
Types, Event Structures and the π-Calculus

Daniele Varacca, Nobuko Yoshida

Imperial College London

Sussex, November 30th 2005

Varacca, Yoshida Types, Event Structures and the π-Calculus

Historical perspective

An unfair and myopic view of the last 40 years

Varacca, Yoshida Types, Event Structures and the π-Calculus

Historical perspective

An unfair and myopic view of the last 40 years

Petri [’60]

Petri nets

Varacca, Yoshida Types, Event Structures and the π-Calculus

Historical perspective

An unfair and myopic view of the last 40 years

Petri [’60] Scott and
Strachey [’70]

Denotational semantics - Domain theory

Varacca, Yoshida Types, Event Structures and the π-Calculus

Historical perspective

An unfair and myopic view of the last 40 years

Petri [’60]

**TTTTTTTTTTT
Scott and

Strachey [’70]
��

Nielsen, Plotkin
and Winskel [’80]

Event structures

Varacca, Yoshida Types, Event Structures and the π-Calculus

Historical perspective

An unfair and myopic view of the last 40 years

Petri [’60]

**TTTTTTTTTTT
Scott and

Strachey [’70]
��

Park and
Milner [’80]

Nielsen, Plotkin
and Winskel [’80]

Transition systems and bisimulation

Varacca, Yoshida Types, Event Structures and the π-Calculus

Historical perspective

An unfair and myopic view of the last 40 years

Petri [’60]

**TTTTTTTTTTT
Scott and

Strachey [’70]
��

Park and
Milner [’80]

��

Nielsen, Plotkin
and Winskel [’80]

Berry and
Boudol [’90]

Reduction semantics

Varacca, Yoshida Types, Event Structures and the π-Calculus

Historical perspective

An unfair and myopic view of the last 40 years

Petri [’60]

**TTTTTTTTTTT
Scott and

Strachey [’70]
��

Park and
Milner [’80]

��

Nielsen, Plotkin
and Winskel [’80] Girard [’80]

Berry and
Boudol [’90]

Linear logic

Varacca, Yoshida Types, Event Structures and the π-Calculus

Historical perspective

An unfair and myopic view of the last 40 years

Petri [’60]

**TTTTTTTTTTT
Scott and

Strachey [’70]
��

$$JJJJJJJJJJJJJJJJJJJJJ

Park and
Milner [’80]

��

Nielsen, Plotkin
and Winskel [’80] Girard [’80]

��Berry and
Boudol [’90] Blass et al. [’90]

Game semantics

Varacca, Yoshida Types, Event Structures and the π-Calculus

Historical perspective

An unfair and myopic view of the last 40 years

Petri [’60]

**TTTTTTTTTTT
Scott and

Strachey [’70]
��

$$JJJJJJJJJJJJJJJJJJJJJ

Park and
Milner [’80]

��

Nielsen, Plotkin
and Winskel [’80] Girard [’80]

��Berry and
Boudol [’90]

��

Blass et al. [’90]

tt
Honda, Berger

and Yoshida [’00]

Linearly typed π calculus

Varacca, Yoshida Types, Event Structures and the π-Calculus

Historical perspective

An unfair and myopic view of the last 40 years

Petri [’60]

**TTTTTTTTTTT
Scott and

Strachey [’70]
��

$$JJJJJJJJJJJJJJJJJJJJJ

Park and
Milner [’80]

��

Nielsen, Plotkin
and Winskel [’80]

))

Girard [’80]

��Berry and
Boudol [’90]

��

Blass et al. [’90]

tt
��Honda, Berger

and Yoshida [’00] Melliès [’00]

True concurrent games

Varacca, Yoshida Types, Event Structures and the π-Calculus

Historical perspective

An unfair and myopic view of the last 40 years

Petri [’60]

**TTTTTTTTTTT
Scott and

Strachey [’70]
��

$$JJJJJJJJJJJJJJJJJJJJJ

Park and
Milner [’80]

