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Abstract

This paper proposes two semantics of a probabilistic variant of theπ-calculus: aninterleaving semanticsin terms of Segala
automata and atrue concurrent semantics, in terms of probabilistic event structures. The key technical point is a use oftypes
to identify a good class of non-deterministic probabilistic behaviours which can preserve a compositionality of the parallel
operator in the event structures and the calculus. We show anoperational correspondence between the two semantics. This
allows us to prove a “probabilistic confluence” result, which generalises the confluence of the linearly typedπ-calculus.
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1 Introduction and motivations

Probabilistic models for concurrency have an extensive literature: most of the studies con-
cern interleaving models [19,25,9], but recently, true concurrent ones have also been stud-
ied [18,1,28,31]. This paper presents an interleaving and a true concurrentsemantics to a
probabilistic variant of theπ-calculus. The variant we consider is similar to the ones pre-
sented in [14,6], yet contains important differences. The main difference, which motivates
all the others, is the presence oftypes.

The various typing systems for mobile processes have been developed in order to pro-
vide disciplines to control non-deterministic behavioursstatically and compositionally. In
probabilistic concurrency, a restriction of non-determinism becomes more essential, for ex-
ample, for preservation of the associativity of parallel composition or to guarantee freedom
from any specific scheduling policies [28]. This paper performs an initial step towards a
“good” typing discipline for probabilistic name passing, which can preserve expressive-
ness and can harmonise with existing probabilistic concurrent semantics and programming
languages [22,10,7].

We present a typing system for the probabilisticπ-calculus, inspired from a linear typ-
ing systems for theπ-calculus [3,35]. The linearly typedπ-calculus can embed a family
of λ-calculi fully abstractly. Linearly typed processes enjoy several interesting properties.
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In particular they are guaranteed to beconfluent, that is the computation they perform is
deterministic. In the true concurrent setting, confluence can be viewed as absence of con-
flicts, orconflict freeness. In a conflict free system, one can have different partial runs, for
instance because one chooses to execute different subsystems. However, under some basic
fairness assumptions, and if we abstract away from the orderin which concurrent events
happen, the system will always produce the same run.

In [30], we extend the linearπ-calculus by adding a nondeterministic choice. The typ-
ing system no longer guarantees conflict freeness, but the more general behavioural prop-
erty of confusion freeness. This property has been studied in the form of free choice Petri
Nets [23,8]. Confusion free event structures are also known as concrete data structures [4],
and their domain-theoretic counterpart are the concrete domains [17]. In a confusion free
system, all nondeterministic choices arelocalisedand are independent from any other event
in the system. In the probabilistic setting [28], the intuition is that local choices can be re-
solved by a local coin, or die. The result in [28] show that probabilistic confusion free
systems areprobabilistically confluent. We have argued that confluence entails the prop-
erty of having only one maximal computation, up to the order of concurrent events. It is
then reasonable to define probabilistic confluence as the property of having only one maxi-
mal probabilistic computation, where a probabilistic computation is defined as a probability
measure over the set of computations.

We provide an interleaving and a true concurrent semantics to this probabilisticπ-
calculus. The interleaving semantics is given as Segala automata [25], which are an opera-
tional model that combine probability and nondeterminism.The nondeterminism is neces-
sary to account for the different possible schedulings of the independent parts of a system.
The true concurrent semantics is given as probabilistic event structures [28]. In this model,
we do not have to account for the different schedulings, and that leads to the probabilistic
confluence result (Theorem6.2), one of the main original contributions of this work.

In order to relate the two semantics, we show how a probabilistic event structure gen-
erates a Segala automaton. This allows us to show an operational correspondence between
the two semantics.

Types play an important role for a compositional semantics,which is given as a clean
generalisation of Winskel’s original event structure semantics of CCS [32] to theπ-calculus.
In this sense, this work offers a concrete syntactic representation of the probabilistic event
structures as name passing processes, closing an open issuein [28,30]. The work opens a
door for event structure semantics for probabilisticλ-calculi and programming languages,
using the probabilistic linearπ-calculus as an intermediate formalism.

Due to the space limitation, the proofs are omitted and some non-probabilistic materials
are left to [30,29].

2 Segala automata

To give an operational semantics to the probabilisticπ-calculus we useSegala automata, a
model that combines probability and nondeterminism. Segala automata can be seen as an
extension both of Markov chains and of labelled transition systems. They were introduced
by Segala and Lynch [26,25]. A recent presentation of Segala automata can be found
in [27]. The name “Segala automata” appears first in [2].
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In the initial statex0 there are three possible transition groups,
corresponding to its three hollow children. The left-most

transition group isx0{
ai

pi

// xi}i∈I whereI = {1, 2},

a1 = a, a2 = b and p1 = p2 = 1/2. The right-most

transition group isx0{
aj

pj

// xj}j∈J whereJ = {0, 5},

a0 = a, a5 = b andp0 = ε, p5 = 1 − ε.

