Semantic subtyping for the-calculus

Giuseppe Castagna Rocco De Nicola Daniele Varacca
Ecole Normale Supérieure University of Firenzecole Normale Supérieure
castagna@di.ens.fr denicola@dsi.unifi.it varacca@slifien

Abstract. Subtyping relations for the-calculus are usually that are based on conditions and restrictions that hale litt
defined in a syntactic way, by means of structural rules. We semantic justifications. The choices depend on the formal-
propose a semantic characterisation of channel types andizations and are assumed in order to simplify the system or
use it to derive a subtyping relation that consequently is simply to have it working.
sound and complete with respect to the semantics. The type In our view, all syntactic formalizations of typing rela-
system we consider includes read-only and write-only chan- tions miss a clean semantic intuition of types. Consider for
nel types, product types, recursive types, as well as unions example the type system defined by Hennessy and Riely [7],
intersections, and negations of types which are intergrete which is one of the most advanced type systems for variants
as the corresponding set-theoretic operations. We proge th of t-calculus that includes read-only and write-only chan-
decidability of the subtyping relation and formally deberi nels as well as union and intersection types. In the systems
the subtyping algorithm. the following equality holds:

In order to fully exploit the expressiveness of the new type
system (which subsumes several existing ones), we endow

the r-calculus with structured channels where communica- \wherecht (t) is the type of channels from which we can only
tion is subjected to pattern matching that performs dynamic read values of typeandv denotes union. We would like to
typecase. These features pave the way toward the integranderstand the precise semantic intuition that underlays a
tion of functional and concurrent features within the same equation such as (1). To do this, we first have to provide a

ch(int)V ch' (bool) = ch’ (intV bool) (1)

framework, obtained by combiningcalculus andCDuce, semantic account of channels.
a functional programming language with semantic subtyp- o)
ing. Channels as boxes.Our intuition is that a channel is a box

in which we can put things (write) and from which we can
take things (read). The type of a channel then is charac-
terized by the set of the things the box can contain. Thus

Traditionally types have played a very limited role in con- & channel of typeeh (t) is a box in which we must ex-
y typ play y pect to find something of typeand, similarly, a channel

T e e et el o Specieg 1) f e (0 1 box I wich we can put ony some-
ter the introduction (g‘ formalisms deglin with s sterr?s of thing of typet. But if one takes this standing, the equal-
: L g\ y ity above does not seem to be justified. Consider the types
mobile processes. In addition to the classical use of types, ;. n L
; . . : ch™(candy) V ch™ (coal) and ch'(candy V coal). Both

e.g. for static detection of run time errors, for enhancirg p b if h b f the fi h

rams readability, for memory management, for abstracting represent boxes. If we have a box of the first type then we
?rom - Iementat,ion details. etc. tvpes havé emeraed as ar]expect to find in it either a candy of a piece of charcoal, but
) P etails, etc., typ : g we know it is always one of the two. For example if we use
important tool for specifying interfaces and interacticios

controlling process mobility and resource usage, for irmpro the box two times, the second time we will know what it
. Mg p mobiiity . g9e, P contains. A box of the second type, instead, can always give
ing efficiency of verification algorithms, etc.

: us both candies and charcoal. Our intuition suggests tkat th
In this paper we shall concentrate on type systems for a

concurrent language in which values can be exchanged be_two types above are quite different because they charaeteri

; N two different kinds of objects.

tween concurrent agents via communication channels that
can be dynamically generated. The language we shall con-The role of the language. So why did Hennessy and
sider is a variant of the asynchronausalculus [2] extended Riely require (1)? The point is that if in the language un-
with structured channels and where communication is sub- der consideration there is no syntactic construction that c
jected to pattern matching. tell apart ach™(int) channel from ach™(bool) channel,

There exists an extensive literature about typing and sub-then it is not possible to operationally observe any differ-
typing for thetrcalculus. However, all the papers we are ence between the types in (1). On the contrary, if it is
aware of rely on subtyping relations or on type equivalences possible to test whether on a channebe are receiving a

1 Introduction and motivations

channel of typech' (int) or a channel of typeh™ (bool), Advantages of a semantic approachThe main advantage
then a rule such as (1) would give rise to an unsound sys-of using a semantic approach is that the types have a natural
tem because it would allow to have @a channel of type set theoretic interpretation: types can be thought of as the
ch” (int V bool) which makes the test ancrash (since the sets of all their values, and union intersection and negatio
possibility that the argument is @™ (int V bool) box is types are understood in terms of the corresponding set the-
not contemplated). Thus, in case we can check the type oforetic operations. This property turns out to be very helpfu
received channels, the right relation, supported by our se-not only to apprehend the meaning of the types but also to
mantic intuition, would be reason on them. Thus, for instance, the subtyping algorithm
is deduced just by applying set-theoretic properties, @& th
ch” (int)V ch" (bool) ch”(int Vbool) (2) proofs we cé\n reV\}//ritep?y%eg by using set-tk?eoFr)etic laws, the
because we can always safely use a box that contains onlylyPing of pattern matching can be better understood in terms
integers—or one that contains booleans—where a box thatof set-theoretic operations (e.g. the second pattern if-an a
can contain both is expected (th|s is just the usual covegian ternative will have to filter all that was not already matched
of the input type), while, as we just argued, the converse doe by the first pattern: set theoretic difference).
not hold. The languag€Duce [1] also demonstrated the practical
Since the language considered by Hennessy and Riely isimpact of the semantic approach: not only subtyping results
not expressive enough to distinguish channels according to@re easier to understand for a programmer, but also the com-
the types they transport, then it is sound to impose equation Piler/interpreter can return much more precise and meaning
such as (1) or alike, and this dramatically simplifies the-defi ful error messages. So for instance if type-checking fails
nition of the subtyping algorithm (cf. Section 2.5). Howeve the compiler returns a value or a witness that is in the set-
the restriction brought by (1) is only justified by a weakness theoretic difference between the deduced type and the ex-

of the language; it is not grounded on any semantic basis. Pected type, and this value provides information to the pro-
grammer to understand why type-checking failed.

Semantic subtyping. The aim of this work is to define a For a wider discussion on the advantages of semantic

very expressive type system forcalculus whose definition syptyping we refer the reader to Castagna and Frisch’s in-
is based on a clear semantic interpretation. The type systemyqqyctory paper [4].

will allows us to specify read-only and write-only channels
but will also permit intersectionS, unionS, and negatio'hs 0 Main contributions. This work pI‘OVideS several contribu-
types. Afterwards, we will also add product, functional and tions: We define a very expressive type and subtype sys-
(a limited form of) recursive types. tem for therr-calculus with read-only and write-only channel
The basic idea is simple, even though is technically hard types, product types, recursive types, and complete boolea
to implement: to characterize a type system (at least from combinations of types which are interpreted as the corre-
an operational point of view) we do not need a full theory of sponding set-theoretic operations. Two strictly related-c
type equi\/a]ence, the definition of the Subtyp|ng relatiofA s tributions are the definition of a set-theoretic denotation
fices. Therefore if we want to ground the type system with a model for the types above and the interpretation of chan-
semantic intuition it “suffices” to define the subtyping rela Nel types as set of boxes. We also show how to extend the
tion semantically. We shall give a set theoretic intergiieta.~~ TECalculus in order to fully exploit the expressiveness e&f th
of the types of our system and define the subtyping relation type system, and in particular with input actions with paitte
as the inclusion of interpretations. In other termg.jfis matchinga la CDuce. Finally we show that in that setting
an interpretation function from types to sets, then we define the typing and subtyping relations are decidable. A further
s<tifand only if [s] C [t]. The characterization of inter- ~ contribution of this work is the opening of a new way to
section, union, and negation types then comes for freegwhil integrate functional and concurrent features in the sake ca
for the interpretation of channel types it is possible ty oz culus: this will be done by fully integrating (our new vensio
the semantic intuition of “channel as boxes”. of) mandCDuce systems yielding a calculus with dynamic
We have also seen that there is a tight relation betweentype dispatch, overloading,channelled communicatiomss an
the types and the language they are used for, therefore WéNhere both functions and channels have first class citizen-
will also define a variant ofe-calculus that exploits the full ~ Ship.
power of our new types, and in particular that permits dy- Finally, we think that the most important, although the
namically testing the type of values received on a channel. MOst debatable and controversial, contribution of thiskwor
We will implement the dynamic test by endowing input ac- is that it shows the effectiveness of the semantic approbch o
tions with patterns, and allowing synchronization when pat Subtyping: we believe that the generality of our subtyping
tern matching succeeds. The result is a simple and elegantelation, and the definition of the subtyping algorithm sum-
formalism that can be easily extended with product types, Mmarized by Proposition 2.10 could have been very hardly
to obtain a polyadiatcalculus and with function types that ~achieved via a syntactic and proof theoretic approach.

