
A compositional semantics for the reversible π-calculus

Ioana Domnina Cristescu∗ Jean Krivine Daniele Varacca
Preuves, Programmes et Systèmes,

UMR 7126, CNRS and University Paris Diderot

Abstract—In the present paper, we introduce a fully compo-
sitional semantics for the reversible π-calculus. It is the first
account of a compositional definition of a reversible calculus,
that has both concurrency primitives and name mobility.

The notion of reversibility is strictly linked to the notion
of causality. We discuss the notion of causality induced by
our calculus, and we compare with the existing notions in the
literature, in particular for what concerns the syntactic feature
of scope extrusion, typical of the π-calculus.

I. INTRODUCTION

A. Reversibility matters

Being able to reverse a computation is often an important
feature of computing systems although not always studied
as a topic of its own. In sequential systems, step by step
rewinding of a computation is a common way of debugging
programs. Also (reversible) programs running on logically
reversible gates are known to have good properties with
respect to energy consumption [1]. In the concurrent world,
reversibility is a key aspect in every system that needs
to solve distributed consensus [2] in order to escape local
states where the consensus cannot be found. However in the
concurrent case, rewinding a computation requires to define
first what is a legitimate backward move from a given state,
in a context where the computation is no longer functional.

A formal model for concurrent systems needs to address
two challenges at the same time: (i) how to compute without
forgetting and (ii) what is an optimal notion of legitimate
backward moves. Roughly speaking, the first point –that
needs to be answered in the sequential world as well– is
about syntax: processes need to carry a memory that keep
track of everything that has been done (and of the choices
that have not been made). The second point is tied to
the choice of the computation’s semantics. In a concurrent
setting we do not want to undo the actions precisely in the
opposite order than the one in which they were executed, as
this order is immaterial. The concurrency relation between
actions has to be taken into account. Semantics that represent
explicitly the concurrency of actions usually come equipped
with a notion of causality.

We argue that the most liberal notion of reversibility is
the one that just respects causality: an action can be undone
precisely after all the actions that causally depend on it have
also been undone.

∗ supported by ANR REVER

B. Our contributions

We are not the first to observe that causality and re-
versibility are tightly connected notions [3], [4]. Also, there
are already several accounts of reversible languages for
concurrency [5], [6], [7], and even of the (higher-order) π-
calculus [8]. In spite of that, we think this paper makes
important contributions.

First of all, we believe the existing approaches are not
fully satisfactory. Distributed computations done in CCS are
rather limited in scope because of the absence of name mo-
bility. As soon as name creation (and exchange) is enabled,
computing without forgetting becomes difficult because of
the variable substitutions and also because the scope of a
name, that may increase in forward computation, should
decrease accordingly during backtracking. Also, although
the reversible Hoπ that has been proposed [8] is a clear
gain in expressivity over CCS, it is only given in terms of
reduction semantics and therefore not compositional.

We believe that the present study addresses the challenges
that were deliberately left aside in the previous works,
namely a compositional definition of a reversible calculus,
that has both concurrency primitives and name mobility. As
we will see, achieving compositionality is far from trivial, in
the same way as the standard labelled transition semantics
of the π-calculus is not a trivial extension of its reduction
semantics.

But our contributions are also in the realm of the causal
semantics of the π-calculus. We take the stance that the
concrete events of a computation are the reductions, ie. the
steps that a closed system does. Labelled transitions are then
considered as abstract or incomplete events, that await a
suitable context to become concrete. In other words, they
only exist for the sake of compositionality.

As a consequence, the concrete causality relation between
reductions is the one that is induced by the prefix operator
(the "dot") and propagated through communications, also
called structural dependence. Which notion of causality
should then be considered on labelled transitions? For a
simple calculus like CCS the answer is trivial because
the causality between labelled transitions is also purely
structural, but it is no longer true in the π-calculus because
of the dependency induced by the scope extrusion.

To be as liberal as possible for backtracking, the causality
between labelled transitions that should be respected needs

to be the smallest relation that is consistent with the struc-
tural causality between reductions. More precisely, there
should be a causal relation between labelled transitions of a
process only if every possible pair of reductions obtained by
"completion" of those transitions (by parallel composition)
are also causally related. This would guarantee that if a
backward labelled transition is not derivable in our seman-
tics, it is because any corresponding reduction would violate
the structural causality. There are several works that add
different notions of causality to the labelled transition system
of the π-calculus [9], [10]. Although the causal semantics
that is induced by our semantics is related to them, ours is
the only one, to the best of our knowledge, that satisfies the
above requirement, which is formalized by Theorem 5.5 of
Section IV.

C. Other notable features

• In the purely forward direction, our semantics is just a
decoration over the classical π-calculus: by forgetting
additional annotations, we retrieve the (late) labelled
transition semantics of the standard π-calculus. This
can be considered as a sanity check.

• Our semantics is not only compositional but also struc-
tural. That is, the semantics of a process is obtained
by structural rules from the semantics of its direct
subprocesses. Compositionality requires in particular
that rules for scope extrusion are needed. Making these
rules reversible is one of the main technical challenges
of the present work.

• The notion of causality that is induced by our semantics
is stable: every event carries with itself its unambiguous
causal history. This in contrast with the causal seman-
tics of the π-calculus proposed in Ref. [11]. A full
comparison of the present work with the event structure
semantics is our current interest.

D. Outline
This paper is organized as follows: In Section II we

introduce the syntax and the labelled transition semantics for
the reversible π calculus and we show its main properties in
Section III. In Section V we discuss the notion of causality
induced by our semantics. In Section VI we conclude with
a summary of our work and its consequences.

II. THE REVERSIBLE π-CALCULUS

In this section we present the compositional semantics
of the reversible π-calculus (Rπ). In order to define the
reversible operational semantics (Section II-B), we need
first to introduce our meta variables and go through a few
definitions (Section II-A).

A. Statics
1) Terms: We use a, b, c to range over channel names and

P,Q to range over π calculus processes, defined as follows:

P,Q ::= 0 | π.P | (P | Q) | νa(P)

where π ::= b(c) | b〈a〉 | τ denotes traditional π prefixes.
We introduce neither choice nor replication. This restriction
of expressivity is only in order to simplify the presentation,
and these operators would pose no technical issues in the
following developments.

As in RCCS [5], Rπ processes are built upon simple π
processes to which we add a memory that will keep track of
past actions. Every entry in a memory is called a (memory)
event and can be used to trigger backward moves. From now
on the term process will refer to Rπ processes.

We use I for the set of event identifiers, with a distin-
guished symbol ∗ ∈ I that will denote partial synchroniza-
tion. Let i, j, k range over elements of I and ∆,Γ range over
subsets of I. Rπ terms are built according to the following
grammar:

(Event labels) α ::= b〈a〉 | b[?/c] | b[a/c]
(Memory events) e ::= 〈i, k,α〉
(Memory stacks) m ::= ε | 〈↑〉.m | e.m
(Rπ processes) R,S ::= 0 | m � P | (R ‖ S) | νaΓ(R)

In the style of RCCS, Rπ memories are structured as stacks,
the top element being of the left and the empty stack being
denoted by ε. There are two types of information that can be
pushed on a memory: either a fork symbol 〈↑〉, which allows
memory stacks to divide whenever processes are forking,
and events which are triplets of the form 〈i, k,α〉. For any
event e = 〈i, k,α〉, we say that i is the identifier of e,
k is the identifier of its contextual cause and α its label.
The label of an event used to record the prefix that was
consumed during a transition, but also acts as an explicit
substitution that allows one not to lose information about
variable scope. We will come back to this important point
in Section II-A3. The notations id(e), c(e) and λ(e) give
access to the identifier, the contextual cause and the label of
e respectively.

The restriction νaΓ(R) and the parallel composition of
processes R ‖ S reflect the corresponding operators of π-
processes thanks to the following structural rules:

m � (P1 | P2) ≡m 〈↑〉.m � P1 ‖ 〈↑〉.m � P2 (1)
m � νa(P) ≡m νa∅(m � P) with a /∈ m (2)

which distribute a memory whenever two π processes are
forking (1), and push classical π calculus restrictions at the
level of processes (2). Note that an Rπ restriction is indexed
by a set Γ ⊂ I (initially empty) and behaves as a classical
restriction only when Γ = ∅. It will be used to keep track
of past variable scope whenever Γ 6= ∅ (see Section II-A2).

It is noteworthy that not all syntactically correct processes
are semantically meaningful. Indeed processes contain a
computation history composed of past interactions, stored in
the memories, and past variable scope, recorded by the νaΓ

constructs. History consistency cannot be easily enforced

statically1. For the present work it will suffice to consider
only the set of terms, called reachable, that contains the
obviously sound process ε � P and closed under the
operational semantics of Rπ.

2) Names, scope and substitutions: In a process R, a
channel a can be bound (a ∈ bn(R)), free (a ∈ fn(R))
or liberated (a ∈ lib(R)). While free and bound names
are as usual, one may think of liberated names as channels
that used to be under the scope of a restriction that is no
longer there because of an extrusion. They are the names
that fall under the scope of the construct νaΓ6=∅(R), which
then behaves as the "ghost" of a restriction in R with the
set Γ containing the identifiers of all the events that have
extruded the name a out of R.

Free and liberated names are defined inductively on the
structure of processes (+ and − denote classical operations
on sets, f(a) denotes either fn(a) or lib(a) whenever the
distinction is irrelevant):

f(νa∅R) = f(R)− a
(Γ 6= ∅) f(νaΓR) = f(R) + a
f(R ‖ S) = f(R) ‖ f(S)
fn(m � P) = names(m) + fn(P) lib(m � P) = ∅
fn(b(a).P) = b+ (fn(P)− {a})
fn(b〈a〉.P) = fn(P) + a+ b

with names(m) being all the names occurring in the mem-
ory m. It is obvious from the above definition that all
liberated names are free. As usual, names which are not
free in R are called bound.

The operational semantics of Rπ is built on top of the so
called "late" semantics of the π-calculus, where substitutions
on variables occur upon synchronization. Since substitutions
are forgetful operations that cannot be always reversed
correctly, we replace them with explicit substitutions that are
logged in the event labels (see Section II-B2). We will also
see that a process communicating on a liberated channel, has
to make an assumption on the identity of the event that made
the channel public (via an extrusion), called its contextual
cause. Since the initial assumption can be made more precise
while more structure of the process is revealed by the LTS,
the contextual cause may also be updated in a "late" fashion.
We thus need to define the following special substitutions
on processes:

Definition 2.1: The synchronization update, denoted by
R[a/c]@i, replaces the partial substitution [?/c] with the
complete substitution [a/c] at the event identified by i, it
is defined as:

(R ‖ S)[a/c]@i = R[a/c]@i ‖ S[a/c]@i

(νaΓR)[a/c]@i = νaΓ(R[a/c]@i)
(〈i, _, b[?/c]〉.m � P)[a/c]@i = 〈i, _, b[a/c]〉.m � P
(m � P)[a/c]@i = m � P otherwise

1We believe it should be possible to enforce consistent history through
a careful typing system, but we leave this point for future investigations.

The contextual cause update, denoted by R[k/k′]@i proceeds
similarly but substitutes the old cause k′ for a new one:

(R ‖ S)[k/k′]@i = R[k/k′]@i ‖ S[k/k′]@i

(νaΓR)[k/k′]@i = νaΓ(R[k/k′]@i)
(〈i, k′, _〉.m � P)[k/k′]@i = 〈i, k, _〉.m � P
(m � P)[k/k′]@i = m � P otherwise

3) Memories and events: We will use the following
intuitive notations: we write m ∈ R if there exists a context
C[•] such that R = C[m � P]. Similarly we write e ∈ R
when there is m ∈ R such that m = m1.e.m0 for some
(possibly empty) m1 and m0. Finally for all i ∈ I we write
i ∈ R if there exists e ∈ R such that id(e) = i or c(e) = i.

There are 3 relations between events that we need to
consider.

Definition 2.2 (Relations on events): Let R be a process,
we define the following relations on events of R.
• Structural causal relation: e′ <R e if there exists m ∈
R such that m = m2.e.m1.e

′.m0 for some (possibly
empty) m2,m1,m0.

• Contextual causal relation: e′ ≺R e if c(e) = id(e′).
• Instantiation relation: e′ ;R e if e′ <R e and λ(e′) =
b[a/c], for some name a, b, c and c is in subject position
in λ(e). Furthermore for all memory m and all e ∈ m,
such that e = 〈i, k, b[a/c]〉, we write instm(c) = i for
the identifier of the event e in m that instantiates c.
Note that there is at most one such event in m. If no
such event exists in m we write instm(c) = ∗.

Example 2.1: In the process

νa∅(νa{i1}(〈i1, ∗, b〈a〉〉.m1 � P1‖〈i2, i1, a〉.m2 � P2)

‖〈i2, ∗, c〉.〈i1, ∗, b[a/c]〉.m3 � P3)

we have:

〈i1, ∗, b[a/c]〉 < 〈i2, ∗, c〉 〈i1, ∗, b〈a〉〉 ≺ 〈i2, i1, a〉
〈i1, ∗, b[a/c]〉; 〈i2, ∗, c〉 inst〈i2,∗,c〉.〈i1,∗,b[a/c]〉.m3

(c) = i1

For any events e ∈ R and e′ ∈ R such that id(e) = i and
id(e′) = j, we use the overloaded notations i <R j, i ≺R j
or i ;R j, if e and e′ are in the corresponding relation.
Note that there are at most two events e and e′ such that
id(e) = id(e′), in which case (e, e′) forms a synchronization
pair.