Fig. 1. A Segala automaton

2.1 Notation

A probability distributionover a finite or countable setX is a functionξ : X → [0, 1]

such that
∑

x∈X ξ(x) = 1. The set of probability distributions overX is denoted by
V (X). By P(X), we denote the powerset ofX. A Segala automatonover a set of labels
A is given by a finite or countable set of statesX together with a transition functiont :

X → P(V (A × X)). This model represents a process that, when it is in a statex,
nondeterministically chooses a probability distributionξ in t(x) and then performs action
a and enters in statey with probabilityξ(a, y).

The notation we use comes from [14]. Consider a transition functiont. Whenever a
probability distributionξ belongs tot(x) for a statex ∈ X we will write

x{
ai

pi
// xi}i∈I (1)

wherexi ∈ X, i 6= j =⇒ (ai, xi) 6= (aj , xj), andξ(ai, xi) = pi. Probability distributions
in t(x) are also calledtransition groupsof x.

A good way of visualising probabilistic automata is by usingalternating graphs [13].
In Figure1, black nodes represent states, hollow nodes represent transition groups.

2.2 Runs and schedulers

An initialised Segala automaton, is a Segala automaton together with an initial statex0. A
finite pathof an initialised Segala automaton is an element in(X × V (X × A) × A)∗X,
written asx0ξ1a1x1 . . . ξnanxn, such thatξi+1 ∈ t(xi). An infinite path is defined in a
similar way as an element of(X × V (X × A) × A)ω.

The probability of a finite pathτ := x0ξ1a1x1 . . . ξnanxn is defined as

Π(τ) =
∏

1≤i≤n

ξi(ai, xi) .

The last state of a finite pathτ is denoted byl(τ). A pathτ is maximalif it is infinite or if
t(l(τ)) = ∅.

A schedulerfor a Segala automaton with transition functiont is a partial functionS :

(X × V (X × A) × A)∗X → V (X × A) such that, ift(l(τ)) 6= ∅ thenS (τ) is defined
andS (τ) ∈ t(l(τ)). A scheduler chooses the next probability distribution, knowing the
history of the process. Using the representation with alternating graphs, we can say that,
for every path ending in a black node, a scheduler chooses oneof his hollow sons.

Given an (initial) statex0 ∈ X and a schedulerS for t, we consider the setB(t, x0,S )
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of maximal paths, obtained fromt by the action ofS . Those are the pathsx0ξ1a1x1 . . . ξnanxn

such thatξi+1 = S (x0ξ1a1x1 . . . ξiaixi). The set of maximal paths is endowed with the
σ-algebraF generated by the finite paths. A scheduler induces a probability measure on
F as follows: for every finite pathτ , let K(τ) be the set of maximal paths extendingτ .
DefineζS (K(τ)) := Π(τ), if τ ∈ B(t, x0,S ), and0 otherwise. It can be proved [25]
thatζS extends to a unique probability measure onF .

Given a set of labelsB ⊆ A we defineζS (B) to beζS (Z), whereZ is the set of all
maximal paths containing some label fromB.

3 A probabilistic π-calculus

3.1 Syntax and Operational Semantics

We assume the reader is familiar with the basic definitions ofthe π-calculus [21]. We
consider a restricted version of theπ-calculus, where only bound names are passed in
interaction. This variant is known asπI-calculus [24]. In the typed setting has the same
expressiveness as the full calculus [34]. The labelled transition semantics of theπI-calculus
is simpler than that of the full calculus and its labels more naturally corresponds to those of
event structures. Syntactically we restrict an output to the form(ν ỹ)x〈ỹ〉.P (where names
in ỹ are pairwise distinct), which we writex(ỹ).P .

We extend this framework to a probabilistic version of the calculus, where the output
is generative, while the input is reactive. Reactive input is similar to the “case” construct
and selection is “injection” in the typedλ-calculi. The formal grammar of the calculus is
defined below withpi ∈ [0, 1].

P ::= x
�

i∈I ini(ỹi).Pi | x
⊕

i∈I pi ini(ỹi).Pi | P | Q | (ν x)P | 0 | !x(ỹ).P

x
�

i∈I ini(ỹi).Pi is a reactive input, and no probability is attached to its events,
x

⊕
i∈I piini(ỹi).Pi is a generative output, and the events are given probabilitydenoted by

thepi, P | Q is a parallel composition,(ν x)P is a restriction and!x(ỹ).P is a replicated
input. When the input or output indexing set is a singleton weuse the notationx(ỹ).P

or x(ỹ).P ; when the indexing set finite, we can writex(in1(ỹ1).P1 & . . . & inn(ỹn).Pn)

or x(p1in1(ỹ1).P1 ⊕ pninn(ỹn).Pn). We omit the empty vector and0: for example,a
stands fora().0. The bound/free names are defined as usual. We assume that names in a
vectorỹ are pairwise distinct. We use≡α and≡ for the standardα and structural equiva-
lences [21,15].