permit manipulations of channels via higher-order funtdio Rejated work. The first work on subtyping forwas done
that can be transmitted over channels. by Pierce and Sangiorgi [9] and successively extended in

several other works [11, 5, 12]. Combinators are self-explaining, with being the empty
The work closest to ours, at least for the expressivenesstype andl the type of all values. For what concerns type
of the types, is the already cited work of Hennessy and constructors¢h' (t) denotes the type of those channels that
Riely [7]. For what concerns-types, our work subsumes can be used tinput only values of type. Symmetrically
their system in the sense that it defines a richer subtyping re ch™ (t) denotes the type of those channels that can be used to
lation; this can be checked by noting that their typés,t) outputonly values of type. The reader might have noticed
corresponds to the intersectiah (s) A ch™(t) of our for- that the read and write channel tygigt) is absent from our
malism. definition. Indeed, we shall use it but only as syntactic suga
Brown et al. [3] enrichtwith XML-like values that are for ch™(t) A ch? (t), that is the type of channels that can be
deconstructed by pattern matching. The patterns they ese ar used to read onlgndto write only values of typé. The set
quite different from the one we introduce here as they work of all types (sometimes referred to as “type algebra”) wéll b
exclusively on the structure of the matched values but not denoted by7 .
on their types. Furthermore they also have patterns to match Although typesch(t) are just syntactic sugar, they will
the interleaving of values, that we do not consider. On the play a crucial role in the rest of the paper. In particular, we
other hand they do not consider types, which are the mainshall see that the types of the forh(t) are all and the only
motivation of our work. types that are not base types and that denote a singleton. We
For what concerns the technical issues of semantic sub-shall use them quite often because they are the most precise
typing our starting point is the work developed by Frigth type of channels (see, e.g., the typing rule (chan) in Sec-
al. for functional programming languages [6], that led to the tion 2.1).
design ofCDuce [1]. Even if in this section we are mainly interested in types,
it is necessary to make a digression and consider valuss; it i
Plan of the paper: In Section 2 we introduce the type sys- impossible to formalise the semantics of the former without
tem and define the subtyping relation in terms of a set- considering the latter. In our approach channels are values
theoretic interpretation of the types. We prove the decid- thatis physical boxes where one can insert and withdraw ob-
ability of subtyping, specify the subtyping algorithm and jects of a given type. Our intuition, somehow departing from
conclude with the definition of patterns and pattern match- the usual intuition about channels, is that there is not such
ing whose semantics is completely specified in terms of the thing as a read-only or write-only box: each box is associ-
model of types. In Section 3 we define the syntax and seman-ated to a typé and one can always write and read objects of
tics of a pattern-based extensionmetalculus that fully ex- that type into and from such a box. Thus the typelof(t)
ploits the previous type system, and give relevant examplescan be considered just a constraint that tells that a variabl
of their use. In Section 4 we consider the polyadic version of that type will be bound only to boxes from which one
of our calculus, we enrich it with recursive types and show, can read objects of tygeand therefore to all the boxes that
when possible, how semantic and decidability properties ex have types <t. Notice that if we know that a message has
tend to this setting. We conclude by outlining the extension typech® (t) this does notmean that we cannot write into it,
with arrow types and the integration with the functionaklan we simply know that we do not have any information about
guageCDuce that we leave for future work. what can be written in it: for instance this message could
be a box of typeh(0) therefore a box in which nobody can
write anything. Thus, we must avoid writing into it since, in
the absence of further information, no writing will be safe.

For the sake of the presentation we would like to introduce Similarly, if a message is of typen™(t), then we know that

our system gradually. Therefore, we shall start with a rel- it can only be a box in which writing an object of types
atively simple system with just base types, channels andSafe, but we have no information about what could be read
boolean combinators. In a second moment, we shall addffom that channel, since the message might be a channel of

the product type constructor and recursive types. Finatly, typech(1). Therefore we petter avoid reading from it, unless
will consider functional types. we are ready to get anything. In case we are ready to get any-

thing, our type system will guarantee that eenread on a
channel with typeh™ (t) because we haweh™ (t) < ch’(1).

It should be clearer now why we do identién(t) and
In the simplest of our type systems, a type is inductiveljtbui ch™ (t) Ach™(t): the intersection requires that on channels
by applyingtype constructorsnamely base type construc- Of type ch’ (t) A ch™(t) we must be able both to write ob-
tors (e.g. integers, booleans, etc...), the input or theuiut jects of typet and to read object of (the same) typethis

2 Types and patterns

2.1 Types

channel type constructor, or by applyindaolean combi- ~ means that the channels can only contain messages of type
nator, i.e., union, intersection, and negation: t. To say it with other words, we have thatch'(t) type
(with v standing for eithes or —) indicates what isllowed
Types t == b | ch™(t) | ch™(t) constructors relatively to its values, andot what is forbidden; thus, the
| O]1]-t]tvt]|tAt combinators values in the intersection of two types are permitted by both

types. Please notice that, if we had interpreted types as in-meanwhile, the reader who wants to familiarise with our se-

terdictions then we should considen” (t) A ch™ (t) as the mantics can try to use the above definitions to verify that the

channels on which we cannot wri@dwe cannot read: this differencech (t)\ ch™(t) and the differenceh®(t)\ ch(t)

would be the empty channel. have the same interpretation, and that the same holds for
Now we are able to define more formally the semantics of ch* (1) andch™(0).3

our types. Our leading intuition is that a type represergs th We want now to build a model for the types, that is a set

set of values of that type. This allows us to define the subtyp- 2 such that the denotation of every type is a subse® of

ing relation simply as set inclusion. The basic types should Note that the semantics of channel types seems to require

be interpreted on a set of basic values (integers, booleans)that subsets o “be” elements ofZ, which would lead us

The boolean operators over types should be interpreted byto

using the boolean operators over sets. By following our in- P(D)CD.

tuition we shall have that the interpretation of the typbét)

has to denote the set of all boxes (i.e. channels) that eontai This is not possible for cardinality reasons. We devote the

objects oft: next section to solve this problem.

[eh(t)] = {c | cis abox for objects of type} . (3) 2.2 Extensionality and models
Remember that one of the main reasons for giving a se-

mantics to types is to define a subtyping relation. Intuljive

this relation is insensitive to the number boxes associated

a given type (as long as there is one). In this sense it is not

unreasonable to say that a box of tygi€t) “is” the set of

values that it can contain, viz. the (denotation of the) type
t:!

We remind the reader that the main reason why we need
a semantic interpretation of types is for defining a subtyp-
ing relation. Indeed, we do not introduce an interpreta-
tion of types in order to statehat types argbut rather to
definehow types are related Therefore, we do not need
to require that the interpretation of, sdgh*(t)] is equal

to {[t'] | t' <t}, it suffices that our interpretation func-
[eh(®)] = {[[t]]} (4) tion induces the same containment relation as the one ob-

)))) tained when types are interpreted as described above, and
Or, to state it otherwise from the viewpoint of types all the qrefore that we havefch® (s)] [ch™ (t)] if and only if
boxes are indistinguishable since they can all be identified ([] |t <t} C{[¢] | s>sb. -

with the set of all the values they can c_;ontéin. o In other terms, we do consider correct every interpreta-
Starting from the above interpretationd(t), it is now tion function that behaveike the interpretation of the pre-
rather straightforward to provide a semanticsdbf (t) and vious section with respect to containment. This is formally

ch™(t). The former denotes the set of all boxes from which gt4teq by the definition ahodelbelow.

one can take an object of typethus it denotes “the” box

containing objects of typebut also all the boxes containing Definition 2.1 (Pre-model) Let Z,B sets such thab C 7,
objects of types < t (by subsumption these objects are also and let[] be a function from7 to 2(2). (2,[]) is apre-
of typet). The latter denotes the set of all boxes in which modelif

one can put objects of tygetherefore all the boxes that can — [b] C€B,[cht(s]NB =o,[ch (9] NB = &;

contain objects of type > t (once more, by subsumption, it [1] = 2, [0] = o;

can be deduced that an object of smaller type can be fitted [-t] = 2\ [t];

where an object of larger type is expected). Formally, we [t Vta] = [ta] U t2], [tz Atz] = [ta] N [t2]-

have
A pre-model thus simply requires that the interpretation of
[eht ()] = {[[t’]] [t < t} : [ch-(t)] = {[[t’]] [t > t} . the type combinators is set-theoretic.

We have that this semantics induces invariance of channelDéfinition 2.2 (Extensional interpretation) Let
types, covariance of input types and contravariance of out- (Z:[]) be a pre-model. Thextensionalinterpretation
put types. Moreover, as anticipated, we have tit) = of the types is the functiof[] : 7 — Z(B + 2(2)),
ch™ (t) Acht (t) since the types on both side of the equality defined as follows:

have the same semantics. Our proposed interpretation has — &[b] = [b];

other interesting features that we shall describe latethén - &[1] =B+ 2(2),£[0] = 2;

E[-t] = S\ &Lt

£Vt = Eu] USR] €[AL] = E[t] Nt
Elent)] ={[] | ItI' € [T}

Eleh O] ={ItT | '] = [t}

1We can also have boxes of typh(0) that cannot contain any object.
They can still be passed around as tokens.

2More prosaically, since every box is associated to a unigpe then no
box can belong to two distinch() types. This implies that the intersection
of distinctch() types is always empty and therefore (3) and (4) induce ex-

actly the same subtyping relation, which is all that matt&tais the reader 3We find it useful to think[ch" (t)] and [ch™(t)] respectively as the
can consider the interpretation in (4) as a more compact@amebaient way downward and upward cones starting fronThe differences\ t is defined
to represent (3). assAt.

Function&’[] behaves exactly g9 apart from the top-level = [eh™ ()] 1 = A{[t']=, |t <nt'}.
channel constructors which are interpreted accordingeo th In principle each of these pre-models defines a different pre
semantics outlined in Section 2.1. Therefore, we shall con- order between types. However, all such pre-orders coincide
sider an interpretation function “acceptable” if it indsdhe in the following sense:
same containment relation as its extensional interpogtati
That is, we say that a pre-model isrendelif for every type
t1,t2, we havelt] C [t2] if and only if £]t1] C &[t2].

Notice that the boolean combinators allow us to define Hinging on this observation we define pre-order between

Proposition 2.4 Let t,t’ € 9, and kh > n, then t<, t’ if
and only if t<pt'.

subtyping in terms of emptinesgt;] C [to] if and only if types as follows.

[t A—ty] = @ and the same for the extensional interpreta- o , .

tion. This justifies the following definition of model Delf'nmog 2t.’5 (Order) Let tt' € n, then t<. t" if and
onlyift <pt'.

Definition 2.3 (Model) A pre-model(Z,[]) is a modelif

for every type t]t] = @« £[t] — o. Due to Proposition 2.4, this relation is well defined and in-

duces an equivalence, on the set of type3. Let 7 be
7 |—.,, we are finally able to produce a unique pre-madel
defined as:

The last (and quite hard) point is to show that there actually 9=B+7 .
exists a model, that is that the condition imposed by Defi-
nition 2.3 can indeed be satisfied. We shall sketch here theWN€"e
construction of such model, while omitting the proofs and — [eh™ O] ={[t']= [t <wt};
technical details that can be found in the appendix. = [ehm O] = {[t'-. [t <wt'}.