B. Dynamics

1) Transitions and transition labels: The label ζ of a
transition t : R

ζ−→ S is a quadruple of the form (i, j, k) : γ
where i ∈ I − {∗} is the identifier of t, j ∈ I is the
instantiator of i and k ∈ I is the contextual cause of i.
The labels γ are built on the following grammar:

γ ::= α | α−
α ::= b(c) | b〈a〉 | b(νaΓ)

where b(νaΓ) corresponds to the bound output of the π
calculus, whenever Γ = ∅, and otherwise corresponds to
a free output, decorated with a set of event identifiers.

For all label γ of the form α or α−, we write subj (γ) = b
if α ∈ {b(c), b〈a〉, b(νaΓ)} for some a. We also write
bn(γ) = {a} whenever α = b〈νaΓ6=∅〉 for some b. A
transition is positive whenever its label is of the form α,
and negative if the label is of the form α−. It is derivable
if it can be obtained form the LTS presented in the next
section.

As we already hinted at, Rπ substitutions are not executed
directly but simply logged in event labels. As a consequence,
processes need to search in their memories for the public
name of a channel in order to check that a synchronization
is possible. Such operation is performed only on demand,
when a process is trying to reduce its prefix (see IN+ and
OUT+ axioms in Section II-B2).

Definition 2.3 (Public label): For all process of the form
m � π.P let m[π] be the public label of π. It is defined by
lexicographical induction on the pair (π,m):

ε[a] = a m[b(c)] = m[b](c) m[b〈a〉] = m[b]〈m[a]〉
(〈i, k, b[c/a]〉.m)[a] = c (〈i, k, b[?/a]〉.m)[a] = a
(〈↑〉.m)[a] = m[a] (e.m)[a] = m[a] otherwise

2) The labelled transition system (LTS): The labelled
transition system of Rπ can be divided into positive and
negative rules. The negative ones are derived from the
positive ones by inversion (see Definition 2.4). The positive
rules are:

IN+
i /∈ m j = instm(b)

m � b(c).P
(i,j,∗):m[b(c)]−−−−−−−−−→ 〈i, ∗, b[?/c]〉.m � P

OUT+
i /∈ m j = instm(b)

m � b〈a〉.P (i,j,∗):m[b〈a〉]−−−−−−−−−→ 〈i, ∗, b〈a〉〉.m � P

OPEN+
R

(i,j,k):α−−−−−→ R′ α = b〈a〉 ∨ α = b〈νaΓ′〉

νaΓR
(i,j,k):b〈νaΓ〉−−−−−−−−−→ νaΓ+iR

′

CAUSE REF+
R

(i,j,k):α−−−−−→ R′ a ∈ subj(α)

νaΓR
(i,j,k′):α−−−−−−→ νaΓR

′
[k′/k]@i

k = k′ or
∃k′ ∈ Γ k ;R k

′

COM+

R
(i,j,k):b〈a〉−−−−−−−→ R′ S

(i,j′,k′):b(c)−−−−−−−−→ S′

R ‖ S (i,∗,∗):τ−−−−−→ R′ ‖ S′[a/c]@i

k =∗ j
′

k′ =∗ j

CLOSE+

R
(i,j,k):b〈νaΓ〉−−−−−−−−−→ R′ S

(i,j′,k′):b(c)−−−−−−−−→ S′

R ‖ S (i,∗,∗):τ−−−−−→ νaΓ(R′ ‖ S′[a/c]@i)

k =∗ j
′

k′ =∗ j

with a 6∈ fn(S) whenever Γ = ∅

PAR+
R

(i,j,k):α−−−−−→ R′

R ‖ S (i,j,k):α−−−−−→ R′ ‖ S
bn(α) ∩ fn(S) = ∅, i /∈ S

MEM+
R ≡m S

ζ−→ S′ ≡m R′

R
ζ−→ R′

NEW+
R

ζ−→ R′

νaΓR
ζ−→ νaΓR

′
a /∈ ζ

with for all i, j ∈ I , i =∗ j if ∗ ∈ {i, j} or i = j.
Note that the complete positive LTS contains also the

symmetrical rules for the COM+, CLOSE+ and PAR+ rules
with respect to the ‖ operator. For lack of space, we do not
write them explicitly.

The backward rules are derived according to the following
definition:

Definition 2.4 (Inverting operation): Let α−1 = α− and
(α−)−1 = α. Let opp be the operation defined in a
functorial manner on labeled transition systems as:

opp(R
(i,j,k):γ−−−−−→ S) = S

(i,j,k):γ−1

−−−−−−−→ R

and

opp

 R
ζ−→ S

R′
ζ′−→ S′

 =
opp(R

ζ−→ S)

opp(R′
ζ′−→ S′)

opp

R1
ζ1−→ S1 R2

ζ2−→ S2

T
ζ′−→ T ′

 =

opp(R1
ζ1−→ S1) opp(R2

ζ2−→ S2)

opp(T
ζ′−→ T ′)

Side conditions are invariant. For all processs R, let
L+(R) = (R,→) be the positive LTS of R and L−(R) =
(R, opp(→)) its negative version. The reversible operational
semantics of R is defined as L(R) = L+(R) ∪ L−(R).

3) Discussion:
Axioms: IN+ and OUT+ add an event e into the memory

and apply the necessary substitutions on the transition label.
The event identifier is locally fresh, as ensured by the side
condition i /∈ m.

Name extrusion: In Rπ, the role of the Γ-restriction
νaΓ(R) is to act as a boundary that delimitates the past and
present scope of a in R. Intuitively any partial synchroniza-
tion (either input or output) on channel a emanating from
R needs to pick inside Γ an event identifier which will act
as a proof that some process in the context knows a. As
a consequence, if Γ = ∅ no partial synchronization on a
may cross this boundary and νa∅ behaves as a classical π-
calculus restriction. The role of the OPEN+ rule is to update

Γ each time a process in R is sending a to the context2 (see
also Example 2.2).

Importantly, because of possible successive extrusions, Γ-
restrictions may be nested inside each others. Each time a
partial synchronization on a liberated name crosses such
boundary, the LTS updates the contextual cause (ie. the
proof that a complete synch may eventually occur) that
was chosen so far. The role of the CAUSE REF+ rule is to
make sure a partial synchronization on a chooses a correct
contextual cause. Critically for the unicity of derivations (see
Proposition 3.2), the way a cause is updated is not arbitrary,
as indicated by the side condition of the CAUSE REF+ rule. In
a nutshell, when passing a Γ-restriction, a contextual cause k
may either be preserved if Γ ∈ k or replaced by any k′ ∈ Γ
such that k ;R k′. We will see that there always exists at
least a k′ ∈ Γ such that k ;R k

′ (see Propositions 3.4 and
3.6) so the CAUSE REF+ rule is never blocking if Γ 6= ∅.

Synchronizations: Two partial synchronizations may
compose only if they agree on the public channel name in
subject position (in the rule COM+ and CLOSE+ rules this
is channel b). Such public name is deduced in the LTS at
the level of the axiom applications. The side conditions of
both synch rules proceeds with the following intuition: if the
left premise of transition i learned the name b thanks to an
earlier communication j, then j 6= ∗ in the transition label.
There are then two cases for the right premise of transition i:
either k′ = ∗, in which case no assumption was made on the
contextual cause of this transition and the synchronization
may occur (since j =∗ ∗), or k′ 6= ∗. In the latter case, the
leftmost sub-derivation had to cross a Γ-restriction and one
must make sure that the chosen contextual cause k′ coincides
with the instantiator of the left derivation, ie. k′ = j. The
argument is symmetric if one starts with the instantiator of
the leftmost derivation.

Example 2.2: Consider the process (empty memory stacks and
empty π-processes are omitted):

R = νa∅
(
(b〈a〉‖c〈a〉)‖a

)
The following trace is derivable (we use integers for identifiers and
(i, j, k) : α is written i : α whenever j = k = ∗):

R
1:b〈νa∅〉−−−−−→ νa1

(
(〈1, ∗, b〈a〉〉‖c〈a〉)‖a

)
2:c〈νa1〉−−−−−→ νa{1,2}

(
(〈1, ∗, b〈a〉〉‖〈2, ∗, c〈a〉〉)‖a

)
= R′

There are now two possibilities to reduce the rightmost prefix
a of R′: the first one assuming that event 1 is the reason why
a is "known" in the context, and the other one making the
complementary assumption, namely that event 2 is the culprit. This
yields the following two derivable transitions from R′:

R′
(3,∗,1):a−−−−−→ νa{1,2}

(
(〈1, ∗, b〈a〉〉‖〈2, ∗, c〈a〉〉)‖〈3, 1, a〉

)
= T1

R′
(3,∗,2):a−−−−−→ νa{1,2}

(
(〈1, ∗, b〈a〉〉‖〈2, ∗, c〈a〉〉)‖〈3, 2, a〉

)
= T2

2Conversely, OPEN- will decrease the number of identifiers in Γ in order
to take into account the fact that there is one less extruder for a.

Notice here that T1 (resp. T2) may rollback event 2 (resp. event
1) while event 1 (resp. event 2) is backward blocked: indeed it

is impossible to derive T1
1:b〈a〉−−−−−−→ since the PAR- rule would

require 1 6∈ 〈2, ∗, c〈a〉〉)‖〈3, 1, a〉. In fact, we will see Section III
that backtracking respects both contextual and structural causes.

In order to illustrate how synchronization is compositionally
defined, let us consider the above derivations in a context where
R is in parallel with S = b(d).d̄. From S one may derive the
following transition, that complements event 1:

S
1:b(d)−−−→ 〈1, ∗, b[?/d]〉 � d̄

Using the CLOSE+ rule, one may now compose both transitions
identified by 1 (since ∗ =∗ ∗) and one gets:

(R‖S)
1:τ−−→ νa∅

(
νa1

(
〈1, ∗, b〈a〉〉‖c〈a〉‖a

)
‖〈1, ∗, b[a/d]〉 � d̄

)
2:c〈νa1〉−−−−−→
νa2

(
νa{1,2}

(
〈1, ∗, b〈a〉〉‖〈2, ∗, c〈a〉〉‖a

)
‖〈1, ∗, b[a/d]〉 � d̄

)
using the PAR+ rule for the second transition. Now recall that there
are two possible derivations from S in order to reduce the a prefix
at the center of the above term. However only the first one can be
composed with a transition on the d̄ prefix on the right, since d is
instantiated to a at event 1. Thus the only possibility3 is to use the
first derivation (with target T1) in the COM+ rule composed with
the derivation:

〈1, ∗, b[a/d]〉 � d̄
(3,1,∗):ā−−−−−→ 〈3, ∗, d̄〉.〈1, ∗, b[a/d]〉

the side condition of the COM+ rule being satisfied.

Other rules: The rule PAR+ ensure freshness for the
bound names and for the identifier i. In the PAR- rule, the
side condition i /∈ S prevents a part of a synchronization to
backtrack by itself. Rule MEM+- rewrites the process in a
form in which it can trigger a transition. Importantly only
the MEM- rule allows one to pop the 〈↑〉 symbol out of a
memory. This ensures that a child process cannot backtrack
below its spawning point, without reuniting first with its
sibling. Lastly, in rule NEW+ if Γ = ∅ the process cannot
do a transition that has the bound name a in its subject. If
Γ 6= ∅ then the side conditions forces the usage of rules
OPEN+-, CAUSE REF+-.

Not all side conditions are necessary for the backward
transitions, as most of them are in fact invariant of the history
consistency of processes. For simplifying the presentation
however we keep them in both directions.

III. PROPERTIES

After presenting some interesting properties of the LTS,
that may shed light on some subtle point of its behavior,
we show in Section III-B that the forward interpretation of
an Rπ process is strongly bisimilar to its projection in the
π-calculus. We then proceed, Section IV, with the proof that
the backtracking of Rπ is sound with respect to a notion of
trace equivalence. Before discussing and proving that this
notion of equivalence is optimal in the Section V,

3The second derivation from R′ is still applicable but can only be used
for a synchronization occurring later in the context of the process.

A. Basic properties

First of all we observe that every transition can be undone.
Proposition 3.1 (Loop): For R reachable and for every

forward transition t : R
γ−→ R′ there exists a backward

transition t′ : R′
γ−−−→ R, and conversely.

This is a trivial consequence of the symmetries of the
rules.

An interesting property of proof systems, is whether each
transition has a unique derivation. Given the complexity of
our rules, in particular the choice of the contextual cause
(rule CAUSE REF), it is not trivial that our system enjoys
such property. Not only it does, but it does in a stronger
sense for backward transitions.

Proposition 3.2: Two derivation trees have the same con-
clusion:

π1

R
ζ−→ S

π2

R
ζ−→ S

iff π1 = π2.
Proposition 3.3: Suppose we have two negative transi-

tions R
ζ−→ S1 and R

ζ−→ S2. Then S1 = S2.
The forward transitions do not have this property due to
the nondeterminism in the choice of the synchronization
partners. In the backward case, however, this form of non-
determinism disappears.

