
Semantic Subtyping for Objects and Classes

Ornela Dardha1 Daniele Gorla2 Daniele Varacca3

1 Dip. Scienze dell’Informazione, Università di Bologna (Italy)
2 Dip. di Informatica, “Sapienza” Università di Roma (Italy)

3 PPS - Université Paris Diderot & CNRS (France)

Abstract. We propose an integration of structural subtyping with
boolean connectives and semantic subtyping to define a Java-like pro-
gramming language that exploits the benefits of both approaches. Seman-
tic subtyping is an approach to defining the subtyping relation based on
set-theoretic models, rather than syntactic rules. On the one hand, this
approach involves some non trivial mathematical machinery in the back-
ground. On the other hand, the final user of the language need not know
this machinery and the resulting subtyping relation is very powerful and
intuitive. While semantic subtyping is naturally linked to structural sub-
typing, we show how the approach can accommodate the nominal style
of subtyping. Several examples show the expressivity and the practical
advantages of our proposal.

1 Introduction

Type systems for programming languages are often based on a subtyping
relation on types. There are two main approaches for defining the subtyping
relation: the syntactic approach and the semantic one. The syntactic approach
is more common: the subtyping relation is defined by means of a formal system
of deductive rules. One proceeds as follows: first define the language, then the
set of syntactic types and finally the subtyping relation by inference rules. In
the semantic approach, instead, one starts from a model of the language and an
interpretation of types as subsets of the model. The subtyping relation is then
defined as inclusion of sets denoting types.

The semantic approach has received less attention than the syntactic one as
it is more technical and constraining: it is not trivial to define the interpretation
of the types as subsets of a model. However, it presents several advantages: for
instance, it allows a natural definition of boolean operators. Also the meaning
of the types is more intuitive for the programmer, who can also be unaware of
the theory behind the curtain.

The first use of the semantic approach goes back to two decades ago [3,12].
More recently, Hosoya and Pierce have adopted this approach in [17,18,19] to de-
fine XDuce, an XML-oriented language designed specifically to transform XML
documents into other XML documents satisfying certain properties. The val-
ues of this language are fragments of XML documents; types are interpreted as
sets of documents, more precisely as sets of values. The subtyping relation is
established as inclusion of these sets. The type system contains boolean types,

product types and recursive types. There are no function types and no functions
in the language.

Castagna et al. in [9,11,15] extend the XDuce language with first-class func-
tions and arrow types; this yields a higher-order language, named CDuce, adopt-
ing the semantic approach to subtyping. The starting point of their framework
is a higher-order λ−calculus with pairs and projections. The set of types is ex-
tended with intersection, union and negation types interpreted in a set-theoretic
way.

The semantic approach can also be applied to the π-calculus [24,28].
Castagna, Varacca and De Nicola in [10] have used this technique to define
the Cπ language, a variant of the asynchronous π-calculus, where channel types
are augmented with boolean connectives interpreted in an obvious way.

We aim at applying the semantic subtyping approach to an object-oriented
core language. Our starting point is the language Featherweight Java [20], which
is a functional fragment of Java. From a technical point of view, our develop-
ment follows [15], with the important difference that we do not have higher-order
values. Therefore, we cannot directly reuse their results. Instead, we define from
scratch the semantic model that induces the subtyping relation, and we prove
some important theoretical results. The mathematical technicalities, however,
are transparent to the final user. Thus, the overheads are hidden to the pro-
grammer, who sees a language with no additional complexity (w.r.t. standard
Java) but with an easier-to-write, more expressive set of types.

There are several other reasons that make the semantic subtyping very ap-
pealing in an object-oriented setting. For example, it allows us to very easily
handle powerful boolean type constructors and model both structural and nomi-
nal subtyping. The importance, both from the theoretical and the practical side,
of boolean type constructors is widely known in several settings, e.g. in the λ-
calculus [7]. Below, we show two examples where the advantages of using boolean
connectives in an object-oriented language become apparent.

Boolean constructors for modeling multimethods. Featherweight Java [20] is a
minimal language, so several features of full Java are not included in it; in par-
ticular, an important missing feature is the possibility of overloading methods,
both in the same class or along the class hierarchy. By using boolean construc-
tors, the type of an overloaded method can be expressed in a very compact and
elegant way, and this modeling comes for free after having defined the seman-
tic subtyping machinery. Actually, what we are going to model is not Java’s
overloading (where the static type of the argument is considered for resolving
method invocations) but multimethods (where the dynamic type is considered).
To be precise, we implement the form of multimethods used, e.g., in [5,8]; ac-
cording to [6], this form of multimethods is “very clean and easy to understand
[...] it would be the best solution for a brand new language”. As an example,

2

consider the following class declarations:1

class A extends Object {
. . .
int length(string s){ //returns the number of characters in s }

}
class B extends A {

. . .
int length(int n){ //returns the the number of digits in n }

}

As expected, method length of A has type string→ int. However, such a method
in B has type (string→ int)∧∧∧(int→ int),2 which can be simplified to (string∨∨∨
int)→ int.

The use of negation types. As we will see, negation types are very useful to the
compiler for typing terms of language. But they can be also useful directly to the
programmer. Suppose we want to represent an inhabitant of Christiania, that
does not want to use money, and does not want to deal with anything that can be
given a price. In this scenario, we have a collection of objects, some of which may
have a getValue method that tells their value in Euros. We want to implement
a class Hippy which has a method barter that is intended to be applied only to
objects that do not have the method getValue. This is very difficult to represent
in a language with only nominal subtyping; but also in a language with structural
subtyping, it is not clear how to express the fact that a method is not present.

In our case, the type of objects that have the method getValue is denoted by

[getValue : void→ real].

Within the class Hippy, we can now define a method of signature

α barter(¬¬¬[getValue : void→ real] x)

that takes in input only objects that do not have a price, i.e. a method named
getValue (the return type α does not play any role here).

One could argue that it is difficult to statically know that an object does
not have the method getValue and thus no reasonable application of the method
barter can be well-typed. However, it is not difficult to explicitly build a collection
of objects that do not have the method getValue, by dynamically checking the
presence of the method. This is possible thanks to the instanceof construction
(described in Section 6.3). The method barter can now be applied to any object
of that list, and the application will be well typed.

1 Here and in the rest of the paper we use ‘. . .’ to avoid writing the useless part of a
class, e.g. constructors or irrelevant fields/methods.

2 To be precise, the actual type is ((string∧∧∧¬¬¬int)→ int)∧∧∧ (int→ int) but string∧∧∧
¬¬¬int ' string, where ' denotes ≤ ∩ ≤−1 and ≤ is the (semantic) subtyping
relation.

3

In the case of a language with nominal subtyping, one can enforce the pol-
icy that objects with a price implement the interface ValuedObject. Then, the
method barter would take as input only objects of type ¬¬¬ValuedObject .

While the example is quite simple, we believe it exemplifies the situations
in which we want to statically refer to a portion of a given class hierarchy and
exclude the remainder.

