
Semantic subtyping for the π-calculus

Giuseppe Castagna Rocco De Nicola Daniele Varacca
École Normale Supérieure, Paris University of Firenze Imperial College, London

Abstract. Subtyping relations for the π-calculus are usu-
ally defined in a syntactic way, by means of structural rules.
We propose a semantic characterisation of channel types
and use it to derive a subtyping relation.

The type system we consider includes read-only and
write-only channel types, as well as boolean combinations
of types. A set-theoretic interpretation of types is provided,
in which boolean combinations are interpreted as the corre-
sponding set-theoretic operations. Subtyping is defined as
inclusion of the interpretations. We prove the decidability of
the subtyping relation and sketch the subtyping algorithm.

In order to fully exploit the type system, we define a
variant of the π-calculus where communication is subjected
to pattern matching that performs dynamic typecase. This
paves the way toward a novel integration of functional and
concurrent features, obtained by combining the π-calculus
with CDuce, a functional programming language for XML
manipulation that is based on semantic subtyping.

1 Introduction and motivations
In this paper we study a type system for a concurrent

process language in which values are exchanged between
agents via communication channels that can be dynami-
cally generated. The language we consider is a variant of
the asynchronous π-calculus, where communication is sub-
jected to pattern matching.

There exists a well established literature on typing and
subtyping for the π-calculus. However, all the approaches
we are aware of rely on subtyping relations or on type equiv-
alences that are defined syntactically, by means of structural
rules. In our view, such syntactic formalisations of typing
relations miss a clean semantic intuition of types.

Consider, for example, the type system defined by Hen-
nessy and Riely [7], which is one of the most advanced type
systems for variants of the π-calculus. It includes read-only
and write-only channels, as well as union and intersection
types.1 In that system the following equality is axiomatised:

ch+(t1)∨∨∨ ch+(t2) = ch+(t1∨∨∨t2) (1)

where ch+(t) is the type of channels from which we can
only read values of type t, and ∨∨∨ denotes union. We would
like to understand the precise semantic intuition that under-
lies an equation such as (1).

1As a matter of fact, union and intersections of [7] are meta-
combinators used only by the type system.

Semantic subtyping. The basic idea is simple: the seman-
tics of a type is the set of its values, and union, intersection
and negation types are interpreted using the corresponding
set theoretical operators. Subtyping is then defined as inclu-
sion of the interpretations. However, the subtyping relation
is needed in order to type the values, usually by subsump-
tion. We are therefore trapped in a circle, where we need
subtyping to define typing, that defines the interpretation,
that defines the subtyping. We are able to break this circle
via a “fixed point” construction.

Before even having defined the language, and therefore
before even knowing what values are, we define a “boot-
strap” semantics of types, that is used to define the subtyp-
ing relation. This subtyping relation is then used to type
values. This gives us another semantics of types, as sets of
values. The key point is that, if we choose the right boot-
strap semantics, the values semantics will correspond to the
bootstrap semantics, and the circle will be closed.

Channels as boxes. In order to understand how channels
and channel types relate, we have to provide a semantic ac-
count of channels. Our intuition is that a channel is a box in
which we can put things (write) and from which we can take
things (read). The type of a channel, then, is characterised
by the set of the things the box can contain. That is, a chan-
nel of type ch+(t) is a box in which we must expect to find
objects of type t and, similarly, a channel of type ch−(t) is
a box in which we are allowed to put objects of type t. But
if one takes this stand, the equality (1) does not seem to be
justified. Consider the types ch+(candy)∨∨∨ ch+(coal) and
ch+(candy∨∨∨coal). Both represent boxes. If we have a box
of the first type, then we expect to find in it either a candy
of a piece of charcoal, but we know it is always one of the
two. For instance, if we use the box twice, the second time
we will know what present it contains. A box of the second
type, instead, is a “surprise box” as it can always give us
both candies and charcoal. Our intuition suggests that the
two types above are different because they characterise two
different kinds of objects.

The role of the language. So why did Hennessy and
Riely require (1)? The point is that, if in the language un-
der consideration there is no syntactic construction that can
tell apart a ch+(candy) channel from a ch+(coal) chan-
nel (e.g. a typecase), then it is not possible to operationally
observe any difference between the types in (1). On the
contrary, if it is possible to test whether on a channel c we
are receiving a channel of type ch+(candy) or a channel

1

of type ch+(coal), then a rule such as (1) would give rise
to an unsound system, because it would allow to have in
c a channel of type ch+(candy∨∨∨ coal) which makes the
test on c crash (since the possibility that the argument is
a ch+(candy∨∨∨ coal) box is not contemplated). We de-
fine a variant of the π-calculus that exploits the full power
of our new type system, and in particular that permits dy-
namically testing the type of values received on a channel.
We implement the dynamic test by endowing input actions
with patterns, and allowing synchronisation when pattern
matching succeeds. The result is a simple and elegant for-
malism that can be easily extended with product types, to
obtain a polyadic π-calculus, and with function types, to al-
low higher-order functions to be sent over channels.

Advantages of a semantic approach. The main advantage
of using a semantic approach is that the types have a natu-
ral and intuitive set theoretic interpretation as sets of their
values. This property turns out to be very helpful not only
to understand the meaning of the types, but also to reason
about them. For instance, the subtyping algorithm is de-
duced just by applying set-theoretic properties, in the proofs
we can rewrite types by using set-theoretic laws, and the
typing of pattern matching can be better understood in terms
of set-theoretic operations (e.g. the second pattern in an al-
ternative will have to filter all that was not already matched
by the first pattern: set theoretic difference).

The language CDuce [2] also demonstrated the practi-
cal impact of the semantic approach: subtyping results are
easier to understand for a programmer, since she does not
have to reason in terms of subtyping rules but rather of set-
theoretic operations. Furthermore, the compiler/interpreter
can return much more precise and meaningful error mes-
sages.

Main contributions. This work provides several contribu-
tions: We define a very expressive type and subtype sys-
tem for the π-calculus with read-only and write-only chan-
nel types, product types, and complete boolean combina-
tions of types. We define a set-theoretic denotational model
for the types, where boolean combinations are interpreted
as the corresponding set-theoretic operations and channel
types are interpreted as sets of boxes. We use the model
to define subtyping as set-theoretic containment. We show
how to extend the π-calculus in order to fully exploit the ex-
pressiveness of the type system, in particular by endowing
input actions with pattern matching. Finally we show that
in that setting the typing and subtyping relations are decid-
able. A further contribution of this work is the opening of a
new way to integrate functional and concurrent features in
the same calculus: this will be done by fully integrating (our
new version of) π and CDuce systems, to yield a calculus
with dynamic type dispatch, overloading, channelled com-
munications and where both functions and channels have
first class citizenship.

For lack of space proofs are omitted, but they can be

found in the extended version of this paper, available at
http ://www.cduce.org (and in the Appendix).

Related work. The first work on subtyping for π was done
by Pierce and Sangiorgi [9] and successively extended in
several other works [11, 5, 12].

The work closest to ours, at least for the expressiveness
of the types, is the already cited work of Hennessy and
Riely [7]. As far as π-types are concerned, our work sub-
sumes their system in the sense that it defines a richer sub-
typing relation; this can be checked by observing that their
type rw〈s, t〉 corresponds to the intersection ch+(s)∧∧∧ch−(t)
of our formalism.

Brown et al. [4] enrich π with XML-like values that are
deconstructed by pattern matching. The patterns they use
are quite different from the one we introduce here: for ex-
ample they have patterns to match the interleaving of val-
ues, which we do not consider. On the other hand they do
not consider types, which are the main motivation of our
work.

Acciai and Boreale [1] (independently from our work)
define a language similar to ours, with XDuce-like pattern
matching. However the type system they propose is less rich
than ours and, most importantly, their subtyping relation is
defined syntactically.

As for the technical issues of semantic subtyping, our
starting point is the work developed by Frisch et al. for func-
tional programming languages [6], that led to the design of
CDuce [2].

2 Types and subtyping
We shall start with a relatively simple system with just

base types, channels and boolean combinators. In a second
moment we shall add the product type constructor, recursive
types and, finally, functional types.

2.1 Types
In the simplest of our type systems, a type is inductively

built by applying type constructors, namely base type
constructors (e.g. integers, strings, etc...), the input or the
output channel type constructor, or by applying a boolean
combinator, i.e., union, intersection, and negation:

Types t ::= b | ch+(t) | ch−(t) constructors
| 0 | 1 | ¬¬¬t | t∨∨∨ t | t∧∧∧ t combinators

Combinators are self-explaining, with 0 being the empty
type and 1 the type of all values. For what concerns type
constructors, ch+(t) denotes the type of those channels that
can be used to input only values of type t. Symmetrically
ch−(t) denotes the type of those channels that can be used
to output only values of type t. The read and write channel
type ch(t) is absent from our definition. We shall use it
only as syntactic sugar for ch−(t)∧∧∧ ch+(t), that is the type
of channels that can be used to read only and to write only

2

values of type t. The set of all types (sometimes referred to
as “type algebra”) will be denoted by T .

