
Semantic subtyping for theπ-calculus

Giuseppe Castagna Rocco De Nicola Daniele Varacca
École Normale Supérieure University of FirenzéEcole Normale Supérieure

castagna@di.ens.fr denicola@dsi.unifi.it varacca@di.ens.fr

Abstract. Subtyping relations for theπ-calculus are usually
defined in a syntactic way, by means of structural rules. We
propose a semantic characterisation of channel types and
use it to derive a subtyping relation that consequently is
sound and complete with respect to the semantics. The type
system we consider includes read-only and write-only chan-
nel types, product types, recursive types, as well as unions,
intersections, and negations of types which are interpreted
as the corresponding set-theoretic operations. We prove the
decidability of the subtyping relation and formally describe
the subtyping algorithm.

In order to fully exploit the expressiveness of the new type
system (which subsumes several existing ones), we endow
the π-calculus with structured channels where communica-
tion is subjected to pattern matching that performs dynamic
typecase. These features pave the way toward the integra-
tion of functional and concurrent features within the same
framework, obtained by combiningπ-calculus andCDuce,
a functional programming language with semantic subtyp-
ing.

1 Introduction and motivations

Traditionally types have played a very limited role in con-
currency; they have been used essentially for specifying the
nature of the exchanged values. The picture has changed af-
ter the introduction of formalisms dealing with systems of
mobile processes. In addition to the classical use of types,
e.g. for static detection of run time errors, for enhancing pro-
grams readability, for memory management, for abstracting
from implementation details, etc., types have emerged as an
important tool for specifying interfaces and interactions, for
controlling process mobility and resource usage, for improv-
ing efficiency of verification algorithms, etc.

In this paper we shall concentrate on type systems for a
concurrent language in which values can be exchanged be-
tween concurrent agents via communication channels that
can be dynamically generated. The language we shall con-
sider is a variant of the asynchronousπ-calculus [2] extended
with structured channels and where communication is sub-
jected to pattern matching.

There exists an extensive literature about typing and sub-
typing for theπ-calculus. However, all the papers we are
aware of rely on subtyping relations or on type equivalences

that are based on conditions and restrictions that have little
semantic justifications. The choices depend on the formal-
izations and are assumed in order to simplify the system or
simply to have it working.

In our view, all syntactic formalizations of typing rela-
tions miss a clean semantic intuition of types. Consider for
example the type system defined by Hennessy and Riely [7],
which is one of the most advanced type systems for variants
of π-calculus that includes read-only and write-only chan-
nels as well as union and intersection types. In the systems
the following equality holds:

ch+(int)∨∨∨ch+(bool) = ch+(int∨∨∨bool) (1)

wherech+(t) is the type of channels from which we can only
read values of typet and∨∨∨ denotes union. We would like to
understand the precise semantic intuition that underlays an
equation such as (1). To do this, we first have to provide a
semantic account of channels.

Channels as boxes.Our intuition is that a channel is a box
in which we can put things (write) and from which we can
take things (read). The type of a channel then is charac-
terized by the set of the things the box can contain. Thus
a channel of typech+(t) is a box in which we must ex-
pect to find something of typet and, similarly, a channel
of type ch−(t) is a box in which we can put only some-
thing of typet. But if one takes this standing, the equal-
ity above does not seem to be justified. Consider the types
ch+(candy)∨∨∨ ch+(coal) and ch+(candy∨∨∨ coal). Both
represent boxes. If we have a box of the first type then we
expect to find in it either a candy of a piece of charcoal, but
we know it is always one of the two. For example if we use
the box two times, the second time we will know what it
contains. A box of the second type, instead, can always give
us both candies and charcoal. Our intuition suggests that the
two types above are quite different because they characterize
two different kinds of objects.

The role of the language. So why did Hennessy and
Riely require (1)? The point is that if in the language un-
der consideration there is no syntactic construction that can
tell apart ach+(int) channel from ach+(bool) channel,
then it is not possible to operationally observe any differ-
ence between the types in (1). On the contrary, if it is
possible to test whether on a channelc we are receiving a



channel of typech+(int) or a channel of typech+(bool),
then a rule such as (1) would give rise to an unsound sys-
tem because it would allow to have inc a channel of type
ch+(int∨∨∨bool) which makes the test onc crash (since the
possibility that the argument is ach+(int∨∨∨ bool) box is
not contemplated). Thus, in case we can check the type of
received channels, the right relation, supported by our se-
mantic intuition, would be

ch+(int)∨∨∨ch+(bool) ( ch+(int∨∨∨bool) (2)

because we can always safely use a box that contains only
integers—or one that contains booleans—where a box that
can contain both is expected (this is just the usual covariance
of the input type), while, as we just argued, the converse does
not hold.

Since the language considered by Hennessy and Riely is
not expressive enough to distinguish channels according to
the types they transport, then it is sound to impose equations
such as (1) or alike, and this dramatically simplifies the defi-
nition of the subtyping algorithm (cf. Section 2.5). However
the restriction brought by (1) is only justified by a weakness
of the language; it is not grounded on any semantic basis.

Semantic subtyping. The aim of this work is to define a
very expressive type system forπ-calculus whose definition
is based on a clear semantic interpretation. The type system
will allows us to specify read-only and write-only channels,
but will also permit intersections, unions, and negations of
types. Afterwards, we will also add product, functional and
(a limited form of) recursive types.

The basic idea is simple, even though is technically hard
to implement: to characterize a type system (at least from
an operational point of view) we do not need a full theory of
type equivalence, the definition of the subtyping relation suf-
fices. Therefore if we want to ground the type system with a
semantic intuition it “suffices” to define the subtyping rela-
tion semantically. We shall give a set theoretic interpretation
of the types of our system and define the subtyping relation
as the inclusion of interpretations. In other terms ifJ.K is
an interpretation function from types to sets, then we define
s≤ t if and only if JsK ⊆ JtK. The characterization of inter-
section, union, and negation types then comes for free, while
for the interpretation of channel types it is possible to rely on
the semantic intuition of “channel as boxes”.

We have also seen that there is a tight relation between
the types and the language they are used for, therefore we
will also define a variant ofπ-calculus that exploits the full
power of our new types, and in particular that permits dy-
namically testing the type of values received on a channel.
We will implement the dynamic test by endowing input ac-
tions with patterns, and allowing synchronization when pat-
tern matching succeeds. The result is a simple and elegant
formalism that can be easily extended with product types,
to obtain a polyadicπ-calculus and with function types that
permit manipulations of channels via higher-order functions
that can be transmitted over channels.

Advantages of a semantic approach.The main advantage
of using a semantic approach is that the types have a natural
set theoretic interpretation: types can be thought of as the
sets of all their values, and union intersection and negation
types are understood in terms of the corresponding set the-
oretic operations. This property turns out to be very helpful
not only to apprehend the meaning of the types but also to
reason on them. Thus, for instance, the subtyping algorithm
is deduced just by applying set-theoretic properties, in the
proofs we can rewrite types by using set-theoretic laws, the
typing of pattern matching can be better understood in terms
of set-theoretic operations (e.g. the second pattern in an al-
ternative will have to filter all that was not already matched
by the first pattern: set theoretic difference).

The languageCDuce [1] also demonstrated the practical
impact of the semantic approach: not only subtyping results
are easier to understand for a programmer, but also the com-
piler/interpreter can return much more precise and meaning-
ful error messages. So for instance if type-checking fails
the compiler returns a value or a witness that is in the set-
theoretic difference between the deduced type and the ex-
pected type, and this value provides information to the pro-
grammer to understand why type-checking failed.

For a wider discussion on the advantages of semantic
subtyping we refer the reader to Castagna and Frisch’s in-
troductory paper [4].

Main contributions. This work provides several contribu-
tions: We define a very expressive type and subtype sys-
tem for theπ-calculus with read-only and write-only channel
types, product types, recursive types, and complete boolean
combinations of types which are interpreted as the corre-
sponding set-theoretic operations. Two strictly related con-
tributions are the definition of a set-theoretic denotational
model for the types above and the interpretation of chan-
nel types as set of boxes. We also show how to extend the
π-calculus in order to fully exploit the expressiveness of the
type system, and in particular with input actions with pattern
matchingà la CDuce. Finally we show that in that setting
the typing and subtyping relations are decidable. A further
contribution of this work is the opening of a new way to
integrate functional and concurrent features in the same cal-
culus: this will be done by fully integrating (our new version
of) π andCDuce systems yielding a calculus with dynamic
type dispatch, overloading,channelled communications and
where both functions and channels have first class citizen-
ship.

Finally, we think that the most important, although the
most debatable and controversial, contribution of this work
is that it shows the effectiveness of the semantic approach of
subtyping: we believe that the generality of our subtyping
relation, and the definition of the subtyping algorithm sum-
marized by Proposition 2.10 could have been very hardly
achieved via a syntactic and proof theoretic approach.

Related work. The first work on subtyping forπ was done
by Pierce and Sangiorgi [9] and successively extended in

2



several other works [11, 5, 12].
The work closest to ours, at least for the expressiveness

of the types, is the already cited work of Hennessy and
Riely [7]. For what concernsπ-types, our work subsumes
their system in the sense that it defines a richer subtyping re-
lation; this can be checked by noting that their typerw〈s,t〉
corresponds to the intersectionch+(s)∧∧∧ ch−(t) of our for-
malism.

Brown et al. [3] enrichπ with XML-like values that are
deconstructed by pattern matching. The patterns they use are
quite different from the one we introduce here as they work
exclusively on the structure of the matched values but not
on their types. Furthermore they also have patterns to match
the interleaving of values, that we do not consider. On the
other hand they do not consider types, which are the main
motivation of our work.

For what concerns the technical issues of semantic sub-
typing our starting point is the work developed by Frischet
al. for functional programming languages [6], that led to the
design ofCDuce [1].

Plan of the paper: In Section 2 we introduce the type sys-
tem and define the subtyping relation in terms of a set-
theoretic interpretation of the types. We prove the decid-
ability of subtyping, specify the subtyping algorithm and
conclude with the definition of patterns and pattern match-
ing whose semantics is completely specified in terms of the
model of types. In Section 3 we define the syntax and seman-
tics of a pattern-based extension ofπ-calculus that fully ex-
ploits the previous type system, and give relevant examples
of their use. In Section 4 we consider the polyadic version
of our calculus, we enrich it with recursive types and show,
when possible, how semantic and decidability properties ex-
tend to this setting. We conclude by outlining the extension
with arrow types and the integration with the functional lan-
guageCDuce that we leave for future work.

2 Types and patterns

For the sake of the presentation we would like to introduce
our system gradually. Therefore, we shall start with a rel-
atively simple system with just base types, channels and
boolean combinators. In a second moment, we shall add
the product type constructor and recursive types. Finally,we
will consider functional types.

2.1 Types

In the simplest of our type systems, a type is inductively built
by applyingtype constructors, namely base type construc-
tors (e.g. integers, booleans, etc...), the input or the output
channel type constructor, or by applying aboolean combi-
nator, i.e., union, intersection, and negation:

Types t ::= b | ch+(t) | ch−(t) constructors
| 0 | 1 | ¬¬¬t | t∨∨∨ t | t∧∧∧ t combinators

Combinators are self-explaining, with0 being the empty
type and1 the type of all values. For what concerns type
constructors,ch+(t) denotes the type of those channels that
can be used toinput only values of typet. Symmetrically
ch−(t) denotes the type of those channels that can be used to
outputonly values of typet. The reader might have noticed
that the read and write channel typech(t) is absent from our
definition. Indeed, we shall use it but only as syntactic sugar
for ch−(t)∧∧∧ ch+(t), that is the type of channels that can be
used to read onlyand to write only values of typet. The set
of all types (sometimes referred to as “type algebra”) will be
denoted byT .