Structural subtyping. An orthogonal issue, typical of object-oriented languages, is
the nominal vs. structural subtyping question. In a language where the subtyping
is nominal, A is a subtype of B if and only if it is declared to be so, that is if
the class A extends (or implements) the class (or interface) B; these relations
must be declared by the programmer and are based on the names of the classes
and interfaces concerned. Java programmers are used to nominal subtyping,
but other languages [14,16,21,22,23,26,27] are based on the structural approach.
In this approach, the subtyping relation is established only by analyzing the
structure of a class, i.e. its fields and methods: a class A is a subtype of a
class B if and only if the fields and methods of A are a superset of the fields
and methods of B, and their types in A are subtypes of their types in B. The
syntactic subtyping is more naturally linked to the nominal approach, though it
can also be adapted to support the structural one, as shown in [16,22]. In this
paper we follow the reverse direction. The definition of structural subtyping, as
inclusion of sets corresponding to fields and methods of a class, fits perfectly
the definition of semantic subtyping. However, with minor modifications, it is
also possible to include in the framework the choice of using nominal subtyping
without changing the underlying theory.

Plan of the paper. The paper is organized as follows. In Section 2, we present
the types and the language syntax. In Section 3, we define type models, used
for the semantic subtyping. In Section 4, we define the subtyping relation in
the semantic way, i.e. as inclusion between sets of values; in doing this, we also
provide the typing rules for our language. In Section 5 we present the operational
semantics and the soundness of the type system. In Section 6, we discuss some
important issues: the possibility of programming recursive class definitions, of
encoding standard multimethods, of implementing typical Java constructs and
of integrating nominal typing and subtyping. We conclude in Section 7.

2 The calculus

In this section, we present the syntax of our calculus, i.e. the types and the
language terms.

2.1 Types

Our types are defined by properly restricting the type terms inductively
defined by the following grammar:

4

τ ::= α | µ Type term

α ::= 0 | B | [l̃ : τ] | α∧∧∧ α | ¬¬¬α Object type (α-type)

µ ::= α→ α | µ∧∧∧ µ | ¬¬¬µ Method type (µ-type)

Types can be of two kinds: α-types (used for declaring fields and, in particular,
objects) and µ-types (used for declaring methods). The arrow types are only
needed to type the methods of our calculus. Since our language is first-order,
i.e. methods are not first-class values, arrow types are introduced by a distinct
syntactic category, viz. µ.

The type 0 denotes the empty type. The type B denotes the basic types:

integers, reals, booleans, etc. The type [l̃ : τ] denotes a record type, where ·̃
denotes a (possibly empty) sequence of elements of kind “ · ”. Thus, l̃ : τ indicates
the sequence l1 : τ1, . . . , lk : τk, for some k ≥ 0. Labels l range over an infinite
countable set L. When necessary, we will write a record type as [ã : α, m̃ : µ] to
emphasize the fields of the record, denoted by the labels ã, and the methods
of the record, denoted by m̃. Given a type ρ = [ã : α, m̃ : µ], ρ(ai) is the type
corresponding to the field ai and ρ(mj) is the type corresponding to the method
mj . In each record type, we require that ai 6= aj for i 6= j and mh 6= mk for
h 6= k. To simplify the presentation, we are modeling a form of multimethods
where at most one definition for every method name is present in every class.
However, the general form of multimethods can be recovered by exploiting the
simple encoding of Section 6.2.

The boolean connectives ∧∧∧ and ¬¬¬ have their intuitive set-theoretic meaning.
We use 1 to denote the type ¬¬¬0 that corresponds to the universal type. We use
the abbreviation α\\\α′ to denote α∧∧∧¬¬¬α′ and α∨∨∨α′ to denote ¬¬¬(¬¬¬α∧∧∧¬¬¬α′). The
same holds for the µ-types.

Definition 1 (Types). The pre-types are the regular trees (i.e., the trees with
a finite number of non-isomorphic subtrees) produced by the syntax of type terms.

The set of types, denoted by T , is the largest set of well-formed pre-types,
i.e. the ones for which the binary relation . defined as

τ1 ∧∧∧ τ2 . τ1 τ1 ∧∧∧ τ2 . τ2 ¬¬¬τ . τ

does not contain infinite chains.

First, notice that every finite tree obtained from the grammar of types is
both regular and well-formed; so, it is a type. Problems can arise for infinite
trees, and this fact leads us to restrict them to the regular and the well-formed
ones. Indeed, if a tree is non-regular, then it is difficult to write it down in a
finite way; since we want our types to be usable in practice, we require regular
trees that can be easily written down, e.g. by using recursive type equations.
Moreover, as we want types to denote sets, we impose some restrictions to avoid
ill-formed types. For example, the solution to α = α∧∧∧α contains no information
about the set denoted by α; even worse, α = ¬¬¬α does not admit any solution.

5

Such situations are problematic when we define the model. To rule them out,
we only consider infinite trees whose branches always contain an atom, where

atoms are the basic types B, the record types [l̃ : τ] and the arrow types α→ α.
This intuition is what the definition of relation . formalizes.

The restriction to well-formed types is required to avoid meaningless types;
the same choice is used in [15]. A different restriction, called contractiveness, is
used for instance in [4], where non-regular types are also allowed.

2.2 Terms

Our language is based on Featherweight Java (FJ) [20], that is a minimal
calculus based on Java. We have preferred this calculus w.r.t. [1] because of the
widespread diffusion of Java. There is a correspondence between the calculus
and the pure functional fragment of Java, in a sense that any program in FJ is
an executable program in Java. Our syntax is essentially the same as [20], apart
from the absence of the cast construct and the presence of the rnd primitive.
We have left out the first construct for the sake of simplicity; it can be added
to the language without any problem: we just need to add the typing and re-
duction rules developed in [20], that of course rely on our semantic subtyping.
The second construct is a nondeterministic choice operator; its name and role
are the same as in [15]. Since method types will be interpreted as relations, we
need some nondeterministic construct in the language to let all the machinery
of the semantic subtyping work.

We assume a countable set of names, among which there are some key names:
Object , that indicates the root class; this, that indicates the current object;
and super, that indicates the parent object. We will use the letters A,B,C, . . .
for indicating classes, a, b, . . . for fields, m,n, . . . for methods and x, y, z, . . . for
variables. C will denote the set of constants of the language and we will use the
meta-variable c to range over C. Generally, to make examples clearer, we will use
mnemonic names to indicate classes, methods, etc.; for example, Point, print,
etc.

The syntax of the language is the following:

Class declaration L ::= class C extends C {α̃ a K M̃}

Constructor K ::= C(β̃ b; α̃ a){super(̃b); t̃his.a = ã}
Method declaration M ::= α m(α a){return e}
Expressions e ::= x | c | e.a | e.m(e) | new C(ẽ) | rnd(α)

A program is a pair (L̃, e) formed by a sequence of class definitions (inducing a

class hierarchy, as specified by the inheritance relation) L̃ where the expression e
is evaluated. Every class declaration L provides the name of the class, the name
of the parent class, some field (each equipped with a type specification), one
constructor K and some method declarations M . The constructor essentially
initializes the fields of the object, by assigning values first to the fields inherited
by the super-class and then to the fields declared in the present class. A method
is declared by specifying the return type, the name of the method, the formal

6

parameter (made up by a type specification given to a symbolic name) and a
return expression, i.e. the body of the method. For simplicity, we use unary
methods, without compromising the expressive power of the language: passing
tuples of arguments can be modeled by passing an object that instantiates a
class, defined in an ad-hoc way for having as fields all the arguments needed.
Expressions e are variables, constants, field accesses, method invocations, object
creations and random choices among values of a given type.