The operational semantics is given in terms of Segala automata, using the notation
defined in (1) in Section 2. The labels we use are of the following form:

α, β ::= xini〈ỹ〉 | xini〈ỹ〉 | x〈ỹ〉 | x〈ỹ〉 | τ

(branching) (selection) (offer) (request) (synchronisation)

With the notation above, we say thatx is thesubjectof the labelβ, denoted assubj(β),
while ỹ = y1, . . . , yn are theobject names, denoted asobj(β). For branching/selection
labels, the indexi is thebranchof the label. The notation “ini” comes from the injection
of the typedλ-calculus.

The rules for deriving the transitions are presented in Figure 2. The partial operation
• on labels is defined as follows:xini〈ỹi〉 • xini〈ỹi〉 = x〈ỹ〉 • x〈ỹ〉 = τ , and undefined
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x
⊕

i∈I piini(ỹi).Pi{
x̄ini〈ỹj〉

pi
// Pi}i∈I x

�
i∈I ini(ỹi).Pi{

xinj〈ỹj〉

1
// Pj}

!x(ỹ).P{
x〈ỹ〉

1
// P | !x(ỹ).P} x(ỹ).P{

x〈ỹ〉

1
// P}

P{
βi

pi

// Pi}i∈I subj(βi) 6= x

(ν x)P{
βi

pi
// (ν x)Pi}i∈I

P{
βi

pi

// Pi}i∈I

P | Q{
βi

pi
// Pi | Q}i∈I

P{
αi

pi
// Pi}i∈I Q{

βi

1
// Qi} obj(αi) = ỹ

P | Q{
αi•βi

pi
// (ν ỹ)(Pi | Qi)}i∈I

P ≡α P ′ P{
βi

pi
// Qi}i∈I

P ′{
βi

pi
// Qi}i∈I

Fig. 2. Segala automaton for the probabilisticπI-Calculus

otherwise. In particular, the generative output synchronises with the reactive input, and a
synchronisation step takes place, with the probability chosen by the output process.

3.2 Linear types for the probabilisticπ-calculus

This subsection outlines a basic idea of the linear types fora probabilisticπ-calculus.
The linear type discipline [3,35] controls a composition of processes in two ways: first,

for each linear name there are a unique branching input and a unique selecting output; and
secondly, for each replicated name there is a unique stateless replicated input (offer, or
server) with zero or more dual outputs (request, or client).

Let us consider the following example where branching and selection provide proba-
bilistic behaviour, preserving linearity:

Q1
def
= a.(pin1.b ⊕ (1 − p)in2.c) | a.(in1.d & in2.e)

Q1 is typable, and we have eitherQ p
τ

// (b | d) or Q
1−p
τ

// (c | e) . The following process

is also typable:

Q2
def
= a.(pin1.b ⊕ (1 − p)in2.b) | a.(in1.d & in2.e)

since whichever branch is selected,b is used once. Howevera.b | a.c | a is untypable as
linear outputa appears twice. As an example of the offer-request constraint, let us consider
the following process:

Q3
def
= ! a(x).x.(pin1 ⊕ (1 − p)in2) | a(x)x.(in1.d & in2.e) | a(x)x.(in1.f & in2.g)

Q3 is typable since, while output ata appears twice, a replicated input ata appears only
once. Note thatx under the replication preserves the linearity after each invocation ata.
On the other hand,! b.a | ! b.c is untypable becauseb is associated with two replicators.
In the context of deterministic processes, the typing system guarantees confluence, in the
presence of nondeterminism it guarantees confusion freeness [30].

Channel types are inductively made up from type variables and action modes: theinput
modes↓, !, and the dualoutput modes↑,?. Then the syntax of types is given as follows:
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τ ::=
�

i∈I (τ̃i)
↓ |

⊕
i∈I (τ̃i)

↑ | (τ̃ )! | (τ̃)? | l

(branching) (selection) (offer) (request) (closed)

whereτ̃ is a tuple of types.
Branching types represent the notion of “environmental choice”: several choices are

available for the environment to choose. Selection types represent the notion of “process
choice”: some choice is made by the process, possibly probabilistically. In both cases
the choice is alternative: one excludes all the others. Offer types represent the notion of
“available resource”: I offer to the environment somethingthat is available regardless of
whatever else happens. Request types represent the notion of “concurrent client”: I want
to use an available resource. The closed type is used to represent a channel that cannot be
composed further.

We writeMD(τ) for the outermost mode ofτ . Thedual ofτ , written τ , is the result
of recursively dualising all action modes, withl being self-dual. A type environmentΓ is
a finite mapping from channels to channel types. Sometimes wewill write x ∈ Γ to mean
x ∈ Dom(Γ).

Types restrict the composability of processes: ifP is typed under environmentΓ1, Q is
typed underΓ2 and ifΓ1,Γ2 are “compatible”, then a new environmentΓ1 ⊙Γ2 is defined,
such thatP |Q is typed underΓ1 ⊙ Γ2. If the environments are not compatible,Γ1 ⊙ Γ2 is
not defined and the parallel composition cannot be typed. Formally, we introduce a partial
commutative operation⊙ on types, defined as follows2 :

(i)
�

i∈I (τi)
↓ ⊙

⊕
i∈I (τi)

↑ =l

(ii) (τ)? ⊙ (τ)! = (τ)!

