysis, it may seem that the problem is the subtyping relation
of Cπ. We may be tempted to change it by adding the following inequation :



156 ANNEXE C. SEMANTIC SUBTYPING FOR THE π-CALCULUS

ch–(t1 ∧∧∧ t2) ≤ ch–(t1)∨∨∨ ch–(t2) .

Since the converse inequality already holds (as seen in Section E.3.2), we would
obtain a “contravariant” distributive law of the channel constructor over the
intersection. A similar distributive law is used by Hennessy and Riely in [HR02]
to define the intersection type. As explained in [CDV05], the above inequation
is not justified in a calculus endowed with dynamic type-case. It is also not
clear at first sight whether introducing the inequation is at all possible using
a semantic approach. In any case, this new subtyping relation would not make
the translation work either as it would introduce too many equations in the
translation. For example, being int∧∧∧ B = 0, we would get

ch–(0× ch–(int∨∨∨ B)) ≤ ch–(int× ch–(B))∨∨∨ ch–(B× ch–(int)).

The type on the left is the encoding of 0→→→ int∨∨∨ B and the other type is the
encoding of (int→→→ B)∨∨∨ (B→→→ int). This subtyping gives a problem already for
the identity function, which has type 0→→→ int∨∨∨ B but not (int→→→ B)∨∨∨ (B→→→
int).

C.7.4 The negation translation

Intuitively, to find an encoding that respects type equality, we need that,
when encoding the arrow type, the operator that encodes the output type dis-
tributes over the intersection, while the operator that encodes the input type
should not distribute over the intersection. One possible encoding that satisfies
this requirement is the following :

(|σ→→→ τ |) = ch–((|σ|)×××¬¬¬(|τ |)) .
Indeed the negation is a contravariant constructor that distributes over the in-
tersection. However it was not clear to us what operational interpretation we
could attach to this translation. Under this translation of the types, the MT
translation of the λ-terms would not be well-typed.

This however was the sparkle that brought us to our solution : (i) We want
to preserve the naturalness of the MT encoding, that is, to encode functions calls
by RPCs that send along with the argument a channel on which the call must
return the result ; thus the type of the second argument of the call (i.e., the one
that encodes the output type τ) must allow for messages of type ch–((|τ |)). (ii) We
also want the type of this argument to distribute over intersections, in order to
respect the subtyping relation ; the use of negation, ¬¬¬(|τ |), seems to help in this
direction. Finally, (iii) we want this second argument to be contravariant (since
it is under a ch–( ), it will then respect the covariance of the output type it is
meant to encode) ; but the joint use of two contravariant constructors, ch–( ) and
¬¬¬, would make it covariant, thus we may need to add a further negation to make
it contravariant. All this yields, for the encoding of σ →→→ τ , a second argument
of type ¬¬¬(ch–(¬¬¬(|τ |))), which is almost what we are looking for. We say “almost”
since it still does not satisfy (i) insofar as it is not a supertype of ch–((|τ |)) ; as we
will explain in Section C.8.2 one point is still missing from it : ch–(1) — to verify
it, simply compute the difference ch–((|τ |)) \ ¬¬¬ch–(¬¬¬(|τ |)). So we add it, obtaining
for the second argument the following encoding ¬¬¬ch–(¬¬¬(|τ |))∨∨∨ ch–(1). This idea is



C.8. THE ENCODING 157

carried out in details and generalised in the following section.

C.8 The encoding

We propose a modification of the Milner-Turner encoding that respects type
equality, and it is very close to the original translation.

C.8.1 The λ-channel constructor

The encoding of the types we propose is parametric with respect to a con-
structor of Cπ types that we call “λ-channel” type. This notion is designed to
make the translation of types to respect the type equality (unlike the Milner-
Turner and distributive approach), and to make the translation of terms to make
sense (unlike the negation approach).

Definition C.8.1. A λ-channel (noted, chλ(−)) is a unary constructor of Cπ
types s.t. :

1. ch–(t) ≤ chλ(t) ;

2. chλ(s∧∧∧ t) = chλ(s)∨∨∨ chλ(t) ;

3. s ≤ t⇔ chλ(t) ≤ chλ(s).
Observe that the three conditions of the definition correspond to the require-

ments (i-iii) we outlined at the end of the previous section. Therefore, Condition
(1) is necessary for a meaningful translation of terms, while Conditions (2) and
(3) are necessary for respecting the identity of types. Using λ-channel types we
can now define a mapping of CDuce types to Cπ-calculus types that respects
type equality.

Definition C.8.2. The interpretation function {{−}} : TCDuce → TCπ is defined
as follows

{{b}} = b {{0}} = 0 {{1}} = 1 {{¬¬¬τ}} = ¬¬¬{{τ}}
{{σ ∨∨∨ τ}} = {{σ}} ∨∨∨ {{τ}} {{σ ∧∧∧ τ}} = {{σ}} ∧∧∧ {{τ}}
{{σ××× τ}} = {{σ}}××× {{τ}} {{σ→→→ τ}} = ch–({{σ}}××× chλ({{τ}})).

Theorem C.8.3. Let σ and τ be CDuce types. Then σ ≤ τ ⇐⇒ {{σ}} ≤ {{τ}}.

C.8.2 Incarnations of λ-channels and their intuition

Possible choices for chλ(t) are of the form chλ0(t)∧∧∧ ϕ where
– chλ0(t) = ¬¬¬ch–(¬¬¬t)∨∨∨ ch–(1) ;
– ϕ is a constant type such that ch–(0) ≤ ϕ.

Proposition C.8.4. The constructor chλ0(t)∧∧∧ ϕ is a λ-channel.

As the Condition (1) in Definition C.8.1 clearly states, the λ-channel chλ(t)
essentially is ch–(t) plus some extra stuff, some “garbage”, that makes the other
two conditions —hence type identity preservation— hold. The extra stuff that
is added to ch–(t) is basically given by chλ0(t). To understand the precise role
played by this garbage, it is interesting to consider the following properties :
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a. chλ0(0) = 1

b. chλ0(1) = ¬¬¬ch–(0)∨∨∨ ch–(1)

c. [[(chλ0(t)∧∧∧¬¬¬ch–(t))∧∧∧ ch–(0)]] = {cs | t 6≤ s & ¬¬¬t 6≤ s} ∪ {c1}.
The first two properties say that chλ0(−) adds as garbage at most (point (a.))
everything and at least (point (b.)) all non-channel types plus the channel which
outputs everything. In order to exactly determine which channels chλ0(t) adds
to to ch–(t) let us take out all ch–(t) and consider just the channels that remained :
this is exactly what (chλ0(t)∧∧∧¬¬¬ch–(t))∧∧∧ ch–(0) does. Point (c.) states that these
are all channels that can send values both inside and outside t. That is, these
are all the channels for which it is not possible to predict the result of a test
that checks whether the messages they transport are of type t.

This last observation is the key to understand why the complicated definition
of chλ0(−) is necessary. We have observed that the MT translation does not work
because it allows a “output-driven” overloading whereby a function can have
different behaviours for different expected types of the result. The more general
channel type chλ0(−) allows (potentially, in the types) the caller to “confuse”
such output-driven functions, by sending “garbage” reply channels. Although
in practice, encodings don’t do that, the possibility of a output-driven function
is ruled out also at the level of the types. It is like the presence of the Police
in Utopia : everybody behaves well in Utopia, and the Police never works. But
the presence of the Police is the visible representation of the fact the everybody
behaves well.

To put it otherwise, if we take a channel that has type chλ(s) ∨∨∨ chλ(t),
it is impossible to deduce whether it is only of type chλ(s) or only of type
chλ(t). Even if it can transport all messages of type, say, t, it could be because
the channel was in the garbage generated by chλ(s). So λ-channels introduce
some latent noise that makes it impossible to determine which output type they
encode.

Although the constructor is parametric on a type ϕ, non-channel types play
no active role in the encoding. Therefore it is reasonable (and it makes the en-
coding more understandable) to minimise ϕ (that is, ϕ = ch–(0)) so that [[chλ(t)]]
only contains channels. In particular, this choice implies that chλ(0) = ch–(0)
(all channels), chλ(1) = ch–(1) (just the channel which outputs everything). All
the development, however, is independent from this choice.

C.8.3 Encoding of the terms

We describe here the mapping of CDuce terms to Cπ-calculus terms. What
we translate are in fact typing derivations. To simplify the notation, we write eτ

assuming that τ is the type of e in the last step of the derivation. We use a similar
convention for the immediate sub-expressions of e which are in the premises
of the last applied rule. The translation is parametrised by a “continuation
channel” α of type ch–({{τ}}). For readability we decorate the channels with their
types only when we restrict them and in rule (fvar). We also adopt the CDuce’s
convention to write x:τ for the pattern x ∧∧∧ τ . The translation also requires a
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straightforward translation of the patterns (it just encodes the types occurring
in them) whose details are omitted.

Definition C.8.5. The translation of the expression eτ on a channel α is defined
by cases on the last applied typing rule :

(const) {{nbn}}Γα = α(n)
(var) {{xτ}}Γ,x:τ

α = α(x)

(fvar) {{fτ}}Γα = α(f
∨∨∨
i∈I({{σi}}×××chλ({{τi}}))) (where τ =

∧∧∧
i∈I(σi→→→ τi))

(pair) {{(eσ1
1 ,e

σ2
2 )

τ}}Γα = ν ñ{{σ1}}ν b{{σ2}}({{eσ1
1 }}Γñ ‖ ñ(w:{{σ1}}).({{eσ2

2 }}Γb ‖
b(h:{{σ2}}).α(w, h))) (where τ = σ1××× σ2)

(appl) {{(eσ→→→τ1 eσ2 )τ}}Γα = ν ñ{{σ→→→τ}}ν b{{σ}}({{eσ→→→τ1 }}Γñ ‖ ñ(w:{{σ→→→ τ}}).({{eσ2}}Γb ‖
b(h:{{σ}}).w(h, α)))

(subs) {{(eσ)τ}}Γα = ν ñ{{σ}}({{eσ}}Γñ ‖ ñ(w:{{σ}}).α(w)) (where σ ≤ τ)

(match) {{(match eσ with p1⇒eτ11 |p2⇒eτ22 )τ}}Γα =
ν ñ{{σ}}ν b({{σ1}}×××ch–({{τ1}}))∨∨∨({{σ2}}×××ch–({{τ2}}))((P1 + P2) ‖ Q)

where P1 = b({{p1}}, d:ch–({{τ1}})).{{eτ11 }}
Γ,σ1/p1
d ,

P2 = b({{p2 ∧∧∧¬¬¬ *** p1+++}}, d:ch–({{τ2}})).{{eτ22 }}
Γ,σ2/p2
d ,

Q = {{eσ}}Γñ ‖ ñ(h:{{σ}}).b(h, α)
σ1 = σ ∧∧∧ ***p1+++, σ2 = σ ∧∧∧¬¬¬ *** p1+++, τ =

∨∨∨
{i|σi 6'0} τi

(abstr) {{(µf
∧∧∧
i∈I(σi→→→τi)(x).e)τ}}Γα = ν f

∨∨∨
i∈I({{σi}}×××chλ({{τi}}))(α(f) ‖ body(f))

where body(f) = !(
∑
i∈I f(x:{{σi}}, b:ch–({{τi}})).{{eτi}}Γ,x:σi

b

+f(x:
∨∨∨
i∈I{{σi}}, b:

∨∨∨
i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0)

τ =
∧∧∧
i∈I(σi→→→ τi)∧∧∧

∧∧∧
j∈J ¬¬¬(σ′

j →→→ τ ′j).

In rule (fvar), we assume that every µ-abstracted variable f has a corre-
sponding channel constant f t for every suitable Cπ type t. This allows the
encoding to be parametric only in the Γ environment, and not in the ∆ one. In
a match the expressions e1 and e2 play the role of two functions to be chosen
according to the type of the argument e. Therefore we encode the match with a
patterned sum of the encodings of e1 and e2 in parallel with the encoding of e.

The translation of a functional term is very similar to the original MT trans-
lation. To deal with overloading, the body of the function features a patterned
choice. This choice includes all behaviours that the function can produce on
different inputs, and the special sub-term f(x:

∨∨∨
i∈I{{σi}}, b:

∨∨∨
i∈I(chλ({{τi}}) ∧∧∧

¬¬¬ch–({{τi}})).0, which we call the functional garbage. The role of this sub-term
is to obtain well-typed terms. However we will see that, within the context of
translation of CDuce terms, the functional garbage choice is never taken. In-
deed, carrying on with our analogy, this functional garbage corresponds to the
prison of Utopia : it is there to capture misbehaving terms, even if we all know
that there isn’t any.

C.9 Correctness of the encoding

We start by stating that the translation produces well-typed terms.
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Theorem C.9.1. If ∆; Γ ` e : τ , then {{Γ}} ` {{eτ}}Γ
c{{τ}}

and {{Γ}}, x : ch–({{τ}}) `
{{eτ}}Γx , where {{Γ}} = {y : {{σ}} | y : σ ∈ Γ}.

In the following we convene that when we write {{e}}Γc , then there are τ and
∆ such that ∆; Γ ` e : τ and ch–({{τ}}) is the type of c.

A first observation is that all reductions out of the encoding of a CDuce
expression are deterministic (since patterns in sums are mutually exclusive) and
never use the functional garbage in the body of functions. A functional redex is a
redex of the shape body(f) ‖ f(v, c). A reduction is safe if it is deterministic and
each functional redex is reduced by choosing an alternative in body(f) different
from the functional garbage. We denote safe reductions by −→s : as usual −→∗s
is the reflexive and transitive closure of −→s.

Lemma C.9.2. All reductions starting from {{e}}∅c where e is an arbitrary
CDuce expression are safe.

In order to state the correctness of the encoding, it is crucial to understand
how CDuce values are mapped to Cπ processes. As it is clear from the encoding,
a functional value is mapped into the output of a private channel name in parallel
with the encoding of the function body. We can then say that the Cπ value
corresponding to a functional value is a channel name. The encoding of a pair of
CDuce values reduces to a process which outputs the pair of the corresponding
Cπ values in parallel with the function bodies of all functions which occur in
the two values.

To formalise the above we will assume that all function names in the current
value are distinct and fixed, so that we cannot rename them. We define two
mappings, one from CDuce values to Cπ values and one from CDuce values to
sets of channel names.

Definition C.9.3.
1. The mapping cpv(−) is defined by induction on CDuce values as follows :

– cpv(n) = n ;
– cpv(µf

∧∧∧
i∈I(σi→→→τi)(x).e) = f

∨∨∨
i∈I({{σi}}×××chλ({{τi}})) ;

– cpv((v1, v2)) = (cpv(v1), cpv(v2)).

2. The mapping func(−) is defined by induction on CDuce values as follows :
– func(n) = ∅ ;
– func(µf

∧∧∧
i∈I(σi→→→τi)(x).e) = {f

∨∨∨
i∈I({{σi}}×××chλ({{τi}}))} ;

– func((v1, v2)) = func(v1) ∪ func(v2).

The above mappings can express the normal forms of processes encoding
values :

Lemma C.9.4. {{v}}∅c −→∗s ν func(v)(c(cpv(v))‖f∈func(v)body(f)).

More generally, one would like to have that if e is a well-typed CDuce ex-
pression and e −→∗ v, then {{e}}∅c −→∗s ν func(v)(c(cpv(v))‖f∈func(v)body(f)).
Unfortunately, the corresponding result does not even hold for the MT encoding
of λ-calculus into π-calculus [Mil92], a fortiori nor does for our encoding.
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A reason for this failure is that when the whole λ-term is a β-redex its encod-
ing reduces to a π-term which differs from the encoding of the corresponding
β-contractum in the positions of the restriction and of the replicated input
representing the reduced λ-abstraction. Moreover when a β-redex in argument
position is contracted (following the call-by-value reduction strategy) the en-
coding of the reduced λ-term needs in its turn to be evaluated in order to be
related with the encoding of the original λ-term.

Our encoding of CDuce into Cπ being essentially an extension of the MT
encoding has luckily no more problems than the original one, so we can show
similar soundness results. To formulate these results we need to define for Cπ
processes a standard notion of typed barbed congruence with respect to an
environment Γ (Γ � P ∼= Q), see [SW02].

The main theorem of this section states that if a CDuce expression reduces
to a value, then its encoding reduces to the process which is barbed congruent to
the encoding of that value, and vice versa if the evaluation of a CDuce expression
does not terminate, then the evaluation of its encoding does not terminate either.

Theorem C.9.5 (Correctness).
1. If e −→∗ v, then {{e}}∅c −→∗s P for some P such that
∅� P ∼= ν func(v)(c(cpv(v))‖f∈func(v)body(f)).

2. If e diverges, then {{e}}∅c diverges too.

From this, and from compositionality, it is easy to obtain soundness. Given
two CDuce terms ∆; Γ ` e : τ and ∆; Γ ` e′ : τ we denote by ·;−ee′ the standard
Morris-style observational congruence (as defined, for instance, in [SW02] pag.
478).

Corollary C.9.6 (Soundness). If ∆; Γ ` e : τ and ∆; Γ ` e′ : τ and {{Γ}} �
{{e}}Γc ∼= {{e′}}Γc , then ·;−ee′.

Notice that completeness fails for our encoding, for the same reason as it
fails for the original MT encoding.

C.10 Conclusion

Pierce and Sangiorgi’s subtyping for the π-calculus, though very elegant, is
structurally very poor : it essentially amounts to compare the levels of nesting
of channel constructors with the same polarity. In order to obtain a much richer
and expressive subtyping relation, we combine here their types with union, inter-
section, and negation types. This is not a new idea—at least for what concerns
unions and intersections—, but the originality of our approach is that the the-
ory is semantically justified via a set theoretic interpretation of types as sets
of values, which looks as quite a reasonable interpretation. The naturalness of
the interpretation is justified and supported by several technical aspects, and
reinforced by the definition of the type-preserving translation of CDuce into the
a local variant of the process calculus.
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While the interpretation is very simple, its consequences are not. We have
seen that deciding subtyping requires to enumerate and check one by one the
atoms that compose the types involved in the verification. Such a degree of
complexity is present only in the general framework. This is acceptable since
our work aims at establishing the foundational basis of subtyping for π-calculus.
Of course, such a degree of complexity makes the calculus unfit for practical
applications. However in a practical scenario one would rather resort to the
local variant and, in that case, the extra complexity of subtyping disappears,
the subtyping algorithm being reduced to perform classic structural checks on
syntactic types.

The fact that here we have to descend to the very structure that composes
types (the world “atoms” is quite suggestive in this case) is not overly surprising.
The point is that we are touching deep into the semantics of computations.
This is witnessed by the fact that some characteristics (in some case, some
“oddities”) of Cπ are shared by completely different paradigms for which a
semantic subtyping technique was used. For instance, CDuce function values
require some special non-structural typing rule which uses negated literals. This
kind of rule becomes necessary also for Cπ as soon as one consider its local
variant. A much more striking correspondence happens with atoms : we have
shown that in order to decide the subtyping relation in Cπ one must be able to
decide the atomicy of the types. Quite surprisingly the same problem appears in
λ-calculus (actually, in any semantic subtyping based system) as soon as we try
to extend it with polymorphic types. Imagine that we embed our types (whatever
they are) with type variables X,Y, . . . . Then the “natural” (semantic) extension
of the subtyping relation is to quantify the interpretations over all substitutions
for the type variables :

t1 ≤ t2
def⇔ ∀s.[[t1[s/X]]] ⊆ [[t2[s/X]]] . (C.14)

Consider now the following inequality (taken from [HFC05]) where t is a closed
type

(t,X) ≤ (t×¬¬¬t)∨∨∨ (X × t). (C.15)

It is easy to see that this inequality holds if and only if t is atomic. If t is not
atomic, then it has at least one non-empty proper subtype, and (C.14) does not
hold when we substitute this subtype for X. If instead t is atomic, then for all
X either t ≤ X or t ≤ ¬¬¬X, whence (C.15). Note that this example does not
use any fancy or powerful type constructor, such as arrows or channels : it only
uses products and type variables. So it applies to all polymorphic extensions of
semantic subtyping where, once more, deciding subtyping reduces to deciding
whether some type is atomic or not.

These and other similarities are discussed in [Cas05] to which the reader can
refer for deeper analysis and a discussion on perspectives.
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C.11 Proofs

C.11.1 Characterising inclusion (Theorem C.3.2 and Propo-
sition C.3.3)

In this section we first prove Theorem C.3.2 and then strengthen the result
as in Proposition C.3.3.

We recall that in a boolean algebra, an atom is a minimal nonzero element.
A boolean algebra is atomic if every nonzero element is greater than or equal
to an atom. It is easy to prove that an atomic boolean algebra is equivalent to
a subset of the powerset of its atoms.

Let (D,∧∧∧,∨∨∨,0,1) be an atomic boolean algebra where, as customary, d′ ≤ d
if and only if d′ ∨∨∨ d = d. For every d ∈ D we denote ↓ d (that is, the set of
all elements smaller than or equal to d) as ch+(d) and ↑ d (that is, the set of
all elements larger than or equal to d) as ch–(d). We want to give an equivalent
characterisation of the equation⋂

i∈I
ch+(di1) ∩

⋂
j∈J

ch–(dj2) ⊆
⋃
h∈H

ch+(dh3 ) ∪
⋃
k∈K

ch–(dk4)

that does not use the “operators” ch+(), ch–(). Notice that⋂
i∈I

ch+(di1) = ch+(
∧
i∈I

di1) and
⋂
j∈J

ch–(dj2) = ch–(
∨
j∈J

dj2) .

Also, if there exist h, h′ such that dh
′

3 ≤ dh3 , then we can ignore dh
′

3 as ch+(dh
′

3 ) ⊆
ch+(dh3 ). Dually for the dk4 . Therefore we can concentrate on the case

ch+(d1) ∩ ch–(d2) ⊆
⋃
h∈H

ch+(dh3 ) ∪
⋃
k∈K

ch–(dk4)

where no two dh3 are comparable, and no dk4 are comparable.
The first case in which the inclusion holds is when ch+(d1) ∩ ch–(d2) = ∅,

which happens exactly when d2 6≤ d1. If d2 ≤ d1, without loss of generality we
can also assume that dh3 ≥ d2 for all h ∈ H and that dk4 ≤ d1 for all k ∈ K. This
is because if dh̄3 6≥ d2 for some h̄ then no element of ch–(d2) can be in ch+(dh̄3 ).
We can thus ignore such sets to test for the inclusion, and similarly for the dk4 ’s.

The inclusion surely holds if for some h̄ we have d1 ≤ dh̄3 , or if for some k̄ we
have d2 ≥ dk̄4 , since then, for instance in the former case, ch+(d1) is contained
in ch+(dh̄3 ) and so is its intersection with ch–(d2). The most difficult case occurs
when

– d2 ≤ d1 ;
– for all h ∈ H, dh3 ≥ d2 ;
– for all k ∈ K, dk4 ≤ d1 ;
– for all h ∈ H, dh3 6≥ d1 ;
– for all k ∈ K, dk4 6≤ d2.

The way of thinking the inclusion is the following. (From now on it will be
easier to think of D as a subset of the powerset of its atoms ; therefore we will
sometimes say “contained” rather than “smaller”, and so on.) Consider a d in
ch+(d1) ∩ ch–(d2). If d is not below any of the dh3 then it must be above one of
the dk4 . Suppose there is an element x of d1 which is in no dh3 (more precisely,
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suppose that there is an atom d such that d ≤ d1 and for all h, d 6≤ dh3 ; to
stress that it is an atom denote d by {x}). Then d2 ∨ {x} is not contained in
any of the dh3 , and it must contain one of the dk4 . This implies that for such dk4 ,
dk4 \ d2 ≤ {x} 7. Consider now two elements x1, x2 in d1 such that if x1 belongs
to dh3 then x2 does not belong to dh3 . Then d2 ∨ {x1, x2} is not contained in
any of the dh3 , and it must contain one of the dk4 . This implies that for such dk4 ,
dk4 \ d2 ≤ {x1, x2}.

More generally : for every h ∈ H choose an element xh ∈ d1 \ dh3 . Clearly
we have that d2 ∨ {xh | h ∈ H} is not contained in any of the dh3 . Reasoning as
above we then have that there is a dk4 such that dk4 \ d2 ≤ {xh | h ∈ H}.

This proves the necessity of condition (CA) : for every choice of xh ∈ d1 \dh3
there must be a dk4 such that dk4 \ d2 ≤ {xh | h ∈ H}.

We argued that the condition (CA) is necessary. It is also sufficient : if the
condition holds, every set d included in d1, containing d2, and which is not
contained in any of the dh3 , must contain a set of the form d2 ∨ {xh | h ∈ H} :
just pick one witness of noncontainment for every dh3 . Thus d contains one of
the dk4 .

We can strengthen the result as stated in Proposition C.3.3. Consider the
case where for some h the sets d1 \ dh3 are infinite. Let Hi ⊆ H be the set of
such h. Pick h̄ ∈ Hi, and let H̄ = H \ {h̄}. Since there are only finitely many
dk4 , the condition is satisfied if and only if for at least two (in fact infinitely
many) different choices x′

h̄
and x′′

h̄
we have that the same dk4 satisfies dk4 \ d2 ≤

{xh | h ∈ H̄}∨∨∨{x′h̄}, and dk4 \d2 ≤ {xh | h ∈ H̄}∨∨∨{x′′h̄}. Therefore we must have

dk4 \ d2 ⊆ {xh | h ∈ H̄}. Repeating this for every index in Hi, we conclude that
dk4 \ d2 ≤ {xh | h ∈ H \Hi}. Noting that H \Hi = Hf , we conclude the proof
that the condition (CA) is equivalent to condition (CA∗) : for every choice of
xh ∈ d1 \ dh3 , h ∈ Hf , there must be a dk4 such that dk4 \ d2 ≤ {xh | h ∈ Hf}.
(We could improve further by considering only those d1 \ dh3 whose cardinality
is not greater than the number of dk4 - we do not need this for our purposes.)

C.11.2 The existence of a model

We shall construct here a model for the simplest of our type systems. This
amounts to build a pre-model and then show that it satisfies Definition C.2.3.
To understand the definitions and the proofs in this section, it is advisable to
read first Sections C.3 and C.11.1.

Types are stratified according to the height of the nesting of the channel
constructor. We define the height function ht as follows :

– hb = h0 = h1 = 0 ;
– hch(t) = hch+(t) = hch–(t) = ht+ 1 ;
– ht1 ∨∨∨ t2 = ht1 ∧∧∧ t2 = max(ht1, ht2) ;
– h¬¬¬t = ht.

Then we set Tn
def
= {t | ht ≤ n} .

7. It is in fact dk4 \ d2 = {x} , since dk4 6≤ d2.
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Our pre-model for the types is built in steps. We start by providing a model
for types of height 0, that is types in T0. Note that we must define the semantics
only for type constructors, because the interpretation of the combinators is
determined by the definition of pre-model. The only constructors of height 0
are the basic types, for these we assume existence of a universe of interpretation
B. We also assume that every basic type b has an interpretation BJbK ⊆ B.
Finally, we need a small technicality : we add to our types of height 0 the types

k︷ ︸︸ ︷
ch(. . . (ch(0))), that we denote here as k. Although at higher levels these types
are just syntactic sugar, we need them at level 0 to witness the existence of
infinitely many channel types. The pre-model at level 0 is exactly formed by
the basic types plus the positive natural numbers to model the k. Therefore
D0 = B + N+ with [[b]]0 = BJbK and [[k]]0 = {k} . The boolean combinators are
interpreted by using the corresponding set-theoretic combinators, according to
Definition C.2.1.

Using this pre-model we define a subtyping relation over T0 as t ≤0 t
′ if and

only if [[t]]0 ⊆ [[t′]]0. We shall denote by =0 the corresponding equivalence.
Now suppose we have a pre-model Dn for Tn, with corresponding preorder

≤n and equivalence =n. We call T̃n the set of equivalence classes Tn/=n
. Then

Dn+1 is defined as follows :

Dn+1
def
= B+ T̃n .

with the following interpretation of channel types :
– [[ch+(t)]]n+1 = {[t′]=n | t′ ≤n t} ;
– [[ch–(t)]]n+1 = {[t′]=n | t ≤n t′}.

In principle each of these pre-models defines a different preorder between types.
However, all such preorders coincide in the following sense :

Proposition C.11.1. Let t, t′ ∈ Tn and k, h ≥ n, then t ≤k t′ if and only if
t ≤h t′.

Proof: To carry out the proof we use an interesting fact : every singleton
of our pre-models is denoted by some type. For elements of B this was an
assumption. For elements of T̃n, observe that the singleton {[t]=n} is denoted
by the type ch(t).

Suppose we have a model Dn for Tn, with corresponding preorder ≤n and
equivalence =n. We call T̃n the set of equivalence classes Tn/ =n. Then we set

Dn+1
def
= B+ T̃n, with the semantics of the channel types being

[[ch+(t)]]n+1 = {[t′]=n | t′ ≤n t} ;

[[ch–(t)]]n+1 = {[t′]=n | t ≤n t′} ;

[[k+ 1l]]n+1 = {[k]=n} .
Note that now the semantics of 1l = ch(0) is the expected one, and in general
the semantics of k + 1l coincides with the semantics of ch(k). Therefore in the
semantics at levels greater than 0 we can appropriately desugar the ks, and
ignore their existence.



166 ANNEXE C. SEMANTIC SUBTYPING FOR THE π-CALCULUS

When is a type t empty ? Given a type t we put it in disjunctive normal form.
Clearly t is empty if and only if all summands are empty. If a summand contains
literals of both basic types and channel types it is easy to decide emptiness :
if it contains two positive literals of different kinds, then it is empty. If the
positive literals are all of one kind, it is empty if and only if it is empty when
removing the negative literals of the other kind. Finally the intersection of only
negative literals is empty if the two kinds separately cover their own universe of
interpretation. (That is if the union of all negated basic types is B and similarly
for the channel types.)

Therefore it is enough to check emptiness for intersections of literals of one
kind only. For base types : ∧∧∧

b∈P

b∧∧∧
∧∧∧
b∈N

¬¬¬b .

For channel types :∧∧∧
i∈I

ch+(ti1)∧∧∧
∧∧∧
j∈J

ch–(tj2)∧∧∧
∧∧∧
h∈H

¬¬¬ch+(th3 )∧∧∧
∧∧∧
k∈K

¬¬¬ch–(tk4) .

Using equations (C.5) and (C.6) of Section E.3.2 we can simplify the last ex-
pression to

ch+(t1)∧∧∧ ch–(t2)∧∧∧
∧∧∧
h∈H

¬¬¬ch+(th3 )∧∧∧
∧∧∧
k∈K

¬¬¬ch–(tk4) .