In this work we assume that L̃ is well-defined, in the sense that “it is not
possible that a class A extends a class B and class B extends class A”, or “a
constructor called B cannot be declared in a class A” and other obvious rules
like these. All these kinds of checks could be carried out in the type system,
but we prefer to assume them to focus our attention on the new features of our
framework.

3 Type models

Having defined the raw syntax, we should now introduce the typing rules.
They would typically involve a subsumption rule, that invokes a notion of sub-
typing. It is therefore necessary to define subtyping, As we have already said, in
the semantic approach τ1 is a subtype of τ2 if all the τ1-values are also τ2-values,
i.e. if the set of values of type τ1 is a subset of the set of values of type τ2.
However, in this way, subtyping is defined by relying on the notion of well-typed
values; hence, we need the typing relation to determine typing judgments for
values; but the typing rules use the subtyping relation which we are going to
define. So, there is a circularity. To break this circle, we shall follow the path of
[15] and adapt it to our framework. The idea is to first interpret types as subsets
of some abstract “model” and then establish subtyping as set-inclusion. Using
this abstract notion of subtyping we can define the typing rules. Having now a
notion of well-typed value, we can define the “real” interpretation of types as
sets of values. This interpretation can be used to define another notion of sub-
typing. But if the abstract model is chosen carefully, the real subtyping relation
coincides with the abstract one, and the circle is closed.

In this section we open the circle by presenting the notion of abstract model
of types. The circle will be closed in the next section.

A model consists of a set D and an interpretation function J KD : T → P(D).
Such a function shall interpret boolean connectives in the expected way (con-
junction corresponds to intersection and negation corresponds to complement)
and should capture the meaning of type constructors. Notice that, given an intu-
itive meaning of types, there may be several models that satisfy this requirement,
and it is not guaranteed that they all induces the same subtyping relation. For
our purposes, we only need to prove that there exists at least one suitable model
that we shall call bootstrap model.

3.1 Set-theoretic interpretations and Models

First of all, any type interpretation must respect the set-theoretic meaning
of the boolean constructors; this is formalized in the following definition.

7

Definition 1 A set-theoretic interpretation of T is given by a set D and a
function J K : T → P(D) such that, for any τ1, τ2, τ ∈ T , it holds that

J0K = ∅ Jτ1 ∧∧∧ τ2K = Jτ1K ∩ Jτ2K J¬¬¬τK = D \ JτK

Notice that the above definition implies Jτ1 ∨∨∨ τ2K = Jτ1K ∪ Jτ2K, Jτ1\\\τ2K =
Jτ1K \ Jτ2K and J1K = D. Every set-theoretic interpretation J K : T → P(D)
induces a binary relation ≤JK ⊆ T 2 defined as follows: τ1 ≤JK τ2 ⇐⇒ Jτ1K ⊆
Jτ2K. This relation is the semantic subtyping relation. Thanks to negation, the
problem of deciding the subtyping between two types is reduced to the problem
of emptiness, that is: Jτ1K ⊆ Jτ2K ⇐⇒ Jτ1K \ Jτ2K = ∅ ⇐⇒ Jτ1K ∩ (D \ Jτ2K) =
∅⇐⇒ Jτ1 ∧∧∧¬¬¬τ2K = ∅.

Next, we define when an interpretation correctly represents the meaning of
the type constructors. Notationally, for every basic type B, we denote with V alB
the set of (basic) values of type B. Moreover, we require that, for any constant
c, there is a basic type Bc such that V alBc

= {c}. So, the set of constants that
inhabit the basic type Bc is composed only by the singleton constant c.

For a record type ρ = [l̃ : τ], the intuition is that it should represent all the
objects that have values of type τi in the field li, but that may have other fields
as well.

Definition 2 Given a record type [l̃ : τ], we define [l̃ : JτK] as:

[l̃ : JτK] = {R ⊆ (L×D) | dom(R) ⊇ {l̃} ∧ ∀(l, d) ∈ R ∀i.(l = li ⇒ d ∈ JτiK)}

Intuitively, the interpretation of [l̃ : τ] is a set of relations R ⊆ L×D such that,

whenever (l, d) ∈ R and l is the i-th component of l̃, d must belong to JτiK. Of
course, since every field can usually assume several values (of a given type), we
have to work with relations instead of functions, otherwise every field would be
committed to a single value. Also, the record type [a : 0] should be interpreted
as the empty set, as our intuition suggests that we cannot instantiate any object
of this type. Thus, we add the requirement that dom(R) ⊇ {l̃}.

For a functional type α1 → α2, the intuition is that it should represent the
set of functions f such that, if d belongs to Jα1K, f(d) must belong to Jα2K.
For the same technical reasons explained in [15], we consider binary relations
instead of functions: on the one hand, this simplifies the equations satisfied by
the types; on the other hand, this is also necessary to model non-deterministic
methods. In this paper, non-deterministic methods are represented by the choice
operator rnd. Non-determinism becomes necessary when dealing with functions
with side effects: depending on the state, the same input can produce different
outputs, and this can be seen as non-deterministic from the point of view of the
input-output behaviour.

Moreover, there is a notion of type error in the calculus: it is not possible to
invoke an arbitrary method on an arbitrary argument. To assure this, we will
use Ω as a special element to denote this type error. So, we will interpret a type
α1 → α2 as the set of binary relations Q ⊆ D × DΩ (where DΩ = D] {Ω})
such that, whenever (q, q′) ∈ Q and q ∈ Jα1K, it holds that q′ ∈ Jα2K.

8

Definition 3 Let D be a set and X, Y subsets of D; we write DΩ for D] {Ω}
and define:

X → Y = {Q ⊆ D ×DΩ | ∀(q, q′) ∈ Q.(q ∈ X ⇒ q′ ∈ Y)}

Notice that, if we replace DΩ with D in the definition above, then X → Y
would always be a subset of D → D. This would imply that any arrow type
would be a subtype of 1→ 1. If this were the case, using the subsumption rule,
the invocation of any well-typed method on any well-typed argument would be
well-typed, violating the type-safety property of the calculus. With the definition
given above, we have X → Y ⊆ D → D if and only if D ⊆ X. This result is true
if we consider the covariance of arrow types.

At this point, we can give the formal definition of an extensional interpreta-
tion associated with a set-theoretic interpretation.