The following propositions emphasize some important
properties of well-formed terms, concerning Γ-restrictions
within processes. First we notice that in any T = C[νaΓR],
event identifiers in Γ correspond exactly to extruders of a
that occur in the memory of R.

Proposition 3.4: For all T = C[νaΓR] reachable, for
some context C[•], i ∈ Γ iff m1.〈i, _, f〈c〉〉.m2 ∈ R such
that m2[c] = a, and 〈i, _, d[a/e]〉 /∈ R.

Then we show that, in a reachable process, all νaΓ’s on
the same name a are nested.

Proposition 3.5: Let Γ,∆ 6= ∅. In T = C[νaΓ(R) ‖ S]
reachable, νa∆ /∈ S.

A liberated name a occurs in a process or in its memory
if the process was within the scope of the original νa∅ or if
a was received through a synchronization. This is formally
stated in the following Proposition.

Proposition 3.6: In T = C1[C2[νaΓR] ‖ S] reachable
and Γ 6= ∅, if a ∈ S then 〈i, _, d[a/c]〉 ∈ S, for some i ∈ Γ.

B. Correspondence with π-calculus

In Section II we have defined the reversible semantics
of an Rπ process R as the LTS engendered by the union
of L+(R), the positive LTS of R, and L−(R) its negative
version. In order to claim that Rπ is a reversible π-calculus
we need to prove that L+(ε � P), the positive interpretation
of a π process P in Rπ, is bisimilar to the LTS of P .

We need to define a function that translates a Rπ process
into a π calculus one, by:

• erasing the memories and νaΓ, with Γ 6= ∅, operators
from a process;

• applying the substitutions stored in the memories on
the process;

Definition 3.7: Let φ be a function that translates Rπ
processes into π, by applying all the substitutions and
erasing all νΓ6=∅ from the process.

φ(ε � P) = ε · P
φ(R ‖ S) = φ(R) | φ(S)
φ(νa∅R) = νaφ(R)
φ(νaΓ6=∅R) = φ(R)
φ(〈i, k, b[a/c]〉.m � P) = φ(m � P{a/c})
φ(e.m � P) = φ(m � P)otherwise

Proposition 3.8: (Strong bisimulation between forward
Rπ and its π-image)

1) If R
γ−→ S then φ(R)

γ−→ φ(S).
2) If T

γ−→ U and ∀R such that φ(R) = T , ∃S with
R

γ−→ S and φ(S) = U .
Propositions 3.8 can be extended to traces.
The operational correspondence is as follows:
Proposition 3.9: If P −→? Q and φ(R) = P then there

exists S such that R −→? S and φ(S) = Q.
Proof: Using the second part of Proposition ?? we have

that for each transition of a π process there exists one for
its Rπ correspondent. The result follows from induction on
the length of the trace.

Proposition 3.10: If ε � P −→? R then P −→? φ(R).
In practice, to better carry out the proofs, the translation

is split into two parts: first removing the tagged restrictions
and the memories, obtaining a π-calculs with explicit sub-
stitution. Then a second translation applies the substitutions.
More details can be found in the appendix.

IV. CORRECTNESS OF BACKTRACKING

In the introduction of this paper, we argued that we
wanted our notion of reversibility to be as liberal as possible.
As was already noted in RCCS [5] and subsequent work
on reversible process algebra [7], [8], backtracking a trace
should be allowed along any path that respects causality,
or, said otherwise, backtracking can be done along any path
that is causally equivalent to the path that was executed.

This property was formulated first in the work of the
reversible CCS as a combination of a loop lemma, stating
that any forward trace can be undone step by step, and a
fundamental property that ensures that any two coinitial and
cofinal trace are necessarily causally equivalent (see Fig. 1).

We already know that the loop property holds trivially
for Rπ (Proposition 3.1). It remains to check that Rπ traces
do exhibit the fundamental property, which depends on the
equivalence on traces that is induced by the semantics of
the language (denoted by ∼ in Fig. 1). For instance, the less

R
σ
((
S

σ−
ii + R

σ
((

γ
66 S iff γ ∼ σ

Figure 1. The conjunction of a loop property (left) and the fundamental
property (right) insures that after the forward trace σ, one may rollback to
R along a causally equivalent past γ−.

liberal backtracking policy is obtained when the fundamental
property holds only for equal traces.

This section follows closely the argument made in RCCS,
in the context of Rπ. We will see, in Lemma 4.3, that
Rπ transitions contain enough information to characterize
syntactically the concurrency and causality relations4. This
will let us characterize a notion of equivalence up-to permu-
tation on traces in Definition 4.4 and proof the fundamental
property for Rπ in Theorem 4.5. Later, in Section V, we
will also aruge that our notion of equivalence is, in a sense,
optimal for reversing the π-calculus.

As usual, the causal equivalence class of a path is con-
structed by permuting the transitions that are concurrent.
We proceed by defining the concurrency relation between
transitions as the complement of causality.

Definition 4.1 (Traces): Two transitions, t and t′ are com-
posable (denoted by t; t′,) if the target process of t is the
source process for t′. A trace, denoted by R

w−→ S is a
composition of transitions, with w = (ζi)

?. The empty trace
is denoted by ε. Two traces are coinitial if they start from
the same process and cofinal if they end in the same process.

Definition 4.2 (Causality and concurrency): Let
t1 : R

(i1,j1,k1):γ1−−−−−−−−→ S and t2 : S
(i2,j2,k2):γ2−−−−−−−−→ T be

two transitions, where t1 6= opp(t2). We say that t1 is:
• a structural cause of t2, written t1 < t2, if i1 <T i2 or
i2 <R i1

• a contextual cause of t2, written t1 ≺ t2, if i1 ≺T i2
or i2 ≺R i1.

We simply say that t1 causes t2, written t1 < t2, if either
t1 < t2 or t1 ≺ t2. Otherwise we say that they are
concurrent.

Example 4.1: Consider the following trace (with the conven-
tions of Example 2.2):

νa∅(b〈a〉.a)
1:b〈νa∅〉−−−−−→ (2,∗,1):a−−−−−→ νa1(〈2, 1, a〉.〈1, ∗, b〈a〉〉)

where the first transition is both a structural and a contextual cause
of the second; and consider the trace:

νa∅(b〈a〉‖c〈a〉)
1:b〈νa∅〉−−−−−→
2:c〈νa1〉−−−−−→ νa{1,2}(〈1, ∗, b〈a〉〉‖〈2, ∗, c〈a〉〉)

where the two transitions are this time concurrent.

We need now showing that the above syntactic defini-
tion of concurrency indeed coincides with commutability

4In other terms, Rπ can be viewed as a Levy labeling [?] over the π-
calculus, as RCCS is a Levy labeling over CCS.

of transitions. We shall see that a particularity of Rπ is
that commutation of concurrent transitions may not always
be label preserving. However, commutation will be label
preserving up-to label equivalence =λ, defined as the least
equivalence relation on labels satisfying:

(i, j, k) : b(νaΓ) =λ (i, j, k) : b(νa∆)

for some Γ,∆ ⊂ I.
Lemma 4.3 (Square): Consider two consecutive transi-

tions t1 : R
ζ1−→ S1 and t2 : S1

ζ2−→ T . If t1 and t2 are

concurrent, there exist t′2 : R
ζ′2−→ S2 and t′1 : S2

ζ′1−→ T ,
with ζi =λ ζ

′
i, such that the following diagram commutes:

R
ζ1

~~~~
~~

~~
~~ ζ′2

  A
A

A
A

S1

ζ2   A
AA

AA
AA

S2

ζ′1~~~
~

~
~

T

Following the standard notation, we say that t2 is the
residual of t′2 after t1 and write t2 = t′2/t1.

Example 4.2: Back to Example 4.1, swapping the two concur-
rent transitions one obtains:

νa∅(b〈a〉‖c〈a〉)
2:c〈νa∅〉−−−−−→
1:b〈νa1〉−−−−−→ νa{1,2}(〈1, ∗, b〈a〉〉‖〈2, ∗, c〈a〉〉)

Definition 4.4 (Equivalence up-to permutation): Let ∼
be the least equivalence relation on traces satisfying:

t1; (t2/t1) ∼ t2; (t1/t2) t; opp(t) ∼ ε opp(t); t ∼ ε

We can now state the fundamental property which proves
that backtracking respects the causality induce by Rπ.

Theorem 4.5 (Fundamental property): Two traces are
coinitial and cofinal if and only if they are equivalent.

The reader aware of the work on non interleaving seman-
tics for the π-calculus may have noticed that our seman-
tics allows more transitions to commute than the standard
ones [9], [10]. This is enabled by the fact that we let
commutation preserve label up-to =λ, which amounts to
saying that the same event may have two (slightly) different
labels. We will come back formally to this important point in
the Section V. In the meantime, we conclude this Section by
a sanity check ensuring that the positive LTS of Rπ coincides
with the late semantics of the π-calculus.

V. CAUSALITY

In the following we consider only the forward computa-
tions of our reversible semantics, and use them to define a
causal semantics for the π calculus.

As we have remarked in the introduction, we believed that
in a closed system (ie where only reductions are observed)
the only notion of causality is the structural one, the one



induced by the precedence operator. In fact, for reductions,
contextual causality is hidden behind structural causality:

Proposition 5.1: Let t1 : R
(i1,∗,∗):τ−−−−−−→ S and t2 :

S
(i2,∗,∗):τ−−−−−−→ T . If t1 and t2 are causal then t1 <T t2.
We want to justify contextual causality between labelled

events as an "anticipation" of the structural causality between
the reductions these events will generate. Or, dually, that
if two labelled events are concurrent, then it is possible
from them to generate two concurrent reductions. In order to
formalize this intuition, given a process and one computation
trace, we need a notion of reduction context, that provides a
synchronizing partner for every non-τ transition in the trace
(see Proposition 5.4).

Then the main result of this Section (Theorem 5.5) is that
two non-τ transitions are concurrent if and only if there
exists a reduction context that preserves concurrency.

We introduce the projections that are then used to retrieve
from a synchronization its two composing transitions.

Proposition 5.2: If t : R
(i,∗,∗):τ−−−−−→ S then there exists

at most one context C[•] such that t : C[R1‖R2]
(i,∗,∗):τ−−−−−→

C ′[S1‖S2] with Rq 6= Sq, q ∈ {1, 2}.
Definition 5.3: The projections to the left and to the right

of a transition t are defined as follows:
• if t : C1[R1‖R2]

(i,∗,∗):τ−−−−−→ C2[S1‖S2] with Rq 6=
Sq, q ∈ {1, 2} then

πl(t) : R1
(i,j,k):α−−−−−→ S1 πr(t) : R2

(i,j′,k′):α−−−−−−→ S2,

where 〈i, k, α〉 ∈ S1 and j ;R1
i (similar for j′, k′).

• otherwise, πl(t) = πr(t) = t.
Proposition 5.4 (Reduction contexts): Given a trace

R0
(i1,j1,k1):α1−−−−−−−−→ R1...

(in,jn,kn):αn−−−−−−−−−→ Rn

∃C[•] such that C[R0] = R′0
(i1,∗,∗):τ−−−−−−→ R′1...

(in,∗,∗):τ−−−−−−→ R′n
for some R′1, .., R

′
n and, for q ∈ {0, .., n}:

• if αq 6= τ then ∃x, πx(R′q
(iq,∗,∗):τ−−−−−−→ R′q+1) =

Rq
(iq,jq,kq):αq−−−−−−−−→ Rq+1

• if αq = τ then ∃C ′[•] such that R′q = C ′[Rq], R
′
q+1 =

C ′[Rq+1].
Example 5.1: Let us consider the process R = νa∅(ε �

b〈a〉‖ε � a) with the trace

R
(i1,∗,∗):b〈νa∅〉−−−−−−−−−→ (i2,∗,i1):a−−−−−−→ S

A reduction context for R is C[•] = [•]‖ε � b(u).u. The
trace becomes

C[R]
(i1,∗,∗):τ−−−−−−→ (i2,∗,∗):τ−−−−−−→ C ′[S]

with i1 ≺S i2 and i1 <C′[S] i2.
In the Theorem below we build a reduction context that

preserves concurrency. The reverse says that all reduction
contexts preserve causality.

Theorem 5.5: Let t1 and t2 be two transitions such that

t1 : R
(i1,j1,k1):α1−−−−−−−−→ S t2 : S

(i2,j2,k2):α2−−−−−−−−→ T.

t1 and t2 are concurrent ⇐⇒ ∃ a reduction context C[•]
such that

t′1 : C[R]
(i1,∗,∗):τ−−−−−−→ S′ t′2 : S′

(i2,∗,∗):τ−−−−−−→ T ′

with t′1 and t′2 concurrent.
Example 5.2: Let us consider the π calculus process P =

νa(b〈a〉 | c〈a〉 | a) with the trace P
b〈νa〉−−−→ c〈νa〉−−−→ a−→ Q. A

reduction context for P is C[•] = [•]|b(u).u|c(v).v and we
have C[P ]

τb−→ τc−→ τa−→ Q′. Remark that the transitions τb and
τc are concurrent and that we can interchange them in the
trace.

The last synchronization on channel a corresponds to
two different events: one engendered by the substitution
on u and another by the substitution on v. In Rπ, the
corresponding events choose as cause the transition on b
and on c respectively. We can represent all the commutative
transitions for P as follows:

b〈νa〉

����
��

��
�

c〈νa〉

��?
??

??
??

ab

����
��

��
�

c〈a〉 ��?
??

??
??

b〈a〉

����
��

��
�

ac

��?
??

??
??

c〈a〉 ��?
??

??
??

ac

����
��

��
�

ab

��?
??

??
??

b〈a〉����
��

��
�

Depending on the choice of cause we can reach two distinct
processes, that allow then different backward paths.

[To Be Continued]

VI. CONCLUSION

The semantics of π calculus we defined guarantees that
events have each a unique causal history. We believe that
we can then find a correspondance between Rπ and events
structure and thus introduce reversibility in event structures.

Another interesting continuation of our work consists
in presenting the causality relation of π calculus using
the abstract interpretation tools. The reduction context and
closed trace of section V can be seen as concretizations for
the open process and trace, respectively. The concretization
is then a under-approximation of the concurrency relation
between transitions.

Lastly, we are also interested in defining a meaningfull
equivalence relation for reversible processes. The weak
bisimulation, usually employed in π calculus, is no longer
useful in a reversible context. As noted by [8], a reversible
process is weakly bisimilar to some of its derivatives.
However, we believe that our compositional semantics can
be used as a starting point in defining an interesting bisim-
ulation between reversible processes.



ACKNOWLEDGMENTS

We thank Ilaria Castellani.

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the com-
puting process,” IBM Journal of Research and Development,
vol. 5, pp. 183–191, 1961.

[2] L. Bougé, “On the existence of symmetric algorithms to find
leaders in networks of communicating sequential processes,”
Acta Inf., vol. 25, no. 2, pp. 179–201, 1988.

[3] R. D. Nicola, U. Montanari, and F. Vaandrager, “Back and
forth bisimulations,” in Proceedings of CONCUR’90, ser.
LNCS, vol. 458, 1990, pp. 152–165.

[4] V. Danos and J. Krivine, “Transactions in RCCS,” in In Proc.
of CONCUR, LNCS 3653. Springer, 2005, pp. 398–412.

[5] ——, “Reversible communicating systems,” in Proceedings
of 15th CONCUR, ser. Lecture Notes in Computer Science,
vol. 3170. Springer, 2004, pp. 292–307.

[6] I. Phillips and I. Ulidowski, “Reversing algebraic process
calculi,” in Proceedings of FOSSAC’06, ser. LNCS, vol. 3921,
2006, pp. 246–260.

[7] ——, “Reversibility and models for concurrency,” Electr.
Notes Theor. Comput. Sci., vol. 192, no. 1, pp. 93–108, 2007,
proceedings of SOS 2007.

[8] I. Lanese, C. A. Mezzina, and J.-B. Stefani, “Reversing
higher-order pi,” in Proceedings of 21st CONCUR, ser. Lec-
ture Notes in Computer Science, vol. 6269. Springer, 2010,
pp. 478–493.

[9] M. Boreale and D. Sangiorgi, “A fully abstract semantics for
causality in the π-calculus,” Acta Inf., vol. 35, no. 5, pp. 353–
400, 1998.

[10] P. Degano and C. Priami, “Non-interleaving semantics for
mobile processes.” Theor. Comp. Sci., vol. 216, no. 1-2, pp.
237–270, 1999.

[11] S. Crafa, D. Varacca, and N. Yoshida, “Event structure
semantics of the parallel extrusion in the pi -calculus,” in
Proceedings of 23rd CONCUR, ser. Lecture Notes in Com-
puter Science. Springer, 2012, accepted.

[12] D. Hirschkoff, “Handling substitutions explicitely in the pi-
calculus.”

[13] P. Gardner and L. Wischik, “Explicit fusions,” in Proceedings
of the 25th International Symposium on Mathematical Foun-
dations of Computer Science, ser. MFCS ’00. London, UK:
Springer-Verlag, 2000, pp. 373–382.

[14] G. L. Ferrari, U. Montanari, and P. Quaglia, “A pi-calculus
with explicit substitutions: the late semantics,” in Proceedings
of the 19th International Symposium on Mathematical Foun-
dations of Computer Science 1994, ser. MFCS ’94. London,
UK: Springer-Verlag, 1994, pp. 342–351.

VII. ANNEXES

A. Graphical representation of the information flow

In the following we show a graphical representation of a
Rπ process in which we use annotated boxes to represent the
scope of a restriction. For simplicity, we consider that the
process has one liberated name. Extrusions are represented
as arrows, which are decorated with the identifier of the tran-
sition. The transitions that are using the name in subject are
represented as fragments on which we write their contextual
cause in parathensis. A first example is given in Figure 2.

Γ
i

(i)

Figure 2. A simple example

In the following we ignore the empty memories and
processes. We consider the following process, as an example
R = νa∅(b〈a〉 | c〈a〉‖a)‖b(e).(d〈e〉‖e) and we draw its
transitions.

Let R 1:τb−−→ R′ = νa∅(νa1(S)‖〈1, ∗, b[a/e]〉 � (d〈e〉‖e)),
with S = (〈1, ∗, b〈a〉〉 � 0‖c〈a〉‖a), represented by the
Figure 3. We have two boxes, corresponding to the two

{1}

∅

S
1

Figure 3. The synchronization on b

restrictions on a. The synchronization on b is represented
by the dot.

The process then does two extrusion of a: on channel c
and on on channel d (due to the substitution [a/e])

R′
2:τc−−→ 3:τd−−→ R′′ = νa2,3(νa1,2(a)‖〈1, ∗, b[a/e]〉 � e)

shown in Figure 4, where event 3 has as instantiator event
1, represented by the dotted line.

{1,2}

{2,3}

21

3

Figure 4. The extrusions on c and d

Let us now do the synchronization on channel a: R′′ 4:τa−−→
T . We have the Figure 5. We can see that if a fragment exits
the box it then has to choose a cause, that is a path back



{1,2}

{2,3}

21

3

(1)

Figure 5. The synchronization on a

into the box. Paths are then build out of synchronizations and