In our approach channels are physical boxes where one
can insert and withdraw objects of a given type. Our intu-
ition is that there is not such a thing as a read-only or write-
only box: each box is associated to a type t and one can al-
ways write and read objects of that type into and from such
a box. Thus the type of ch+(t) can be considered just a con-
straint telling that a variable of that type will be bound only
to boxes from which one can read objects of type t. If we
know that a message has type ch+(t), it does not mean that
we cannot write into it, we simply do not have any informa-
tion about what can be written in it: for instance this mes-
sage could be a box that cannot contain any object. What
the type tells us is simply that we had better avoid writing
into it since, in the absence of further information, no writ-
ing will be safe. Similarly, if a message is of type ch−(t),
then we know that it can only be a box in which writing an
object of type t is safe, but we have no information about
what could be read from that channel, since the message
might be a box that can contain any object. Therefore we
had better avoid reading from it, unless we are ready to ac-
cept anything. However, if we are ready to accept anything,
then our type system guarantees that we can read on a chan-
nel with type ch−(t) because we have ch−(t)≤ ch+(1).

2.2 Semantics of types
Our leading intuition is that a type should denote the set

of values of that type. That is

JtK= {v | ` v : t} .

The basic types (integers, strings) should denote subsets of
a set of basic values B. The boolean operators over types
should be interpreted by using the boolean operators over
sets. By following our intuition we shall have that the inter-
pretation of the type ch(t) has to denote the set of all boxes
(i.e. channels) that can contain objects of type t:

Jch(t)K=
{

c | c is a box for objects in JtK} . (2)

Since every box is uniquely associated to a type, then the
interpretations of channel types are pairwise disjoint. This
already gives invariance of channel types: Jch(t)K⊆ Jch(s)K
if and only if JtK= JsK.

Starting from the above interpretation of ch(t), we can
now provide a semantics for ch+(t) and ch−(t). As said,
the former should denote the set of all boxes from which
one can safely expect to get only objects of type t. Thus
we require that ch+(t) denote all boxes for objects of type
t, but also all boxes for objects of type s, for any s ≤ t.
Indeed, by subsumption, objects of types s are also of type
t. Dually, ch−(t) should denote the set of all boxes in which
one can safely put objects of type t. Therefore it will denote
all boxes that can contain objects of type s, for any s ≥ t.

Let us write ct to denote a box for objects of type t. We
have

Jch+(t)K=
{

cs | s≤ t
}
, Jch−(t)K=

{
cs | s≥ t

}
.

Given the above semantic interpretation, from the viewpoint
of types all the boxes of one given type t are indistinguish-
able, because either they all belong to the interpretation of
one type or they all do not. This implies that the subtyp-
ing relation is insensitive to the actual number of boxes of a
given type. We can therefore assume that for every equiva-
lence class of types, there is only one such box, which may
as well be identified with JtK, so that the intended semantics
of channel types would be

Jch+(t)K=
{
JsK | s≤ t

}
, Jch−(t)K=

{
JsK | s≥ t

}
. (3)

We have that this semantics induces covariance of in-
put types and contravariance of output types. Moreover,
as anticipated, we have that ch(t) = ch−(t)∧∧∧ ch+(t) since
the types on both sides of the equality have the same
semantics—namely, the singleton {JtK}—and therefore it is
justified to consider ch(t) as syntactic sugar for the type on
the right rather than a type constructor.

According to the discussion above, in order to define the
semantics of a channel type, we need to know the subtyping
relation. And here we are again in the presence of a circle.
We use the subtyping relation in order to build the interpre-
tation that we need in order to define the subtyping relation.
We devote the next section to solve this problem.

2.3 Building a model
The minimal requirement for an interpretation function

is that boolean combinators should be interpreted in the cor-
responding set-theoretical operators, and that basic values
and channels should have disjoint interpretations.

Definition 2.1 Let D ,and B be sets such that B ⊆ D , and
let J K be a function from T to P(D). (D ,JK) is a pre-
model if

– JbK⊆ B, Jch+(t)K∩B=∅, Jch−(t)K∩B=∅;
– J1K= D , J0K=∅;
– J¬¬¬tK= D \ JtK;
– Jt1∨∨∨ t2K= Jt1K∪ Jt2K, Jt1∧∧∧ t2K= Jt1K∩ Jt2K.

We use this interpretation to build another interpretation,
according to the intended meaning of equations (3).

Definition 2.2 Let (D ,JK) be a pre-model. Let JT K denote
the image of the function J K. The extensional interpretation
of the types is the function E JK : T →P(B+JT K), defined
as follows:

– E JbK= JbK;
– E J1K= B+ JT K, E J0K=∅;
– E J¬¬¬tK= E J1K\E JtK;
– E Jt1∨∨∨ t2K= E Jt1K∪E Jt2K, E Jt1∧∧∧ t2K= E Jt1K∩E Jt2K;
– E Jch+(t)K= {JsK | JsK⊆ JtK};
– E Jch−(t)K= {JsK | JsK⊇ JtK}.

3

A pre-model and its extensional interpretation induce, in
principle, different preorders on types. We could use the ex-
tensional interpretation to build yet another interpretation,
and so on. In order to close the circle, we shall consider
a pre-model “acceptable” if it is a fixed point of this pro-
cess, that is, if it induces the same containment relation as
its extensional interpretation. This amounts to the following
definition:

Definition 2.3 A pre-model (D ,JK) is a model if for every
t1, t2, we have Jt1K⊆ Jt2K if and only if E Jt1K⊆ E Jt2K.

The last (and quite hard) point is to show that there ac-
tually exists a model, that is, that the condition imposed by
Definition 2.3 can indeed be satisfied.

Paradoxically the model itself is not important. The sub-
typing relation is essentially characterized by the definition
of extensional interpretation E JK. So what really matters is
the proof that there exists at least one model. As the case
of recursive types proves (see § 4.2), the existence of such a
model is far from being trivial, and naive syntactic solutions
—such as a term model— cannot be used.

Theorem 2.4 There exists a model (D ,JK).

Types are stratified according to the nesting of the chan-
nel constructor. The model (D ,JK) is obtained as the limit
of a chain of models (Dn,JKn), built exploiting this stratifi-
cation. See Appendix B.2 for more details.

2.4 Examples of type (in)equalities
Given a model for the types, we define

s≤ t
def⇐⇒ JsK⊆ JtK ,

s = t
def⇐⇒ JsK= JtK .

We list here some interesting equations and inequations be-
tween types that can be easily derived from the set-theoretic
interpretation of types.

ch(t)≤ ch−(0) = ch+(1) (4)

Every channel c can be safely used in a process that does
not write on c and that does not care about what c returns.

ch−(t1)∧∧∧ ch−(t2) = ch−(t1∨∨∨ t2) (5)

If on a channel we can write values of type t1 and values of
type t2, this means that we can write values of type t1∨∨∨ t2.
Dually

ch+(t1)∧∧∧ ch+(t2) = ch+(t1∧∧∧ t2) (6)

if a channel is such that we always read from it values of
type t1 but also such that we always read from it values of
type t2, then what we read from it are actually values of type
t1∧∧∧ t2.

Union of types, as we observed in the introduction, be-
haves differently from intersection; we only have:

ch+(t1)∨∨∨ ch+(t2) ≤ ch+(t1∨∨∨ t2) ,

ch−(t1)∨∨∨ ch−(t2) ≤ ch−(t1∧∧∧ t2) .

The type ch+(t1)∧∧∧ch−(t2) is the type of a channel on which
we can write values of type t2 and from which we can read
values of type t1. We have

ch+(t1)∧∧∧ ch−(t2) = 0 (7)

if and only if t2 6≤ t1, i.e. we should expect to read at least
what we can write.

In order to show the role of our definitions let us de-
duce this last equation. By definition, (7) holds if and only
if Jch+(t1)∧∧∧ ch−(t2)K = J0K. By definition of model and
the antisymmetry of⊆ this holds iff E Jch+(t1)∧∧∧ ch−(t2)K=
E J0K. By definition of E JK this holds iff {JtK|JtK ⊆ Jt1K}∩
{JtK|Jt2K⊆ JtK}=∅. By the reflexivity and transitivity of⊆
this holds iff Jt2K 6⊆ Jt1K, that is, by definition of subtyping
iff t2 6≤ t1.

2.5 Decidability of subtyping
Using the semantic characterisation of the types, we are

also able to prove the decidability of the subtyping relation.
The decision procedure is quite complicated, and in partic-
ular it involves finite and atomic types.

Definition 2.5 An atom is a minimal nonempty type. A type
is finite if it is equivalent to a finite union of atoms.

The reader can think of an atom roughly as a singleton.
We start by noting that deciding subtyping is equivalent

to deciding the emptiness of a type.

s≤ t ⇐⇒ s∧∧∧¬¬¬t = 0 (8)

which can be derived as follows:

s≤ t ⇐⇒ JsK⊆ JtK
⇐⇒ JsK∩ JtKc =∅
⇐⇒ Js∧∧∧¬¬¬tK= J0K
⇐⇒ s∧∧∧¬¬¬t = 0 .