Although typesch(t) are just syntactic sugar, they will
play a crucial role in the rest of the paper. In particular, we
shall see that the types of the formch(t) are all and the only
types that are not base types and that denote a singleton. We
shall use them quite often because they are the most precise
type of channels (see, e.g., the typing rule (chan) in Sec-
tion 2.1).

Even if in this section we are mainly interested in types,
it is necessary to make a digression and consider values; it is
impossible to formalise the semantics of the former without
considering the latter. In our approach channels are values,
that is physical boxes where one can insert and withdraw ob-
jects of a given type. Our intuition, somehow departing from
the usual intuition about channels, is that there is not sucha
thing as a read-only or write-only box: each box is associ-
ated to a typet and one can always write and read objects of
that type into and from such a box. Thus the type ofch+(t)
can be considered just a constraint that tells that a variable
of that type will be bound only to boxes from which one
can read objects of typet; and therefore to all the boxes that
have types≤ t. Notice that if we know that a message has
typech+(t) this does notmean that we cannot write into it,
we simply know that we do not have any information about
what can be written in it: for instance this message could
be a box of typech(0) therefore a box in which nobody can
write anything. Thus, we must avoid writing into it since, in
the absence of further information, no writing will be safe.
Similarly, if a message is of typech−(t), then we know that
it can only be a box in which writing an object of typet is
safe, but we have no information about what could be read
from that channel, since the message might be a channel of
typech(1). Therefore we better avoid reading from it, unless
we are ready to get anything. In case we are ready to get any-
thing, our type system will guarantee that wecan read on a
channel with typech−(t) because we havech−(t)≤ ch+(1).

It should be clearer now why we do identifych(t) and
ch+(t)∧∧∧ ch−(t): the intersection requires that on channels
of type ch+(t)∧∧∧ ch−(t) we must be able both to write ob-
jects of typet and to read object of (the same) typet; this
means that the channels can only contain messages of type
t. To say it with other words, we have that achν(t) type
(with ν standing for either+ or−) indicates what isallowed
relatively to its values, andnot what is forbidden; thus, the
values in the intersection of two types are permitted by both

3



types. Please notice that, if we had interpreted types as in-
terdictions then we should considerch+(t)∧∧∧ ch−(t) as the
channels on which we cannot writeandwe cannot read: this
would be the empty channel.

Now we are able to define more formally the semantics of
our types. Our leading intuition is that a type represents the
set of values of that type. This allows us to define the subtyp-
ing relation simply as set inclusion. The basic types should
be interpreted on a set of basic values (integers, booleans).
The boolean operators over types should be interpreted by
using the boolean operators over sets. By following our in-
tuition we shall have that the interpretation of the typech(t)
has to denote the set of all boxes (i.e. channels) that contain
objects oft:

Jch(t)K =
{

c | c is a box for objects of typet} . (3)

Remember that one of the main reasons for giving a se-
mantics to types is to define a subtyping relation. Intuitively
this relation is insensitive to the number boxes associatedto
a given type (as long as there is one). In this sense it is not
unreasonable to say that a box of typech(t) “is” the set of
values that it can contain, viz. the (denotation of the) type
t: 1

Jch(t)K =
{
JtK

}
(4)

Or, to state it otherwise from the viewpoint of types all the
boxes are indistinguishable since they can all be identified
with the set of all the values they can contain.2

Starting from the above interpretation ofch(t), it is now
rather straightforward to provide a semantics forch+(t) and
ch−(t). The former denotes the set of all boxes from which
one can take an object of typet, thus it denotes “the” box
containing objects of typet but also all the boxes containing
objects of types≤ t (by subsumption these objects are also
of type t). The latter denotes the set of all boxes in which
one can put objects of typet, therefore all the boxes that can
contain objects of types≥ t (once more, by subsumption, it
can be deduced that an object of smaller type can be fitted
where an object of larger type is expected). Formally, we
have

Jch+(t)K =
{
Jt ′K | t ′ ≤ t

}
, Jch−(t)K =

{
Jt ′K | t ′ ≥ t

}
.

We have that this semantics induces invariance of channel
types, covariance of input types and contravariance of out-
put types. Moreover, as anticipated, we have thatch(t) =
ch−(t)∧∧∧ ch+(t) since the types on both side of the equality
have the same semantics. Our proposed interpretation has
other interesting features that we shall describe later. Inthe

1We can also have boxes of typech(0) that cannot contain any object.
They can still be passed around as tokens.

2More prosaically, since every box is associated to a unique type, then no
box can belong to two distinctch() types. This implies that the intersection
of distinct ch() types is always empty and therefore (3) and (4) induce ex-
actly the same subtyping relation, which is all that matters. Thus the reader
can consider the interpretation in (4) as a more compact and convenient way
to represent (3).

meanwhile, the reader who wants to familiarise with our se-
mantics can try to use the above definitions to verify that the
differencech+(t)\\\ch−(t) and the differencech+(t)\\\ch(t)
have the same interpretation, and that the same holds for
ch+(1) andch−(0).3

We want now to build a model for the types, that is a set
D such that the denotation of every type is a subset ofD .
Note that the semantics of channel types seems to require
that subsets ofD “be” elements ofD , which would lead us
to

P(D) ⊆ D .

This is not possible for cardinality reasons. We devote the
next section to solve this problem.

2.2 Extensionality and models

We remind the reader that the main reason why we need
a semantic interpretation of types is for defining a subtyp-
ing relation. Indeed, we do not introduce an interpreta-
tion of types in order to statewhat types are, but rather to
definehow types are related. Therefore, we do not need
to require that the interpretation of, say,Jch+(t)K is equal
to {Jt ′K | t ′ ≤ t}, it suffices that our interpretation func-
tion induces the same containment relation as the one ob-
tained when types are interpreted as described above, and
therefore that we have:Jch+(s)K ⊆ Jch−(t)K if and only if
{Jt ′K | t ′≤ t} ⊆ {Js′K | s≥s}.

In other terms, we do consider correct every interpreta-
tion function that behaveslike the interpretation of the pre-
vious section with respect to containment. This is formally
stated by the definition ofmodelbelow.

Definition 2.1 (Pre-model) Let D ,B sets such thatB ⊆ D ,
and letJ K be a function fromT to P(D). (D ,JK) is a pre-
modelif

– JbK ⊆ B,Jch+(s)K∩B = ∅,Jch−(s)K∩B = ∅;
– J1K = D , J0K = ∅;
– J¬¬¬tK = D \ JtK;
– Jt1∨∨∨ t2K = Jt1K∪ Jt2K, Jt1∧∧∧ t2K = Jt1K∩ Jt2K.

A pre-model thus simply requires that the interpretation of
the type combinators is set-theoretic.

Definition 2.2 (Extensional interpretation) Let
(D ,JK) be a pre-model. Theextensionalinterpretation
of the types is the functionE JK : T → P(B + P(D)),
defined as follows:

– E JbK = JbK;
– E J1K = B+P(D), E J0K = ∅;
– E J¬¬¬tK = E J1K\E JtK;
– E Jt1∨∨∨ t2K = E Jt1K∪E Jt2K, E Jt1∧∧∧ t2K = E Jt1K∩E Jt2K;
– E Jch+(t)K = {Jt ′K | JtK′ ⊆ JtK};
– E Jch−(t)K = {Jt ′K | Jt ′K ⊇ JtK}.

3We find it useful to thinkJch+(t)K and Jch−(t)K respectively as the
downward and upward cones starting fromt. The differences\\\ t is defined
ass∧∧∧¬¬¬t.

4



FunctionE JK behaves exactly asJK apart from the top-level
channel constructors which are interpreted according to the
semantics outlined in Section 2.1. Therefore, we shall con-
sider an interpretation function “acceptable” if it induces the
same containment relation as its extensional interpretation.
That is, we say that a pre-model is amodelif for every type
t1,t2, we haveJt1K ⊆ Jt2K if and only if E Jt1K ⊆ E Jt2K.

Notice that the boolean combinators allow us to define
subtyping in terms of emptiness:Jt1K ⊆ Jt2K if and only if
Jt1∧∧∧¬¬¬t2K = ∅ and the same for the extensional interpreta-
tion. This justifies the following definition of model4

Definition 2.3 (Model) A pre-model(D ,JK) is a model if
for every type t,JtK = ∅ ⇐⇒ E JtK = ∅.

2.3 A specific model

The last (and quite hard) point is to show that there actually
exists a model, that is that the condition imposed by Defi-
nition 2.3 can indeed be satisfied. We shall sketch here the
construction of such model, while omitting the proofs and
technical details that can be found in the appendix.

Types are stratified according to the height of the nesting
of the channel constructor. We define the height function
}(t) as follows:

– }(b) = }(0) = }(1) = 0;
– }(ch(t)) = }(ch+(t)) = }(ch−(t)) = }(t)+1;
– }(t1∨∨∨ t2) = }(t1∧∧∧ t2) = max(}(t1),}(t2));
– }(¬¬¬t) = }(t).

Then we set
Tn

def
= {t | }(t) ≤ n} .

Our pre-model for the types is built in steps. We start by pro-
viding a model for types of height 0, that is types inT0. Note
that we must define the semantics only for type construc-
tors, because the interpretation of the combinators is deter-
mined by the definition of pre-model. The only constructors
of height 0 are the basic types, for which we assume the exis-
tence of an universe of interpretationB. We also assume that
every basic typeb has an interpretationBJbK⊆B. Therefore
we setD0 = B, with the semantics defined byJbK0 = BJbK
while boolean combinators are interpreted using the corre-
sponding set-theoretic combinators, according to Definition
2.1. Using this pre-model we define a subtyping relation
overT0 by t ≤0 t ′ if and only if JtK0 ⊆ Jt ′K0. Let’s call this
the corresponding equivalence=0.

Now suppose we have a pre-modelDn for Tn, with cor-
responding pre-order≤n and equivalence=n. We call T̃n
the set of equivalence classesTn/=n. Then we letDn+1 to
be such that

Dn+1 = B+ T̃n .

with the following interpretation of channel types:
– Jch+(t)Kn+1 = {[t ′]=n | t ′ ≤n t};

4Indeed,Jt1K ⊆ Jt2K ⇐⇒ Jt1K \ Jt2K = ∅ ⇐⇒ Jt1∧∧∧¬¬¬t2K = ∅ ⇐⇒
E Jt1∧∧∧¬¬¬t2K = ∅ ⇐⇒ E Jt1K\E Jt2K = ∅ ⇐⇒ E Jt1K ⊆ E Jt2K.

– Jch−(t)Kn+1 = {[t ′]=n | t ≤n t ′}.
In principle each of these pre-models defines a different pre-
order between types. However, all such pre-orders coincide
in the following sense:

Proposition 2.4 Let t,t ′ ∈ Tn and k,h ≥ n, then t≤k t ′ if
and only if t≤h t ′.

Hinging on this observation we define pre-order between
types as follows.

Definition 2.5 (Order) Let t,t ′ ∈ Tn, then t≤∞ t ′ if and
only if t ≤n t ′.