instantiations of names, the two representing the information
flow.

Consider now that we do the transition on channel e,
which after the substitution becomes a. We have that
R′′

(4,1,3):a−−−−−→ νa2,3(νa1,2(a)), shown in Figure 6. We can

{1,2}

{2,3}

21

3

(3)

Figure 6. The transition on e

see that the instantiator of event 4 is the event 1. In order
for the transition to exit the scope of the restriction νa2,3

it has to choose a cause. In other words, event 4 is a
synchronization occuring somewhere outside of the box
where the synchronizing partner of e is a name instantiated
by event 3.

We conclude with the transition: R′′
(4,∗,3):a−−−−−→

νa2,3(νa1,2(0)‖〈1, ∗, b[a/e]〉 � e) where channel a is
used in a synchronization outside the box. Initially the
transitions picks as cause event 1, in order to exit the
smaller box. It is then allowed to change its cause from 1
to 3, since event 3 has 1 as its instantiator. The transition
is represented in Figure 7.

{1,2}

{2,3}

21

3

(1)

(3)

Figure 7. The transition on a

B. Proofs of section III

Proposition 7.1: Let R
(i,j,k):α−−−−−→ S. ∀m ∈ R

• either m ∈ S
• or ∃e, e.m ∈ S with id(e) = i.

Proposition 7.2: Let R
(i,j,k):α−−−−−−−→ S. ∀m ∈ S

• either m ∈ R

• or ∃e, e.m ∈ S with id(e) = i.

Proposition 7.3: In R
(i,j,k):b〈νaΓ〉−−−−−−−−→ S, ∃C such that R =

C[νaΓR
′]. Similarly, in R

(i,j,k):b〈νaΓ〉−−−−−−−−−−−→ S, ∃C such that
S = C[νaΓR

′].
Proposition 7.4: If R = C[νaΓ′R

′], then a transition that
has a as the object of an output is necessarily of the form

R
(i,j,k):b〈νaΓ〉−−−−−−−−→ S.

Proposition 7.5: Let R
(i,j,k):γ−−−−−→ S and ns(α) = a. R =

C[νaΓR
′] ⇐⇒ k 6= ∗.

Lemma 3.4 For all T = C[νaΓR] reachable, for some
context C[], i ∈ Γ iff m1.〈i, _, f〈c〉〉.m2 ∈ R such that
m2(c) = a, and 〈i, _, d[a/e]〉 /∈ R.

Proof: Suppose that i ∈ Γ. We reason by induction on
the trace (ε � P ) −→? T .
• the base case: in ε � P the property is true.
• the inductive case: consider the trace

ε � P −→ ... −→ T ′ −→ T

where the property is true for T ′. We have to show that
it is preserved for ∀a,Γ, R such that T = C[νaΓR].
We reason by induction on the derivation tree of T ′ −→
T :

– rule PAR+:

R0
(i,j,k):α−−−−−→ R1

R0 ‖ S0
(i,j,k):α−−−−−→ R1 ‖ S0

The property is true for R0 ‖ S0 hence it is also
true for R0, S0 and by induction for R1. Therefore
it is true for R1 ‖ S0.

– rule OPEN+:

R0
(i,j,k):α−−−−−→ R1 α = b〈a〉 ∨ α = b〈νaΓ′〉

νaΓR0
(i,j,k):b〈νaΓ〉−−−−−−−−→ νaΓ+iR1

The property is true in νaΓR0. Then it is true
also in R0: if R0 = C[νaΓ′R

′
0] then νaΓR0 =

C ′[νaΓ′R
′
0].

By induction, we have that R1 respects the prop-
erty. It remains to show that the property is
preserved for νaΓ+iR1 (with C = []). For all
i′ ∈ Γ the property is satisfied by induction. Due to
transition on α and by proposition 7.1 we have that
〈i, _, f〈c〉〉.m ∈ R1, m(f) = b,m(c) = a which
satisfies the property for i.

– rule CLOSE+:

R0
(i,j,k):b〈νaΓ〉−−−−−−−−→ R1 S0

(i,j′,k′):b(u)−−−−−−−−→ S1

R0 ‖ S0
(i,?,?):τ−−−−−→ νaΓ(R1 ‖ S1[a/u]@i)

The property is true for R0 ‖ S0, hence for R0

and S0 as well. By induction it is true for R1 and
S1. Moreover, because of the transition on b〈νaΓ〉



and from proposition 7.3, we have that ∃C ′ such
that R0 = C ′[νaΓR

′
0]. Hence ∀i ∈ Γ there is a

corresponding extruder in the memory of R0. The
transition is forward and therefore none of these
extruders are removed from the memory.
We can the conclude that in νaΓ(R1 ‖ S1) the
property is true.

– rule OPEN-:

R0
(i,j,k):α−−−−−−−→ R1 α = b〈a〉 ∨ α = b〈νaΓ′〉

νaΓ+iR0
(i,j,k):b〈νaΓ〉−−−−−−−−−−−→ νaΓR1

By induction, the property is true for νaΓ+iR0.
The transition removes the memory entry corre-
sponding to i (according to proposition 7.2), hence
the property is true for νaΓR1.

Similar for the rest of the rules.
We still have to show that, in T = C[νaΓR], if

m1.〈i, _, f〈c〉〉.m2 ∈ R such that m2(c) = a, and
〈i, _, d[a/e]〉 /∈ R then i ∈ Γ. As above, we reason by
induction on the trace (ε � P ) −→? T . For ε � P , there is
nothing to prove since the memory is empty. For the induc-
tive case, we have the trace: ε � P −→ ... −→ T ′ −→ T
and we consider the transition T ′ −→ T = C[νaΓR], on
which we reason by induction.
• rule OPEN+:

R0
(i,j,k):α−−−−−→ R1 α = b〈a〉 ∨ α = b〈νaΓ′〉

νaΓR0
(i,j,k):b〈νaΓ〉−−−−−−−−→ νaΓ+iR1

which adds 〈i, _, f〈c〉〉(from proposition 7.1) into the
memory and we have that i ∈ Γ + i.

• rule OPEN-:

R0
(i,j,k):α−−−−−−−→ R1 α = b〈a〉 ∨ α = b〈νaΓ′〉

νaΓ+iR0
(i,j,k):b〈νaΓ〉−−−−−−−−−−−→ νaΓR1

We have to ensure that for all extruders in the memory
of R1, there is a corresponding identifier in Γ. It follows
from proposition 7.2 that the backward transition on α
removes the memory entry corresponding to i.

• rule CLOSE+ is not possible because of the constraint
〈i, _, d[a/e]〉 /∈ R.

For the rest of the rules, the result follows from induction.

Lemma 3.5 Let Γ,Γ′ 6= ∅. In T = C[νaΓR | S]
reachable, νaΓ′ /∈ S.

Proof: We reason by induction on the trace that leads
to T : ε � P −→ ... −→ T ′ −→ T . The base case is trivial
since ∀νaΓ ∈ P , Γ = ∅. For the inductive case, we have
that, in T ′ −→ T , the property is true for T ′. We have to
show that it is preserved in T . We reason by induction on
the derivation tree of the transition:

• rule PAR+:

R0
γ−→ R1

R0 ‖ S0
γ−→ R1 ‖ S0

where the property is satisfied in R0 ‖ S0. We distin-
guish the following cases:

– νaΓ /∈ R0, S0 we have nothing to prove;
– νaΓ ∈ R0, then by induction νaΓ′ /∈ S0. The

property is preserved in R1, hence it is true also
in R1 ‖ S0.

– νaΓ ∈ S0 and νaΓ′ /∈ R0. Remember that Γ,Γ′ 6=
∅. For the property to be satisfied in R1 ‖ S0, we
have to show that νaΓ′ /∈ R1.
Suppose that νaΓ′ ∈ R1. Then necessarily νa∅ ∈
R0 and the transition is on γ = b〈νa∅〉. But the
side condition of the rule PAR+: bn(γ)∩ fn(S0) =
∅ is then not satisfied, and we reach a contradiction.

• rule COM+:

R0
(i,j,k):b〈d〉−−−−−−−→ R1 S0

(i,j′,k′):b(c)−−−−−−−−→ S1

R0 ‖ S0
(i,?,?):τ−−−−−→ R1 ‖ S1[d/c]@i

As above, we distinguish on the process which contains
νaΓ:

– νaΓ /∈ R0, S0 we have nothing to prove;
– νaΓ ∈ R0, hence νaΓ′ /∈ S0, with Γ,Γ′ 6= ∅. If
d = a then the transition on R0 is not correct (from
proposition 7.3), hence the rule cannot be applied.
Therefore d 6= a. But then νaΓ′ /∈ S1 either since
the transition does not have a as object. Therefore
the process T = R1 ‖ S1 satisfies the property.

– νaΓ ∈ S0, similar to above.
Straightforward for the rest of the rules.

Lemma 3.6 In T = C1[C2[νaΓR] ‖ S] reachable and
Γ 6= ∅, if a ∈ S then 〈i, _, d[a/c]〉 ∈ S, i ∈ Γ.

Proof: We reason by induction on the trace (ε �

P ) −→? T . For ε � P , the property follows from the fact
that ∀νaΓ ∈ P , Γ = ∅. For the inductive case, we have the
trace: ε � P −→ ... −→ T ′ −→ T and we consider the
transition T ′ −→ T = C1[C2[νaΓR] ‖ S], on which we
reason by induction. The only interesting case corresponds
to rule CLOSE+:

R0
(i,j,k):b〈νaΓ〉−−−−−−−−→ R1 S0

(i,j′,k′):b(c)−−−−−−−−→ S1

R0 ‖ S0
(i,?,?):τ−−−−−→ νaΓ(R1 ‖ S1[a/c]@i)

a /∈ S0

The transition adds the entry 〈i, _, d[a/c]〉 to the memory
of S1 with m(d) = b. Using proposition 7.3 we have that
νaΓ′ ∈ R1. Hence the property holds for νaΓ(R1 ‖ S1).

For the rest of the cases the result follows from induction.



Lemma 3.2 Two derivation trees have the same conclu-
sion:

π1

R
ζ−→ S

π2

R
ζ−→ S

iff π1 = π2.
Proof: If π1 = π2 then it is trivial to show that

both derivations reach the same conclusion. For the other
direction, we proceed by induction on the derivation tree of
a transition R

ζ−→ S. We show that for each rule, there is
only one premise possible.
• rule OPEN+:

π1

νaΓR
(i,j,k):b〈νaΓ〉−−−−−−−−→ S

For the transition on b(νaΓ) from νaΓR only rule
OPEN+ applies and we have that S = νaΓ+iS

′ . Then
the rules become:

R
(i,j,k):α1−−−−−−→ S′ α1 = b〈a〉 ∨ α1 = b〈νaΓ′〉

νaΓR
(i,j,k):b〈νaΓ〉−−−−−−−−→ νaΓ+iS

′

It remains to show that α1 = α2. Let us suppose that
α1 = b〈a〉. Then from proposition 7.4 6 ∃C[] such that
R = C[νaΓ′R

′]. By proposition 7.3 it follows that
α2 = b〈a〉. Similarly, if α1 = b〈νaΓ′〉. Then α1 = α2

and the two premises coincide.
• rule CAUSE REF+:

π1

νaΓR
(i,j,k):α−−−−−→ S

a ∈ subj(α)

Notice that indeed for such a transition only rule CAUSE
REF+ applies. Then S = νaΓS

′
[k/k1]@i = νaΓS

′
[k/k2]@i

with

R
(i,j,k1):α−−−−−−→ S′

νaΓR
(i,j,k):α−−−−−→ νaΓS

′
[k/ki]@i

a ∈ subj(α), k ∈ Γ, ki = k ∨ ki ;R k

with i ∈ {1, 2}. We have to show that k1 = k2.
We have that k ∈ Γ and, by Lemma 3.4, that
∃m1.〈k, _, f〈c〉〉.m2 ∈ R with m2(c) = a. We dis-
tinguish the cases:

– if ∃νaΓ′ ∈ R we have, by Lemma 3.5, that k ∈ Γ′.
Hence k1 = k2 = k.

– otherwise we have the cases:
∗ c = a then the constraints k1 ;R k and k2 ;R

k are met only if k1 = k2 = ? which follows
from Proposition 7.5.

∗ c 6= a then ∃〈k′, _, d[a/e]〉 ∈ m2. Then k′ ;R

k. Such a k′ is unique since there is only one
substitution per name. Hence k1 = k2 = k′.

• rules COM+, CLOSE+ are similar:

π1

R ‖ S (i,?,?):τ−−−−−→ T

If ∃νaΓ′ ∈ R, by proposition 7.4 the output has as
object νaΓ and only rule CLOSE+ applies. If 6 ∃νaΓ′ ∈
R, then it follows that only rule COM+ applies. Let us
study the latter. We have that T = R′ ‖ S′[a/c]@i in

R
(i,j,ki):b〈a〉−−−−−−−→ R′ S

(i,j′,k′i):b(c)−−−−−−−−→ S′

R ‖ S (i,?,?):τ−−−−−→ R′ ‖ S′[a/c]@i

ki =∗ j
′, k′i =∗ j

It remains to show that k1 = k2. We have the cases:
– If b is a free name then, by proposition 7.5, k1 =
k′1 = ? and k2 = k′2 = ?.

– If b is a liberated name then, from Lemma 3.5 we
deduce that either k1 = ? or k′1 = ? but not both.
Hence one of the two conditions, k1 =∗ j

′ and
k′1 =∗ j, is trivially true (and similar for k2). Let
us suppose that k′1 = ?. Then k′2 = ? as well and
k1, k2 6= ?. In order to satisfy the side condition,
then necessarily k1 = k2 = j′.

Similar for the rest of the rules.

Lemma 3.1 For R reachable and for every forward
transition t : R

γ−→ R′ there exists a backward transition
t′ : R′

γ−−−→ R, and conversely.
Proof: We reason by induction on derivation tree of the

transition t : R
γ−→ R′ in one direction, and on t : R′

γ−→ R
for the converse. Trivial since the rules are symmetric for
the forward and backward direction.

C. Proofs of section V

Proposition 7.6: In t1 : R
(i1,j1,k1):γ1−−−−−−−−→ S and t2 :

S
(i2,j2,k2):γ2−−−−−−−−→ T , if {i1, i2} ∩ {k1, k2} 6= ∅ then i1 ≺T

i2 ∨ i2 ≺R i1.
Lemma 4.3 Let t1 : R

(i1,j1,k1):γ1−−−−−−−−→ S1 and t2 :

S1
(i2,j2,k2):γ2−−−−−−−−→ T be two transitions that are not causal.