Types are stratified according to the height of the nesting This pre-model defines a new pre-order between types that
of the channel constructor. We define the height function we denote by<. However, the following proposition proves

2.3 A specific model

Ai(t) as follows: that< is not new but it is the limit of the previous pre-orders,
— h(b)=#(0)=h(1) =0; ie. <w.
= fh(ch(t)) = Ai(ch® () = h(ch™ (1)) = A(t) +1; Proposition 2.6 Lett,t'c.7, thent<t’ifand only ift<at'.
— h(t1Vtp) = At Atp) = max(h(ty), A(t2));)]
— h(=t) = A(t). It is now easy to show the following.
Then we set o Theorem 2.7 The pre-mode{ 2, []) is a model.

Tn =A{t|At) <n}.
Our pre-model for the types is built in steps. We start by pro- 2.4 Examples of type (injequalities
viding a model for types of height 0, that is typesdp. Note We use the equal symbol on types to denote equality of de-

i ' - : def : . .
that we must define the semantics only for type construc- \ iaiions-s— t <28 [s] = [t]. We list here some interesting

tors, because the interpretation of the combinators isdete g4 a1ions and inequations between types that can be easily
mined by the definition of pre-model. The only constructors ey eq from the set-theoretic interpretation of types.
of height 0 are the basic types, for which we assume the exis-

tence of an universe of interpretatiBnWe also assume that ch(t) < ch™(0) = ch*(1) (5)
every basic type has an interpretatio@[b] C B. Therefore Eyery channet can be safely used in a process that does not
we setZp = B, with the semantics defined tfp], = 2[b] write onc and that does not care about whagturns.

while boolean combinators are interpreted using the corre- B 3 B

sponding set-theoretic combinators, according to Definiti ch™(ty) Ach™(tz) = ch™ (t1Vi2) (6)
2.1. Using this pre-model we define a subtyping relation |f on a channel we can write values of typeand values of
over % byt <ot’if and only if [t], C [t']o. Let's callthis typet,, this means that we can write values of typ¥ tp.

the corresponding equivalencg. Dually
Now suppose we have a pre-modg] for 7, with cor- ch(t) Ach® (t) = cht (t1Aty) (7)
responding pre-ordex, and equivalence-,. We call %, _) _
the set of equivalence classéa/— . Then we letZ,,1 to if a channel is such that we always read from it values of
be such that typet; but also such that we always read from it values of
D1 =B+ :7; _ typety, then what we read from it are actually values of type
LAl
with the following interpretation of channel types: Union, as we observed in the introduction, behaves dif-
= [eh")]y = {[t']=0 [t <nt} ferently.
4ndeed, [t1] C [t2] <= [u]\[t] = @ < [uA-t] =0 < ch”(t1)veht(tz) < ch(t1Vta)
EuA-t] =2 = FM\Et] =2 = &[] € Et2]. ch™(t1)veh (o) < ch (t1At)

The typech® (t1) Ach™ () is the type of a channel on which ~ Atoms thus are types “just above” the empty type. In what
we can write values of type and from which we can read follows the reader can think of atoms as types whose deno-
values of typd;. We have tation is a singleton set (even though this is not accurate, s
for instance the interpretation of channels in the valueehod
+ — —
ch™(t) Ach™(tz) =0 (8) of Section 3.2).

if and only ift, # t1, i.e. we should expect to read at least ~ The problem is to decide when the following holds:

what we can write. (/\ ch'i(t)) A (/\ —ch’i(tj)) =0.
ieP JEN
2.5 Decidability of Subtyping)) . . L .
Using set-theoretical manipulations, this is equivalent t
We can now use the semantic characterisation of the typescheck that

to Qe_rive a decisior_1 algorithm for the subtyping relatiore W (/\ ch’i(ty)) < (V ch’i(t))) (10)

do it in two steps: first, we show how to express the problem icP jieN

of subtyping two types into a set of subtyping problems on

types of smaller heights, then we prove the decidability of Because of equations (6) and (7), we can push the intersec-
these smaller problems and deduce the decidability of sub-tion on the left-hand side inside the constructors and reduc
typing. The techniques of this section give a good idea of the (10) to the case

advantages of having a set-theoretic definition of subtypin oh™ (1) Ach™ (tz) < V cht (tg‘) v V ch (IZ) (11)

heH keK
Simplification of the subtypin
P yping where we grouped covariant and contravariant types to-

First of all note that the subtyping problem is equivalent de gether. In this way we simplified the left-hand side. Sim-
ciding the emptiness of a type. ilarly we can get rid of redundant addenda on the right-hand
side of (11) by eliminating:

S<t < sA-t=0 9 . .
- ®) 1. all the covariant channel types omgafor which there
which can be derived as follows: exists a covariant addendum on a smaller or e¢ial
s<t 1] C [t] (since the former channel type is contained in the lat-

=
c ter);

= [nlt]"co 2. all contravariant channel type ort}afor which there
= [sA-t]=[0] exists a contravariant addendum on a larger or elfual
< SA-t=0. (for the same reason as the above);

Thanks to the semantic interpretation we can directly apply 3. all the covariant channels ort@that is not larger than

set-theoretic equivalences to types (in the rest of thepape ~ ©OF €dual tat (since therch™(tz) £ ch*(tf), so it does
we will do it without explicitly passing via the interpreian not change the inequation); .

function) and deduce that every type can be represented as 4- all contravariant channel ortithat is not smaller than
the union of addenda of uniform sort. Since a union is empty or equal td; (since therch® (tz) £ ch (t¥)).

only if all the addenda are empty, then in order to decide the Then the key property for decomposing the problem (11)
emptiness of a type—and in virtue of (9) decide subtyping— into simpler subproblems is given by the following theorem:

it suffices to be able to decide whether)) h ok
Theorem 2.9 (channel inclusion)Supposertto, t3,t; € 7,

(AbB)A(A -bj) and (A chit)A(A —chVit;)) k € K, he H. Suppose moreover that the following condi-
ieP jeN ieP jeN tions hold:

are equivalent t®. The decision of emptiness of the left- 1. for all distinct h € H, t§ £ tff;
hand side depends on the basic types that are used. For what2. for all distinct kk' € K, tlj £ tﬁf;
concerns the right-hand side, the algorithm must decompose c3_ forall he H t, < th;

this problem into simpler subproblems. _More precisely, it <4 forall ke K tIZ <t

must decompose the problem of subtyping boolean combi- _ h h
nations of channel types into a set of problems of subtyp- For every IC H define @as &t A Anei t3 A~ Vhg t3. Then
ing types that form (are strict sub-occurrences) these-chan _ _

nel types. This can be done by using some general algebraic ch(t1) Ach™ (t2) < V ch” (tQ)V V ch (tZ)
equivalences combined with the properties of the semantic heH ke
interpretation. This turns out to be quite complicated,anp if and only if one of the follow conditions holds

ticular since it involves the use atoms LE. b £ntyor

Definition 2.8 (Atom) Anatomis minimal nonempty type. ~ R1. 3h € H such thatt <,t{ or

R2. 3k € K such that§ <, t, or then Theorem 2.9 still holds.

CA. for every2” C #(H) such that\ 2" = @, for every Therefore it suffices to check the condition just for éhehat
choice ofatomsja< &, | € 27, there is ke K suchthat are finite (that is that are equal to a finite union of atoms),
thA=ts < Vico X which can be done by an algorithm provided that we are able

The four hypotheses c1-c4 simply state that the right-handtoi_ decide whether a type is finite
side of the inequation was simplified according to the rules
stated right before the statement of the theorem. The first
condition (LE) says thath* (t;) Ach™ (t2) is empty. The sec-
ond condition (R1) and the third condition (R2) respectivel
make sure that one of th& and, respectively, one of thg
containsch™ (t1) A ch™ (t2). Finally the fourth and more in-
volved condition (CA) says that, every time we add atoms to
to so that we are no longer below arg(then we must end
up above some of tht.

As an example of how much our relation is sensitive to
atoms, suppose there are three constanis,err,,exc,
consider the case where

2. ifitis the case, list all its atoms
Surprisingly this is possible, and since this is at the cdre o
the subtyping algorithm we think it is worth to show ex-
tensowhy this is so. To prove our claim we proceed by in-
duction on the height of the types. We strengthen the state-
ment by requiring that all atoms of a finite typdave the
same height, or lower, af We assume that at height 0, this
is the case. Itis a reasonable assumption: for example it is
the case if we have for base types the type of all integers
plus all constant types. Consider a typef heightn+ 1
and assume that for lower heights we can decide whether a
type is finite and, if it is the case, list all its atoms. By Theo

= 1in . . .
t2 t rem 2.9, this guarantees that we can also decide emptiness of
fh, = thVerriVerr,Vexc . .
all types of heighh 4 1. We ask ourselves which atoms can
t3 = thVexc - .
be proved to belong tb We assumed that this is possible for
4y = thVerriVerr,

basic atoms, therefore we still should check for the atoms of

It is easy to see that . X :
y the formch(s), since these are the only atoms contained in

ch®(ty) Ach™ (t2) £ ch' (t3) Vch () non-base types. For how masye can have thath(s) <t?

