Secret Slides

Markov decision processes

 $1\frac{1}{2}$ player game (Henzinger, Jurdzinski)

The moves of the full player are called actions

A scheduler is a strategy for the (full) player

A scheduler leaves us with a (labelled) Markov process

Runs

- A finite run of a Markov decision process is a probability distribution over strings of the same length (DeAlfaro, Henzinger, Jhala)
- The set of maximal runs is equipped with a measure (Segala)
- Probabilistic verification uses interleaving
- Temporal logics talk about schedulers

Valuations and independence

Not *all* continuous valuations are obtained the way we have seen

$$b \sim c \qquad d \sim e$$

This is $\mathcal{L}(\mathcal{E})$:

Valuations and independence

Now put

- $\xi(\emptyset\uparrow)=1$
- $\xi(\{b\} \uparrow) = \xi(\{c\} \uparrow) = \xi(\{d\} \uparrow) = \xi(\{e\} \uparrow) = 1/2$
- $\xi(\{b,d\}\uparrow) = \xi(\{c,e\}\uparrow) = 0$
- $\xi(\{b,e\}\uparrow) = \xi(\{c,d\}\uparrow) = 1/2$

No valuation on \mathcal{E} generates ξ

There is a correlations between the two cells

Morphisms

A morphism $f:\mathcal{E}\to\mathcal{E}'$ is a (partial) function from $E\to E'$ such that if x is a configuration, f(x) is a configuration

How we get valuations without independence

$$b \sim c$$
 $d \sim e$

How we get valuations without independence

A morphism $f: \mathcal{E} \to \mathcal{E}'$

How we get valuations without independence

A morphism $f: \mathcal{E} \to \mathcal{E}'$

How we get valuations without independence

A morphism $f: \mathcal{E} \to \mathcal{E}'$

How we get valuations without independence

$$b \sim c$$
 $d \sim \epsilon$

A valuation ν on \mathcal{E}

How we get valuations without independence

$$b \sim c$$
 $d \sim e$

A valuation ν on \mathcal{E}

How we get valuations without independence

$$b \sim c$$
 $d \sim e$

Define a valuation ν' on \mathcal{E}' by pulling back ν

How we get valuations without independence

$$b \sim c$$
 $d \sim e$

$$\nu'(y) = \sum_{f(x)=y} \nu(x)$$

How we get valuations without independence

$$b \sim c$$
 $d \sim e$

$$d \sim \epsilon$$

$$\nu'(\{b\}) = \frac{1}{2}, \nu'(\{e\}) = \frac{1}{2}$$
$$\nu'(\{b, e\}) = 0$$

How we get valuations without independence

$$b \sim c$$
 $d \sim e$

Negative correlation between b and eDue to a hidden choice

New definition

A valuation on \mathcal{E} is a function $v : \mathcal{L}_{fin}(E) \to [0, 1]$ such that for every test C

$$\sum_{x \in C} v(x) = 1$$

Theorem

For every valuation v on an event structure \mathcal{E} there is a unique continuous valuation ν_v on $\mathcal{L}(\mathcal{E})$ such that, for every finite configuration x:

$$\nu_v(x\uparrow) = v(x)$$

Valuations and partiality

We have to consider partial probability distributions

•
$$\xi(\emptyset\uparrow)=1$$

•
$$\xi(\{a\} \uparrow) = \xi(\{b\} \uparrow)$$

= $\xi(\{c\} \uparrow) = \xi(\{d\} \uparrow) = 1/3$

•
$$\xi(\{a,c\}\uparrow) = \xi(\{b,d\}\uparrow)$$

= $\xi(\{a,d\}\uparrow) = \xi(\{b,c\}\uparrow) = 1/9$

Some probability "leaks"

Leaking valuations

$$b_{\frac{1}{3}} \sim c_{\frac{1}{3}}$$
 $d_{\frac{1}{3}} \sim e_{\frac{1}{3}}$

$$d_{\frac{1}{3}} \sim e_{\frac{1}{3}}$$

The leaking probability can be accounted for

Leaking valuations

$$\partial_{\frac{1}{3}} \sim b_{\frac{1}{3}} \sim c_{\frac{1}{3}} \qquad d_{\frac{1}{3}} \sim e_{\frac{1}{3}} \sim \partial_{\frac{1}{3}}$$

$$d_{\frac{1}{3}} \sim e_{\frac{1}{3}} \sim \partial_{\frac{1}{3}}$$

The leaking probability can be accounted for by invisible events, representing deadlock