(iii) (τ)? ⊙ (τ)? = (τ)?

Then, the environmentΓ1 ⊙ Γ2 is defined homomorphically. Intuitively, the rule (i) says
that once we compose input-output linear channels, the channel becomes uncomposable.
The rule (ii) says that a server should be unique while rule (iii) says that an arbitrary number
of clients can request interactions. Other compositions are undefined.

The rules defining typing judgmentsP ⊲ Γ (whereΓ is an environment which maps a
channel to a type) are identical to the affineπ-calculus [3] except a straightforward modi-
fication to deal with the generative output, which is defined by the same rule for confusion
free processes in [30], without any additional complexity due to the probability. The rules
are presented in Figure3. In (Par),Γ1 ⊙ Γ2 guarantees the consistent channel usage like
linear inputs being only composed with linear outputs, etc.In (Res), we do not allow↑,
? or ↓-channels to be restricted since they carry actions which expect their dual actions
to exist in the environment. (WeakOut) and (WeakCl) weaken with ?-names orl-names,
respectively, since these modes do not requirefurther interaction. (LIn) and (LOut) ensure
thatx occurs precisely once. (RIn) is the same as (LIn) except thatno free linear channels
are suppressed. This is because a linear channel under replication could be used more than
once. (ROut) is similar with (LOut). Note we need to apply (WeakOut) before the first
application of (ROut).

We then obtain a typed version of the operational semantics by restricting the actions
that are not allowed by the type environment. Informally an action is allowed by an envi-

2 to simplify the notation we omit thẽthat denotes polyadicity
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P ⊲ Γ, a : τ a 6∈ Γ MD(τ) = !, l

(ν a)P ⊲ Γ
Res

0 ⊲ ∅
Zero

P ⊲ Γ x 6∈ Γ

P ⊲ Γ, x :l
WeakCl

Pi ⊲ Γ, ỹi : τ̃i a 6∈ Γ

a
⊕

i∈I piini(ỹi).Pi ⊲ Γ, a :
⊕

i∈I(τ̃i)
↑ LOut

P ⊲ Γ x 6∈ Γ

P ⊲ Γ, x : (τ̃ )?
WeakOut

Pi ⊲ Γ, ỹi : τ̃i a 6∈ Γ

a
�

i∈I ini(ỹi).Pi ⊲ Γ, a :
�

i∈I(τ̃i)
↓ LIn

Pi ⊲ Γi (i = 1, 2)

P1 | P2 ⊲ Γ1 ⊙ Γ2
Par

P ⊲ Γ, ỹ : τ̃ a 6∈ Γ ∀(x :τ) ∈ Γ. MD(τ) =?

!a(ỹ).P ⊲ Γ, a : (τ̃)!
RIn

P ⊲ Γ, a : (τ̃ )? , ỹ : τ̃

a(ỹ).P ⊲ Γ, a : (τ̃ )?
ROut

Fig. 3. Linear Typing Rules

ronment if the subject of the action has a branching, selection or server type. The formal
definition can be found in [29]. For example, the output transition ata in a | a.0 is not
allowed sincea is linear so thata is assumed to interact with onlya.0, not with the external

observer. The typed automaton,P ⊲ Γ{
βi

pi
// Pi ⊲ Γi}i∈I , is defined by adding the con-

straint:
if P{

βi

pi
// Pi}i∈I andΓ allowsβi for all i ∈ I then P ⊲ Γ{

βi

pi
// Pi ⊲ Γi}i∈I The na-

ture of the typing system is such that for every transition group, either all actions are al-
lowed, or all are not, and therefore the above semantics is well defined.

3.3 Example of a probabilistic process

We consider the model of traffic lights from [22]. Let a be a driver, and let
inred, inyell, ingreen represent colours of the traffic light. The processainred(y) rep-
resents the traffic light signalling to the driver it is red, at the same time communicating
the namey of the crossing. The behaviour of the driver at the crossing is either braking,
staying still, or driving (inbrake, instill, indrive).

A cautious driver is represented by the process:

Da
c = a

�
i∈{red,yell,green} ini(y).Pi with Pred = y(0.2inbrake ⊕ 0.8instill)

Pyell = y(0.9inbrake ⊕ 0.1indrive)

Pgreen = y(indrive)

A cautious driver watches what colour the light is and behaves accordingly. If it is red,
she stays still, or finishes braking. If it is yellow, most likely she brakes. If it is green, she
drives on.
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A driver in a hurry is represented by the process

Da
h = a

�
i∈{red,yell,green} ini(y).Qi with Qred = y(0.3inbrake ⊕ 0.6instill ⊕ 0.1indrive)

Qyell = y(0.1inbrake ⊕ 0.9indrive)

Qgreen = y(indrive)