��

Nielsen, Plotkin
and Winskel [’80]

))��

Girard [’80]

��Berry and
Boudol [’90]

��

Blass et al. [’90]

tt
��Honda, Berger

and Yoshida [’00]
// ? Melliès [’00]//oo_ _ _ _ _ _

This talk

Varacca, Yoshida Types, Event Structures and the π-Calculus

Typed π-calculus

We all know what the π-calculus is

x(ỹ).P | x〈z̃〉.Q −→ P{z̃/ỹ} |Q

Varacca, Yoshida Types, Event Structures and the π-Calculus

Typed π-calculus

We all know what the π-calculus is

x(ỹ).P | x〈z̃〉.Q −→ P{z̃/ỹ} |Q
We consider a restricted version:
bound output only (“internal” mobility)

Varacca, Yoshida Types, Event Structures and the π-Calculus

Typed π-calculus

We all know what the π-calculus is

x(ỹ).P | x(ỹ).Q −→ (ν ỹ)(P |Q)

We consider a restricted version:
bound output only (“internal” mobility)

Varacca, Yoshida Types, Event Structures and the π-Calculus

Typed π-calculus

We all know what the π-calculus is

x(ỹ).P | x(ỹ).Q −→ (ν ỹ)(P |Q)

We consider a restricted version:
bound output only (“internal” mobility)

A linear type discipline:
(A) for each linear name there are a unique input and a unique