To prove Proposition C.11.1, we now prove by induction the following state-
ment : let t ∈ Tn, then

– t =n 0 if and only if t =n+1 0 ;
– |t|n = l if and only if |t|n+1 = l ;

where |t| denotes the cardinality of t.
We start by the case n = 0. The “algorithm” for checking emptiness works

in the same way for basic types. The only difference occurs for the types k. The
condition to check at level 0 is the following

N ∩
⋂
k∈P

[[k]]0 ⊆
⋃
k∈N

[[k]]0

which can be true only if there are two different k ∈ P or if the only k in P is
also in N . It is important here that N is infinite, so no finite union of singletons
can cover it. Therefore the condition above is equivalent to

T̃0 ∩
⋂
k∈P

[[k]]1 ⊆
⋃
k∈N

[[k]]1

and therefore t =0 0 if and only if t =1 0. As for the cardinality : the proof is
more general and it is the same as the inductive step case that we show next.

For the inductive step suppose that we know that for every type t ∈ Tn we
have

– t =n 0 if and only if t =n+1 0 ;
– |t|n = l if and only if |t|n+1 = l.

Now take a type t ∈ Tn+1, we want to prove that
– t =n+1 0 if and only if t =n+2 0 ;
– |t|n+1 = l if and only if |t|n+2 = l.

Again the “algorithm” for checking the emptiness of basic types does not change.
In the case of channel types we have to check that
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[[ch+(t1)]]n+1 ∩ [[ch–(t2)]]n+1 ⊆
⋃
h∈H

[[ch+(th3 )]]n+1 ∪
⋃
k∈K

[[ch–(tk4)]]n+1

if and only if

[[ch+(t1)]]n+2 ∩ [[ch–(t2)]]n+2 ⊆
⋃
h∈H

[[ch+(th3 )]]n+2 ∪
⋃
k∈K

[[ch–(tk4)]]n+2 .

As argued in the previous section, the first condition is equivalent to :
LE. t2 6≤n t1 or

R1. ∃h ∈ H such that t1 ≤n th3 or

R2. ∃k ∈ K such that tk4 ≤n t2 or

CA∗ the involved condition involving ≤n and atoms.
The induction hypothesis gives us easily the equivalence of the first three con-
ditions at levels n and n+ 1. For the condition (CA∗) note first that

– t2 ≤n t1
– for all h ∈ H, th3 ≥n t2
– for all k ∈ K, tk4 ≤n t1
– for all h ∈ H, th3 6≥n t1
– for all k ∈ K, tk4 6≤n t2

are equivalent to

– t2 ≤n+1 t1
– for all h ∈ H, th3 ≥n+1 t2
– for all k ∈ K, tk4 ≤n+1 t1
– for all h ∈ H, th3 6≥n+1 t1
– for all k ∈ K, tk4 6≤n+1 t2

because of the induction hypothesis.
We have to check that the condition (CA∗) :

Let Hf,n be the set of h ∈ H such that |t1\\\th3 |n finite. For every
ah ∈ Atomn, ah ≤n t1\\\th3 , h ∈ Hf,n, there must be a tk4 such that
tk4\\\t2 ≤n

∨
h∈Hf,n ah.

is equivalent to the same condition where we replace all the n with n+ 1.
Recall that since all singletons are denoted, atoms are exactly the singleton

types. We need a lemma to prove that the condition (CA∗) at level n works on
exactly the same atoms as at level n+ 1 :

Lemma C.11.2. Suppose that for every t ∈ Tn
– t =n 0 if and only if t =n+1 0 ;
– |t|n = l if and only if |t|n+1 = l.

Pick t ∈ Tn and an atom a ∈ Tn+1. If a ≤n+1 t and |t|n is finite, then there
exists an atom a′ ∈ Tn with a =n+1 a

′.

Proof: suppose |t|n = l with l finite. Since every singleton is denoted, t =n

a1∨∨∨ . . .∨∨∨al for disjoint n-atoms ai. Then the same equality is true at level n+1.
Since a ≤n+1 t, then a ≤n+1 a1 ∨∨∨ . . .∨∨∨ al from which we derive that a =n+1 ai
for some i. Thus a′ = ai satisfies the required condition. 2

We are now going to check the equivalence of the conditions.
Suppose it is true for the n + 1 case. Then pick a choice of n-atoms ah,

h ∈ Hf,n. By the induction hypothesis the ah are n + 1-atoms, too. Also, by
the induction hypothesis |t1\\\th3 |n+1 is finite if and only if |t1\\\th3 |n is finite. Thus
Hf,n = Hf,n+1. Since (CA∗) is true at level n+ 1, then there must be a tk4 such
that tk4\\\t2 ≤n+1

∨
h∈Hf,n+1

ah. Which implies tk4\\\t2 ≤n
∨
h∈Hf,n ah.

Conversely suppose it is true for n. Pick a choice of n + 1-atoms ah, h ∈
Hf,n+1. If one of these ah is not equivalent to an n-atom, then by Lemma C.11.2,
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|t1\\\th3 |n+1 would be infinite. Thus we can assume that all ah are n-atoms. As
above we have Hf,n = Hf,n+1, and since (CA∗) is true at level n, there must be
a tk4 such that tk4\\\t2 ≤n

∨
h∈Hf,n ah. Which implies tk4\\\t2 ≤n+1

∨
h∈Hf,n+1

ah.
We have now to prove the condition on the cardinality. We start by observing

that all the atoms we have described above (when we proved that every singleton
is denoted) are atoms independently of the level. They are atoms because of their
shape. We now prove the following

– |t|n+1 = l implies |t|n+2 = l ;
– |t|n+1 ≥ l implies |t|n+2 ≥ l.

from which we can conclude |t|n+1 = l if and only if |t|n+2 = l.
Suppose |t|n+1 = l. Then t =n+1 a1 ∨∨∨ . . .∨∨∨ al for some disjoint atoms. Thus

t =n+2 a1∨∨∨ . . .∨∨∨ al, and since the ai are still atoms (and they are still disjoint),
|t|n+2 = l.

Suppose |t|n+1 ≥ l, then t ≥n+1 a1 ∨∨∨ . . .∨∨∨ al for some disjoint atoms. Thus
t ≥n+2 a1∨∨∨ . . .∨∨∨ al, and since the ai are still atoms (and they are still disjoint),
|t|n+2 ≥ l.
2

We finally observe that adding the k to our types is not restrictive, as k =k

chk(0).
Hinging on Proposition C.11.1, we define preorder between types as follows.

Definition C.11.3 (Order). Let t, t′ ∈ Tn, then t ≤∞ t′ if and only if t ≤n t′.

Due to Proposition C.11.1, this relation is well defined and induces an equiv-
alence =∞ on the set of types T . Let T̃ be T/=∞, we are finally able to produce
a unique pre-model D defined as :

D = B+ T̃ .

Where

– [[ch+(t)]] = {[t′]=∞ | t′ ≤∞ t} ;
– [[ch–(t)]] = {[t′]=∞ | t ≤∞ t′}.

This pre-model defines a new preorder between types that we denote by ≤.
However, the following proposition proves that ≤ is not new but it is the limit
of the previous preorders, i.e. ≤∞.

Proposition C.11.4. Let t, t′∈T , then t ≤ t′ if and only if t ≤∞ t′.

Proof: We prove it by induction on the height of the types. That is we prove
by induction on n that if t ∈ Tn, then

– t = 0 if and only if t =∞ 0 ;
– |t| = l if and only if |t|∞ = l.

Note that to check emptiness of a type in Tn+1 we only invoke types in Tn.
The condition at level 0 only requires that the types k be interpreted into

distinct singletons contained in T̃ , which is the case.
The second statement, and the whole inductive step are proven as in the

proof of Proposition C.11.1. 2
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It is now easy to show the following.

Theorem C.11.5. The pre-model (D, [[ ]]) is a model.

Proof: Consider the extensional interpretation E( ) of types as in Definition
C.2.2. We have to check that [[t]] = ∅⇐⇒ E(t) = ∅. Note that in fact the range
of E( ) is P(B+[[T ]]). By proposition C.11.4, we have that 〈[[T ]],⊆〉 is isomorphic

to 〈T̃ ,≤〉. Up to this isomorphism, E( ) coincides with [[ ]]. 2

C.11.3 Proof of decidability of finiteness

Given our model of types, we show that we can
1. decide whether a type is finite

2. if it is the case, list all its atoms
To prove our claim we proceed by induction on the height of the types. We

strengthen the statement by requiring that all atoms of a finite type t have the
same height, or lower, of t. We assume that at height 0, this is the case. It is a
reasonable assumption : for example it is the case if we have for base types the
type of all integers plus all constant types. Consider a type t of height n+1 and
assume that for lower heights we can decide whether a type is finite and, if it is
the case, list all its atoms. By Theorem C.3.2, this guarantees that we can also
decide emptiness of all types of height n+ 1. We ask ourselves which atoms can
be proved to belong to t. If we put t in normal form, we obtain the disjunction
of terms of the form

r = ch+(t1)∧∧∧ ch–(t2)∧∧∧
∧∧∧
i

¬¬¬ch+(ti3)∧∧∧
∧∧∧
j

¬¬¬ch–(tj4) .

(We exclude base types, because they have been considered at height 0, and
“mixed types”, which can be reduced to one of the “pure” cases.) Only atoms
of the form ch(s), can be contained in non-base types. For how many s we can
have that ch(s) ≤ t ? A union is finite if and only if all its summands are, thus
t is finite if and only if all the r’s are finite. When is r finite ? First of all it is
finite when it is empty, which we can test it by induction hypothesis.

Otherwise if r is not empty, then r is finite if and only if ch+(t1)∧∧∧ ch–(t2) is
finite, which happens exactly when t2 ≤ t1 and t1 ∧∧∧ ¬¬¬t2 is finite. For the “if”
part, note that ch(s) belongs to ch+(t1) ∧∧∧ ch–(t2), if and only if s = t2 ∨∨∨ s′ for
some s′ ≤ t1∧∧∧¬¬¬t2. Since t1∧∧∧¬¬¬t2 is finite and of smaller height, then by induction
hypothesis we can list all its atoms, thus all the corresponding s′’s, thus all the
corresponding ch(t2 ∨∨∨ s′) that are all the possible candidates of atoms of r. By
induction hypothesis we also have that all the s′ have at most height n.

For the “only if” part it suffices to prove that if ch+(t1)∧∧∧ ch–(t2) is infinite,
then the whole of r is infinite. Assume that for no i, t1 ≤ ti3 and for no j,
tj4 ≤ t2 (otherwise r is empty). We have to find infinitely many s such that

t2 ≤ s ≤ t1, s 6≤ ti3 for all i and tj4 6≤ s for all j. Pick atoms ai3 ≤ t1 ∧∧∧ ¬¬¬ti3
and aj4 ≤ tj4 ∧∧∧¬¬¬t2. Note that no ai3 can coincide with any aj4, because they are
taken from disjoint sets. Then for any type s′ such that t2 ≤ s′ ≤ t1, the type
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s := (s′ ∨∨∨
∨∨∨
i a
i
3) ∧∧∧ ¬¬¬

∨∨∨
j a

j
4 belongs to r. It is possible that for two different s′

the corresponding s coincide. However such “equivalence classes” of s′ are finite.
Since there are infinitely many s′, there are infinitely many s, so r is infinite.

In summary, for every r that forms t we check whether t2 ≤ t1 and t1 ∧∧∧¬¬¬t2
is finite, and at the end we find either that t is infinite (if one of the r is) or that
it is finite. In the latter case we have a finite list of candidates to be the atoms
of t (namely all ch(s) for s included in the the various t1 ∧∧∧¬¬¬t2) and to list all
the atoms of t we just to check for each candidate its inclusion in t. Which we
can do, since they are at most of height n+ 1.

C.11.4 Proof of Theorem C.4.5

We first show that (V, [[ ]]V) is a pre-model. Inspecting the typing rules, it is
easy to show that for every value v and every types t1, t2

1. Γ ` v : 1 ;

2. Γ ` v : t1 if and only if Γ 6` v : ¬¬¬t1 ;

3. Γ ` v : t1 ∧∧∧ t2 if and only if Γ ` v : t1 and Γ ` v : t2.
Point (1) is a simple application of the subsumption rule. For (2) suppose that
there exists t such that v : t and v : ¬¬¬t. The only rule to deduce a negative type
for a value is the subsumption rule. Therefore there must be a type s, such that
v : s, s ≤ t and s ≤ ¬¬¬t. But then s = 0, impossible since the empty type is
not inhabited. Suppose instead there exists t such that 6` v : t and 6` v : ¬¬¬t ; if
v = cs then ch(s) is not smaller than t nor than ¬¬¬t, impossible since ch(s) is
atomic. The same can be deduced from the atomicity of bn for v = n. Therefore
(V, [[ ]]V) is a pre-model.

By the subsumption rule we have that if v : s and s ≤ t then v : t. Therefore
s ≤ t ⇒ [[s]]V ⊆ [[t]]V . For the other direction, if s 6≤ t, there is an atom a in
s\\\t. For every atom a there is a value v such that Γ ` v : a (this is clearly true
for channels, while it was an assumption for basic types). By subsumption
Γ ` v : s and Γ ` v : ¬¬¬t, which implies Γ 6` v : t. Thus [[s]]V 6⊆ [[t]]V .

To prove that it is a model we have to check that [[t]] = ∅ ⇐⇒ E(t) =∅.
Again the range of E( ) is P(B+ [[T ]]V). By the observation above, we have that

〈[[T ]]V ,⊆〉 is isomorphic to 〈T̃ ,≤〉. Up to this isomorphism, E( ) coincides with
[[ ]]V . 2

C.11.5 Proof of the subject reduction

As usual, the crucial step is the substitution lemma C.4.6. We need to prove

– If Γ, t/p `M ′ : t′ and Γ ` v : t, then Γ `M ′[v/p] : t′.
– If Γ, t/p ` P and Γ ` v : t then Γ ` P [v/p].

This is done by induction on the typing rules, by making use of Theo-
rem C.4.4. Then consider a well-typed premise of the reduction rule : Γ `
ctv ‖

∑
i∈I c

t(pi).Pi. This means that Γ ` v : t and Γ , t/pi ` Pi. Since
t ≤

∨∨∨
i∈I***pi+++, there must be a j such that ` v : ***pj+++. For all such j, the sub-
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stitution v/pj is defined. By the substitution lemma, for all such j we have
Γ ` Pj [v/pj ].

C.11.6 Proof of Lemma C.4.9

Take a nonempty type s ≤ ch+(1). This means that its disjunctive normal
form contains only channel types. Consider first the case where s is composed
of only one clause s = ch+(t1)∧∧∧ ch–(t2)∧∧∧

∧∧∧
h¬¬¬ch+(th3 )∧∧∧

∧∧∧
k¬¬¬ch–(tk4). Since s is

not empty we have
• t2 ≤ t1 and

• ∀h ∈ H, t1 6≤ th3 and

• ∀k ∈ K, tk4 6≤ t2 and

• there exists a choice of atoms ah ≤ t1\\\th3 for h ∈ Hf such that for no
k ∈ K, tk4 ≤ t2 ∨∨∨

∨∨∨
h∈Hf ah.

Consider now some type t and the inequation s ≤ ch+(t). This is satisfied if an
only if s ∧∧∧ ¬¬¬ch+(t) = 0. We can think of ch+(t) as an extra ch+(th3 ) added to
the normal form of s. In order to have that s∧∧∧¬¬¬ch+(t) is empty, we only have
two possibilities. The first is that t1 ≤ t. Therefore the first candidate for least
t is precisely t1. But can it be smaller than this ?

First, note that we must have that t ≥ t2, as otherwise we cannot have
s ≤ ch+(t). Therefore to obtain a smaller t we must remove some atoms in t1\t2.
Which ones ? Consider all possible choices of atoms ah ≤ t1\\\th3 for h ∈ Hf such
that for no k ∈ K, tk4 ≤ t2 ∨∨∨

∨∨∨
h∈Hf ah. As noticed, since s is not empty, there

must be at least one such choice.
We claim that none of those ah can be removed from t1. To show this,

consider a choice of atoms ah as above with h ∈ Hf and let a = ah̄ for some
h̄ ∈ Hf . Consider t = t1 \ a and recall we can consider t as one extra th3 in the
normal form of s. Now we must check condition (CA∗) for this new clause. Let
H• = H∪{•}, with t•3 = t. Note that t1\t = a is finite, and thus H•f = Hf ∪{•}.
By putting a = a•, we can see the above choice of atoms as a choice of atoms
ah, with h ∈ H•f . Indeed the atom a plays the double role of ah̄ and a•.

In order for (CA∗) to be satisfied, we should be able to find a tk4 such that
tk4 ≤ t2 ∨∨∨

∨∨∨
h∈H•f

ah = t2 ∨∨∨
∨∨∨
h∈Hf ah, which it is not possible by hypothesis.

Then, such atoms cannot be removed from t1.
Now, consider an atom a that is not of this form. Reasoning in similar way

as above we can show that we can take a out of t1 if and only if for all possible
choices of atoms ah ≤ Hf , such that for no k ∈ K, tk4 ≤ t2 ∨∨∨

∨∨∨
h∈Hf ah, there is

k̄ such that tk̄4 \ (t2 ∨∨∨
∨∨∨
h∈Hf ah) = a.

How many such atoms there are ? Only finitely many, as the universal quan-
tification above is finite. Therefore we can remove these atoms one by one. The
corresponding t is such that s ≤ ch+(t) and moreover we cannot remove any
other atom. Finally all such atoms can be computed.

The above proves the statement for types s composed only of one clause.
Consider a type s whose disjunctive normal form is s = s1 ∨∨∨ . . . ∨∨∨ sn, and
suppose for each si the type ti is the least such that si ≤ ch+(ti). Then the type
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t = t1 ∨∨∨ . . . ∨∨∨ tn is the least such that s ≤ ch+(t). Clearly it has the property.
To show it is the least such, remove one atom a from it and suppose it still has
the property. Therefore no si contains a. However a belongs to one of the ti.
Therefore, by removing a from such ti we would obtain a smaller t′i such that
si ≤ ch+(t′i), contradiction.

Acknowledgements. This work was conceived in the lingerie of the École
Normale Supérieure, on the white board near the Lavazza coffee machine. I’m
not sure the place exists any longer.



Annexe D

Defining fairness for
concurrent reactive systems

D.1 Introduction

A mathematical model of a reactive and concurrent system usually comes
with one or more fairness assumptions. A fairness assumption usually stipulates
that if a particular behaviour of the system is sufficiently often possible during
a given run of the system, then that behaviour occurs sufficiently often in that
run. Depending on what exactly we mean by “behaviour”, “sufficiently often”
and “possible”, many different fairness notions arise.

For example, a run is said to be weakly fair with respect to an action A
when the following implication is true : If A is eventually always enabled during
the run, then it must be taken infinitely many times. Consider a process with
two parallel threads. In principle, a scheduler could only give CPU time to one
of the two threads. Such a scheduler is clearly not fair, and indeed it violates
weak fairness with respect to the first action of the other thread.

In contrast to other important classes of temporal properties, such as safety
and liveness [AS85, Lam77], no general characterisation of fairness has so far
been proposed, i.e., there is no agreed definition of what the class of all fairness
properties is. Apt, Francez and Katz [AFK88] gave some criteria that must
be met by fairness. Following [Lam00], we think that their most important
criterion is that a fairness assumption must be machine closed 1 with respect to
the safety property defined by the underlying transition system. This, basically,
means that fairness is imposed in such a way to the transition system that the
system “cannot paint itself into a corner” [AFK88] ; i. e. , whatever the system
does in finite time, it is possible to continue in such a way that the fairness
assumption is met. (To recall the precise definition, see Section D.2.2.) However,
machine closure does not exclude some properties that, we think, should not be

1. Machine closure was originally called feasibility [AFK88]. The term “machine closed”
was introduced in [AL91].

173
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considered to be fairness properties. For example, given a system M and an
action A of the system, consider the two properties :

FM : Action A is always eventually taken if it is always eventually enabled.
EM : Action A is eventually henceforth never taken.

Whereas FM (called strong fairness w.r.t. A in M) is a typical fairness assump-
tion that enforces an action to be taken sufficiently often, EM rather prevents a
particular choice, viz. action A, from being taken sufficiently often. EM is there-
fore not a fairness property from our point of view. However, both properties
are machine closed with respect to any safety property 2.

Another issue is that fairness should be closed under intersection, i.e., the
intersection of finitely many, or better, countably many fairness assumptions
should be a fairness assumption. This is because fairness assumptions are usu-
ally imposed stepwise and componentwise, e.g., with respect to a particular
process, state, or transition. The fairness assumption for the system is then the
intersection of all fairness assumptions for its components.

Thus, for a given system M or, more generally, for a given safety property
S, we want to define when a temporal property F should be called a fairness
property in S such that

1. When F is a fairness property in S, then F is machine closed with respect
to S.

2. Fairness properties are closed under (countable) intersection.

3. Popular fairness notions from the literature such as strong fairness (see
Section D.3.3) should correspond to fairness properties in our sense.

Machine closure is not sufficient to guarantee closure under intersection : The
intersection of FM and EM is the empty set in some systems M , and the empty
set is not machine closed w.r.t. any nonempty safety property. Kwiatkowska [Kwi91]
proposes a definition of fairness 3 that is closed under countable intersection.
However, important popular fairness notions, such as strong fairness, are not
covered by her definition, as we will show in Section D.8.

In this work, we propose a definition of when a linear-time temporal property
is a fairness property with respect to a given system, such that the above re-
quirements are met. We give three characterisations for the family of all fairness
properties : a language-theoretic, a game-theoretic and a topological charac-
terisation. The language-theoretic characterisation is a general formalisation of
the standard intution : if something is sufficiently often possible, it will happen
sufficiently often. In the game-theoretic characterisation, a fairness property is
a property that can be guaranteed by a scheduler that gets control over the
system infinitely often for a finite amount of time. Finally, it turns out that the
fairness properties are the “large” sets from a topological point of view, i.e.,
they are the co-meager sets in the natural topology of runs of a given system.

2. EM also meets the other criteria proposed in [AFK88].
3. [Kwi91] works on the domain of Mazurkiewicz traces. She defines a fairness property for

a system to be a Gδ set of maximal traces that is machine closed w.r.t. the safety property of
the system.
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The topological insight provides a link to probability theory, where a set is
“large” when it has measure 1. While these two notions of largeness are very
similar, they do not coincide in general. However, we show that they coincide
for ω-regular properties and bounded Borel measures. That is, an ω-regular
temporal property of a finite-state system has measure 1 under a bounded Borel
measure if and only if it is a fairness property with respect to that system.

The characterisation of fairness directly leads to a generic relaxation of when
a system is correct with respect to a linear-time specification. This notion of
correctness, which we call fair correctness, has again a language-theoretic, a
topological and a game-theoretic interpretation. We motivate this notion of
correctness and discuss how a system can be shown to be fairly correct.

Structure of the chapter. This chapter is essentially a copy of the paper
[VV12]. Section D.2 defines basic preliminary notions that are used throughout
the chapter. In Section D.3, we review the most popular fairness notions from
the literature. That leads us to derive a first general definition of fairness in
Section D.4 using language-theoretic terms. In Section D.5, we provide the first
equivalent characterisation of fairness in terms of a two-player game, called the
Banach-Mazur game. The game-theoretic characterisation allows us to prove
some important properties of the class of fairness properties in Section D.6. In
Section D.7, we identify the relationship of fairness with the Safety-Progress
classification of properties proposed by Manna and Pnueli [MP90], which re-
fines our intuition about which temporal properties are fairness properties. In
Section D.8, we give another equivalent characterisation of fairness, now in topo-
logical terms. It relates to the topological characterisation of safety and liveness
that was proposed by Alpern and Schneider [AS85]. The insight that fairness
properties are the properties that are “large” from a topological point of view
then leads to a link to probabilistic systems and properties that have measure
one. This link is explored in Section D.9. Finally, Section D.10 introduces fair
correctness and discusses proof and model checking techniques for its verifica-
tion.

D.2 Basic notations and definitions

In this chapter, we collect basic preliminary definitions, which include se-
quential runs, temporal properties and transition systems.

D.2.1 Systems and runs

Let Σ be a nonempty set, whose elements will be thought of as states. Σ∗

and Σω denote the set of finite and infinite sequences over Σ, respectively. The
set of all sequences Σ∗ ∪ Σω is denoted as Σ∞. We use the symbols α, β for
denoting finite sequences, and x, y for arbitrary sequences. The empty sequence
is denoted by ε. The length of a sequence x is denoted by |x| (= ω if x is
infinite). The set of all sequences of length k is denoted by Σk. Concatenation
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of sequences is denoted by juxtaposition ; v denotes the usual prefix order on
sequences. As usual, we write x < y when x v y and x 6= y.

Two sequences x, y are compatible if x v y or y v x. Given a set X ⊆ Σ∞,
we denote by max(X) the set of maximal elements of X under the prefix order.
By x↑ = {y | x v y} and x↓ = {y | y v x} we denote the sets of all extensions
and prefixes of a sequence x, respectively. The least upper bound of a sequence
(αi)i=0,1,... of finite sequences, where αi v αi+1, is denoted by supi αi. For a
sequence x = s0, . . . , sn, . . . and an index i where 0 ≤ i < |x| of x, xi denotes
the finite prefix s0, . . . , si−1 of x and x(i) denotes the state si. If x 6= ε and
0 ≤ i < |x|, then i is called a position of x.

An action or transition relation over Σ is a nonempty relation A ⊆ Σ × Σ.
Action A is enabled in a state s if there exists an s′ such that (s, s′) ∈ A ; A is
taken in a sequence x if there is a position i of x such that (x(i), x(i+ 1)) ∈ A.
A system is a tuple M = (Σ, R,Σ0), where R ⊆ Σ × Σ is a transition relation
over Σ and Σ0 ⊆ Σ is a set of initial states. The system is finite if Σ is finite.
A path or word of a system M is a sequence x such that (x(i − 1), x(i)) ∈ R
for each i, 0 < i < |x|. A run of a system M is a path of M such that if it is
nonempty, then s0 ∈ Σ0. The set of all runs of M is denoted by SM .

Remark: A run is thought of as an observation of global states. The empty
run stands for the observation in which the initial state has not yet been ob-
served. We could also develop the theory for sequences of alternating states and
transitions or of transitions only. Modulo some technical details, these alterna-
tives would differ very little.

Example D.2.1.

p

r sq

p

q r s

p p

srq q r s

Figure D.1 – A four-state system and the set of its runs represented as an
infinite tree

Figure D.1 shows a system M over Σ = {p, q, r, s}, where Σ0 = {p}, R =
{(p, q), (p, r), (p, s), (q, p), (s, p)}. The sequences x1 = pq, x2 = (pq)ω, and x3 =
pr are three runs of this system. We have x1 v x2 and x2, x3 ∈ max(SM ). The
infinite tree in Fig. D.1, represents SM , the set of all finite and infinite runs of
M .
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D.2.2 Temporal properties

A temporal property (property for short) is a set E ⊆ Σ∞ of sequences of
states. We say that some sequence x satisfies a property E if x ∈ E ; otherwise
we say that x violates E. We say that E is finitary if E ⊆ Σ∗ and E is infinitary
if E ⊆ Σω. Furthermore : E is upward-closed if x ∈ E and x v y implies
y ∈ E ; E is downward-closed if x ∈ E and y v x implies y ∈ E ; E is complete,
sometimes also called limit-closed, if αi ∈ E for i ∈ N with αi v αi+1 implies
supi αi ∈ E.

A property S is a safety property if for any sequence x violating S, there
exists a finite prefix α of x that violates S and each extension of a sequence
violating S also violates S, i.e.,

∀x 6∈ S : ∃α v x : α↑ ∩ S = ∅.

Equivalently, a property is a safety property precisely when it is downward-
closed and complete. We can think of a safety property S as a tree, because
(S ∩ Σ∗,<1) is a tree with root ε, where α <1 β if there exists a state s such
that αs = β. S corresponds to the set of all (finite and infinite) paths of the
tree that start in the root (cf. also Fig. D.1). The set SM is a safety property for
each system M . Therefore, in the following, we will think of a safety property
as a generalised system. In particular, we call an element of a safety property
also a run. The set of all sequences Σ∞ is also a safety property and can be seen
as the set of runs of a “universal” system.

Consider a safety property S and a finite sequence α ∈ S. A property E is
live in α with respect to S if there exists a sequence x such that α v x ∈ S ∩E.
Intuitively, E is live in a finite run of a system if the system has still a chance
to satisfy E in the future. A property E is a liveness property in S if E is live
in every α ∈ S ∩Σ∗. In this situation, we also say that (S,E) is machine-closed
[AL91, AFK88]. If S = Σ∞, then we simply say that E is a liveness property.
Hence E is a liveness property if and only if

∀α ∈ Σ∗ : α↑ ∩ E 6= ∅.

A property is ω-regular if it is a property accepted by some Büchi automaton,
or, equivalently a property definable in Monadic Second Order logic (see, e.g.,
[Tho90]).

Example D.2.2. Σ≤k = {α ∈ Σ∗ | |α| ≤ k} is a safety property for each k ∈ N ;
Σ∗ and Σω are examples of liveness properties. Whereas Σ∗ is a liveness property
with respect to each safety property S, Σω is a liveness property with respect
to S only if max(S) ⊆ Σω ; max(S) is always a liveness property with respect
to S. Σ∞ is the only property that is a safety as well as a liveness property.

Remark: A temporal property is often (e.g. [AS85, MP90]) defined to be a
subset of Σω. It is then argued that finite runs can be mimicked by infinite ones
by repeating the last state infinitely often. This often leads to a simplification of
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the presentation. The difference between the two approaches is not really essen-
tial. We will indicate when notable differences between the two approaches arise.
Including finite runs, as we do here, gives rise to a more natural generalisation
to other domains such as non-sequential runs.

D.2.3 Linear time temporal logic

Some temporal properties can be expressed by formulas of a linear-time
temporal logic such as LTL (see [MP92, Eme90]).

Let Σ be a set of states, AP a countable set of atomic propositions, and
v : AP → PΣ a mapping that assigns each atomic proposition the set of states
at which it is satisfied. We assume here that v is given implicitly and hence we
will also refer to an atomic proposition as a state property. In particular, we will
use in many examples, a state s as an atomic proposition that is satisfied at s
and only at s.

The formulae φ of the logic LTL are defined as follows :

φ, ψ :=

| Φ where Φ is a state property

| >,¬φ, φ ∧ ψ
| φ, φU ψ

The temporal operators are pronounced as follows : φ as “next time” φ and
φU ψ as φ “until” ψ.

Satisfaction is defined as follows (cf. [Eme90, CES86, KP95]). Let x be a
sequence, and i a position of x. We define :

1. x, i |= Φ if x(i) ∈ v(Φ),

2. x, i |= > always ; x, i |= ¬p if x, i 6|= p ; x, i |= p∧ q if x, i |= p and x, i |= q,

3. x, i |= φ if i+ 1 is a position of x and x, i+ 1 |= φ,

4. x, i |= φUψ if there exists a position j ≥ i of x such that x, j |= ψ and for
each k, we have i ≤ k < j ⇒ x, k |= φ.

Then for a system M , we say that φ is satisfied in M , denoted M |= φ, if for all
x ∈ SM we have x, 0 |= φ. Furthermore, we define sat(φ) = {x ∈ Σ∞ | x, 0 |= φ}.
A temporal property E is said to be LTL-expressible if there exists an LTL
formula φ such that E = sat(φ). It is well known that all LTL-expressible
properties are ω-regular [Eme90, Tho90].