This is similar to the cautious driver, but he is more likely to drive on at red and yellow. In
fact, both have the sametype, they check the light, and they choose a behaviour:

Da
c ,Da

h ⊲ a :
�

i∈{red,yell,green} (
⊕

j∈{brake,still,drive}()
↑)↓

where
�

i∈I (τi)
↓ is a branching type which inputs a value of typeτi and

⊕
i∈I (τi)

↑ is a
selection type which selects a branchi with a value of typeτi. Note that the type actually
states that the driver chooses the behaviourafter seeing the light. We can represent two
independent drivers:

D2 = (νa, a′)(ainred(y).R | Da
c | a′ingreen(y).R | Da′

h )

where R = y
�

i∈{brake,still,drive} ini() represents the traffic light accepting the be-
haviour of the driver. We have thatD2 has two transition groups, corresponding to the
two drivers. Note that linearity and confusion-freedom ofy guarantees that each driver can
perform only one of three actions, i.e. eitherbrake, still or drive at any one time.

4 Probabilistic event structures

We now present the model of probabilistic event structures,that we use to give an alter-
native semantics to the probabilisticπ-calculus. Probabilistic event structures were first
introduced by Katoen [18], as an extension of the so calledbundleevent structure. A prob-
abilistic version ofprime event structures was introduced in [28]. Below we start from
basic definitions without probability.

4.1 Basic definitions

An event structureis a tripleE = 〈E,≤,⌣〉 such that
• E is a countable set ofevents;

• 〈E,≤〉 is a partial order, called thecausal order;

• for everye ∈ E, the set[e) := {e′ | e′ < e}, called theenabling setof e, is finite;

• ⌣ is an irreflexive and symmetric relation, called theconflict relation, satisfying the
following: for everye1, e2, e3 ∈ E if e1 ≤ e2 ande1 ⌣ e3 thene2 ⌣ e3.

The reflexive closure of conflict is denoted by≍. We say that the conflicte2 ⌣ e3 is in-
herited from the conflicte1 ⌣ e3, whene1 < e2. If a conflict e1 ⌣ e2 is not inherited
from any other conflict we say that it isimmediate, denoted bye1 ⌣µ e2. The reflexive
closure of immediate conflict is denoted by≍µ. Causal dependence and conflict are mu-
tually exclusive. If two events are not causally dependent nor in conflict they are said to
beconcurrent. A labelled event structureis an event structureE together with a labelling
functionλ : E → L, whereL is a set of labels.
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We introduce an interesting class of event structures whereevery choice islocalised. To
specify what “local” means that we need the notion ofcell, a set of events that are pairwise
in immediate conflict and have the same enabling sets.

Definition 4.1 A partial cell is a setc of events such thate, e′ ∈ c implies e ≍µ e′ and
[e) = [e′). A maximal partial cell is called acell. An event structure isconfusion freeif its
cells are closed under immediate conflict.

Equivalently, in a confusion free event structure, the reflexive closure of immediate
conflict is an equivalence with cells being its equivalence classes.

4.2 Probabilistic event structures

Once an event structure is confusion-free, we can associatea probability distribution with
some cells. Intuitively it is as if, for every such cell, we have a die local to it, determining
the probability with which the events at that cell occur.

We can think of the cells with a probability distribution asgenerative, while the other
cells will be calledreactive. Reactive cells are awaiting a synchronisation with a generative
cell in order to be assigned a probability.

Definition 4.2 Let E = 〈E,≤,⌣〉 be a confusion free event structure, letG be a set of
cells of E and letG′ be the set of events of the cells inG. The cells inG are called
generative. The cells not inG are calledreactive. A cell valuationon (E , G) is a function
p : G′ → [0, 1] such that for everyc ∈ G, we have

∑
e∈c p(e) = 1. A partial probabilistic

event structureis a confusion free event structure together with a cell valuation. It is called
simply probabilistic event structureif G′ = E.

This definition generalises the definition given in [28], where it is assumed thatG′ = E.
Note also that a confusion free event structure can be seen asa probabilistic event structure
where the setG is empty.

4.3 Operators on event structures

Several operations can be defined on event structures.
• prefixinga.E . This is obtained by adding a new minimum event, labelled bya. Conflict,

order, and labels remain the same on the old events.

• prefixed sum
∑

i∈I ai.Ei. This is obtained by disjoint union of copies of the event struc-
turesai.Ei, where the order relation is the disjoint union of the orders, the labelling
function is the disjoint union of the labelling functions, and the conflict is the disjoint
union of the conflicts extended by putting in conflict every two events in two different
copies. It is a generalisation of prefixing, where we add an initial reactive cell, instead
of an initial event.

• probabilistic prefixed sum
∑

i∈I piai.Ei, whereEi are partial probabilistic event struc-
tures. This is obtained as above, but with the condition thatthe initial cell is generative,
and that the probability of the new initial events arepi.

• restrictionE \ X whereX ⊆ A is a set of labels. This is obtained by removing fromE

all events with label inX and all events that are above one of those. On the remaining
events, order, conflict and labelling are unchanged.
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• relabellingE [f ]. This is just composing the labelling functionλ with a functionf : L →
L. The new event structure has thus labelling functionf ◦ λ.