output
(B) for each replicated name there is a unique stateless

replicated input with zero or more dual outputs

Varacca, Yoshida Types, Event Structures and the π-Calculus

Confluence

Linearly typed π is confluent

P

 AAAAAAAA

~~~~~~~~~~

P ′

  @@@@@@@ P ′′

~~}}}}}}}}

Q

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π

Road Map

1 Event Structures
Confusion Freeness
Conflict Freeness

2 Types
Syntax and Semantics
Typed Event Structures

3 Semantics of π
Syntax
Event Structure Semantics
Correspondence

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Road Map

1 Event Structures
Confusion Freeness
Conflict Freeness

2 Types
Syntax and Semantics
Typed Event Structures

3 Semantics of π
Syntax
Event Structure Semantics
Correspondence

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

True concurrency

Standard “interleaving” semantics
reduces parallelism to nondeterministic interleaving
(“expansion law”)
Labelled transition systems, reduction semantics

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

True concurrency

Standard “interleaving” semantics
reduces parallelism to nondeterministic interleaving
(“expansion law”)
Labelled transition systems, reduction semantics

“True concurrent” models

Represent explicitly causality, conflict, independence
Petri nets, Mazurkiewicz traces, event structures

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures

An event structure is a partial order 〈E ,≤〉 together with a
conflict relation ^

order represents causal dependency
conflict is irreflexive an symmetric
conflict is “hereditary”:

e1 ^ e and e1 ≤ e2 implies e2 ^ e

A conflict is immediate if it is not inherited
from another conflict

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures

Example

d e

b /o/o/o/o/o/o/o/o c

a

???????

��������

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures

Example

d e

b /o/o/o/o/o/o/o/o c

a

???????

��������

Events can also be labelled: λ : E → L

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures

Example

γ1 γ2

β1 /o/o/o/o/o/o/o/o β2

α

AAAAAAA

}}}}}}}

Events can also be labelled: λ : E → L

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Operators on event structures

Prefixing α.E
γ1 γ2

β1 /o/o/o/o/o/o/o/o β2

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Operators on event structures

Prefixing α.E
γ1 γ2

β1 /o/o/o/o/o/o/o/o β2

α

AAAAAAA

}}}}}}}

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Operators on event structures

Prefixed sum
∑

i∈I αi .Ei

γ1 γ2

β1 β2

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Operators on event structures

Prefixed sum
∑

i∈I αi .Ei

γ1 γ2

β1 β2

α1 /o/o/o/o/o/o/o α2

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Operators on event structures

Parallel composition E1‖E2

γ1 γ2

β β

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Operators on event structures

Parallel composition E1‖E2

γ1 γ1 γ2 γ2

β /o/o/o/o/o/o/o/o/o τι

��������

>>>>>>>>
/o/o/o/o/o/o/o/o/o β

A complex construction involving synchronisation

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures and transition systems

Consider
E = 〈E ,≤,^, λ〉, a labelled event structure
e, one of its minimal events

We define E be as E minus event e, and minus all events that
are in conflict with e
We can then generate a labelled transition system as follows: if
λ(e) = β, then

E
β−→E be

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures and transition systems

Example

γ1 γ2 /o/o/o γ3

β1 /o/o/o/o/o/o/o β2

}}}}}}}}

An event structure E

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures and transition systems

Example

γ1 γ2 /o/o/o γ3

β1 /o/o/o/o/o/o/o β2

}}}}}}}}

Eliminate a minimal event e (labelled by β2)

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures and transition systems

Example

γ1 γ2 /o/o/o γ3

β1 /o/o/o/o/o/o/o

}}}}}}}}

Eliminate a minimal event e (labelled by β2)

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures and transition systems

Example

γ1 γ2 /o/o/o γ3

β1 /o/o/o/o/o/o/o

}}}}}}}}

And every event in conflict with it

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures and transition systems

Example

γ2 /o/o/o γ3
}}}}}}}}

And every event in conflict with it

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures and transition systems

Example

γ1 γ2 /o/o/o γ3
β2 // γ2 /o/o/o γ3

β1 /o/o/o/o/o/o/o β2

}}}}}}}}

E
β2−→E be

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Confusion freeness

An event structure is confusion-free when
“reflexive” immediate conflict is an equivalence
any two events in immediate conflict have the same
predecessors

The equivalence classes are the cells
Cells represent local choices

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Examples

b /o/o/o/o/o/o/o/o/o/o/o/o/o

$d
$d

$d
$d