)) If we putt in normal form, we obtain the disjunction of terms
since, for example, the typsh(t, V erry) is a subtype ofthe ¢ iha form
left-hand side, but not of the right-hand side. However if _ .
err; — errs, the subtyping relation holds, because of con- T :=Ch' (t1) Ach™ (t2) A A —ch* (t) A A\ ~ch (t;) -
dition (CA). Indeed in that case the indexing bebf Theo- i i
rem 2.9 is asingleton. The onlyC #?(H) suchthatJ1 = @ A union is finite if and only if all its summands are, thus
is {@}. The typeg ist; A-tsz. The only atom in it issrr,, is finite if and only if all ther’s are finite. When is finite?
and itis true thay A -t < err;. First of all it is finite when it is empty, which we can test it

Finally note that, as announced, Theorem 2.9 decom- by induction hypothesis.

poses the subtyping problem of (11) into a finite set of sub- Otherwise ifr is not empty, then is finite if and only
typing problems on types of smaller heights (we must sim- if ch®(t;) A ch™(t) is finite, which happens exactly when
plify the inequation RHS by verifying the inequalities of t; <t; andt; A -ty is finite. For the “if” part, note thath(s)
conditions cl—c4, and possibly perform th¢| + |K| + 1 belongs toch™ (t1) A ch™(t2), if and only if s=t,Vv s for
checks for LE, R1 and R1and into the verification of somes < t; A-ty. Sincet; A -ts is finite and of smaller
condition (CA). Now it is clear that the inequation (11) is height, then by induction hypothesis | can list all its atpms
decidable—and so is the subtyping relation—if and only if thus all the corresponding’s, thus all the corresponding
(CA) is decidable (modulo the decidability of subtyping on ch(t, v s) that are all the possible candidates of atoms. of

the base types of course). By induction hypothesis we also have that all thbave at
most heighn.
Decidability For the “only if” part it suffices to prove that éh' (t;) A

ch™(tz) is infinite, then the whole of is infinite. Assume

The condition (CA) involves two universal quantifications. p+ for noi f < ti3 and for noj t‘J1 < t, (otherwiser is

One is on the powerset of a finite set and does not pose prOb'empty). We have to find infinitely mang such thatt, <
lems, but the other is on sets of atoms of a possmly infinite s<ty, s£tforalli andt) £ sfor all j. Pick atomsal, <
sete, and therefore it is not possible to use it for a subtyp- i N i o X
ing algorithm as it is. Though this problem can be avoided '/ ™tz anda, < t; A—t2. Note that naa; can coincide with
thanks to the following proposition anya}, because they are taken from disjoint sets. Then for
N N) any types' such that, <s' <ty, the types:=s' VvV a;A
Proposition 2.10 If we replace condition (CA) with -V, ai belongs tor. It is possible that for two differerd
CAx. for every2” C 2(H) such thai 2" = &, for every tne corresponding coincide. However such “equivalence
choice of atomsia< &, | € 27, & finite, there is ke K classes” ofs are finite. Since there are infinitely masy
such thatfA—tz <Vic s X. there are infinitely many, sor is infinite.

In summary, for every that formst we check whether we rather do that is that the semantic subtyping framework
to <t; andt; Aty is finite, and at the end we find either nicely fits patterns since the semantics of patterns can-be de
thatt is infinite (if one of ther is) or that it is finite. In fined independently from the language or calculus they are
the latter case we have a finite list of candidates to be thegoing to be used in, but just relying on the notion of model,
atoms ott (namely allch(s) for sincluded in the the various as we show next.
t1 A—tp) and to list all the atoms dfwe just to check for each
candidate its inclusion in Which we can do, since they are
at most of heighh+ 1.

We have thus

Definition 2.13 (Pre-patterns) Given a type algebra7,
and a set of variable¥, a pre-pattern p onV,.7) is a
possibly infinite term p generated by the following grammar

= X capturexe 'V
Lemma 2.11 (Main) There is an algorithm that decides |t type constraint, € .7
whether a type t is finite and if it is the case, outputs all | p1A P2 conjunction
its atoms. | pifp2 alternative

| (x:=n) constantn € B with [by] = {n}

Given a pre-patterpon (V,.7) we useVar(p) to denote the
set of variables o¥ occurring inp (in capture or constant
patterns).

Corollary 2.12 (Decidability) If it is possible to decidéi)

if a base type is finite and in that case list all its atoms and
(ii) if it is a subtype of another base type, then the subtyping
relation is decidable.

] S] ~ Definition 2.14 (Patterns) Given a type algebraZ, and a
Finally, once decidability is established note that thet firs ggt of variables/, a pre-pattern p orfV,) belongs to the
half of the section formally de;cribed the subtypipg algo- get of (well-formed) pattern® on (V,.7) if and only if it
rithm to check whethes < t, which can be summarised as gagisfies the following condition: for every subterawmp,
follows: of p we have Vdip1) N Var(pz) = @, and for every subterm

1. putsA =t in disjunctive normal form; p1|p2 of p we have Vdip;) = Var(py).

2. check emptiness for base types; if it does not holds,

then return false else

3. Simplify the summand on channels so that it has the

same form as (11) and satisfies the conditions c1-c4 of

These patterns and their semantics are borrowed from [6]:
the reader can refer to [6, 1] for a detailed description. kVhe
a pattern is matched against an element of the domain it re-
turns either a substitution for the free variables of théquat

Theorem 2.9 -
failure, denoted b@:
4. Check the conditions LE, R1, R2, and CA, and return or a failure, denoted b
whether one of them is satisfied. Definition 2.15 (Semantics of pattern matching)

We do not discuss here the complexity of this algorithm, Given d_E % and pe P th\(/earr(n;’altching ofq with P, denqted
nor the possibility of finding more efficient ways of doingit. PY 9/, is the element a#**"'P U{Q} defined by induction

We leave it for future work. on structure of p as follows:
d/t = {} if d € [t]
2.6 Patterns d/t = Q if d € [t]
A lained in the introduction, if full d/x = {x—d)
s we explained in the introduction, if we want to fully ex- d/pinp = d/pied/ps
ploit the expressiveness of the type system we must be able d/palp2 — d/p ifd/py+Q
to check the type of the messages read on a channel. d/pilp2 — d/ps it d/py = O

In order to obtain it the simplest way is to add to the d/(x;=n) = {x—n
T-calculus a process that dynamically tests whether the mes- _ o
sageM is of typet or not. Quite informally, this would cor- ~ Wherey; ®y; is QDWhenVEl) = Qory, = Q and otherwise is
respond to adding the following process the elemeny € 7P°MV)UPoMY2) sych that:

y(X) = i(x) ifx e Dom(y1)\Domy2),

M:1P ¥(X) = Ya(x) ifx € Dom(y2)\Dom(y).
whereM denotes a message (that is eithemhieor avari- In short a variable pattern always matches and captures the
able) and whose behaviour intuitively is as follows: matched element with the variable; a type pattern matches

only the elements that belong to the interpretation of tpe ty
but does not capture them; a conjunction pattern matches
only if both pattern (which must use different sets of vari-
In this work we want to introduce a more ambitious exten- ables) match and returns the concatenation of the two substi
sion of -calculus that will subsume the one above. So in- tutions (denoted byw); the alternative pattern tries to match
stead of adding an explicit type-case process as the abovehe first pattern and if it fails, it tries the second one, whil
we embed type-cases directly in the communications by en-the constant pattern always succeed by returning the aunsta
dowing input actions witlCDuce patterns. The reason why substitution.

v:t|P — P ifthe valuevis of typet
[v:tjP — 0 ifthe valuevis not of typet

One of the remarkable properties of the pattern matching Channels a = x variables
above is that the set of all elements for which a patern | typed channel (box)
does not fail is the denotation of a type. Since this type is .
unigue we denote it byp{. In other terms, for every (well- Messages M:= n constant
formed pattern), there exists a unique type$ such that |« channel
[lpf] = {d € Dom | d/p# Q}. Not only, but this type Processes P:— aM output
can be calculated. Similarly, consider a pattpraind a type | Siaa(p).R patterned input
t < 1pf, then there is also an algorithm that calculates the | PP parallel
type environment/ p that associates to each variaklef p | (v&)P restriction
theexactset of values that can capture whep is matched | P replication

against values of type Formally

. . . wherel is a possibly empty finite set of indexes amanges
Theorem 2.16 There is an algorithm mapping every pattern over the types defined in Section 2.1.

p to a type] pf such thaf]pf] = {d € 7 | d/p # Q}. The constructs for processes we adopt are mostly stan-
dard. As customary we use the convention that the empty

(t, p), where pis a pattern and t a type such that{ p§, to sum corresponds to the inert process, usually denotéd by

. We only want to comment on the presence of the simplified
?(Ly/pe)(er)lvllzjon?(ﬁr}‘(tt/p) € 7 #1P) such that](t/p)(x)] = form ofysummation we have adagted' guarded sumpof in-
p)(X et} :

puts on a single channel with possibly different patterns. A
The proofs can be found in [6], but to give an idea here they long standing debate is going on in the concurrency commu-

Theorem 2.17 There is an algorithm mapping every pair

are the inductive definitions ¢ip§ and(t/p): nity ab_out the usefulr_1ess of sum_matiqn operators that permi
choosing between different continuations. Choice opesato
1t§ — Tt are indeed very useful for specifying nondeterministic be-
[tf] [t] : Y Ut Srminis:
X'=n — Ix{1=2 haviours, but give rise to problem when considering imple-
Nx:=n)fT = [14] > B ; : :
[piApS] = [TpuSIN[lp2S] mentation issues. Different kinds of choices have to be con-
idered: external choicehat leaves the decision about th
[1palp2§] [pSTU [Tp2S] sidered: external choicehat leaves the decision about the

continuation to the external environment (usually depegdi
on the channel used by the environment to communicate)

(t'/%)(x) =t andinternal choicethat is performed by the process regard-
(t'/palp2) (%) = ((UAlps§)/p1)(x)V less of external interactions. The former type of choice is
(A= paf)/p2) (%) difficult to implement in presence of distribution (conside
t'/piAp2)(x) = {t'Alp2S/p1)(X) if x € Var(p1) modellingP || Q + R), thus often only guarded choices are
(t'/piAp2)(x) = (UAlp1f/p2)(x) if xe Var(pz) considered; internal nondeterminism pops up as soon as two
t'/(x:=n)(x) = by ift/ £0 of input prefix use the same channel. Thanks to patterns we
t/(x:=n)(x) = 0 ift' =0 can offer an externally controllable choice that can belgasi

implemented by relying on pattern matchings; the received
message, not the used channel, will determine continuation

3 The semantics calculus Internal choice can be modelled by specifying processés tha
perform input on the same channel according to the same
3.1 Syntax pattern.

. - The other, more important, difference with standard
The syntax of our calculus is very similar to that of the asyn- .
asynchronoust-calculus is that typed channels are deco-

chronougT—gaIc_qus, a varla_nt of thercalculus Wherg MeS- rated by the type of messages they communicate. This cor-
sage emission is non-blocking. We have chosen this calculus

as our starting point. because of its simolicity and exores- responds to our intuition that every box is intimately agsoc
> arting point, . phicity P ated to the type of the objects it can contain. In what follows
sivity. It is generally considered as the calculus represen

ing the essence of name passing with no redundant o erayve will call typed channels also "boxes”, or “channel val-
tiogn The only operators ofpas nc?]ronau}salculus are thg ues” to distinguish them from channel variables.