Due to Proposition 2.4, this relation is well defined and in-
duces an equivalence=∞ on the set of typesT. Let T̃ be
T /=∞, we are finally able to produce a unique pre-modelD

defined as:
D = B+ T̃ .

Where
– Jch+(t)K = {[t ′]=∞ | t ′ ≤∞ t};
– Jch−(t)K = {[t ′]=∞ | t ≤∞ t ′}.

This pre-model defines a new pre-order between types that
we denote by≤. However, the following proposition proves
that≤ is not new but it is the limit of the previous pre-orders,
i.e.≤∞.

Proposition 2.6 Let t,t ′∈T , then t≤ t ′ if and only if t≤∞ t ′.

It is now easy to show the following.

Theorem 2.7 The pre-model(D ,JK) is a model.

2.4 Examples of type (in)equalities

We use the equal symbol on types to denote equality of de-

notations:s= t
def
⇐⇒ JsK = JtK. We list here some interesting

equations and inequations between types that can be easily
derived from the set-theoretic interpretation of types.

ch(t) ≤ ch−(0) = ch+(1) (5)

Every channelc can be safely used in a process that does not
write onc and that does not care about whatc returns.

ch−(t1)∧∧∧ch−(t2) = ch−(t1∨∨∨ t2) (6)

If on a channel we can write values of typet1 and values of
type t2, this means that we can write values of typet1∨∨∨ t2.
Dually

ch+(t1)∧∧∧ch+(t2) = ch+(t1∧∧∧ t2) (7)

if a channel is such that we always read from it values of
type t1 but also such that we always read from it values of
typet2, then what we read from it are actually values of type
t1∧∧∧ t2.

Union, as we observed in the introduction, behaves dif-
ferently.

ch+(t1)∨∨∨ch+(t2) ≤ ch+(t1∨∨∨ t2)

ch−(t1)∨∨∨ch−(t2) ≤ ch−(t1∧∧∧ t2)

5



The typech+(t1)∧∧∧ch−(t2) is the type of a channel on which
we can write values of typet2 and from which we can read
values of typet1. We have

ch+(t1)∧∧∧ch−(t2) = 0 (8)

if and only if t2 6≤ t1, i.e. we should expect to read at least
what we can write.

2.5 Decidability of Subtyping

We can now use the semantic characterisation of the types
to derive a decision algorithm for the subtyping relation. We
do it in two steps: first, we show how to express the problem
of subtyping two types into a set of subtyping problems on
types of smaller heights, then we prove the decidability of
these smaller problems and deduce the decidability of sub-
typing. The techniques of this section give a good idea of the
advantages of having a set-theoretic definition of subtyping.

Simplification of the subtyping

First of all note that the subtyping problem is equivalent de-
ciding the emptiness of a type.

s≤ t ⇐⇒ s∧∧∧¬¬¬t = 0 (9)

which can be derived as follows:

s≤ t ⇐⇒ JsK ⊆ JtK

⇐⇒ JsK∩ JtKc ⊆ ∅

⇐⇒ Js∧∧∧¬¬¬tK = J0K

⇐⇒ s∧∧∧¬¬¬t = 0 .

Thanks to the semantic interpretation we can directly apply
set-theoretic equivalences to types (in the rest of the paper
we will do it without explicitly passing via the interpretation
function) and deduce that every type can be represented as
the union of addenda of uniform sort. Since a union is empty
only if all the addenda are empty, then in order to decide the
emptiness of a type—and in virtue of (9) decide subtyping—
it suffices to be able to decide whether

(
∧∧∧

i∈P

bi)∧∧∧ (
∧∧∧

j∈N

¬¬¬b j) and (
∧∧∧

i∈P

chνi(ti))∧∧∧ (
∧∧∧

j∈N

¬¬¬chν j(t j))

are equivalent to0. The decision of emptiness of the left-
hand side depends on the basic types that are used. For what
concerns the right-hand side, the algorithm must decompose
this problem into simpler subproblems. More precisely, it
must decompose the problem of subtyping boolean combi-
nations of channel types into a set of problems of subtyp-
ing types that form (are strict sub-occurrences) these chan-
nel types. This can be done by using some general algebraic
equivalences combined with the properties of the semantic
interpretation. This turns out to be quite complicated, in par-
ticular since it involves the use ofatoms

Definition 2.8 (Atom) Anatomis minimal nonempty type.

Atoms thus are types “just above” the empty type. In what
follows the reader can think of atoms as types whose deno-
tation is a singleton set (even though this is not accurate, see
for instance the interpretation of channels in the value model
of Section 3.2).

The problem is to decide when the following holds:

(
∧∧∧

i∈P

chνi(ti))∧∧∧ (
∧∧∧

j∈N

¬¬¬chν j(t j)) = 0 .

Using set-theoretical manipulations, this is equivalent to
check that

(
∧∧∧

i∈P

chνi(ti)) ≤ (
∨∨∨

j∈N

chν j(t j)) (10)

Because of equations (6) and (7), we can push the intersec-
tion on the left-hand side inside the constructors and reduce
(10) to the case

ch+(t1)∧∧∧ch−(t2) ≤
∨∨∨

h∈H

ch+(th
3)∨∨∨

∨∨∨

k∈K

ch−(tk
4) (11)

where we grouped covariant and contravariant types to-
gether. In this way we simplified the left-hand side. Sim-
ilarly we can get rid of redundant addenda on the right-hand
side of (11) by eliminating:

1. all the covariant channel types on ath
3 for which there

exists a covariant addendum on a smaller or equalth′
3

(since the former channel type is contained in the lat-
ter);

2. all contravariant channel type on atk
4 for which there

exists a contravariant addendum on a larger or equaltk′
4

(for the same reason as the above);
3. all the covariant channels on ath

3 that is not larger than
or equal tot2 (since thench−(t2) 6≤ ch+(th

3), so it does
not change the inequation);

4. all contravariant channel on atk
4 that is not smaller than

or equal tot1 (since thench+(t2) 6≤ ch−(tk
4)).

Then the key property for decomposing the problem (11)
into simpler subproblems is given by the following theorem:

Theorem 2.9 (channel inclusion)Suppose t1,t2,th
3,tk

4 ∈T ,
k ∈ K, h∈ H. Suppose moreover that the following condi-
tions hold:
c1. for all distinct h,h′ ∈ H, th3 6≤ th′

3 ;

c2. for all distinct k,k′ ∈ K, tk4 6≤ tk′
4 ;

c3. for all h∈ H t2 ≤ th
3;

c4. for all k∈ K tk
4 ≤ t1.

For every I⊆ H define eI as t1∧∧∧
∧∧∧

h∈I th
3 ∧∧∧¬¬¬

∨∨∨
h6∈I th

3. Then

ch+(t1)∧∧∧ch−(t2) ≤
∨∨∨

h∈H

ch+(th
3)∨∨∨

∨∨∨

k∈K

ch−(tk
4)

if and only if one of the follow conditions holds
LE. t2 6≤n t1 or

R1. ∃h∈ H such that t1 ≤n th
3 or

6



R2. ∃k∈ K such that tk4 ≤n t2 or

CA. for everyX ⊆ P(H) such that
⋂

X = ∅, for every
choice of atoms aI ≤ eI , I ∈X , there is k∈ K such that
tk
4∧∧∧¬¬¬t2 ≤

∨∨∨
I∈X xI .

The four hypotheses c1–c4 simply state that the right-hand
side of the inequation was simplified according to the rules
stated right before the statement of the theorem. The first
condition (LE) says thatch+(t1)∧∧∧ch−(t2) is empty. The sec-
ond condition (R1) and the third condition (R2) respectively
make sure that one of theth

3 and, respectively, one of theth
4

containsch+(t1)∧∧∧ ch−(t2). Finally the fourth and more in-
volved condition (CA) says that, every time we add atoms to
t2 so that we are no longer below anyth

3, then we must end
up above some of thetk

4.
As an example of how much our relation is sensitive to

atoms, suppose there are three constantserr1,err2,exc,
consider the case where
t2 = int

t1 = t2∨∨∨err1∨∨∨err2∨∨∨exc

t3 = t2∨∨∨exc

t4 = t2∨∨∨err1∨∨∨err2
It is easy to see that

ch+(t1)∧∧∧ch−(t2) 6≤ ch+(t3)∨∨∨ch−(t4)

since, for example, the typech(t2∨∨∨err1) is a subtype of the
left-hand side, but not of the right-hand side. However if
err1 = err2, the subtyping relation holds, because of con-
dition (CA). Indeed in that case the indexing setH of Theo-
rem 2.9 is a singleton. The onlyI ⊆P(H) such that

⋃
I = ∅

is {∅}. The typeeI is t1∧∧∧¬¬¬t3. The only atom in it iserr1,
and it is true thatt4∧∧∧¬¬¬t2 ≤ err1.

Finally note that, as announced, Theorem 2.9 decom-
poses the subtyping problem of (11) into a finite set of sub-
typing problems on types of smaller heights (we must sim-
plify the inequation RHS by verifying the inequalities of
conditions c1–c4, and possibly perform the|H|+ |K|+ 1
checks for LE, R1 and R1)and into the verification of
condition (CA). Now it is clear that the inequation (11) is
decidable—and so is the subtyping relation—if and only if
(CA) is decidable (modulo the decidability of subtyping on
the base types of course).

Decidability

The condition (CA) involves two universal quantifications.
One is on the powerset of a finite set and does not pose prob-
lems, but the other is on sets of atoms of a possibly infinite
seteI , and therefore it is not possible to use it for a subtyp-
ing algorithm as it is. Though this problem can be avoided
thanks to the following proposition

Proposition 2.10 If we replace condition (CA) with
CA∗. for everyX ⊆ P(H) such that

⋂
X = ∅, for every

choice of atoms aI ≤ eI , I ∈ X , eI finite, there is k∈ K
such that tk4∧∧∧¬¬¬t2 ≤

∨∨∨
I∈X xI .

then Theorem 2.9 still holds.

Therefore it suffices to check the condition just for theeI that
are finite (that is that are equal to a finite union of atoms),
which can be done by an algorithm provided that we are able
to:

1. decide whether a type is finite
2. if it is the case, list all its atoms

Surprisingly this is possible, and since this is at the core of
the subtyping algorithm we think it is worth to showin ex-
tensowhy this is so. To prove our claim we proceed by in-
duction on the height of the types. We strengthen the state-
ment by requiring that all atoms of a finite typet have the
same height, or lower, oft. We assume that at height 0, this
is the case. It is a reasonable assumption: for example it is
the case if we have for base types the type of all integers
plus all constant types. Consider a typet of heightn+ 1
and assume that for lower heights we can decide whether a
type is finite and, if it is the case, list all its atoms. By Theo-
rem 2.9, this guarantees that we can also decide emptiness of
all types of heightn+1. We ask ourselves which atoms can
be proved to belong tot. We assumed that this is possible for
basic atoms, therefore we still should check for the atoms of
the formch(s), since these are the only atoms contained in
non-base types. For how manyswe can have thatch(s)≤ t?
If we putt in normal form, we obtain the disjunction of terms
of the form

r := ch+(t1)∧∧∧ch−(t2)∧∧∧
∧∧∧

i

¬¬¬ch+(t i
3)∧∧∧

∧∧∧

j

¬¬¬ch−(t j
4) .

A union is finite if and only if all its summands are, thust
is finite if and only if all ther ’s are finite. When isr finite?
First of all it is finite when it is empty, which we can test it
by induction hypothesis.