Thanks to the semantic interpretation we can directly apply
set-theoretic equivalences to types (in the rest of the paper
we will do it without explicitly passing via the interpreta-
tion function). We then deduce that every type can be (ef-
fectively) represented in disjunctive normal form, i.e. as the
union of intersections of literals, where a literal is a base
type or a channel type, possibly negated. Since a union is
empty only if all its addenda are empty, then in order to
decide emptiness of a type —and thus in virtue of (8) to
decide subtyping— it suffices to be able to decide whether
an intersection of literals is empty. Since base types and

4

channel types are interpreted in disjoint sets, intersections
that involve literals of both kinds are either trivial, or can
be simplified to intersections involving literals of only one
kind. The problem is therefore reduced to decide whether

(
^̂̂

i∈P

bi)∧∧∧ (
^̂̂

j∈N

¬¬¬b j) and (
^̂̂

i∈P

chνi(ti))∧∧∧ (
^̂̂

j∈N

¬¬¬chν j(t j))

are equivalent to 0 (where ν stands for either + or −). The
decision of emptiness of the left-hand side depends on the
basic types that are used. For what concerns the right-hand
side, we decompose this problem into simpler subproblems.
More precisely, we reduce this problem to the problem of
deciding subtyping between boolean combinations of the
ti’s and t j’s. This problem is simpler, in the sense that it
involves a strictly smaller nesting of channel types.

Using set-theoretic manipulations, the problem of decid-
ing

(
^̂̂

i∈P

chνi(ti))∧∧∧ (
^̂̂

j∈N

¬¬¬chν j(t j)) = 0

can be shown to be equivalent to

(
^̂̂

i∈P

chνi(ti))≤ (

j∈N

chν j(t j)) . (9)

Because of equations (5) and (6), we can push the intersec-
tion on the left-hand side inside the constructors and reduce
(9) to the case

ch+(t1)∧∧∧ ch−(t2)≤

h∈H

ch+(th
3)∨∨∨

k∈K

ch−(tk
4) (10)

where we grouped covariant and contravariant types to-
gether. In this way we simplified the left-hand side. Simi-
larly we can get rid of redundant addenda on the right-hand
side of (10) by eliminating:

1. all the covariant channel types on a th
3 for which there

exists a covariant addendum on a smaller or equal th′
3

(since the former channel type is contained in the lat-
ter);

2. all contravariant channel type on a tk
4 for which there

exists a contravariant addendum on a larger or equal t k′
4

(for the same reason as the above);
3. all the covariant channels on a th

3 that is not larger than
or equal to t2 (since then ch−(t2)∩ ch+(th

3) = 0, so it
does not change the inequation);

4. all contravariant channel on a tk
4 that is not smaller than

or equal to t1 (since then ch+(t1)∩ ch−(tk
4) = 0).

Then the key property for decomposing the problem (10)
into simpler subproblems is given by the following theorem:

Theorem 2.6 Suppose t1, t2, th
3 , t

k
4 ∈ T , k ∈ K, h ∈ H. Sup-

pose moreover that the following conditions hold:

c1. for all distinct h,h′ ∈ H, th
3 6≤ th′

3 ;
c2. for all distinct k,k′ ∈ K, tk

4 6≤ tk′
4 ;

c3. for all h ∈ H t2 ≤ th
3 ;

c4. for all k ∈ K tk
4 ≤ t1.

For every I ⊆ H define eI as t1∧∧∧
VVV

h∈I th
3 ∧∧∧¬¬¬

WWW
h6∈I th

3 . Then

ch+(t1)∧∧∧ ch−(t2)≤

h∈H

ch+(th
3)∨∨∨

k∈K

ch−(tk
4)

if and only if one of the following conditions holds

LE. t2 6≤ t1 or

R1. ∃h ∈ H such that t1 ≤ th
3 or

R2. ∃k ∈ K such that tk
4 ≤ t2 or

CA. for every X ⊆P(H) such that
T

X = ∅, for every
choice of atoms aI ≤ eI , I ∈X , there is k ∈ K such
that tk

4 ≤ t2∨∨∨
WWW

I∈X aI .

The four hypotheses c1–c4 simply state that the right-hand
side of the inequation was simplified according to the rules
described right before the statement of the theorem. The
first condition (LE) says that ch+(t1)∧∧∧ ch−(t2) is empty.
The second condition (R1) and the third condition (R2) re-
spectively make sure that one of the ch+(th

3) and, respec-
tively, one of the ch−(th

4) contains ch+(t1)∧∧∧ch−(t2). Finally
the fourth and more involved condition (CA) says that, ev-
ery time we add atoms to t2 so that we are no longer below
any th

3 then we must end up above some of the tk
4 . The types

eI contain those atoms of t1 which belong precisely to the th
3

for h∈ I. The condition
T

X =∅ implies that t2∨∨∨
WWW

I∈X aI
is not below any th

3 .
As an example of how much our relation is sensitive to

atoms, suppose there are three atoms err1,err2,exc. Con-
sider the case where
t2 = int ;
t1 = t2∨∨∨err1∨∨∨err2∨∨∨exc ;
t3 = t2∨∨∨exc ;
t4 = t2∨∨∨err1∨∨∨err2 .

It is easy to see that

ch+(t1)∧∧∧ ch−(t2) 6≤ ch+(t3)∨∨∨ ch−(t4)

since, for example, the type ch(t2∨∨∨ err1) is a subtype of
the left-hand side, but not of the right-hand side. However
if err1 = err2, the subtyping relation holds, because of
condition (CA). Indeed in that case the indexing set H of
Theorem 2.6 is a singleton. Every X ⊆P(H) such thatT

X = ∅ contains ∅. The type e∅ is t1∧∧∧¬¬¬t3. The only
atom in it is err1, and it is true that t4 ≤ t2∨∨∨err1.

As announced, Theorem 2.6 decomposes the subtyping
problem of (10) into a finite set of subtyping problems on
simpler types (we must simplify the inequation RHS by ver-
ifying the inequalities of conditions c1–c4, and possibly
perform the |H|+ |K|+ 1 checks for LE, R1 and R1) and
into the verification of condition (CA).

The condition (CA) involves two universal quantifica-
tions. One is on the powerset of a finite set and does not

5

pose problems, but the other is on atoms of a possibly in-
finite set eI , and therefore it is not possible to use it for a
decision algorithm as it is. This problem can be avoided
thanks to the following proposition

Proposition 2.7 If we replace condition (CA) with

CA∗. for every X ⊆P(H) such that
T

X = ∅, for every
choice of atoms aI ≤ eI , I ∈X , eI finite, there is k ∈K
such that tk

4 ≤ t2∨∨∨
WWW

I∈X aI .

then Theorem 2.6 still holds.

Therefore it suffices to check the condition just for the eI
that are finite. This can be done effectively provided that
we are able to:

1. decide whether a type is finite;
2. if it is the case, list all its atoms.

We will assume that this is possible for base types. Then it
is possible for all types (see Appendix B for the details).

Lemma 2.8 There is an algorithm that decides whether a
type t is finite and if it is the case, outputs all its atoms.

Theorem 2.9 The subtyping relation is decidable.

We do not discuss here the complexity of the decision algo-
rithm, nor the possibility of finding more efficient ways of
doing it. We leave it for future work.

3 The semantic-π calculus

3.1 Patterns
As we explained in the introduction, if we want to fully

exploit the expressiveness of the type system, we must be
able to check the type of the messages read on a channel.

The simplest solution would be to add an explicit type-
case process (e.g. [M : t]P which reduces to P or 0 accord-
ing whether M is of type t or not). Here, instead, we choose
a more general approach, by endowing input actions with
CDuce patterns. Pattern matching includes dynamic type
checks as a special case, and fits nicely in the semantic sub-
typing framework.

Definition 3.1 Given a type algebra T , and a set of
variables V, a pre-pattern p on (V,T) is a possibly infinite
term p generated by the following grammar

p : := x capture, x ∈ V
| t type constraint, t ∈T
| p1∧∧∧ p2 conjunction
| p1||| p2 alternative
| (((x :=:=:= n))) constant, n ∈ B

Given a pre-pattern p on (V,T) we use Var(p) to denote
the set of variables of V occurring in p (in capture or con-
stant patterns).

Definition 3.2 Given a type algebra T , and a set of vari-
ables V, a pre-pattern p on (V,T) belongs to the set of
(well-formed) patterns P on (V,T) if and only if it satisfies
the following condition: for every subterm p1∧∧∧ p2 of p we
have Var(p1)∩Var(p2) = ∅, and for every subterm p1|||p2
of p we have Var(p1) = Var(p2).

These patterns and their semantics are borrowed from [6]:
the reader can refer to [6, 2] for a detailed description. A
pattern is matched against an element of the domain D of a
model of the types. A matching returns either a substitution
for the free variables of the pattern, or a failure, denoted by
Ω:

Definition 3.3 Given a model JK : T →D , an element d ∈
D and a pattern p ∈ P the matching of d with p, denoted by
d/p, is the element of DVar(p) ∪{Ω} defined by induction
on structure of p as follows:

d/t = {} if d ∈ JtK
d/t = Ω if d ∈ J¬¬¬tK
d/x = {x 7→ d}
d/p1∧∧∧ p2 = d/p1⊗d/p2
d/p1|||p2 = d/p1 if d/p1 6= Ω
d/p1|||p2 = d/p2 if d/p1 = Ω
d/(((x :=:=:= n))) = {x 7→ n}

where γ1⊗ γ2 is Ω when γ1 = Ω or γ2 = Ω and otherwise is
the element γ ∈DDom(γ1)∪Dom(γ2) such that:

γ(x) = γ1(x) if x ∈ Dom(γ1)\Dom(γ2),
γ(x) = γ2(x) if x ∈ Dom(γ2)\Dom(γ1).