• parallel composition The parallel composition of event structures is not so simple to
define, due to the possibility of synchronisation among events. For lack of space we skip
the details, that can be found in [33,29,30].

Intuitively, events in the parallel composition are the events of the two event structures,
plus some new event representing synchronisation. For a labelled event structures with
labels inL, the labels of the synchronisation events are obtained via asynchronisation
algebraS, a partial binary operation•S defined onL. If the labels of the two synchronising
event arel1, l2, the syncronisation event will have labell1 •S l2, if defined, orelse it will be
restricted away. The simplest synchronsation algebra is always undefined and represents
the absence of synchronisation. In this case the parallel composition can be represented as
the disjoint union of the sets of events, of the causal orders, and of the conflict. This can be
also generalised to an arbitrary family of event structures(Ei)i∈I . In such a case we denote
the parallel composition as

∏
i∈I Ei.

All constructors above, except the parallel composition, preserve the class of partial
probabilistic event structures. In the next section we present a typing system, which is
designed to allow parallel composition to preserve that class.

4.4 Typed event structures

In this section we recall the notion of type for an event structure, which was defined in [29].
Types and type environments for event structures are inspired by those of theπ-calculus,
but they recursively keep track of the names communicated along the channels. They are
generated by the following grammar:

Γ,∆ ::= y1 : σ1, . . . , yn : σn

τ, σ ::=
�

i∈I Γi |
⊕

i∈I Γi |
⊗

i∈I Γi |
⊎

i∈I Γi | l

(branching) (selection) (offer) (request) (closed type)

A type environmentΓ is well formedif any name appears at most once. Only well formed
environments are considered for typing event structures. The intuition behind the types is
similar to theπ-calculus. The main difference is that offer is not restricted to a replicated
server, but represents different concurrent resources.

Given a labelled confusion free event structureE onπ-calculus labels (defined in Sec-
tion 3), we can define whenE is typed in the environmentΓ, written asE ⊲Γ. Informally, a
confusion free event structureE has typeΓ if cells are partitioned in branching, selection,
request, offer and synchronisation cells, all the non-synchronisation events ofE are repre-
sented inΓ and causality inE refines the name causality implicit inΓ. This means that if
namey appears inside the type of a namex, any event whose subject isy must be causally
related with en event whose subject isx.

The types are designed so that the parallel composition of typed event structures will
also be typed. To define the parallel composition, we use the following same synchroni-
sation algebra used in Section3: xini〈ỹi〉 • xini〈ỹi〉 = x〈ỹ〉 • x〈ỹ〉 = τ , and undefined
otherwise. Moreover, the parallel composition of two typedevent structuresE1 ⊲ Γ1 and
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x1in
p1

1
/o/o/o x1in

p2

2 x2in
q1

1
/o/o/o/o x2in

q2

2 z1

τ b〈z1〉

KKKKKKKKKK

b〈z1〉

vvvvvvvvvv

KKKKKKKKKK

ain1〈x1〉 /o/o/o/o/o/o/o/o/o/o/o

TTTTTTTTTTTTTTTTTT

ain2〈x2〉

Fig. 4. A typed event structure

E2 ⊲ Γ2 is defined only when the environmentΓ1 ⊙ Γ2 is defined, and in such a case the
parallel composition has typeΓ1 ⊙ Γ2 The formal definition of⊙ is similar to the corre-
sponding notion for theπ-calculus, but it is recursively applied to the object names. It is
designed to preserve the well formedness (linearity) of theenvironment. The details can be
found in [29,30].

To type a partial probabilistic event structure, we type it as a non probabilistic event
structure. We also make sure that only the branching cells are reactive, as they are waiting
to synchronise with a dual selection cell.

Definition 4.3 Let E = 〈E,≤⌣ λ,G, p〉 be a partial probabilistic event structure. We say
thatE ⊲ Γ, if the following conditions are satisfied:
• E ⊲ Γ as for the non-probabilistic case;

• G includes all cells, except the branching ones.

From the fact that the parallel composition of typed event structures is typed, one can
easily derive that the parallel composition of typed probabilistic event structures [29] is still
a probabilistic event structure, and that it is typed.

4.5 Example of typed event structure

Figure4 represents a typed (partial) probabilistic event structure E ⊲ Γ, where

Γ = a :
�

i∈{1,2}(xi :
⊕

k∈{1,2}()), b :
⊗

i∈{1}(zi :
⊎

k∈{1}())

Immediate conflict is represented by curly lines, while causal order proceeds upwards
along the straight lines. The selection cellsx1in1, x1in2 andx2in1, x2in2 are generative.
The branching cellain1〈x1〉, ain2〈x2〉 is reactive. Every other cell is generative, and
contains only one event, that has probability 1. We can see that the causality inE refines
the name causality inΓ: for instance,Γ forces the labels with subjectxi to be above the
labelaini〈xi〉, but does not force the causal link between the events labelled byaini〈xi〉
andb〈z1〉. Note also that the synchronisation event is not represented in the type.