Otherwise ifr is not empty, thenr is finite if and only
if ch+(t1)∧∧∧ ch−(t2) is finite, which happens exactly when
t2 ≤ t1 andt1∧∧∧¬¬¬t2 is finite. For the “if” part, note thatch(s)
belongs toch+(t1)∧∧∧ ch−(t2), if and only if s = t2∨∨∨ s′ for
somes′ ≤ t1∧∧∧¬¬¬t2. Sincet1∧∧∧¬¬¬t2 is finite and of smaller
height, then by induction hypothesis I can list all its atoms,
thus all the correspondings′’s, thus all the corresponding
ch(t2∨∨∨ s′) that are all the possible candidates of atoms ofr.
By induction hypothesis we also have that all thes′ have at
most heightn.

For the “only if” part it suffices to prove that ifch+(t1)∧∧∧
ch−(t2) is infinite, then the whole ofr is infinite. Assume
that for no i, t1 ≤ t i

3 and for no j, t j
4 ≤ t2 (otherwiser is

empty). We have to find infinitely manys such thatt2 ≤

s≤ t1, s 6≤ t i
3 for all i andt j

4 6≤ s for all j. Pick atomsai
3 ≤

t1∧∧∧¬¬¬t i
3 anda j

4 ≤ t j
4∧∧∧¬¬¬t2. Note that noai

3 can coincide with

anya j
4, because they are taken from disjoint sets. Then for

any types′ such thatt2 ≤ s′ ≤ t1, the types := s′∨∨∨
∨∨∨

i a
i
3∧∧∧

¬¬¬
∨∨∨

j a
j
4 belongs tor. It is possible that for two differents′

the correspondings coincide. However such “equivalence
classes” ofs′ are finite. Since there are infinitely manys′,
there are infinitely manys, sor is infinite.

7



In summary, for everyr that formst we check whether
t2 ≤ t1 and t1∧∧∧¬¬¬t2 is finite, and at the end we find either
that t is infinite (if one of ther is) or that it is finite. In
the latter case we have a finite list of candidates to be the
atoms oft (namely allch(s) for s included in the the various
t1∧∧∧¬¬¬t2) and to list all the atoms oft we just to check for each
candidate its inclusion int. Which we can do, since they are
at most of heightn+1.

We have thus

Lemma 2.11 (Main) There is an algorithm that decides
whether a type t is finite and if it is the case, outputs all
its atoms.

Corollary 2.12 (Decidability) If it is possible to decide(i)
if a base type is finite and in that case list all its atoms and
(ii) if it is a subtype of another base type, then the subtyping
relation is decidable.

Finally, once decidability is established note that the first
half of the section formally described the subtyping algo-
rithm to check whethers≤ t, which can be summarised as
follows:

1. puts∧∧∧¬¬¬t in disjunctive normal form;
2. check emptiness for base types; if it does not holds,

then return false else
3. Simplify the summand on channels so that it has the

same form as (11) and satisfies the conditions c1–c4 of
Theorem 2.9

4. Check the conditions LE, R1, R2, and CA, and return
whether one of them is satisfied.

We do not discuss here the complexity of this algorithm,
nor the possibility of finding more efficient ways of doing it.
We leave it for future work.

2.6 Patterns

As we explained in the introduction, if we want to fully ex-
ploit the expressiveness of the type system we must be able
to check the type of the messages read on a channel.

In order to obtain it the simplest way is to add to the
π-calculus a process that dynamically tests whether the mes-
sageM is of typet or not. Quite informally, this would cor-
respond to adding the following process

[M : t]P

whereM denotes a message (that is either avalueor avari-
able) and whose behaviour intuitively is as follows:

[v : t]P −→ P if the valuev is of typet
[v : t]P −→ 0 if the valuev is not of typet

In this work we want to introduce a more ambitious exten-
sion of π-calculus that will subsume the one above. So in-
stead of adding an explicit type-case process as the above
we embed type-cases directly in the communications by en-
dowing input actions withCDuce patterns. The reason why

we rather do that is that the semantic subtyping framework
nicely fits patterns since the semantics of patterns can be de-
fined independently from the language or calculus they are
going to be used in, but just relying on the notion of model,
as we show next.

Definition 2.13 (Pre-patterns) Given a type algebraT ,
and a set of variablesV, a pre-pattern p on(V,T ) is a
possibly infinite term p generated by the following grammar

p : := x capture,x∈ V
| t type constraint,t ∈ T

| p1∧∧∧ p2 conjunction
| p1||| p2 alternative
| (((x :=:=:= n))) constant,n∈ B with JbnK = {n}

Given a pre-patternp on(V,T ) we useVar(p) to denote the
set of variables ofV occurring inp (in capture or constant
patterns).

Definition 2.14 (Patterns) Given a type algebraT , and a
set of variablesV, a pre-pattern p on(V,T ) belongs to the
set of (well-formed) patternsP on (V,T ) if and only if it
satisfies the following condition: for every subterm p1∧∧∧ p2
of p we have Var(p1)∩Var(p2) = ∅, and for every subterm
p1|||p2 of p we have Var(p1) = Var(p2).

These patterns and their semantics are borrowed from [6]:
the reader can refer to [6, 1] for a detailed description. When
a pattern is matched against an element of the domain it re-
turns either a substitution for the free variables of the pattern,
or a failure, denoted byΩ:

Definition 2.15 (Semantics of pattern matching)
Given d∈ D and p∈ P the matching of d with p, denoted
by d/p, is the element ofDVar(p)∪{Ω} defined by induction
on structure of p as follows:

d/t = {} if d ∈ JtK
d/t = Ω if d ∈ J¬¬¬tK
d/x = {x 7→ d}
d/p1∧∧∧ p2 = d/p1⊗d/p2
d/p1|||p2 = d/p1 if d/p1 6= Ω
d/p1|||p2 = d/p2 if d/p1 = Ω
d/(((x :=:=:= n))) = {x 7→ n}

whereγ1⊗ γ2 is Ω whenγ1 = Ω or γ2 = Ω and otherwise is
the elementγ ∈ DDom(γ1)∪Dom(γ2) such that:
γ(x) = γ1(x) if x ∈ Dom(γ1)\Dom(γ2),
γ(x) = γ2(x) if x ∈ Dom(γ2)\Dom(γ1).

In short a variable pattern always matches and captures the
matched element with the variable; a type pattern matches
only the elements that belong to the interpretation of the type
but does not capture them; a conjunction pattern matches
only if both pattern (which must use different sets of vari-
ables) match and returns the concatenation of the two substi-
tutions (denoted by⊗); the alternative pattern tries to match
the first pattern and if it fails, it tries the second one, while
the constant pattern always succeed by returning the constant
substitution.

8



One of the remarkable properties of the pattern matching
above is that the set of all elements for which a patternp
does not fail is the denotation of a type. Since this type is
unique we denote it by***p+++. In other terms, for every (well-
formed pattern), there exists a unique types***p+++ such that
J***p+++K = {d ∈ Dom | d/p 6= Ω}. Not only, but this type
can be calculated. Similarly, consider a patternp and a type
t ≤ ***p+++, then there is also an algorithm that calculates the
type environmentt/p that associates to each variablex of p
theexactset of values thatx can capture whenp is matched
against values of typet. Formally

Theorem 2.16 There is an algorithm mapping every pattern
p to a type***p+++ such thatJ***p+++K = {d ∈ D | d/p 6= Ω}.

Theorem 2.17 There is an algorithm mapping every pair
(t, p), where p is a pattern and t a type such that t≤ ***p+++, to
a type environment(t/p) ∈ T Var(p) such thatJ(t/p)(x)K =
{(d/p)(x) | d ∈ JtK}.

The proofs can be found in [6], but to give an idea here they
are the inductive definitions of***p+++ and(t/p):

J***t+++K = JtK
J***(((x :=:=:= n)))+++K = J***x+++K = D

J***p1∧∧∧ p2+++K = J***p1+++K∩ J***p2+++K
J***p1|||p2+++K = J***p1+++K∪ J***p2+++K

(t ′/x)(x) = t ′

(t ′/p1|||p2)(x) = ((t ′∧∧∧***p1+++)/p1)(x)∨∨∨
((t ′∧∧∧¬¬¬*** p1+++)/p2)(x)

(t ′/p1∧∧∧ p2)(x) = (t ′∧∧∧***p2+++/p1)(x) if x∈ Var(p1)

(t ′/p1∧∧∧ p2)(x) = (t ′∧∧∧***p1+++/p2)(x) if x∈ Var(p2)

(t ′/(((x :=:=:= n))))(x) = bn if t ′ 6= 0
(t ′/(((x :=:=:= n))))(x) = 0 if t ′ = 0

3 The semantic-π calculus

3.1 Syntax

The syntax of our calculus is very similar to that of the asyn-
chronousπ-calculus, a variant of theπ-calculus where mes-
sage emission is non-blocking. We have chosen this calculus
as our starting point, because of its simplicity and expres-
sivity. It is generally considered as the calculus represent-
ing the essence of name passing with no redundant opera-
tion. The only operators of asynchronousπ-calculus are the
empty process, non-blocking output, blocking input prefix,
parallel composition and replication, the exchanged values
of the calculus are just names. The variant we consider is
very similar to the basic calculus, we only permit patterned
input prefix and guarded choice between different patterns
on the same input channel.

Channels α ::= x variables
| ct typed channel (box)

Messages M ::= n constant
| α channel

Processes P ::= αM output
| ∑i∈I α(pi).Pi patterned input
| P1‖P2 parallel
| (νct)P restriction
| !P replication

whereI is a possibly empty finite set of indexes andt ranges
over the types defined in Section 2.1.

The constructs for processes we adopt are mostly stan-
dard. As customary we use the convention that the empty
sum corresponds to the inert process, usually denoted by0.
We only want to comment on the presence of the simplified
form of summation we have adapted: guarded sum of in-
puts on a single channel with possibly different patterns. A
long standing debate is going on in the concurrency commu-
nity about the usefulness of summation operators that permit
choosing between different continuations. Choice operators
are indeed very useful for specifying nondeterministic be-
haviours, but give rise to problem when considering imple-
mentation issues. Different kinds of choices have to be con-
sidered:external choicethat leaves the decision about the
continuation to the external environment (usually depending
on the channel used by the environment to communicate)
andinternal choicethat is performed by the process regard-
less of external interactions. The former type of choice is
difficult to implement in presence of distribution (consider
modellingP ‖ Q + R), thus often only guarded choices are
considered; internal nondeterminism pops up as soon as two
of input prefix use the same channel. Thanks to patterns we
can offer an externally controllable choice that can be easily
implemented by relying on pattern matchings; the received
message, not the used channel, will determine continuation.
Internal choice can be modelled by specifying processes that
perform input on the same channel according to the same
pattern.

The other, more important, difference with standard
asynchronousπ-calculus is that typed channels are deco-
rated by the type of messages they communicate. This cor-
responds to our intuition that every box is intimately associ-
ated to the type of the objects it can contain. In what follows
we will call typed channels also “boxes”, or “channel val-
ues” to distinguish them from channel variables.