One remarkable property of the pattern matching above
is that the set of all elements for which a pattern p does not
fail is the denotation of a type. Since this type is unique,
we denote it by ***p+++. In other terms, for every (well-formed)
pattern p, there exists a unique type ***p+++ such that J***p+++K =
{d ∈ Dom | d/p 6= Ω}. Not only, but this type can be
calculated. Similarly, consider a pattern p and a type t ≤
***p+++, then there is also an algorithm that calculates the type
environment t/p that associates to each variable x of p the
exact set of values that x can capture when p is matched
against values of type t. Formally

Theorem 3.4 There is an algorithm mapping every pattern
p to a type ***p+++ such that J***p+++K= {d ∈D | d/p 6= Ω}.

Theorem 3.5 There is an algorithm mapping every pair
(t, p), where p is a pattern and t a type such that t ≤ ***p+++, to
a type environment (t/p) ∈ T Var(p) such that J(t/p)(x)K=
{(d/p)(x) | d ∈ JtK}.

The proofs are similar to those found in [6].

3.2 The language
The syntax of our calculus is very similar to that

of the asynchronous π-calculus [3, 8], a variant of the

6

π-calculus [10], where message emission is non-blocking.
It is generally considered as the calculus representing the
essence of name passing with no redundant operation. The
variant we consider is very similar to the original calculus,
but we permit patterned input prefix and guarded choice
between different patterns on the same input channel.

Channels α ::= x variables
| ct typed channel (box)

Messages M ::= n constant
| α channel

Processes P ::= αM output
| ∑i∈I α(pi).Pi patterned input
| P1‖P2 parallel
| (νct)P restriction
| !P replication

where I is a possibly empty finite set of indexes, t ranges
over the types defined in Section 2.1 and pi are patterns as
defined in Section 3.1. As customary we use the convention
that the empty sum corresponds to the inert process, usually
denoted by 0.

We want to comment on the presence of the simplified
form of summation we have adopted: guarded sum of inputs
on a single channel with possibly different patterns. Choice
operators are very useful for specifying nondeterministic
behaviours, but give rise to problems when considering im-
plementation issues. Two main kinds of choice have to be
considered: external choice that leaves the decision about
the continuation to the external environment (usually hav-
ing it dependent on the channel used by the environment to
communicate) and internal choice that is performed by the
process regardless of external interactions. Thanks to pat-
terns we can offer an externally controllable choice, where
the type of the received message, not the used channel, de-
termines the continuation. Internal choice can also be mod-
elled by specifying processes that perform input on the same
channel according to the same pattern.

The other important difference with standard asyn-
chronous π-calculus is that typed channels are decorated by
the type of messages they communicate. This corresponds
to our intuition that every box is intimately associated to
the type of the objects it can contain. In what follows we
will call typed channels also “boxes”, or “channel values”
to distinguish them from channel variables.

The values of the language are the closed messages, that
is to say the typed channels and the constants

v ::= n | ct .

We use V to the denote the set of all values. Every value is
associated to a type: a constant n is associated to an atomic
basic type bn and a channel value with the channel type that
transport messages of the type indicated in the index. So
all the values can be typed by the rules (const), (chan), and

R[] ::= [] | R[]‖P | P‖R[] | (νct)R[]

P−→ Q ⇒ R[P]−→R[Q]

P′ ≡ P−→ Q ⇒ P′ −→ Q

P‖0≡ P P‖Q≡ Q‖P P‖(Q‖R)≡ (P‖Q)‖R
(νct)0≡ 0 (νct)P≡ (νdt)P{ct ; dt} !P≡!P‖P

(νct1
1)(νct2

2)P≡ (νct2
2)(νct1

1)P for c1 6= c2

(νct)(P‖Q)≡ P‖(νct)Q for ct 6∈ fn(P)

where P{ct ; dt} is obtained from P by renaming all free
occurrences of the box ct into dt , and assumes dt is fresh.

Figure 1. Context and congruence closure

(subs) of Figure 2 (actually with an empty Γ) where in the
(subs) subsumption rule the ≤ is the subtyping relation in-
duced by the model of Section 2.3.

3.3 Semantics
Now consider the interpretation function J KV : T →

P(V) defined as follows:

JtKV = {v | Γ ` v : t} .
It turns out that this interpretation satisfies the model con-
ditions of Section 2.3 and furthermore it generates the same
subtyping relation as ≤. The circle we mentioned in the
Introduction is now closed.

Theorem 3.6 (Model of values)
Let JtKV = {v | Γ ` v : t}. Then (V ,JKV) is a model and
s≤ t⇐⇒ JsKV ⊆ JtKV .

Since values are elements of a model of the types, Defini-
tion 3.3 applies for d being a value. We can thus use it to
define the reduction semantics of our calculus:

ctv ‖ ∑
i∈I

ct(pi).Pi −→ Pj[v/p j]

where P[σ] denotes the application of substitution σ to pro-
cess P. The asynchronous output of a value on the box ct

synchronises with an input on the same box only if at least
one of the patterns guarding the sum matches the commu-
nicated value. If more than one pattern matches then one of
them is non-deterministically chosen and the correspond-
ing process executed, but before its execution the pattern
variables are replaced by the captured values. More refined
matching policies (best match, first match) can be easily en-
coded (see Appendix).

As usual the notion of reduction must be completed with
reductions in evaluation contexts and up to structural con-
gruence, whose definitions are summarised in Figure 1.

This operational semantics is the same as that of π-
calculus but the actual process behavior has been refined
in two points:

7

Messages

Γ ` n : bn
(const)

Γ ` ct : ch(t)
(chan)

Γ ` x : Γ(x)
(var)

Γ `M : s≤ t
Γ `M : t

(subs)

Processes
Γ ` P

Γ ` (νct)P
(new) Γ ` P

Γ `!P
(repl)

Γ ` P1 Γ ` P2

Γ ` P1‖P2
(para)

t≤WWWi∈I***pi+++
***pi+++∧t 6=0

Γ ` α : ch+(t) Γ, t/pi ` Pi

Γ ` ∑i∈I α(pi).Pi
(input)

Γ `M : t Γ ` α : ch−(t)
Γ ` αM

(output)

Figure 2. Typing rules

– communication is subjected to pattern matching
– communication can happen only along values (i.e.

boxes)
The use of pattern matching is what makes it necessary to

distinguish between typed channels and variables: matching
is defined only for the formers as they are values, while a
matching on variables must be delayed until they will be
bound to a value.

Since we distinguish between variables and typed chan-
nels, it is reasonable to require that communication takes
place only if we have a physical channel that can be used
as a support for it; thus, we forbid synchronisation if the
channel is still a variable. However there is a more tech-
nical reason to require this. Consider an environment
Γ = x : 0. By subsumption we have Γ ` x : ch(int) and
Γ ` x : ch−(string). Then, according to the typing rules of
our system (see later on) the process xciao‖ x(y).x(y+y) is
well typed, in the environment Γ, but it would give rise to a
run time error by attempting to add ciao to itself:

xciao‖ x(y).x(y+y) −→ x(ciao+ciao)

This reduction cannot happen in our calculus, because we
can never instantiate a variable of type 0 (from a logi-
cal viewpoint, this corresponds to the classical ex falsum
quodlibet deduction rule).

3.4 Typing
In Figure 2, we summarise typing rules that guarantee

that, in well typed processes, channels communicate only
values that correspond to their type.

The rules for messages do not deserve any particular
comment. As customary, the system deduces only good-
formation of processes without assigning them any types.
The rules for replication and parallel composition are stan-
dard. The rule for restriction is slightly different since we
do not need to store in the type environment the type of the
channel2. In the rule for output we check that the message
is compatible with the type of the channel.

2Strictly speaking, we do not restrict variables but values, so it would
be formally wrong to store it in Γ. For the same reason we do not have
α-conversion on restriction, but this is handled as a structural equivalence
rule.

The rule for input is the most involved one. The premises
of the rule first infer the type t of the message that can be
transmitted over the channel α, then for each summand i
they use this type to calculate the type environment of the
pattern variables (the environment (t/pi) of Theorem 3.5)
and check whether under this environment the summand
process Pi is typeable. This is all it is needed to have a
sound type system. However the input construct is like
a typecase/matching expression, so it seems reasonable to
perform a check that patterns are exhaustive and there is no
useless case3. This is precisely what the two side conditions
of (input) do:

(t ≤WWWi∈I***pi+++) checks whether pattern matching is exhaus-
tive, that is if for whatever value (of type t) sent on α
there exists at least one pattern pi that will accept it
(the cases cover all possibilities).

(***pi +++∧t 6= 0) checks that the pattern matching is not redun-
dant that is that there does not exists a pattern pi that
will fail with every value of type t (no case is useless).