Then there exists t′2 : R
(i2,j2,k2):γ′2−−−−−−−−→ S2 and t′1 :

S2
(i1,j1,k1):γ′1−−−−−−−−→ T , where γi =λ γ

′
i:

R

γ1~~~~
~~

~~
~

γ′2

  @
@

@
@

S1

γ2

  @
@@

@@
@@

S2

γ′1~~~
~

~
~

T



Proof: The grammar of a Rπ process is T :=
νãΓ(S ‖ T ). Then we can rewrite R as

R = νã0Γ0
(T0 ‖ νã1Γ1

(T1 ‖...νãkΓk
(R1 ‖ R2)))

such that t1 involves at least a thread in R1 and t2 at least
one in R2. We reason by cases on whether t1 and t2 are
synchronizations.

1) Suppose that neither t1 nor t2 are synchronizations.
Since the transitions are not structural causal they
involve separate threads. We have that

S1 = νã′0Γ′0
(T0 ‖ νã′1Γ′1

(T1 ‖...νã′kΓ′k
(R′1 ‖ R2)))

S2 = νã′′0Γ′′0
(T0 ‖ νã′′1Γ′′1

(T1 ‖...νã′′kΓ′′k
(R1 ‖ R′2))).

Therefore, whenever one of the two processes triggers
a transition, the only modifications can appear in the
process itself or in the νãiΓi

. We proceed by induction
on the structure of the process. In the inductive case

we have to show that if R
ζ1−→ S1

ζ2−→ T and R
ζ′2−→

S1
ζ′1−→ T then the following holds

•

νãΓ(R)
ζ1−→ νb̃∆(S1)

ζ2−→ νã′Γ′(T ) and

νãΓ(R)
ζ′2−→ νb̃′∆′(S2)

ζ′1−→ νã′Γ′(T )

•

Ti‖R
ζ1−→ Ti‖S1

ζ2−→ Ti‖T and

Ti‖R
ζ′2−→ Ti‖S2

ζ′1−→ Ti‖T

Both subcases above are straightforward. It remains to
show the base case of the induction, that is if

νãΓ(R1 ‖ R2)
ζ1−→ νb̃∆(R′1 ‖ R2)

ζ2−→ νã′Γ′(R
′
1 ‖ R′2)

then

νãΓ(R1 ‖ R2)
ζ′1−→ νb̃′∆′(R1 ‖ R′2)

ζ′2−→ νã′Γ′(R
′
1 ‖ R′2).

We only consider transitions that modify ã or Γ that
is those derived using rules OPEN+-. We proceed by
cases on the rules that we can apply for t1 and t2
when any of them uses rule OPEN+-.
• we apply rule OPEN+ on both t1 and t2:

νaΓ(R1 ‖ R2)
(i1,j1,k1):b〈νaΓ〉−−−−−−−−−−−→ νaΓ+i1(R′1 ‖ R2)

(i2,j2,k2):c〈νaΓ+i1
〉

−−−−−−−−−−−−−→ νaΓ+i2+i1(R′1 ‖ R′2).

When we swap the transitions we obtain (using
again rule OPEN+):

νaΓ(R1 ‖ R2)
(i2,j2,k2):c〈νaΓ〉−−−−−−−−−−−→ νaΓ+i2(R1 ‖ R′2)

(i1,j1,k1):b〈νaΓ+i2
〉

−−−−−−−−−−−−−→ νaΓ+i2+i1(R′1 ‖ R′2).

Note that the labels of t1 and t′1 (or t2 and t′2) are
not equal but are equivalent.

• we apply rule OPEN+ on t1 and OPEN- on t2:

νaΓ+i2(R1 ‖ R2)
(i1,j1,k1):b〈νaΓ+i2

〉
−−−−−−−−−−−−−→

νaΓ+i2+i1(R′1 ‖ R2)
(i2,j2,k2):c〈νaΓ+i1

〉−
−−−−−−−−−−−−−−→

νaΓ+i1(R′1 | R′2)

and we have, using rules OPEN- and OPEN+,

νaΓ+i2(R1 ‖ R2)
(i2,j2,k2):c〈νaΓ〉−−−−−−−−−−−−−→

νaΓ(R1 ‖ R′2)
(i1,j1,k1):b〈νaΓ〉−−−−−−−−−−−→ νaΓ+i1(R′1 ‖ R′2).

• we apply rule OPEN+ on t1 and rule CAUSE REF+
on t2:

νaΓ(R1 ‖ R2)
(i1,j1,k1):b〈νaΓ〉−−−−−−−−−−−→ νaΓ+i1(R′1 ‖ R2)

(i2,j2,k2):α−−−−−−−→ νaΓ+i1(R′1 ‖ R′2[k2/k]@i2
)

with R2
(i2,j2,k):α−−−−−−→ R′2 and a ∈ subj(α), k2 ∈

Γ + i1 such that k = k2 ∨ k ;R2 k2.
If k2 = i1 then the transitions are in a causal
relation. If k = i1 and k2 6= i1 then k ;R2

k2

would imply that i1 is a synchronization, which
is not the case. Therefore k, k2 6= i1 and the two
transitions can safely interchange:

νaΓ(R1 ‖ R2)
(i2,j2,k2):α−−−−−−−→ νaΓ(R1 ‖ R′2[k2/k]@i2

)

(i1,j1,k1):b〈νaΓ〉−−−−−−−−−−−→ νaΓ+i1(R′1 ‖ R′2[k2/k]@i2
)

• we apply rule NEW+- on t1 and OPEN+ on t2:

νaΓ(R1 ‖ R2)
ζ−→ νaΓ(R′1 ‖ R2)

(i,j,k):b〈νaΓ〉−−−−−−−−→ νaΓ+i(R
′
1 ‖ R′2)

and we can derive:

νaΓ(R1 ‖ R2)
(i,j,k):b〈νaΓ〉−−−−−−−−→ νaΓ+i(R1 ‖ R′2)

ζ−→ νaΓ+i(R
′
1 ‖ R′2)

by applying rules OPEN+ and NEW+-.
2) Suppose that t2 is a synchronization, but not t1, with

R = C[ ˜νaΓ(R1 ‖ R2)]. We can make the following
remark:
Note 7.7: Consider the synchronization S

ζ−→ S′′.
Then t : C[ ˜νaΓ(S ‖ S′)] ζ−→ C[ ˜νaΓ(S′′ ‖ S′)] (t
modifies only S and nothing else). For the transition
t : C[ ˜νaΓS]

γ−→ C[ ˜νa′ΓS
′], the synchronizations can

add or remove an element of ã but not of Γ, and does
not change the context C[•].

We proceed with a case analysis depending on which
threads are involved in t2. Since t1 is not a synchro-
nization it only involves threads in R1.



Suppose that t2 involves a thread from C[•], denoted
with T . Then R = C1[ ˜νaΓ(T‖C2[νb∆(R1 ‖ R2)])].
Since only t1 modifies C1, from note 7.7, we can
reason on R = ˜νaΓ(T‖C2[νb∆(R1 ‖ R2)]). We have
the following hypothesis:

R
ζ1−→ ˜νa′Γ′(T‖C ′2[νb′∆′(R

′
1 ‖ R2)])

ζ2−→
˜νa′′Γ′′(T

′‖C ′′2 [νb′′∆′′(R
′
1 ‖ R′2)]).

We denote with t′ the transition
T‖C2[νb∆(R1 ‖ R2)]

ζ1−→ T‖C ′2[νb′∆′(R
′
1 ‖ R2)].

From case 1) we can derive that t′ interchanges with
πl(t2) and πr(t2). Following a case analysis on the
rules that are applied on t2 we obtain the trace:

R
ζ2−→ ˜νa?Γ?(T ′‖C?2 [νb?∆?(R1 ‖ R′2)])

ζ′1−→
˜νa′′Γ′′(T

′‖C ′′2 [νb′′∆′′(R
′
1 ‖ R′2)])

in which the transitions have interchange their posi-
tion.

Let us now suppose that t2 does not involve the
context. We proceed by an induction on the structure
of the process. From the note 7.7 it follows that the
inductive case is trivial (since only t1 modifies the con-
text). For the base case we have R = ˜νaΓ(R1 ‖ R2).
Since t2 does not involve the context we have the
following subcases:
• t2 only involves threads in R2. Then we have:

˜νaΓ(R1 ‖ R2)
ζ1−→

˜νa′Γ′(R
′
1 ‖ R2)

ζ2−→ ˜νa′Γ′(R
′
1 ‖ R′2)

and it is easy to show that:

˜νaΓ(R1 ‖ R2)
ζ2−→

˜νaΓ(R1 ‖ R′2)
ζ1−→ ˜νa′Γ′(R

′
1 ‖ R′2).

• t2 involves a thread in R1 and one in R2. We
reason by cases on t2:
– if rule COM+- is applied then we have

˜νaΓ(R1 ‖ R2)
ζ1−→

˜νa′Γ′(R
′
1 ‖ R2)

ζ2−→ ˜νa′Γ′(R
′′
1 ‖ R′2)

One has to show that transition R1
ζ1−→ R′1

interchanges with πl(t2) and πr(t2), which
follows from case 1).

– if rule CLOSE+ is applied then the hypothesis
becomes:

˜νaΓ(R1 ‖ R2)
ζ1−→

˜νa′Γ′(R
′
1 ‖ R2)

ζ2−→ ˜νa′Γ′νbΓ′′(R
′′
1 ‖ R′2).

If b /∈ ã then similar to above. Otherwise b =
a ∈ ã and we can rewrite the transition in the
following simpler form:

νaΓ(R1 ‖ R2)
ζ1−→

νaΓ′(R
′
1 ‖ R2)

ζ2−→ νaΓ′νaΓ′′(R
′′
1 ‖ R′2).

We have to reason by cases on the rules that
applies for t1:
∗ rule OPEN-

νaΓ+i1(R1 ‖ R2)
(i1,j1,k1):b〈νaΓ〉−−−−−−−−−−−−−→

νaΓ(R′1 ‖ R2)
(i2,∗,∗):τ−−−−−−→ νaΓ(νaΓ′′(R

′′
1 ‖ R′2))

Suppose that R′1
(i2,j2,k2):c〈νaΓ′′ 〉−−−−−−−−−−−→ R′′1

(similar if the output is on R2). From propo-
sition 7.3 R′1 = C[νaΓ′′S

′] and R′′1 =
C[νaΓ′′+i2S

′′]. From Lemma 3.5, R1 =
C[νaΓ′′+i1S]. Then the transitions become:

νaΓ+i1(C[νaΓ′′+i1S] ‖ R2)
(i1,j1,k1):b〈νaΓ〉−−−−−−−−−−−−−→
νaΓ(C[νaΓ′′S

′] ‖ R2)
(i2,∗,∗):τ−−−−−−→

νaΓ(νaΓ′′(C[νaΓ′′+i2S
′′] ‖ R′2))

We know from case 1) that

R1
(i1,j1,k1):b〈νaΓ〉−−−−−−−−−−−→ R′1

(i2,j2,k2):c〈νaΓ′′ 〉−−−−−−−−−−−−→ R′′1

can interchange (similar for R2). Therefore
we can derive:

νaΓ+i1(C[νaΓ′′+i1S] ‖ R2)
(i2,∗,∗):τ−−−−−−→
νaΓ+i1(νaΓ′′+i1(C[νaΓ′′+i1+i2S] ‖ R′2))
(i1,j1,k1):b〈νaΓ〉−−−−−−−−−−−−−→
νaΓ(νaΓ′′(C[νaΓ′′+i2S

′′] ‖ R′2)).

– if rule CLOSE- is applied then we have the
hypothesis:

˜νaΓνbΓ′′(R1 ‖ R2)
ζ1−→

˜νa′Γ′νbΓ′′(R
′
1 ‖ R2)

ζ2−→ ˜νa′Γ′(R
′′
1 ‖ R′2)

If b /∈ ã then it is trivial. Otherwise b = a ∈ ã
and we can reason on the following simpler
form of the transition:

νaΓ(R1 ‖ R2)
ζ1−→

νaΓ′(R
′
1 ‖ R2)

ζ2−→ R′′1 ‖ R′2.

We reason by cases on the rules applied on t1:
∗ rule OPEN+

νaΓ(R1 ‖ R2)
(i1,j1,k1):b〈νaΓ〉−−−−−−−−−−−→

νaΓ+i1(R′1 ‖ R2)
(i2,?,?):τ

−

−−−−−−−→ R′′1 ‖ R′2



From the premise of rule CLOSE- we have

that R′1
(i2,j2,k2):c〈νaΓ+i1〉−−−−−−−−−−−−−−−→ R′′1 (similar if

the output is on R2). Then, from proposi-
tion 7.3 R′′1 = C ′[νaΓ+i1S

′′] and R′1 =
C ′[νaΓ+i1+i2S

′]. From Lemma 3.4, R1 =
C[νaΓ+i2S]. Then the transitions become:

νaΓ(C[νaΓ+i2S] ‖ R2)
(i1,j1,k1):b〈νaΓ〉−−−−−−−−−−−→

νaΓ+i1(C ′[νaΓ+i1+i2S
′] ‖ R2)

(i2,?,?):τ
−

−−−−−−−→
C ′[νaΓ+i1S

′′] ‖ R′2.

We can swap the two transitions and obtain:

νaΓ(C[νaΓ+i2S] ‖ R2)
(i2,?,?):τ

−

−−−−−−−→

C[νaΓS
′] ‖ R′2

(i1,j1,k1):b〈νaΓ〉−−−−−−−−−−−→
C ′[νaΓ+i1S

′′] ‖ R′2.

3) If t1 is a synchronization, but not t2 then similar to
above.

4) Suppose that both t1 and t2 are synchronizations.
Consider that the first thread in the structure of R that
is involved in one of the transitions is R1 in t1 (similar
if in t2). Then we write R = C[ ˜νaΓ(R1 ‖ R2)].
As in the cases above, we can reason only on R =

˜νaΓ(R1 ‖ R2). We have the following cases:
• If t1 involves only threads in R1 and t2 only

threads in R2 from note 7.7 it is enough to show
that we can swap the two transitions for R1 | R2.
We have then the hypothesis:

R1 ‖ R2
ζ1−→ R′1 ‖ R2

ζ2−→ R′1 ‖ R′2

and we have to show that

R1 ‖ R2
ζ2−→ R1 ‖ R′2

ζ1−→ R′1 ‖ R′2

which follows from a simple case analysis on t1
and t2.

• If t1 involves only threads in R1 but t2 involves
a thread from R1 as well then, from note 7.7, we
have the following hypothesis:

νãΓ(R1 ‖ R2)
ζ1−→

νãΓ(R′1 ‖ R2)
ζ2−→ νã′Γ(R′′1 ‖ R′2).

From the cases above we have that the transition
R1

ζ1−→ R′1 can interchange positions with πl(t2)
and πr(t2). From a case analysis on the rules that
apply for t2 we can derive the transitions:

νãΓ(R1 ‖ R2)
ζ2−→

νã′Γ(S ‖ R′2)
ζ1−→ νã′Γ(R′′1 ‖ R′2).

• If t1 involves a thread in both R1 and R2 and t2
only in R2 then similar to above.

• If t1 and t2 involve threads in both R1 and R2,
then

νãΓ(R1 ‖ R2)
ζ1−→

νã′Γ(R′1 ‖ R′2)
ζ2−→ νã′′Γ(R′′1 ‖ R′′2 ).

From case 1) we have that πl(t1) and πl(t2)
interchange positions and similarly for πr(t1) and
πr(t2). We proceed with a case analysis on the
transitions that apply on t1 and t2:
– rule CLOSE+ on t1 and CLOSE- on t2:

νaΓ(R1‖R2)
ζ1−→

νaΓ(νa′Γ′(R
′
1‖R′2))

ζ2−→ νa′Γ′(R
′′
1‖R′′2 )

We swap the transitions to obtain:

νaΓ(R1‖R2)
ζ2−→ S1‖S′2

ζ1−→ νa′Γ′(R
′′
1‖R′′2 ).

Events do not contain enough information to fully char-
acterize a transition. We say that two transitions t and t′ are
memory equivalent, denoted by t =e t

′ if they correspond
to the same event.

Example 7.1: Consider R = ε � a.P1‖ε � a.P2 and the
transitions

t : R
(i,∗,∗):a−−−−−→ 〈i, ∗, a〉.ε � P1‖ε � a.P2

t′ : R
(i,∗,∗):a−−−−−→ ε � a.P1‖〈i, ∗, a〉.ε � P2

t 6= t′ but t =e t
′ since both transitions add the event 〈i, ∗, a〉

into the memory.
Within a trace, the LTS ensures the uniqueness of the

events identifiers.
Proposition 7.8: In a trace, if two transitions t and t′ are

memory equivalent t = opp(t′).
Proof: From id(t) = id(t′) we have that necessarily

the transitions share the same threads. Hence

t : R
(i,j,k):α−−−−−→ S t′ : S

(i,j,k):α−−−−−−−→ R

Then opp(t′) = R
(i,j,k):α−−−−−→ S. From Lemma 3.2 we have

that t = opp(t′).
In the example 7.1 the transitions are not equal because

they do not appear on the same trace, but also because they
do not share a common thread.

Corollary 7.9: If t =e t
′ are coinitial and share a common

thread then t = t′.