$d
$d

$d d

z:
z:

z: z:
z:

z:
e

c

a

000000000000000000000

���������������������

}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Confusion Free

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Examples

b /o/o/o/o/o/o/o/o/o/o/o/o/o

$d
$d

$d
$d

$d
$d

$d d

z:
z:

z: z:
z:

z:
e

c

a

000000000000000000000

}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Confusion!

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Examples

b

$d
$d

$d
$d

$d
$d

$d d

z:
z:

z: z:
z:

z:
e

c

a

000000000000000000000

���������������������

}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Confusion!

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Where confusion arises

Confusion arises from synchronisation
Consider (a | a)
The event structure for this is

a
(h(h(h a

v6 v6 v6

τι

Confusion - the choice is not local

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Where confusion arises

Confusion arises from synchronisation
Consider (a | a)
The event structure for this is

a
(h(h(h a

v6 v6 v6

τι

Confusion - the choice is not local

Issue: how to perform synchronisation without introducing
confusion

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Conflict freeness

When the conflict relation is empty, the corresponding transition
system is confluent
A special case of confusion freeness

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Conflict freeness

When the conflict relation is empty, the corresponding transition
system is confluent
A special case of confusion freeness

Idea: give a conflict free event structure semantics to the linear
π-calculus
Issues:

difficult to handle name generation
hidden conflicts appear

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

The post office

Example:
Stateless replicated resource: post office !a.P
Clients: customers a.C

Every customer wants to send a letter a

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

The post office

The process a.D | a.N | !a.P is confluent

a.D | a.N | !a.P

))SSSSSSSSSSSSSSS

uukkkkkkkkkkkkkkk

D | P | a.N | !a.P

))SSSSSSSSSSSSSSS
N | P | a.D | !a.P

uukkkkkkkkkkkkkkk

N | P | D | P | !a.P

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

The post office

Situation 1: two customers, one till
A conflict to resolve: who goes first?
Eventually, it does not matter, but the two events are not
independent

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

The post office

Situation 1: two customers, one till
A conflict to resolve: who goes first?
Eventually, it does not matter, but the two events are not
independent

Situation 2: two customers, infinitely many identical tills
if the two customers want to go to the same till, there is a
conflict

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

The post office

Situation 1: two customers, one till
A conflict to resolve: who goes first?
Eventually, it does not matter, but the two events are not
independent

Situation 2: two customers, infinitely many identical tills
if the two customers want to go to the same till, there is a
conflict

Situation 3: one customer, infinitely many identcal tills
the customer has to choose which till to go to

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

The post office

Solution: no conflict arises if every possible customer is
assigned a spefic till in advance

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Road Map

1 Event Structures
Confusion Freeness
Conflict Freeness

2 Types
Syntax and Semantics
Typed Event Structures

3 Semantics of π
Syntax
Event Structure Semantics
Correspondence

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Types for event structures

Γ,∆ ::= y1 : σ1, . . . , yn : σn type environment

τ, σ ::=
�

i∈I Γi branching

| ⊕
i∈I Γi selection

| ⊗
i∈I Γi server

| � i∈I Γi client

| l closed type

Linearity condition: no name appears more than once

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Composing environments

Notion of matching of types

A branching type & matches the dual selection types ⊕,
and the residual type is l

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Composing environments

Notion of matching of types

A branching type & matches the dual selection types ⊕,
and the residual type is l
A server type ⊗ matches a client type � if all requests
correspond to an available resource. The residual is again
a server type ⊗ that records which resources are still
available

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Composing environments

Notion of matching of types

A branching type & matches the dual selection types ⊕,
and the residual type is l
A server type ⊗ matches a client type � if all requests
correspond to an available resource. The residual is again
a server type ⊗ that records which resources are still
available