As usual the basic result is the subject reduction, pre-
ceded by a substitution lemma. The proof of the theorem
relies on the semantics of channel types as set of boxes.

Lemma 3.7 (Substitution)
– If Γ, t/p `M′ : t ′ and Γ ` v : t, then Γ `M′[v/p] : t ′.
– If Γ, t/p ` P and Γ ` v : t then Γ ` P[v/p].

Lemma 3.8 (Congruence)
If Γ ` P and P≡ Q, then Γ ` Q.

Theorem 3.9 (Subject reduction)
If Γ ` P and P→ P′ then Γ ` P′.

The decidability of the subtyping relation does not di-
rectly imply decidability of the typing relation (only semi-
decidability is straightforward). In similar situations, a typ-
ing algorithm can be often derived by eliminating the sub-
sumption rule and embedding the subtyping checks into the

3While in functional programming these checks are necessary for
soundness since an expression non-complying to them may yield a type-
error, in process algebræ non-compliance would just block synchronisa-
tion.

8

elimination rules. However the (input) rule, in its algorith-
mic version, requires us to compute the least type of the
form ch+(s) which is above a given type t, and it is not so
evident that such a type exists (observe that our type alge-
bra is not a complete lattice). Nevertheless, it turns out that
such a type does exist (which gives us the minimum typing
property) and furthermore it can be effectively computed.

Lemma 3.10 (Upper bound channel) For every type t
there exists a least type ch+(s) that is an upper bound of
t and an algorithms that computes it.

Theorem 3.11 The typing relation is decidable.

3.5 An example
We present here an example of semantic-π processes.

Consider the following situation. A web server is waiting
on a channel α. The client wants the server to perform some
computation on some values it will send to the server. The
server is able to perform two different kinds of computa-
tion, on values of type t1 (say arithmetic operations), or on
values of type t2 (say list sorting). At the beginning of each
session, the client can decide which operation it wants the
server to perform, by sending a channel to the server, along
which the communication can happen. The server checks
the type of the channel, and provides the corresponding ser-
vice.

P := α(x∧∧∧ ch+(t1)).!x(y).P1 + α(x∧∧∧ ch+(t2)).!x(y).P2

In the above process the channel α has type ch+(ch+(t1)∨∨∨
ch+(t2)). Note that, ch+(t1)∨∨∨ ch+(t2) 6= ch+(t1∨∨∨ t2). This
means that the channel the server received on α will com-
municate either always values of type t1 or always values of
type t2, and not interleaving sequences of the two as would
do ch+(t1∨∨∨ t2).

As we discussed in the Introduction this distinction is not
present in analogous versions of process calculi where the
axiom ch+(t1)∨∨∨ ch+(t2) = ch+(t1∨∨∨ t2) is present. In that
case we would need to write P as

P′ := α(x).!(x(y∧∧∧ t1).P1 + x(y∧∧∧ t2).P2)

which is a less efficient server, as it performs pattern match-
ing every time it receives a value.

4 Extensions
4.1 Polyadic version

The first extension we propose consists in adding product
to our type constructors. This requires extending the notion
of pattern, but, most importantly, it affects the definition of
subtyping. The new syntax for types is the following

Types t ::= b | ch+(t) | ch−(t) | t××× t
| 0 | 1 | ¬¬¬t | t∨∨∨ t | t∧∧∧ t

Messages are extended by

Messages M ::= . . . | (M,M) pair

The patterns are extended by

Patterns p : := ... | (((p1,,,p2))) pair

with the condition that the for every subterm (((p1,,,p2))) of p
we have Var(p1)∩Var(p2) =∅.

A semantic model can be built, in analogy with Sec-
tion 2.2. The corresponding subtyping relation is also de-
cidable, as well as the typing relation.

Note that besides the extension above we do not need
to add anything else since for instance projections can be
encoded by pattern matching. By using product types, to-
gether with the recursive types we show next, we can also
encode more structured data, like lists or XML documents.

4.2 Recursive types
Another important addition to our type systems is that of

recursive types. This is for example necessary to define the
type of lists.

So far, types could be represented as finite labelled trees.
Recursive types are obtained by allowing infinite trees,
without changing the syntax. As in the type system of
CDuce we require such trees to be regular and with the
property that every infinite branch contains infinitely many
nodes labelled by the product constructor.

Moreover we require that every branch can contain only
finitely many nodes labelled with channel constructor. If we
were to define recursive types with equations, this would
amount to forbid the recursive variable being defined to be
used inside a channel constructor (such as x = ch(x)∨∨∨int).
However a recursive type can appear inside a channel con-
structor provided that the number of occurrences of channel
constructors is finite (such as in ch(intlist) where intlist =
(int× intlist)∨∨∨ ch(0)).

The reason for this is that, without this restriction, it is
not possible to find a model. To see why, we observe that
we could have a recursive type t such that

t = b∨∨∨ (ch(t)∧∧∧ ch(b))

for some nonempty base type b. If we have a model, either
t = b or t 6= b. Suppose t = b, then ch(t)∧∧∧ ch(b) = ch(b)
and b = t = b∨∨∨ch(b). The latter implies ch(b)≤ b which is
not true when b is a base type. Therefore it must be t 6= b.
According to our semantics this implies ch(t)∧∧∧ ch(b) = 0,
because they are two distinct atoms. Thus t = b∨∨∨ 0 = b,
contradiction.

Types are therefore stratified according to how many
nesting of the channel constructor there are and this strat-
ification allows us to construct the model using the same
ideas presented in Section 2.

One traditional example of the use of a recursive type is
“self application”, that is a channel that can carry itself. It

9

is regrettable that our semantics prevents us from defining
recursive types involving channel constructors, but we can
still type self application by using, for instance, the type
ch(1): a channel that can carry everything, can clearly carry
itself.

4.3 Function types
In this section we want to briefly discuss the integration

of semantic-π with the functional programming language
CDuce. A presentation of CDuce is out of the scope of this
work, and to better appreciate the details of this section,
we invite to refer to [2, 6]. CDuce can be thought, quite
roughly, as a sort of π≤ where channel types and read and
write actions are respectively replaced by arrows, functions
and applications, and where pattern matching is explicitly
done by a matching expression which allows the program-
mer to define overloaded functions with late binding.

Weak extension. A first a naive way to perform this inte-
gration is adding to π≤ all CDuce types as base types, and
allow all CDuce expressions as messages. It just suffices to
add the following rule to the reduction rules for π≤.

e→ e′

c̄te−→ c̄te′ (11)

and use CDuce typing, algorithms and semantics whenever
the π≤ system needs them. No other modification is neces-
sary since the two systems are stratified, thus the definitions
of model, subtyping etc., do not need to be changed.

As naive as it is this extension already allows us to define
a “CDuce server”, funs→→→t(x).args(y).result

t
(x(y)), which

waits on fun and arg respectively for a function and its ar-
gument and returns the value of the application on result.

Strong extension: Cπ-calculus. A stronger interaction
can be obtained by adding the arrow type constructor:

Types t ::= . . . | t→→→ t

This addition is more fruitful when it is done to the polyadic
π≤, since then it unifies CDuce and π product types.

Furthermore, not only CDuce expressions are to be
added to messages (as before) but also to channels, since
now CDuce expressions can calculate channels. This re-
quires that besides (11) we must also add the following re-
duction rules:

e−→ e′

ēM −→ ē′M
e−→ e′

e(p).P−→ e′(p).P (12)

By merging the technique of [6] with the one we sketched
in Section 2.2 it is then possible to define a suitable seman-
tics for the type system with product, arrow, and recursive
types. Although the way to proceed is quite smooth, the
details are quite involved (essentially we have to redo the

technical machinery of [6] and enrich it with the work done
here). However we don’t know at present if the correspond-
ing subtyping relation is decidable and leave it for future
work.

We would also like to be able to give a type respecting
encoding ofCDuce into the process calculus part, similar to
the Milner-Turner encoding of the simply typed λ-calculus
in π [10]. However, the translation of arrow types into chan-
nel types does not respect equality, and therefore some more
subtle approach is needed.

5 Conclusion
We have presented a novel approach to defining subtyp-

ing relations for the π-calculus, and discussed its merits and
limitations. To exploit our type system, we have defined
a variant of the π-calculus with pattern matching on input.
Finally we have shown how this can lead toward a novel
way to define a programming language with concurrent and
functional features.

References
[1] L. Acciai and M. Boreale. XPi: a typed process calculus for

XML messaging. Unpublished, 2004.

[2] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-
friendly general purpose language. In Proceedings of 8th
ICFP, pages 51–63. ACM Press, 2003.

[3] G. Boudol. Asynchrony and the π-calculus. Research Report
1702, INRIA, 1992. http://www.inria.fr/rrrt/rr-1702.html.

[4] A. Brown, C. Laneve, and G. Meredith. πduce: a process
calculus with native XML datatypes. Unpublished, 2004.

[5] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel
language for agents interaction and mobility. IEEE Transac-
tion on Software Engineering, 24(5):315–330, 1998.

[6] A. Frisch, G. Castagna, and V. Benzaken. Semantic Sub-
typing. In Proceedings of 17th LICS, pages 137–146. IEEE
Computer Society Press, 2002.