Additional boolean operators can be defined as usual. Additional temporal
operators are defined as abbreviations as follows.

φ = >U φ (“eventually” φ),
φ = ¬ ¬φ (“always” φ).

RLTL (restricted LTL) refers to the subset of those LTL formulas that do
not contain the operators and U, but may contain and .

Example D.2.3. With respect to the system M depicted in Fig. D.1, ( q ⇒
p) denotes a safety property that is satisfied in M , whereas (p⇒ q) denotes
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a safety property that is not satisfied in M ; p is a liveness property that is
satisfied in M , whereas q is a liveness property that is not satisfied in M ;
q is live in α = ps, but not in pr. r is a liveness property in SM , i.e.,

machine-closed w.r.t. SM , whereas p is not, because it is not live in pr.

D.3 Survey of fairness notions

The distinction of safety and liveness properties in the specification and veri-
fication of reactive systems is also reflected in the operational model of a reactive
system : Some sort of state machine or transition system defines the set of all
possible runs of the system, which is a safety property. To guarantee something
to happen at all and to guarantee that some particular choices will eventually be
made, there is an additional liveness property. That liveness property is usually
called the fairness assumption of the reactive system.

Fairness usually means that a particular choice is taken sufficiently often
provided that it is sufficiently often possible [AFK88]. Depending on the inter-
pretation of “choice”, “sufficiently often”, and “possible”, many different fairness
notions arise (cf., e.g., [LPS81, Fra86, Kwi89]).

Before we propose a general definition of fairness, we review the most popular
and some additional notable fairness assumptions that are used in the literature.
To do so, we will represent some example systems as Petri nets, assuming the
reader to be familiar with the basic firing rule of a Petri net (see, e.g., [Rei85,
Mur89]).

The fairness properties we discuss are actually parametric on the systems
at hand. For instance, for any given system and any given transition, there is a
corresponding ”strong fairness” property. Therefore rather than talking of fair-
ness properties, we more precisely present fairness notions, that can be defined
as maps from systems, transitions, and other parameters, to actual properties.

D.3.1 Sequential maximality

Consider the system in Fig. D.2, represented as a Petri net. As such, the
system specification only says what can and what cannot happen, i.e., its se-
mantics is the set of all its sequential runs. It does not say that something
must happen at all. To say that something must happen, we can use the max-
imality assumption, which says that the system does not arbitrarily stop the
computation.

A run x is maximal w.r.t. an action A if it is infinite or if its final state does
not enable A. Hence, given a system M = (Σ, R,Σ0) and a partition of R into
actions A1, . . . , An, a run of M is maximal iff it is maximal w.r.t. to each Ai,
i = 1, . . . , n. In the system considered, this means that after every a, there must
be a b and that after every b, there must be an a. This leaves only the run (ab)ω,
which is the unique maximal run of the system. Therefore, the system satisfies
the property “infinitely often a” under the maximality assumption.
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a

A B

b

Figure D.2 – A simple process

D.3.2 Weak fairness

Consider now the system in Fig. D.3 and assume maximality. Then, that
system does not satisfy “infinitely often a” because the maximal run (cd)ω does
not. Although the overall system does not stop in this run, one of its components
does. To rule out such a behaviour, we assume weak fairness, also known as
justice [LPS81].

a

A B

b

c

C D

d

Figure D.3 – Two independent processes

A run x is weakly fair w.r.t. an action A if A is taken infinitely often or A is
always eventually disabled, i.e., for each position i of x there exists a position
j ≥ i such that A is not enabled in x(j). Therefore, the maximal run (cd)ω is
not weakly fair with respect to a. The system does in fact satisfy “infinitely
often a” under weak fairness with respect to a and b. Weak fairness w.r.t. an
action A is obviously strictly stronger than maximality w.r.t. A.

D.3.3 Strong fairness

In the next system, see Fig. D.4, weak fairness is not sufficient to establish
“infinitely often a” because the run (cd)ω is weakly fair with respect to all
transitions of the system. In particular, it is weakly fair with respect to a because
a is always eventually disabled.

However, we can consider (cd)ω unfair with respect to a because a is infinitely
often enabled but never taken. This kind of unfairness is captured by the notion
of strong fairness, which is also known as compassion [LPS81].

A run is strongly fair w.r.t. an action A if A is taken infinitely often in x
or A is eventually henceforth never enabled in x, i.e., there is a position i of x
such that A is not enabled in x(j) for each position j ≥ i. Strong fairness with



D.3. SURVEY OF FAIRNESS NOTIONS 181
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Figure D.4 – Two processes sharing a resource

respect to a together with maximality with respect to b and d then establish
“infinitely often a” in the system. Strong fairness is obviously strictly stronger
than weak fairness.

D.3.4 k-fairness

In the next system, see Fig. D.5, strong fairness with respect to all transitions
fails to establish “infinitely often e”, because the run (abcd)ω violates it but is
strongly fair w.r.t. all transitions. In particular, it is strongly fair with respect
to e because e is never enabled in that run.

a

A B

b

c

C D

d

e

Figure D.5 – Two processes sharing an action

Among the fairness notions that establish “infinitely often e”, there is the
notion of strong k-fairness [Bes84] for k ≥ 1, cf. also hyperfairness as discussed
by Lamport [Lam00].

Let M = (Σ, R,Σ0) be a system. An action A is k-enabled in a state s of a
system M , k ∈ N if there exists a (finite nonempty) word w = s0, . . . , sn of M
such that s0 = s, n ≤ k and A is enabled in sn. A run x is strongly k-fair w.r.t.
action A if A is infinitely often taken in x or A is eventually henceforth never
k-enabled, i.e., there is a position i of x such that A is not k-enabled in x(j) for
each position j ≥ i.

Weak fairness for all transitions together with strong 1-fairness for e indeed
establish “infinitely often e”. Strong (k + 1)-fairness is clearly stronger than
strong k-fairness, and strong 0-fairness coincides with strong fairness.

Remark: The “unfairness” arising in the system in Fig. D.5 is also known
from the variant of the Dining Philosophers, in which a philosopher picks up
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both his forks at the same time to eat. There, a philosopher may starve because
his two neighbours “conspire” against him by eating alternately in such a way
that his two forks are never available at the same time. Note that transition e
in Fig. D.5 needs two resources (B and C) at the same time. There are more
complex fairness notions that better capture the “unfairness” in this example
[AFG93, Vol02, Vol05].

D.3.5 ∞-fairness

Consider now the infinite-state system in Fig. D.6. Suppose we are interested
here in the property “state 0 is visited infinitely often”. This property is not
established by strong k-fairness for any k because the diverging run a1a2 . . . is
strongly k-fair with respect to any transition for any k ≥ 0. However, we can
use the stronger notion of strong ∞-fairness [Bes84].

0-1 1

a0

b0

a1

b-1

...

...

...

...

Figure D.6 – A nondeterministic walk on the integer line

An action A is ∞-enabled in a state s of a system M if there exists a
word w = s0, . . . , sn of M such that s0 = s, and A is enabled in sn. A run
x is strongly ∞-fair w.r.t. action A if A is infinitely often taken in x or A is
eventually henceforth never ∞-enabled, i.e., there is a position i of x such that
A is not ∞-enabled in x(j) for each position j ≥ i.

It is easy to see that ∞-fairness w.r.t. a0 and b0 establishes the above spec-
ification.

D.3.6 Word fairness

While strong ∞-fairness with respect to transitions is very strong, there are
still some useful specifications that are not established by it. As an example,
consider the system in Fig. D.7 and the specification “the finite word aba oc-
curs infinitely often”. The run (abcd)ω does not satisfy the specification but it
is strongly ∞-fair w.r.t. every transition, because every transition is taken in-
finitely often in this run. In such a case, we can extend the above fairness notions
and define them w.r.t. finite words of transitions rather than with respect to a
single transition only.

Let M be a system. We say that a word w of M is enabled in a state s of M
if sw is also a word of M . We say that w is taken in x at position i if xiw v x.
A run x of M is strongly fair w.r.t. w if w is taken infinitely often in x or w is
eventually henceforth never enabled, i.e., there exists a position i of x such that
x(j) does not enable w for each position j ≥ i. A run x of M is word fair if it



D.4. A LANGUAGE-THEORETIC CHARACTERISATION 183

is strongly fair w.r.t. every finite word w of M ; x is state fair (transition fair)
if it is strongly fair w.r.t. every word of length 1 (length 2) of M .

Clearly, strong fairness w.r.t. the word aba establishes the specification con-
sidered above.

a

A B

b d

c

C

Figure D.7 – A recurrent free choice

D.3.7 Other notions of fairness

Another remarkable notion is equifairness [Fra86]. A run x is equifair w.r.t.
a pair (A1, A2) of actions if it is strongly fair w.r.t. both and the following holds :
If x has infinitely many positions i such that both A1 and A2 are enabled in
x(i), then x has infinitely many positions j such that A1 is taken k times in xj
implies that A2 is taken k times in xj .

Equifairness with respect to a and c in Fig. D.7 prescribes that each fair run
has infinitely many positions such that the number of previous occurrences of a
equals the number of previous occurrences of c.

Remark: In the literature, we usually find the additional intuitive assump-
tion that for each state s of M , A1 is enabled in s iff A2 is enabled in s.

Other fairness notions found in the literature include those that were devel-
oped for the verification of randomised systems, e.g., extreme fairness [Pnu83]
and α-fairness [LPZ85]. There are many more fairness notions in the liter-
ature, which we cannot all mention here. Overviews can be found elsewhere
[Fra86, Kwi89, AFK88, Jou01, Lam00].

D.4 A language-theoretic characterisation of fair-
ness

All the examples of fairness notions that we have presented in Section D.3
require that some finite behaviour must be taken “sufficiently” often, provided
that it is “possible”. The most general notion of a finite behaviour is a finitary
property Q ⊆ Σ∗, where Q “is taken” in a finite prefix α of a sequence if α ∈ Q.

The weakest form of “Q is possible” that we encountered is “there exists an
extension into Q”. The strongest form of “sufficiently often” that we encoun-
tered is “infinitely often”. We therefore obtain the following generalisation of
∞-fairness as the strongest fairness notion with respect to some finitary property
Q :
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Definition D.4.1 (∞-Fairness w.r.t. Q). Let S be a safety and Q a finitary
property. A run x is ∞-fair with respect to Q if

– there are infinitely many i ∈ N such that xi ∈ Q or
– Q is not strictly live w.r.t. S in some finite prefix α of x, i.e., there is no

finite run β such that α < β ∈ Q ∩ S.

The set of ∞-fair runs in S w.r.t. Q is denoted as FS(Q).

Thus, Definition D.4.1 says that a run x is∞-fair w.r.t. Q if each finite prefix
of x that has a proper extension within S into Q is properly extended along x
into Q. This implies that any finite run in max(S) is ∞-fair because it has no
proper extension.

Example D.4.1. If Q is the set of all finite sequences that end with an occur-
rence of a given action A, i.e., Q = {αss′ | α ∈ Σ∗, (s, s′) ∈ A}, then FS(Q)
is exactly strong ∞-fairness with respect to A as introduced in Section D.3.5.
This is easily generalised to ∞-fairness with respect to a word.

Definition D.4.1 presents the strongest form of fairness we consider with
respect to some finitary property Q. Any weaker form of fairness, such as strong
and weak fairness, can be obtained by weakening. We thus define that a property
is a fairness property if it contains all ∞-fair runs with respect to some Q.

Definition D.4.2 (Fairness). Let S be a safety property. A temporal property
E is a fairness property in S w.r.t. some finitary property Q if FS(Q) ⊆ E. We
say that E is a fairness property in S if there exists a Q such that FS(Q) ⊆ E.

Example D.4.2. Any property weaker than ∞-fairness (such as strong k-
fairness etc.) is a fairness property according to Definition D.4.2. Furthermore,
let Q = {α | A1 is taken exactly k times in α implies A2 is taken exactly k times
in α}. Then FSM (Q) is a subset of equifairness in M w.r.t. (A1, A2). Hence
equifairness in SM is a fairness property in SM . Therefore all fairness notions
introduced in Section D.3 generate fairness properties with respect to a given
system.

The class of ∞-fairness properties w.r.t. some Q (Definition D.4.1) is, in
general, not closed under weakening and thus Definition D.4.2 is not redundant.
To show this, a simple cardinality argument suffices : the class of ∞-fairness
properties on a finite system has at most the cardinality of the continuum c (as
there are at most c finitary properties), whereas the class of fairness properties
has in general cardinality 2c. Indeed, consider the complete graph over three
states {p, q, r}, and consider the set P to be ∞-fairness with respect to the
set of all finite runs that end with p. P is the set of runs with infinitely many
occurrences of p. The complement of P is the set of runs with finitely many
occurrences of p and has cardinality c. Therefore there are 2c distinct supersets
of P .

More interestingly, we can show that important fairness notions, such as
strong fairness, are not covered without weakening, i.e., by Definition D.4.1 :
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Proposition D.4.3. Consider the complete system over two states S = {p, q}∞.
Let F denote strong fairness w.r.t. action A = {(p, p)}. There is no finitary
property Q such that F = FS(Q). Let F ′ denote F intersected with maximality
w.r.t. to all other transitions. There is no Q such that F ′ = FS(Q).

Proof: Deferred to Section D.8.7.

D.5 A game-theoretic characterisation of fair-
ness

The language-theoretic characterisation can be used to prove that a given
property E is indeed a fairness property : We display a finitary property Q such
that FS(Q) ⊆ E. However, the language-theoretic characterisation does not give
us a useful tool for proving that a given property is not a fairness property. The
game-theoretic characterisation of fairness, presented in this section, will give us
such a tool. In particular, this characterisation implies that a fairness assumption
can never prevent a particular finite behaviour from occurring sufficiently often
and thus allows us to prove that the property EM in Section D.1 is not a fairness
property. The game-theoretic characterisation also turns out to be useful for
proving some properties of our definition of fairness.

D.5.1 The Banach-Mazur game

Let S be a safety property, and E any property. The game G(S,E) is played
by two players called Alter and Ego. The state of a play is a finite run of S.
At every move, one player extends the current run by a finite, possibly empty,
sequence. Alter has the first move. The two players move alternately. The play
goes on forever, converging to a finite run α or an infinite run x in S. Ego wins
if x ∈ E (resp. α↑ ∩ S ⊆ E), otherwise Alter wins.

Definition D.5.1 (Banach-Mazur game). Let S be a safety property, and E
any temporal property. A play of the game G(S,E) is an infinite sequence of
finite runs (αi)i∈N of S such that α0 = ε and αi v αi+1 for each i ≥ 0. Given a
play (αi)i∈N, we say that Ego wins if (supi αi)↑ ∩S ⊆ E. Otherwise Alter wins.

A partial play is a finite prefix (αi)i≤n of some play. The set of partial plays
on S is denoted as PLS . A strategy in S is a mapping f : PLS → Σ∗ ∩ S such
that if α = f(α0, . . . , αi), then αi v α. We say that Ego plays f in a play (αi)i∈N
if for every j ≥ 0, f(α0, . . . , α2j+1) = α2j+2. Likewise, we say that Alter plays
f in the play (αi)i∈N if for every j ≥ 0, f(α0, . . . , α2j) = α2j+1. A strategy f is
winning for Ego (Alter) in G(S,E) if Ego (Alter) wins each play where he (she)
plays f .

The game G(S,E), henceforth called the Banach-Mazur game 4, defines an
intermediate version of nondeterminism between daemonic and angelic nonde-
terminism.

4. The naming will be explained in Section D.8.6.
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Suppose that the correctness of a system is specified by a temporal property
E. Saying that nondeterminism is daemonic means that we define a system M
to be correct if each run of M satisfies E. This corresponds to a game in which
Alter chooses an arbitrary, possibly infinite run in S—Ego, who wants to prove
correctness, is guaranteed to win only if every run of the system S is in E. Saying
that nondeterminism is angelic means that we define a system M to be correct
if there is a run of M that satisfies E. This corresponds to a game in which Ego
chooses the entire run. Then, Ego has a winning strategy only if S ∩E 6= ∅. In
the Banach-Mazur game, the nondeterminism is resolved alternately between
Alter and Ego. In the following, we will prove that Ego has a winning strategy
in the Banach-Mazur game G(S,E) if and only if E is a fairness property for S.

The definition of strategy we have given is the most general one : players
play remembering the full history of the play. As long as we are interested only
in knowing whether there is a winning strategy for one of the players, we can
use a simpler notion of strategy that does not decrease the power of the players.
In this simplified version, players only know the current state of the play, but
not the moves that led to it.

Definition D.5.2. A strategy f in S is decomposition invariant [Gra08] if for
any α0, . . . , αi and β0, . . . , βj , we have that αi = βj implies f(α0, . . . , αi) =
f(β0, . . . , βj).

We denote a decomposition-invariant strategy as a mapping f : Σ∗ ∩ S →
Σ∗ ∩ S such that α v f(α) for all α ∈ Σ∗ ∩ S.

Proposition D.5.3 ([Gra08]). Given a Banach-Mazur game G(S,E), Ego (Al-
ter) has a winning strategy if and only if he (she) has a decomposition-invariant
winning strategy.

Proof: Grädel [Gra08] gives a proof for a slightly different setting using
topological arguments that we will introduce later. We could reproduce his proof
for our setting using arguments from below. Instead we provide an alternative,
more direct proof here.

Given a winning strategy f , we want to define a decomposition-invariant
winning strategy g for the same game. To this end, we need to define g(α) for
any finite run α. To apply f , we first need to decompose α into some partial
play α0, . . . , αi. We do this for Ego, the construction for Alter being essentially
the same.

Let α0 = ε. Define α1 to be the smallest prefix of α such that f(α0, α1)
is compatible with α. Let α2 = f(α0, α1). Recursively, define α2j+1 to be the
smallest prefix of α such that f(α0, α1, α2, . . . , α2j+1) is compatible with α.
Define α2j+2 = f(α0, α1, α2, . . . , α2j+1). Let k be the the first index for which
α v α2k. Define g(α) = α2k. To prove that g is a winning strategy, consider now
a play (βi)i∈N, where Ego plays g. This means that each β2j+1 is decomposed

into (αj0, . . . , α
j
2hj+1) and β2j+2 = g(β2j+1) = f(αj0, . . . , α

j
2hj+1). We claim that

all such decompositions are “compatible” in the sense that for each j < k,
(αj0, . . . , α

j
2hj+1) is a prefix of (αk0 , . . . , α

k
2hk+1). It is sufficient to show this for

k = j + 1.
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Let thus (α0, . . . , α2l+1) be a decomposition of β2j+1 and (α′0, . . . , α
′
2m+1)

be a decomposition of β2j+3. We show that for i < 2l+ 1, αi = α′i by induction
on i. By definition α0 = α′0 = ε. α1 is defined as the smallest prefix such that
f(α0, α1) is compatible with β2j+1.

If f(α0, α1) is a strict prefix of β2j+1, then f(α0, α1) is compatible with
β2j+3. Moreover α1 is the shortest prefix such that f(α0, α1) is compatible with
β2j+3. In fact, if there were a shorter one, call it α̂, then f(α0, α̂) would be also
compatible with β2j+1, thus contradicting the definiton of α1 . Thus α1 = α′1.

If β2j+1 v f(α0, α1), then β2j+2 = g(β2j+1) = f(α0, α1). Thus f(α0, α1)
is compatible with β2j+3, and again α1 = α′1. As α0 = α′0 and α1 = α′1,
α2 = f(α0, α1) = f(α′0, α

′
1) = α′2. The inductive step is analogous, for both

even and odd indices.
The limit of all the decompositions is a play (αh)h∈N where Ego plays f , and

therefore he wins. But supi βi = supj β2j+1 = supj α
j
2hj+1 = suph αh, and this

shows that g is also a winning strategy.
In the following, we will only consider decomposition-invariant strategies,

but for brevity not mention it explicitly. We will now give a simplified charac-
terisation of the games in which Ego has a winning strategy. To this end, we
will use the following definition :

Definition D.5.4. We consider the game G(S,E) and a strategy f in S. A run
x ∈ S is f -compliant (for Ego) if x is the result of a play in which Ego plays f .
The set of all f -compliant runs is denoted by Rf .

Hence, a strategy f is winning for Ego iff Rf ⊆ E. We provide an alternative,
easier characterisation of compliant runs :

Proposition D.5.5. Let f be a strategy in S. A run x ∈ S is f -compliant iff
for each position i of x there exists a position j ≥ i of x such that f(xj) v x.

Proof: Trivially f -compliant runs satisfy the condition. Consider now a
run x that satisfies the condition. In other words, for every prefix α of x, there
exists a prefix β, such that α v β and f(β) v x. Also if α 6= x, we can take
β to be a proper extension of α. Let h(α) be one of such β, say, the shortest.
Consider the play (αn)n∈N defined as follows :

– α2h+1 = h(α2h),
– α2h+2 = f(α2h+1).

Clearly, the limit of the play is x, and this shows that x is f -compliant.
A second, simpler characterisation for infinite runs is the following :

Proposition D.5.6. Let x ∈ S be an infinite run and f a strategy. Then x is
f -compliant iff for infinitely many i, xi belongs to the image of f .

Proof: As above, f -compliant runs satisfy the condition trivially. Consider
now a run x that has infinitely many prefixes belonging to the image of f . We
show that x satisfies the condition of Proposition D.5.5. For any position i,
consider the set H = {f(xh) | h ≤ i}. Take j to be the smallest position such
that f(xj) v x and f(xj) 6∈ H. Such j must exists because H is finite, and
clearly j > i.
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We now arrive at the final simplification of the notion of strategy.

Definition D.5.7. A strategy f is progressive if f(α) = α⇒ α ∈ max(S)

Note that a strategy f is progressive if and only if Rf ⊆ max(S). As Alter
can always enforce the result of the play to be a maximal run of S, it is not
restrictive to require that Ego plays progressively. More precisely :

Lemma D.5.8. Ego has a winning strategy in G(S,E) iff he has a progressive
winning strategy in G(S,E ∩max(S)).

Proof: Let f be a winning strategy for Ego in G(S,E). Define f ′ to be a
strategy such that f ′(α) = f(α) if f(α) ∈ max(S) and otherwise f ′(α) = f(α)s
for some state s such that f(α)s ∈ S ; f ′ is clearly progressive. Now consider a
run x ∈ Rf ′ . If it is finite, it is maximal and then x ∈ Rf . If it is infinite, there
are infinitely many indices j such that f ′(xj) v x. But since f ′(α) v f(α), for
the same indices, f(xj) v x, and x ∈ Rf .

Thus we have Rf ′ ⊆ Rf , and hence if f is winning for Ego, f ′ must also be
winning for Ego. The converse is trivial. 2

D.5.2 The game-theoretic characterisation of fairness

We are now ready to state and prove the main result of the section :

Theorem D.5.9. Ego has a winning strategy in G(S,E) iff E is a fairness
property for S.

Proof: (⇐) Suppose FS(Q) ⊆ E. Define a strategy f by f(α) = β where
α < β ∈ Q ∩ S if there exists such a β and f(α) = α otherwise. We have
Rf ⊆ FS(Q) ⊆ E, hence f is a winning strategy for Ego in G(S,E).

(⇒) Let f be a progressive winning strategy for Ego in G(S,E). Define
Q = f(Σ∗). Let x ∈ FS(Q). We want to show that x ∈ E. If x = α is a finite
maximal run of S, then f(α) = α and α ∈ Rf . By definition of a progressive
strategy, any other finite run has a proper extension in Q and thus it cannot be
in FS(Q). If x is infinite, since any finite prefix α v x can be properly extended
to Q, there must be infinitely many i such that xi ∈ Q. By Proposition D.5.6,
we obtain x ∈ Rf . From Rf ⊆ E follows x ∈ E. 2

The intuition behind this game-theoretic characterisation of fairness is that,
while fairness restricts the allowed behaviour, it should not restrict it too much.
Ego, who wants to produce a fair run, can enforce some (live) choice to be taken
infinitely often but he cannot prevent other choices being taken infinitely often
(by Alter).

Example D.5.1. Consider S = Σ∞ for this paragraph. Then Σω is a fairness
property in S, whereas Σ∗ is a liveness but not a fairness property in S because
Alter can enforce the outcome of the play to be infinite. Similarly, for any
sequence x, the property {αx | α ∈ Σ∗} is a liveness property but not a fairness
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property in S. The property Φ is a fairness property whereas Φ is a
liveness but not a fairness property—for any non-trivial state property Φ, i.e.,
∅ 6= sat(Φ) 6= Σ. Hence the property EM in Section D.1 is not a fairness
property in general.

More examples for fairness properties in S = Σ∞ are (Φ⇒ Ψ), Φ⇒
Ψ, and Φ⇒ Ψ.

Call a run periodic if it is of the form αβω for α, β ∈ Σ∗ and aperiodic
otherwise. The set of aperiodic runs is a fairness property, whereas the set of
periodic runs is a liveness but not a fairness property ; f defined by f(α) = αskr,
where k = |α|, s, r ∈ Σ, s 6= r is a winning strategy for Alter w.r.t. aperiodic
runs.

It is clear that at most one of the two players has a winning strategy in
a given Banach-Mazur game. In the above examples, we have shown that Ego
does not have a winning strategy by showing that Alter has a winning strategy.
A property E such that either Ego or Alter has a winning strategy in G(S,E)
is called determinate w.r.t. S. Hence, for a given determinate property E, we
have a complete proof strategy for showing whether E is a fairness property or
not—either we display a winning strategy for Ego or one for Alter.

The family of determinate properties is quite large. It includes all Borel
properties [Oxt71, Thms. 4.3 and 6.3], which will be defined and explained later
in Section D.8.3. It can be argued that we are usually not interested in properties
that are not determinate. In fact, indeterminate properties do exist, but to prove
their existence, one needs to invoke the axiom of choice [Oxt71, Ch. 6]. For our
purposes, it shall suffice to state that each ω-regular property is a Borel property
(see [Tho90]) and hence determinate.

D.6 Properties of fairness properties

In Section D.1, we discussed three requirements for a general definition of
fairness. We required popular notions of fairness to be covered by our defini-
tion. Furthermore, each fairness property should be machined-closed w.r.t. the
system and the class of all fairness properties should be closed under countable
intersection. By help of the game-theoretic characterisation, we can now prove
that the latter two requirements are met by our definition of fairness.

Proposition D.6.1. Let S be a safety property and F a fairness property in
S. Then (S, F ) is machine-closed.

Proof: Let α ∈ S ∩ Σ∗. We have to show that there exists a run x such
that α v x ∈ S ∩ F , which is clear because Ego has a winning strategy in the
game G(S, F ), in particular for those plays in which Alter starts with move α.

Proposition D.6.2. Let S be a safety property and Fi fairness properties in S
for each i ∈ N. Then

⋂
i Fi is a fairness property in S.

Proof: Let fi be a progressive winning strategy for Ego in G(S, Fi) for each
i ∈ N. Define for α ∈ Σk, f(α) = fk(fk−1(. . . f0(α) . . .)). It is straight-forward
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to verify that any f -compliant run is fi-compliant for every i ∈ N, and therefre
f is a winning strategy for Ego w.r.t.

⋂
i∈N Fi. 2

Example D.6.1. Let Fk, k ∈ N be strong k-fairness w.r.t. some action of a
system as defined in Sect. D.3.4 and let F =

⋂
k∈N Fk. F is a fairness property

that in general is clearly strictly stronger than any Fk but strictly weaker than
strong ∞-fairness as was shown in Sect. D.3.5.

Proposition D.6.2 cannot be generalised to arbitrary intersections : for any
x ∈ S = {p, q}∞, let Fx = S\{x}. Clearly Fx is a fairness property, but

⋂
x∈S Fx

is empty. An interesting subclass of fairness properties that forms a complete
lattice is discussed in [VVK05].

We have already argued in Sect. D.5.2 that the third requirement—that
most popular fairness notions produce fairness properties—is also satisfied by
our definition. While checking several other fairness notions in the literature,
we either proved that the notion falls into the class we have defined or violates
already the first requirement (machine closure). An example of this is uncondi-
tional fairness, which prescribes a particular action to be taken infinitely often
regardless of the choices the system provides. The literature contains an exten-
sive discussion why those properties should not be considered fairness properties
(cf. [AFK88, Lam00]). Another such example is bounded fairness, which requires
that an action has to be taken within some fixed time after it has been enabled.
More precisely, a run x is k-bounded-fair for k ∈ N if the following is true for
each position i of x : If A is enabled at i then A is taken at some position j of
x such that i ≤ j ≤ i + k. It is easy to see that k-bounded fairness is a safety
property and therefore not a liveness property in general in a given system.

The notion of finitary fairness [AH94] is an exception in our survey of ‘fair-
ness’ notions found in the literature : A run x is finitary-fair w.r.t. an action A
if there exists a k ∈ N such that x is k-bounded-fair w.r.t. A. Finitary fairness
is, in contrast to k-bounded fairness, a liveness property (i.e., machine-closed)
in a given system. However, it is not a fairness property in general. For instance
consider S = {p, q}∞, and finitary fairness w.r.t. the transition (p, q). A winning
strategy for Alter is defined by f(α) = αsk, where k = |α| and s ∈ {p, q} is the
last state of α. Note that for the system in Fig. D.6, no run is finitary-fair w.r.t.
all transitions, i.e., the intersection of the properties finitary fairness w.r.t. ai
and finitary fairness w.r.t. bi for i ∈ N is empty.

However, given an action A, consider the following property Fk(A) : If A is
infinitely often enabled, then A must be taken infinitely often within k steps. It
is not difficult to verify that Fk(A) is a fairness property.

This leads to the question whether we could have defined fairness in a differ-
ent way and still satisfy our requirements. In particular : could have we defined
fairness in a more liberal way, i.e., as a larger family of properties ? Again,
thanks to the game-theoretic characterisation, we can answer negatively to this
question. Indeed we will now show that we cannot enlarge the class of fairness
properties without giving up the first or the second requirement. We do not have
a proof for this statement in full generality, but we can prove it if we restrict
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it to determinate properties. As argued above, this can be considered as a mild
restriction.

Theorem D.6.3. Let S be a safety property. The family FS = {F | F is a
fairness property in S} is a maximal family of determinate properties w.r.t. S
such that

1. F ∈ FS implies (S, F ) is machine-closed and

2. F, F ′ ∈ FS implies F ∩ F ′ ∈ FS.

Proof: Suppose by contradiction that FS is not maximal, and consider a
strictly larger familiy F ′ of determinate properties that satisfies (1) and (2).
Take E ∈ F ′ \ FS . Since E 6∈ FS , Ego has no winning strategy in G(S,E),
but since E is determinate, Alter has a winning strategy f in that game. Let
α = f(ε) be its first move. Consider the property

F = ¬E ∪
⋃

β is incompatible with α

β↑,

where ¬E denotes S \ E.

Ego has a winning strategy in the game G(S, F ), defined as follows : If the
play is in a state that is compatible with α, then Ego can use f to guarantee
¬E. Otherwise, the play is in a state β that is incompatible with α, in which
Ego does not have to do anything to win. Thus F ∈ FS ⊆ F ′. Since F ′ satisfies
(2), we have that E ∩ F ∈ F ′. But by definition of F , α has no extension into
S ∩ E ∩ F . Hence (S,E ∩ F ) is not machine-closed, contradicting (1).