) yop asy O ' Thevaluesof the language are the closed messages, that
empty process, non-blocking output, blocking input prefix, .

. o is to say the typed channels and the constants

parallel composition and replication, the exchanged &alue
of the calculus are just names. The variant we consider is vi=n|d
very similar to the basic calculus, we only permit patterned
input prefix and guarded choice between different patterns
on the same input channel.

We use? to the denote the set of all values. Every value is
associated to a type: a constant is associated to a basic type
b. and a channel value with the channel type that transport
messages of the type indicated in the index. So all the val-
ues can be typed by the rules (const), (chan), and (subs) of

First of all note that these two points are not restrictive: E
2 ==1 | 2P | PIZ]] | (vc)Zl] ery asynchronous-calculus process is also a process of our
P—Q = %P — Z[Q calculus and with the same reduction semantics: it suffices
P=Pp-—Q =P -0 to consider all free ar_1d res_trlcted vanables _(thus excllgdl
- those that are bound in an input actions, which according to

Pllo=P PlQ=Q|P P|(QIR) = (P|Q)|IR our viewpoint are “real” variables) to be typed channels of
(ve)o=0 (veh)P = (vd')P{c ~ dt} IP=IP||P typech’ (1) (or ch~(0) since they both denc_)te the set of all
(vctll)(vctzz)P = (vctzz)(vctll)P for c1 # ¢ channels). So we do not lose any generality with respect to
(ve)(PIQ) =Pl (ve)Q forc ¢f(P) | thercaloulus.

))) The use of pattern matching is what makes necessary to
whereP{c' ~ d'} is obtained fronP by renaming all freg distinguish between typed channels and variables: match-

occurrences of the ba into d', and assumed is fresh. ing is defined only for the formers as they are values, while
i a matching on variables must be delayed until they will be
Figure 2: Context and congruence closure bound to a value.

Since now we have this distinction between variables and

Figure 1 (actually with an empty) where in the (subs) sub- fyped channels it is then reasonable to require the commu-

sumption rule the< is the subtyping relation induced by the nication to be performed only if we have a physicz_il channel
model of Section 2.3. that can be used as a support for it, and thus forbid synchro-

nisation if the channel still is a variable. However thera is
more technical reason to require this. Consider an environ-
mentl” = x: 0. By subsumption we haver x: ch(int) and
Now consider the interpretation functir., : 7 — 2 (¥) I x:ch™(bool). Then according to the typing rules of our
defined as follows: system (see later on) the process

[th, ={v | Fv:t} Xtruel|X(y) X(y+y)

This interpretation satisfies the conditions of model of-Sec is well typed, in the environment but ends up in a run time

tion 2.2 and furthermore it generates the same subtyping re-error since it tries to surarue with true:

lation as<.

Proposition 3.1 Let[t]., ={v | [+v:t}. Then(¥,[],) _))

is a model and s t <= [s],, C [t] . This reduction cannot happen in our calculus, because we
N - can never instantiate a variable of tyfe

3.2 Semantics

Xtrue || X(Y).X(yty) — X(truettrue)

The first point of the proposition states that a vahis also
an element of a model of the types whose domair¥is
therefore Definition 2.15 applies fat being a value. We
can thus use this to define the reduction semantics of ourin Figure 1 we summarise typing rules that ensure that in
calculus: well typed processes channels communicate only values that

= oo _ _ correspond to their type.

cv ;C (p)-R— Pilv/pj] The rules for messages do not deserve any particular

o o comment. As customary, the system deduces only good-
wherePo] denotes the application of the substituti®to formation of processes without assigning them any types.
the proces®. The asynchronous output ofvalueon the The pyles for replication and parallel composition are stan
box ¢ synchronises with an input on the same box only if gard. In the rule for output we check that the message is
at least one of the patterns guarding the sum matches th&ompatible with the type of the channel. The rule for restric
communicated value. If more than one pattern matches thenjon, s slightly different since we do not need to store in the
one of these is non-deterministically chosen and and the cor type environment the type of the chartel
responding process executed after that the pattern vesiabl " Te ryle for input is the most involved one. The premises
are replaced by the captured values. of the rule first infer the typé of the message that can be
As usual the notion of reduction above must be com- yansmitted over the chanre| then for each summaiithey

pleted with reductions in evaluation contexts and up tacstru ;e this type to calculate the type environment of the pat-
tural congruence, whose definitions are summarised in Fig-ern variables (the environmefiy p;) of Theorem 2.17) and

ure 2.) o check whether under this environment the summand process
This operational semantics is the same as thatrof

calculus but whose behavior has been refined in two points: Sstrictly speaking, we do not restrict variables but valisesjt would
L . . be formally wrong to store it if. For the same reason we do not have
— communicationis SUbJeCted to pattern matchlng a-conversion on restriction, but this is handled as a stratequivalence
— communication can happen only along values (i.e. rule.

boxes)

3.3 Typing

10

Messages .
TEnio. ‘nsy o (ehan) — (van) PEMESST Gubs)
rEn:by M Ect:cht) MEx:r(x) TEM:t

Processes r=p r=pP N-pP r="pP

1 2
PR S S S I - =
A rrip P Frpgp,
t<Vialpf Crazch’() Mt/mER rEM:it Feazehr(@®)
PINA0 TS alp) R P r-aMm (outpuy

Figure 1: Typing rules

P. Thisis all it is needed to have a sound type system. How-
ever the input construct is like a typecase/matching expres

requires us to compute the least type of the fahm(s) that
is an upper bound of a given type Now observe that our

sion, so it seems reasonable to perform a check that patterrtype algebra isiot a complete lattice (since least upper and

are exhaustive and there is no useless%@hés is precisely
what the two side conditions of (input) do:

(t <Via lpif) checks whether pattern matching is exhaus-
tive, that is if for whatever value (of typg sent ona
there exists at least one pattguirthat will accept it (the
cases cover all the possibilities).

(1pi §At #£0) checks that the pattern matching is not redun-
dant that is that there does not exists a patfgrthat
will fail with every value of typet (no case is useless).

Of course we could have used a different type system and/or

reduction semantics to define more refined policies (best
match, first match) that can remove all remaining nondeter-
minism. We did not do it since as we hint in the next section
they can be easily encoded thanks to the expressive power o
our patterns/types.

As usual the basic result is the subject reduction, which
is preceded by a substitution lemma.

Lemma 3.2 (Substitution)
— Ifrt/pEM :t'andl Fv:t, thenl = M'[v/p|:t’.
— Ifr,t/pFPandl Fv:tthenl -P[v/p].

Lemma 3.3 (Congurence)
If =P andP=Q, thenl - Q.

Theorem 3.4 (Subject reduction)
If '+ P and P— P’ thenl” - P'.

It is far from being obvious that the decidability of the sub-
typing relation implies the decidability of the typing rétm
(only semidecidability is straightforward). The typinga}
rithm can be derived in a standard way by eliminating the
subsumption rule and embedding the subtyping checks into
the elimination rules. Though, it is not so evident that the
type system satisfies the minimum type property, and this is
because of the (input) rule, which in its algorithmic versio

6While in functional programming these check are necessarydund-
ness since an expression non-complying to them may yielgeadyror, in
process algebra non-compliance would just block synchadioin.

11

greatest lower bounds exist only for finite sets). Neveebe|
such a type exists and is unique (which gives gives the min-
imum typing property) and furthermore it can be effectively
calculated.

Theorem 3.5 (Upper bound channel)For every type t
there exists a least type ts) that is an upper bound of
t and an algorithms that computes it.

3.4 Examples

First match policy. As a first example we show how is pos-
sible to impose a first match policy in a input sum: consider
the following process

_:Z a(pi)-R

and letch™ (t) the least type of this form that can be deduced
for a (this can be calculated by using the set-theoretic prop-
erties of the interpretation and is at the basis of the algori
mic typing rule for input actions). Defing as follows:

ifi=0

if1<i<n

. (12)

Qi1 = P1
T pA-Taf
Then the process

a(ag).h (13)

{i | 1aiJAt0}

behaves exactly as the above with the only difference that
summand selection is deterministic and obeys a first match-
ing discipline. Indeed, every pattern accepts only theaslu
that are not accepted by the preceding patterns. Note that
by applying a first match policy some of the summand could
no longer have any chance to be selected (this happens if
1pi § At < Vi1 pjf), and therefore they must not be in-
cluded in (13) since then it would not be well typed (there
would be redundant summands), which explains the set used
to index the sum.

Best match policy. It is possible to rewrite the process in
(12) so that it satisfies a best matching policy. Of course

this is possible only if for every possible choice in (12)the Messages are extended by
always exist a best-matching pattérif this is the case then

with the following definition forg;’s Messages M:= ... | (M,M) pair
a=pA0QpiS\ V) The patterns are extended by
UltmSAtzlp Ity Patterns p:i:i= ... | (p1,p2) pair

the process (13) is well-typed and implements the best
matching policy for (12), since the difference in the defi-
nition of g makes the pattern fail on every value for which
there exists a more precise pattern that can capture it.

with the condition that the for every subteripi,pz2) of p
we havevar(p;) NVar(pz) = @.

Note that besides the extension above we do not need
to add anything else since for instance projections can be
Webservices. Consider the following situation. A web encoded by pattern matching. Using product type, together
server is waiting on a channel The client wants the server with the recursive types we show next we can also encode
to perform some computation on some values it will send more structured data, like lists or XML documents. See the
to the server. The server is able to perform two different end of this section.
kinds of computation, on values of type (say arithmetic
operations), or on values of typg(say list sorting). At the
beginning of each session, the client can decide which op-
eration it wants the server to perform, by sending a channel Another important addition to our type systems is that of
to the server, along which the communication can happen.recursive types. This is for example necessary to define the
The server checks the type of the channel, and provides thetype of lists.