[7] M. Hennessy and J. Riely. Resource access control in
systems of mobile agents. Information and Computation,
173:82–120, 2002.

[8] K. Honda and M. Tokoro. An object calculus for asyn-
chronous communication. In Proceedings of 5th ECOOP,
volume 512 of LNCS, pages 133–147, 1991.

[9] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile
processes. Mathematical Structures in Computer Science,
6(5), 1996.

[10] D. Sangiorgi and D. Walker. The π-calculus. Cambridge
University Press, 2002.

[11] P. Sewell. Global/local subtyping and capability inference
for a distributed π-calculus. In Proceedings of 25th ICALP,
volume 1443 of LNCS, pages 695–706, 1998.

[12] N. Yoshida and M. Hennessy. Subtyping and locality in
distributed higher order processes. In Proceedings of 10th
CONCUR, volume 1664 of LNCS, pages 557–572, 1999.

10

For referees’ convenience only. To be omit-
ted in final version.

A Type algorithm
The type algorithm is obtained from the typing rules in

a standard way, namely by deleting the subsumption rule
and embedding the checking of the subtyping relation in
the elimination rules. This requires the use of the least type
t such that t = ch+(t ′) for some t ′, and s ≤ t. Such a t is
denoted by C (s). The existence and the decidability of C (s)
is given by Lemma 3.10, the decidability of (t/p) is given
by Theorem 3.5. The algorithmic rules are summarised in
Figure 3.

B Proofs
B.1 Characterising inclusion (Theorem 2.6 and

Proposition 2.7)
In this section we first prove Theorem 2.6 and then

strengthen the result as in Proposition 2.7.
We recall that in a boolean algebra, an atom is a mini-

mal nonzero element. A boolean algebra is atomic if every
nonzero element is greater or equal than an atom. It is easy
to prove that an atomic boolean algebra is equivalent to a
subset of the powerset of its atoms.

Let (D,∧∧∧,∨∨∨,0,1) be an atomic boolean algebra where,
as customary, d ′ ≤ d if and only if d ′∨∨∨ d = d. For every
d ∈ D we denote ↓d (that is, the set of all elements smaller
than or equal to d) as ch+(d) and ↑d (that is, the set of all
elements larger than or equal to d) as ch−(d). We want to
give an equivalent characterisation of the equation
\

i∈I

ch+(di
1)∩

\

j∈J

ch−(d j
2)⊆

[

h∈H

ch+(dh
3)∪

[

k∈K

ch−(dk
4)

that does not use the “operators” ch+(),ch−(). Notice that
\

i∈I

ch+(di
1) = ch+(

^

i∈I

di
1)

and \

j∈J

ch−(d j
2) = ch−(

_

j∈J

d j
2) .

Also if there exist h,h′ such that dh′
3 ≤ dh

3 we can ignore dh′
3

as ch+(dh′
3)⊆ ch+(dh

3). Dually for the dk
4. Therefore we can

concentrate on the case

ch+(d1)∩ ch−(d2)⊆
[

h∈H

ch+(dh
3)∪

[

k∈K

ch−(dk
4)

where no two dh
3 are comparable, and no dk

4 are comparable.
The first case in which the inclusion holds is when

ch+(d1)∩ ch−(d2) =∅, which happens exactly when d2 6≤
d1. If d2≤ d1, without loss of generality we can also assume
that dh

3 ≥ d2 for all h∈H and that dk
4 ≤ d1 for all k∈K. This

is because if d h̄
3 6≥ d2 for some h̄ then no element of ch−(d2)

can be in ch+(dh̄
3). We can thus ignore such sets to test for

the inclusion, and similarly for the dk
4’s.

The inclusion surely holds if for some h̄ we have d1≤ dh̄
3 ,

or if for some k̄ we have d2 ≥ d k̄
4, since then, for instance in

the former case, ch+(d1) is contained in ch+(dh̄
3) and so is

its intersection with ch−(d2).
The most difficult case occurs when

• d2 ≤ d1;

• for all h ∈ H, dh
3 ≥ d2;

• for all k ∈ K, dk
4 ≤ d1;

• for all h ∈ H, dh
3 6≥ d1;

• for all k ∈ K, dk
4 6≤ d2.

The way of thinking the inclusion is the following. (From
now on it will be easier to think of D as a subset of the pow-
erset of its atoms; therefore we will sometimes say “con-
tained” rather than “smaller”, and so on.) Consider a d in
ch+(d1)∩ ch−(d2). If d is not below any of the dh

3 then it
must be above one of the dk

4. Suppose there is an element x
of d1 which is in no dh

3 (more precisely, suppose that there
is an atom d such that d ≤ d1 and for all h, d 6≤ dh

3 ; to stress
that it is an atom denote d by {x}). Then d2 ∨{x} is not
contained in any of the dh

3 , and it must contain one of the
dk

4. This implies that for such dk
4, dk

4 \d2 ≤ {x}4. Consider
now two elements x1,x2 in d1 such that if x1 belongs to dh

3
then x2 does not belong to dh

3 . Then d2∨{x1,x2} is not con-
tained in any of the dh

3 , and it must contain one of the dk
4.

This implies that for such dk
4, dk

4 \d2 ≤ {x1,x2}.
More generally: for every I ⊆ H consider the the set eI

defined as d1∧
V

h∈I dh
3 \
W

h6∈I dh
3 . The set eI contains those

elements of d1 which belong precisely to the dh
3 for h ∈ I.

Because all dh
3 are incomparable, the eI are nonempty and

pairwise disjoint. Consider a subset X of P(H) satisfy-
ing the property

T
X = ∅. For every I ∈X , choose an

element xI in eI . We have that d2∨{xI | I ∈X } is not con-
tained in any of the dh

3 . Reasoning as above we then have
that there is a dk

4 such that dk
4 \d2 ≤ {xI | I ∈X }.

This proves the necessity of the condition (CA): for ev-
ery X such that

T
X = ∅, for every choice of xI ∈ eI ,

I ∈X there must be a dk
4 such that dk

4 \d2 ≤ {xI | I ∈X }.
We argued that the condition (CA) is necessary. It is also

sufficient: if the condition holds, every set d included in
d1, containing d2, and which is not contained in any of the
dh

3 , must contain a set of the form d2 ∨{xI | I ∈X }: just
pick one witness of noncontainment for every dh

3 . Thus d
contains one of the dk

4.
We can strengthen the result as stated in Proposition 2.7.

Consider the case where some of the eI are infinite. Since
there are only finitely many dk

4, the condition is satisfied

4it is in fact equal as dk
4 6≤ d2.

11

Messages
Γ ` n : bn

(const)
Γ ` ct : ch(t)

(chan)
Γ ` x : Γ(x)

(var)

Processes
Γ ` P

Γ ` (νct)P
(new) Γ ` P

Γ `!P
(repl)

Γ ` P1 Γ ` P2

Γ ` P1‖P2
(para)

t≤WWWi∈I***pi+++
***pi+++∧t 6=0

Γ ` α : s C (s) = ch+(t) Γ, t/pi ` Pi

Γ ` ∑i∈I α(pi).Pi
(input)

Γ `M : t Γ ` α : s s≤ ch−(t)
Γ ` αM

(output)

Figure 3. Algorithmic rules

if and only if for at least two (in fact infinitely many) dif-
ferent choices xI and x′I we have that the same dk

4 satisfies
dk

4 \d2 ≤ {xI | I ∈X }, and dk
4 \d2 ≤ {x′I | I ∈X }. There-

fore we must have dk
4 \d2 ⊆ {xI | I ∈X & eI finite }. (We

could improve further by considering only those eI whose
cardinality is not greater than the number of dk

4 - we do not
need this for our purposes.)

This proves that condition (CA) is equivalent to condi-
tion (CA*): for every X such that

T
X = ∅, for every

choice of xI ∈ eI , I ∈X , eI finite, there must be a dk
4 such

that dk
4 \d2 ≤ {xI | I ∈X }.

B.2 The existence of a model
We shall construct here a model for the simplest of our

type systems. This amounts to build a pre-model and then
show that it satisfies Definition 2.3.

Types are stratified according to the height of the nesting
of the channel constructor. We define the height function
}(t) as follows:

– }(b) = }(0) = }(1) = 0;
– }(ch(t)) = }(ch+(t)) = }(ch−(t)) = }(t) + 1;
– }(t1∨∨∨ t2) = }(t1∧∧∧ t2) = max(}(t1),}(t2));
– }(¬¬¬t) = }(t).

Then we set

Tn
def
= {t | }(t)≤ n} .

Our pre-model for the types is built in steps. We start by
providing a model for types of height 0, that is types in
T0. Note that we must define the semantics only for type
constructors, because the interpretation of the combinators
is determined by the definition of pre-model. The only con-
structors of height 0 are the basic types, for these we assume
existence of a universe of interpretation B. We also assume
that every basic type b has an interpretation BJbK ⊆ B.
Therefore we set D0 = B, with the semantics defined by
JbK0 = BJbK and interpret boolean combinators by using
the corresponding set-theoretic combinators, according to
Definition 2.1. Using this pre-model we define a subtyping
relation over T0 as t ≤0 t ′ if and only if JtK0 ⊆ Jt ′K0. We
shall denote by =0 the corresponding equivalence.