Definition 4 Let J K : T → P(D) be a set-theoretic interpretation of T . We
define its associated extensional interpretation as the set-theoretic interpretation
E () : T → P(ED) (where ED= C] P(L×D)] P(D ×DΩ)) such that:

E (B) = V alB ⊆ C
E
(

[l̃ : τ]
)

= [l̃ : JτK] ⊆ P(L×D)

E (α1 → α2) = Jα1K→ Jα2K ⊆ P(D ×DΩ)

For a set-theoretic interpretation J K to be a model, we will require it to
behave the same way as the extensional interpretation, as far as subtyping is
concerned.

Definition 5 A set-theoretic interpretation J K : T → P(D) is a model if it
induces the same subtyping relation as its associated extensional interpretation:

∀τ1, τ2 ∈ T . Jτ1K ⊆ Jτ2K⇐⇒ E (τ1) ⊆ E (τ2)

The observation we have done before on the problem of emptiness permits
us to write the condition on types given in the definition of model as:

∀τ ∈ T . JτK = ∅⇐⇒ E (τ) = ∅

3.2 Well-founded model

Among all possible models, we focus our attention to those that capture
a very important property, namely that values are finite m-ary trees, whose
leaves are constants. For example, let us consider the recursive type α = [a : α].
Intuitively, a value u has this type if and only if it is an object new C(u′) where
u′ has also type α. To construct such a value, we have to consider an infinite
tree, that is excluded since values are the result of some computation. As a
consequence, the type α does not contain values. Clearly this does not imply
that all recursive types are trivial. In Section 6.2 we will see that it is possible
to satisfy the property we have just introduced and still use recursive types, e.g.
to create lists.

9

Definition 6 A set-theoretic interpretation J K : T → P(D) is structural if:

– Pf (L×D) ⊆ D, where Pf (·) denotes the finite powerset;

– for any τ̃ , it holds that J[l̃ : τ]K = [l̃ : JτK] ⊆ Pf (L×D);
– the binary relation � on Pf (L×D)×D defined as {(l1, d1) , . . . , (ln, dn)} �
di does not admit infinite descending chains.

Definition 7 A model J K : T → P(D) is well-founded if it induces the same
subtyping relation as a structural set-theoretic interpretation.

3.3 Bootstrap model

We now have to show that a well-founded model exists, and use it as the
bootstrap model. To this aim, let us define B such that B = EfB, i.e. B is the
solution of the equation B = C] Pf (L× B)] Pf (B × BΩ). In practice, it turns
out that B is the set of finite terms generated by the following grammar:

d ::= c | {(l, d) , · · · , (l, d)} | {(d, d′) , · · · , (d, d′)} d′ ::= d | Ω

We now define JτKB = {d ∈ B | d : τ}, where judgment d′ : τ is inductively
defined as follows (it is assumed to be false in every non-depicted case):

c : B iff c ∈ V alB
{(l1, d1), · · · , (ln, dn)} : [l1 : τ1, · · · , ln : τn] iff ∀i. di : τi

{(d1, d′1), · · · , (dn, d′n)} : α→ β iff ∀i. (di : α⇒ d′i : β)
d : τ1 ∧∧∧ τ2 iff d : τ1 and d : τ2

d : ¬¬¬τ iff not d : τ

Notice that this induction is well-founded since d is finite and τ is well-formed.
It can be proved that J KB is a set-theoretic and structural interpretation;

thus, it is a well-founded model.

4 Semantic subtyping

The bootstrap model J KB induces the following subtyping relation:

τ1 ≤B τ2 ⇐⇒ Jτ1KB ⊆ Jτ2KB

In the typing rules for our language, we shall use the subtyping relation just
defined to derive typing judgments Γ `B e : τ . In particular, this means to use
≤B in the subsumption rule. Now, the typing judgments for the language allow
us to define a new natural set-theoretic interpretation of types, the one based
on values JτKV = {v ∈ V | `B v : τ} and then define a new (“real”) subtyping
relation:

τ1 ≤V τ2 ⇐⇒ Jτ1KV ⊆ Jτ2KV
The new relation ≤V might in principle be different from ≤B. However, if the
definitions of the model, of the language and of the typing rules have been
carefully chosen, then the two subtyping relations coincide (see Theorem 1 at

10

the end of this section). Because of this result, from now on we shall be sloppy
and avoid the subscripts B and V in `B, ≤B and ≤V ; we shall simply write `
and ≤.

An added value of this approach is the existence of an algorithm which de-
cides the subtyping relation. The correctness of the semantic approach does not
depend on the decidability, but it is still a nice property to have if we want to
use our types in practice.

4.1 Typing Terms

Let us assume a sequence of class declarations L̃. First of all, we have to
determine the (structural) type of every class C in L̃. To this aim, we have
to keep into account the inheritance relation specified in the class definitions
contained in L̃. For notational convenience, we write “a ∈ C” to mean that there
is a field declaration for name a in class C within the hierarchy L̃. Similarly, we
write “a ∈ C with type α” to also specify the declared type α. Similar notations
also hold for method names m.

In Table 1, we define the partial function type(C) inductively on the class

hierarchy L̃ (of course this induction is well-founded since L̃ is finite); when
defined, it returns a record type. Let us notice that the condition ρ(m) ≤ ρ′(m)
imposed in the method declaration is mandatory to assure that the type of C
is a subtype of the type of D; without such a condition, it would be possible to
have a class whose type is not a subtype of the parent class. If it were the case,
type soundness would fail because of the presence of this. Let us consider the
following example (where, as usual, int ≤ real ≤ compl):

class C extends Object { class D extends C {
.
real m(real x) {return x} compl m(int x) {return x× i}
real F () {return this.m(3)} real G() {return this.F ()}

} }

At run time, the function G returns a complex number, instead of a real. The
point is that, when the method m is overloaded, we have to be sure that the
return type should be a subtype of the original type, otherwise, due to the
dynamic instantiation of this, there may be type errors. A similar argument
justifies the condition α′′ ≤ ρ′(a) imposed for calculating function type for field
names.

Let us now consider the typing rules for our calculus, given in Table 2. We
assume Γ to be a typing environment, i.e. a finite sequence of α-type assignments
to variables. Most rules are very intuitive. The rule (subsum) permits to derive
for an expression e of type α1 also a type α2, when α1 is a subtype of α2. Notice
that, for the moment, the subtyping relation used in this rule is the one induced
by the bootstrap model. In rule (const), we assume that, for any basic type B,
there exists a fixed set of constants V alB ∈ C such that the elements of this set
have type B. Notice that, for any two basic types B1 and B2, the sets V alBi may

11

– type(Object) = [];
– type(C) = ρ, provided that:

• C extends D in L̃;
• type(D) = ρ′;
• for any field name a
∗ if ρ′(a) is undefined and a /∈ C, then ρ(a) is undefined;
∗ if ρ′(a) is undefined and a ∈ C with type α′′, then ρ(a) = α′′;
∗ if ρ′(a) is defined and a /∈ C, then ρ(a) = ρ′(a);
∗ if ρ′(a) is defined, a ∈ C with type α′′ and α′′ ≤ ρ′(a), then ρ(a) = α′′.

Moreover, we assume that all the fields defined in ρ′ and not declared in C
appear at the beginning of ρ, with the same order as in ρ′; the fields declared
in C then follow, respecting their declaration order in C.