4.2 Recursive types

corresponding service. So far, types could be represented as finite labelled trees.
Recursive types are obtained by allowing infinite treeshwit
P:=a(xAch(t1)).!x(y).PL+a(xAch(t2)).1x(y).P2 out changing the syntax. As in the type systenBfuce we
In the above process the chanaehas typech' (ch* (t;) v require such trees to be regular and with the property that
ch (t2)). Note thatch® (ty) V ch'(tp) # cht (t; Vto). This every infinite branch contains infinitely many nodes latzelle
means that the channel the server received avill com- by the product constructor. _
municateeitheralways values of typs or always values of ~_Moreover we require that every branch can contain only
typet,, and not interleaving sequences of the two as would finitely many n.odes Iabe_lled with channel constructor. If
doch™ (t; Vty). we were to define recursive types with equation, this would

As we discussed in the Introduction this distinction is not amount to forbid the recursive variable being defined to be

present in analogous versions of process calculi where theused inside a channel constructor (suclx asch(x) V int;
axiom ch' (ty) V ch' (tz) = ch™ (t; Vtp) is present. In that but a recursive type can appear inside a channel construc-

case we would need to wrikeas tor provided _thgt .the number_of_ occurrences of_ channel
constructors is finite, such as a(intlist) whereintlist =
P = a(x).!(X(YAt1).PL+X(YAL).P) (int x intlist) v ch(0)).

Why is that? The reason is that without this restriction is
not possible to find a model. To see why, we observe that we
could have a recursive typesuch that

4 Extensions t =bVv (ch(t) Ach(b))

for some nonempty base tyfe If we have a model, ei-
thert = b ort #b. Doest =b? Suppose it does, then
The first extension we consider consists in adding the prod-ch(t) A ch(b) = ch(b) andb =t = bV ch(b). The latter im-
uct to our type constructors. This will require the extensio plies ch(b) < b which is not true wherb is a base type.
of the notion of pattern, but most importantly, it will aftec ~ Therefore it must be # b. According to our semantics
the definition of subtyping. The new syntax for the types is this impliesch(t) A ch(b) = 0, because they are two distinct

which is a less efficient server, as it performs pattern match
ing every time it receives a value.

4.1 Polyadic version

as follows atoms. Thu$ = bv 0= b, contradiction.
. n _ Types are therefore stratified according to how many
Types t = b [ch(t) | ch (1) | txt nesting of the channel constructor there are, and we cén stil

| O 1]-t]tvt]tat define a functiorfi(t) as the maximum number of channel

The definition of height is extended by: constructors which appear on a branch.ofThe Konig’s
— ity x t) = max(i(ty), hi(tz)) ' lemma guarantees thaft) is finite).
17%2)— 1), 152)): This stratification also allows us to construct the model

"More precisely it is necessary that for evérk € | if {pn§ A e § At #£ using the same ideas presented in Section 2.
0 then there exists a uniquec | such thaf p; At =Tpn§ AT Pk S At.

12

The traditional example of the use of a recursive type is is empty. The algorithm works by recurring on the lexico-

“self application”, that is a channel that can carry itsélfs

graphic order whose first component is the height (as be-

regrettable that our semantics prevents us from defining re-fore) and whose second component is the structure of prod-

cursive types involving channel constructor, but we cdh sti

type self application by using, for instance, the tgpél): a
channel that can carry everything, can clearly carry itself

4.3 The extended model

The addition of product types requires minimal modifica-

tions to the definition of pre-model, that is, that the interp
tations of different type constructors are pairwise digjoi
namely for alls, t, andt’

[ch(9]NB=2 [txt]nB=g [ch(9]n]txt]=2o

The extensional interpretation must be extended in order to
take into account the intuitive semantics of product types

that is, the product of the interpretations:

Definition 4.1 Let (2,[]) be a pre-model. = Theex-
tensional interpretation of the types is the function
E[]:T—-PB+2x2+F(2)), defined as follows:
— &[b] = [bl;
-] =B+2x2+2(2),
- &[] =€)\ Tt
— éﬂ[twtﬂ} = 5[['[1]} Uéa[[tzﬂ, éa[[tll\tz]] = éa[[tlﬂ ﬂéa[['[z]];
— éa[[tl X tzﬂ = [['[1]] X [['[2]]5
= Eleht O =AU | 1] < [t]}:
= Efeh OT =A{['T [[t'] = [t]}-

£0] = o;

uct types. It is enough to be able to solve the problem for
simpler types. This can be done by observing (see [6]) that
the above type is equivalent to

VIE\Vt)x(s\'V s)]

JCI ied jel\d

and that a union is empty if and only if all its addenda are
empty.

That is not enough: we must also be able to decide
whether a type is finite and, if it is the case, list all its atom
That can be done again by observing that a union is finite if
and only if all its addenda are, and that a product is finite if
and only if both componentare, or if one is empty. Moreover

’ the atoms of a product are exactly the product of the atoms

of the components.

The decidability of the subtyping for recursive types can-
not work by induction in the same way. If an algorithm ex-
ists, it will have to be some coinductive procedure on the lin
of the one in [6]. We leave this investigation to future work.

4.4 Function types

In this section we want to briefly discuss the integration
of semanticr with the functional programming language
CDuce. A presentation dfDuce is out of the scope of this
work, and to understand the details of this section we in-
vite to refer to [1, 6]. But the reader that managed to arrive

The definition of model is quite modular since it is invariant so far will not have much difficulty to understand it, since
to the definition of the extensional interpretation. Thus we CDuce can be thought, quite roughly, as a sort of semantic-

have the same definition as the one in Section 2.2:

Definition 4.2 A pre-modelZ,[]) is a modelif for every
typet,[t] = o <= &t] = @.

where channel types and read and write actions are respec-
tively replaced by arrows, functions and applications, and
where pattern matching is explicitly done by a matching ex-
pression which allows the programmer to define overloaded

Having a definition of model allows us to define the pattern functions with late binding.

matching, which is the same as in Section 2.6 with the extra

clause

(d1,d2)/(p1,p2) =
d/(p1,p2) = if d ¢ Zp

whered;/p1 ® d2/pz is as defined in Section 2.6 with the
extra clause

y(X) = (ya(X),¥2(x)) if x€ Dom(yr) "Dom(yz).
Theorems 2.16 and 2.17 still hold in the new framework.

di/p1®d2/p2
Q

Using the same techniques employed in Section 2.3, with
some more complication to take care of product and recur-

sive types, we obtain.

Weak extension

A first a naive way to perform this integration is to add to
semanticr all CDuce types as base types, and@Duce
expressions to messages. It just suffices to add to the reduc-
tion rules the following rule

cle— cle
and useCDuce typing, algorithms and semantics whenever
the semantiat system needs them, and that’s all. No other

(14)

Theorem 4.3 There exists a model for the type algebrawith modification is necessary since the two systems are strati-

products.

The decision algorithm of Section 2.5 can be extended to

product types. We have to decide when a type of the form

txsAN-(tixs)

iel

13

fied, thus the definitions of model, subtyping etc., do not
need to be changed.

As naive as itis this extension already allows us to define
a “CDuce server”:

fur® (x).arg®(y).resutt (x(y))

which waits onfun andarg respectively for a function and smooth, the details are quite involved (essentially we have
its argument and returns the value of the applicatiomesn to redo the technical machinery of [6] and enrich it with the
sult A more liberal server that accepts the function and its work done here) and here we prefer to omit them. However
argument on a channebmputein whatever order they are the complexity of the details is not the only reason that make
givenis: us refrain to pushing our presentation further. Severadroth

. reasons advise us to do so:
computés=Uxs\V(s<(s=0) (x y A s) result (x(y))

+ Computé(s—>t)xs)v(sx(s—»t))(XAS,y)_resuﬁ (y(x)) . Firgt and fqremost, vyhile we conjectqre that the sub-
typing relation is decidable also for this extension, we
However the resulting system is mildly interesting since th were not able to prove it. This is a very important draw-
two systems are weakly interacting: they do not share the back since computations perform dynamic type-cases
same type constructors, so tmeandCDuce products are in- undecidability would mean that the operational seman-
compatible (for instance, the products in the typearhpute tics cannot be implemented.

channel must bet products, since otherwise we could not
have deconstructed them in the input act®)nand they are
stratified, so while channels can pass aro@ilice func-
tions, these cannot work on channels.

e We would like to be able to give a type respecting en-
coding of CDuce in process calculus part, similar to the
Milner-Turner encoding of the simply typedcalculus
in Tt[8, 10]. However all our tries so far have failed: it
seems that the expressive power of typing sums is not
enough to mimic that o€Duce overloaded functions.

Much a stronger interaction can be obtained by adding the 4 |n order to fully exploit the intertwining of the two type

Strong extension:Cre-calculus

arrow type constructor: systems we should provide the languages with con-
Types t 1= ... | t—t structions to interact. For instance we could add to
the CDuce base types the typaread and modify the
This addition is more fruitful when it is done to the polyadic type-system of Figure 1 by replacifig- P: thread for
semanticr, since then it unifie€Duce andtproduct types. every judgmenf I P. Then we should probably add to
Furthermore, not onlyCDuce expressions are to be CDuce aspawn function, and the possibility to com-
added to messages (as before) but also to channels, since municate on channels, also we should enrich with syn-
now CDuce expressions can calculate channels. This re- chronisation events and the primitives to handle that.
quires that besides (14) we must also add the following re- All of this would lead us to deal with the design of con-
duction rules: current functional languages, which is not the purpose
e—¢ e—s¢ of the work.
eM—eM e(p).P—€(p).P (15) The whole point of this section was to show that the seman-

Contrary to the weak extension, here the definition of model tic _sub_typing tgchnique.constit_utes a common structure on
and the model itself must be modified. Since we took a lot of which itis possible to build and integrate functional and-co

care in giving the definitions of Section 2 so that they could current type systems. This can constitute _the very starting
be smoothly extended with arrow types this is not so diffi- point pf a new promising research on _funpﬂonal_concurrent
cult, the definition of model requiring that the extensional and d|str|lbqted Ianguageshsurek:y notits f'.”;’;" ﬁo't?t' To-sup

interpretation o6 — t is the set of all sets of pairs such that portourclaim we want to show that even with the bare exten-

if the first component is in the interpretation ethen the sion we described here—without any linguistic addition—it
second is in the interpretation bfnamely is possible to achieve a good degree of interaction between

functional and concurrent structures, by describing a very
Els—t]=2(([s] x [t])°) naive example, which summarises the extensions that, at a
different degree of detail, we presented in this section.