Now suppose we have a pre-model Dn for Tn, with cor-
responding preorder ≤n and equivalence =n. We call T̃n

the set of equivalence classes Tn/=n. Then, Dn+1 is defined
as follows:

Dn+1 = B+ T̃n .

with the following interpretation of channel types:
– Jch+(t)Kn+1 = {[t ′]=n | t ′ ≤n t};
– Jch−(t)Kn+1 = {[t ′]=n | t ≤n t ′}.

In principle each of these pre-models defines a different pre-
order between types. However, all such preorders coincide
in the following sense:

Proposition B.1 Let t, t ′ ∈ Tn and k,h ≥ n, then t ≤k t ′ if
and only if t ≤h t ′.

Proof:To carry out the proof we use an interesting fact: ev-
ery singleton of our pre-models is denoted by some type.
(Assuming this is true for base types, which we can safely
assume.)

We also need a technicality: we add to our types of
height 0 the types k for all positive natural number k: they
are used at level 0 as a witness of channel types. At level 0
we only know that there are infinitely many different chan-
nel types. The pre-model at level 0 is exactly formed by the
basic types plus the positive natural numbers to modelling
the k.

Therefore D0 := B+N+ with

JkK0 = {k} .
Now suppose we have a model Dn for Tn, with corre-

sponding preorder ≤n and equivalence =n. We call T̃n the
set of equivalence classes Tn/=n. Then we set

Dn+1 = B+ T̃n

with the semantics of the channel types being

Jch+(t)Kn+1 = {[t ′]=n | t ′ ≤n t} ;

Jch−(t)Kn+1 = {[t ′]=n | t ≤n t ′} ;

Jk+ 1lKn+1 = {[k]=n} .

Note that the semantics of 1l coincides with the semantics
of ch(0), and in general the semantics of k+ 1l coincides
with the semantics of ch(k). Therefore in the semantics at

12

levels greater than 0 we can substitute kwith the appropriate
channel type.

When is a type t empty? Given a type t we put it in
disjunctive normal form. Clearly t is empty if and only if all
summands are empty. If a summand contains literals of both
basic types and channel types it is easy to decide emptiness:
if it contains two positive literals of different kinds, then it
is empty. If the positive literals are all of one kind, it is
empty if and only if it is empty when removing the negative
literals of the other kind. Finally the intersection of only
negative literals is empty if the two kinds separately cover
their own universe of interpretation. (That is if the union
of all negated basic types is B and similarly for the channel
types.)

Therefore it is enough to check emptiness for intersec-
tions of literals of one kind only. For base types:

^̂̂

b∈P

b∧∧∧
^̂̂

b∈N

¬¬¬b .

For channel types:
^̂̂

i∈I

ch+(t i
1)∧∧∧

^̂̂

j∈J

ch−(t j
2)∧∧∧

^̂̂

h∈H

¬¬¬ch+(th
3)∧∧∧

^̂̂

k∈K

¬¬¬ch−(tk
4) .

Using equations (5) and (6) of Section 2 we can simplify
the above expression to

ch+(t1)∧∧∧ ch−(t2)∧∧∧
^̂̂

h∈H

¬¬¬ch+(th
3)∧∧∧

^̂̂

k∈K

¬¬¬ch−(tk
4) .

To prove Proposition B.1, we now prove by induction the
following statement: let t ∈Tn, then

• t =n 0 if and only if t =n+1 0;

• |t|n = h if and only if |t|n = h;

where |t| denotes the cardinality of t.
We start by the case n = 0. The “algorithm” for checking

emptiness works in the same way for basic types. The only
difference occurs for the types k. The condition to check at
level 0 is the following

N∩
\

k∈P

JkK0 ⊆
[

k∈N

JkK0

which can be true only if there are two different k ∈ P or
if the only k in P is also in N. It is important here that
N is infinite, so no finite union of singletons can cover it.
Therefore the condition above is equivalent to

T̃0∩
\

k∈P

JkK1 ⊆
[

k∈N

JkK1

and therefore t =0 0 if and only if t =1 0. As for the car-
dinality: the proof is more general and it is the same as the
inductive step case that we will show next.

For the inductive step suppose that we know that for ev-
ery type t ∈ Tn we have

• t =n 0 if and only if t =n+1 0;

• |t|n = h if and only if |t|n+1 = h.

Now take a type t ∈Tn+1, we want to prove that

• t =n+1 0 if and only if t =n+2 0;

• |t|n+1 = h if and only if |t|n+2 = h.

Again the “algorithm” for checking the emptiness of basic
types does not change. In the case of channel types we have
to check that

Jch+(t1)Kn+1∩ Jch−(t2)Kn+1

⊆
[

h∈H

Jch+(th
3)Kn+1∪

[

k∈K

Jch−(tk
4)Kn+1

if and only if

Jch+(t1)Kn+2∩ Jch−(t2)Kn+2

⊆
[

h∈H

Jch+(th
3)Kn+2∪

[

k∈K

Jch−(tk
4)Kn+2 .

As argued in the previous section, the first condition is
equivalent to:
LE. t2 6≤n t1 or

R1. ∃h ∈ H such that t1 ≤n th
3 or

R2. ∃k ∈ K such that tk
4 ≤n t2 or

CA∗ the complicated condition involving ≤n and atoms.
The induction hypothesis gives us easily the equivalence of
the first three conditions at levels n and n + 1. For the con-
dition (CA∗) note first that

• t2 ≤n t1

• for all h ∈ H, dh
3 ≥n d2

• for all k ∈ K, dk
4 ≤n d1

• for all h ∈ H, dh
3 6≥n d1

• for all k ∈ K, dk
4 6≤n d2

are equivalent to

• t2 ≤n+1 d1

• for all h ∈ H, dh
3 ≥n+1 d2

• for all k ∈ K, dk
4 ≤n+1 d1

• for all h ∈ H, dh
3 6≥n+1 d1

• for all k ∈ K, dk
4 6≤n+1 d2

because of the induction hypothesis. For every I ⊆H define
tI as

t1∧∧∧
^

h∈I

th
3 ∧∧∧¬¬¬

_

h6∈I

th
3 .

we have to check that the condition (CA∗):

13

for every X , for every aI ∈ Atomn, aI ≤n tI , I ∈
X , |tI |n finite, there must be a tk

4 such that tk
4 ∧∧∧

¬¬¬d2 ≤n
W

I∈X aI .

is equivalent to the same condition where we replace all the
n with n + 1.

Recall that since all singletons are denoted, atoms are
exactly the singleton types. We need a lemma.

Lemma B.2 Suppose that for every t ∈Tn

• t =n 0 if and only if t =n+1 0;

• |t|n = h if and only if |t|n+1 = h.

Pick t ∈ Tn, consider an atom a ∈ Tn+1 such that there is
no atom a′ ∈ Tn with a =n+1 a′. If a≤n+1 t then |t|n+1 and
|t|n are both infinite.

Proof:suppose |t|n = h with h finite. Since every singleton
is denoted, t =n a1∨∨∨ . . .∨∨∨ ah for disjoint n-atoms ai. Then
the same equality is true at level n + 1. We thus deduce
a′ ≤n+1 a1∨∨∨ . . .∨∨∨ ah from which we derive that a′ =n+1 ai
for some i. Contradiction. 2

We are now going to check the equivalence of the condi-
tions.

Suppose it is true for the n + 1 case. Then pick a choice
of n-atoms aI . By the induction hypothesis they are n + 1
atoms. Suppose |tI |n is finite. By the induction hypothe-
sis |tI |n+1 is finite, then there must be a tk

4 such that tk
4 ∧∧∧

¬¬¬d2 ≤n+1
W

I∈X aI . Which implies tk
4∧∧∧¬¬¬d2 ≤n

W
I∈X aI .

Conversely suppose it is true for n. Pick a choice of n +
1-atoms aI . Suppose one of these aI is not equivalent to an
n-atom. Then by lemma B.2, |tI|n = |tI|n+1 is infinite. So we
can assume that aI is a n-atom. Then there must be a tk

4 such
that tk

4 ∧∧∧¬¬¬d2 ≤n
W

I∈X aI . Which implies tk
4 ∧∧∧¬¬¬d2 ≤n+1W

I∈X aI .
We have now to prove the condition on the cardinality.

We start by observing that all the atoms we have described
above (when we proved that every singleton is denoted) are
atoms independently of the level. They are atoms because
of their shape. We now prove the following

• |t|n+1 = h implies |t|n+2 = h;

• |t|n+1 ≥ h implies |t|n+2 ≥ h.

from which we can conclude |t|n+1 = h if and only if
|t|n+2 = h.

Suppose |t|n+1 = h. Then t =n+1 a1∨∨∨ . . .∨∨∨ ah for some
disjoint atoms. Thus t =n+2 a1∨∨∨ . . .∨∨∨ ah, and since the ai
are still atoms (and they are still disjoint), |t|n+2 = h.