• for any method name m:
∗ if ρ′(m) is undefined and m /∈ C, then ρ(m) is undefined;
∗ if ρ′(m) is undefined and m ∈ C with type α→ β, then ρ(m) = α→ β;
∗ if ρ′(m) is defined and m /∈ C, then ρ(m) = ρ′(m);
∗ if ρ′(m) =

∧n
i=1 αi → βi, m ∈ C with type α → β and

µ = α→ β ∧∧∧
∧n
i=1 αi \ α→ βi ≤ ρ′(m), then ρ(m) = µ.

type(C) is undefined, otherwise.

Table 1. Definition of function type()

have a non empty intersection. The rule (var) derives that x has type α, under
the premise that the variable x has type α in the typing environment Γ . Let us
now concentrate on the rules (field) and (m-inv): the rule (field) states that, if
an expression e has type [a : α], we can access the field a of e and the type of the
expression e.a is α; the rule (m-inv) states that, if an expression e2 is of type
[m : α1 → α2] and an expression e1 is of type α1, we can invoke method m of
e2 with argument e1 and the type of the expression e2.m(e1) is α2. Notice that
in these two rules the record types are singletons, as it is enough that inside the
record type there is just the field or the method that we want to access or invoke.
If the record type is more specific (having other fields or methods), we can get the
singleton record needed by using the subsumption rule. For rule (new), an object
creation can be typed by recording the actual type of the arguments passed to
the constructor, since we are confining ourselves to the functional fragment of
the language. Of course, if we move to the setting where fields can be modified,
it is unsound to record the actual type of the initial values, since during the
computation a field could be updated with values of its declared type. Moreover,
like in [15], we can extend the type of an object at will (thus, types α′i and µ′j
can be taken from any finite set of field- and method-types); in this way, we
describe not only object’s fields and methods, but also the types that cannot be
assigned to it (assuming that the latter ones do not lead to a contradiction, i.e.
a type semantically equivalent to 0). This is a technical trick needed to ensure
that every non-zero type has at least one value of that type, a desirable property
for the semantic subtyping approach. Rule (rnd) states that rnd(α) is of type α.
Finally, rule (m-decl) checks when a method declaration is acceptable for a class

12

Typing Expressions :

(subsum)
Γ ` e : α1 α1 ≤ α2

Γ ` e : α2

(const)
c ∈ V alB

Γ ` c : B

(var)
Γ (x) = α

Γ ` x : α
(field)

Γ ` e : [a : α]

Γ ` e.a : α

(m-inv)
Γ ` e2 : [m : α1 → α2] Γ ` e1 : α1

Γ ` e2.m(e1) : α2

(rnd)
Γ ` rnd(α) : α

(new)

type(C) = [ã : α, m̃ : µ] Γ ` ẽ : β̃ β̃ ≤ α̃
ρ = [ã : β, m̃ : µ]∧∧∧

∧
i ¬[a′i : α′i]∧∧∧

∧
j ¬[m′j : µ′j] ρ 6' 0

Γ ` new C(ẽ) : ρ

Typing Method Declarations :

(m-decl)
x : α1, this : type(C) ` e : α2

`C α2 m (α1 x){return e}

Typing Class Declarations :

(class)
type(D) = [b̃ : β, m̃ : µ] K = C(β̃ b; α̃ a){super(̃b); t̃his.a = ã} `C M̃

` class C extends D {α̃ a K M̃}

Typing Programs :

(prog)
` L̃ ` e : α

` (L̃, e)

Table 2. Typing Rules

C; this can only happen if type(C) is defined. Rules (class) and (prog) check
when a class declaration and a program are well-typed.

Similarly to [15,10], the type checking relation is decidable.

4.2 Types as sets of values

Having defined the typing system, we can now interpret types as sets of
values. So, the first thing to do is to define values in our calculus. As usual, values
are the results of (well-typed) computations, given by a small step operational
semantics that we are going to introduce in the next section.

Values in our calculus are constants or objects initialized by only passing
values to their constructor. More formally:

u ::= c | new C(ũ)

13

However, this is not enough to assign values to every type of T . In particular,
a record type ρ will be interpreted as the set of objects that can be assigned type
ρ. Objects are instantiations of classes in the class hierarchy L̃ declared by the
programmer. It is possible to assign to these objects the type of the class they
instantiate. But, as the classes in L̃ are finite, this means that we are able to
interpret (inhabit with objects) just a finite number of record types. We aim at
inhabiting all record types that can be inhabited with objects. Moreover, since
we have not higher-order values, also the µ-types would not be inhabited by any
value of the calculus. These are the main technical differences w.r.t. [15].

To overcome these problems, we define pseudo-values that are only used for
interpreting types and deciding the subtyping relation. Pseudo-values essentially
represent, in a different way, the λ-abstractions of [15]; like the values in the
λ-calculus, our pseudo-values should be well-typed, closed, normal forms. So,
before introducing pseudo-values, let us first define normal forms. These are
(open) expressions that cannot reduce further and are produced by the following
grammar:

w ::= x | c | new ρ(w̃) | w.a | w.m(w)

First of all, notice that every value new C(ũ) can be rewritten as
new type(C)(ũ′), where ũ′ is obtained from ũ by applying the same rewriting
procedure. Using a record type ρ instead of a class C in the expression new ρ(ũ)
permits us to inhabit all record types that can be inhabited.3 It is important to
notice that in this way we inhabit only the “well-defined” record types, that is
only those that can instantiate (and create an object of) a class corresponding to
the the record we are dealing with. For example, new [a : 0](u) does not create
any object, as no value of type 0 exists (thus, it is impossible to instantiate a
class of type [a : 0]).

In order to define pseudo-values, we are going to consider only closed, well-
typed, normal forms. For α types, closed well-typed normal forms are the normal
forms typed in the empty type environment. For µ types, we consider only the
well-typed normal forms w that we “close” by assigning a type α to the free
variable in w (indeed, since methods are unary and w represents the body of the
method, a single type assignement is enough). Thus, the set of pseudo-values of
type α is defined as

Vα = {w | ` w : α}

whereas the set Vµ of pseudo-values of type µ is defined as

Vµ = {(α, z) | z = ⊥ ∨ z = w}

where ⊥ denotes non-termination and w is a well-typed normal form. Intuitively,
pseudo-values of type µ represent methods that, taking an argument of type α,
either non-terminate or return the normal form w, which can be assigned the
return type of the method (see later on for a formalization of this idea). Notice

3 Another solution to this problem is by assuming, for any record type ρ, the existence
of a class Cρ in the class hierarchy L̃ such that type(Cρ) = ρ. However, this solution
would lead us to an infinite set of class declarations and this is not satisfying.

14

that this mix of types and terms exactly corresponds to the typed λ-abstraction
of CDuce, where both the type of the argument and the body of the function
are specified. However, differently from CDuce , we have no pseudo-value for
inhabiting µ-types of the form α→ α′, for α′ ' 0, associated to non-terminating
methods; this was the reason for introducing ⊥.