First we can use recursive and product types to define the
type of associative lists, which associate a string key with
channel and where we use1l to denote both the empty list
D=B+DxD+ Pt (D% D)+ T and its singleton type (we usens_serif for recursion type

) i) variables):
where the reader can easily recognise which component alist = ((string x ch(int)) x a_list) Vnil

comes from where. Although the way to proceed is quite T . .
9 ytop q Assaociative lists can be searched with recursive pattéims.
81f they were CDuce products then the server would have been pro- instance if we match an associative list with the followiag r
grammed as cursive patterrp:

Jindencomputé(s=-9V(s(s=0) (x). — " s
result (match X with (1,8) — (T (X)Ta(y) p=(("key1",X),p)|(L,p)|(x:= nil)
|1 — (re(x)m(y) thenx is bound to the list of all the channels that are asso-

ciated with the key key1” (strictly speaking, that have the

By merging the technique of [6] with the one we developed
in Section 2.3 it is then possible to exhibit a model, essen-
tially of the form

14

singleton typeey1), while the following one
p=(("key1",¥),1)|(1,p)|(x:=nil)

captures just the first channel associated with and thes.stop
So we can use patterns to “calculate” channels. But when

such a calculation is more complex (e.g. parametric in the

key string), then it is better to delegate such a calculaton

a function such as:

fun asso€s: string, | :a_list) : ch(int) =
match| withnil — fail
| (k,c),t) — if k=sSthen Celse asso¢s,t)

which can then be communicated by a process as a message

on the channehnnouncebelow to dispatch all the notes of
an examination:

announcB-listxalistx (stringxa_list—ch(int)) (marks mails getch.
(vem-st) t(marks |
I c(((n,m),resd). (getchn,mails)(m) | t(rest))
+ ¢(nil).0)

wherem_list = ((string x int) x m.list) Vnil. The chan-
nelannouncewaits for an associative list of marks, an asso-
ciative list of channels, and a dispatch function that calcu
lates a channel. The process creates a private chartoel
iterate on the list of marks (since it must communicate on
channels, then in the absence ofgawn we cannot use a
function to perform such an iteration) and use the function
received orannouncgbound togetch to calculate the chan-
nelgetchn, mails) on which to write the mark, and iterating
the process with the rest of the list.

When the list of marks is empty (the patterti matches
it), the process becomes inert.

So for instance if the following process synchronises

announceé (("Alice",6),(("Bob",8),nil)),
(("Bob",cg),(("Alice",ca),nil)),
assoc)

it will produce the procesga(6) | Tz(8).

Acknowledgements

We are very grateful to Alain Frisch for interesting discus-

sions, and Daniele wants to thank him for making available [12

parts of his forthcoming PhD thesis. Giuseppe and Daniele
acknowledge the support of the European FET contract
MyThS IST-2001-32617. Rocco acknowledges the support
of FET contracMikado, IST-2001-32222, and would like to
thank ENS for a visiting professorship grant.

References

[1] V. Benzaken, G. Castagna, and A. Frisch. CDuce:
an XML-friendly general purpose language. I©FP
'03, 8th ACM International Conference on Functional
Programming pages 51-63, Uppsala, Sweden, 2003.
ACM Press.

15

[2] G. Boudol. Asynchrony and the-calculus. Research
Report 1702, INRIA, http://www.inria.fr/rrrt/rr-
1702.html. Also available from http://www-
sop.inria.fr/mimosa/personnel/Gerard.Boudol.html,
1992.

[3] A. Brown, C. Laneve, and G. Meredith.duce: a
process calculus with native XML datatypes. Unpub-
lished, 2004.

[4] G. Castagna and A. Frisch. A gentle introduction
to semantic subtyping. I8econd workshop on Pro-

grammable Structured Documentsiakone, Japan,

2004. Invited paper. Available atww. cduce. or g/

papers.

[5] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM:
A kernel language for agents interaction and mo-
bility. IEEE Transaction on Software Engineering

24(5):315-330, 1998.

[6] Alain Frisch, Giuseppe Castagna, and Véronique Ben-
zaken. Semantic Subtyping. IProceedings, Sev-
enteenth Annual IEEE Symposium on Logic in Com-
puter Sciencgpages 137-146. IEEE Computer Society
Press, 2002.

[7] M. Hennessy and J. Riely. Resource access control in
systems of mobile agent$nformation and Computa-

tion, 173:82-120, 2002.

R. Milner. Functions as processesMathematical
Structures in Computer Scien@{2):119-141, 1992.

(8]

[9] B. Pierce and D. Sangiorgi. Typing and subtyping for
mobile processesMathematical Structures in Com-

puter Scienceb(5), 1996.

[10] D. Sangiorgi and D. Walker.The tecalculus Cam-
bridge University Press, 2002.
[11] P. Sewell. Global/local subtyping and capability inrfe

ence for a distributedt-calculus. InProceedings of
25th ICALR volume 1443 ofLNCS pages 695-706,
1998.

] N. Yoshida and M. Hennessy. Subtyping and locality
in distributed higher order processes. Rroceedings
of 10th CONCURvolume 1664 oL NCS pages 557—-
572, 1999.

For referees’ convenience only. To be omit-
ted in final version.

A Type algorithm

The type algorithm is obtained from the typing rules in a

standard way, namely by deleting the subsumption rule and

embedding the checking of the subtyping relation in the
elimination rules. The only difficult point is the definitiar

% (), that is the least upper bound ®ivhich is of the form
ch(t). The decidability of¢'() is given by Theorem 3.5.
The algorithmic rules are summarised in Figure 3.

B Proofs

B.1 Characterising inclusion (Theorem 2.9 and Propo-
sition 2.10)

In this section we first prove Theorem 2.9 and then
strengthen the result as in Proposition 2.10.

We recall that in a boolean algebra, atomis a mini-
mal nonzero element. A boolean algebraiemicif every

nonzero element is greater of equal than an atom. It is eas

can be irch* (df). We can thus ignore such set to test for the

inclusion, and similarly for thel§’s. B
The inclusion surely holds if for sontewe haved; < df,

or if for somek we haved, > d, since then, for instance in

the former casech' (d;) is contained irch™(d}) and so is
its intersection witrch™ (dy).
The most difficult case occurs when

o dp <dj;
o forallheH,d > dy;

o forallke K, df < di;

forallh e H, df # dy;
e forallk e K, df £ dy.

The way of thinking the inclusion is the following. (From
now on it will be easier to think ob as a subset of the pow-
erset of its atoms; therefore we will userather than< and
“contained” rather than “smaller”.) Consider an element in
ch™(di) Nnch™(dz). If it is not below any of thedf then it

ymust be above one of th&. Suppose there is an element

to prove that an atomic boolean algebra is equivalent to a of di which is in nod§ (more precisely, suppose that there

subset of the powerset of its atoms.

Let(D,A,V,0,1) be an atomic boolean algebra where, as
costumaryd’ < dif and only ifd’vd = d. For everyd € D
we denote| d (that is, the set of all element smaller than or
equal tod) asch’ (d) and1d (that is, the set of all elements
larger than or equal td) asch™(d). We want to give an
equivalent characterisation of the equation

Meh*(dh) N ch (d)) € |J eh" (@) u | ch (df)

iel jed heH keK

that does not use the “operatos$i™(),ch™ (). Notice that
(Meh*(dh) = e (A dh)
i€l il

and

MNch (@) =ch (\/d)).

jed jed

Also if there existh, b’ such thatlf < d we can ignoreif

asch®(d]) C ch*(db). Dually for thedk. Therefore we can
concentrate on the case

ch*(d1)nech(dz) € |J ch™(d3)u | ch(df)
heH keK
where no twcdg‘ are comparable, and rui§ are comparable.
The first case in which the inclusion holds is when
ch(di) Nch(dz) = @, which happens exactly wheth «
di. If d2 < dj, without loss of generality we can also assume
thatd} > d, for all h € H and thad < d, for all k € K. This

is because iﬁg # do for someh then no element ath™ (dy)

16

is an atomd such thad < d; and for allh d % df; to stress
that it is an atom denoté by {x}). Thend,V {x} is not
contained in any of thd}, and it must contain one of trd.
This implies that for suchlf, d¥\ d» C {x}°. Consider now
two elements, X2 in d such that ifx, belongs tad) thenx,
does not belong tdf). Thend; v {1, %2} is not contained in
any of thedf), and it must contain one of ti#. This implies
that for suchd, d¥\ da C {x1,%2}.

More generally: for every C H consider the the sey
defined asl; A Ape d3 \ Ve d3. The set contains those
elements ofd; which belong precisely to the] for h € I.
Because aIUQ are incomparable, the are nonempty and
pairwise disjoint. Consider a subsgf of #(H) satisfying
the property) 2" = @. For everyl € 27, choose and ele-
mentx;. We have thath, vV {x | | € 2"} is not contained in
any of thedf). Reasoning as above we then have that there is
ads such thad§\d> C {x || € Z}.

Therefore the condition we look for is: for evefyf such
that 2" = @, for every choice ok € @, € Z there must
be adj such thatl§\ d> C {x |1 € 2}.

We argued that the condition is necessary. It is also suf-
ficient: if the condition holds, every setincluded ind;,
containingd,, and which is not contained in any of tldé,
must contain a set of the forop vV {x | | € Z"}: just pick
one witness of noncontainment for evet§. Thusd con-
tains one of thel.

We can strengthen the result by as stated in Proposi-
tion 2.10. Consider the case where some ofdhare in-
finite. Since there are only finitely mamiﬁ, the condition is

Sitis in fact equal aslf £ dp.

Messages A
-1 .~ ——— (chan _—
FrEn:b, (const) r=c:chit) (chan) M Ex:T(x) (var)
Processes
_TEP (hew CEP ep Ml WL Nl SO
Mk (vd)P r-p [+ PP,
t<Vialpf CFa:s ¢(s)=ch() Mt/mER (EM:t Frais sseh@)
thin#o rE Siaa(p)-P P Y (outouy

Figure 3: Algorithmic rules

satisfied if and only if for at least two (in fact infinitely mgn
different choices; andx; we have that the samﬁ satisfies
di\d2 C {x |1 € '}, anddk\ d2 C {X | | € 2°}. There-
fore we must havelf\ d, C {x || € 2" & g finite }. (We
could improve further by considering only thosewhose
cardinality is not greater than the numberdﬁf- we don't
need this for our purposes).