5 Event structure semantics of the probabilisticπ-calculus

This section presents the event structure semantics of theπ-calculus and its properties As
in [30], the semantics is given by a family of partial functions[[−]]ρ, parametrised by a

11
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“choice function”ρ, that take a judgment of theπ-calculus and return an event structure.
The “choice function”ρ assigns to every bound name a set (possibly a singleton) of fresh
distinct names. The parametrisation is necessary becauseπ-calculus terms are identified
up toα-conversion, and so the identity of bound names is irrelevant, while in typed event
structures, the identity of the object names is important. Also, since servers are interpreted
as infinite parallel compositions, every bound name of a server must correspond to infinitely
many names in the interpretation.

The semantics is defined as in the non probabilistic case [29]. As an example, we list
the semantics of the selection:

[[a
⊕

i∈I piini(ỹi).Pi ⊲ Γ, a :
⊕

i∈I(τ̃i)]]
ρ =

∑
i∈I piaini〈z̃i〉.[[Pi[z̃i/ỹi] ⊲ Γ, z̃i : τ̃i]]

ρi

wherez̃i = ρ(ỹi) andρi is ρ restricted to to the bound names ofPi. We can see that syntac-
tic prefix is modelled using the prefixing operator of event structures, while the parameter
ρ chooses an instantiation of the bound names.

The main property of the typed semantics is that all denoted event structures are typed.

Theorem 5.1 Let P be a process andΓ an environment such thatP ⊲ Γ. Suppose that
[[P ⊲ Γ]]ρ is defined. Then there is a environment∆ such that[[P ⊲ Γ]]ρ ⊲ ∆.

This theorem means that all denoted event structures are indeed partial probabilistic event
structures. Note that the set of generative cells includes all synchronisation cells. Therefore
a closed process denotes a probabilistic event structure.

Corollary 5.2 The event structure[[P ⊲ ∅]]ρ is a probabilistic event structure.

This implies that there exists a unique probability measureover the set of maximal
runs [28]. In other words, for closed processes, the scheduler only influences the order of
independent events, in accordance with the intuition that probabilistic choice are local and
not influenced by the environment.

6 Event structures and Segala automata

In this section we show a formal correspondence between Segala automata and probabilistic
event structures.

6.1 From event structures to Segala automata

Definition 6.1 Let E = 〈E,≤,⌣, λ〉 be a labelled event structure and lete be one of its
minimal events. The event structureE ⌊e = 〈E′,≤′,⌣′, λ′〉 is defined by:E′ = {e′ ∈
E | e′ 6≍ e}, ≤′=≤|E′, ⌣′=⌣|E′, andλ′ = λE′ .

Roughly speaking,E ⌊e is E minus the evente, and minus all events that are in conflict
with e. We can then generate a Segala automata on event structures as follows:

E {
ai

pi
// E ⌊ei}i∈I

if there exists a minimal generative cellc = {ei | i ∈ I}, such thatp(ei) = pi and
λ(ei) = ai. We also put

E { a
1

// E ⌊e}

12
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β′ /o/o/o/o/o/o/o/o/o/o γ′ β′′1/4 /o/o/o γ′′3/4 δ′′

α′1/3

CCCCCCCC

||||||||
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o α′′2/3

GGGGGGGGG

zzzzzzzz

Fig. 5. A probabilistic event structure

α′

3/4

1/3
1

γ′

1
β′

β′′ 1/4

3/4

1

δ′′

1

1/4

1

α′′
2/3

δ′′

γ′′

γ′′

δ′′

β′′

Fig. 6. The corresponding Segala automaton

if there exists an evente belonging to a minimal reactive cell, such thatλ(e) = a. The
initialised Segala automaton generated by an event structure E is the above automation
intialised atE .

A probabilistic event structure (where every cell is generative) generates a somewhat
“deterministic” Segala automaton. The general formalisation of this property requires sev-
eral technicalities (see [28], for instance). Here we state a simplified result. Consider
a schedulerS for a Segala automaton(t, x0). We say thatS is fair if for every path
τ ∈ B(t, x0,S ), there does not exist a transition groupξ and an indexj, such that
ξ ∈ t(xi) for all i > j, andξ is never chosen byS .

Theorem 6.2 LetE be a probabilistic event structure, and consider the Segalaautomaton
generated as above. For every set of labelsB, and for every fair schedulersS ,T , we
haveζS (B) = ζT (B).

In a non-probabilistic confluent system, all (fair) resolutions of the nondeterministic
choices give rise to the same set of events, possibly in different order. In this sense we can
see Theorem6.2as expressing probabilistic confluence.

Figure5 shows an example of a (partial) probabilistic event structure. The generative
cells are{α′, α′′}, {β′′, γ′′} and the probability is indicated as superscript of the label.
Figure6 shows the Segala automaton corresponding to the event structure of Figure5.