Two environments Γ1, Γ2 be composed if the types of the
common names match

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Composing environments

Notion of matching of types

A branching type & matches the dual selection types ⊕,
and the residual type is l
A server type ⊗ matches a client type � if all requests
correspond to an available resource. The residual is again
a server type ⊗ that records which resources are still
available
Two environments Γ1, Γ2 be composed if the types of the
common names match
Such names are given the residual type by the resulting
environment Γ1 � Γ2

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Type environments

Example
τ1 =

�
i∈{1,2}(xi :

⊕
j∈J)

τ2 =
⊕

i∈{1,2}(xi :
�

j∈J)

σ1 = � i∈{1}(yi :l)
σ2 =

⊗
i∈{1,2}(yi :l)

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Type environments

Example
τ1 =

�
i∈{1,2}(xi :

⊕
j∈J)

τ2 =
⊕

i∈{1,2}(xi :
�

j∈J)

σ1 = � i∈{1}(yi :l)
σ2 =

⊗
i∈{1,2}(yi :l)

τ1 matches τ2

the residual type is l

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Type environments

Example
τ1 =

�
i∈{1,2}(xi :

⊕
j∈J)

τ2 =
⊕

i∈{1,2}(xi :
�

j∈J)

σ1 = � i∈{1}(yi :l)
σ2 =

⊗
i∈{1,2}(yi :l)

σ1 matches σ2

the residual type is
⊗

i∈{2}(yi :l)

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Type environments

Example
τ1 =

�
i∈{1,2}(xi :

⊕
j∈J)

τ2 =
⊕

i∈{1,2}(xi :
�

j∈J)

σ1 = � i∈{1}(yi :l)
σ2 =

⊗
i∈{1,2}(yi :l)

Γ1 = a : τ1,b : σ1,
Γ2 = a : τ2,b : σ2

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Type environments

Example
τ1 =

�
i∈{1,2}(xi :

⊕
j∈J)

τ2 =
⊕

i∈{1,2}(xi :
�

j∈J)

σ1 = � i∈{1}(yi :l)
σ2 =

⊗
i∈{1,2}(yi :l)

Γ1 = a : τ1,b : σ1,
Γ2 = a : τ2,b : σ2

Γ1 � Γ2 = a :l,b :
⊗

i∈{2}(yi :l)

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Labelled event structures

Labels:

α, β ::= xini〈ỹ〉 branching τι ::= (x , x)ini〈ỹ〉
| xini〈ỹ〉 selection | (x , x)〈ỹ〉
| x〈ỹ〉 server
| x〈ỹ〉 client
| τι synchronisation

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Typing via morphisms

An event structure E is well typed in Γ if

E is confusion free
cells are partitioned in branching, selection, client, server
and synchronisation cells
all the non-synchronisation events of are represented in Γ

causality in E refines name causality of Γ

Technically: via morphisms of the category of event structures

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

A typed event structure

x1 y1 z1

(w ,w) b〈z1〉 b〈z1〉

yyyyyyyyy

ain1〈x1〉 /o/o

JJJJJJJJJ

ain2〈x2〉

E . a : �
i∈{1,2}

(xi : �
k∈{1}

)

b :
⊗

j∈{1}
(zj : �

l∈{1}
)

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Typed event structures

Properties

Typed event structures are confusion free (by definition)
Prefixing, prefixed sum and parallel composition preserve
typing

In particular parallel composition of typed event structures is
confusion free

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Typed event structures

Properties

Typed event structures are confusion free (by definition)
Prefixing, prefixed sum and parallel composition preserve
typing

In particular parallel composition of typed event structures is
confusion free

Theorem [Parallel composition]
If E1 . Γ1 and E2 . Γ2 and Γ1 � Γ2 is defined, then

(E1‖E2) \ S . Γ1 � Γ2

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Typed event structures

Properties

Typed event structures are confusion free (by definition)
Prefixing, prefixed sum and parallel composition preserve
typing

In particular parallel composition of typed event structures is
confusion free

Theorem [Parallel composition]
If E1 . Γ1 and E2 . Γ2 and Γ1 � Γ2 is defined, then

(E1‖E2) \ S . Γ1 � Γ2

(S is the set of names not allowed by the new environment)

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Typed event structures

When branching and selection types are trivial:

Typed event structures are conflict free
Prefixing, and parallel composition preserve typing

In particular parallel composition of typed event structures is
conflict free

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Road Map

1 Event Structures
Confusion Freeness
Conflict Freeness

2 Types
Syntax and Semantics
Typed Event Structures

3 Semantics of π
Syntax
Event Structure Semantics
Correspondence

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

The syntax

π processes

P ::= x
�

i∈I ini(ỹi).Pi branching

| xinj(ỹ).P selection

| !x(ỹ).P server

| x(ỹ).P client

| P |Q parallel

| (ν x)P restriction

| 0 inaction

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

The syntax

π processes

P ::= x
�

i∈I ini(ỹi).Pi branching

| x
⊕

i∈I ini(ỹi).Pi selection

| !x(ỹ).P server

| x(ỹ).P client

| P |Q parallel

| (ν x)P restriction

| 0 inaction

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

The types

π types

σ ::=
�

i∈I (σ̃i)
↓ branching