Lemma ?? Let s be a trace. Then there exists two traces

r, only backward, and r′, only forward, such that s ∼ r; r′.
Proof: Similar to the proof of [?]. We proceed by

induction on the length of s and the distance to the earliest
disagreement pair in s, that we denote with t′; t:

t′ : R
(i,j,k):α−−−−−→ S t : S

(i′,j′,k′):α′−−−−−−−−−→ T

We have the following cases:



• t, t′ are concurrent. We can apply Lemma 4.3 and swap
them. As a result we decrease the distance to the earliest
disagreement pair.

• t, t′ are causal. We distinguish on the two possible types
of causality:

– Structural causality. It implies that the transitions
share a common thread. Since the memory of
a thread behaves as a stack, and that the two
transitions are consecutive and of opposite direc-
tion we have that t′ =e t. From Proposition 7.8
t = opp(t′). Since t; opp(t) ∼ ε we can replace the
pair t′; t in s and obtain a trace causally equivalent
to s but with a smaller length, on which we can
then apply the induction hypothesis.

– Contextual causality. We have two possibilities:
∗ i = k′. This case is not allowed by the LTS: we

cannot backtrack on an event that was chosen
as a contextual cause by a previous transition.

∗ i′ = k. Not allowed by the LTS: the transition
opp(t) was triggered before t′ and we cannot
choose as cause a transition that has not yet
fired.

Lemma 7.10: Let s1, s2 be two coinitial and cofinal
traces, where s2 is only forward. Then there exists s′1 shorter
or equal to s1 such that s1 ∼ s′1.

Proof: We proceed by induction on the length of s1.
If s1 is forward then s′1 = s1. Otherwise, using Lemma
??, we can assume that s1 is parabolic: s1 = u; t; t′; v,
where u; t is backward, t′; v forward and t; t′ is the only
pair of consecutive transitions that are in opposite direction.
Since s2 is only forward and s1, s2 are coinitial and cofinal,
whatever the transition t takes out from the memory has to
be put back by some other transition in t′; v. We denote with
t′′ the earliest such transition, that is t =e t

′′, on the same
threads and of different signs. Then, from Proposition 7.8,
t = opp(t′′). We can rewrite s1 as u; t; t′; v′; t′′; v′′.

Let us now show that t is concurrent with all transitions
up to t′′. Suppose ∃t? between t and t′′ such that t and t?
are causal. We have the following cases:
• t and t? are structural causal. Contradiction with the

hypothesis that t′′ is the earliest transition sharing a
thread with t.

• t and t? are contextual causal. We have that:
– either c(t) = id(t?). Not possible since t? succeeds
t;

– or c(t?) = id(t). Not possible either since t is
backward;

Therefore all transition between t and t′′ are concurrent
to t. It follows, from Lemma 4.3, that we can swap t with
each transition up to t′′ and obtain s1 ∼ u; t′; v′; t; t′′; v′′.
By the definition of ∼, s1 ∼ u; t′; v′; v′′, hence the length
decreases and we can apply the induction hypothesis.

Lemma 4.5 Two traces s1, s2 are coinitial and cofinal if
and only if s1 ∼ s2.

Proof: If s1 ∼ s2 then we can derive that s1, s2 are
coinitial and cofinal from the definition of ∼.

Suppose then that s1, s2 are coinitial and cofinal. Due
to Lemma ?? we can suppose that they are parabolic. We
reason by induction on the lengths of s1, s2 and on the
depth of the earliest disagreement between them, denoted
by the pair t1, t2. We have the following cases, depending
on whether t1 and t2 are forward or not:

1) if t1 is forward and t2 backward, then

s1 = u1; t1; v1 s2 = u2; t2; v2

where u1 ∼ u2, u1 backwards and v1 forward (since
s1 is parabolic). Then the traces t1; v1, t2; v2 are coini-
tial and cofinal, with t1; v1 only forward. We apply
Lemma 7.10 and derive that there exists s′2 ∼ t2; v2

shorter or equal to t2; v2. If it is equal then t2 is
forward which contradicts the hypothesis. We then
proceed by induction with u2; s′2 shorter.

2) if both transitions are forward, then

s1 = u1; t1; v1 s2 = u2; t2; v2

where u1 ∼ u2, and t1; v1, t2; v2 are coinitial, cofinal
and both forward.
• if t1, t2 are concurrent, then whatever t1 puts

in the memory must be copied in v2. Let us
denote with t′1 the earliest such transition (ie
t′1 ∈ v2, t′1 =e t1 and on the same threads) and
rewrite t2; v2 as t2;u2; t′1;u′2. We show that t′1 is
concurrent with all transitions in u2:
– t′1 is the earliest transition on the same thread

as t1, thus it is not structural causal with any
transition in t2;u2;

– t′1 =e t1 hence c(t′1) = c(t1). Then t1 cannot
have as contextual cause a transition in t2;u2.

Using the lemma 4.3, we have:

t2; v2 = t2;u2; t′1;u′2 ∼ t′1; t2;u2;u′2.

From Corollary 7.9 t′1 = t1. We obtain a later
earliest disagreement pair, without changing the
lengths of s1 and s2, hence we can rely on the
induction hypothesis.

• if t1, t2 are causal, then let us show that this case
is not possible. We have the following types of
causality:
– structural causal: suppose that t1 and t2 are not

memory equivalent. Then the traces t1; v1 and
t2; v2 add into the memory events in a different
order, hence the traces are not cofinal, which is
a contradiction.



We have then that t1 =e t2, and by Corollary
7.9 t1 = t2, which contradicts the hypothesis.
Therefore t1 and t2 are not structural causal.

– contextual causal: suppose that t2 is a cause
for t1 (similar if t1 is a cause for t2). In order
for t1 to choose as cause t2 then ∃t′2 ∈ u1 and
hence an earlier disagreement pair, which again
contradicts the hypothesis.

3) if they are both backward, we proceed similar to
above.

Proposition 5.2. If t : R
(i,∗,∗):τ−−−−−→ S then there exists

at most one context C[•] such that t : C[R1‖R2]
(i,∗,∗):τ−−−−−→

C ′[S1‖S2] with Rq 6= Sq, q ∈ {1, 2}.
Proof: It follows from the structure of a Rπ process

R := νãΓ(S ‖ T ).
Lemma 5.4. In a trace

R0
(i1,j1,k1):α1−−−−−−−−→ R1...

(in,jn,kn):αn−−−−−−−−−→ Rn

∃C[•] such that C[R0] = R′0
(i1,∗,∗):τ−−−−−−→ R′1...

(in,∗,∗):τ−−−−−−→ R′n
for some R′1, .., R

′
n and, for q ∈ {0, .., n}:

• if αq 6= τ then ∃x, πx(R′q
(iq,∗,∗):τ−−−−−−→ R′q+1) =

Rq
(iq,jq,kq):αq−−−−−−−−→ Rq+1

• if αq = τ then ∃C ′[•] such that R′q = C ′[Rq], R
′
q+1 =

C ′[Rq+1].
Proof: We construct the context by induction on the

length of the trace. We start with the last transition in the
trace for which we provide the minimum reduction context.
We then add a prefix to the context for each transition in
the trace. In order to keep track of the context built so far
we prove the following stronger induction hypothesis:

in R0
(i1,j1,k1):α1−−−−−−−−→ R1...

(in,jn,kn):αn−−−−−−−−−→ Rn

∃S0, R0‖S0 = R′0
(i1,∗,∗):τ−−−−−−→ R′1...

(in,∗,∗):τ−−−−−−→ R′n

where C[•] = [•]‖S0 respects the necessary properties.

• Base case. Let Rn−1
(in,jn,kn):αn−−−−−−−−−→ Rn.

– If α1 = τ then Sn−1 = 0 trivially verifies the
necessary properties.

– If α1 6= τ then Sn−1 = ε � αn.0. We have

the following transition: Rn−1‖Sn−1
(in,∗,∗):τ−−−−−−→

C ′[Rn‖Sn], where the projections are easily veri-
fied.

• Inductive case. Let Rp−1
(ip,jp,kp):αp−−−−−−−−→ Rp. By induc-

tion we have that ∃Sp such that

Rp‖Sp
(ip+1,∗,∗):τ−−−−−−−→ R′p+1...

(ip,∗,∗):τ−−−−−−→ R′n.

We have to show that there exists Sp−1 such that

Rp−1‖Sp−1
(ip,∗,∗):τ−−−−−−→ R′′p ...

(in,∗,∗):τ−−−−−−→ R′′n with

∃x, πx(R′′q
(iq,∗,∗):τ−−−−−−→ R′′q+1) = Rq

(iq,jq,kq):αq−−−−−−−−→
Rq+1 for all αq 6= τ and ∃C ′′[•] such that R′′q =
C ′′[Rq], R

′′
q+1 = C ′′[Rq+1] for αq = τ where q ∈

{0, .., n}.
We proceed by cases on αp:

– αp = τ then let Sp−1 = Sp and the hypothesis is
verified.

– αp = b(a) (or b〈a〉) then αp = b〈a〉 (or b(a)
respectively). Let Sp−1 = αp.Sp.
We have the following trace:

Rp−1‖Sp−1
(ip,∗,∗):τ−−−−−−→ Rp‖Sp

(ip+1,∗,∗):τ−−−−−−−→ R′p+1...
(in,∗,∗):τ−−−−−−→ R′n

where the first synchronization does not apply any
substitution (since (Sp){a/a} = Sp). We have that

πl(Rp−1‖Sp−1
(ip,∗,∗):τ−−−−−−→ Rp‖Sp) =

Rp−1
(ip,jp,kp):αp−−−−−−−−→ Rp

and for the rest of the transitions the properties
follow from induction.

– αp = b(νaΓ) then αp = b(a). Let Sp−1 = αp.Sp
and thus the trace becomes

Rp−1‖Sp−1
(ip,∗,∗):τ−−−−−−→ νaΓ(Rp‖Sp)

(ip+1,∗,∗):τ−−−−−−−→
R′′p+1 = νaΓ(R′p+1)...

(in,∗,∗):τ−−−−−−→ R′′n = νaΓ(R′n)

since νaΓ cannot prevent the transitions with label
τ . We have that

πl(Rp−1‖Sp−1
(ip,∗,∗):τ−−−−−−→ νaΓ(Rp‖Sp)) =

Rp−1
(ip,jp,kp):αp−−−−−−−−→ Rp.

We need to verify that the properties still hold for
the rest of the transitions:
∗ if αq 6= τ then

∃x, πx(νaΓ(R′q)
(iq,∗,∗):τ−−−−−−→ νaΓ(R′q+1)) =

πx(R′q
(iq,∗,∗):τ−−−−−−→ R′q+1) = Rq

(iq,jq,kq):αq−−−−−−−−→ Rq+1

where the last equality follows from the induc-
tion hypothesis.

∗ if αq = τ then by induction we have that there
exists C ′[•] such that R′q = C ′[Rq], R

′
q+1 =

C ′[Rq+1]. Let C ′′[•] = νaΓ(C ′[•]) which ver-
ifies that C ′′[Rq] = νaΓ(C ′[Rq]) = R′′q and
similarly for R′′q+1.

Lemma 5.1 Let t1 : R
(i1,∗,∗):τ−−−−−−→ S and t2 : S

(i2,∗,∗):τ−−−−−−→
T . If t1 and t2 are causal then t1 <T t2.

Proof: Since t1 and t2 are consecutive we have that
either t1 <T t2 or t1 ≺T t2. Nothing to prove for the first
case. Let us then consider the case t1 ≺T t2.



From t1 ≺T t2 and that t2 is a synchronization it follows
that

πl(t2) = S1
(i2,j2,k2):α2−−−−−−−−→ T1 πr(t2) = S2

(i2,j
′
2,k
′
2):α2−−−−−−−−→ T2

with either k2 = i1 or k′2 = i1. Let us suppose that k2 = i1
(similar for k′2 = i1). We denote with a the subject of α2.

From the definition of the projections we have that S =
C[S1‖S2]. Since k2 = i1 and from Proposition 7.5, νaΓ ∈
S1. By Lemma 3.5, νaΓ′ /∈ S2. But a ∈ subj(α2), then,
from Lemma 3.6 〈i, _, d[a/c]〉 ∈ S2. We have then that i <T2

i2 and j′2 = i.
We apply a synchronization rule for transition t2 (either

COM+ or CLOSE+), with the side conditions k2 =∗ j
′
2 and

k′2 =∗ j2. From the first, we have that k2 = j′2, hence i = i1
and i1 <T i2.

Theorem 5.5 Let t1 and t2 be two transitions such that

t1 : R
(i1,j1,k1):α1−−−−−−−−→ S t2 : S

(i2,j2,k2):α2−−−−−−−−→ T.

t1 and t2 are concurrent ⇐⇒ ∃ a reduction context C[•]
such that

t′1 : C[R]
(i1,∗,∗):τ−−−−−−→ S′ t′2 : S′

(i2,∗,∗):τ−−−−−−→ T ′

with t′1 and t′2 concurrent.
Proof:

1) If t1 and t2 are concurrent then ∃C[•] such that t′1 and
t′2 concurrent. We proceed by cases on α1, α2.
• α1, α2 6= τ . Then let C[•] = [•]‖(ε � α1‖ε �

α2), where if αq = b(a) (or b〈a〉, b(νaΓ)),
αq = b〈a〉 (or b(a) respectively). We obtain the
following trace (in which we ignore the empty
processes):

t′1 : C[R]
(i1,∗,∗):τ−−−−−−→ C ′[S‖ε � α2]

