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Typed π-calculus

We all know what the π-calculus is

x(ỹ).P | x〈z̃〉.Q −→ P{z̃/ỹ} |Q
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x(ỹ).P | x〈z̃〉.Q −→ P{z̃/ỹ} |Q
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Typed π-calculus

We all know what the π-calculus is

x(ỹ).P | x(ỹ).Q −→ (ν ỹ)(P |Q)

We consider a restricted version:
bound output only (“internal” mobility)

A linear type discipline:
(A) for each linear name there are a unique input and a unique

output
(B) for each replicated name there is a unique stateless

replicated input with zero or more dual outputs
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Confluence

Linearly typed π is confluent

P

  AAAAAAAA

~~~~~~~~~~

P ′

  @@@@@@@ P ′′

~~}}}}}}}}

Q
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Event Structures Types Semantics of π

Road Map

1 Event Structures
Confusion Freeness
Conflict Freeness

2 Types
Syntax and Semantics
Typed Event Structures

3 Semantics of π
Syntax
Event Structure Semantics
Correspondence
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

True concurrency

Standard “interleaving” semantics
reduces parallelism to nondeterministic interleaving
(“expansion law”)
Labelled transition systems, reduction semantics
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

True concurrency

Standard “interleaving” semantics
reduces parallelism to nondeterministic interleaving
(“expansion law”)
Labelled transition systems, reduction semantics

“True concurrent” models

Represent explicitly causality, conflict, independence
Petri nets, Mazurkiewicz traces, event structures
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures

An event structure is a partial order 〈E ,≤〉 together with a
conflict relation ^

order represents causal dependency
conflict is irreflexive an symmetric
conflict is “hereditary”:

e1 ^ e and e1 ≤ e2 implies e2 ^ e

A conflict is immediate if it is not inherited
from another conflict
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures

Example

d e

b /o/o/o/o/o/o/o/o c

a

???????

��������
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures

Example

d e

b /o/o/o/o/o/o/o/o c

a

???????

��������

Events can also be labelled: λ : E → L
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures

Example

γ1 γ2

β1 /o/o/o/o/o/o/o/o β2

α

AAAAAAA

}}}}}}}

Events can also be labelled: λ : E → L
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Operators on event structures

Prefixing α.E
γ1 γ2

β1 /o/o/o/o/o/o/o/o β2
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Operators on event structures

Prefixing α.E
γ1 γ2

β1 /o/o/o/o/o/o/o/o β2

α

AAAAAAA

}}}}}}}
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Operators on event structures

Prefixed sum
∑

i∈I αi .Ei

γ1 γ2

β1 β2
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Operators on event structures

Prefixed sum
∑

i∈I αi .Ei

γ1 γ2

β1 β2

α1 /o/o/o/o/o/o/o α2
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Operators on event structures

Parallel composition E1‖E2

γ1 γ2

β β
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Operators on event structures

Parallel composition E1‖E2

γ1 γ1 γ2 γ2

β /o/o/o/o/o/o/o/o/o τι

��������

>>>>>>>>
/o/o/o/o/o/o/o/o/o β

A complex construction involving synchronisation
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures and transition systems

Consider
E = 〈E ,≤,^, λ〉, a labelled event structure
e, one of its minimal events

We define E be as E minus event e, and minus all events that
are in conflict with e
We can then generate a labelled transition system as follows: if
λ(e) = β, then

E
β−→E be
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures and transition systems

Example

γ1 γ2 /o/o/o γ3

β1 /o/o/o/o/o/o/o β2

}}}}}}}}

An event structure E
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Event structures and transition systems

Example

γ1 γ2 /o/o/o γ3

β1 /o/o/o/o/o/o/o β2

}}}}}}}}

Eliminate a minimal event e (labelled by β2)
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Event structures and transition systems

Example

γ1 γ2 /o/o/o γ3

β1 /o/o/o/o/o/o/o

}}}}}}}}

Eliminate a minimal event e (labelled by β2)
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures and transition systems

Example

γ1 γ2 /o/o/o γ3

β1 /o/o/o/o/o/o/o

}}}}}}}}

And every event in conflict with it
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Event structures and transition systems

Example

γ2 /o/o/o γ3
}}}}}}}}

And every event in conflict with it
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Event structures and transition systems

Example

γ1 γ2 /o/o/o γ3
β2 // γ2 /o/o/o γ3

β1 /o/o/o/o/o/o/o β2

}}}}}}}}

E
β2−→E be
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Confusion freeness

An event structure is confusion-free when
“reflexive” immediate conflict is an equivalence