Putting all together, the interpretation of a type τ is denoted as JτKV and is
defined as follows:

JαKV = {w | ` w : α}

JµKV =


∅ if µ ' 0

{(α, z) | ∀i. α ≥ αi ∧ [(z = ⊥ ∧ ∀j. α � α′j) ∨
(z = w ∧ fv(w) ⊆ {x} ∧ x : α ` w : βi)]}

if µ =
∧
i=1···n αi → βi ∧∧∧

∧
j=1···m¬¬¬

(
α′j → β′j

)
6' 0

The interpretation of α-types follows the intuition that a type represents the set
of its values. For µ-types, we essentially interpret an arrow type as a set of pairs
(α,w) such that it is possible to assign to the normal form w the return type
once the input argument of the method is assigned type α (this is the meaning
of the second disjunct in the second case of the definition for JµKV). Since any µ-
type can be assigned to non-terminating methods, it is natural to inhabit every
µ-type with ⊥. However, this fact could lead to inhabiting the empty type; this
is prevented by the condition “∀j.α � α′j”. For example, it forbids that any pair
belonging to (α→ β)∧∧∧¬¬¬(α′ → β′), also belongs to (α′ → β′)∧∧∧¬¬¬(α→ β). Finally
the condition “∀i. α ≥ αi” in the definition of J KV ensures contra-variance of
arrow types, as we see in the following example. Consider the class hierarchy:

class Person extends Object {int age . . .}

class Student extends Person {long matriculation nr . . .}

class Working Student extends Student {string contract nr . . .}

Consider now the arrow types Student → long and Working Student → long.
For the contra-variance of arrow types, we have that

Student → long ≤Working Student → long.

Then, it is easy to check that

JStudent → longKV ⊆ JWorking Student → longKV .

Indeed, JStudent → longKV contains (Object ,⊥), (Student ,⊥) and
(Student , x.matriculation nr) while JWorking Student → longKV contains
(Object ,⊥), (Student ,⊥), (Working Student ,⊥), (Student , x.matriculation nr)
and (Working Student , x.matriculation nr).

15

(f-ax)
type(C) = [ã : α, m̃ : µ]

(new C(ũ)).ai → ui
(f-red)

e→ e′

e.a→ e′.a

(r-ax)
` e : α

rnd(α)→ e
(m-ax)

body(m,u,C) = λx.e

(new C(ũ′)).m(u)→ e[u/x ,
new C(ũ′)/this]

(m-red1)
e′ → e′′

e′.m(e)→ e′′.m(e)
(m-red2)

e′ → e′′

e.m(e′)→ e.m(e′′)

(n-red)
ei → e′i

new C(e1, . . . , ei, . . . , ek)→ new C(e1, . . . , e
′
i, . . . , ek)

Table 3. Operational semantics

4.3 Closing the circle

As long as the subtyping relation is concerned, we have introduced the boot-
strap model, that induces ≤B, and the interpretation of types as sets of values,
that induces ≤V . The key result of our approach is that these two subtyping
relations coincide and the proof can be found in [13].

Theorem 1. The bootstrap model J·KB induces the same subtyping relation as
J·KV .

5 Operational Semantics and Soundness of the Type Sys-
tem

The operational semantics is defined by the axioms and inference rules of
Table 3, that are essentially the same as in [20]. The only notable differences
are: (1) we use function type to extract the fields of an object, instead of defining
an ad hoc function; (2) function body also depends on the (type of the) method
argument, necessary for finding the appropriate declaration when we have mul-
timethods.

We fix the set of class declarations L̃ and define the operational semantics
as a binary relation on the expressions of the calculus e → e′, called reduction
relation. The axiom for field access (f-ax) states that, if we try to access the i-th
field of an object, we just return the i-th argument passed to the constructor
of that object. We have used the premise type(C) = [ã : α, m̃ : µ] as we are
interested to have all the fields of the object instantiating class C and function
type(C) provides them in the right order (i.e., the order in which the constructor
of class C expects them to be). The axiom for method invocation (m-ax) tries
to match the argument of a method in the current class and, if a proper type
match is not found, it looks up in the hierarchy; these tasks are carried out by
function body , whose definition is

body(m,u,C) =


λx.e if C contains β m(α x){return e} and ` u : α,

body(m,u,D) if C extends D in L̃,
UNDEF otherwise.

16

Notice that method resolution is performed at runtime, by keeping into account
the dynamic type of the argument; this is called multimethods and is different
from what happens in Java, where method resolution is performed at compile
time by keeping into account the static type of the argument. We choose the
first way because, in our view, is more intuitive (even if less efficient); a more
traditional modeling of overloading is possible and easy to model. Moreover, as
already noted in Section 2.1, we use a simplified form of multimethods, where
at most one declaration for every method name is present in every class. This
simplifies the definition of function body given above and of function type given
in Table 1. However, richer forms of multimethods can be assumed in our frame-
work, at the price of complicating the definitions of such functions. In particular,
function body can be rendered in the general setting by following [2]. A better
alternative is the encoding of the more general setting of Section 6.2.

To complete the definition of the operational semantics, we need the straight-
forward rule (r-ax) for rnd and the structural rules (f-red), (m-red1), (m-red2)
and (n-red), to transform the target of a method invocation or of a field access
into a value.

Soundness of the Type System Theorem 1 does not automatically imply that
the definitions put forward in Sections 3 and 4 are “valid” in any formal sense,
only that they are mutually coherent. To complete the theoretical treatment, we
need to check type soundness. We proceed in the standard way, by stating the
theorems of subject reduction and progress. Formal proofs are standard, and can
be found in [13].

Theorem 2 (Subject reduction). If ` e : α and e→ e′, then ` e′ : α′ where
α′ ≤ α.

Theorem 3 (Progress). If ` e : α where e is a closed expression, then e is a
value or there exists e′ such that e→ e′.

6 Discussion on the calculus

6.1 Recursive class definitions

It is possible to write recursive class definitions by assuming a special basic
value null and a corresponding basic type void, having null as its only value.
In Java, it is assumed that void is a sub-type of every class type; here, because
of the complex types we are working with (mainly, because of negations), this
assumption cannot be done. This, however, enables us to specify when a field
can/cannot be null; this is similar to what happens in database systems. In
particular, lists of integers can now be defined as:

LintList = class intList extends Object {
int val ;
(α∨∨∨ void) succ;
intList(int x, (α∨∨∨ void) y){this.val = x; this.succ = y}
. . .

}

17

where α is the solution of the recursive type equation α = [val : int, succ :
(α ∨∨∨ void)]. Now, we can create the list 〈1, 2〉 in the usual way, i.e. by writing
the value new intList(1,new intList(2,null)).