t′2 : C ′[S‖ε � α2]
(i2,∗,∗):τ−−−−−−→ C ′′[T ]

It is straightforward that t′1 and t′2 are concurrent
and that t1 and t2 respectively, are their projec-
tions.

• If α1 = τ, α2 6= τ then let C[•] = [•]‖ε � α2

where if α2 = b(a) (or b〈a〉, b(νaΓ)), α2 = b〈a〉
(or b(a) respectively). We have the trace, in which
we ignored the empty processes:

t′1 : R‖ε � α2
(i1,∗,∗):τ−−−−−−→ C ′[S‖ε � α2]

t′2 : C ′[S‖ε � α2]
(i2,∗,∗):τ−−−−−−→ C ′′[T ]

t′1 and t′2 are concurrent and the necessary prop-
erties for the reduction context C[•] are verified.

• Similar for the rest of the cases.
2) If t1 and t2 are causal then ∀C[•], t′1 and t′2 are causal.

We have that e1 = 〈i1, k1, α1〉 ∈ T and e2 =
〈i2, k2, α2〉 ∈ T . From the properties of a reduction

context we have that eq = 〈iq, kq, α′q〉 ∈ T ′ where:

α′q = b[c/a] if αq = b[∗/a]
α′q = αq otherwise

for q ∈ {1, 2} and x ∈ {l, r}. Hence if e1 <T e2 then
e1 <T ′ e2 (the order in which the events are added to
the memory does not change) and if e1 ≺T e2 then
e1 ≺T ′ e2 (the events do not change their contextual
cause).

D. Details of section III-B

In order to clarify the proofs, we introduce an intermediate
calculus, similar to Rπ, but that attaches to a process a list of
substitutions (instead of a memory), called an environment.
As in Rπ, an input does not modify the process itself but
adds the substitutions to the list. Only when a name is used
in a transition label that the substitutions are retrieved from
the list and applied. Other transitions do not modify the
environment. We call the calculus πl and say that this type
of substitution is a late one.

1) The intermediate calculus: We denote by T,U pro-
cesses of πl and preserve the rest of the notations from the
previous sections.

ξ ::= [a/c] :: ξ | [∗/c] :: ξ | ε (environments)
T,U ::= (ξ · P | T ) | νaT | ∅ (πl processes)

As in Rπ, we have the following congruence rules:

ξ · (P | Q) ≡l ξ · P | ξ · Q

ξ · νaP ≡l νa(ξ · P ) if a /∈ ξ

There is no rule that allows a rearrangement (up to congru-
ence) of the environment. In this manner the order in which
the substitutions occurred in the process is preserved.

Similarly to Rπ, we define the functions that apply the
substitution on the transition labels and update the environ-
ment after a synchronization:

Definition 7.11: Let T[a/b] be the synchronization update
on the process T :

(T | U)[a/c] = T[a/c] | U[a/c]

(νaT )[a/c] = νa(T[a/c])
([?/b] :: ξ · P )[a/c] = [a/b] :: ξ · P , if b = c
(ξ · P )[a/c] = ξ · P , otherwise

Let ξ be a function on the labels of a transition for a thread,
defined inductively on the environment:

ε[a] = a ξ[b(c)] = ξ[b](c) ξ[b〈a〉] = ξ[b]〈ξ[a]〉
([a/c] :: ξ)[c] = a (_ :: ξ)[a] = ξ[a], otherwise



The transition rules are similar to the ones of π calculus,
except that the environment is updated.

INl

ξ · b(c).P +Q
ξ[b(c)]−−−−→ [∗/c] :: ξ · P

OUTl

ξ · b〈a〉.P +Q
ξ[b〈a〉]−−−−→ ξ · P

OPENl

T
b〈a〉−−→ T ′

νaT
b〈νa〉−−−→ T ′

COMl

T
b〈a〉−−→ T ′ U

b(c)−−→ U ′

T | U τ−→ T ′ | U ′[a/c]

CLOSEl

T
b〈νa〉−−−→ T ′ U

b(c)−−→ U ′

T | U τ−→ T ′ | U ′[a/c]
if a /∈ fn(U)/{c}

PARl
T

α−→ T ′

T | U α−→ T ′ | U
if bn(α) ∩ fn(U) = ∅

MEMl

T ≡l U
α−→ U ′ ≡l T ′

T
α−→ T ′

NEWl

T
α−→ T ′

νaT
α−→ νaT ′

if a /∈ α

Definition 7.12: Let φ be a function that translates πl
processes into π, by applying all the substitutions:

φ(T | U) = φ(T ) | φ(U) φ(νaT ) = νaφ(T )
φ([a/c] :: ξ · P ) = φ(ξ · P{a/c})
φ([∗/c] :: ξ · P ) = φ(ξ · P ) φ(ε · P ) = P

Proposition 7.13: (Strong bisimulation between πl and its
π-image)

1) If T
γ−→ U and φ(T ) = P then there exists Q such

that P
γ−→ Q and φ(U) = Q.

2) If P
γ−→π Q then for all T such that φ(T ) = P there

exists U with T
γ−→ U and φ(U) = Q.

As a remark, the ξπ calculus bears a close resemblance to a
π calculus with explicit substitution. The latter is a calculus
in which the substitution are handled explicitly, similarly to
the λ calculus with explicit substitution.

Examples of such calculi are given in [12], [13] and also
in [14], from which we borrowed the idea of an environment.
However a difference in our approach is that we never need
to apply the substitutions, as deriving the transition labels is
still a meta-syntactic operation. This is a consequence of the
fact that we are interested in a framework for reversibility.
In this sense, the aforementioned calculi are closer to the
explicit substitution of λ calculus than the late substitution
we employ in πl.

2) Correspondence between πl and Rπ:
Definition 7.14: Let φ be a function that translates Rπ

processes into πl, by recording all the substitutions into the

environment and erasing all νΓ6=∅ from the process.

φ(ε � P ) = ε · P
φ(R ‖ S) = φ(R) | φ(S)
φ(νa∅R) = νaφ(R)
φ(νaΓ6=∅R) = φ(R)
φ(〈i, k, b[a/c]〉.m � P ) = [a/c] :: φ(m � P )
φ(〈i, k, b[?/c]〉.m � P ) = [?/c] :: φ(m � P )
φ(e.m � P ) = φ(m � P )otherwise

Proposition 7.15: (Strong bisimulation between forward
Rπ and its πl-image)

1) If R
γ−→ S then φ(R)

γ−→ φ(S).
2) If T

γ−→ U and ∀R such that φ(R) = T , ∃S with
R

γ−→ S and φ(S) = U .
The two Propositions 7.13, 7.15 can be extended to traces.
In order to show the correspondence between Rπ and

π, we define the forgetful map, denoted with φ, as the
composition of the two translations above.

Proposition 3.9 If P −→? Q and φ(R) = P then there
exists S such that R −→? S and φ(S) = Q.

Proof: Using the second part of the propositions 7.13
and 7.15 we have that for each transition of a π process
there exists one for its Rπ correspondent. The result follows
from induction on the length of the trace.

Proposition 3.10 If ε � P −→? R then P −→? φ(R).
3) Proofs: For the following proofs we need to present

an LTS for the π calculus:

INπ

b(c).P
b(c)−−→ P

OUTπ

b〈a〉.P b〈a〉−−→ P

OPENπ

T
b〈a〉−−→ T ′

νaT
b〈νa〉−−−→ T ′

NEWπ

T
α−→ T ′

νaT
α−→ νaT ′

if a /∈ α

COMπ

T
b〈a〉−−→ T ′ U

b(c)−−→ U ′

T | U τ−→ T ′ | U ′{a/c}

CLOSEπ

T
b〈νa〉−−−→ T ′ U

b(c)−−→ U ′

T | U τ−→ T ′ | U ′{a/c}
if a /∈ fn(U)/{c}

PARπ
T

α−→ T ′

T | U α−→ T ′ | U
if bn(α) ∩ fn(U) = ∅

Proof of Lemma ??:
1) If T

γ−→ U and φ(T ) = P then there exists Q such
that P

γ−→ Q and φ(U) = Q.
2) If P

γ−→π Q then for all T such that φ(T ) = P there
exists U with T

γ−→ U and φ(U) = Q.
Proof:

1) By induction on the derivation tree of the transition
T

γ−→ U :
• ξ · (b(c).P )

ξ[b(c)]−−−−→ [?/c] :: ξ · P . Let φ(ξ ·
(b(c).P )) = (b(c).P ){x̃/ỹ} = b′(c).P ′, which



can do a transition on b′(c), with ξ(b) = b′. We

have that b′(c).P ′ + Q′
b′(c)−−−→ P ′ and we want

to show that φ([?/c] :: ξ · P ) = P{x̃/ỹ}. This
follows from the definition of φ as φ(ξ · P ) =
P{x̃/ỹ} and φ([?/c] :: ξ · P ) = φ(ξ · P ) =
P{x̃/ỹ}. Similar for the rule OUT.

• T
γ−→ T ′ with T ≡l U

γ−→ U ′ ≡l T ′. From T ≡l U
we deduce φ(T ) = φ(U), and similarly for U ′ ≡l
T ′. By induction, we have that φ(U)

γ−→ φ(U ′).

• T | U τ−→ T ′ | U ′[a/c]. By induction, for T
b〈a〉−−→ T ′,

U
b(c)−−→ U ′[a/c] we have that φ(T ) = P

b〈a〉−−→ P ′ =

φ(T ′) and φ(U) = Q
b(c)−−→ Q′ = φ(U ′). Then

φ(T | U) = φ(T ) | φ(U) = P | Q which has the
transition P | Q τ−→ P ′ | Q′{a/c}. We have that
φ(T ′ | U ′[a/c]) = P ′ | Q′{a/c}, as φ(U ′[a/c]) =
Q′{a/c}.

• νaT
γ−→ νaU with T

γ−→ U . Then by induction
φ(T ) = P

γ−→ Q = φ(U). We then have νaP
γ−→

νaQ, with φ(νaU) = νaQ.
Similar for the rest of the rules.

2) By induction on the derivation tree of the transition
P

γ−→π Q:

• b(c).P + Q
b(c)−−→π P . As φ(T ) = b(c).P + Q,

we have T = ξ · b′(c).P ′ + Q′ with ξ(b′) = b
and φ(ξ · (b′(c).P ′ + Q′)) = (b′(c).P ′){x̃/ỹ} =

b(c).P . The transition on T is ξ · b′(c).P ′ b(c)−−→
[?/c] :: ξ · P ′. We still have to show that φ([?/c] ::
ξ · P ′) = P , which results from φ(ξ · P ′) =
P ′{x̃/ỹ} = P and φ([?/c] :: ξ · P ′) = φ(ξ · P ′).

• P | Q τ−→π P ′ | Q′{a/c}. From P
b〈a〉−−→π P ′,

Q
b(c)−−→π Q′, by the induction hypothesis, it

follows that T
b〈a〉−−→ T ′, U

b(c)−−→ U ′, with
φ(T ) = P , φ(U) = Q and φ(T ′) = P ′,
φ(U ′) = Q′. Hence φ(T | U) = φ(T ) | φ(U) =
P | Q, φ(T ′ | U ′[a/c]) = φ(T ′) | φ(U ′[a/c]) =
P ′ | Q′{a/c}. Using the rule COMl we have
T | U τ−→ T ′ | U ′[a/c], which concludes our proof.
Similar for the rest of the cases.

Proof of Lemma 3.8:
1) If R

γ−→ S then φ(R)
γ−→ φ(S).

2) If T
γ−→ U and ∀R such that φ(R) = T , ∃S with

R
γ−→ S and φ(S) = U .

Proof:
1) By induction on the transition T

γ−→ U :

• m � b(c).P
(i,j,∗):m[b(c)]−−−−−−−−−→ 〈i, ∗, b[?/c]〉.m � P .

Using the remark on φ, φ(m � b(c).P ) =
φm(m) · b(c).P = ξ · b(c).P that can do a

transition ξ · b(c).P ξ[b(c)]−−−−→ [?/c] :: ξ · P . As

φm(m) = ξ and, due to the definition of the
functions m and ξ, we have m(b) = ξ(b). We still
have to show that φ(〈i, ∗, b[?/c]〉.m) = [?/c] :: ξ
which results from φm(〈i, ∗, b[?/c]〉.m) = [?/c] ::
φm(m) = [?/c] :: ξ.

• R ‖ S (i,∗,∗):τ−−−−−→ R′ ‖ S′[a/c]@i with R
(i,j,k):b〈a〉−−−−−−−→

R′ and S
(i,j′,k′):b(c)−−−−−−−−→ S′ (from rule COM+).

From the definition of φ, we have φ(R | S) =
φ(R) | φ(S) = T | U . By induction on the

hypothesis of the rule COM+ we have that T
b〈a〉−−→

T ′ and U
b(c)−−→ U ′ with φ(R′) = T ′ and

φ(S′) = U ′, respectively. We apply rule COMl and
have the transition T | U τ−→ T ′ | U ′[a/c], where
φ(S′[a/c]@i) = U ′[a/c] follows from the definitions
of the two update functions.
Similar for the rest of the cases.

2) By induction on the transition T
γ−→ U :

• ξ · (b(c).P )
ξ[b(c)]−−−−→ [?/c] :: ξ · P . Then R =

m � b(c).P as φ(m � b(c).P ) = φm(m) ·
(b(c).P ). We have that m � b(c).P

(i,j,∗):m[b(c)]−−−−−−−−−→
〈i, ∗, b[?/c]〉.m � P with ξ(b) = m(b). Then
it remains to show that φ(〈i, ∗, b[?/c]〉.m �

P ) = [?/c] :: ξ · P , which follows from
φ(〈i, ∗, b[?/c]〉.m � P ) = [?/c] :: φ(m � P ) =
[?/c] :: φm(m) · P = [?/c] :: ξ · P .

• T | U τ−→ T ′ | U ′[a/c] with T
b〈a〉−−→ T ′ and

U
b(c)−−→ U ′. We have φ(T | U) = φ(T ) | φ(U) =

R | S and, by induction R
(i,j,k):b〈a〉−−−−−−−→ R′ and

S
(i,j′,k′):b(c)−−−−−−−−→ S′ with φ(R′) = T ′ and φ(S′) =

U ′ respectively. We use rule COM+ to obtain the
transition R | S (i,∗,∗):τ−−−−−→ R′ | S′[a/c]@i, where
φ(S′[a/c]@i) = U ′[a/c].

Proof of Lemma 3.10: If ε � P −→? R then P −→?

φ(R).
Proof: Straightforward adaptation from the proof in [?].

For the trace ε � P −→? R there is an equivalent one that
is composed only of forward transitions,as we have showed
in section V. Then the first part of the lemmas ?? and 3.8
apply, and we can do an induction on the length of the
forward trace.