any two events in immediate conflict have the same
predecessors

The equivalence classes are the cells
Cells represent local choices
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Examples

b /o/o/o/o/o/o/o/o/o/o/o/o/o

$d
$d

$d
$d

$d
$d

$d d

z:
z:

z: z:
z:

z:
e

c

a

000000000000000000000

���������������������

}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Confusion Free
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Examples

b /o/o/o/o/o/o/o/o/o/o/o/o/o

$d
$d

$d
$d

$d
$d

$d d

z:
z:

z: z:
z:

z:
e

c

a

000000000000000000000
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Examples

b

$d
$d

$d
$d

$d
$d

$d d

z:
z:

z: z:
z:

z:
e

c

a

000000000000000000000

���������������������

}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Confusion!
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Where confusion arises

Confusion arises from synchronisation
Consider (a | a)
The event structure for this is

a
(h(h(h a

v6 v6 v6

τι

Confusion - the choice is not local
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Where confusion arises

Confusion arises from synchronisation
Consider (a | a)
The event structure for this is

a
(h(h(h a

v6 v6 v6

τι

Confusion - the choice is not local

Issue: how to perform synchronisation without introducing
confusion
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Conflict freeness

When the conflict relation is empty, the corresponding transition
system is confluent
A special case of confusion freeness
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

Conflict freeness

When the conflict relation is empty, the corresponding transition
system is confluent
A special case of confusion freeness

Idea: give a conflict free event structure semantics to the linear
π-calculus
Issues:

difficult to handle name generation
hidden conflicts appear
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The post office

Example:
Stateless replicated resource: post office !a.P
Clients: customers a.C

Every customer wants to send a letter a
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

The post office

The process a.D | a.N | !a.P is confluent

a.D | a.N | !a.P

))SSSSSSSSSSSSSSS

uukkkkkkkkkkkkkkk

D | P | a.N | !a.P

))SSSSSSSSSSSSSSS
N | P | a.D | !a.P

uukkkkkkkkkkkkkkk

N | P | D | P | !a.P
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The post office

Situation 1: two customers, one till
A conflict to resolve: who goes first?
Eventually, it does not matter, but the two events are not
independent
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

The post office

Situation 1: two customers, one till
A conflict to resolve: who goes first?
Eventually, it does not matter, but the two events are not
independent

Situation 2: two customers, infinitely many identical tills
if the two customers want to go to the same till, there is a
conflict
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Event Structures Types Semantics of π Confusion Freeness Conflict Freeness

The post office

Situation 1: two customers, one till
A conflict to resolve: who goes first?
Eventually, it does not matter, but the two events are not
independent

Situation 2: two customers, infinitely many identical tills
if the two customers want to go to the same till, there is a
conflict

Situation 3: one customer, infinitely many identcal tills
the customer has to choose which till to go to
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The post office

Solution: no conflict arises if every possible customer is
assigned a spefic till in advance
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Road Map

1 Event Structures
Confusion Freeness
Conflict Freeness

2 Types
Syntax and Semantics
Typed Event Structures

3 Semantics of π
Syntax
Event Structure Semantics
Correspondence
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Types for event structures

Γ,∆ ::= y1 : σ1, . . . , yn : σn type environment

τ, σ ::=
�

i∈I Γi branching

| ⊕
i∈I Γi selection

| ⊗
i∈I Γi server

| � i∈I Γi client

| l closed type

Linearity condition: no name appears more than once
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Composing environments

Notion of matching of types

A branching type & matches the dual selection types ⊕,
and the residual type is l
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Composing environments

Notion of matching of types

A branching type & matches the dual selection types ⊕,
and the residual type is l
A server type ⊗ matches a client type � if all requests
correspond to an available resource. The residual is again
a server type ⊗ that records which resources are still
available
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Composing environments

Notion of matching of types

A branching type & matches the dual selection types ⊕,
and the residual type is l
A server type ⊗ matches a client type � if all requests