6.2 Implementing Standard Multimethods

Usually in object oriented languages, multimethods can be defined within
a single class. For simplicity, we have defined a language where at most one
definition can be given for a method name in a class. However, we can encode
the general scenario by adding one auxiliary subclass for every method definition.
For instance, suppose that we want to define twice a multimethod m within the
class A:

class A extends Object {
. . .
α1 m(β1 x){return e1}
α2 m(β2 x){return e2}

}
We then replace it with following declaration:

class A1 extends Object {
. . .
α1 m(β1 x){return e1}

}
class A extends A1 {

. . .
α2 m(β2 x){return e2}

}
Introducing subclasses is something that must be done with care. Indeed, it

is not guaranteed, in general, that the restrictions for the definition of function
type (see Table 1) are always satisfied. So, in principle, the encoding described
above could turn a class hierarchy where the function type is well defined into a
hierarchy where it is not. However, this situation never arises if different bodies of
a multimethod are defined for inputs of mutually disjoint types, as we normally
do. Thus, we can freely assume this encoding in the following sections.

6.3 Implementing Typical Java-like Constructs

We now want to briefly show how we can implement in our framework tradi-
tional programming constructs, like if-then-else, (a structural form of) instanceof
and exceptions. Other constructs, like sequential composition and loops, can also
be defined. What we are going to present should show how naturally our frame-
work can be used to implement these aspects on top of our core language.

The expression if e then e1 else e2 can be implemented by adding to the
program the class definition:

class Test extends Object {
α m({true} x){return e1}
α m({false} x){return e2}

}

18

where {true} and {false} are the singleton types containing only value true and
false, respectively, and α is the type of e1 and e2. Then, if e then e1 else e2
can be simulated by

(new Test()).m(e)

Notice that this term typechecks, since test has type [m : ({true} → α) ∧∧∧
({false} → α)] ' [m : ({true} ∨∨∨ {false}) → α] ' [m : bool → α]. Indeed,
in [15] it is proved that (α1 → α) ∧∧∧ (α2 → α) ' (α1 ∨∨∨ α2) → α and, trivially,
{true} ∨∨∨ {false} ' bool.

The construct e instanceof α checks whether e is typeable at α and can be
implemented in a way similar to the if-then-else:

class InstOf extends Object {
bool mα1

(α1 x){return true}
bool mα1(¬¬¬α1 x){return false}
· · ·
bool mαk

(αk x){return true}
bool mαk

(¬¬¬αk x){return false}
}

where α1, . . . , αk are the types occurring as arguments of an instanceof in the
program. Then, e instanceof α can be simulated by

(new InstOf ()).mα(e)

Finally, try e catch(α x) e′ evaluates e and, if an exception of type α is
raised during the evaluation, expression e′ is evaluated. First of all, we assume
that every exception is an object of a subclass of class Exception that, in turn,
extends Object . Second, every method that can raise an exception of type α
must specify this fact in the return type (this resembles the use of the throws
keyword in Java); in particular, if m’s type is α1 → α2 and it can raise exceptions
of type α, it should be declared as

(α∨∨∨ α2) m(α1 x){. . .}

Indeed, every statement throw e within m will be translated in our framework
as return e. Third, we can translate try e catch(α x) e′ as

let x = e in (if (x instanceof α) then e′ else x)

Here, we assume a standard construct let y = e1 in e2; it can be implemented
in our framework as

this.let(e1)

once we have added to the class the method

α2 let(α1 y){return e2}

where α1 and α2 are the types of e1 and e2, respectively.

19

6.4 Nominal subtyping vs. Structural subtyping

The semantic subtyping is a way to allow programmers use powerful typing
disciplines, but we do not want to bother them with the task of explicitly writing
structural types. Thus, we can introduce aliases. We could write

L′intList = class intList extends Object {
int val ;
(intList ∨ void) succ;
intList(int x, (intList ∨ void) y){this.val = x; this.succ = y}
. . .

}

instead of LintList in Section 6.1. Any sequence of class declarations written in
this extended syntax can be then compiled into the standard syntax in two steps:

– First, extract from the sequence of class declarations a system of (mutu-
ally recursive) type declarations; in doing this, every class name should be
considered as a type identifier. Then, solve such a system of equations.

– Second, replace every occurrence of every class name occurring in a type
position (i.e., not in a class header nor as the name of a constructor) with
the corresponding solution of the system.

For example, the system of equations (actually, made up of only one equation)
associated to L′intList is intList = [val : int, succ : (intList ∨void)]; if we assume
that α denotes the solution of such an equation, the class declaration resulting
at the end of the compilation is exactly LintList in Section 6.1.

But nominal types can be more powerful than just shorthands. When using
structural subtyping, we can interchangeably use two different classes having the
very same structure but different names. However, there can be programming
scenarios where also the name of the class (and not only its structure) could be
needed. A typical example is the use of exceptions, where one usually extends
class Exception without changing its structure. In such cases, nominal subtyping
can be used to enforce a stricter discipline.

We can integrate this form of nominal subtyping to our semantic framework.
To do that, to each class we add a hidden field that represents all the nominal
hierarchy that can be generated by that class. If we want to be nominal, we will
consider also this hidden field while checking subtyping. In practice, the (seman-
tic) ‘nominal’ type of a class is the set of qualified names of all its subclasses;
this will enable us to say that C is a ‘nominal’ subtype of D if and only if C’s
subclasses form a subset of D’s ones. Notice that working with subsets is the
key feature of our semantic approach to subtyping. This is the reason why we
need types as sets and, e.g., cannot simply add to objects a field with the class
they are instance of.

Let us denote with CN the (countable) set of class names. An element of
CN∗ can be thought of as a partially qualified name of a class – fully qualified
if it starts with Object . We consider now sets of qualified names, ranged over by

20

X,Y, Z. They will be used as types, the subtyping being defined as set inclusion.
For each class C we consider the type

XC = {s1s2 ∈ CN∗ : s1 = Object C1 . . . Ck & s2 ∈ (CN\{Object , C1, . . . , Ck})∗}

where Object , C1, . . . , Ck is the sequence of classes from Object to C in the class
hierarchy, for k ≥ 0 with Ck = C. Following the above intuition, XC contains
the fully qualified class names of all the potential subclasses of C. Finally, we
choose a special reserved name name that cannot occur in the program. This
will be the name of the “hidden” nominal field. For example, take a standard
example of Java inheritance, where class Object is extended by class Point that
is in turn extended by classes ColPoint, of coloured points, and GeomPoint, of
geometrical points. We can say, e.g., that the third class is a (nominal) subtype
of the second one by noting that:

XPoint = {Object .Point , XColPoint = {Object .Point .ColPoint ,
Object .Point .ColPoint , Object .Point .ColPoint .Pixel ,

Object .Point .ColPoint .Pixel , . . .
. . . Object .Point .ColPoint .3DPoint ,

Object .Point .ColPoint .3DPoint , . . .
.

. . . , }
Object .Point .GeomPoint ,

Object .Point .GeomPoint .Circle,
. . .

Object .Point .GeomPoint .Line,
. . .

. . . ,
. . .
}

Indeed, XColPoint ⊆ XPoint .
Now, given a sequence of class declarations L̃, we denote with (L̃)name the

sequence obtained by adding to every class declaration for class C in L̃ the field
declaration

XC name

It is easy to verify the following desirable facts

– C is a sub-class of D if and only if type(L̃)name(C) ≤ type(L̃)name(D);

– For every C, it holds that type(L̃)name(C) ≤ typeL̃(C);

– If typeL̃(C) ' typeL̃(D) but C 6= D, then type(L̃)name(C) 6= type(L̃)name(D).

where the subscript to the function type specifies the declarations in which the
function is calculated.