Thevaluesof the language are the closed messages, that
is to say the typed channels and the constants

v ::= n | ct

We useV to the denote the set of all values. Every value is
associated to a type: a constant is associated to a basic type
bc and a channel value with the channel type that transport
messages of the type indicated in the index. So all the val-
ues can be typed by the rules (const), (chan), and (subs) of

9



R[ ] ::= [] | R[ ]‖P | P‖R[ ] | (νct)R[ ]

P−→ Q ⇒ R[P] −→ R[Q]

P′ ≡ P−→ Q ⇒ P′ −→ Q

P‖0 ≡ P P‖Q≡ Q‖P P‖(Q‖R)≡ (P‖Q)‖R
(νct)0 ≡ 0 (νct)P≡ (νdt)P{ct

; dt} !P≡!P‖P
(νct1

1 )(νct2
2 )P≡ (νct2

2 )(νct1
1 )P for c1 6= c2

(νct)(P‖Q) ≡ P‖(νct)Q for ct 6∈ fn(P)

whereP{ct
; dt} is obtained fromP by renaming all free

occurrences of the boxct into dt , and assumesdt is fresh.

Figure 2: Context and congruence closure

Figure 1 (actually with an emptyΓ) where in the (subs) sub-
sumption rule the≤ is the subtyping relation induced by the
model of Section 2.3.

3.2 Semantics

Now consider the interpretation functionJ K
V

: T →P(V )
defined as follows:

JtK
V

= {v | Γ ` v : t}

This interpretation satisfies the conditions of model of Sec-
tion 2.2 and furthermore it generates the same subtyping re-
lation as≤.

Proposition 3.1 Let JtK
V

= {v | Γ ` v : t}. Then(V ,JK
V

)
is a model and s≤ t ⇐⇒ JsK

V
⊆ JtK

V
.

The first point of the proposition states that a valuev is also
an element of a model of the types whose domain isV ,
therefore Definition 2.15 applies ford being a value. We
can thus use this to define the reduction semantics of our
calculus:

ctv ‖ ∑
i∈I

ct(pi).Pi −→ Pj [v/p j ]

whereP[σ] denotes the application of the substitutions to
the processP. The asynchronous output of avalueon the
box ct synchronises with an input on the same box only if
at least one of the patterns guarding the sum matches the
communicated value. If more than one pattern matches then
one of these is non-deterministically chosen and and the cor-
responding process executed after that the pattern variables
are replaced by the captured values.

As usual the notion of reduction above must be com-
pleted with reductions in evaluation contexts and up to struc-
tural congruence, whose definitions are summarised in Fig-
ure 2.

This operational semantics is the same as that ofπ-
calculus but whose behavior has been refined in two points:

– communication is subjected to pattern matching
– communication can happen only along values (i.e.

boxes)

First of all note that these two points are not restrictive. Ev-
ery asynchronousπ-calculus process is also a process of our
calculus and with the same reduction semantics: it suffices
to consider all free and restricted variables (thus excluding
those that are bound in an input actions, which according to
our viewpoint are “real” variables) to be typed channels of
typech+(1) (or ch−(0) since they both denote the set of all
channels). So we do not lose any generality with respect to
theπ-calculus.

The use of pattern matching is what makes necessary to
distinguish between typed channels and variables: match-
ing is defined only for the formers as they are values, while
a matching on variables must be delayed until they will be
bound to a value.

Since now we have this distinction between variables and
typed channels it is then reasonable to require the commu-
nication to be performed only if we have a physical channel
that can be used as a support for it, and thus forbid synchro-
nisation if the channel still is a variable. However there isa
more technical reason to require this. Consider an environ-
mentΓ = x : 0. By subsumption we haveΓ ` x : ch(int) and
Γ ` x : ch−(bool). Then according to the typing rules of our
system (see later on) the process

xtrue‖ x(y).x(y+y)

is well typed, in the environment but ends up in a run time
error since it tries to sumtrue with true:

xtrue‖ x(y).x(y+y) −→ x(true+true)

This reduction cannot happen in our calculus, because we
can never instantiate a variable of type0.

3.3 Typing

In Figure 1 we summarise typing rules that ensure that in
well typed processes channels communicate only values that
correspond to their type.

The rules for messages do not deserve any particular
comment. As customary, the system deduces only good-
formation of processes without assigning them any types.
The rules for replication and parallel composition are stan-
dard. In the rule for output we check that the message is
compatible with the type of the channel. The rule for restric-
tion is slightly different since we do not need to store in the
type environment the type of the channel5.

The rule for input is the most involved one. The premises
of the rule first infer the typet of the message that can be
transmitted over the channelα, then for each summandi they
use this type to calculate the type environment of the pat-
tern variables (the environment(t/pi) of Theorem 2.17) and
check whether under this environment the summand process

5Strictly speaking, we do not restrict variables but values,so it would
be formally wrong to store it inΓ. For the same reason we do not have
α-conversion on restriction, but this is handled as a structural equivalence
rule.

10



Messages

Γ ` n : bn
(const)

Γ ` ct : ch(t)
(chan)

Γ ` x : Γ(x)
(var)

Γ ` M : s≤ t
Γ ` M : t

(subs)

Processes
Γ ` P

Γ ` (νct)P
(new) Γ ` P

Γ `!P
(repl)

Γ ` P1 Γ ` P2

Γ ` P1‖P2
(para)

t ≤
∨∨∨

i∈I***pi+++
***pi +++∧t 6= 0

Γ ` α : ch+(t) Γ,t/pi ` Pi

Γ ` ∑i∈I α(pi).Pi
(input)

Γ ` M : t Γ ` α : ch−(t)

Γ ` αM
(output)

Figure 1: Typing rules

Pi . This is all it is needed to have a sound type system. How-
ever the input construct is like a typecase/matching expres-
sion, so it seems reasonable to perform a check that pattern
are exhaustive and there is no useless case6 This is precisely
what the two side conditions of (input) do:

(t ≤
∨∨∨

i∈I***pi+++) checks whether pattern matching is exhaus-
tive, that is if for whatever value (of typet) sent onα
there exists at least one patternpi that will accept it (the
cases cover all the possibilities).

(***pi +++∧t 6= 0) checks that the pattern matching is not redun-
dant that is that there does not exists a patternpi that
will fail with every value of typet (no case is useless).

Of course we could have used a different type system and/or
reduction semantics to define more refined policies (best
match, first match) that can remove all remaining nondeter-
minism. We did not do it since as we hint in the next section
they can be easily encoded thanks to the expressive power of
our patterns/types.

As usual the basic result is the subject reduction, which
is preceded by a substitution lemma.

Lemma 3.2 (Substitution)
– If Γ,t/p` M′ : t ′ andΓ ` v : t, thenΓ ` M′[v/p] : t ′.
– If Γ,t/p` P andΓ ` v : t thenΓ ` P[v/p].

Lemma 3.3 (Congurence)
If Γ ` P and P≡ Q, thenΓ ` Q.

Theorem 3.4 (Subject reduction)
If Γ ` P and P→ P′ thenΓ ` P′.

It is far from being obvious that the decidability of the sub-
typing relation implies the decidability of the typing relation
(only semidecidability is straightforward). The typing algo-
rithm can be derived in a standard way by eliminating the
subsumption rule and embedding the subtyping checks into
the elimination rules. Though, it is not so evident that the
type system satisfies the minimum type property, and this is
because of the (input) rule, which in its algorithmic version

6While in functional programming these check are necessary for sound-
ness since an expression non-complying to them may yield a type-error, in
process algebra non-compliance would just block synchronisation.

requires us to compute the least type of the formch+(s) that
is an upper bound of a given typet. Now observe that our
type algebra isnot a complete lattice (since least upper and
greatest lower bounds exist only for finite sets). Nevertheless
such a type exists and is unique (which gives gives the min-
imum typing property) and furthermore it can be effectively
calculated.

Theorem 3.5 (Upper bound channel)For every type t
there exists a least type ch+(s) that is an upper bound of
t and an algorithms that computes it.

3.4 Examples

First match policy. As a first example we show how is pos-
sible to impose a first match policy in a input sum: consider
the following process

∑
i=1..n

α(pi).Pi (12)

and letch+(t) the least type of this form that can be deduced
for α (this can be calculated by using the set-theoretic prop-
erties of the interpretation and is at the basis of the algorith-
mic typing rule for input actions). Defineqi as follows:

qi+1 =

{
p1 if i = 0
pi ∧∧∧¬¬¬***qi+++ if 1 ≤ i ≤ n

Then the process

∑
{i | ***qi+++∧t 6=0}

α(qi).Pi (13)

behaves exactly as the above with the only difference that
summand selection is deterministic and obeys a first match-
ing discipline. Indeed, every pattern accepts only the values
that are not accepted by the preceding patterns. Note that
by applying a first match policy some of the summand could
no longer have any chance to be selected (this happens if
***pi +++∧t ≤ ∨∨∨ j<i *** p j+++), and therefore they must not be in-
cluded in (13) since then it would not be well typed (there
would be redundant summands), which explains the set used
to index the sum.

Best match policy. It is possible to rewrite the process in
(12) so that it satisfies a best matching policy. Of course

11



this is possible only if for every possible choice in (12) there
always exist a best-matching pattern7. If this is the case then
with the following definition forqi ’s

qi = pi ∧∧∧ (***pi +++\\\
∨∨∨

{ j |***pi+++∧t 6≤***p j+++∧t}

***p j+++)

the process (13) is well-typed and implements the best
matching policy for (12), since the difference in the defi-
nition of qi makes the pattern fail on every value for which
there exists a more precise pattern that can capture it.

Webservices. Consider the following situation. A web
server is waiting on a channelα. The client wants the server
to perform some computation on some values it will send
to the server. The server is able to perform two different
kinds of computation, on values of typet1 (say arithmetic
operations), or on values of typet2 (say list sorting). At the
beginning of each session, the client can decide which op-
eration it wants the server to perform, by sending a channel
to the server, along which the communication can happen.
The server checks the type of the channel, and provides the
corresponding service.

P := α(x∧∧∧ch(t1)).!x(y).P1 + α(x∧∧∧ch(t2)).!x(y).P2

In the above process the channelα has typech+(ch+(t1)∨∨∨
ch+(t2)). Note that,ch+(t1)∨∨∨ ch+(t2) 6= ch+(t1∨∨∨ t2). This
means that the channel the server received onα will com-
municateeitheralways values of typet1 or always values of
type t2, and not interleaving sequences of the two as would
doch+(t1∨∨∨ t2).

As we discussed in the Introduction this distinction is not
present in analogous versions of process calculi where the
axiom ch+(t1)∨∨∨ ch+(t2) = ch+(t1∨∨∨ t2) is present. In that
case we would need to writeP as

P′ := α(x).!(x(y∧∧∧ t1).P1 +x(y∧∧∧ t2).P2)

which is a less efficient server, as it performs pattern match-
ing every time it receives a value.

4 Extensions

4.1 Polyadic version

The first extension we consider consists in adding the prod-
uct to our type constructors. This will require the extension
of the notion of pattern, but most importantly, it will affect
the definition of subtyping. The new syntax for the types is
as follows

Types t ::= b | ch+(t) | ch−(t) | t××× t
| 0 | 1 | ¬¬¬t | t∨∨∨ t | t∧∧∧ t

The definition of height is extended by:
– }(t1××× t2) = max(}(t1),}(t2)).

7More precisely it is necessary that for everyh,k∈ I if ***ph+++∧*** pk+++∧t 6=
0 then there exists a uniquej ∈ I such that***pj +++∧t = ***ph+++∧*** pk+++∧t.

Messages are extended by

Messages M ::= . . . | (M,M) pair

The patterns are extended by

Patterns p : := ... | (((p1,,,p2))) pair

with the condition that the for every subterm(((p1,,,p2))) of p
we haveVar(p1)∩Var(p2) = ∅.