The condition we will use in our proof is: for every’
such thai\ 2" = &, for every choice ok € g, € 27, g
finite, there must be d such thadf\ d, C {x |1 € 27}.

B.2 Proof of Proposition 2.4

the semantics odh(k). Therefore in the semantics at levels
greater than 0 we can substitite- 1 with the appropriate
channel type.

When is a type empty? Given a typé we put it in
disjunctive normal form. Clearlyis empty if and only if all
summands are empty. If a summand contains literals of both
basic types and channel types it is easy to decide emptiness:
if it contains two positive literals of different kinds, thé is
empty. If the positive literals are all of one kind, it is empt
if and only if it is empty when removing the negative literals
of the other kind. Finally the intersection of only negative
literals is empty if the two kinds separately cover their own
universe of interpretation. (That is if the union of all ntegh

We prove the theorem for the simplest type system, with only basic type isB and similarly for the channels)

basic types. The case with product is very similar; while

Therefore it is enough to check emptiness for intersec-

recursive types (and possibly arrow types) require some re-tions of literals of on kind only. For base types:

fined techniques.

To carry out the proof we use an interesting fact: every
singleton of our pre-models is denoted by some type. (As-

A bA A -b.

beP beN

suming this is true for base types, which we can safely as- For channel types:

sume.)

We also need a technicality: we add to our types of height

0 the type for all positive natural numbeéc they are used

Achtt)A Ach (t)A A ~cht (th A A ~ch (t)
iel

jed heH keK

at level 0 as a witness of channel types. At level 0 we only USing equations (6) and (7) of Section 2 we can simplify the
know that there are infinitely many different channel types. above expression to

The premodel at level 0 is exactly formed by the basic types

plus the positive natural numbers to modelling khe
ThereforeZy := B + N* with
[kl = {k}

Now suppose we have a mode}, for 7, with corre-

sponding preordex, and equivalence-,. We call 7, the
set of equivalence class&s/ =n. Then we set

@nJrl =B + %
with the semantics of the channel types being

[eh* Ol = {t']=n [t <nt}
[eh ®O)na = ()= [t<at}
[k+1ny = {lk]=n}

Note that the semantics @fcoincides with the semantics of
ch(0), and in general the semanticslof 1 coincides with

17

ch™(ts) Ach™ () A A\ ~ch™(t§) A A —ch™ (t§)
heH keK

To prove Proposition 2.4, we now prove by induction the
following statement: let € .9, then

e t=p0ifandonly ift =11 0;
e |t|y=hif and only if |t|, = h.

where|t| denotes the cardinality of

We start by the case= 0. The “algorithm” for checking
emptiness works in the same way for basic types. The only
difference occurs for the types The condition to check at
level O is the following

NN [klo € U Klo
keP keN

Which can be true only if there are two differdae P
or if the onlyk in P is also inN. It is important here that

N is infinite, so no finite union of singleton can cover it.
Therefore the condition above is equivalent to

TN ﬂ k], € U [k]y

keP keN

and therefore = 0 if and only if t =1 0. As for the
cardinality: the proof is more general and it is the same as
the inductive step case that we will show next.

For the inductive step suppose that we know that for ev- (

ery typet € 7, we have
e t = 0ifand only ift =1 0;
e [t|n=hif and only if t|ns1 = h.
Now take a type € 7,1, we want to prove that
o t=n 1 0ifandonlyift =2 0;
e [tlny1=hifand onlyif [t|n,2 = h.

Again the “algorithm” for checking the emptiness of basic

types does not change. In the case of channel types we have

to check that
[[Ch+ (tl)]]n+1 N [[Ch7 (tZ)]]n+1

C U Ieh" @)n 10 U [eh (t)1n,4

heH keK
if and only if
[[Ch+ (tl)]]n+2 N [[Ch7 (tZ)]]n+2

C U [eh* (t)]n 29 U [eh™)],z
heH keK

As argued in the previous section, the first condition isequi
alent to:

o tr Lhtyor
e Jhe H such that; <pt§ or
e Jk € K such that <,tp or

¢ the complicated condition involving,, and atoms

The induction hypothesis gives us easily the equivalence of

the first three conditions at levatsandn+ 1. For the com-
plicated condition note first that

o o<ty

forallhe H, df >, dz

forallk e K, df <ndy
e forallheH,df #nd:
forallk e K, d £n do

are equivalent to

18

to <np1 01

forallhe H, df >n.1dp

forallk e K, df <ni10h
forallhe H, dff #ni10h
forallk € K, df Zns1 o

because of the induction hypothesis. For edefyH define

| as
A AtA-\/t5
hel hel

we have to check that the condition

for every minimalZ’, for everya, € Atom,, a <p,
t, 1 € Z, [ti|n finite, there must be ﬁ such that

tz/\ﬂdg <h V|E%a|.

is equivalent to the same condition where we replace all the
nwith n+ 1.

Recall that since all singletons are denoted, atoms are
exactly the singleton types. We need a lemma.

Lemma B.1 Suppose that for everyd 7,
e t=p0ifandonlyift=p110;
e |t|n =hif and only if|t|n+1 = h.

Pickt e 7, consider an atom a .71 such that there is no
atom d € 9, with a=n,1 @ If a<pi1tthen|t|ni1 and|t]n
are both inifite.

Proofsupposét|, = h with h finite. Since every singleton is
denoted =, a1V ...V a, for disjoint n-atomsa;. Then the
same equality is true at leveh- 1. We thus deduc# <n.i
a1 V...Vay from which we derive that' =, .1 g for some
i. Contradiction. a

We are now going to check the equivalence of the condi-
tions.

Suppose it is true for th@+ 1 case. Then pick a
choice ofn-atomsa,. By the induction hypothesis they are
n+1 atoms. Supposk |, is finite. By the induction hy-
pothesislt |n+1 is finite, then there must bet§ such that
tiA=02 <ni1Vics &. WhichimpliegkA=dz <V c o & .

Conversely suppose it is true for Pick a choice o+ 1-
atomsa;. Suppose one of thesg is not equivalent to an
n-atom. Then by lemma B.1fi|n = |t |n+1 is infinite. So
we can assume thaf is an-atom. Then there must betja
such that§ A=d <n V)¢ 4 & . Which impliestiA=dz <ni1
Viea &.

We have now to prove the condition on the cardinality.
We start by observing that all the atoms we have described
above (when we proved that every singleton is denoted) are
atoms independently of the level. They are atoms because of
their shape. We now prove the following

e [t|ns1 =himplies|t|ni2 =h.

e |t|n+1 > himplies|t|ni2 > h.

from which we can concludé|n.1 = hif and only if [t|n, 2 =
h.

Supposét|n1 = h. Thent =p 1 a1V...V a, for some
disjoint atoms. Thus=p;2a1V ...V a,, and since theg; are
still atoms (and they are still disjoinf),;2 = h.

Supposét|nr1 > h, thent >n1 a1V ...V a, for some
disjoint atoms. Thus>p,2a1V...Vay, and since the; are
still atoms (and they are still disjoinf|,2 > h.

O

We finally observe that adding theto our types is not re-
strictive, ask =, 1 ch(0)¢?

B.3 Proof of Proposition 2.6
Remember we defined
2=B+T

Where

= [eh™ ()] = {[t- |t <wt};

= [eh O] ={[t'=. [t <= t'}.
Moreover we pufk + 1] = {[k]=,, }.

This pre-model defines a new preorder between types
that we denote by. We then have (Proposition 2.6):

e Lett,t’ € T thent <t’ifand only ift <o t'.

We prove it by induction on the height of the types. That is
we prove by induction on that ift € .7, then

e t=0ifand onlyift =, 0
e t|=hifand onlyif|t|. =h

Note that to check emptiness of a typedq;1 we only in-
voke types in,.

The condition at level 0 only requires that the tyjdse
interpreted into distinct singletons containeddn which is
the case.

The second statement, and the all inductive step
proven as in the proof of Proposition 2.4.

are

B.4 Proof of Theorem 2.7

Theorem 2.7 states that the pre-mo@el []) is a model.
Consider the extensional interpretati§fi] of types asin
Definition 2.2. We have to check thiif = o < &t] = @.
Note that in fact the range &f[[] is 22 (B+[.7']). By propo-
sition 2.6, we have thaf[.7], C) is isomorphic to{.7, <).
Up to this isomorphismg’[] coincides with[]. a

B.5 Proof of Theorem 3.1

We first show that(?',[].,) is a premodel. Inspecting the
typing rules is easy to show that for every valuand every
typests,to

19

1.TFv:1;
2. THv:tyifandonlyifll /v: =t
3. THv:tiAtifandonlyiflT Fv:ty andl - v: to.

Point 1 is a simple application of the subsumption rule. For
2 suppose that exissuch that/: t andv—t. The only rule to
deduce a negative type for a value is the subsumption rule.
Therefore it must be the case that —t. But thent =0
impossible since the empty type is not inhabited. If instead
there existd such that/ v:t andt/v: —t; if v=c®then
ch(s) is not smaller thatinor thant, impossible sinceh(s)
is atomic. The same can be deduced from the atomicity of
bn for v=n ([bn] = {n} see Definition 2.13). Therefore
(7,[1) is a premodel.

The subsumption rules tells us tteK t = [s], C
[t]., . For the other direction, i§ £ t, there is an atora in
s\t. For every atona there is a valuey such that” - v:a
(either a constant or a channel). By subsumpfidnv:s
andrl - v: =t, which impliesl” /v :t. Thus[s]., Z [t].,.

To prove that it is a model we have to check tfidt=
@ < &[t]=2. Again the range of’[] is Z(B+[7]).
By the observation above, we have thge'] ., C) is iso-
morphic to(.7, <). Up to this isomorphism&’[] coincides
with [].,. |