D.7 Fairness and the dafety-progress hierarchy

With the safety-progress classification, Manna and Pnueli [MP90] gave a
classification of temporal properties that is in some sense orthogonal to the
safety-liveness classification. Whereas safety and liveness define a partition of
all temporal properties (safety properties, liveness properties, and those that
are neither safety nor liveness), the members of the safety-progress classification
form a hierarchy. Manna and Pnueli presented a language-theoretic, a topolog-
ical, a temporal-logical and an automata-theoretic view of their hierarchy. In
this subsection, we study the relationship of fairness properties with the safety-
progress hierarchy in the language-theoretic view. In this way, we complement
our insights into which properties are fairness properties.

D.7.1 The safety-progress hierarchy

Manna and Pnueli [MP90] define four operators that construct temporal
properties from finitary properties. While they consider only infinitary proper-
ties as temporal properties, we generalise their operators here to our setting in



192 ANNEXE D. DEFINING FAIRNESS

a natural way. Let Q be a finitary property. Define

A(Q) = {x | ∀α v x : α ∈ Q} (D.1)

E(Q) = {x | ∃α v x : α ∈ Q} (D.2)

R(Q) = {x | ∀α v x : ∃β : α v β v x ∧ β ∈ Q} (D.3)

P(Q) = {x | ∃α v x : ∀β : α v β v x⇒ β ∈ Q}. (D.4)

Properties of the form A(Q) are exactly the safety properties. Properties of
the form E(Q), R(Q), and P(Q) are called guarantee, recurrence, and persistence
properties, respectively.

We have the following dualities :

¬A(Q) = E(¬Q) and ¬E(Q) = A(¬Q) (D.5)

¬R(Q) = P(¬Q) and ¬P(Q) = R(¬Q), (D.6)

where ¬X denotes the complement of X w.r.t. the appropriate universe. As
A(Q) = R(A(Q) ∩ Σ∗) and E(Q) = R(E(Q) ∩ Σ∗), we have that each safety
property and each guarantee property is also a recurrence property. Similarly,
each safety and each guarantee property is also a persistence property.

Example D.7.1. Let Φ be a state property. Then sat( Φ), sat( Φ), sat( Φ)
and
sat( Φ) are examples of safety, guarantee, recurrence and persistence prop-
erties respectively.

D.7.2 Liveness and the safety-progress hierarchy

We know already that Σ∞ is the only property that is a safety as well as
a liveness property. More generally, a safety property is a liveness property
relative to another safety property S if and only if it contains S. The following
proposition also clarifies when a guarantee, recurrence or persistence property
is a liveness property (relative to a given safety property S).

Proposition D.7.1. Let Q be a finitary property and S a safety property.

1. A(Q) is a liveness property in S iff Σ∗ ∩ S ⊆ Q.

2. E(Q) is a liveness property in S iff Q is a pseudo-liveness property in S,
where E is a pseudo-liveness property in S if for each α ∈ Σ∗ ∩ S there
exists an x ∈ E ∩ S that is compatible with α.

3. R(Q) is a liveness property in S iff Q is a liveness property in S.

4. P(Q) is a liveness property in S iff Q is a liveness property in S.

Proof: All claims are proved by a straight forward application of the defi-
nitions. 2
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D.7.3 Fairness and the safety-progress hierarchy

Which properties in the safety-progress hierarchy are fairness properties ?
We know already that a property is a fairness property in S only if it is a
liveness property in S. We now show that each live guarantee as well as each
live recurrence property is a fairness property. To do this, we use special classes
of strategies.

Definition D.7.2. Let S be a safety property, and f be a strategy in S. We
say that f is idempotent if f(f(α)) = f(α) for all α ∈ S ∪Σ∗. We say that f is
stable if f(α) v β ⇒ f(β) = β for all α, β ∈ S ∪ Σ∗.

Clearly, each stable strategy is idempotent.

Proposition D.7.3. Let S be a safety property.

1. A subset of S is a live guarantee property if and only if it is the set of
f -compliant runs of some stable strategy f in S.

2. A subset of S is a live recurrence property if and only if it is the set of
f -compliant runs of some idempotent strategy f in S.

Proof: 1. To prove one direction, let Q be a finitary pseudo-liveness prop-
erty (cf. Proposition D.7.1), define f such that f(α) = α if α ∈ E(Q) and let
otherwise f(α) be any extension of α into Q ; f is then stable and Rf = E(Q).
For the other direction, given a stable strategy f , we have that f(Σ∗) is a pseudo-
liveness (it actually is a liveness property) and Rf = E(f(Σ∗)). 2. For a given
finitary liveness property Q, define f such that f(α) = α if α ∈ Q and let other-
wise f(α) be any extension of α into Q ; f is then idempotent and Rf = R(Q).
For a given idempotent f , f(Σ∗) is a liveness property and Rf = R(f(Σ∗)). 2

It follows from Proposition D.7.3 that each property that contains a live
guarantee property or a live recurrence property is a fairness property. We show
now that live persistence properties are not fairness properties in general.

Proposition D.7.4. Let S be a safety property. A persistence property P is a
fairness property in S if and only if there exists a guarantee property E(Q) that
is live in S such that E(Q) ∩ S ⊆ P .

Proof: (⇐) is clear from Proposition D.7.3. For (⇒), let f be a winning
strategy for P(Q) in S and let α ∈ Σ∗. Let α0 = α and let αi+1, for each
i ∈ N, be any extension of f(αi) into S ∩ ¬Q, provided that such an extension
exists. If such an extension exists for each i ∈ N, we obtain a run x = supi∈N αi
where x ∈ R(¬Q) and hence x 6∈ P(Q). However, x ∈ Rf , which contradicts
f being a winning strategy for P(Q). Therefore, there is an i ∈ N such that
βα := f(αi) has no extension into S ∩ ¬Q, hence all extensions of βα in S
satisfy Q. Define Q′ = {βα | α ∈ S ∩ Σ∗} ; Q′ is clearly live in S. Furthermore,
we have E(Q′) ∩ S ⊆ P(Q).

We have shown in Proposition D.7.3 that each property that contains a live
recurrence property is a fairness property. The converse does not hold. (As a
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counterexample consider S = Σ∞ and X = Σω. X contains no recurrence prop-
erty because it contains no finite runs.) However, we can give a characterisation
of fairness in terms of recurrence properties.

Proposition D.7.5. A property F is a fairness property in S iff there exists a
finitary property Q that is live in S such that R(Q) ∩max(S) ⊆ F .

Proof: (⇐) is due to Lemma D.5.8. For (⇒), let f be a winning strategy
for Ego in G(S, F ). Let Q = f(S ∩ Σ∗). We have R(Q) ∩max(S) ⊆ Rf ⊆ F .

D.8 A topological characterisation of fairness

This section presents a topological characterisation of fairness. It turns out
that fairness properties are exactly the sets that are large in a topological sense,
i.e., they are the co-meager sets in the natural topology of runs of the system.
This insight will provide us with an important link to probability theory, where
a set is large if it has measure 1. We will explore that link in Section D.9.

Furthermore, the topological characterisation liberates us from our concrete
choice of semantical domain, i.e., sequences of states, as other semantic domains
are equipped with a natural topology, which then immediately provides a notion
of fairness.

Of course, the topological characterisation potentially gives us access to a
large body of results in topology. This is even more interesting as other im-
portant concepts such as safety, liveness, guarantee, persistence and recurrence
were given topological characterisations.

Last but not least, the topological characterisation will provide us additional
confidence that we have found a natural definition of fairness.

In Section D.8.1, we will briefly introduce the use of topology in our context,
which is based on [Smy92]. In Section D.8.2, we recall the observation, made by
Alpern and Schneider [AS85], that safety properties correspond to closed sets,
whereas liveness properties correspond to dense sets. In Section D.8.3, we dis-
cuss some important topological notions that constitute the Borel Hierarchy. In
Section D.8.4, we discuss the topological notion of “largeness”. In Section D.8.5,
we introduce the Scott topology on systems. Finally, in Section D.8.6, we show
that fairness properties correspond to large sets in the Scott topology. For a
classic introduction to topology, see [Dug66].

D.8.1 Observable properties

Given an observer of a system who can see the entire state and its evolu-
tion, what temporal properties are observable ? By this we shall mean that the
observer can detect the presence of the property in finite time. Therefore, a
temporal property E is observable iff

x ∈ E ⇒ ∃α v x : α↑ ⊆ E.
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The observation of the finite prefix α guarantees that the observed run satisfies
E. In fact, it is easy to see that a property is observable if and only if it is
a guarantee property E(Q) as defined in Section D.7.1. We may think of the
observer as having a (possibly infinite) set Q of finite runs, which she uses to
detect the property E = E(Q). Note that the operator E(·) defines a bijection
between observable and finitary properties.

Note that we only require the presence of an observable property to be
detectable, but not its absence. In fact, for no non-trivial property E (i.e.,
∅ 6= E 6= Σ∞) it is the case that E and ¬E are both observable. (Then, the
empty run would belong to one of the two, which implies that both are trivial.)

Observable properties have two important closure properties :

1. The intersection of finitely many observable properties is observable.

2. The union of arbitrarily many observable properties is observable.

To see this, note that an observable property can be decomposed into cones,
i.e., properties of the form α↑, α ∈ Σ∗ :

E(Q) =
⋃
α∈Q

α↑.

Closure under union follows immediately. Closure under finite intersection fol-
lows from the fact that

α↑ ∩ β↑ = sup(α, β)↑

if α and β are compatible and α↑ ∩ β↑ = ∅ otherwise.
These two closure properties say that the family of observable properties

is a topology on Σ∞, i.e., a topology on a nonempty set Ω is defined to be a
family T ⊆ PΩ that is closed under union and finite intersection. This implicitly
requires Ω,∅ ∈ T . The pair (Ω, T ) is called a topological space. A member of
T is called an open set. Hence observable properties are the open sets of our
topology, which is called the Scott topology on Σ∞.

A base of a topology T is a family B ⊆ T such that each open set is the
union of members of B. Hence the family

B = {α↑ | α ∈ Σ∗}

is a base of the Scott topology on Σ∞. A member of B is called a basic open set.
A set X is called a neighbourhood of x if x ∈ G ⊆ X for some open set

G. Hence a neighbourhood of a run x is a property E such that some finite
observation of it guarantees E.

D.8.2 Safety and liveness properties

As noted in Section D.7.1, the complement of a guarantee property is a
safety property. The complement of an open set of a topology is called a closed
set. Thus safety properties are the closed sets of the Scott topology. By duality,
safety properties are closed under arbitrary intersection and finite union. The
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closure of a set X, denoted X, is the smallest closed set that contains X. For
the Scott topology, we will call E the safety closure of the property E. We have

E = A({α | α is a finite prefix of some x ∈ E}).

For a safety property, the absence of the property is detectable. The safety
closure of a set E can be viewed as the smallest tree that contains all runs of E.

Liveness properties are exactly the dense sets of the Scott topology : Recall
that a set X is dense if it intersects every nonempty open set, or equivalently,
every nonempty basic open set, i.e., a property E is dense in the Scott topology
iff for each finite run α,

E ∩ α↑ 6= ∅,

i.e., precisely iff E is a liveness property. Equivalently, X is dense iff X = Ω,
i.e., E is a liveness property iff E = Σ∞.

For a property E, we define its liveness extension L(E) by

L(E) = E ∪
⋃

α∈Σ∗,α↑∩E=∅
α↑.

Clearly, L(E) is a liveness property for any E.
The correspondence of safety and liveness to closed and dense sets was

pointed out in [AS85]. As each set can be written as the intersection of a closed
and a dense set, each temporal property can be written as the intersection of a
safety and a liveness property. We have, for any temporal property E,

E = E ∩ L(E).

D.8.3 The Borel hierarchy

Guarantee properties are not closed under countable intersection. For exam-
ple, we have ⋂

k∈N
E(Σk) = Σω,

and Σω is clearly not a guarantee property. By duality, safety properties are not
closed under countable union. A set that can be written as the intersection of
countably many open sets is called a Gδ set ; a set that can be written as the
union of countably many closed sets is called an Fσ set. More generally, let G
denote the family of open sets and F the family of closed sets and define for a
family F ⊆ PΩ,

Fδ =
{ ⋂
i∈N

Xi | Xi ∈ F for all i
}

and
Fσ =

{ ⋃
i∈N

Xi | Xi ∈ F for all i
}
.

Thus, for example Gδσ denotes the family of all sets that can be written as the
countable union of Gδ sets. The families defined in that way form an infinite



D.8. A TOPOLOGICAL CHARACTERISATION 197

hierarchy, called the Borel hierarchy. The union of all families of the Borel hier-
archy is called Borel σ-field (w.r.t. the Scott topology on Σ∞). It is the smallest
family of sets that contains the open sets and is closed under complementation
and countable union. A member of the Borel σ-field is called a Borel set.

We recall that ω-regular properties belong to both Gδσ and Fσδ [Tho90].
LTL-expressible properties belong to the same level of the Borel hierarchy [MP90].

We will mainly be interested in Gδ sets. Above, the property Σω was shown
to be a Gδ property. To see more examples, define for k ∈ N∪{ω} and a finitary
property Q :

Rk(Q) = {x | |{i | xi ∈ Q}| ≥ k}.

Clearly, for k ∈ N, Rk(Q) is a guarantee property. For k = ω, we observe

Rω(Q) =
⋂
k∈N

Rk(Q).

Thus, Rω(Q) is a Gδ set. Also, each guarantee property is a Gδ set, and hence
the union Rω(Q) ∪ E(Q′) is a Gδ set.

D.8.4 Topologically large sets

As announced, we will prove that fairness properties w.r.t. a safety property
S are the “large sets” in a topological sense. This means that most runs of S
are fair.

In a topological space, we say that a set E is somewhere dense if there exists
an open set G such that E intersects every nonempty open subset of G. A set
is nowhere dense if it is not somewhere dense, or equivalently, if its closure does
not contain any nonempty open set—or again equivalently, if its complement
contains a dense open set [Dug66].

For an intuition on nowhere dense sets, imagine D to be a set of “dirty”
points. If D is a dense set, then it pollutes the whole topological space : wherever
we go in the topological space, we will have some dirty point in the neighbour-
hood. If D is a somewhere dense set, then it pollutes part of the space. There
are regions in which you will be always near a dirty point, but possibly also
clean neighbourhoods. Finally, if D is nowhere dense, then every clean point
lives in a clean neighbourhood. Intuitively, a nowhere dense set is small because
the remainder of the topological space can stay clear of it. In this geometric
sense, it can be thought of as a set that is full of holes.

A set is meager (or of first category), if it is the countable union of nowhere
dense sets. Topologically, a countable union of small sets is still small. This was
observed by René-Louis Baire, who proved that the unit interval of the real line
cannot be obtained as the countable union of nowhere dense sets. This result
can be thought of as a generalisation of Cantor’s theorem, which states that the
unit interval is not obtained as the countable union of points [Oxt71].

The complement of a “small” set is therefore to be thought of as “large”.
The complement of a meager set is called co-meager (or residual).
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In some topological spaces, co-meager sets can be equivalently characterised
through Gδ sets. A topological space is called a Baire space if the intersection of
countably many dense open sets is dense. In a Baire space, a set is a dense Gδ set
if and only it can be written as the intersection of countably many dense open
sets. Therefore, co-meager sets can equivalently be characterised as follows :

Proposition D.8.1. In a Baire space, a set is co-meager if and only if it
contains a dense Gδ set.

Proof: Straight-forward, see [Oxt71].

D.8.5 The natural topology of a system

If T is a topology on Ω and Z ⊆ Ω is a nonempty set, then the family
TZ = {X ∩ Z | X ∈ T } is also a topology, called the relative topology w.r.t.
T and Z or T relativised to Z. Therefore each system, or more generally each
safety property S has a natural topology, viz. the Scott topology relativised to
S, which is thus the family

TS = {E(Q) ∩ S | Q ⊆ Σ∗}.

The family B = {α↑ ∩ S | α ∈ Σ∗} is a base for TS and likewise we have : E
is a member of a particular class of the Borel hierarchy generated by the Scott
topology if and only if E∩S is a member of the same class of the Borel hierarchy
generated by the Scott topology relativised to S.

A set E ⊆ S is dense in the relative topology iff it is live w.r.t. S, i.e., if (S,E)
is machine-closed. However, if E is a liveness property (i.e., a dense set), then
E ∩ S is not necessarily live w.r.t. S (a dense set in the relative topology)—
and the converse is also not true in general : Consider Σ = {p, q}, S = pω↓
and E = sat( q). E is a liveness property but not live w.r.t. S. Furthermore,
S = S ∩ S is live w.r.t. S but not a liveness property.

Proposition D.8.2. The Scott topology on Σ∞ (relativised to some safety prop-
erty S) is a Baire space.

Proof: Let E =
⋂
i∈N E(Qi) ∩ S such that Qi is dense (i.e., live) in S and

let α ∈ S ∩ Σ∗. As Q0 is live in S, there exists α0 such that α v α0 ∈ S ∩Q0.
Likewise, since Q1 is live in S, there exists α1 such that α0 v α1 ∈ S ∩Q1 and
hence α1 ∈ S ∩E(Q0)∩E(Q1). Doing this for all i ∈ N, we obtain x = supi αi ∈
S ∩

⋂
i∈N E(Qi). Therefore E is dense (i.e., live) in S.

It is essential that S be a safety property. The Scott topology relativised to
Σ∗ is not a Baire space. Σ≥k = {x | |x| ≥ k} is a dense open set for each k. The
intersection is the empty set, which is not dense relative to Σ∗.

D.8.6 The topological characterisation of fairness

In this section, we show that fairness properties are precisely the co-meager
sets. First we give a topological characterisation of ∞-fairness w.r.t. some Q.
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Theorem D.8.3. Given a safety property S and a property F , we have F =
FS(Q) for some finitary property Q (cf. Definition D.4.1) if and only if F is a
dense Gδ relative to S.

Proof: (⇒) Suppose F = FS(Q) for some Q. We know it is dense ; it
remains to show that it is a Gδ set. The property FS(Q) is defined to be the
union of Rω(Q), which was shown above to be a Gδ set, and an open set : the
set of all runs that cannot be extended into Q. An open set is also a Gδ set, and
the union of two Gδ sets is a Gδ set.

(⇐) If F is a dense Gδ set, it can be written as the intersection of dense open
sets, i.e., F =

⋂
i∈N E(Qi) ∩ S, where each E(Qi) is dense in S. Now, let minX

denote the set of minimal elements of a set X in the prefix order. Without loss
of generality, we can suppose the following :

1. Qi = min E(Qi). This is because E(Qi) = E(min E(Qi)) (the open sets are
the upward closure of their minimal elements).

2. i < j ⇒ E(Qi) ⊇ E(Qj). This is because the finite intersection of open
sets is an open set, and thus if for some i < j, we had E(Qi) 6⊇ E(Qj), we
could take Q′j = min E(Qi) ∩ E(Qj).

3. Q0 = {ε} so that E(Q0) = Σω.

Define Q =
⋃
i∈NQi. We claim that F = FS(Q). We prove the double inclusion.

First let x ∈ F . Therefore x ∈ E(Qi) for each i ∈ N. By assumption 1, for
each i, there is exactly one element of Qi that is a prefix of x. Either there are
infinitely many such prefixes, and thus x ∈ Rω(Q), or there are finitely many
such prefixes. In the latter case, the longest such prefix, call it α (there is at
least one by assumption 3), cannot be strictly extended into Q. To show this,
let h be such that α ∈ Qh. Suppose that there is an α′ that is strictly longer
than α such that α′ ∈ Q. Let k be such that α′ ∈ Qk. By assumption 1, α 6∈ Qk
and by assumption 2, k > h and E(Qh) ⊃ E(Qk), where the inclusion is strict.
As F =

⋂
i∈N E(Qi) ∩ S, there must be an element α′′ ∈ Qk such that α′′ is

a prefix of x. But as α 6∈ Qk and E(Qh) ⊃ E(Qk), α′′ must be strictly longer
than α, contradicting the fact that α is the longest prefix of x that is in Q. This
shows that x has a prefix that cannot be extended into Q, and thus x ∈ FS(Q).

For the other inclusion, let x ∈ FS(Q). Suppose first x ∈ Rω(Q). Therefore
for infinitely many i, x ∈ E(Qi), and because of assumption 2, x ∈ E(Qi) for all
i.

Suppose now x has a prefix α that does not have a strict extension into Q.
Because F is dense, there is an extension x′ of α into F . As x′ ∈ E(Qi) for each
i, there is an αi ∈ Qi that is a prefix of x′. As αi is compatible with α and α
has no strict extension into Q, we have αi v α for each i ∈ N. Hence αi v x,
and therefore x ∈ E(Qi) and x ∈ F . 5

Theorem D.8.4. A property F is a fairness property for S if and only if F ∩S
is co-meager in the Scott topology relativised to S.

5. A similar argument was used by Landweber [Lan69] to characterise the Gδ subsets of
{0, 1}ω .
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Proof: By definition, F is a fairness property if and only if it contains some
∞-fairness property w.r.t. some Q. By Theorem D.8.3, this is equivalent to
containing a dense Gδ. And by Propositions D.8.1 and D.8.2, this is equivalent
to being co-meager.

Remark: The Banach-Mazur game first appeared in the Scottish Book
[Mau81]—a notebook with an interesting history and contributions from now
well-known mathematicians such as S. Banach, S. Mazur, S. Ulam, H. Steinhaus
and others. Problem No. 43 in that book was posed by Stanis law Mazur. Given
a nonempty set E of real numbers, Alter and Ego play the following game. Alter
chooses a nonempty interval d1, then Ego chooses a nonempty subinterval d2

of d1, then Alter chooses a subinterval d3 of d2, and so on. Alter wins if the
intersection of the intervals di, i ∈ N, intersects E, otherwise Ego wins. Mazur
observed that Alter has a winning strategy if E is co-meager in some interval and
Ego has a winning strategy if E is meager, and asked whether these conditions
are also necessary for the existence of a winning strategy. This was affirmed by
Stefan Banach, but no proof was ever published.

Oxtoby [Oxt57] proved this theorem in a more general setting, for a gener-
alisation of the game in any complete metric space. Thus, essentially, the equiv-
alence between co-meagerness and existence of a winning strategy for Ego was
known. For an outline of the history and variants of the Banach-Mazur game,
we refer to the survey [Tel87]. The Banach-Mazur game was recently studied as
a special case of a path game in [BGK03] and [PV03].

Remark: If we restrict ourselves to infinitary temporal properties E ⊆ Σω,
then the natural topology is the Scott topology relativised to Σω, which is known
as the Cantor topology. The Cantor topology is metrisable ; a standard metric
over Σω is defined by

d(x, y) =
1

2n
,

where n is the length of the longest common prefix of x and y. The Cantor
topology has therefore better separation properties than the Scott topology,
which does not meet the separation axiom T0 (cf. [Dug66, Smy92]).

The fairness properties within Σω are also the co-meager sets in a given
safety property, and the Banach-Mazur game is also essentially the same because
of Lemma D.5.8. Recurrence properties and Gδ sets coincide in that setting
[MP90].

D.8.7 On the necessity of weakening

Kwiatkowska [Kwi91] had proposed to define a fairness property for a system
to be a dense Gδ set. However, strong fairness with respect to a particular tran-
sition is in general not a dense Gδ set, as we will now prove. By Theorem D.8.3,
this also proves then Proposition D.4.3 above, for which we postponed the proof.

Proposition D.8.5. Consider the complete system over two states S = {p, q}∞.
Let F denote strong fairness w.r.t. action A = {(p, p)} and let F ′ denote F in-
tersected with maximality w.r.t. to all other transitions. Then F and F ′ are not
Gδ sets.
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Proof: Without maximality, the proof is easy : it is enough to observe
that strong fairness by itself is not upward closed, whereas each Gδ set is.
However,maximality is a basic implicit assumption for many authors, includ-
ing [Kwi91].

Suppose, by contradiction, that F ′ is a Gδ set. Then there exist open sets
Gi, i ∈ N, such that F ′ =

⋂
i∈NGi. Observe that we have, by definition of F ′,

pqω ∈ F ′

and hence pqω ∈ G0. As G0 is open, there exists a k0 > 0 such that

pqk0↑ ⊆ G0.

Furthermore, we have

pqk0pqω ∈ F ′,

and hence pqk0pqω ∈ G0 ∩G1. As G1 is open, there exists a k1 > 0 such that

pqk0pqk1↑ ⊆ G1,

and hence pqk0pqk1↑ ⊆ G0∩G1. We repeat the operation for all natural numbers,
and obtain a sequence of finite runs that converges to an infinite run

x = pqk0pqk1pqk2 . . .

that belongs to the intersection of all Gi, and hence is contained in F ′. However,
x has infinitely many p’s, and therefore infinitely many positions in which t is
enabled, but t is never taken in x. Therefore x is not strongly fair, that is, it is
not in F ′ – a contradiction.

Interestingly, a similar argument was used by Landweber [Lan69] (Lemma
3.1) to show that the set of sequences of {0, 1}ω that contain finitely many 1’s
is not a Gδ set of the Cantor topology over {0, 1}ω.

D.9 Fairness and probability

In this section, we provide a probability-theoretic view of fairness. In Sec-
tion D.8, we showed that fairness properties are exactly the sets that are large
in a topological sense. In probability theory, a set is large if it has measure 1.
Although these two notions of largeness are very similar, they do not coincide
in general. However, we will prove that topological largeness and probabilis-
tic largeness of temporal properties coincide for finite-state systems, ω-regular
properties and bounded Borel measures. Thus in the finite case and under mild
assumptions, a property is a fairness property if and only if it has probability 1.

We start by pointing out some characteristics of the family of fairness prop-
erties.
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D.9.1 Characteristics of fairness

Let S be a safety property. The family FS of all fairness properties in S, i.e.,
of all—in the topological sense—large sets in S, has the following properties,
which appeal to our intuition of largeness.

1. Any superset of a large set is large. Hence the union of arbitrarily many
large sets is large.

2. The intersection of countably many large sets is large. Together with 1.,
this says that FS is a σ-filter.

3. Every large set is dense (in S) and therefore nonempty.

4. If a set is large, its complement is not. Call a set small if its complement
is large. A set may be neither large nor small. In that case we call it
medium-sized.

5. Intersection with a large set preserves size, i.e., if F is large and X is small
(medium-sized) [large] then F ∩X is small (medium-sized) [large].

6. If S = Σ∞ and |Σ| ≥ 2, then every countable set is small, but there are
also uncountable sets that are small.

Statement 1 follows immediately from the definition of fairness. Statement 2
was proved in Proposition D.6.2. Statement 3 was proven in Proposition D.6.1.
Statement 4 follows immediately from statements 2 and 3. Statement 5 follows
straight forwardly from statements 1 and 2. For the first part of statement 6,
first observe that any singleton set is small because Ego has a strategy to avoid
it. By duality, the union of countably many small sets is small. For part 2 of
statement 6, consider Σ = {p, q, r} and E = sat( (p ∨ q)) = ¬sat( r).
E is clearly uncountable but small because Ego has a winning strategy for
sat( r). A similar example can be constructed for |Σ| = 2. Statement 6 can
be generalised to safety properties S such that for each finite α ∈ S, we have
that α↑ is uncountable.

D.9.2 Probabilistic largeness

To define probabilistic largeness, we first recall the standard setting of how
probability is adjoined to systems.

A σ-field over a nonempty set Ω is a family A of subsets of Ω that contains
the empty set and is closed under complementation and countable union. The
intersection of arbitrarily many σ-fields is again a σ-field. Hence for each family
F ⊆ PΩ, there exists the smallest σ-field that contains F . Given a topology T
on Ω, the Borel σ-field of T is the smallest σ-field that contains T . A member of
the Borel σ-field is called a Borel set, which is precisely what we have introduced
already in Sect. D.8.3.

A probability measure on a σ-field A over Ω is a function µ : A → [0, 1]
such that µ(Ω) = 1 and for any sequence of pairwise disjoint sets (Xi)i∈N,
µ(
⋃
i∈NXi) =

∑
i∈N µ(Xi). A Borel probability measure of a topology is a
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probability measure over the Borel σ-field of the topology. Given a probabil-
ity measure µ on A, and two sets X,Y ∈ A, the probability of X conditional to
Y is defined as µ(X | Y ) = µ(X ∩ Y )/µ(Y ), provided µ(Y ) > 0.

A probabilistic system, or more general a probabilistic safety property, is
a pair of a safety property S and a Borel measure µ of the Scott topology
relativised to max(S). We can think of it as the tree that S represents in which
at each branching a multi-sided coin is flipped to determine how the run is
extended. We assume here maximality for convenience, i.e., we assume that
an enabled coin flip is eventually executed and each outcome of the coin flip
properly extends the current run. We will write µ(X) for µ(X ∩ max(S)) and
µ(X | Y ) for µ(X ∩ max(S) | Y ∩ max(S)). Let α ∈ Σ∗ and s ∈ Σ such that
αs ∈ S. The conditional probability

psα = µ(αs↑ | α↑) = µ(αs↑)/µ(α↑) (D.7)

is the probability that the outcome of the coin flip at the branching at α is s.
Equation D.7 implies µ((s0 . . . sn)↑) = psε · . . . · psns0,...,sn−1

. For each α ∈ S, we
have ∑

αs∈S
psα = 1. (D.8)

The Borel measure is determined by the psα, i.e., given psα ∈ [0, 1] for each α and
s with αs ∈ S such that D.8 holds, there is a unique Borel measure µ of the
Scott topology relativised to max(S) such that D.7 holds.

Let (S, µ) be a probabilistic safety property. We say that µ is a Markov
measure if

ps
′

αs = ps
′

βs

for all α, β ∈ S ∩ Σ∗ and s, s′ ∈ Σ such that αss′, βss′ ∈ S, i.e., if the coin-flip
probabilities only depend on the last state. We say that µ is positive if all psα > 0
and therefore µ(α↑) > 0 for each α ∈ S ; µ is said to be bounded (away from
zero) if there exists a constant c > 0 such that psα > c for each αs ∈ S.

Example D.9.1. Consider the system S, represented in Fig. D.8, which cor-
responds to the Petri net in Fig. D.7. For each α ∈ S ∩ Σ∗ such that αB ∈ S,

A

1

C

B

1

1/3 2/3

Figure D.8 – A three-state system

we define pAαB = 1/3 and pCαB = 2/3. Also, we are forced to have pBβA = 1 when

βA ∈ S and pBβC = 1 when βC ∈ S. This defines a Markov measure on S.
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Topological and probabilistic largeness are very similar notions. Oxtoby’s
classic book [Oxt71] is devoted to the study of this similarity. All six statements
in Section D.9.1 are also true for probabilistic largeness, where for statement
3, we naturally have to assume that µ is positive. To see that statement 3 is
true, let µ(F ) = 1 and α ∈ S. If there is no extension of α into S ∩ F , then
α↑ ∩ S ⊆ ¬F . As µ(α↑) > 0, we have µ(¬F ) > 0 and hence µ(F ) < 1, a
contradiction. All other statements follow from the laws of probability theory.