correspond to an available resource. The residual is again
a server type ⊗ that records which resources are still
available
Two environments Γ1, Γ2 be composed if the types of the
common names match
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Composing environments

Notion of matching of types

A branching type & matches the dual selection types ⊕,
and the residual type is l
A server type ⊗ matches a client type � if all requests
correspond to an available resource. The residual is again
a server type ⊗ that records which resources are still
available
Two environments Γ1, Γ2 be composed if the types of the
common names match
Such names are given the residual type by the resulting
environment Γ1 � Γ2
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Type environments

Example
τ1 =

�
i∈{1,2}(xi :

⊕
j∈J)

τ2 =
⊕

i∈{1,2}(xi :
�

j∈J)

σ1 = � i∈{1}(yi :l)
σ2 =

⊗
i∈{1,2}(yi :l)
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Type environments

Example
τ1 =

�
i∈{1,2}(xi :

⊕
j∈J)

τ2 =
⊕

i∈{1,2}(xi :
�

j∈J)

σ1 = � i∈{1}(yi :l)
σ2 =

⊗
i∈{1,2}(yi :l)

τ1 matches τ2

the residual type is l
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Type environments

Example
τ1 =

�
i∈{1,2}(xi :

⊕
j∈J)

τ2 =
⊕

i∈{1,2}(xi :
�

j∈J)

σ1 = � i∈{1}(yi :l)
σ2 =

⊗
i∈{1,2}(yi :l)

σ1 matches σ2

the residual type is
⊗

i∈{2}(yi :l)
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Type environments

Example
τ1 =

�
i∈{1,2}(xi :

⊕
j∈J)

τ2 =
⊕

i∈{1,2}(xi :
�

j∈J)

σ1 = � i∈{1}(yi :l)
σ2 =

⊗
i∈{1,2}(yi :l)

Γ1 = a : τ1,b : σ1,
Γ2 = a : τ2,b : σ2
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Type environments

Example
τ1 =

�
i∈{1,2}(xi :

⊕
j∈J)

τ2 =
⊕

i∈{1,2}(xi :
�

j∈J)

σ1 = � i∈{1}(yi :l)
σ2 =

⊗
i∈{1,2}(yi :l)

Γ1 = a : τ1,b : σ1,
Γ2 = a : τ2,b : σ2

Γ1 � Γ2 = a :l,b :
⊗

i∈{2}(yi :l)
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Labelled event structures

Labels:

α, β ::= xini〈ỹ〉 branching τι ::= (x , x)ini〈ỹ〉
| xini〈ỹ〉 selection | (x , x)〈ỹ〉
| x〈ỹ〉 server
| x〈ỹ〉 client
| τι synchronisation
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Typing via morphisms

An event structure E is well typed in Γ if

E is confusion free
cells are partitioned in branching, selection, client, server
and synchronisation cells
all the non-synchronisation events of are represented in Γ

causality in E refines name causality of Γ

Technically: via morphisms of the category of event structures
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

A typed event structure

x1 y1 z1

(w ,w) b〈z1〉 b〈z1〉

yyyyyyyyy

ain1〈x1〉 /o/o

JJJJJJJJJ

ain2〈x2〉

E . a : �
i∈{1,2}

(xi : �
k∈{1}

)

b :
⊗

j∈{1}
(zj : �

l∈{1}
)
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Typed event structures

Properties

Typed event structures are confusion free (by definition)
Prefixing, prefixed sum and parallel composition preserve
typing

In particular parallel composition of typed event structures is
confusion free
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Typed event structures

Properties

Typed event structures are confusion free (by definition)
Prefixing, prefixed sum and parallel composition preserve
typing

In particular parallel composition of typed event structures is
confusion free

Theorem [Parallel composition]
If E1 . Γ1 and E2 . Γ2 and Γ1 � Γ2 is defined, then

(E1‖E2) \ S . Γ1 � Γ2
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Typed event structures

Properties

Typed event structures are confusion free (by definition)
Prefixing, prefixed sum and parallel composition preserve
typing

In particular parallel composition of typed event structures is
confusion free

Theorem [Parallel composition]
If E1 . Γ1 and E2 . Γ2 and Γ1 � Γ2 is defined, then

(E1‖E2) \ S . Γ1 � Γ2

(S is the set of names not allowed by the new environment)
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Event Structures Types Semantics of π Syntax and Semantics Typed Event Structures

Typed event structures

When branching and selection types are trivial:

Typed event structures are conflict free
Prefixing, and parallel composition preserve typing

In particular parallel composition of typed event structures is
conflict free
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Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

Road Map

1 Event Structures
Confusion Freeness
Conflict Freeness

2 Types
Syntax and Semantics
Typed Event Structures

3 Semantics of π
Syntax
Event Structure Semantics
Correspondence
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Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

The syntax

π processes

P ::= x
�

i∈I ini(ỹi).Pi branching

| xinj(ỹ).P selection

| !x(ỹ).P server

| x(ỹ).P client

| P |Q parallel

| (ν x)P restriction

| 0 inaction

Varacca, Yoshida Types, Event Structures and the π-Calculus