6.2 The adequacy theorem

There is a correspondence between the two semantics and of theπ-calculus. It is formalised
by the following theorem, which shows the correspondence between the Segala automata
semantics defined in Section3, and the Segala automaton derived from the event structure
semantics, as described above.
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Theorem 6.3 Let∼= denote isomorphism of probabilistic event structures.

SupposeP ⊲ Γ{
βi

pi

// Pi ⊲ Γi}i∈I in theπ-calculus. Then there existsρ, ρi such that

[[P ⊲ Γ]]ρ is defined and[[P ⊲ Γ]]ρ{
βi

pi
// ∼= [[Pi ⊲ Γi]]

ρi}i∈I .

Conversely, suppose[[P ⊲ Γ]]ρ{
βi

pi

// Ei}i∈I , for someρ. Then there existPi, ρi such

that P ⊲ Γ{
βi

pi
// Pi ⊲ Γ \ βi}i∈I and [[Pi ⊲ Γ \ βi]]

ρi ∼= Ei, for all i ∈ I.

The proof is analogous to the one for the non-probabilistic case [29] by induction on the
operational rules, the difficult case being the parallel composition.

6.3 Example of probabilistic confluence

Theorem6.3 and Theorem6.2 together show that the linearly typed probabilisticπ-
calculus is “probabilistically confluent”.

To exemplify this, consider a processP such thatP ⊲ a :
⊕

i∈I . This is a process
that emits only one visible action, whose subject isa. For everyj ∈ I we can define the
probability P emitsainj aspS (ainj) for some fair schedulerS . By Theorem6.2, we
have that this probability is independent from the scheduler, so we can define it asp(ainj).
This independence from the scheduling policy is what we callprobabilistic confluence.

Note also that it can be shown that
∑

i∈I p(aini) ≤ 1. When the inequation is strict,
the missing probability is the probability that the processdoes not terminate. This reason-
ing rely on the typing in that there exist untyped processes that are not probabilistically
confluent. For instance consider

(νb)(b | b.a
⊕

i∈{1,2} piini | b.a
⊕

i∈{1,2} qiini)

The above process also emits only one visible action, whose subject isa. The probability
of ain1 is p1, or q1, depending on which synchronisation takes place, i.e. depending on the
scheduler. Note, however, that this process is not typable.

7 Related and future work

7.1 Related work

This paper has provided an event structures semantics for a probabilistic version of theπ-
calculus. It is the first true concurrent semantics of a probabilistic π-calculus. Related work
with true concurrency models for theπ-calculus and (confusion-free) event structures are
already discussed in [30,29]. There, the importance of confusion freeness and the use of
types in event structures is also discussed in depth. Another recent event structure semantics
of theπ-calculus was presented in [5].

The natural comparison is with the probabilisticπ-calculus by Herescu and
Palamidessi [14]. Their and our calculi both have a semantics in terms of Segala automata,
while we also provide an event structure semantics. The key of our construction is the
typing system, which allows us to stay within the class of probabilistic event structures.

Our typing system is designed to provide a “probabilistically confluent” calculus, and
therefore their calculus is more expressive, as it allows non-confluent computations. At
the core of their calculus, there is a renormalisation of probabilities, which is absent in our
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setting, i.e. in our calculus, all probabilistic choices are local, and are not influenced by the
environment.

A simpler calculus, without renormalisation, is presentedin [6]. This version is very
similar to ours, in that all choices are local; in fact, the protocol example presented in [6]
(via an encoding into our calculus) is linearly typable. We believe we could apply a typing
system similar to ours to the calculus in [6], prove the same results in this paper and identify
a good class of probabilistic name-passing behaviours.

7.2 Future work

We have shown a correspondence between event structures andSegala automata. We would
have liked to extend this correspondence to a categorical adjunction between two suitable
categories, ideally extending the setting presented in [33]. It is possible to do so, by a simple
definition of morphisms for Segala automata, and by extending the notion of probabilistic
event structures. Unfortunately neither category has products, which are used in [33] to
define parallel composition. The reason for this is nontrivial and it is has to do with the
notion of stochastic correlation, a phenomenon already discussed in [28] in the context of
true concurrent models. This issue needs to be investigatedfurther.

The linearly typedπ-calculus is the target of a sound and complete encodings of func-
tional language [3,34]. Our traffic light example in Section 5 suggests that our calculus
captures the core part of the expressiveness represented bythe Stochastic Lambda Cal-
culus [22]. We plan to perform similar encodings in the probabilisticversion, notably
the probabilistic functional language [22], probabilistic λ-calculus [10] and Probabilis-
tic PCF [7]. Since the linear type structures are originated from gamesemantics [16],
this line of study would lead to a precise expressive analysis between the probabilistic
event structures, Segala automata, probabilistic programming languages and probabilistic
game semantics [7], bridged by their representations of or encodings into probabilistic π-
calculi. Finally, there are connections between event structures, concurrent game [20], and
ludics [11,12] that should be investigated also in the presence of probabilities.
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