D.9.3 Separation

Although similar, the two notions of largeness do not coincide in general :
there are sets that are large in one sense but not in the other.

Consider an (unrestricted and asymmetric, i.e., biased,) random walk on
the integer line starting at 0. At each state the probability of going right is
p 6= 1/2, and the probability of going left is 1 − p (cf. also Fig. D.6). The
property X1 = “The walk returns to 0 infinitely often” has probability 0 (see
for instance [Spi01]), but is co-meager (one easily displays a winning strategy
for Ego in the Banach-Mazur game). On the other hand, the complement of X1

has probability 1, but is meager.
A similar set can be displayed in a finite-state system : Consider the system

in Fig. D.8. Note that the probability of going from B to C is not the same
as the probability of going from B to A. The property X2 = “The number of
previous A’s equals the number of previous C’s infinitely often” has probability
0, but is co-meager.

Note that in both cases the winning strategies for Ego are unbounded, i.e.,
the length of the sequences Ego adds is unbounded because he has to be able
to compensate for unbounded moves by Alter.

More generally, we have the following result.

Definition D.9.1. Let S be a safety property. A run x of S is said to have
infinitely many choices if for infinitely many positions i, the prefix xi has more
than one extension in S.

Lemma D.9.2. Let (S, µ) be a probabilistic safety property such that µ is a
bounded Borel measure. Let x be a run of S with infinitely many choices. Then
for every ε > 0, there exist an i such that µ(xi↑) < ε. In particular µ({x}) = 0.

Proof: Let c > 0 be the bound of the Markov measure. Let a = (1 − c).
Let k > 0 be such that ak < ε. Consider a prefix xi that contains at least k
choices. At each choice, the probability of the prefix is multiplied at most by a,
and therefore µ(xi↑) ≤ ak < ε.

Proposition D.9.3. Let M be a finite-state system and µ a bounded Borel
measure on SM . Suppose every maximal run of SM has infinitely many choices.
Then SM can be partitioned into a co-meager set and a set of measure 1.

Proof: The proof is essentially an adaptation from [Oxt71, Thm. 1.6]. Take
a dense countable subset X of SM , for instance the set of periodic runs. Let
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xi be the i-th run of X for i ∈ N. For every i, j ∈ N, consider the prefix xikj
such that µ(xikj↑) < (1/2)i+j+1. Let Gij = xikj↑. Let Gj =

⋃
i∈NG

i
j , and let

G =
⋂
j∈NGj . Each Gj is open (as union of basic open sets) and contains the

dense set X. Thus G is a dense Gδ, and therefore co-meager. On the other hand,
µ(Gj) ≤

∑
i∈N µ(Gij) <

∑
i∈N(1/2)i+j+1 = (1/2)j . Therefore µ(G) = 0 and the

complement of G has measure 1.

D.9.4 Coincidence

We now prove that for bounded Borel measures on finite systems and ω-
regular properties, the two notions of largeness coincide. Note that the property
X2 described in the counterexample in Section D.9.3 is not accepted by any
finite-state automaton.

Proposition D.9.4. Let M be a finite-state system, µ a bounded Borel measure
on SM , and E an ω-regular property. If E is co-meager in SM , then µ(E) = 1.

Proof: If E is co-meager, Ego has a progressive winning strategy for E in
the Banach-Mazur game G(SM , E). Berwanger, Grädel and Kreutzer [BGK03]
have shown that Ego then has also a positional winning strategy, i.e., a strategy
f such that

f(αs) = αsw ⇒ f(βs) = βsw

for all α, β ∈ Σ∗. We will now show that µ(Rf ) = 1, and because Rf ⊆ E, we
will have µ(E) = 1.

As there are only finitely many states, the positional strategy f is also
bounded, i.e., there exists a k ∈ N such that

|f(α)| − |α| ≤ k

for each α ∈ Σ∗.
Let c > 0 be the bound on probabilities of transitions, and let Ei be the

event : “at position i · k, the run follows the strategy f”, i.e.,

Ei =
{
x ∈ S | f(xi·k) v x

}
.

Clearly the probability of each Ei is at least ck.
Then

∑
n µ(En) = +∞. If the En were independent, by the second Borel-

Cantelli lemma (see for instance [Wil91]), we would have that the set of infinitely
many occurrences of En :

lim supEn =

∞⋂
n=1

∞⋃
k=n

Ek

has probability 1. And clearly lim supEn ⊆ Rf .
Unfortunately the En are not independent, as the exact probability of playing

the strategy at some position may depend on whether the strategy had been
played before or not. However, while the exact probability may vary, we still
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know a lower bound for it : independently on whether the strategy has been
played elsewhere, at position i · k the strategy is played with probability at
least ck. This form of ”lower bound independence” is enough for our purposes.
Indeed we use the following variant of the second Borel-Cantelli Lemma (see
also [Sch07], page 29)

Lemma D.9.5. Let En be events in some probability space. Denote by E′n the
complement of En. Suppose there exist a sequence cn > 0 such that

∑∞
n=0 cn =

+∞ and such that the events are ”lower bound independent” with respect to
cn, in the following sense : for each pair of finite disjoint sets of natural num-
bers I, J , for each n 6∈ I ∪ J if µ(En |

⋂
i∈I Ei ∩

⋂
j∈J E

′
j) is defined then

µ(En |
⋂
i∈I Ei ∩

⋂
j∈J E

′
j) ≥ cn.

Then the probability that infinitely many En occur is 1.

We recall that µ(A | B) is defined as µ(A∩B)/µ(B). Therefore it is defined
only if µ(B) > 0.

Define an = 1−cn. Then µ(E′n |
⋂
i∈I Ei∩

⋂
j∈J E

′
j) ≤ an, if it is defined. By

induction on k we prove that for each n ≥ 0 µ(
⋂
n≤i≤n+k E

′
i) ≤

∏
n≤i≤n+k ai.

The basis is µ(E′n) ≤ an which is a special case of lower bound independence.
For the step, if µ(

⋂
n≤i≤n+k E

′
i)=0, then trivially µ(

⋂
n≤i≤n+k+1E

′
i) = 0 ≤∏

n≤i≤n+k+1 ai. Otherwise,

µ(
⋂

n≤i≤n+k+1

E′i) = µ(E′n+k+1 |
⋂

n≤i≤n+k

E′i)µ(
⋂

n≤i≤n+k

E′i)

≤ an+k+1 ·
∏

n≤i≤n+k

ai

=
∏

n≤i≤n+k+1

ai

The first equality is by definition of conditional probability, while the inequality
is by induction hypothesis and by lower bound independence.

Using logarithms one shows that
∑
n≤i ci = +∞ implies

∏
n≤i ai = 0 and

thus µ(
⋂
n≤iE

′
i) = 0 for any n. Therefore µ(

⋃∞
n=1

⋂∞
k=nE

′
k) = 0 which implies

µ(
⋂∞
n=1

⋃∞
k=nEk) = 1.

The converse also holds.

Proposition D.9.6. Let M be a finite-state system, µ a bounded Borel measure
on SM , and E an ω-regular property. If µ(E) = 1, then E is co-meager in SM .

Proof: If E is not co-meager, then Alter has, owing to determinacy of ω-
regular properties, a winning strategy f in the Banach-Mazur game G(SM , E).
Let α0 = f(ε) be the first move of Alter in that strategy. We have µ(α0↑) > 0.
As f is a winning strategy for Alter, f is also a winning strategy for Ego in the
Banach-Mazur game G(SM ,¬(α0↑ ∩ E)). From Proposition D.9.4 now follows
µ(¬(α0↑ ∩ E)) = 1, hence µ(α0↑ ∩ E) = 0. Because of µ(α0↑) > 0, we obtain
µ(E) < 1.
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We obtain that topological and probabilistic largeness coincide under the
conditions discussed :

Theorem D.9.7. In a finite system M under a bounded Borel measure µ, we
have, for each ω-regular property E, µ(E) = 1 if and only if E is co-meager in
the Scott topology on SM .

In particular, topological and probabilistic largeness also coincide for prop-
erties expressible in LTL.

We observe that the requirement on boundedness could be further weakened.
For instance, we could consider slowly vanishing measures, i.e., measures that
are not bounded but such that there exists a function h(n) such that

∏
n(1 −

h(n)) = 0 and for any prefix α of length n psα > h(n) if αs ∈ S.

D.10 Fair correctness

A system is correct w.r.t. a linear-time specification, i.e., a temporal property
E, if each run of the system satisfies E. If the system comes with a fairness
assumption, we only have to check that each fair run satisfies the specification.
The fairness assumption can be seen as a rely specification for the system that
is guaranteed by the environment.

Traditionally only simple, well-understood fairness assumptions are employed,
such as maximality, weak fairness and, occasionally, strong fairness. Proof calculi
and model-checking algorithms have been optimised to deal with such simple
fairness assumptions.

However, sometimes, a system does not satisfy a desired specification even
under the assumption of strong fairness. As an example, we can consider again
Dijkstra’s dining philosophers and the “conspiracy” scenario mentioned in Sec-
tion D.3.4. For this particular example, there is also a starvation-free, although
more complex, solution under strong fairness. However, for many problems, a
system satisfying the actual specification is impossible, too difficult, or too ex-
pensive to obtain, cf. [FR03]. Still, simple systems may exist for those problems
that satisfy the specification “well enough” and which actually work in practice.

However, in such cases, an appropriate fairness assumption, or more gen-
erally, an appropriate rely specification may be more difficult to find, more
expensive to specify, and proof calculi and model-checking algorithms may not
work well under them. For these cases, we can use a generic relaxation of cor-
rectness that allows us to verify a system that satisfies the specification “well
enough”, i.e., for most, but not necessarily all, runs. To formalize “most” runs,
we use topological largeness, i.e., fairness :

Definition D.10.1. A system M is fairly correct w.r.t. a temporal property E
if E is co-meager in SM .

Equivalently, M is fairly correct w.r.t. E if there exists a fairness assumption
for M under which it is correct w.r.t. E, i.e., there exists a fairness property F
for SM such that SM ∩ F ⊆ E. Thus, we abstract from the concrete fairness
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assumption that is required to guarantee the specification E. Note that the
difference between traditional and fair correctness is small (in a topological
sense). In particular, fair correctness guarantees that the system does not violate
safety, i.e., the safety property implied by the specification : M is fairly correct
w.r.t. E implies that M is correct w.r.t. E, that is, SM ⊆ E, where E denotes
the safety closure of E introduced in Sect. D.8.2. This implication follows from
the fact that a co-meager set is dense.

Fair correctness occurs implicitly in the literature, in game-theoretic, topo-
logical and probabilistic form as will be explained below. In particular, it turns
out that fair correctness is one of the seven relaxations of linear-time correct-
ness considered by Pistore and Vardi [PV03] and by Berwanger, Grädel and
Kreutzer [BGK03]. [PV03] provide an independent motivation of these relax-
ations of correctness in planning scenarios. They argue that such intermediate
versions of correctness are adequate for specifying goals for automated task
planning in nondeterministic domains.

We will now discuss how fair correctness can be verified.

D.10.1 Proving fair correctness

If φ is an LTL formula, then A φ is a formula of the branching-time logic
CTL*, cf. [Eme90], where A stands for “for all paths”. If we re-interpret A in
CTL* as “for most paths” in the topological sense, we obtain a language that
can express fair correctness for LTL and which has been studied by Ben Eliyahu
and Magidor [BEM96]. They present a sound and complete proof system for that
language. The same proof system has been introduced before by Lehmann and
Shelah [LS82] for a version of CTL* in which the path quantifier A is interpreted
as “for almost all paths” in the probabilistic sense. Lehmann and Shelah showed
soundness and completeness of the proof system for finite probabilistic systems
with bounded measures.

Alternatively we can prove fair correctness, using deduction in linear-time
temporal logic, by proving that the specification is implied by some well-known
fairness property in the system – such as those presented in Sect. D.3. One
can then ask whether there is a fairness notion that is complete for proving
fair correctness in this way, i.e., a fairness notion F that implies all temporal
properties that are fairly correct in the system, i.e., M is fairly correct w.r.t. to
E if and only if F ∩ SM ⊆ E. It is easy to see that, if such property existed, it
should be obtained as the intersection of all fairness properties. This intersection
may be the empty set in some systems as was shown in Section D.6.

However, if one is interested in a particular class of specifications, then it is
possible to find a fairness property that is complete for that class.

Definition D.10.2. Let S be a safety property and F ⊆ PΣ∞ a family of
linear-time properties. A fairness property F in S is F-complete w.r.t. S if for
each property E ∈ F , we have : If E is co-meager in S, then F ∩ S ⊆ E.

A complete fairness property, or a corresponding winning strategy for Ego,
can be used to prove fair correctness w.r.t. each specification in F . The following
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is a trivial consequence of the definition.

Proposition D.10.3. Given a family F , there is a F-complete fairness property
w.r.t. S if and only if⋂

{F ∈ F | F is a fairness property in S} (D.9)

is a fairness property in S.

Note that if F is complete for a family F , then it is also complete for every
subfamily of F . Also note that if F is F-complete and F ′ is a fairness property
in S such that F ′ ⊆ F , then F ′ is also F-complete.

Even if a F-complete fairness property exists, it need not be a member of
the family F .

Definition D.10.4. Let F be a fairness property. We say that F is initial in
F w.r.t. S if F is F-complete and F ∈ F .

If F has an initial fairness property, then this is essentially unique :

Proposition D.10.5. If F and F ′ are initial in F , then F ∩ S = F ′ ∩ S.

Proof: From the definition of initiality follows F ∩S ⊆ F ′ and F ′ ∩S ⊆ F .
We are usually interested in countable families F , such as the family of

all ω-regular properties or the family of all LTL-expressible properties. The
characterisation of completeness in D.9 then implies that there is a complete
fairness property because fairness is closed under countable intersection.

In particular, completeness w.r.t. ω-regular and LTL-expressible properties
can be characterised through word fairness (as defined in Sect. D.3.6).

Theorem D.10.6. Let F1 denote the family of all ω-regular properties or LTL-
expressible properties. Let M be a finite system. A fairness property F is F1-
complete w.r.t. M if and only if each run in F ∩SM is word fair. In particular,
word fairness is F1-complete w.r.t. M .

Proof: (⇐) If E is an ω-regular property that is co-meager in SM , then it
follows—as in the proof of Proposition D.9.4—that Ego has a positional winning
strategy f in the Banach-Mazur game G(SM , E). Let x ∈ SM be word fair. If
x is finite, then it must be maximal because of word fairness. As each finite
maximal run is fair, we have x ∈ E. If x is infinite, some state s is repeated
infinitely often. It follows that the word w = sf(s) is enabled infinitely often in
x. As x is word-fair, w is taken infinitely often in x. This in turn implies that
x ∈ Rf . As f is winning for Ego, we have x ∈ E. (⇒) It is easy to see that
word fairness w.r.t. a particular word w is LTL-expressible. As word fairness is
indeed a fairness property in SM , as argued in Section D.4, the claim follows
from the characterisation in D.9.

The assumption in Proposition D.10.6 that M is finite is essential. Consider
the nondeterministic walk on the integer line in Fig. D.6 and the run x =
0, 1, . . . ; x is word fair but violates sat( −1), which is topologically large.
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Another fairness notion that is complete for ω-regular properties is α-fairness,
which was introduced by Lichtenstein, Pnueli and Zuck [LPZ85] to prove prob-
abilistic largeness. They also proved completeness w.r.t. probabilistic largeness
in finite-state systems.

Although there exist complete fairness notions for ω-regular properties and
therefore for LTL-expressible properties, those are not ω-regular themselves :

Proposition D.10.7. Let F1 denote the family of all ω-regular properties or
the family of LTL-expressible properties. There are finite systems M such that
there is no initial fairness property in F1 w.r.t. SM .

Proof: Consider M = (Σ, R), with Σ = {p, q} and R = Σ × Σ. Suppose
there were an ω-regular fairness property F that is F1-complete w.r.t. SM = Σ∞.
Then Ego has a positional winning strategy f in G(SM , F ). Let f(p) = pwp and
f(q) = qwq. Let x = (wpwq)

ω. Since f is winning and x ∈ Rf , we have x ∈ F .
Let k = |wp|+ |wq| and let w = pkq. This word w does not occur in x : pk occurs
in x only if wpwq = pk. In that case pkq cannot occur in x. It follows that x is
not strongly fair w.r.t. w. However, strong fairness w.r.t. w can be expressed in
LTL. Hence F is not F1-complete, which contradicts our supposition.

Proposition D.10.7 shows that largeness of an LTL formula φ can in general
not be checked by expressing a complete fairness property as LTL formula ψ
and then checking the formula (ψ → φ).

However, there are natural families that have an initial fairness property :

Proposition D.10.8. Let F2 be the family of all RLTL-expressible properties
and M a finite system. Then state fairness (as defined in Sect. D.3.6) is initial
in F2 w.r.t. SM .

Proof: Lichtenstein, Pnueli and Zuck [ZPK02] point out that state fair-
ness is complete for showing probabilistic largeness of properties that are ex-
pressible in RLTL. A direct, detailed proof for this result is given by Matthias
Schmalz [Sch07]. State fairness for a finite system M = (Σ, R) can be expressed
by the following RLTL formula :∧

(s,s′)∈R

s→ s′ (D.10)

D.11 Conclusions

We have proposed a definition of fairness that is in line with the well-known
formalizations of safety and liveness. We have given three equivalent character-
isations of fairness : one that generalises the standard notion of strong fairness,
one in terms of the Banach-Mazur game, and one in terms of topological large-
ness. The game-theoretic characterisation stresses the intuition that fairness
guarantees that some finite behaviour will always eventually happen while fair-
ness can never prevent any finite behaviour from happening recurrently. The
topological characterisation confirms the intuition that most runs of a system
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are fair. To strengthen this intuition, we have shown that in some cases, topo-
logical largeness coincides with probabilistic largeness. In these cases, the set of
unfair runs has probability 0.

The definition of fairness led to a generic relaxation of linear-time correct-
ness, which we called fair correctness. Verifying fair correctness of a system
can be useful whenever the specification is satisfied only under some, possibly
strong, fairness assumption and the fairness assumption is either unknown, ex-
pensive to specify, or impossible to specify in the temporal logic. We have shown
that the model checking problem for fair correctness has the same complexity
for LTL and ω-regular specification as the corresponding problem for classical
correctness. This also answered an open question posed by Pistore and Vardi.

One prominent topic in the literature on fairness is the implementability of
a fairness notion (cf. e.g.[Jou01]), in which one asks whether a scheduler exists
that can be superimposed onto the system to realize a given fairness assump-
tion. In this work, we have chosen the simplest possible setting to study fair-
ness, aligned with earlier related contributions [AS85, MP90], where a system
has only one source of nondeterminism, which is then restricted by the fairness
assumption. In the corresponding setting of a scheduler that implements a fair-
ness assumption, the scheduler has access to all nondeterministic choices of the
system. Besides our abstract study of fairness, such a simple setting can be ad-
equate, for example, for studying some non-distributed multitasking operating
systems. Then, Thm. D.9.7 implies that any ω-regular fairness assumption on
a finite system can be generically implemented with probability 1 through coin
flipping. This includes the implementation of very strong fairness assumptions
such as ∞-fairness over finitary properties (Def. D.4.1). Alternatively, one can
use a deterministic scheduler for word fairness, e.g., repeatedly scheduling all en-
abled finite words of the system, to implement any ω-regular fairness notion in a
finite system (cf. Thm. D.10.6). One could then still ask for our setting whether
some fairness assumption can be implemented in some sense more efficiently in
a given finite system or at all in a given infinite system.

However, often the question of implementability arises in a specific sys-
tem model, e.g., a finite set of distributed processes that communicate asyn-
chronously by message passing. In such models, we often have multiple sources
of nondeterminism, such as the uncertain order of message receipt or the un-
known inputs from the environment. These sources of nondeterminism then
need to be distinguished in the system model because usually not all of them
can be influenced by a superimposed scheduler. Studying implementability then
requires a more complex setting to reflect this. A natural generalized setting
to study implementability are open systems with two kinds of nondeterministic
choices, one controlled by a scheduler and one by an adversary, i.e., the environ-
ment. A direction for further work is to formalize fairness in that setting, which
is tightly related to the notion of realizability as introduced by Abadi, Lamport
and Wolper [ALW89] and to two-player games, similar to the ones presented in
[ACV10].

It is clear that some of the fairness notions discussed above cannot be imple-
mented in such a generalized setting as they stand. For example, if an action is
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k-enabled, it does not necessarily mean that a scheduler can ensure the execu-
tion of the action in the future because it may not have access to all the actions
that lead to the enabledness. Further complications can arise in distributed sys-
tems where the scheduler may require non-trivial distributed computations to
obtain global knowledge that is needed to guarantee a certain fairness notion
[Jou99]. Studying such issues requires further specialization of the system model
to reflect distribution and the fact that the scheduler has only partial knowledge
of the system state.

We mentioned related work throughout the chapter. Some authors used the
notion that we have described as fairness in different contexts without actually
attempting to define fairness : Ben Eliyahu and Magidor [BEM96] observed that
some popular fairness notions describe co-meager sets. Alur and Henziger [AH95]
argue that for the compositional modeling of reactive systems, machine closure
should be strengthened to what they call local liveness, which is the same as what
we have defined as fairness. They gave the game-theoretic definition. As men-
tioned above, a generalised form of the Banach-Mazur game had been considered
in [PV03] and [BGK03]. Thus, our results link different strands of research that
were developed independently.

In addition, we would like to mention two related works, whose relations with
ours should be further studied. One is recent work by Manfred Jaeger [Jae09]
that also finds connections between a more intensional notion of fairness and
Martin-Löf randomness. The second one is the work by Darondeau et.al. [D+92],
where another, rather different, point of view on fairness is provided. For them,
fairness properties are characterised as the Π0

3 sets in Kleene’s hierarchy. Thus
the class of fairness properties is not closed under superset. No topological char-
acterisation is provided, although there are analogies between Π0

3 sets and Fσδ
sets.

Some follow-up work on our proposal has already appeared. Together with
Schmalz [SVV07], we show, for various subclasses of LTL, that model checking
fair correctness has either the same complexity as checking classical correctness
or that it is even strictly less expensive. Furthermore we show elsewhere [SVV09]
that the game-theoretic characterisation can be used to present counterexamples
in probabilistic model checking. Asarin, Chane-Yack-Fa and Varacca [ACV10]
study the notion of fairness in the context of two-player games. A generalisation
of the Banach-Mazur game is proposed, and the equivalence between two-player
games with fairness and Markov decision processes is shown. Baier et.al. [B+08]
apply our framework to timed automata. There, a coincidence result between
topological and probabilistic largeness is also shown.



Annexe E

Modelling the handshake
protocol

E.1 Introduction

Asynchronous circuits are used to design systems where the local activity
of each subunit is not restrained by some global condition, like the long time
intervals imposed by a system clock. When designing such systems, one has to
face several questions. How do we know when a message we sent has reached its
destination so that we can use the same channel again, i.e. how can we avoid
transmission interference ? How can we ensure the correct behavior regardless
of computational speeds of single modules and propagation delays over wires,
i.e. how can we enforce delay-insensitivity ?

Handshake protocols try to answer these questions by imposing an interactive
communication discipline. In particular, the protocols require that after a circuit
has sent a message on a channel, it has to wait for a confirmation that the mes-
sage was received before sending again on the same channel. This requirement
alone is enough to rule out transmission interference. For their simplicity and
efficiency, handshake protocols have been employed by enterprises like Philips
and Sun in the development of a series of VLSI chips [Hso].

The first attempts to formalize delay-insensitive protocols and their prop-
erties employed trace sets [Udd84]. In particular, the first model to specifically
address the handshake case was given in [VB93]. Trace models have been able
to neatly formalize the properties of handshake protocols which ensure delay-
insensitivity, but so far they have failed in representing correctly their composi-
tion [Fos09]. To solve this problem, Fossati [Fos07] proposed a game semantics
for handshake circuits which describes their composition correctly for the first
time. Technically, the result was accomplished by representing handshake “be-
haviors” as sums of deterministic handshake strategies. The price to pay is that
there are behaviors which do not fit in this representation. The crucial example
is the mixer component, MIX, which will be described in Section E.4.5.

213
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To overcome these limitations, we propose two alternative approaches to
modeling handshake protocols : a process calculus, inspired by Robin Milner’s
Calculus of Communicating Systems (CCS) [Mil89], and a Petri net [Rei85]
model.

Similarly to CCS, our calculus defines concurrent processes that commu-
nicate via rendez-vous channels. However, in order to ensure the handshake
discipline, the calculus features another synchronization mechanism, by means
of shared resources, reminiscent of coordination languages like Linda [Gel85].
Also, the calculus is endowed with a linear typing system, inspired by [KPT99,
YHB02]. These design choices allow to express the external behavior of a hand-
shake protocol, along with a more complex internal behavior.

We claim that this is the first independent syntactical description of the
handshake behavior, as our handshake configurations are independent from any
semantical interpretation while the handshake behavior is ensured by the typ-
ing system. This was not the case in previous process algebras for handshake
protocols [VB93, JUY93], where only processes whose trace semantics satified
the handshake behavior were considered, thus processes were trace sets and in-
evitably suffered from the compositionality problems observed in the underlying
trace model.

We then compare our calculus and the trace model by defining, for each con-
figuration, the corresponding set of quiescent traces, i.e. the traces corresponding
to computations that may not be extended with an output event. We show that
this quiescent trace semantics is sound w.r.t. Van Berkel’s definition [VB93]. By
means of an example, we show that quiescent trace equivalence is not a congru-
ence w.r.t. parallel composition. This confirms the intuition that trace models of
handshake protocols are not informative enough, and their branching structure
needs to be taken into account. Indeed weak bisimilarity is a congruence for our
calculus.

A graphical representation is also a very natural choice for dealing with
asynchronous circuits : in graphs as in circuits, composition is easy when ev-
erything else works properly. Several works have taken a similar perspective
([AGN96],[Mac95],. . . ). In particular Dan Ghica developed a language for asyn-
chronous hardware design by taking inspiration from the Geometry of Interac-
tion and handshake circuits [Ghi07]. However his goal was to improve previous
hardware design languages [VB93, Bar98] and not to capture all handshake
behaviors.

The second model we present is based on Petri nets [Rei85]. Petri nets are
widely used as models of asynchrony, and are close to the context in which the
handshake communication protocol originated [CS72a]. However, the properties
of delay-insensitivity and absence of transmission interference had not yet been
formalized under a graphical representation. We call our model handshake Petri
nets. We show that handshake Petri nets capture precisely the handshake pro-
tocol, in the sense that the behavior of every net is a handshake language and
that every handshake language is the behavior of some net.

We finally relate our two models, by giving the process calculus a Petri net
semantics. In particular we show that there is a strict correspondence between
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handshake processes and finite Petri nets, in the sense that for each finite hand-
shake Petri net, there is a weakly bisimilar process.

Structure of the chapter This chapter is a fusion of the papers [FV08,
FV09].

In Section E.2 we define the notion of handshake language as set of traces
(taking inspiration from [VB93] and [Fos07]). In In Section E.3, we present syn-
tax, operational semantics and type system of our calculus. We show that the set
of quiescent traces of a typed configuration is a handshake language. We show
that weak bisimilarity is a congruence, while quiescent trace semantics is not.
Section E.4 we introduce handshake Petri nets and some of their subclasses. We
provide an interpretation of handshake Petri nets into handshake languages and
we prove the correctness and completeness of this interpretation. Completeness
of deterministic handshake Petri nets with respect to deterministic handshake
languages follows as a corollary. In Section E.5, we present the interpretation
of the calculus into handshake nets, and we show that it is fully abstract with
respect to weak bisimilarity. To conclude, we show the universality of the seman-
tics, by showing that every bisimilarity class of finite handshake nets is denoted
by a process.

E.2 The handshake protocol

In this section we characterize the handshake protocol in terms of languages
obeying its communication discipline. We do not exactly give another trace
model as, for instance, we do not define composition. We just need a yardstick
against which to measure the correctness of our model. Moreover, we are only
interested in the communication discipline, so we assume circuits have nonput
ports (no data is exchanged in a communication).

Definition E.2.1. A handshake structure is a pair 〈P, d〉, where P is a finite
set of ports and the function d : P → {act, pas} determines a direction for each
port, active or passive.

As we shall see, active ports are allowed to start a communication, while
passive ports are initially waiting.

For the rest of this section let 〈P, d〉 be a handshake structure and let
∪p∈P {p, p̄} be the alphabet of messages on 〈P, d〉. In particular, p and p̄ are both
messages on some port p 1. Two messages are independent when they are not
on the same port. The function λP is defined on ∪p∈P {p, p̄} so that λP (p) = −
(input message) and λP (p̄) = + (output message), for all p ∈ P . We may write
λ instead of λP when P is redundant or clear from the context.

Let t be a trace on the alphabet of messages ∪p∈P {p, p̄}. t is a handshake
trace on 〈P, d〉 if for all p ∈ P :

1. The same name p is used for both the message and the port. The context will always
make clear which p we are referring to.
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– t�{p, p̄} = p̄pp̄p . . . when d(p) = act ;
– t�{p, p̄} = pp̄pp̄ . . . when d(p) = pas ;

We call thread each such restriction and we call request (acknowledge) the mes-
sage appearing in the odd (even) positions in each thread of p.

Threads induce an equivalence on traces, the homotopy relation ∼P . Given
two handshake traces s and t, we say that s ∼P t when they have the same
set of threads. As usual, we denote by [s]∼ the equivalence class of trace s with
respect to ∼, we call [s]∼ the position of s.

Given a set of traces σ we write σ≤ for its prefix-closure. Let σ be a set of
handshake traces, s ∈ σ≤ is passive in σ if and only if there is no message σ can
output after s :

∀s ·m ∈ σ≤, λ(m) = −.
We write Pas(σ) for the set of passive traces in σ≤.

We define rP as the smallest binary relation which is closed by reflexivity,
transitivity and concatenation, and such that for any distinct ports p, q ∈ P :

1. pq̄ rP q̄p ;

2. p̄q̄ rP q̄p̄ ;

3. pq rP qp

We say that s reorders t in P if s rP t. Note that the relation rP is not sym-
metric.

Let s be a handshake trace and p ∈ P . We write p xP s if sp is still a
handshake trace. We are now ready for the definition of handshake language.

Definition E.2.2. A (handshake) language σ on 〈P, d〉 is a non-empty set of
finite handshake traces on 〈P, d〉 such that :

1. Pas(σ) ⊆ σ (closed under passive prefixes) ;

2. (t ∈ σ ∧ s rP t)⇒ s ∈ σ (reorder closed) ;

3. (s ∈ σ≤ ∧ p xP s)⇒ s · p ∈ σ≤ (receptive).

Note that the traces of a handshake language are finite, but the language
itself may contain an infinite number of traces.