Event Structures Types Semantics of π Syntax Event Structure Semantics Correspondence

The syntax

π processes

P ::= x
�

i∈I ini(ỹi).Pi branching

| x
⊕

i∈I ini(ỹi).Pi selection

| !x(ỹ).P server

| x(ỹ).P client

| P |Q parallel

| (ν x)P restriction

| 0 inaction
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The types

π types

σ ::=
�

i∈I (σ̃i)
↓ branching

| ⊕
i∈I (σ̃i)

↑ selection

| (σ̃)! server

| (σ̃)? client

τ ::= σ | l

Environments compose in a similar way as event structure
environments
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Examples

a.b | a.c | a
This is not typable as a appears twice as output
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Examples

b.a | c.b | a.(c | e)

This is typable since each channel appears at most once as
input and output
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Examples

a.(b ⊕ c) | a.(d & e)

This process is typable, and contains nondeterminism:

Q3 −→ (b | d)

Q3 −→ (c | e)
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Examples

! b.a | ! b.c

This is not typable as there are two different servers associated
with b
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Examples

! b.a | b | ! c.b

This is typable: the two clients on b are associated to a unique
server
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Typed transition system

Operational semantics

As usual P . Γ
β−→P ′ . Γ′

The transition must be allowed by the environment
(The enviroment performs implicit restricitions)
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Event structure semantics of π

The semantics has the form [[P . Γ]]∆, where ∆ is an event
structure environment
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Event structure semantics of π

The semantics has the form [[P . Γ]]∆, where ∆ is an event
structure environment

∆ fixes a choice of the newly generated names
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Event structure semantics of π

The semantics has the form [[P . Γ]]∆, where ∆ is an event
structure environment

∆ fixes a choice of the newly generated names
∆ assigns each client a specific instance of its server
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Event structure semantics of π

[[a
⊕

i∈I ini(yi).Pi . Γ,a :
⊕

i∈I(τi)]]∆,a:
L

i∈I zi :τ̂i

=
∑

i∈I aini〈zi〉.[[Pi [zi/yi ] . Γ, zi : τi ]]
∆,zi :τ̂i
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Event structure semantics of π

[[!a(y).P . Γ,a : (τ)! ]]∆,a:
N

k∈K (yk :τ̂ k )

=

‖k∈K a〈yk 〉.[[P[yk/y ] . Γ[yk/y ]]]∆k ,yk :τ̂ k
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Event structure semantics of π

[[P1 | P2 . Γ1 � Γ2]]∆1�∆2

=

([[P1 . Γ1]]∆1‖[[P2 . Γ2]]∆2) \ S
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Event structure semantics of π

The interpretation functions are partial functions: for the wrong
choice of ∆1,∆2, the interpretation of the parallel composition
could be undefined, because ∆1 �∆2 may be undefined
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Event structure semantics of π

The interpretation functions are partial functions: for the wrong
choice of ∆1,∆2, the interpretation of the parallel composition
could be undefined, because ∆1 �∆2 may be undefined

It is always possible to find suitable ∆1,∆2
We perform α-conversion “at compile time”
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Event structure semantics of π

The interpretation functions are partial functions: for the wrong
choice of ∆1,∆2, the interpretation of the parallel composition
could be undefined, because ∆1 �∆2 may be undefined

Theorem: [Event structure semantics]
For every judgement P . Γ in the π-calculus, there exists an en-
vironment ∆ such that [[P . Γ]]∆ is defined
Also: [[P . Γ]]∆ . ∆
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Correspondence

Correspondence between transition system and event
structure:

Theorem: [Operational correspondence]
If P . Γ

β−→P ′ . Γ′, then [[P . Γ]]∆ β−→ ∼= [[P ′ . Γ′]]∆
′
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Correspondence

Correspondence between transition system and event
structure:

Theorem: [Operational correspondence]
If P . Γ

β−→P ′ . Γ′, then [[P . Γ]]∆ β−→ ∼= [[P ′ . Γ′]]∆
′

If [[P . Γ]]∆ β−→E ′, then there exists P ′ such that P . Γ
β−→P ′ . Γ′

and [[P ′ . Γ′]]∆
′ ∼= E ′
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Summary

What we have done
First typing system for event structures
Typing system for true concurrent behavioural properties
First explicit event structure semantics of π
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Summary

What we have done
First typing system for event structures
Typing system for true concurrent behavioural properties
First explicit event structure semantics of π

What we will do

Probabilistic event structures
Connections with true concurrent games
Connections with Beffara’s thesis
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