Note that besides the extension above we do not need
to add anything else since for instance projections can be
encoded by pattern matching. Using product type, together
with the recursive types we show next we can also encode
more structured data, like lists or XML documents. See the
end of this section.

4.2 Recursive types

Another important addition to our type systems is that of
recursive types. This is for example necessary to define the
type of lists.

So far, types could be represented as finite labelled trees.
Recursive types are obtained by allowing infinite trees, with-
out changing the syntax. As in the type system ofCDuce we
require such trees to be regular and with the property that
every infinite branch contains infinitely many nodes labelled
by the product constructor.

Moreover we require that every branch can contain only
finitely many nodes labelled with channel constructor. If
we were to define recursive types with equation, this would
amount to forbid the recursive variable being defined to be
used inside a channel constructor (such asx = ch(x)∨∨∨ int;
but a recursive type can appear inside a channel construc-
tor provided that the number of occurrences of channel
constructors is finite, such as inch(intlist) where intlist =
(int× intlist)∨∨∨ch(0)).

Why is that? The reason is that without this restriction is
not possible to find a model. To see why, we observe that we
could have a recursive typet such that

t = b∨∨∨ (ch(t)∧∧∧ch(b))

for some nonempty base typeb. If we have a model, ei-
ther t = b or t 6= b. Doest = b? Suppose it does, then
ch(t)∧∧∧ ch(b) = ch(b) andb = t = b∨∨∨ ch(b). The latter im-
plies ch(b) ≤ b which is not true whenb is a base type.
Therefore it must bet 6= b. According to our semantics
this impliesch(t)∧∧∧ch(b) = 0, because they are two distinct
atoms. Thust = b∨∨∨0 = b, contradiction.

Types are therefore stratified according to how many
nesting of the channel constructor there are, and we can still
define a function}(t) as the maximum number of channel
constructors which appear on a branch oft. (The König’s
lemma guarantees that}(t) is finite).

This stratification also allows us to construct the model
using the same ideas presented in Section 2.

12



The traditional example of the use of a recursive type is
“self application”, that is a channel that can carry itself.It is
regrettable that our semantics prevents us from defining re-
cursive types involving channel constructor, but we can still
type self application by using, for instance, the typech(1): a
channel that can carry everything, can clearly carry itself.

4.3 The extended model

The addition of product types requires minimal modifica-
tions to the definition of pre-model, that is, that the interpre-
tations of different type constructors are pairwise disjoint,
namely for alls, t, andt ′

Jchν(s)K∩B = ∅ Jt××× t ′K∩B = ∅ Jchν(s)K∩ Jt××× t ′K = ∅

The extensional interpretation must be extended in order to
take into account the intuitive semantics of product types,
that is, the product of the interpretations:

Definition 4.1 Let (D ,JK) be a pre-model. Theex-
tensional interpretation of the types is the function
E JK : T → P(B+D ×D +P(D)), defined as follows:

– E JbK = JbK;
– E J1K = B+D ×D +P(D) , E J0K = ∅;
– E J¬¬¬tK = E J1K\E JtK;
– E Jt1∨∨∨ t2K = E Jt1K∪E Jt2K, E Jt1∧∧∧ t2K = E Jt1K∩E Jt2K;
– E Jt1××× t2K = Jt1K× Jt2K;
– E Jch+(t)K = {Jt ′K | JtK′ ⊆ JtK};
– E Jch−(t)K = {Jt ′K | Jt ′K ⊇ JtK}.

The definition of model is quite modular since it is invariant
to the definition of the extensional interpretation. Thus we
have the same definition as the one in Section 2.2:

Definition 4.2 A pre-model(D ,JK) is a model if for every
type t,JtK = ∅ ⇐⇒ E JtK = ∅.

Having a definition of model allows us to define the pattern
matching, which is the same as in Section 2.6 with the extra
clause

(d1,d2)/(((p1,,,p2))) = d1/p1⊗d2/p2
d/(((p1,,,p2))) = Ω if d 6∈ Dp

whered1/p1 ⊗ d2/p2 is as defined in Section 2.6 with the
extra clause
γ(x) = (γ1(x),γ2(x)) if x∈ Dom(γ1)∩Dom(γ2).

Theorems 2.16 and 2.17 still hold in the new framework.
Using the same techniques employed in Section 2.3, with

some more complication to take care of product and recur-
sive types, we obtain.

Theorem 4.3 There exists a model for the type algebra with
products.

The decision algorithm of Section 2.5 can be extended to
product types. We have to decide when a type of the form

(t×××s)∧∧∧
∧∧∧

i∈I

¬¬¬(ti ×××si)

is empty. The algorithm works by recurring on the lexico-
graphic order whose first component is the height (as be-
fore) and whose second component is the structure of prod-
uct types. It is enough to be able to solve the problem for
simpler types. This can be done by observing (see [6]) that
the above type is equivalent to

∨∨∨

J⊆I

[(t \\\
∨∨∨

i∈J

ti)××× (s\\\
∨∨∨

j∈I\J

si)]

and that a union is empty if and only if all its addenda are
empty.

That is not enough: we must also be able to decide
whether a type is finite and, if it is the case, list all its atoms.
That can be done again by observing that a union is finite if
and only if all its addenda are, and that a product is finite if
and only if both component are, or if one is empty. Moreover
the atoms of a product are exactly the product of the atoms
of the components.

The decidability of the subtyping for recursive types can-
not work by induction in the same way. If an algorithm ex-
ists, it will have to be some coinductive procedure on the line
of the one in [6]. We leave this investigation to future work.

4.4 Function types

In this section we want to briefly discuss the integration
of semantic-π with the functional programming language
CDuce. A presentation ofCDuce is out of the scope of this
work, and to understand the details of this section we in-
vite to refer to [1, 6]. But the reader that managed to arrive
so far will not have much difficulty to understand it, since
CDuce can be thought, quite roughly, as a sort of semantic-π
where channel types and read and write actions are respec-
tively replaced by arrows, functions and applications, and
where pattern matching is explicitly done by a matching ex-
pression which allows the programmer to define overloaded
functions with late binding.

Weak extension

A first a naive way to perform this integration is to add to
semantic-π all CDuce types as base types, and allCDuce
expressions to messages. It just suffices to add to the reduc-
tion rules the following rule

e→ e′

c̄te−→ c̄te′ (14)

and useCDuce typing, algorithms and semantics whenever
the semantic-π system needs them, and that’s all. No other
modification is necessary since the two systems are strati-
fied, thus the definitions of model, subtyping etc., do not
need to be changed.

As naive as it is this extension already allows us to define
a “CDuce server”:

funs→→→t(x).args(y).result
t
(x(y))

13



which waits onfun andarg respectively for a function and
its argument and returns the value of the application onre-
sult. A more liberal server that accepts the function and its
argument on a channelcomputein whatever order they are
given is:

compute((s→→→t)×××s)∨∨∨(s×××(s→→→t))(x,y∧∧∧s).result
t
(x(y))

+ compute((s→→→t)×××s)∨∨∨(s×××(s→→→t))(x∧∧∧s,y).result
t
(y(x))

However the resulting system is mildly interesting since the
two systems are weakly interacting: they do not share the
same type constructors, so thatπ andCDuce products are in-
compatible (for instance, the products in the type ofcompute
channel must beπ products, since otherwise we could not
have deconstructed them in the input actions8), and they are
stratified, so while channels can pass aroundCDuce func-
tions, these cannot work on channels.

Strong extension:Cπ-calculus

Much a stronger interaction can be obtained by adding the
arrow type constructor:

Types t ::= . . . | t →→→ t

This addition is more fruitful when it is done to the polyadic
semantic-π, since then it unifiesCDuce andπ product types.

Furthermore, not onlyCDuce expressions are to be
added to messages (as before) but also to channels, since
now CDuce expressions can calculate channels. This re-
quires that besides (14) we must also add the following re-
duction rules:

e−→ e′

ēM−→ ē′M
e−→ e′

e(p).P−→ e′(p).P (15)

Contrary to the weak extension, here the definition of model
and the model itself must be modified. Since we took a lot of
care in giving the definitions of Section 2 so that they could
be smoothly extended with arrow types this is not so diffi-
cult, the definition of model requiring that the extensional
interpretation ofs→→→ t is the set of all sets of pairs such that
if the first component is in the interpretation ofs then the
second is in the interpretation oft, namely

E Js→→→ tK = P( (JsK× JtKc)c)

By merging the technique of [6] with the one we developed
in Section 2.3 it is then possible to exhibit a model, essen-
tially of the form

D = B+D×D +P f (D×D)+ T̃

where the reader can easily recognise which component
comes from where. Although the way to proceed is quite

8If they wereCDuce products then the server would have been pro-
grammed as
]indentcompute((s→→→t),s)∨∨∨(s,(s→→→t))(x).

result
t
(match x with (1,s) → (π1(x))π2(y)

| 1 → (π2(x))π1(y))

smooth, the details are quite involved (essentially we have
to redo the technical machinery of [6] and enrich it with the
work done here) and here we prefer to omit them. However
the complexity of the details is not the only reason that make
us refrain to pushing our presentation further. Several other
reasons advise us to do so:

• First and foremost, while we conjecture that the sub-
typing relation is decidable also for this extension, we
were not able to prove it. This is a very important draw-
back since computations perform dynamic type-cases
undecidability would mean that the operational seman-
tics cannot be implemented.

• We would like to be able to give a type respecting en-
coding ofCDuce in process calculus part, similar to the
Milner-Turner encoding of the simply typedλ-calculus
in π [8, 10]. However all our tries so far have failed: it
seems that the expressive power of typing sums is not
enough to mimic that ofCDuce overloaded functions.

• In order to fully exploit the intertwining of the two type
systems we should provide the languages with con-
structions to interact. For instance we could add to
theCDuce base types the typethread and modify the
type-system of Figure 1 by replacingΓ`P : thread for
every judgmentΓ ` P. Then we should probably add to
CDuce aspawn function, and the possibility to com-
municate on channels, also we should enrich with syn-
chronisation events and the primitives to handle that.
All of this would lead us to deal with the design of con-
current functional languages, which is not the purpose
of the work.

The whole point of this section was to show that the seman-
tic subtyping technique constitutes a common structure on
which it is possible to build and integrate functional and con-
current type systems. This can constitute the very starting
point of a new promising research on functional concurrent
and distributed languages, surely not its final point. To sup-
port our claim we want to show that even with the bare exten-
sion we described here—without any linguistic addition—it
is possible to achieve a good degree of interaction between
functional and concurrent structures, by describing a very
naive example, which summarises the extensions that, at a
different degree of detail, we presented in this section.