| ⊕
i∈I (σ̃i)

↑ selection

| (σ̃)! server

| (σ̃)? client

τ ::= σ | l

Environments compose in a similar way as event structure
environments

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Examples

a.b | a.c | a
This is not typable as a appears twice as output

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Examples

b.a | c.b | a.(c | e)

This is typable since each channel appears at most once as
input and output

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Examples

a.(b ⊕ c) | a.(d & e)

This process is typable, and contains nondeterminism:

Q3 −→ (b | d)

Q3 −→ (c | e)

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Examples

! b.a | ! b.c

This is not typable as there are two different servers associated
with b

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Examples

! b.a | b | ! c.b

This is typable: the two clients on b are associated to a unique
server

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Typed transition system

Operational semantics

As usual P . Γ
β−→P ′ . Γ′

The transition must be allowed by the environment
(The enviroment performs implicit restricitions)

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Event structure semantics of π

The semantics has the form [[P . Γ]]∆, where ∆ is an event
structure environment

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Event structure semantics of π

The semantics has the form [[P . Γ]]∆, where ∆ is an event
structure environment

∆ fixes a choice of the newly generated names

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Event structure semantics of π

The semantics has the form [[P . Γ]]∆, where ∆ is an event
structure environment

∆ fixes a choice of the newly generated names
∆ assigns each client a specific instance of its server

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Event structure semantics of π

[[a
⊕

i∈I ini(yi).Pi . Γ,a :
⊕

i∈I(τi)]]∆,a:
L

i∈I zi :τ̂i

=
∑

i∈I aini〈zi〉.[[Pi [zi/yi ] . Γ, zi : τi ]]
∆,zi :τ̂i

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Event structure semantics of π

[[!a(y).P . Γ,a : (τ)! ]]∆,a:
N

k∈K (yk :τ̂ k )

=

‖k∈K a〈yk 〉.[[P[yk/y ] . Γ[yk/y ]]]∆k ,yk :τ̂ k

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Event structure semantics of π

[[P1 | P2 . Γ1 � Γ2]]∆1�∆2

=

([[P1 . Γ1]]∆1‖[[P2 . Γ2]]∆2) \ S

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Event structure semantics of π

The interpretation functions are partial functions: for the wrong
choice of ∆1,∆2, the interpretation of the parallel composition
could be undefined, because ∆1 �∆2 may be undefined

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Event structure semantics of π

The interpretation functions are partial functions: for the wrong
choice of ∆1,∆2, the interpretation of the parallel composition
could be undefined, because ∆1 �∆2 may be undefined

It is always possible to find suitable ∆1,∆2
We perform α-conversion “at compile time”

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Event structure semantics of π

The interpretation functions are partial functions: for the wrong
choice of ∆1,∆2, the interpretation of the parallel composition
could be undefined, because ∆1 �∆2 may be undefined

Theorem: [Event structure semantics]
For every judgement P . Γ in the π-calculus, there exists an en-
vironment ∆ such that [[P . Γ]]∆ is defined
Also: [[P . Γ]]∆ . ∆

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Correspondence

Correspondence between transition system and event
structure:

Theorem: [Operational correspondence]
If P . Γ

β−→P ′ . Γ′, then [[P . Γ]]∆ β−→ ∼= [[P ′ . Γ′]]∆
′

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Correspondence

Correspondence between transition system and event
structure:

Theorem: [Operational correspondence]
If P . Γ

β−→P ′ . Γ′, then [[P . Γ]]∆ β−→ ∼= [[P ′ . Γ′]]∆
′

If [[P . Γ]]∆ β−→E ′, then there exists P ′ such that P . Γ
β−→P ′ . Γ′

and [[P ′ . Γ′]]∆
′ ∼= E ′

Varacca, Yoshida Types, Event Structures and the π-Calculus



Summary

What we have done
First typing system for event structures
Typing system for true concurrent behavioural properties
First explicit event structure semantics of π

Varacca, Yoshida Types, Event Structures and the π-Calculus



Summary

What we have done
First typing system for event structures
Typing system for true concurrent behavioural properties
First explicit event structure semantics of π

What we will do

Probabilistic event structures
Connections with true concurrent games
Connections with Beffara’s thesis

Varacca, Yoshida Types, Event Structures and the π-Calculus


	Talk
	Event Structures
	Confusion Freeness
	Conflict Freeness

	Types
	Syntax and Semantics
	Typed Event Structures

	Semantics of 
	Syntax
	Event Structure Semantics
	Correspondence


	Future