Definition E.2.3. Let σ be a handshake language. We say that σ is positional
if, for finite s, s′ ∈ σ≤, with s ∼P s′, we have :

1. s · t ∈ σ≤ ⇒ s′ · t ∈ σ≤ ;

2. s ∈ σ ⇒ s′ ∈ σ ;

We say that σ is deterministic if for any distinct p, q ∈ P :

1. s · p̄ ∈ σ≤ ⇒ s /∈ σ (progress) ;

2. s · p̄ ∈ σ≤ ∧ s · q̄ ∈ σ≤ ⇒ s · p̄ · q̄ ∈ σ≤ (absence of conflict).

Positionality means that the only thing relevant in a choice is the position we
are at and not the way we reached it. As for determinism : when a deterministic
language σ is able to produce an output, waiting is not an option ; when there is
a choice of two outputs, one choice must not exclude the other. It is not difficult
to prove the following fact.
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Proposition E.2.4. A deterministic language is positional.

Examples

Consider the handshake structures P = 〈{p}, {p 7→ pas}〉 andA = 〈{p}, {p 7→
act}〉, corresponding respectively to a passive and to an active port. Then,
pp̄pp̄pp̄ is a handshake trace on P but not on A. The set

{pp̄, pp̄pp̄, pp̄pp̄pp̄, . . .}

is not closed under passive prefixes as it does not contain the empty string, then
it is not a handshake language. Whereas both sets

RUNp = {p̄, p̄pp̄, p̄pp̄pp̄, . . .} and {ε, p̄, p̄pp̄, p̄pp̄pp̄, . . .}

are handshake languages on A. In particular RUNp is deterministic, the other
is not. The set

{p̄, p̄pp̄, p̄pp̄pp̄}

is not a handshake language on A, because it is not receptive : after the last
trace the environment is still supposed to send an acknowledge, but the language
is not ready to receive it. Even the receptive RUNp becomes not receptive if we
extend its structure with a passive port, as in B = 〈{p, q}, {p 7→ act, q 7→ pas}〉.
A process which is receptive with respect to B is the following :

REPp,q = {ε, qp̄, qp̄pp̄, qp̄pp̄pp̄, . . .}

this process is also called repeater since, after reception of a request on its passive
port it “handshakes” indefinitely on the active. Now look at the following sets
on B :

{ε, qq̄p̄, qq̄p̄q, qq̄p̄qp}

{ε, qq̄p̄, qp̄q̄, qq̄p̄q, qp̄q̄q, qq̄p̄p, qp̄q̄p, qq̄p̄qp, qq̄p̄pq, qp̄q̄pq, qp̄q̄qp}

Neither of them is reorder-closed, then neither of them is a handshake language.
For example, qq̄qp̄ r{p,q} qq̄p̄q but qq̄p̄q is in the prefix-closure of both of the
above sets, while qq̄qp̄ is in the prefix-closure of none. We leave it to the reader
to figure out the reorder-closures of the above two sets and to show that the
second’s is a handshake language while the first’s is not.

Finally, consider yet another set on B :

{ε, qp̄, qq̄, qp̄pq̄, qq̄qp̄, qp̄pq̄q, qq̄qp̄pp̄, qq̄qp̄pp̄p}

The reader can verify that it satisfies all the properties of a handshake language,
we show that it does not satisfy those of positionality. Note that qp̄pq̄q and qq̄qp̄p
are two traces with the same position and that both are in the prefix-closure
of the above set. However, while the first is actually an element of the set, the
second is not and, conversely, while the second can be extended with p̄, the first
cannot. The language is not deterministic either since after the initial q there is
a mutually exclusive choice between p̄ and q̄.
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E.3 The calculus

In this section we provide the formal definition for our Calculus of Handshake
Configurations (CHC). We stress that we do not model data-passing as we are
only interested in the communication protocol. The calculus is endowed with two
communication mechanisms. Besides the external communication via rendez-
vous channels, there is also a form of internal communication, invisible to the
outside, where actions may require resources in order to be performed and may
release resources for other actions to use. This is necessary to model internal
synchronizations between different ports of the same system. However, different
systems shall communicate only through channels.

E.3.1 Syntax and operational semantics

We consider a set A of channels denoted by a, b 2, and a set R of resources
denoted by r, k. The syntax of the calculus uses three syntactic categories :
threads, processes and handshake configurations. Threads are purely sequential
and allow prefixing while processes are parallel compositions of threads. The
prefixes are input and output actions on a finite set of resources. As we will
see later, input actions release resources and output actions use resources. Let
∆ ⊆ A :

act ::= a{r1,...,rn} | ā{r1,...,rn} Actions
T ::= 0 | act.T | Rec T Threads

P,Q ::= T | P | Q | P \∆ Processes

A handshake configuration is composed of a process P along with a multiset
of resources S for internal synchronization. A configuration can be open or
closed :

M ::= *P, S+ | 〈P, S〉 Open and closed configurations

Intuitively, open configurations represent systems under construction, whose
resources are still accessible to the environment. Closed configurations represent
completed systems and can only communicate via handshake channels.

The operational semantics is given in terms of an LTS over handshake con-
figurations. Labels are channels with their polarity, plus the unobservable label :

e ::= ā | a | τ a ∈ A

Given an observable label, the function ch returns the channel on which it
occurred. Formally : ch(ā) = ch(a) = a for any channel a. The definition of
the operational semantics is simplified thanks to the congruence (≡) between
processes :

P | Q ≡ Q | P Rec 0 ≡ 0

2. We will use channels to model ports, but we prefer to keep the conceptual difference
between the two notions
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*a{r1,...,rn}.T, S+ a−→ *T, S + {r1, . . . , rn}+
(inev)

*ā{r1,...,rn}.T, S + {r1, . . . , rn}+
ā−→ *T, S+

(outev)

M
e−→M ′

M | N e−→M ′ | N
(par1)

M
ā−→M ′ N

a−→ N ′

M | N τ−→M ′ | N ′
(par2)

M
e−→M ′ ch(e) 6∈ ∆

M \∆
e−→M ′ \∆

(res)

*P, S+ e−→ *Q,S′+

〈P, S〉 e−→ 〈Q,S′〉
(closure)

*T ·Rec T, S+ e−→ *T ′, S′+

*Rec T, S+ e−→ *T ′, S′+
(rec)

P ≡ P ′ * P ′, S+ e−→ *Q′, S′ + Q ≡ Q′

*P, S+ e−→ *Q,S′+
(struct)

Figure E.1 – Labeled transition semantics

Let res(P ) be the set of resources of a process P . As meta-notation, we define
sequential composition of threads T · T ′ :

(act.T )·T ′ = act.(T ·T ′) T ·T ′ = T ′ (T ≡ 0) (Rec T )·T ′ = Rec T (T 6≡ 0)

and we extend process operators to configurations :

*P1, S1+ | *P2, S2+ = *P1 | P2, S1+S2+ *P, S+\∆ = *P \∆, S+

〈P1, S1〉 | 〈P2, S2〉 = 〈µ1(P1) | µ2(P2), µ1(S1)+µ2(S2)〉 〈P, S〉\∆ = 〈P\∆, S〉

where + denotes the union of multisets and µ1 : res(P1) ∪ S1 → R1 and µ2 :
res(P2) ∪ S2 → R2 are injective functions between resources such that R1 and
R2 are disjoint and all the resources they contain are fresh. Moreover µ(S) is the
point-to-point application of the function µ to the multiset S, while µ(P ) is the
process obtained from P by renaming any label occurrence according to µ. This
guarantees that two closed configurations can only communicate via channels.

Note that we do not define the parallel composition of an open and a closed
configuration. The idea is that we may combine two different parts of a system
(in the construction stage) or two completed systems (for interaction), but we
may not combine a system under construction with a completed one.

The derivation rules for the operational semantics are shown in Figure E.1.
When an input occurs, a set of resources becomes available ; while an output
requires a set of resources in order to occur, then the used resources disappear.
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a ∈ A
0�!a

(ax)
T�!a

RecT�!a
(rec)

T�?a
ā{r1,...rn}.T�!a

(outpref)
T�!a

a{r1,...rn}.T�?a
(inpref)

P � Γ′ Q� Γ′′ ∀a ∈ Dom(Γ′) ∩Dom(Γ′′), Γ′(a) 6= Γ′′(a)

(P | Q) \ (Dom(Γ′) ∩Dom(Γ′′)) � Γ′ � Γ′′
(par)

P � Γ
*P, S + �Γ

(oconf)
P � Γ
〈P, S〉� Γ

(cconf)

Figure E.2 – Handshake types

The other rules are quite standard. Note however that the operational distinc-
tion between open and closed configurations comes from the two distinct cases
of composition given above. In the parallel composition of open configurations,
one side may influence the other by modifying a shared resource, as no renaming
takes place. This is not possible for closed configurations, as renaming prevents
the sharing of resources.

A sequence of transitions M0

e0
−−→ M1 . . .Mn

en
−−→ M is denoted M0

t
−�

M , where t = e0 . . . en. The string t is called the strong trace of the sequence,
while the weak trace is the restriction of t to the labels other than τ . Strong
(∼) and weak (≈) bisimilarity are also defined as usual [Mil89] on the labeled
transition system for CHC.

E.3.2 Typing system

A type Γ is a partial function from channel names to {!, ?}. We will use the
shorthand notation !a or ?a to describe a type defined on channel a, and commas
to join types. We say that a is active in Γ when Γ(a) =! and we say it is passive
when Γ(a) =?.

Let Γ′ and Γ′′ be two types and let a be a channel. Let us define the function
Γ′ � Γ′′ : (Dom(Γ′)\Dom(Γ′′)) ∪ (Dom(Γ′′)\Dom(Γ′))→ {!, ?} such that :

– Γ′ � Γ′′(a) = Γ′(a), when a ∈ Dom(Γ′)\Dom(Γ′′) ;
– Γ′ � Γ′′(a) = Γ′′(a), when a ∈ Dom(Γ′′)\Dom(Γ′).

Typing judgements are of the form T�Γ, P�Γ, M�Γ, where T is a thread,
P a process, M a configuration and Γ a type. The typing rules are shown in
Figure E.2. The empty thread is active : this models receptiveness, because
a thread of passive type must always be able to perform another input. The
following three rules guarantee that threads are alternating on each channel.
The parallel composition of two processes is allowed only if threads on the
same channel have dual types. These channels must then be restricted so that
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no other process can communicate on them. This models the point-to-point
communication discipline of handshake protocols. Note that resources do not
play any role in the typing.

The following results show the intuition behind the typing system.

Lemma E.3.1 (Reduction). Let M be a configuration such that M �Γ. Then :

– M
a−→ ⇔ Γ(a) =? ;

– M
ā−→ ⇒ Γ(a) =! ;

– M
e−→M ′ ∧ e 6= τ ⇒ M ′ � Γ′ s.t. Dom(Γ′) = Dom(Γ) ∧

∀b ∈ Dom(Γ), b 6= ch(e)↔ Γ(b) = Γ′(b) ;

– M
τ−→M ′ ⇒ M ′ � Γ ;

Corollary E.3.2 (Subject Reduction). Let M � Γ and M
s
−� M ′ then there

is a type Γ′ such that M ′ � Γ′.

E.3.3 Examples

As a first example, we show a configuration representing the OR handshake
protocol.

OR = 〈a{r1}.Rec ā{r2}.a
{r1}.0 | Rec b̄{r1}.b

{r2}.0 | Rec c̄{r1}.c
{r2}.0, ∅〉

We have that OR�?a, !b, !c. When a request on the passive port a arrives, the
resource r1 becomes available and this enables OR to send a request on either
active port b, c. An acknowledge to this last request enables an acknowledge to
the first one. The second configuration represents the MIX protocol.

MIX = 〈b{k1}.Rec b̄{k2}.b
{k1}.0 | c{k1}.Rec c̄{k2}.c

{k1}.0 | Rec d̄{k1}.d
{k2}.0, ∅〉

We have that MIX �?b, ?c, !d. Each time an environment request arrives (on
either passive port b, c), the component MIX handshakes on its active port
d and after completion it acknowledges to the first request. If, by the time the
handshake on the active port is complete, the environment has sent a request on
the other port, MIX chooses nondeterministically which request to acknowledge
first.

The two protocols can be composed in parallel, communicating on the com-
mon ports. We have (OR |MIX) \ {b, c}�?a, !d.

E.3.4 Soundness

In this section we show that typed CHC configurations indeed define hand-
shake languages, using the weak traces of the labeled transition semantics.

Each feature of the calculus plays a role in modeling the handshake disci-
pline. Let us see informally how. First of all, handshake languages alternate
input and output on the same port. This is enforced by the typing system. The
reorder closure is guaranteed by the fact that different ports are on different
parallel threads. The only reordering that is in general not allowed is when an
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input blocks an output. An input can block an output because an output may
need resources that will only be provided by the input. Finally, receptiveness is
guaranteed by the fact that inputs do not need resources, and can always occur,
provided that the alternation with the corresponding outputs is respected.

In order to denote handshake languages we consider the weak traces of the
transition sequences of a configuration. If we considered the traces of all transi-
tion sequences, the denoted languages would always be prefix closed and some
handshake languages would excape us. To characterize the larger class of lan-
guages closed under passive prefixes, we consider only the traces of the quiescent
transition sequences.

A configuration M is quiescent if it cannot (weakly) perform an output, i.e.

if there is no transition sequence of the form M
(τ)∗

−� ā−→, for any channel a. A

transition sequence M
t
−�M ′ is quiescent if M ′ is.

Definition E.3.3. Let M be a handshake configuration. We define HL(M) to
be the set of weak traces of all the quiescent transition sequences which start
from M .

Let M be a configuration and Γ a type such that M � Γ. The handshake
structure HS(Γ) = 〈PortsΓ, dΓ〉 is defined by setting PortsΓ = Dom(Γ) and
dΓ = Γ.

Proposition E.3.4 (Soundness). Let M be a handshake configuration, such
that M � Γ. Then HL(M) is a handshake language on the handshake structure
HS(Γ).

We observe, however, that the other direction, the fact that each language is
the denotation of some configuration, cannot be established. This is due to the
presence of non recursive handshake languages which could never be captured
by finite configurations. It would still be interesting to characterize the class of
handshake languages that correspond to CHC configurations. We leave this as
future work.

E.3.5 Compositionality

Open configurations can communicate via shared resources, but this is not
directly observable in the labeled transition semantics. Thus we cannot expect
a labeled equivalence to be fully congruent for them. However weak bisimilarity
is a congruence with respect to composition of closed configurations :

Proposition E.3.5. Let M1,M2, N be closed handshake configurations such
that M1,M2�Γ, N�Γ′ and (M1 | N)\∆�Γ�Γ′, (M2 | N)\∆�Γ�Γ′, where
∆ = Dom(Γ)∩Dom(Γ′). Then M1 ≈M2 implies (M1 | N)\∆ ≈ (M2 | N)\∆.

This is consistent with our intepretation of resources as internal means of
communication. Our main goal was to describe the externally observable behav-
ior of a system and we do so by considering only those configurations whose
resources cannot be accessed by the environment.
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In Section E.2 we talked about the difficulty of finding a good definition of
composition for handshake languages. This intuition is confirmed as “quiescent
trace equivalence” is not a congruence. Consider the following processes :

P1 = c̄{r1,r2}.c
{}.0 | b̄{r3,r1}.b

{r1}.Rec b̄{r1}.b
{r1}.0 | (d̄{r3,r2}.d

{r3}.0 | d{}.d̄{}.d{}.0)\{d}

P2 = c̄{r1}.c
{}.0 | Rec b̄{r1}.b

{r1}.0 .

Consider the closed configurationsM1 = 〈P1, {r1, r2, r3}〉 andM2 = 〈P2, {r1, r2, r3}〉.
They are both interpreted as the same handshake language :

HL(M1) = {c̄, c̄c, b̄, b̄bc̄, b̄bc̄c, b̄bb̄, . . .} = HL(M2)

however, if we compose them withN = 〈b{}.Rec b̄{}.b
{}.0 | c{k}.0 | ā{k}.a{}.0, ∅〉

we obtain two configurations with different interpretations :

HL((M1 | N) \ {b, c}) = {ε, ā, āa} HL((M2 | N) \ {b, c}) = {ā, āa}

Therefore the parallel composition of CHC configurations cannot be used to
define the composition of handshake languages. In order to compose handshake
protocols, some more knowledge on the branching structure is needed. CHC
provides a suitable formalism to study this structure.

E.4 Handshake Petri nets

We now present an alternative model of the Handhsake protocol, based on
Petri nets. We will assume some basic knowledge on Petri nets, which we will
present in their standard graphical representation [Rei85]. We will consider Petri
nets in their unsafe version, where places are allowed to contain several tokens
at the same time. This is not just for convenience. Unsafe nets are necessary
to carry out our construction. We also stress that the nets we consider are in
general not finite, in the sense that they may have infinitely many places and/or
transitions. However, the correspondence with the process calculus will be valid
only for finite nets.

E.4.1 Definition

Handshake Petri nets are Petri nets with a special “external interface”, re-
flecting the structure of handshake ports. We define handshake ports in two
phases. We first define the static structure of ports, and then we specify the
markings.

Let G be a Petri net and let NO and NI be a partition of its nodes (places
and transitions). The elements of NO will be called output transitions / places
while the elements of NI will be called input transitions / places. We give an
inductive definition of a static handshake port a = 〈G,NO, NI〉 as follows :

– (Basic cases) NO and NI contain no transition ;
– (Inductive cases) let a′ = 〈G′, N ′O, N ′I〉 be a static port :
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Figure E.3 – A passive port (I is for input and O is for output)

– (input prefixing) given a place p ∈ N ′I with no outgoing arcs, a is ob-
tained from a′ by adding an input transition t and an arc from p to
t ;

– (output prefixing) given a place p ∈ N ′O with no outgoing arcs and a
place p′ ∈ N ′I with exactly one outgoing arc, a is obtained from a′ by
adding an output transition t, an arc from p to t and an arc from t to
p′ ;

– (alternation) given a place p ∈ N ′O and a transition t ∈ N ′I with no
outgoing arcs, a is obtained from a′ by adding an arc from t to p.

Let a′ be a static port and let p be a place of (the Petri net of) a′ such that
if p is an input place, p has an outgoing arc. Let a be the net obtained from
a′ either by adding one token to p or by keeping a′ with no tokens, then a is a
handshake port. Moreover, if a is as a′ (no tokens) or if p is an output place we
say that a is an active port, otherwise we say that a is a passive port.

Let G be a Petri net, G′ a subgraph of G and a = 〈G′, NO, NI〉 a port s.t. :
– a place of G′ may only be connected to transitions of G′ ;
– a transition t ∈ NO of G′ may only have outgoing arcs to places of G′ ;
– a transition t ∈ NI of G′ may only have incoming arcs from places of G′.

then a is a handshake port of G. Figure E.3 shows an example of a passive
handshake port of some net. The arrows without source or target indicate the
way the port may connect to the rest of the net. The statical structure imposes
alternation between the firings of input and output transitions. It is also ensured
that, if an input place may ever contain a token, then it must have an outgoing
arc to an input transition (receptiveness). Finally, by allowing a port to contain
several input and output transitions we are able to model each event separately.
For instance, two distinct input transitions may connect differently to the rest
of the net, thus providing different resources.

Definition E.4.1. The pair H = 〈GH , PortsH〉 is a handshake Petri net (hpn)
just when GH is a Petri net and PortsH a set of disjoint handshake ports of
GH .

Let H = 〈GH , PortsH〉 and let t (p) be a transition (place) of GH . Then t
(p) is internal of H if it is neither of input nor of output (in some port a of H).

E.4.2 Composition

A linkage between an active port a ∈ PortsH and a passive port b ∈ PortsH
of an hpn H = 〈GH , PortsH〉 is the hpn L(H, a, b) = 〈GH,a,b, PortsH\{a, b}〉,
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Figure E.4 – Example of composition of ports

where GH,a,b is the net obtained by adding two fresh places p1 and p2 to GH
and arcs from each output transition of a to p1, from p1 to each input transition
of b, from each output transition of b to p2 and from p2 to each input transition
of a.

We call link of L(H, a, b), denoted link(H, a, b), the graph consisting of the
graphs of a and b plus p1, p2 and any arc connecting them to transitions of a
or b. Figure E.4 shows an example of link between an active port (left) and a
passive port (right).

Definition E.4.2. Let H1 = 〈G1, Ports1〉 and H2 = 〈G2, Ports2〉 be two hand-
shake Petri nets. Let {a1, . . . an} ⊆ Ports1∪Ports2 be a set of active handshake
ports and let {b1, . . . bn} ⊆ Ports1∪Ports2 be a set of passive handshake ports,
such that for 1 ≤ i ≤ n, ai ∈ Ports1 if and only if bi ∈ Ports2. Then :

H1 ‖{(a1,b1),...(an,bn)} H2

=
L(. . . L(〈G1 +G2, Ports1 ∪ Ports2〉, a1, b1), . . . an, bn)

is the composition of H1 with H2 by linking the pairs (a1, b1), . . . (an, bn).

It is easy to see that the composition of two hpns is well-defined and asso-
ciative.

E.4.3 Handshake marked graphs

In the first stage we focus on marked graphs [Pet81], which are Petri nets
where each place has at most one incoming and at most one outgoing arc.

Marked graphs are significant as they allow to identify places with commu-
nication channels and in turn to represent all and only circuits which can be
built out of channel, synchronization and fork operations. Moreover they have
a special historical importance for the handshake protocol [CS72b]. We call
handshake marked graph a handshake Petri net which is also a marked graph.

Examples

Marked graphs represent the core of determinism. In particular they allow
the representation of most deterministic handshake components : STOP , RUN ,
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CON , SEQ, PAR, PAS, JOIN (in the notation of [VB93]). Two of these
components are represented below 3.
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PAR (left) waits for a request on its passive port and then starts two hand-
shakes in parallel on its active ports. Only after successful termination of both
it acknowledges to the first request. SEQ (right) also waits for a request on its
passive component, but then it starts its active ports in sequence, before finally
acknowledging to the initial request.

The examples show that handshake marked graphs (or marked graphs in
general) always react in the same way to a given stimulus. For example, SEQ
always sends a request on its first active port after the reception of a request
on its passive port. It can be shown that handshake marked graphs embed a
particular subclass of handshake languages where each pair stimulus/response
can be seen as a couple of brackets in the language and each trace becomes well-
bracketed with respect to any of these couples, after a fixed number of closing
brackets.

E.4.4 Deterministic extensions

Marked graphs express only deterministic behaviors but not all determinis-
tic behaviors are captured by marked graphs. As far as we know, no structural
characterization of determinism in Petri nets exists in the literature. We pro-
pose a definition that completely characterizes determinism in the context of
handshake nets.

Definition E.4.3. A handshake deterministic-branching net (a handshake DB
net, or just a DB net, for short) is a handshake Petri net in which every place
p with several outgoing arcs is such that :

3. Although handshake Petri nets are formalized here for the first time, a similar represen-
tation for both components had already been given as far back as [CS72a]. The pictures there
were an inspiration for our work.
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– Each post-transition t of p has a “guard”, a place whose only post-transition
is t ;

– Exactly one of the guards of p’s post-transitions initially contains a token,
so that at most one post-transition may initially be enabled ;

– Each of p’s post-transitions has exactly one outgoing arc to some guard of
a post-transition of p, so that each time one post-transition has fired one
post-transition may be enabled ;

– Each guard of a post-transition of p may have incoming arcs only from
p’s post-transitions, so that no more than one post-transition may ever be
enabled.

Examples

As an example, consider COUNTN which, after reception of a request on
its passive port, handshakes N times on its active port. Then it acknowledges
to the first request and returns to wait for an activation. In this case, the circuit
needs to decide (deterministically, of course) when to acknowledge to a passive
request (after N handshakes on the active port). Here is the circuit COUNT2,
also known as DUP :
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A DB structure allows us to select each firing of a given transition and
associate it to a brand new dedicated transition, as shown below :
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We call the above input (left) and output (right) occurrence selecters.
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E.4.5 General nets

In this subsection we present two examples of nondeterministic nets, the OR
(below left) and the MIX (below right) handshake components :
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OR has a passive and two active ports. When a request on the passive port
arrives a request on either active port is sent. Acknowledge to this last request
enables an acknowledge to the first one. As the picture shows, this example can
be modeled by a free choice net (transitions with a shared precondition do not
have any preconditions other than that).

Conversely, MIX has two passive and one active port. Each time an envi-
ronment request arrives (on either passive port) MIX handshakes on its active
port and after completion it acknowledges to the first request. If by the time
the handshake on the active port completes the environment had sent a re-
quest on the other port, MIX chooses nondeterministically which request to
acknowledge first.

This situation could not be described with a free-choice net since the choice
of which request to acknowledge may not be a choice at all if the environment
only sent one request.

E.4.6 Soundness and completeness

Consider an hpn H = 〈G, I,O〉, name its ports and let PH be the set of
these names. Now take dH : PH → {act, pas}, the function which maps each
port name p to the appropriate label, act if port p is active in H, pas if it is
passive. This allows us to define the handshake structure HS(H) = 〈PH , dH〉.

Then for any port p, name p (p̄) its input (output) transition, and name τ
any internal transition. An execution t of H is quiescent when for no p ∈ PH
it can be extended as H

t
−�

(τ)∗

−� p̄−→. We define HL(H) as the set of strings
consisting of the external restriction of each quiescent execution of H.

The soundness and completeness of the Petri nets model, can be respectively
formalized by the following theorems.
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Theorem E.4.4. Let H be a handshake Petri net, then HL(H) is a handshake
language on the handshake structure HS(H).

Theorem E.4.5. Let σ be a handshake language on a handshake structure
〈P, d〉. Then there is an hpn Hσ such that HS(Hσ) = 〈P, d〉 and HL(Hσ) = σ.

The proof of soundness is a rather straightforward verification of the prop-
erties defining a handshake language. In the remaining of this section, we try
to hint the proof of completeness (theorem E.4.5). We must warn that the con-
struction of Hσ we propose may lead to an infinite net, but let us also point
out that an infinite representation is in general unavoidable. An example of lan-
guage with no finite representation is the one which contains an infinite chain of
(finite) traces where outputs are chosen according to a non recursive function.

Let us focus first on positional handshake languages. These languages make
their choices according to the reached position, regardless of the particular in-
terleaving followed in the execution. In the following we write pi (q̄i) for the
ith occurrence of input p (output q̄). Then we can represent a choice as a pair
made of a position [s]∼ and an output occurrence or a special symbol ∗, where
〈[s]∼, q̄i〉 expresses the choice of “playing” q̄i at [s]∼ and 〈[s]∼, ∗〉 the choice of
doing nothing at [s]∼.

Let σ be a handshake language and c a choice in σ. Let t ∈ σ≤, we say that
t allows c in σ (t→σ c) when [t]∼ = fst(c) and :

– t ∈ σ if snd(c) = ∗ ;
– t · snd(c) ∈ σ≤ otherwise.

We say that t prevents c in σ (t9σ c) when it does not allow it.
If we consider positional strategies we see immediately that positions, rather

than traces, allow choices. Moreover, since we only consider data-less communi-
cations and since outputs do not affect choices (by reordering), a position can
be represented by a set of occurrences of distinct input messages, taking the last
input occurrence of each thread.

Starting from the above observations and systematically using the selecter
structures introduced in Section E.4.4 to select occurrences of input and output
messages we are able to construct a handshake Petri net which corresponds to
the given positional handshake language.

Proposition E.4.6. Let σ be a positional handshake language on 〈P, d〉. Then
there is an hpn Hσ such that HS(Hσ) = 〈P, d〉 and HL(Hσ) = σ.

Since the construction associates single occurrences to transitions and since
a move may occur infinitely many times, the constructed graph Hσ is in general
infinite.

In the non-positional case, reshuffling the threads of a trace may affect a
choice. We first define an atomic reshuffling of a trace t(= t′ ·m · n · t′′) as a
trace of the form t′ · n ·m · t′′, for m and n independent messages.

Definition E.4.7. Let S be a set of pairs of the form 〈pi, q̄j〉. S is critical
for a choice c in a handshake language σ just when, for all t ∈ σ≤ such that
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[t]∼ = fst(c),

∀〈pi, q̄j〉 ∈ S, t = t′ · q̄j · t′′ · pi · t′′′ ⇒ t9σ c.

We write critσ(c) for the set of minimal critical sets for c in σ.

A similar notion is that of critical pair (the above being critical set of pairs)
for c in σ : a pair 〈pi, q̄j〉 for which there is s ∈ σ such that s = s′ · q̄j ·pi ·s′′ 9σ c
while s′ · pi · q̄j · s′′ →σ c. If 〈pi, q̄j〉 is a critical pair for c in σ, we say that it is
inverted in t if and only if t = t′ · q̄j · t′′ · pi · t′′′.
Lemma E.4.8. Let c be a choice in a handshake language σ. Let t ∈ σ≤,
[t]∼ = fst(c) :

t9σ c ⇔ ∃S ∈ critσ(c),∀〈pi, q̄j〉 ∈ S, t = t′ · q̄j · t′′ · pi · t′′′

The construction of the net is a modification of the one for positional hand-
shake languages, as we briefly sketch here. For any minimal critical set S for c
in σ and for all 〈pi, q̄j〉 ∈ S we connect transitions pi, q̄j and c as follows :
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Suppose that the jth firing of q̄ occurs before the ith firing of p, and similarly
for all the other pairs in S (represented in the picture by the other incoming
arcs in the precondition of transition c). Then c is clearly prevented. Note that
this scheme works for both a choice to output and a choice not to, as each choice
corresponds to a transition in the graph.

The completeness theorem, specializes to several classes of nets and lan-
guages. For instance to the deterministic case.

Theorem E.4.9. Let H be a handshake DB net, then HL(H) is a deterministic
handshake language on the handshake structure HS(H). Conversely, if σ is a
deterministic handshake language on 〈P, d〉, there is a DB net Hσ such that
HS(Hσ) = 〈P, d〉 and HL(Hσ) = σ.

As we mentioned, marked graphs correspond to a particular class of lan-
guages too, the well-bracketed ones. In this case there is even a construction
yielding finite graphs. We still do not know any independent characterization of
the nets that correspond to positional languages.

E.5 Comparing the two models

In this section we relate the calculus CHC with its Petri nets model. We
show a strict correspondence between the processes of the calculus and the
finite Handshake nets.
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E.5.1 Petri Net semantics of the calculus

Let M be a handshake configuration, such that M � Γ. We can assume
M = 〈P, S〉 and define the hpn JMKΓ by cases of P . The definitions for open
configurations are identical, J*P, S+KΓ = J〈P, S〉KΓ.

Let P = 0. Then Γ =!a for some channel a. Now, define a port which contains
a single output place p holding a token and call it a as the channel. Let G be
the Petri net which contains p plus an internal place q, labeled r, for each r ∈ S,
where q contains as many tokens as there are occurrences of r in S. Then JMKΓ

is the hpn 〈G, {a}〉.
Let P = a{r1,...rn}.P ′. Then the last applied typing rule is (inpref), then

Γ =?a and P ′�!a. Let J〈P ′, S〉K!a = 〈G′, Ports′〉. By construction, Ports′ = {a}
where a is an active port. Let p′ be the place of a with a token. Let’s extend
a by adding a fresh input place p, a fresh input transition t labeled a and arcs
from p to t and from t to p′, then by removing the token from p′ and putting a
token into p. Finally let’s add arcs from t to any place labeled ri, for 1 ≤ i ≤ n.
If any of these places does not exist yet, add it anew. We thus obtain a graph
G. Then JMKΓ = 〈G, {a}〉. The case of the output prefix is dual.