First we can use recursive and product types to define the
type of associative lists, which associate a string key witha
channel and where we usenil to denote both the empty list
and its singleton type (we usesans serif for recursion type
variables):

a list = ((string×××ch(int))×××a list)∨∨∨nil

Associative lists can be searched with recursive patterns.For
instance if we match an associative list with the following re-
cursive patternp:

p = (((((("key1",,,x))),,,p)))|||(((1,,,p)))|||(((x :=:=:= nil)))

thenx is bound to the list of all the channels that are asso-
ciated with the key “key1” (strictly speaking, that have the

14



singleton typekey1), while the following one
p = (((((("key1",,,x))),,,1)))|||(((1,,,p)))|||(((x :=:=:= nil)))

captures just the first channel associated with and then stops.
So we can use patterns to “calculate” channels. But when

such a calculation is more complex (e.g. parametric in the
key string), then it is better to delegate such a calculationto
a function such as:

fun assoc(s : string , l : a list) : ch(int) =
match l with nil → fail

| ((((((k,,,c))),,,t))) → if k = sthen c else assoc(s,t)

which can then be communicated by a process as a message
on the channelannouncebelow to dispatch all the notes of
an examination:

announcem list×××a list×××(string×a list→→→ch(int))(marks,mails,getch).
(νcm list) c(marks) |

!( c( ((((((n,,,m))),,,rest))) ) . ( getch(n,mails)(m) | c(rest) )
+ c( nil).0 )

wherem list = ((string×××int)×××m list)∨∨∨nil. The chan-
nel announcewaits for an associative list of marks, an asso-
ciative list of channels, and a dispatch function that calcu-
lates a channel. The process creates a private channelc to
iterate on the list of marks (since it must communicate on
channels, then in the absence of aspawn we cannot use a
function to perform such an iteration) and use the function
received onannounce(bound togetch) to calculate the chan-
nelgetch(n,mails) on which to write the mark, and iterating
the process with the rest of the list.

When the list of marks is empty (the patternnil matches
it), the process becomes inert.

So for instance if the following process synchronises

announce( ( ("Alice",6),(("Bob",8),nil)) ,
( ("Bob",cB),(("Alice",cA),nil)) ,
assoc)

it will produce the process:cA(6) | cB(8).

Acknowledgements

We are very grateful to Alain Frisch for interesting discus-
sions, and Daniele wants to thank him for making available
parts of his forthcoming PhD thesis. Giuseppe and Daniele
acknowledge the support of the European FET contract
MyThS, IST-2001-32617. Rocco acknowledges the support
of FET contractMikado, IST-2001-32222, and would like to
thank ENS for a visiting professorship grant.

References

[1] V. Benzaken, G. Castagna, and A. Frisch. CDuce:
an XML-friendly general purpose language. InICFP
’03, 8th ACM International Conference on Functional
Programming, pages 51–63, Uppsala, Sweden, 2003.
ACM Press.

[2] G. Boudol. Asynchrony and theπ-calculus. Research
Report 1702, INRIA, http://www.inria.fr/rrrt/rr-
1702.html. Also available from http://www-
sop.inria.fr/mimosa/personnel/Gerard.Boudol.html,
1992.

[3] A. Brown, C. Laneve, and G. Meredith.πduce: a
process calculus with native XML datatypes. Unpub-
lished, 2004.

[4] G. Castagna and A. Frisch. A gentle introduction
to semantic subtyping. InSecond workshop on Pro-
grammable Structured Documents, Hakone, Japan,
2004. Invited paper. Available atwww.cduce.org/
papers.

[5] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM:
A kernel language for agents interaction and mo-
bility. IEEE Transaction on Software Engineering,
24(5):315–330, 1998.

[6] Alain Frisch, Giuseppe Castagna, and Véronique Ben-
zaken. Semantic Subtyping. InProceedings, Sev-
enteenth Annual IEEE Symposium on Logic in Com-
puter Science, pages 137–146. IEEE Computer Society
Press, 2002.

[7] M. Hennessy and J. Riely. Resource access control in
systems of mobile agents.Information and Computa-
tion, 173:82–120, 2002.

[8] R. Milner. Functions as processes.Mathematical
Structures in Computer Science, 2(2):119–141, 1992.

[9] B. Pierce and D. Sangiorgi. Typing and subtyping for
mobile processes.Mathematical Structures in Com-
puter Science, 6(5), 1996.

[10] D. Sangiorgi and D. Walker.The π-calculus. Cam-
bridge University Press, 2002.

[11] P. Sewell. Global/local subtyping and capability infer-
ence for a distributedπ-calculus. InProceedings of
25th ICALP, volume 1443 ofLNCS, pages 695–706,
1998.

[12] N. Yoshida and M. Hennessy. Subtyping and locality
in distributed higher order processes. InProceedings
of 10th CONCUR, volume 1664 ofLNCS, pages 557–
572, 1999.

15



For referees’ convenience only. To be omit-
ted in final version.

A Type algorithm

The type algorithm is obtained from the typing rules in a
standard way, namely by deleting the subsumption rule and
embedding the checking of the subtyping relation in the
elimination rules. The only difficult point is the definitionof
C (), that is the least upper bound ofs which is of the form
ch+(t). The decidability ofC () is given by Theorem 3.5.
The algorithmic rules are summarised in Figure 3.

B Proofs

B.1 Characterising inclusion (Theorem 2.9 and Propo-
sition 2.10)

In this section we first prove Theorem 2.9 and then
strengthen the result as in Proposition 2.10.

We recall that in a boolean algebra, anatom is a mini-
mal nonzero element. A boolean algebra isatomic if every
nonzero element is greater of equal than an atom. It is easy
to prove that an atomic boolean algebra is equivalent to a
subset of the powerset of its atoms.

Let (D,∧∧∧,∨∨∨,0,1) be an atomic boolean algebra where, as
costumary,d′ ≤ d if and only if d′∨∨∨d = d. For everyd ∈ D
we denote↓d (that is, the set of all element smaller than or
equal tod) asch+(d) and↑d (that is, the set of all elements
larger than or equal tod) as ch−(d). We want to give an
equivalent characterisation of the equation

⋂

i∈I

ch+(di
1)∩

⋂

j∈J

ch−(d j
2) ⊆

⋃

h∈H

ch+(dh
3)∪

⋃

k∈K

ch−(dk
4)

that does not use the “operators”ch+(),ch−(). Notice that
⋂

i∈I

ch+(di
1) = ch+(

∧

i∈I

di
1)

and ⋂

j∈J

ch−(d j
2) = ch−(

∨

j∈J

d j
2) .

Also if there existh,h′ such thatdh′
3 ≤ dh

3 we can ignoredh′
3

asch+(dh′
3 ) ⊆ ch+(dh

3). Dually for thedk
4. Therefore we can

concentrate on the case

ch+(d1)∩ch−(d2) ⊆
⋃

h∈H

ch+(dh
3)∪

⋃

k∈K

ch−(dk
4)

where no twodh
3 are comparable, and nodk

4 are comparable.
The first case in which the inclusion holds is when

ch+(d1)∩ ch−(d2) = ∅, which happens exactly whend2 6≤
d1. If d2 ≤ d1, without loss of generality we can also assume
thatdh

3 ≥ d2 for all h∈ H and thatdk
4 ≤ d1 for all k∈ K. This

is because ifdh̄
3 6≥ d2 for someh̄ then no element ofch−(d2)

can be inch+(dh̄
3). We can thus ignore such set to test for the

inclusion, and similarly for thedk
4’s.

The inclusion surely holds if for somēh we haved1 ≤ dh̄
3,

or if for somek̄ we haved2 ≥ dk̄
4, since then, for instance in

the former case,ch+(d1) is contained inch+(dh̄
3) and so is

its intersection withch−(d2).
The most difficult case occurs when

• d2 ≤ d1;

• for all h∈ H, dh
3 ≥ d2;

• for all k∈ K, dk
4 ≤ d1;

• for all h∈ H, dh
3 6≥ d1;

• for all k∈ K, dk
4 6≤ d2.

The way of thinking the inclusion is the following. (From
now on it will be easier to think ofD as a subset of the pow-
erset of its atoms; therefore we will use⊆ rather than≤ and
“contained” rather than “smaller”.) Consider an element in
ch+(d1)∩ ch−(d2). If it is not below any of thedh

3 then it
must be above one of thedk

4. Suppose there is an elementx
of d1 which is in nodh

3 (more precisely, suppose that there
is an atomd such thatd ≤ d1 and for allh d 6≤ dh

3; to stress
that it is an atom denoted by {x}). Thend2 ∨ {x} is not
contained in any of thedh

3, and it must contain one of thedk
4.

This implies that for suchdk
4, dk

4 \d2 ⊆ {x}9. Consider now
two elementsx1,x2 in d1 such that ifx1 belongs todh

3 thenx2

does not belong todh
3. Thend2∨{x1,x2} is not contained in

any of thedh
3, and it must contain one of thedk

4. This implies
that for suchdk

4, dk
4 \d2 ⊆ {x1,x2}.

More generally: for everyI ⊆ H consider the the seteI
defined asd1∧

∧
h∈I dh

3 \
∨

h6∈I dh
3. The seteI contains those

elements ofd1 which belong precisely to thedh
3 for h ∈ I .

Because alldh
3 are incomparable, theeI are nonempty and

pairwise disjoint. Consider a subsetX of P(H) satisfying
the property

⋂
X = ∅. For everyI ∈ X , choose and ele-

mentxI . We have thatd2∨{xI | I ∈ X } is not contained in
any of thedh

3. Reasoning as above we then have that there is
a dk

4 such thatdk
4 \d2 ⊆ {xI | I ∈ X }.

Therefore the condition we look for is: for everyX such
that

⋂
X = ∅, for every choice ofxI ∈ eI , I ∈X there must

be adk
4 such thatdk

4 \d2 ⊆ {xI | I ∈ X }.
We argued that the condition is necessary. It is also suf-

ficient: if the condition holds, every setd included ind1,
containingd2, and which is not contained in any of thedh

3,
must contain a set of the formd2∨{xI | I ∈ X }: just pick
one witness of noncontainment for everydh

3. Thusd con-
tains one of thedk

4.
We can strengthen the result by as stated in Proposi-

tion 2.10. Consider the case where some of theeI are in-
finite. Since there are only finitely manydk

4, the condition is

9it is in fact equal asdk
4 6≤ d2.

16



Messages

Γ ` n : bn
(const)

Γ ` ct : ch(t)
(chan)

Γ ` x : Γ(x)
(var)

Processes
Γ ` P

Γ ` (νct)P
(new) Γ ` P

Γ `!P
(repl)

Γ ` P1 Γ ` P2

Γ ` P1‖P2
(para)

t ≤
∨∨∨

i∈I***pi+++
***pi +++∧t 6= 0

Γ ` α : s C (s) = ch+(t) Γ,t/pi ` Pi

Γ ` ∑i∈I α(pi).Pi
(input)

Γ ` M : t Γ ` α : s s≤ ch−(t)

Γ ` αM
(output)

Figure 3: Algorithmic rules

satisfied if and only if for at least two (in fact infinitely many)
different choicesxI andx′I we have that the samedk

4 satisfies
dk

4 \d2 ⊆ {xI | I ∈ X }, anddk
4 \d2 ⊆ {x′I | I ∈ X }. There-

fore we must havedk
4 \d2 ⊆ {xI | I ∈ X & eI finite }. (We

could improve further by considering only thoseeI whose
cardinality is not greater than the number ofdk

4 - we don’t
need this for our purposes).

The condition we will use in our proof is: for everyX
such that

⋂
X = ∅, for every choice ofxI ∈ eI , I ∈ X , eI

finite, there must be adk
4 such thatdk

4 \d2 ⊆ {xI | I ∈ X }.

B.2 Proof of Proposition 2.4

We prove the theorem for the simplest type system, with only
basic types. The case with product is very similar; while
recursive types (and possibly arrow types) require some re-
fined techniques.

To carry out the proof we use an interesting fact: every
singleton of our pre-models is denoted by some type. (As-
suming this is true for base types, which we can safely as-
sume.)