Suppose |t|n+1 ≥ h, then t ≥n+1 a1∨∨∨ . . .∨∨∨ ah for some
disjoint atoms. Thus t ≥n+2 a1∨∨∨ . . .∨∨∨ ah, and since the ai
are still atoms (and they are still disjoint), |t|n+2 ≥ h.
2

We finally observe that adding the k to our types is not re-
strictive, as k=k ch(0)k.

Hinging on Proposition B.1, we define preorder between
types as follows.

Definition B.3 (Order) Let t, t ′ ∈ Tn, then t ≤∞ t ′ if and
only if t ≤n t ′.

Due to Proposition B.1, this relation is well defined and in-
duces an equivalence =∞ on the set of types T . Let T̃ be
T /=∞, we are finally able to produce a unique pre-model
D defined as:

D = B+ T̃ .

Where
– Jch+(t)K= {[t ′]=∞ | t ′ ≤∞ t};
– Jch−(t)K= {[t ′]=∞ | t ≤∞ t ′}.

This pre-model defines a new preorder between types that
we denote by≤. However, the following proposition proves
that≤ is not new but it is the limit of the previous preorders,
i.e. ≤∞.

Proposition B.4 Let t, t ′∈T , then t ≤ t ′ if and only if t ≤∞
t ′.

Proof:We prove it by induction on the height of the types.
That is we prove by induction on n that if t ∈Tn, then

• t = 0 if and only if t =∞ 0;

• |t|= h if and only if |t|∞ = h.

Note that to check emptiness of a type in Tn+1 we only
invoke types in Tn.

The condition at level 0 only requires that the types k be
interpreted into distinct singletons contained in T̃ , which is
the case.

The second statement, and the whole inductive step are
proven as in the proof of Proposition B.1. 2

It is now easy to show the following.

Theorem B.5 The pre-model (D ,JK) is a model.

Proof:Consider the extensional interpretation E JK of types
as in Definition 2.2. We have to check that JtK = ∅⇐⇒
E JtK = ∅. Note that in fact the range of E JK is P(B+
JT K). By proposition B.4, we have that 〈JT K,⊆〉 is iso-
morphic to 〈T̃ ,≤〉. Up to this isomorphism, E JK coincides
with JK. 2

B.3 Proof of decidability of finiteness
Given our model of types, we show that we can

1. decide whether a type is finite
2. if it is the case, list all its atoms

To prove our claim we proceed by induction on the
height of the types. We strengthen the statement by requir-
ing that all atoms of a finite type t have the same height,
or lower, of t. We assume that at height 0, this is the case.
It is a reasonable assumption: for example it is the case if

14

we have for base types the type of all integers plus all con-
stant types. Consider a type t of height n + 1 and assume
that for lower heights we can decide whether a type is finite
and, if it is the case, list all its atoms. By Theorem 2.6, this
guarantees that we can also decide emptiness of all types of
height n + 1. We ask ourselves which atoms can be proved
to belong to t. If we put t in normal form, we obtain the
disjunction of terms of the form

r := ch+(t1)∧∧∧ ch−(t2)∧∧∧
^̂̂

i

¬¬¬ch+(t i
3)∧∧∧

^̂̂

j

¬¬¬ch−(t j
4) .

(We exclude base types, because they have been consid-
ered at height 0, and “mixed types”, which can be reduced
to one of the “pure” cases.) Only atoms of the form ch(s),
can be contained in non-base types. For how many s we can
have that ch(s) ≤ t? A union is finite if and only if all its
summands are, thus t is finite if and only if all the r’s are
finite. When is r finite? First of all it is finite when it is
empty, which we can test it by induction hypothesis.

Otherwise if r is not empty, then r is finite if and only
if ch+(t1)∧∧∧ ch−(t2) is finite, which happens exactly when
t2 ≤ t1 and t1∧∧∧¬¬¬t2 is finite. For the “if” part, note that ch(s)
belongs to ch+(t1)∧∧∧ ch−(t2), if and only if s = t2∨∨∨ s′ for
some s′ ≤ t1∧∧∧¬¬¬t2. Since t1∧∧∧¬¬¬t2 is finite and of smaller
height, then by induction hypothesis we can list all its
atoms, thus all the corresponding s′’s, thus all the corre-
sponding ch(t2∨∨∨ s′) that are all the possible candidates of
atoms of r. By induction hypothesis we also have that all
the s′ have at most height n.

For the “only if” part it suffices to prove that if ch+(t1)∧∧∧
ch−(t2) is infinite, then the whole of r is infinite. Assume
that for no i, t1 ≤ t i

3 and for no j, t j
4 ≤ t2 (otherwise r is

empty). We have to find infinitely many s such that t2 ≤ s≤
t1, s 6≤ t i

3 for all i and t j
4 6≤ s for all j. Pick atoms ai

3≤ t1∧∧∧¬¬¬t i
3

and a j
4 ≤ t j

4 ∧∧∧¬¬¬t2. Note that no ai
3 can coincide with any

a j
4, because they are taken from disjoint sets. Then for any

type s′ such that t2 ≤ s′ ≤ t1, the type s := (s′∨∨∨WWWi ai
3)∧∧∧

¬¬¬WWW j a j
4 belongs to r. It is possible that for two different s′

the corresponding s coincide. However such “equivalence
classes” of s′ are finite. Since there are infinitely many s′,
there are infinitely many s, so r is infinite.

In summary, for every r that forms t we check whether
t2 ≤ t1 and t1∧∧∧¬¬¬t2 is finite, and at the end we find either
that t is infinite (if one of the r is) or that it is finite. In
the latter case we have a finite list of candidates to be the
atoms of t (namely all ch(s) for s included in the the various
t1∧∧∧¬¬¬t2) and to list all the atoms of t we just to check for
each candidate its inclusion in t. Which we can do, since
they are at most of height n + 1.

B.4 Proof of Theorem 3.6
We first show that (V ,JKV) is a pre-model. Inspecting

the typing rules, it is easy to show that for every value v and
every types t1, t2

1. Γ ` v : 1;

2. Γ ` v : t1 if and only if Γ 6` v :¬¬¬t1;

3. Γ ` v : t1∧∧∧ t2 if and only if Γ ` v : t1 and Γ ` v : t2.

Point 1 is a simple application of the subsumption rule. For
2 suppose that exist t such that v : t and v¬¬¬t. The only rule to
deduce a negative type for a value is the subsumption rule.
Therefore there must be a type s, such that v : s, s ≤ t and
s ≤¬¬¬t. But then s = 0, impossible since the empty type is
not inhabited. Suppose instead there exists t such that 6` v : t
and 6` v : ¬¬¬t; if v = cs then ch(s) is not smaller than t nor
than ¬¬¬t, impossible since ch(s) is atomic. The same can be
deduced from the atomicity of bn for v = n (JbnK= {n} see
Definition 3.1). Therefore (V ,JKV) is a pre-model.

The subsumption rules tells us that s ≤ t =⇒ JsKV ⊆
JtKV . For the other direction, if s 6≤ t, there is an atom a in
s\\\t. For every atom a there is a value v such that Γ ` v : a
(either a constant or a channel). By subsumption Γ ` v : s
and Γ ` v :¬¬¬t, which implies Γ 6` v : t. Thus JsKV 6⊆ JtKV .

To prove that it is a model we have to check that JtK =
∅⇐⇒ E JtK=∅. Again the range of E JK is P(B+JT KV).
By the observation above, we have that 〈JT KV ,⊆〉 is iso-
morphic to 〈T̃ ,≤〉. Up to this isomorphism, E JK coincides
with JKV . 2

C More examples
First match policy. We show how is possible to impose
a first match policy in a input sum: consider the following
process

∑
i=1..n

α(pi).Pi (13)

and let ch+(t) be the least type of this form that can be de-
duced for α (this can be calculated by using the set-theoretic
properties of the interpretation and it is at the basis of the
algorithmic typing rule for input actions). Define qi as
follows:

qi+1 =

{
p1 if i = 0
pi∧∧∧¬¬¬***qi+++ if 1≤ i≤ n

Then the process

∑
{i | ***qi+++∧t 6=0}

α(qi).Pi (14)

behaves exactly as the above with the only difference that
summand selection is deterministic and obeys a first match-
ing discipline. Indeed, every pattern accepts only the val-
ues that are not accepted by the preceding patterns. Note
that by applying a first match policy some of the summand
could no longer have any chance to be selected (this hap-
pens if ***pi +++∧t ≤ ∨∨∨ j<i *** p j+++), and therefore they must not
be included in (14) since then it would not be well typed
(there would be redundant summands), which explains the
set used to index the sum.

15

Best match policy. It is possible to rewrite the process
in (13) so that it satisfies a best matching policy. Of course
this is possible only if for every possible choice in (13) there
always exist a best-matching pattern5. If this is the case then
with the following definition for qi’s

qi = pi∧∧∧ (***pi +++\\\

{ j|***pi+++∧t 6≤***p j+++∧t}
***p j+++)

the process (14) is well-typed and implements the best
matching policy for (13), since the difference in the defi-
nition of qi makes the pattern fail on every value for which
there exists a more precise pattern that can capture it.

5More precisely it is necessary that for every h,k ∈ I if ***ph +++∧*** pk +++
∧t 6= 0 then there exists a unique j ∈ I such that ***p j+++∧t = ***ph+++∧*** pk+++∧t.

16