Let P = RecP ′. Then Γ =!a and P ′�!a, for some channel a. Let J〈P ′, S〉K!a =
〈G′, Ports′〉. By construction, Ports′ = {a} where a is also the active port asso-
ciated to channel a. Let p be the place of a which holds a token. If p has an incom-
ing arc or if any other place in a has two incoming arcs, J〈P, S〉KΓ = J〈P ′, S〉K!a.
Otherwise a must contain a place p′ with no outgoing arcs, by construction.
Note that both p and p′ must be output places, also by construction. Then re-
place p and p′ by a place q obtained by “joining” them. In particular, q must
be the new source of p’s outgoing arc and the new target of p′’s incoming arc.
Call G the graph so obtained. Then J〈P, S〉KΓ = 〈G, {a}〉.

Let P = (P ′ | P ′′) \ ∆. We construct J〈P, S〉KΓ in three steps. First let
J〈P ′, S〉K∆

Γ1
be obtained from J〈P ′, S〉KΓ1

by renaming each port a such that

(a, a) ∈ ∆, as a! when Γ1(a) =! and as a? when Γ1(a) =?. Define analogously
J〈P ′′, S〉K∆

Γ2
. Then let 〈G′, Ports〉 = J〈P ′, S〉K∆

Γ1
‖{(a!,a?)|a∈∆} J〈P ′′, S〉K∆

Γ2
. Then,

for any two distinct places p and p′ of G′ labeled by the same resource r do the
following : substitute p and p′ by a single place also labeled by r, having all the
arcs of both p and p′ ; note also that by construction, p and p′ contained the
same number of tokens k, then put k tokens in the new place as well. Let G be
the net so obtained. Then JMKΓ = 〈G,Ports〉.

E.5.2 Full abstraction and definability

The semantics is well defined and fully abstract with respect to weak bisim-
ilarity :

Lemma E.5.1. Let M be a configuration such that M � Γ. Then JMKΓ as
defined above is a handshake Petri net and M ≈ JMKΓ.

Theorem E.5.2 (Full Abstraction). Let M and M ′ be two configurations such
that M � Γ and M ′ � Γ′. Then M ≈M ′ ⇔ JMKΓ ≈ JM ′KΓ′ .
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For each finite hpn there is a weakly bisimilar handshake configuration :

Theorem E.5.3 (Definability). Let H = 〈G,Ports〉 be a handshake Petri net.
Then there are a closed handshake configuration M and a handshake type Γ,
such that M � Γ and JMKΓ ≈ H.

We present here a simplified construction of the configuration associated to
H. The idea is that each port a of the net H can be modeled by a thread
Proc(a,H), inductively on the structure of the port.

Each internal transition t is first unfolded as a link between two ports and
then associated to a process. Let t have incoming arcs from internal places
labeled r1, . . . ri and outgoing arcs to internal places labeled ri+1, . . . rn. Then t
is unfolded as follows :

?>=<89:; r1
!!CCCCCCCCC

?>=<89:;
?>=<89:;

t

r1

&&MMMMMM ?>=<89:; ...
...

ri+1 88qqqqqq

rn
''PPPPP ?>=<89:;

ri
//

  AA
//?>=<89:; //

  AA rn
//

ri+1 ;;vvvvvvvvvvv ?>=<89:;
?>=<89:; ri

77nnnnn ?>=<89:; ?>=<89:;•
>>}} ?>=<89:;
~~}}

?>=<89:;•
>>}} ?>=<89:;
~~}}``AA ?>=<89:;oo

``AA
oo

where r1, . . . rn are place labels. . Then let H be a hpn, u(H) is the hpn obtained
from H by unfolding each of its internal transitions. It can be shown that H ≈
u(H).

For each internal transition t, let lt be a fresh label associated to it. Consider
the following process.

Proc(t,H) = (Rec l̄t{r1,...ri}.lt.0 | l
{ri+1,...rn}
t .Rec l̄t.l

{ri+1,...rn}
t .0) \ {lt}

Then we define

Proc(H) = Proc(a1, H) | . . . | Proc(an, H) | Proc(t1, H) | . . . | Proc(tm, H)

where a1, . . . an are the ports of H and t1, . . . tm are the internal transitions of
H. Then let Conf(H) = 〈Proc(H), SH〉, where SH is the multiset of labels of
internal places of H with a token and a label appears in SH as many times as
the number of tokens in the corresponding place. Finally let ch(Ports) be the
set of names of ports in Ports, then ΓH : ch(Ports) → {!, ?} is the function
which associates ! to its active ports’ names and ? to its passive ports’ names.
It can be shown that JConf(H)KΓH ≈ u(H). Thus JConf(H)KΓH ≈ H.
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E.6 Proofs

E.6.1 Proofs from Section E.2

We state two definitions which will be useful in the proofs which follow.

Definition E.6.1. Let s and t be two handshake traces on a given handshake
structure, such that s ∼ t. We define d∼ (s, t), the homotopy distance between
s and t as follows :

– d∼ (s, t) = 0⇔ s = t
– d∼ (s, t) = 1⇔ (s = s′ ·m · n · s′′) ∧ (t = s′ · n ·m · s′′), for two messages
m and n ;

– In general d∼ (s, t) = k > 0 if and only if s 6= t and there is a sequence of
k + 1 (and no less) traces s0, s1, . . . sk such that s = s0, sk = t and for all
0 ≤ i < k, d∼ (si, si+1) = 1.

The second definition is less significant, but still useful. Let H be an hpn
and t and t′ two distinct external transitions of H. We call t′ the complement
of t, and viceversa, when t and t′ belong to the same port.

Proof of Proposition E.2.4 Let σ be a deterministic handshake language and
let s, t ∈ σ≤, such that s ∼ t. Suppose that s · s̄ ∈ σ≤. We show that t · s̄ ∈ σ≤
by induction on d = d∼(s, t) :

– d = 0. s = t, then t · s̄ ∈ σ≤ ;
– d = l+1. There is a sequence s = t0, . . . tl+1 = t such that d∼(ti, ti+1) = 1

and ti · s̄ ∈ σ≤, ∀0 ≤ i ≤ l. Let tl = t′ ·m ·n · t′′ and tl+1 = t′ ·n ·m · t′′. If m
is an output or n an input, tl+1 · s̄ r tl · s̄, which implies tl+1 · s̄ ∈ σ≤. Let
m be an input and n an output, then we prove tl+1 · s̄ ∈ σ≤ by induction
on the length of s̄.
– s̄ = ε. Then tl+1 · ε = tl+1 ∈ σ≤ by hypothesis ;
– s̄ = s̄′a. tl+1 · s̄′ ∈ σ≤ by hypothesis. If a is an input, tl+1 · s̄′ ·a ∈ σ≤ by

receptivity. Then let a be an output and let a1, . . . ak be all the outputs
that σ can send at tl+1 · s̄′. Then determinism implies tl+1 · s̄′ ·a1 . . . ak ∈
σ≤. Note also that if an output was possible at tl+1 ·s̄′ ·a1 . . . ak, it would
also be possible at tl+1 ·s̄′, by reordering. Then tl+1 ·s̄′ ·a1 . . . ak is passive
in σ. Then also tl · s̄′ ·a1 . . . ak ∈ σ, as it reorders tl+1 · s̄′ ·a1 . . . ak. Then
a ∈ {a1, . . . ak}, as a is an output and tl ·s̄′ ·a ∈ σ≤. Then tl+1 ·s̄′ ·a ∈ σ≤.

The proof that s ∈ σ ⇒ t ∈ σ is even simpler, as the outer induction alone will
do. 2

E.6.2 Proofs from Section E.3

Proof of Lemma E.3.1 Let M = 〈P, S〉. We will prove it by cases of P :

– Let P = 0. Then P is not reducible and the premises of the left to right
implications are false. Note also that if Γ(a) is defined, it must be !. Then
even in the right to left implication (first statement) the premise is false ;
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– Let P = act.P ′. Let act be an input action act = a{r1,...rn}. Then 〈P, S〉 a−→
〈P ′, S+{r1, . . . rn}〉. The last applied derivation rule is (inpref), so we have
Γ =?a as type for P and P ′�!a as premise. The case where act is an output
action is just symmetric, so we skip it. On the other hand, let Γ(a) =?.

Then act is an input action act = a{r1,...rn} and 〈P, S〉 a−→ ;
– Let P = (P ′ | P ′′) \ ∆. The last applied derivation rule is (par). Then

the premises are P ′ � Γ′ and P ′′ � Γ′′, where ∆ = Dom(Γ′) ∩ Dom(Γ′′)
and Γ = Γ′ � Γ′′. Let Γ(a) =?, then by definition of �, either Γ′(a) =?
or Γ′′(a) =?. Let Γ′(a) =?, the other case is symmetric. By induction

hypothesis 〈P ′, S′〉 a−→, for any multiset of labels S′. Since Γ(a) =?, a /∈ ∆

and 〈P, S〉 a−→. Now let 〈P, S〉 a−→. Either 〈P ′, S′〉 a−→ or 〈P ′′, S′′〉 a−→.

Say 〈P ′, S′〉 a−→, the other case is symmetric. By induction hypothesis

Γ′(a) =?. Also, since 〈P, S〉 a−→, a may not be in ∆. Then Γ(a) =?.
Moreover Q (the reduct of P ) must be of the form (Q′ | P ′′) \∆, where

〈P ′, S′〉 a−→ 〈Q′, S′Q〉. By induction hypothesis Q′�Γ′Q, where Dom(Γ′) =
Dom(Γ′Q) and for all b ∈ Dom(Γ′), b 6= a ↔ Γ′(b) = Γ′Q(b). Then ΓQ =
Γ′Q�Γ′′ is defined and such that for all b ∈ Dom(Γ), b 6= a↔ Γ(b) = ΓQ(b).
The proofs of the third and fourth points follow the same reasoning. So,
let 〈P, S〉 τ−→ 〈Q,SQ〉. There are four cases but they come in symmetric
pairs, so we are really left with two of them. Let Q = (Q′ | P ′′)\, where

〈P ′, S′〉 τ−→ 〈Q′, S′Q〉. By induction hypothesis Q′ � Γ′, which implies

Q � Γ. Finally let Q = (Q′ | Q′′) \ ∆, where 〈P ′, S′〉 a−→ 〈Q′, S′Q〉 and

〈P ′′, S′′〉 ā−→ 〈Q′′, S′′Q〉. Let Q′�Γ′Q and Q′′�Γ′′Q. By induction hypothesis,
for all b ∈ Dom(Γ′) (b ∈ Dom(Γ′′Q)), b 6= a if and only if Γ′(b) = Γ′Q(b)
(Γ′′(b) = Γ′′Q(b)). Then Γ′Q � Γ′′Q = Γ and Q� Γ ;

– Let P = Rec T . The last applied derivation rule is (rec), so that the type
in the conclusion is Γ =!a and the premise is T�!a. P may reduce to Q if
and only if T ·Rec T may reduce to Q, if and only if T may reduce to T ′,
where Q = T ′ ·RecT . By induction hypothesis, this must be an output

reduction T
ā−→ T ′, since T�!a. Then P

ā−→ Q. As we said Γ(a) =!.
Also, it is easy to show that Q must have the same type T ′ has, which by
induction hypothesis is ?a. Then ΓQ =?a.

2

Proof of Proposition E.3.4 we could give a direct proof, but It also follows
from the full abstraction result (Theorem E.5.2) and from the analogous result
proven for hpns (Theorem E.4.4). 2

Proof of Proposition E.3.5 Let us define the relation

R= {((M ′ | N)\∆, (M ′′ | N)\∆) |M ′ uM ′′∧(res(M ′)∪res(M ′′))∩res(N) = ∅}

We claim R is a bisimulation. Let M1
e−→M ′1, where M1 uM2 and (res(M1)∪

res(M2))∩res(N) = ∅. We will show by cases of e that (M1 | N)\∆
e−→ (M ′1 |

N ′)\∆ implies (M2 | N)\∆
e⇒ (M ′2 | N ′)\∆ and (M ′1 | N ′)\∆ u (M ′2 | N ′)\∆

(the other direction is symmetric) :
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– Let e be an external event. Then either M1
e−→ M ′1 (and N ′ = N , since

the resources of N and of M1 are separated) or N
e−→ N ′ (and M ′1 = M1).

In the first case, M1 u M2 implies M2
e⇒ M ′2 and M ′1 u M ′2. Then (M2 |

N) \∆
e⇒ (M ′2 | N) \∆ and (M ′1 | N) \∆ u (M ′2 | N) \∆. In the second

case, (M2 | N) \∆
e⇒ (M2 | N ′) \∆ and (M1 | N ′) \∆ u (M2 | N ′) \∆ ;

– Let e = τ . Then either e is an internal action of M1 or of N , or it is a
communication between M1 and N . The former case is analogous to the

case of the external event treated above and we skip it. Then let M1
ā⇒M ′1

and N
a⇒ N ′ for some channel name a ∈ A. (the dual case where N sends

and M1 receives follows the same reasoning, so we skip it). M1 u M2

implies M2
ā⇒M ′2 and M ′1 uM ′2. Since M2 and N do not share resources,

this cannot prevent the synchronization between ā and a, then the firing
a in N is not affected in any way by ā and the previous internal firings of
M2. Then (M2 | N)\∆ τ⇒ (M ′2 | N ′)\∆ and (M ′1 | N ′)\∆ u (M ′2 | N ′)\∆.

2

E.6.3 Proofs from Section E.4

Proof of Theorem E.4.4 We proceed by successive steps :
– HL(H) is a set of finite handshake traces on HS(H). For any port a of H.

By definition each node of a has at most one outgoing arc to another node
of a. Moreover, only one place p of a contains a token and a is passive if p
is an input place and active if it is an output place. Let a be active. Since
the place p containing a token is an output place and since by definition an
output place may only have an outgoing arc to an output transition, the
first firing of a (if any) shall be an output ā. Following the same reasoning,
if a is passive, the first firing of a shall be an input a. Again by definition,
if t is an output (input) transition of a and has an outgoing arc to a node
of a, this outgoing arc goes to an input (output) place. Hence alternation
is ensured. Finally, executions are finite sequences of firings, then their
external restrictions are also finite ;

– HL(H) is non-empty. By definition an execution is a sequence of tran-
sitions, then the empty sequence is also an execution and its external
restriction is an external trace. If the empty sequence is not quiescent in
H it is the prefix of a quiescent execution (as we will show in the next
point) ;

– HL(H) is closed with respect to passive prefixes. HL(H) is the set of
external traces of all the quiescent executions of H. By contradiction,
suppose there is s ∈ Pas(HL(H)) which does not come from a quiescent
execution of H. Then there is an extension of this execution which, after
a sequence of internal firings, lets an output transition ā fire. If this is still
not quiescent we can do the same thing over again. Note however that
H only contains a finite number of external ports and could not continue
to output indefinitely, eventually it shall stop and wait for an input, thus
reaching a quiescent execution. Then s · ā ∈ HL(H)≤ and s is not passive
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(contradiction) ;
– HL(H) is reorder-closed. Reorder-closedness comes as a consequence of

the fact that, for any port a of H and for any n > 0 : if the n-th transition
t of a is an output transition, by definition it has only one outgoing arc in
H and this arc goes to an input place of a, then the only transition that
has to wait for t in H is the (n+1)-th transition of a ; conversely, if t is an
input transition, by definition it has only one incoming arc in H and this
arc comes from an input place of a, then the only transition that t has to
wait for in H is the (n− 1)-th transition of a ;

– HL(H) is receptive. By definition, the underlying Petri net of a hpn is
unsafe, that means that places may contain an unlimited number of tokens.
So, every time an input transition is enabled to fire it can. Note also that
an input transition has one incoming arc in H and this comes from an
input place. An easy proof by induction can show that whenever an input
place of a port contains a token, it must have an outgoing arc to an input
transition. Note finally that a passive port is a port in which the place
containing a token is an input place. This allows us to conclude that when
a port is passive an input transition can fire and thus that HL(H) is
receptive.

2

Proof of Proposition E.4.6 We set up Hσ’s external structure by providing
both an input and an output transition for each port p ∈ P and by pairing
them together by means of a port structure, as showed in definition E.4.1. In
particular, the choice of an active or of a passive port structure is taken according
to the label d(p). Then we can already state HS(Hσ) = 〈P, d〉. Note also that
we have a specific external transition for each message in the alphabet.

Now the internal structure. The occurrence selecters defined in Section E.4.4
allow us to associate a new (internal) transition to each occurrence of message :
we use specific selecters for inputs as for outputs. The next step is to associate
a transition to each position. Recall that a position can be represented as a set
containing the last input occurrence of each thread. Then we take a new tran-
sition and we link each transition associated to any of these input occurrences
into it : the link is a direct arc-place-arc one. We also add a transition for each
choice c allowed at a given position [s]∼. In particular, if c does not stand for
the choice to do nothing, we link [s]∼’s transition to c’s transition, again by a
direct arc-place-arc link. Note however that c might be in mutual exclusion with
another choice c′ at [s]∼, then we need a shared precondition before the corre-
sponding transitions. But the choice of which one to fire should be made once
and for all, then this same precondition should be used in any position where
the two choices are allowed and mutually exclusive(we draw several outgoing
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arcs from each choice to mean this) :
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A special treatment is reserved for the do-nothing choice. In this case we add
a transition with no outgoing arcs and put it in mutual exclusion directly with
p’s transition : ?>=<89:; // //
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When the choice to do nothing is taken, Hσ has to wait for another input (thus
moving to a new position) before doing anything else.

Let us now move to the output side, where each output occurrence p̄i might
be enabled in several positions. Then we make the arcs coming from the choice
of p̄i at each of these positions converge into a unique place, which will have
an outgoing arc towards p̄i’s transition. One might object that so doing the
same output occurrence might fire twice. But this is prevented by the selecter
structure (Section E.4.4) which ensures that each transition associated to an
occurrence of p̄ may fire at most once.

The construction is finally complete, now we prove by induction that s ∈ σ≤
if and only if s ∈ HL(Hσ)≤.

– s = ε. Trivial since both σ and HL(Hσ) are handshake languages.
– s = s′ ·a. Let a be an input. Both σ and HL(Hσ) are handshake languages

on the same handshake structure 〈P, d〉. Then any direction we look, s′a
must be a handshake trace on 〈P, d〉. Since s′ is a prefix of both languages,
s′a is too (receptivity). Now let a be the ith occurrence of output p̄.
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sp̄ ∈ σ≤ means that p̄i is allowed by the position [s]∼ in σ and that
no mutually exclusive choice has been chosen yet. Then in Hσ, [s]∼’s
transition enables the transition associated to the choice of p̄i at [s]∼. Plus,
if ever there was a shared precondition among the choice of p̄i and another
choice at [s]∼, we may assume that it still contains a mark since the other
choice has not produced any effect so far. Then p̄i’s transition may fire
because it has not yet fired and because all the transitions associated to
previous occurrences of p̄ have already fired in s. Then sp̄ ∈ HL(Hσ)≤.
On the other hand, sp̄ ∈ HL(Hσ)≤ implies that the transition associated
to the choice of p̄i at position [s]∼ is enabled by the transition associated
to [s]∼ in Hσ. Then [s]∼ allows p̄i in σ, by definition of Hσ. Moreover,
if there was another choice excluding p̄i at [s]∼ in σ, this was not chosen
inside s. Then sp̄ ∈ σ≤.

Now, s is passive in σ if and only if the transition [s]∼ does not have any
outgoing arcs in Hσ, that is if and only if s is passive in HL(Hσ). s is a non-
passive trace in σ if and only if the transition [s]∼ has a shared precondition
with a transition which has no outgoing arcs in Hσ, that is if and only if s is a
non-passive trace in HL(Hσ). 2

Proof of Theorem E.4.9 The proof of the completeness part of the theorem
is a simplification of the proof of Proposition E.4.6 4. As for the the soundness
part, the only properties left to prove are determinism’s two, given that we
already proved the preliminary properties for Theorem E.4.4. For both of them,
the proof is based on the following simple observation. In a DB net, even if a
place may have several outgoing arcs, only one of its post-transitions is actually
enabled at any given time : each one has a guard and only one guard contains a
mark in the initial state ; successively, the firing of the enabled post-transition
takes away a mark from its guard and puts it into another guard. This prevents
any situation of confusion, so that once a transition is enabled it will stay enabled
until it fires.

Also, given two executions ex′ and ex′′, we can define an execution ex which
completes ex′ with those firings which occur in ex′′ and not in ex′ itself. We show
how to do this by providing a constructive algorithm which gradually deletes
the two original strings ex′ and ex′′ while writing ex. We initially set ex to the
empty string. If at a given time ex′′ = a · u′′ and ex′ = u′ · a · v′, where a does
not appear in u′, we append a to ex while removing it from the two original
strings. So that ex′ becomes u′v′ and ex′′ becomes u′′. If a does not appear in
ex′ we remove it from ex′′ and we append it at the end of ex′. If ex′′ = ε, we
append what is left of ex′ at the end of ex. Eventually, ex will consist of all the
firings of ex′ (possibly in a different order) followed by the firings of ex′′ that
were not there in ex′. About the order of the firings, note that if ex′ and ex′′

had the same external trace, ex would still have that external trace.
Now, let sp̄ ∈ HL(H)≤. Recall that sp̄ is the prefix of an external trace of

a quiescent execution of H. Then sp̄ is also the external trace of a prefix of
a quiescent execution, then the external trace of an execution of H. For the

4. Recall also that all deterministic handshake languages are positional (Prop. E.2.4).
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first property we need to prove that there is no quiescent execution of H whose
external trace is s. Since s · p̄ ∈ HL(H)≤, there is an execution ex of H whose
external trace is s and which can be extended by p̄. Then any execution ex′ of
H whose external trace is s can be completed with those firings which occur in
ex · p̄ and not in ex′. Note that the external trace of the execution we obtain
is s · p̄. Then no execution of H whose external trace is s is quiescent. For the
second property, let sp̄, sq̄ ∈ HL(H)≤. Let also ex′p̄ be an execution whose
external trace is sp̄ and ex′′q̄ be an execution whose external trace is sq̄. Just as
above we can interleave ex′p̄ and ex′′q̄, so to obtain execution ex whose external
trace is sp̄q̄ ∈ HL(H)≤.2

Proof of Lemma E.4.8 The direction right-to-left is almost immediate : if
there exists such a critical set, by definition t9σ c. Then suppose that t9σ c.
Let S be the set of all critical pairs for c in σ which are inverted in t and let s
be a handshake trace with the same threads as t 5 and in which all pairs of S
are inverted. We prove by induction on d = d∼(s, t) that s9σ c :

– d = 0. s = t, then s9σ c ;
– d = l+1. There is a sequence t = t0, . . . tl+1 = s such that d∼(ti, ti+1) = 1

and ti 9σ c, ∀0 ≤ i ≤ l. By contradiction assume tl+1 →σ c. Let tl =
t′ ·m ·n ·t′′ and tl+1 = t′ ·n ·m ·t′′. If m is an input or n an output, tl r tl+1.
Then since tl+1 →σ c, also tl →σ c. Contradiction. Then m is an output,
say the jth occurrence of b̄, and n is an input, say the ith occurrence of
a. By definition 〈ai, b̄j〉 is a critical pair and since the sequence t0, . . . tl+1

is minimal by definition of d∼, 〈ai, b̄j〉 ∈ S. But 〈ai, b̄j〉 is not inverted in
s : contradiction !

Then S is critical for c in σ. If S is not minimal we just need to take the minimal
critical set contained in S and we are done. 2

Proof of Theorem E.4.5 We already described the general construction of
Hσ for σ positional (proof of proposition E.4.6) as well as its extension to the
non-positional case (end of section E.4.6). Lemma E.4.8 justifies this extended
construction by telling us that an “exception” to positionality has all the pairs
of a critical set inverted and, viceversa, if a trace has all the pairs of a critical
set inverted, then it is an exception to positionality. Then the proofs that s ∈
σ≤ ⇔ s ∈ HL(Hσ)≤ and s ∈ σ ⇔ s ∈ HL(Hσ) are just adaptations of the
corresponding proofs that we gave for proposition E.4.6. 2

E.6.4 Proofs from Section E.5

Let e be a label. We write H
e⇒ H ′ when H

(τ)∗

−� e−→
(τ)∗

−� H ′. We also write

H
ê−→ H ′ when H

e−→ H ′ or when e = τ and H = H ′.

5. To be more precise we should take s from a larger set, where the number of input
occurrences in each thread of s is equal to the number of input occurrences in the corresponding
thread of t. This allows a thread of s to differ from the corresponding thread of t by an output
occurrence. However reorder-closedness implies that outputs do not affect choices, so that we
can assume s and t have exactly the same threads.
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Definition E.6.2 (Expansion,.). E is an expansion if H1 E H2 implies, for
all e :

1. whenever H1
e−→ H ′1, there is H ′2 s.t. H2

e⇒ H ′2 and H ′1 E H ′2 ;

2. whenever H2
e−→ H ′2, there is H ′1 s.t. H1

ê−→ H ′1 and H ′1 E H ′2.

We say that H2 expands H1, written H1 . H2, if H1 E H2, for some expansion
E.

Our definition of expansion is as in [MS], although the same relation origi-
nally appeared in [AKH92] with a different terminology. For the above defini-
tions we used the hpn notation, but clearly they hold for any transition system
and in particular they hold for configurations.

All throughout these proofs, we will give node labels a special meaning.
Transition labels are important in the operational semantics of hpns. While us-
ing hpns as a denotational semantics, not only transition but also place labels
become meaningful. In particular, a place with a label r in the hpn will corre-
spond to the resource r in the calculus. Not all places in an hpn have a label
though, and definitely not all transitions have a unique label, then sometimes
we will refer to a node by its name.

We say that an occurrence of the operator Rec is significant in the thread
where it appears, if the sub-thread which follows it contains at least some action.

Ports represent the external structure of hpns, they are internalized once
they are linked together. Let us recall the definition of linkage.

A linkage between an active port a ∈ PortsH and a passive port b ∈ PortsH
of an hpn H = 〈GH , PortsH〉 is the hpn L(H, a, b) = 〈GH,a,b, PortsH\{a, b}〉,
where GH,a,b is the net obtained by adding two fresh places p1 and p2 to GH
and arcs from each output transition of a to p1, from p1 to each input transition
of b, from each output transition of b to p2 and from p2 to each input transition
of a.

We call link of L(H, a, b), denoted link(H, a, b), the graph consisting of the
underlying graphs of a and of b plus p1, p2 and all the arcs connecting them to
transitions of a or b.

We say that a and b are internal ports of L(H, a, b), while p1 and p2 are the
communication places of link(H, a, b). After the linkage, all places and transi-
tions of a and b become internal. Nonetheless, given one such place p, we still say
that p is an internal input place or an internal output place, if p was an input or
an output place, respectively, prior to the linkage. Similarly, given a transition
t in link(H, a, b), we say that t is an internal input transition or an internal
output transition, if t was an input or an output transition, respectively, prior
to the linkage. The definitions of internal active and internal passive port are
straightforward adaptations of those of passive and active port, respectively. In
the following, and with respect to all the above definitions, we may sometimes
omit the adjective “internal”, if no confusion arises. Note however that when
we will say “internal place” or “internal transition”, we will implicitly refer to
places and transitions which are not contained in any port, internal or external.
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Figure E.5 – Examples of ready (above) and transmitting (below) links

For the sake of distinction, from now on we will call external ports those
ports which are not internal. The above set up allows us to treat internal ports
just as we treat external ones. In particular we can extend hpns with a set of
internal ports.

Definition E.6.3. The triple H = 〈GH , ExtPH , IntPH〉 is a transparent hpn
just when 〈GH , ExtPH〉 is an hpn, IntPH is a set of disjoint internal ports of
GH and each port in IntPH is connected to exactly one other port in IntPH by
a link.

Immediately after a linkage, the two communication places in the link are
empty (fig. E.5, above). However, we need to consider the markings obtained
when a transition in the link fires (fig. E.5, below). We say that a link is ready
when both communication places are empty, one internal port is active and
one internal port is passive. Thus, in a ready link, at most one transition is
enabled. If this transition fired, both ports would become passive and exactly
one communication place would contain a token. When a link has such a marking
we say that it is transmitting. In a transmitting link, exactly one internal input
transition is enabled. The firing of this transition would remove the token from
the communication place and the link would be ready again.

Let H1 and H2 be transparent hpns. Let a be a port of H1. H2 is a harmless
extension of H1 just when it satisfies one of the following conditions :

– H2 is obtained from H1 by adding to a a fresh empty input place p, a fresh
input transition t, an arc from p to t and possibly an arc from t to some
output place of a. Possibly, H2 could also be provided with some fresh
internal places and arcs from t to these places or from t to other internal
places which were already in H1 ;

– H2 is obtained from H1 by adding to a a fresh empty output place p, a
fresh output transition t, an arc from p to t and an arc from t to some
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input place of a which has an outgoing arc. Possibly, H2 could also be
provided with some fresh internal places and arcs from these places to t
or from other internal places which were already in H1 to t ;

– H2 is obtained from H1 by adding to a a fresh disconnected empty place
p, either of input or of output.

Let a contain a loop and let G be a connected subgraph of this loop starting
at a place and ending at a transition, where this transition t has an outgoing arc
to a place p of a. Then H2 is a loop unraveling of H1 just when it is obtained from
H1 by copying all of G and adding it to a, by providing each copied transition
with an incoming (outgoing) arc from (to) an internal place of H1 if and only
if its original has an incoming (outgoing) arc from (to) that place, by adding
an arc from the copy of t to p, by removing a token from a place of G and by
putting a token into its copy whenever there is a place of G with a token.

Let L be a transmitting link of H2 and let t be the enabled transition of L.
H1 is a communication completion of H2 just when H1 is obtained from H2 by
letting t fire.

Definition E.6.4. Let R < be a relation between transparent hpns such that
H1 R < H2 if and only if either H2 is a harmless extension of H1 or H1 is a
loop unraveling of H2 or H1 is a communication completion of H2. Then we
define the port preorder < on hpns as the reflexive and transitive closure of
R < .

Lemma E.6.5. H1 < H2 ⇒ H1 . H2.

Proof: We are going to show that < is an expansion. Let H1 < H2. By
definition of < there is n ≥ 0 such that H1 Rn< H2, where :

– R0
<

is the equality and

– H ′ Rk+1
<

H ′′ iff there is H such that H ′ R < H Rk
<
H ′′.