By the way, notice that here we are working with infinite sets. But these sets
have always a finite representation that makes the subtyping still decidable.

It remains to describe how we can use nominal subtyping in place of the
the structural one. We propose two ways. In declaring a class, we could add the

21

keyword nominal, to indicate to the compiler that nominal subtyping should
always be used with it.

However, the only place where subtyping is used is in function body , i.e. when
deciding which body of an overloaded method we have to activate on a given
sequence of actual values. Therefore, we could be even more flexible, and use the
keyword nominal in method declarations, to specify which method arguments
have to be checked nominally and which ones structurally. For example, consider
the following class declaration:

class A extends Object {
. . .
int m(C x, nominal C y){return 0}

}

Here, every invocation of method m will check the type of the first argument
structurally and the type of the second one nominally. Thus, if we consider the
following class declarations

class C extends Object { }
class D extends Object { }

the expressions (new A()).m(new C(),new C()),
(new A()).m(new D(),new C()) and (new A()).m(new Object(),new C())
typecheck, whereas the expressions (new A()).m(new C(),new D()) and
(new A()).m(new C(),new Object()) do not.

In practice, for each sequence of class declarations L̃, the compiler will build
the types both for L̃ and for (L̃)name, and will decide which one to use according
the presence or not of the keyword nominal.

7 Conclusion and Future work

We have presented a Java-like programming framework that integrates struc-
tural subtyping, boolean connectives and semantic subtyping to exploit and com-
bine the benefits of such approaches. There is still work to do in this research
line.

This paper lays out the foundations for a concrete implementation of our
framework. First of all, a concrete implementation calls for algorithms to decide
the subtyping relation; by following [15], this can be done by deciding the prob-
lem of emptiness for disjunctive normal forms for types. Such forms have been
defined in the full version of this paper [13] and algorithms similar to those in
[15] can be adopted. This would be an intermediate step towards a prototype
programming environment where writing and evaluating the performances of
code written in the new formalism.

Another direction for future research is the enhancement of the language
considered. For example, one can consider the extension of FJ with assignments;
this is an important aspect because mutable values are crucial for modeling the
heap, a key feature in object-oriented programming. We think that having a

22

state would complicate the issue of typing, because of the difference between the
declared and the actual type of an object. Some ideas on how to implement the
mutable state can come from the choice made in the implementation of CDuce.
But other choices are possible too. The fact that we have assumed nondeter-
ministic methods can also help in modeling a mutable state: as we have said,
the input-output behaviour of a function can be seen as nondeterministic since,
besides its input, the function has access to the state.

Another possibility for enhancing the language is the introduction of higher-
order values, in the same vein as the Scala programming language [25]; since
the framework of [15] is designed for a higher-order language, the theoretical
machinery developed in loc.cit. should be easily adapted to the new fomalism.

References

1. M. Abadi and L. Cardelli. A Theory of Primitive Objects - Untyped and First-
Order Systems. In Proc. of TACS, pages 296–320. Springer, 1994.

2. R. Agrawal, L.G. de Michiel and B. G. Lindsay. Static type checking of multimeth-
ods. In Proc. of OOPSLA, pages 113–128. ACM Press, 1991.

3. A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. In
Proc. of FPCA, pages 31–41. ACM, 1993.

4. D. Ancona and G. Lagorio. Coinductive type systems for object-oriented languages.
In Proc. of ECOOP09, pages 2–26. Springer, 2009.

5. J.T. Boyland and G. Castagna. Type-safe compilation of covariant specialization:
a practical case. In Proc. of ECOOP, volume 1098 of LNCS, pages 3–25. Springer,
1996.

6. J.T. Boyland and G. Castagna. Parasitic Methods: an implementation of multi-
methods for Java. In Proc. of OOPSLA. ACM Press, 1997.

7. H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940,
1983.

8. G. Castagna. Object-oriented programming: a unified foundation. Progress in
Theoretical Compuetr Science series, Birkäuser, Boston 1997.

9. G. Castagna. Semantic subtyping: Challenges, perspectives, and open problems.
In Proc. of ICTCS, pages 1–20, 2005.

10. G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the pi-calculus.
Theoretical Computer Science, 398(1-3):217–242, 2008.

11. G. Castagna and A. Frisch. A gentle introduction to semantic subtyping. In Proc
of PPDP, pages 198–199. ACM, 2005.

12. F. M. Damm. Subtyping with union types, intersection types and recursive types.
In Proc. of TACS, pages 687–706. Springer, 1994.

13. O. Dardha. Sottotipaggio semantico per linguaggi ad oggetti. MS
thesis, Dip. Informatica, “Sapienza” Univ. di Roma. Available online at
www.dsi.uniroma1.it/~gorla/TesiDardha.pdf.

14. R. B. Findler, M. Flatt, and M. Felleisen. Semantic casts: Contracts and structural
subtyping in a nominal world. In Proc. of ECOOP, pages 364–388. Springer, 2004.

15. A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping: Dealing set-
theoretically with function, union, intersection, and negation types. Journal of
the ACM, 55(4):1–64, 2008.

16. J. Gil and I. Maman. Whiteoak: introducing structural typing into Java. In Proc.
of OOPSLA, pages 73–90. ACM, 2008.

23

17. H. Hosoya and B. C. Pierce. Regular expression pattern matching for XML. SIG-
PLAN Notices, 36(3):67–80, 2001.

18. H. Hosoya and B. C. Pierce. Xduce: A statically typed XML processing language.
ACM Transactions on Internet Technology, 3(2):117–148, 2003.

19. H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for XML. ACM
Transactions on Programming Languages and Systems, 27(1):46–90, 2005.

20. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM Transactions on Programming Languages and
Systems, 23(3):396–450, 2001.

21. X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
system, release 3.11, 2008.

22. D. Malayeri and J. Aldrich. Integrating nominal and structural subtyping. In Proc.
of ECOOP, pages 260–284. Springer, 2008.

23. D. Malayeri and J. Aldrich. Is structural subtyping useful? an empirical study. In
Proc. of ESOP, pages 95–111. Springer, 2009.

24. R. Milner. Communicating and mobile systems: the π−calculus. Cambridge Uni-
versity Press, New York, NY, USA, 1999.

25. M. Odersky, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger.
An overview of the Scala programming language. Technical report, 2004.

26. K. Ostermann. Nominal and structural subtyping in component-based program-
ming. Journal of Object Technology, 7(1):121–145, 2008.

27. D. Rémy and J. Vouillon. Objective ML: A simple object-oriented extension of
ML. In Proc. of POPL, pages 40–53. ACM, 1997.

28. D. Sangiorgi and D. Walker. The Pi-Calculus: A Theory of Mobile Processes.
Cambridge University Press, New York, NY, USA, 2003.

24