We also need a technicality: we add to our types of height
0 the typesk for all positive natural numberk: they are used
at level 0 as a witness of channel types. At level 0 we only
know that there are infinitely many different channel types.
The premodel at level 0 is exactly formed by the basic types
plus the positive natural numbers to modelling thek.

ThereforeD0 := B+N+ with

JkK0 = {k}

Now suppose we have a modelDn for Tn, with corre-
sponding preorder≤n and equivalence=n. We call T̃n the
set of equivalence classesTn/ =n. Then we set

Dn+1 = B+ T̃n

with the semantics of the channel types being

Jch+(t)Kn+1 = {[t ′]=n | t ′ ≤n t}

Jch−(t)Kn+1 = {[t ′]=n | t ≤n t ′}

Jk +1Kn+1 = {[k]=n}

Note that the semantics of1 coincides with the semantics of
ch(0), and in general the semantics ofk +1 coincides with

the semantics ofch(k). Therefore in the semantics at levels
greater than 0 we can substitutek +1 with the appropriate
channel type.

When is a typet empty? Given a typet we put it in
disjunctive normal form. Clearlyt is empty if and only if all
summands are empty. If a summand contains literals of both
basic types and channel types it is easy to decide emptiness:
if it contains two positive literals of different kinds, then it is
empty. If the positive literals are all of one kind, it is empty
if and only if it is empty when removing the negative literals
of the other kind. Finally the intersection of only negative
literals is empty if the two kinds separately cover their own
universe of interpretation. (That is if the union of all negated
basic type isB and similarly for the channels)

Therefore it is enough to check emptiness for intersec-
tions of literals of on kind only. For base types:

∧∧∧

b∈P

b∧∧∧
∧∧∧

b∈N

¬¬¬b .

For channel types:
∧∧∧

i∈I

ch+(t i
1)∧∧∧

∧∧∧

j∈J

ch−(t j
2)∧∧∧

∧∧∧

h∈H

¬¬¬ch+(th
3)∧∧∧

∧∧∧

k∈K

¬¬¬ch−(tk
4)

Using equations (6) and (7) of Section 2 we can simplify the
above expression to

ch+(t1)∧∧∧ch−(t2)∧∧∧
∧∧∧

h∈H

¬¬¬ch+(th
3)∧∧∧

∧∧∧

k∈K

¬¬¬ch−(tk
4)

To prove Proposition 2.4, we now prove by induction the
following statement: lett ∈ Tn, then

• t =n 0 if and only if t =n+1 0;

• |t|n = h if and only if |t|n = h.

where|t| denotes the cardinality oft.
We start by the casen = 0. The “algorithm” for checking

emptiness works in the same way for basic types. The only
difference occurs for the typesn. The condition to check at
level 0 is the following

N∩
⋂

k∈P

JkK0 ⊆
⋃

k∈N

JkK0

Which can be true only if there are two differentk ∈ P
or if the only k in P is also inN. It is important here that

17



N is infinite, so no finite union of singleton can cover it.
Therefore the condition above is equivalent to

T̃0∩
⋂

k∈P

JkK1 ⊆
⋃

k∈N

JkK1

and thereforet =0 0 if and only if t =1 0. As for the
cardinality: the proof is more general and it is the same as
the inductive step case that we will show next.

For the inductive step suppose that we know that for ev-
ery typet ∈ Tn we have

• t =n 0 if and only if t =n+1 0;

• |t|n = h if and only if |t|n+1 = h.

Now take a typet ∈ Tn+1, we want to prove that

• t =n+1 0 if and only if t =n+2 0;

• |t|n+1 = h if and only if |t|n+2 = h.

Again the “algorithm” for checking the emptiness of basic
types does not change. In the case of channel types we have
to check that

Jch+(t1)Kn+1∩ Jch−(t2)Kn+1

⊆
⋃

h∈H

Jch+(th
3)Kn+1∪

⋃

k∈K

Jch−(tk
4)Kn+1

if and only if

Jch+(t1)Kn+2∩ Jch−(t2)Kn+2

⊆
⋃

h∈H

Jch+(th
3)Kn+2∪

⋃

k∈K

Jch−(tk
4)Kn+2

As argued in the previous section, the first condition is equiv-
alent to:

• t2 6≤n t1 or

• ∃h∈ H such thatt1 ≤n th
3 or

• ∃k∈ K such thattk
4 ≤n t2 or

• the complicated condition involving≤n and atoms

The induction hypothesis gives us easily the equivalence of
the first three conditions at levelsn andn+1. For the com-
plicated condition note first that

• t2 ≤n t1

• for all h∈ H, dh
3 ≥n d2

• for all k∈ K, dk
4 ≤n d1

• for all h∈ H, dh
3 6≥n d1

• for all k∈ K, dk
4 6≤n d2

are equivalent to

• t2 ≤n+1 d1

• for all h∈ H, dh
3 ≥n+1 d2

• for all k∈ K, dk
4 ≤n+1 d1

• for all h∈ H, dh
3 6≥n+1 d1

• for all k∈ K, dk
4 6≤n+1 d2

because of the induction hypothesis. For everyI ⊆ H define
tI as

t1∧∧∧
∧

h∈I

th
3∧∧∧¬¬¬

∨

h6∈I

th
3 .

we have to check that the condition

for every minimalX , for everyaI ∈Atomn, aI ≤n
tI , I ∈ X , |tI |n finite, there must be atk

4 such that
tk
4∧∧∧¬¬¬d2 ≤n

∨
I∈X aI .

is equivalent to the same condition where we replace all the
n with n+1.

Recall that since all singletons are denoted, atoms are
exactly the singleton types. We need a lemma.

Lemma B.1 Suppose that for every t∈ Tn

• t =n 0 if and only if t=n+1 0;

• |t|n = h if and only if|t|n+1 = h.

Pick t∈Tn, consider an atom a∈Tn+1 such that there is no
atom a′ ∈ Tn with a=n+1 a′. If a≤n+1 t then|t|n+1 and|t|n
are both inifite.

Proof:suppose|t|n = h with h finite. Since every singleton is
denotedt =n a1∨∨∨ . . .∨∨∨ah for disjoint n-atomsai . Then the
same equality is true at leveln+1. We thus deducea′ ≤n+1
a1∨∨∨ . . .∨∨∨ah from which we derive thata′ =n+1 ai for some
i. Contradiction. 2

We are now going to check the equivalence of the condi-
tions.

Suppose it is true for then + 1 case. Then pick a
choice ofn-atomsaI . By the induction hypothesis they are
n+ 1 atoms. Suppose|tI |n is finite. By the induction hy-
pothesis|tI |n+1 is finite, then there must be atk

4 such that
tk
4∧∧∧¬¬¬d2≤n+1

∨
I∈X aI . Which impliestk

4∧∧∧¬¬¬d2≤n
∨

I∈X aI .
Conversely suppose it is true forn. Pick a choice ofn+1-

atomsaI . Suppose one of theseaI is not equivalent to an
n-atom. Then by lemma B.1,|tI |n = |tI |n+1 is infinite. So
we can assume thataI is an-atom. Then there must be atk

4
such thattk

4∧∧∧¬¬¬d2 ≤n
∨

I∈X aI . Which impliestk
4∧∧∧¬¬¬d2 ≤n+1∨

I∈X aI .
We have now to prove the condition on the cardinality.

We start by observing that all the atoms we have described
above (when we proved that every singleton is denoted) are
atoms independently of the level. They are atoms because of
their shape. We now prove the following

• |t|n+1 = h implies|t|n+2 = h.

18



• |t|n+1 ≥ h implies|t|n+2 ≥ h.

from which we can conclude|t|n+1 = h if and only if |t|n+2 =
h.

Suppose|t|n+1 = h. Thent =n+1 a1∨∨∨ . . .∨∨∨ah for some
disjoint atoms. Thust =n+2 a1∨∨∨ . . .∨∨∨ah, and since theai are
still atoms (and they are still disjoint)|t|n+2 = h.

Suppose|t|n+1 ≥ h, then t ≥n+1 a1∨∨∨ . . .∨∨∨ ah for some
disjoint atoms. Thust ≥n+2 a1∨∨∨ . . .∨∨∨ah, and since theai are
still atoms (and they are still disjoint)|t|n+2 ≥ h.
2

We finally observe that adding thek to our types is not re-
strictive, ask =k+1 ch(0)k+1

B.3 Proof of Proposition 2.6

Remember we defined

D = B+ T̃

Where
– Jch+(t)K = {[t ′]=∞ | t ′ ≤∞ t};
– Jch−(t)K = {[t ′]=∞ | t ≤∞ t ′}.

Moreover we putJk +1K = {[k]=∞}.
This pre-model defines a new preorder between types

that we denote by≤. We then have (Proposition 2.6):

• Let t,t ′ ∈ T thent ≤ t ′ if and only if t ≤∞ t ′.

We prove it by induction on the height of the types. That is
we prove by induction onn that if t ∈ Tn, then

• t = 0 if and only if t =∞ 0

• |t| = h if and only if |t|∞ = h

Note that to check emptiness of a type inTn+1 we only in-
voke types inTn.

The condition at level 0 only requires that the typesk be
interpreted into distinct singletons contained iñT , which is
the case.

The second statement, and the all inductive step are
proven as in the proof of Proposition 2.4.

B.4 Proof of Theorem 2.7

Theorem 2.7 states that the pre-model(D ,JK) is a model.
Consider the extensional interpretationE JK of types as in

Definition 2.2. We have to check thatJtK= ∅⇐⇒E JtK = ∅.
Note that in fact the range ofE JK isP(B+JT K). By propo-
sition 2.6, we have that〈JT K,⊆〉 is isomorphic to〈T̃ ,≤〉.
Up to this isomorphism,E JK coincides withJK. 2

B.5 Proof of Theorem 3.1

We first show that(V ,JK
V

) is a premodel. Inspecting the
typing rules is easy to show that for every valuev and every
typest1,t2

1. Γ ` v : 1;

2. Γ ` v : t1 if and only if Γ 6` v :¬¬¬t1;

3. Γ ` v : t1∧∧∧ t2 if and only if Γ ` v : t1 andΓ ` v : t2.

Point 1 is a simple application of the subsumption rule. For
2 suppose that existt such thatv : t andv¬¬¬t. The only rule to
deduce a negative type for a value is the subsumption rule.
Therefore it must be the case thatt ≤ ¬¬¬t. But thent = 0
impossible since the empty type is not inhabited. If instead
there existst such that6` v : t and 6` v : ¬¬¬t; if v = cs then
ch(s) is not smaller thant nor than¬¬¬t, impossible sincech(s)
is atomic. The same can be deduced from the atomicity of
bn for v = n (JbnK = {n} see Definition 2.13). Therefore
(V ,JK

V
) is a premodel.

The subsumption rules tells us thats≤ t =⇒ JsK
V

⊆
JtK

V
. For the other direction, ifs 6≤ t, there is an atoma in

s\\\t. For every atoma there is a valuev such thatΓ ` v : a
(either a constant or a channel). By subsumptionΓ ` v : s
andΓ ` v :¬¬¬t, which impliesΓ 6` v : t. ThusJsK

V
6⊆ JtK

V
.

To prove that it is a model we have to check thatJtK =
∅⇐⇒ E JtK=∅. Again the range ofE JK is P(B+ JT K

V
).

By the observation above, we have that〈JT K
V

,⊆〉 is iso-

morphic to〈T̃ ,≤〉. Up to this isomorphism,E JK coincides
with JK

V
. 2

19