Both directions of the proof are done by induction on n. Let first H1
e−→ H ′1 :

– Let H1 = H2. Then H2
e−→ H ′1 and H ′1 < H ′1 ;

– Before we show the most general case, let us show that if H1 R < H2

then H2
e⇒ H ′2 and either H ′1 R < H ′2 or H ′1 = H ′2 :

– Let H2 be a harmless extension of H1. Then every transition of H1 is
also in H2 so that H2

e−→ H ′2 and H ′2 extends H ′1 just in the same way
as H2 extends H1. Then H ′1 R < H ′2 ;

– Let H1 be a loop unraveling of H2. The case where H1
e−→ H ′1 is the

firing of a transition which is also in H2 is analogous to the previous
case. Then let it be the firing of a transition t in a port a, where t is
not in H2 but is the copy of a transition t′ which is. By definition of
loop unraveling, t′ is enabled in H2 since t was enabled in H1. Then let
H2

e−→ H ′2 be the firing of t′ (note that t′ has the same label as t, by
definition of port). Let us do a few remarks about the correspondences
among the two firings, all of them follow directly from the definition of
loop unraveling. The firing of t removes a token from a place p of a in
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H1 if and only if the firing of t′ removes a token from a place p′ in H2,
where p′ is the copy of p. The firing of t removes (adds) a token from
(to) a place outside a in H1 if and only if the firing of t′ removes (adds)
a token from (to) the same place in H2. Finally, the firing of t adds a
token to a place q of a in H1 if and only if the firing of t′ adds a token
to a place q′ of a in H2, where q′ is either the copy of q or q itself. In
any case H ′1 is a loop unraveling of H ′2, as H1 is a loop unraveling of
H2. Then H ′1 R < H ′2 ;

– Let H1 be a communication completion of H2. Then there is an internal
transition t whose firing changes H2 into H1, H2

τ−→ H1. Then H2
e⇒

H ′1.
– Let H1 Rk+1

<
H2. Then there is H such that H1 Rk< H R < H2. By

induction hypothesis, H
e⇒ H ′ and H ′1 < H ′. The sequence of firings H

e⇒
H ′ can be decomposed in three subsequences : H

τ
−� H ′′, H ′′

e−→ H ′′′

and H ′′′
τ
−� H ′. By induction, and using the previous case as inductive

case, we can prove that there is H ′′2 such that H2
τ⇒ H ′′2 , where either

H ′′ R < H ′′2 or H ′′ = H ′′2 . Analogously, there are also H ′′′2 and H ′2 such

that H ′′2
e⇒ H ′′′2 and H ′′′2

τ⇒ H ′2, where either H ′′′ R < H ′′′2 or H ′′′ = H ′′′2 ,

and H ′ R < H ′2 or H ′ = H ′2. Then by transitivity we obtain H ′1 < H ′2.

Now let H2
e−→ H ′2 :

– Let H1 = H2. Then H1
e−→ H ′2 and H ′2 < H ′2 ;

– Let H1 Rk+1
<

H2. Then there is H such that H1 R < H Rk
<

H2. By

induction hypothesis, H
ê⇒ H ′ and H ′ < H ′2. The case H = H ′ is trivial.

Then let H
e−→ H ′. We do the proof by cases of H1 R < H :

– Let H be a harmless extension of H1. Let t be the transition of H which
is not in H1. By definition t has an incoming arc from an empty place,
then H

e−→ H ′ cannot be the firing of t. Then the same firing can be
performed by H1 as well, H1

e−→ H ′1. Moreover, H ′ extends H ′1 just
in the same way as H extends H1. Then H ′1 < H ′ and by transitivity
H ′1 < H ′2 ;

– Let H1 be a loop unraveling of H. Let t be the transition whose firing
is H

e−→ H ′. Again every transition of H is also in H1 however, as a
result of the unraveling, t may not be enabled in H1. If t is enabled in
H1 the proof is analogous to the one given in the previous case, then let
us consider the case where t is not enabled in H1. Let t′ be the copy of
t in H1. By definition of loop unraveling, t′ is enabled in H1. Moreover,
the same correspondences among the firing of the copy of a transition
and that of the original that we remarked in the other direction still
hold here. Then if we let H1

e−→ H ′1 be the firing of t′, we have that H ′1
is a loop unraveling of H ′. Then H ′1 < H ′ and by transitivity H ′1 < H ′2 ;

– Let H1 be a communication completion of H. Then there is an internal
transition t whose firing changes H into H1, H

τ−→ H1. If the firing of t
is also the firing H

e−→ H ′, e = τ and H ′ = H1 and H1 does not need to
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do anything. Then let H
e−→ H ′ be the firing of a transition t′ different

from t. For a communication completion to take place, the link must
be transmitting and both ports in a transmitting link are passive. Then
t is the input transition of an internal port, so that it can never be in
conflict with another transition. Then t′ can fire in H1, H1

e−→ H ′1, but
also t can fire in H ′ and since t and t′ are not in conflict, the result of
this firing is still H ′1. Then H ′1 is a communication completion of H ′.
Then H ′1 < H ′ and by transitivity H ′1 < H ′2.

As we are now considering transparent hpns, we need to modify the inter-
pretation function accordingly. For the interpretation of threads, it is enough
to equip the previously defined denotation with an empty set of internal ports.
While in the case of a parallel composition of processes, we need first to ex-
tend the definition of linkage to transparent hpns. In particular, a linkage be-
tween an external active port a ∈ PortsH and an external passive port b ∈
PortsH of a transparent hpn H = 〈GH , ExtPH , IntPH〉 is the hpn L(H, a, b) =
〈GH,a,b, ExtPH\{a, b}, IntPH ∪ {a, b}〉, where GH,a,b is the net obtained by
adding two fresh places p1 and p2 to GH and arcs from each output transition of
a to p1, from p1 to each input transition of b, from each output transition of b to
p2 and from p2 to each input transition of a. Having adapted this definition, we
can now keep the definitions of parallel composition of hpns and of denotation
of configurations where the process is a parallel composition of subprocesses as
they are.

Let H1 and H2 be two hpns in which place labels are unique and such that if
a place p has label r in H1 and q has label r in H2, then p and q contain the same
number of tokens. Then we define H = H ′‖mergeC H ′′ by the usual composition,
followed by the merging of places with the same label. In particular the merging
preserves all incoming and outgoing arcs of each place. From now on we will
always consider compositions plus mergings, unless otherwise stated.

It is almost immediate to see that if H1 < H ′1 and H2 < H ′2 then
H1‖mergeC H2 < H ′1‖

merge
C H ′2.

Proof of Lemma E.5.1 Let R be the symmetric closure of the following
relation between configurations and hpns :

R= {(M, JMKΓ) |M � Γ}

R is not a weak bisimulation. However we will show that if M
e−→ M ′, then

JMKΓ
e⇒ H and JM ′KΓ′ < H, where M � Γ and M ′ � Γ′ ; and if JMKΓ

e−→ H

then M
ê−→ M ′ and JM ′KΓ′ < H, where M � Γ and M ′ � Γ′. Since < is

stronger than . (lemma E.6.5) the above argument will allow us to state that
R is an expansion up to . and hence that M . JMKΓ (Theorem 3.5 of [MS]).
Since . is stronger than ≈ (Theorem 3.3 of [MS]), M ≈ JMKΓ.

Let M = 〈P, S〉. We can conveniently set J*P, S+KΓ = J〈P, S〉KΓ. The proof
is done by cases of P :

– Let P = 0. Then M does not reduce. By construction JMKΓ contains an
active port which consists of an output place with a token, and a bunch
of scattered internal places. Then it does not reduce either ;
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– Let P = a{r1,...rn}.T . Then Γ =?a. The only possible reduction for M is
M

a−→ 〈T, S + {r1, . . . rn}〉, where T�!a. On the other hand note that
JMKΓ also has only one possible reduction, since it does not contain in-
ternal transitions and the only port it contains is the passive a. By the
definition of the interpretation, exactly one transition is enabled in a port
of JMKΓ. Let t be the enabled transition of a. Being an input transition, t

is labeled a. Let H be the result of the firing of t (JMKΓ
a−→ H). By con-

struction, the firing of t removes a token from a single input place p and
puts a token in each internal place labeled ri, for 1 ≤ i ≤ n, and one in an
output place p′ of a. Let a′ be the obtained port, statically identical to a
but with the token in p′ and not in p. Let a′′ be the port obtained from a′

by cutting p, t and all their incoming and outgoing arcs. Note that a′′ is the
active port in the hpn J〈T, S+{r1, . . . rn}〉K!a, by construction of a. Still by
construction p does not have any incoming arc in a, then H is a harmless
extension of J〈T, S + {r1, . . . rn}〉K!a. Then J〈T, S + {r1, . . . rn}〉K!a < H ;

– The case P = ā{r1,...rn}.T , the output prefixing, is very much similar to
the input prefixing case treated above and we skip it ;

– Let P = Rec T . The operational semantics tells us that M and 〈T ·
Rec T, S〉 reduce exactly to the same configurations. Then consider JMKΓ.
By construction it contains a port a in which there is a place p with a token.
Then :
– Let p have no incoming arcs. By definition, JMKΓ = J〈T, S〉KΓ. Also,

by the way we defined the interpretation, either p is the only place of
a or there is some place of a with two incoming arcs. In the former
case T ≡ 0, then Rec T ≡ T . In the latter case T must contain some
significant Rec, then T ·Rec T = T . In both cases we can assume as
hypothesis that if 〈T, S〉 e−→M ′, then J〈T, S〉KΓ

e⇒ H and JM ′KΓ′ < H ;

and if J〈T, S〉KΓ
e−→ H, then 〈T, S〉 ê−→ M ′ and JM ′KΓ′ < H. Then we

are done ;
– Let p have an incoming arc from a transition t of a. By construction,

no place of a may have two incoming arcs, so that a forms a loop of
nodes, starting from p and passing through t just before the loop’s
closure. This means that T does not contain any significant Rec and
that T 6≡ 0. Then at most one reduction is possible for T · Rec T
and this depends only on the resources available in S. JMKΓ also has
at most one possible reduction as it contains only one external port
and no internal transition. Moreover, let p have an outgoing arc to a
transition t′ of a. If JMKΓ can reduce, its reduction must correspond to
the firing of t′ as the other transitions are not enabled. By definition of
the interpretation relation, t′ is an output transition if and only if the
first action in T is an output action, and t′ has an incoming arc from
the (unique) internal place labeled r if and only if the resource r is in

the set of resources attached to the first action in T . Then JMKΓ
e−→ if

and only if 〈T ·Rec T, S〉 e−→.

So, let 〈T ·Rec T, S〉 e−→M ′. Since T does not contain any significant
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Rec and T 6≡ 0, T ·Rec T consists of the sequence of actions appearing
in T , in the same order, followed by Rec T . Then M ′ is of the form
〈T ′ · Rec T, S′〉, where T ′ is the thread resulting from the reduction

〈T, S〉 e−→ 〈T ′, S′〉. Let t′ have an outgoing arc to a place p′ of a and
let H be the hpn obtained by letting t′ fire in JMKΓ. If p′ and p are the
same place, the thread T must consist of a single action prefixing 0, by
construction. However we run in a contradiction as the typing system
imposes that this action be both an input action ((ax) and (inpref) rules)
and an output action ((rec) rule). Then p′ is different from p and we can
obtain J〈T ′ ·Rec T, S′〉KΓ′ by applying the loop unraveling operation to
H, with a as the concerned port and the chain which goes from p′ to
t as the concerned connected subgraph of its loop. By definition E.6.4,
J〈T ′ ·Rec T, S′〉KΓ < H.

– Let P = (P1 | P2) \ ∆, where P1 � Γ1 and P2 � Γ2, Γ = Γ1 � Γ2

and ∆ = Dom(Γ1) ∩ Dom(Γ2). Let M
e−→ 〈(P ′1 | P2) \ ∆, S′〉. Then

〈P1, S〉
e−→ 〈P ′1, S′〉, where P ′1 � Γ′1 and Γ′ = Γ′1 � Γ2. By assumption,

J〈P1, S〉KΓ1

e⇒ H1 and J〈P ′1, S′〉KΓ′1
< H1. Then we have that

J〈P ′1, S′〉KΓ′1
‖merge{(a,a)|a∈∆} J〈P2, S

′〉KΓ2
< H1 ‖merge{(a,a)|a∈∆} J〈P2, S

′〉KΓ2
. By def-

inition, the hpn on the left is J〈(P ′1 | P2) \ ∆, S′〉KΓ′ , while the one on
the right is H, the hpn obtained from JMKΓ by letting e fire. Then
J〈(P ′1 | P2) \∆, S′〉KΓ′ < H, and we are done.

Now let M
τ−→ 〈(P ′1 | P ′2) \ ∆, S′′〉. This internal reduction corresponds

to the synchronization of reductions 〈P1, S〉
ā−→ 〈P ′1, S′〉 and 〈P2, S

′〉 a−→
〈P ′2, S′′〉, where a ∈ ∆, P ′1 � Γ′1, P ′2 � Γ′2 and Γ′ = Γ′1 � Γ′2

6. By hypoth-

esis, J〈P1, S〉KΓ1

ā⇒ H1 and J〈P2, S
′〉KΓ2

a⇒ H2, where J〈P ′1, S′〉KΓ′1
< H1

and J〈P ′2, S′′〉KΓ′2
< H2. Since JMKΓ = J〈P1, S〉KΓ1

‖merge{(b,b)|b∈∆} J〈P2, S〉KΓ2
,

holds by definition, the same firings can also occur in JMKΓ, but since

a ∈ ∆, they are going to be hidden there. So, JMKΓ
τ⇒ H ′1‖

merge
{(b,b)|b∈∆}H2,

where H ′1 is like H1 except for the addition of some tokens to some internal
places, so that J〈P ′1, S′′〉KΓ′1

< H ′1. Then
J〈P ′1, S′′〉KΓ′1

‖merge{(b,b)|b∈∆} J〈P ′2, S′′〉KΓ′2
< H ′1 ‖

merge
{(b,b)|b∈∆} H2 and

J〈P ′1, S′′〉KΓ′1
‖merge{(b,b)|b∈∆} J〈P ′2, S′′〉KΓ′2

= J〈(P ′1 | P ′2) \∆, S′′〉KΓ′ , by defini-
tion.
Let JMKΓ

e−→ H. Recall that JMKΓ = J〈P1, S〉KΓ1
‖merge{(a,a)|a∈∆} J〈P2, S〉KΓ2

.

We distinguish the case where JMKΓ
e−→ H is the firing of a transition

in a port a ∈ ∆ (on either side) from the case where it is the firing
of a transition in a port b /∈ ∆. Consider the former case and let t be
the transition which fired. We can assume the firing corresponds to the

reduction 〈P1, S〉
ā−→ 〈P ′1, S′〉, as the first event of an internal commu-

nication locally is always an output (the case where the reduction is on
P2 is symmetric). However this reduction cannot be performed directly

6. Actually there is also the dual situation where the right side sends and the left side
receives, but the proof substantially would not change.
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by M , instead it shall be synchronized with an input reduction on the
other side, namely 〈P2, S

′〉 a−→ 〈P ′2, S′′〉. As a result of the synchroniza-

tion we have 〈(P1 | P2) \ ∆, S〉 τ−→ 〈(P ′1 | P ′2) \ ∆, S′′〉. By hypothesis,

the reduction 〈P2, S
′〉 a−→ 〈P ′2, S′′〉 corresponds to the firing H

τ−→ H ′,
where J〈(P ′1 | P ′2) \ ∆, S′′〉KΓ′ < H ′. By definition H ′ is a communica-
tion completion of H, so that H ′ < H. By transitivity of < we conclude
J〈(P ′1 | P ′2) \∆, S′′〉KΓ′ < H.

Finally consider the case where JMKΓ
e−→ H is the firing of a transition

in a port b /∈ ∆. Then the firing occurs in either of the two subnets, say in
J〈P1, S〉KΓ1 . From the subnet’s point of view, the firing is J〈P1, S〉KΓ1

e−→
H1. By hypothesis, 〈P1, S〉

ê−→ 〈P ′1, S′〉, where P ′1 � Γ′1, Γ′ = Γ′1 � Γ2

and J〈P ′1, S′〉KΓ′1
< H1. Note that H = H1 ‖merge{(b,b)|b∈∆} J〈P2, S

′〉KΓ2
, M

ê−→
〈(P ′1 | P2)\∆, S′〉 = M ′ and JM ′KΓ′ = J〈P ′1, S′〉KΓ′1

‖merge{(b,b)|b∈∆} J〈P2, S
′〉KΓ2 .

Then JM ′KΓ′ < H.

2

Proof of Theorem E.5.2
By Lemma E.5.1, M ≈ JMKΓ and M ′ ≈ JM ′KΓ. Then M ≈ M ′ ⇔ JMKΓ ≈
JM ′KΓ. 2

We first repeat in details the construction sketched in Section E.5.2.

Now let H = 〈G,ExtP, IntP 〉 be a transparent hpn where each internal
place has a distinct label. Let also each internal port be named either a! or a?

for some port name a, such that if an internal port is named a! then it is an
internal active port and is linked to an internal passive port named a? ; and
viceversa. Finally, let Ports = ExtP ∪ IntP .

Now, let a ∈ Ports. We define the unfolding of a which we denote as u(a),
as follows :

– For any transition t of a with no outgoing arcs, add a fresh output place
p and an arc from t to p. Note that t must be an input transition, by
definition of handshake port. Then a′, the net so obtained, is a port ;

– For any input place p of a′ with more than one incoming arc or with one
incoming arc and a token, add another fresh empty input place p′ and
replace one of p’s incoming arcs with another arc with the same source
but target p′. Now, if p has an outgoing arc to t, add another fresh input
transition t′ and an arc from p′ to t′. If t has outgoing arcs to some internal
places (of G), provide t′ with outgoing arcs to the same internal places.
Finally, if t has an outgoing arc to an output place p′′ (of a′), provide
t′ with an outgoing arc to p′′. Do this over again many times until each
input place of the port has either no tokens and at most one incoming arc
or one token and no incoming arcs.

Internal transitions require a different treatment. Let t be an internal transi-
tion of H with incoming arcs from internal places labeled r1, . . . ri and outgoing
arcs to internal places labeled ri+1, . . . rn. Then t is extended to its unfolding
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u(t) as follows 7 :
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where r1, . . . rn are place labels while p1, p2, p
′
2, p3, p4, p and q are place names.

As a notation, when a place has a label we write its label next to it, when a
place does not have a label but for some reason we want to distinguish it from
other places, we associate the place to a name and write the name inside the
place or next to the place but in parenthesis (when the place contains a token).
However, we always write a transition name next to the transition, as we will
not use transition labels in any figure.

Now we can define u(H) as the hpn obtained from H by unfolding all of its
ports and internal transitions.

Let Rup be a relation between hpns such that H Rup H ′ if and only if H is
like H ′ except that there is a port a of H which is substituted by a port a′ in
H ′, where a′ is statically as the unfolding of a (including transition labels) and
if a place p contains a token in a then either p or one of its copies contains a
token in a′, if no place contains a token in a then either no place or a place with
no outgoing arcs contains a token in a′.

Let Rut be a relation between hpns such that H Rut H ′ if and only if H is
like H ′ except that there is a transition t of H which is substituted by a link Lt

in H ′, where Lt is statically as u(t) and Lt is ready.

Definition E.6.6. We define the unfolding preorder ◦≺ as the smallest preorder
which contains Rup ∪ Rut .

Lemma E.6.7. H1 ◦≺ H2 ⇒ H1 ≈ H2.

Proof: The proof can be divided in three parts :

1. Rup is an expansion up to ..

Let H1 Rup H2, let a be the port of H1 which is expanded in H2 and let

a′ be the corresponding port in H2. Let H1
e−→ H ′1. If this is the firing

of a transition which is not in a then the same transition can fire in H2,
H2

e−→ H ′2, and clearly H ′1 Rup H ′2. Then let H1
e−→ H ′1 be the firing

of a transition t of a. By definition of Rup , there is an enabled transition
t′ of a′ and t′ can either be a copy of t or t itself. Let us remark a few
correspondences between the firing of t in H1 and that of t′ in H2, all

7. The unfolding presented in the main text is simpler. The one presented here, while
bisimilar, corresponds precisely to the thread.
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these remarks follow directly from the definition of Rup . The firing of t
removes a token from a place p of a if and only if the firing of t′ removes
a token from a place p′ of a′ and p′ is a copy of p if t′ is a copy of t, it is p
itself otherwise. The firing of t in H1 adds (removes) a token to (from) an
internal place if and only if the firing of t′ in H2 adds (removes) a token to
(from) the same place. The firing of t adds a token to a place q of a in H1

if and only if the firing of t′ adds a token to either q or one of its copies in
H2. Finally, if the firing of t in H1 does not add any token to any place of
a, then the firing of t′ adds a token to a place of a with no outgoing arc in
H2. Given the above premises, there is one case where H ′1 and H ′2 are not
in the relation Rup and that is when t is an input transition and the input
place p with an outgoing arc to t has at least an incoming arc in H1. As
in the following pictures, for example :

��<<<< . . .
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t��
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��
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(p)
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��   @@@@
. . .

~~~~~~
vvmmmmmmmm
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where the picture on the left shows the critical subgraph of the original
port and the picture on the right shows what becomes of this subgraph
after the unfolding operation is applied. Also, pci and tci , for 1 ≤ i ≤ n, are
the names we gave to the copies of p and of t, respectively. Note that p
contains a token in H1, as t is enabled. As a result of the unfolding, p does
not contain any incoming arc in H2. But after the firing p no more contains
a token, so that the unfolding of a in H ′1 produces an hpn H (H ′1 Rup H)
where p has an incoming arc, differently from H ′2. Note however that, in
H2, t and all its copies have each an outgoing arc to the same place q of a′,
and so does the transition t in H1. Then H ′2 is a harmless extension of the
hpn H. By lemma E.6.5, H . H ′2. The following pictures show the critical
subgraph in H ′1 (left) and what becomes of it in H, after the unfolding
(right).
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Now let H2

e−→ H ′2. Let this be the firing of a transition t of H2. Again,
if t is a transition which is not in a′ the same transition can fire in H1,
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H1
e−→ H ′1, and clearly H ′1 Rup H ′2. Then let t be a transition of a′. By

definition of Rup , there is an enabled transition t′ of a in H1. Moreover t
can either be a copy of t′ or t′ itself. Note that all the correspondences
between the two firings that we remarked in the other direction still hold
here, except for the last one. However, now we can say that if the firing of
t in H2 adds a token to a place p with no outgoing arcs, then the firing of
t′ in H1 either adds a token to p or does not add any token to any place
of a. Anyway, as above we have either H ′1 Rup H ′2 or H ′1 Rup H, for some
hpn H such that H ′2 is a harmless extension of H.

We conclude that the relation Rup is an expansion up to . and that is thus
contained in . (Theorem 3.5 of [MS]).

2. Rut is an expansion up to ..

Let H1 Rut H2 and let t be the internal transition of H1 which is expanded
to a link Lt in H2.
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where the net on the right is not Lt but its underlying static graph. The
reason why we did not put the tokens is that the actual marking of Lt

may vary. However, by the definition of Rut we know that Lt is ready and
this means that both ports are passive and the communication places do
not contain any token. Then there are only three possible markings for
Lt : a token in p1 and one in p2 or p′2, or a token in p3 and one in p4.

Let H1
e−→ H ′1. If this is the firing of a transition other than t the same

transition can fire in H2, H2
e−→ H ′2, and clearly H ′1 Rut H ′2. Then let

H1
e−→ H ′1 be the firing of t, so that e = τ . In any of the three cases,

we can match the firing of t in H2 by executing a sequence of firings of
transitions in Lt, until t2 or t′2 has fired. Let this execution be H2

τ⇒ H ′2.
As a result, one token is removed from each place with an outgoing arc to
t1 and a token is added to each place with an incoming arc from t2. Since
H ′2 is also ready, H ′1 Rut H ′2. As an example, let Lt contain a token in p3

and one in p4. In this case, the execution H2
τ⇒ H ′2 consists of the firing

of t3, t4, t1 and t′2.

Let H2
e−→ H ′2. If this is the firing of a transition outside Lt the same

transition can fire in H1, H1
e−→ H ′1, and clearly H ′1 Rut H ′2. Otherwise

by definition of Rut , H2
e−→ H ′2 is the firing of either t1 or t3, both of

which are internal firings. Then e = τ . In both cases, after the firing Lt

is transmitting and thus H ′2 is no more in the relation Rut with H1. Still,
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let us consider the two cases separately. If H2
τ−→ H ′2 is the firing of t3,

no token is removed from an internal place and after the firing t4 is the
enabled transition in Lt. Then let H ′2

τ−→ H ′′2 be the firing of t4. This does
not add any token to any internal place, so that H1 Rut H ′′2 . Moreover,
H ′′2 is a communication completion of H ′2 and by lemma E.6.5, H ′′2 . H

′
2.

Now let H2
τ−→ H ′2 be the firing of t1. The firing of t1 in H2 removes a

token from an internal place if and only if the firing of t in H1 removes a
token from that internal place. Then let H1

τ−→ H ′1 be the firing of t in
H1. Note that in H ′2 either t2 or t′2 is enabled. Anyway, the two transitions

have outgoing arcs to exactly the same places. Then let H ′2
τ−→ H ′′2 be

the firing of the transition of Lt which is enabled in H ′2. This firing adds
a token to an internal place if and only if the firing of t in H1 adds a
token to that place, so that H ′1 Rut H ′′2 . Moreover, H ′′2 is a communication
completion of H ′2 and by lemma E.6.5, H ′′2 . H

′
2.

We conclude that the relation Rut is an expansion up to . and that is thus
contained in ..

3. We have shown that (Rup ∪ Rut ) ⊆ .. By definition, . is a preorder and
◦≺ is the smallest preorder which contains Rup ∪ Rut , then ◦≺ ⊆ .. Finally

by Theorem 3.3 of [MS], ◦≺ ⊆ ≈.

Consider an internal transition t of H. Let t have incoming arcs from internal
places labeled r1, . . . ri and outgoing arcs to internal places labeled ri+1, . . . rn.
Then define

Proc(t,H) = (Rec āt{r1,...ri}.at.0 | a
{ri+1,...rn}
t .Rec āt.a

{ri+1,...rn}
t .0) \ {at}

where at is the channel name we associate to t.
Let a = u(b), where b ∈ Ports, let H ′ be the hpn obtained from H by

unfolding b and let p be a place of a. We define Proc(a, p,H ′) by induction :
– Let p be included in a directed cycle inside a and have either more than

one incoming arc or one incoming arc and a token. Let t be the transition
of a which is part of the cycle and whose outgoing arc in the cycle ends in
p. Let a′ be obtained from a by adding an output place p′, by removing the
arc from t to p and by adding an arc from t to p′. Then Proc(a, p,H ′) =
Rec Proc(a′, p,H ′) ;

– Let p not be included in a directed cycle inside a, then :
– if p has no outgoing arcs, Proc(a, p,H ′) = 0 ;
– if p has an outgoing arc to a transition t, t has to have an outgoing arc

to a place p′, since the port is unfolded. Then :
– Proc(a, p,H ′) = ā{r1,...rn}.P roc(a, p

′, H ′), if t is an output transition
with incoming arcs from the internal places labeled r1, . . . rn ;

– Proc(a, p,H ′) = a{r1,...rn}.P roc(a, p′, H ′), if t is an input transition
with outgoing arcs to the internal places labeled r1, . . . rn ;

– Proc(a, p,H ′) is undefined otherwise.
We define Proc(a,H ′) = Proc(a, p,H ′), where p is the place of a holding a
token. Just a note, if a is an internal port and hence a = b! or a = b?, for



252 ANNEXE E. MODELLING THE HANDSHAKE PROTOCOL

some port name b, forget the primes ! and ? while defining the process. So that
in Proc(b!, p,H ′), for example, output actions are b̄[. . .] and input actions are
b[. . .], instead of b̄![. . .] and b![. . .], respectively.

Lemma E.6.8. Let H be a hpn whose ports are all unfolded and let a be a port
of H. Then Proc(a,H) is defined.

Proof: Proc(a,H) = Proc(a, p,H), where p is the place of a holding a
token. Note that, by definition of port, p exists and is unique. Let p be included
in a directed cycle and let t be the transition of a which is part of the cycle and
whose outgoing arc in the cycle ends in p. Let also a′ be obtained from a by
adding an output place p′, by removing the arc from t to p and by adding an
arc from t to p′. Note that since a is unfolded, p is an output place and so t is
an input transition. Then a′ is still a port. Moreover the additions of p′ and of
its incoming arc preserve unfoldedness. Finally, since each node has at most one
outgoing arc, a node can be contained in at most one cycle. In particular, p is
not contained in a cycle inside a′. Then Proc(a, p,H) is defined if Proc(a′, p,H)
is defined.

Now take a place q of an unfolded port b (ofH) and suppose q is not contained
in a cycle inside b. If q has no outgoing arc, Proc(b, q,H) is defined. Then let
q have an outgoing arc to a transition t which has an outgoing arc to a place
q′. Then Proc(b, q,H) is defined if Proc(b, q′, H) is defined. Note that if q′ is
included in a cycle inside b, the incoming arc of q′ which closes the cycle cannot
be the one which comes from t since t cannot have more than one incoming
arc, by construction of ports. Then q′ has more than one incoming arc. Then
Proc(b, q′, H) is defined by induction hypothesis.

We are now able to define

Proc(H) = Proc(a1, u(H)) | . . . | Proc(an, u(H)) | Proc(t1, H) | . . . | Proc(tm, H)

where a1, . . . an are the ports of u(H) and t1, . . . tm are the internal transitions
of H. Then let Conf(H) = 〈Proc(H), SH〉, where SH is the multiset of labels of
internal places of H with a token such that a label appears in SH as many times
as the number of tokens in the corresponding place. Finally let ch(Ports) be
the set of names of ports in Ports, then ΓH : ch(Ports)→ {!, ?} is the function
which associates ! to its active ports’ names and ? to its passive ports’ names.

Lemma E.6.9. Let H be a transparent hpn. Then JConf(H)KΓH ≈ u(H).

Proof: Let SH be the multiset of labels of internal places containing as
many occurrences of each label as the number of tokens in the corresponding
place. Let us do a few remarks.

For each internal transition t of H, both JConf(H)KΓH and u(H) contain
the associated link u(t).

For each port a of H, u(H) contains the unfolding u(a) and JConf(H)KΓH

contains a port a′ such that u(a) is a harmless extension of a′. In order to see
this, note that to any transition t which is found on the maximal directed path
inside u(a) which starts from the place of u(a) with a token, Proc(u(a), u(H))
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associates an action of the same type (input or output) and with a set of labels
which is just the set of labels of internal places connected to t. The interpretation
function inverses this operation. Then what is left out are just some “harmless
leaves”.

Neither u(H) nor JConf(H)KΓH contain internal transitions, as all of them
have been unfolded to a link of two internal ports. However u(H) may contain
some disconnected empty internal places which go inevitably lost when Proc is
applied, but since they are disconnected they do no harm.

Then by Lemma E.6.5 and by Theorem 3.3 of [MS], JConf(H)KΓH ≈ u(H).
Proof of Theorem E.5.3
Note thatH ◦≺ u(H). Then by Lemma E.6.7 we haveH ≈ u(H). By Lemma E.6.9
we have JConf(H)KΓH ≈ u(H). Then H ≈ JConf(H)KΓH . 2


