
Model Checking Almost All Paths Can Be Less

Expensive than Checking All Paths

Matthias Schmalz1, Hagen Völzer2, and Daniele Varacca3 ?

1 ETH Zürich, Switzerland
2 IBM Zurich Research Laboratory, Switzerland

3 PPS - CNRS & Univ. Paris 7, France

Abstract. We compare the complexities of the following two model
checking problems: checking whether a linear-time formula is satis�ed by
all paths (which we call universal model checking) and checking whether
a formula is satis�ed by almost all paths (which we call fair model check-
ing here). For many interesting classes of linear-time formulas, both prob-
lems have the same complexity: for instance, they are PSPACE-complete
for LTL.
In this paper, we show that fair model checking can have lower complexity
than universal model checking, viz., we prove that fair model checking
for L(F∞) can be done in time linear in the size of the formula and of
the system, while it is known that universal model checking for L(F∞) is
co-NP-complete. L(F∞) denotes the class of LTL formulas in which F∞

is the only temporal operator. We also present other new results on the
complexity of fair and universal model checking. In particular, we prove
that fair model checking for RLTL is co-NP-complete.

1 Introduction

A reactive system satis�es a speci�cation expressed by a formula of linear-time
temporal logic if all its executions satisfy the formula. In this case, we say that a
system is universally correct, and the problem of verifying universal correctness
is called universal model checking.

Sometimes a system does not satisfy a speci�cation, but only because of
a �small� set of executions that do not satisfy the formula. From a measure-
theoretic point of view, �small� means having probability 0. From a topological
point of view, it means being a meager set. The topological point of view cor-
responds to the notion of fairness [14], i.e., a set of executions Y of a system
is meager if and only if there exists some fairness assumption F for the system
such that each execution in Y is unfair w. r. t. F .

Varacca and Völzer [11] have shown that, for LTL formulas and �nite-state
systems, the two notions of smallness coincide. More importantly, they coincide

? 1Matthias.Schmalz@inf.ethz.ch, 2hvo@zurich.ibm.com, 3varacca@pps.jussieu.fr;
most of the work was done while the �rst two authors were a�liated with the
University of Lübeck, Germany.

independently of the probability measure chosen (provided it belongs to a very
general class of measures).

If the set of executions that do not satisfy the speci�cation is small, we say
that the system is almost correct or fairly correct. The problem of verifying fair
correctness is called fair model checking in this paper.4 As indicated above, fair
model checking is � for �nite systems and LTL speci�cations � equivalent to
qualitative probabilistic model checking (i.e., checking a speci�cation for proba-
bility 1) (cf. [11]). Fair model checking is an interesting alternative to universal
model checking even for non-probabilistic systems that are desired to be univer-
sally correct for the following reasons:

� The di�erence between the two notions of correctness is small; most errors
(i.e. violations of the speci�cation) found by universal checking are also found
by fair checking. In particular, both notions of correctness coincide for safety
properties (cf. [11]).

� In fair model checking, there is no need to specify any fairness assumption on
the system. (Additional fairness assumptions do not change fair correctness
[11].)

It is known that universal and fair model checking for LTL have the same
complexity: both are PSPACE-complete and can be solved in time linear in the
system and exponential in the formula [9, 6, 12, 3]. In this paper, we compare the
complexities of universal and fair model checking for subclasses of LTL. Studying
subclasses helps to understand the scope of the PSPACE-completeness results
and also helps to develop optimised algorithms for frequently used formulas.

It is known that also for some sub- and superclasses of LTL, universal and
fair model checking have the same complexity, e.g. LTL+past [9, 6, 3], Büchi au-
tomata [10, 13, 12, 3] and Street constraints [1, 11]. We show that this remains
true for some additional subclasses. In particular, fair and universal model check-
ing for L(F) (also known as RLTL: the class of LTL formulas built using only
the temporal operator F) are both co-NP-complete.

However, as the main result of the paper, we show that fair (and hence
qualitative probabilistic) model checking can be easier than universal model
checking. We prove that fair model checking for L(F∞) (LTL restricted to F∞,
where F∞ is short for G F) can be done in time linear in the size of the formula
(and linear in the size of the system), whereas universal model checking for
L(F∞) is co-NP-complete.

To this end, we de�ne and characterise an interesting subclass of L(F∞),
calledMuller formulas, which already separates the two model checking problems
with respect to their complexity. The satisfaction of a Muller formula in an
execution depends only on the set of states which are visited in�nitely often in
that execution. Finally, we clarify the scope of our results by looking at some
simple subclasses of RLTL.

4 Note that in this paper fair model checking is not the problem of checking whether
a system is correct under some �xed fairness assumption. Instead, it is the problem
of checking whether there exists some fairness assumption for a system such that
the system is correct under this fairness assumption.

2 Preliminaries

2.1 Systems and temporal properties

Let Q be a �nite set of states. The sets Q∗, Q+ and Qω contain all �nite,
non-empty �nite, and in�nite sequences over Q, respectively. Finite sequences
are called path fragments (over Q) and denoted by α, β, and in�nite ones are
called paths (over Q) and denoted by x, y. The i-th element of a path (or path
fragment) x is denoted xi. We have x = x0x1 . . . A set Y ⊆ Qω is called a
(linear-time temporal) property (over Q) or a speci�cation. If Q is clear from the
context, we write Y c for the complement of Y in Qω.

Throughout the entire paper, we �x a nonempty set AP of atomic propo-
sitions. A system Σ = (Q, q0,→, v) consists of a �nite set of states Q ⊆ AP ,
an initial state q0 ∈ Q, a state relation → ⊆ Q × Q, and a valuation function
v : Q → 2AP such that q ∈ v(q), for each q ∈ Q. The technical assumption
Q ⊆ AP allows us later to use states as part of temporal formulas. We require
that for each p ∈ Q there be a q ∈ Q such that p → q. A path of Σ is a path x
over Q such that x0 = q0 and xi → xi+1 (i ∈ N). Finite pre�xes of paths of Σ
are called path fragments of Σ.

A set K ⊆ Q is a strongly connected component of Σ (s. c. c. for short) if it is
a strongly connected component of the directed graph (Q,→). A bottom strongly
connected component of Σ (b. s. c. c.) K is an s. c. c. with no outgoing edges, i.e.,
there is no edge (p, q) ∈ → such that p ∈ K and q /∈ K.

The size of a system Σ = (Q, q0,→, v) is de�ned as |Σ| := |Q|+ | → |.

2.2 Temporal logic

In this paper, we consider several languages of linear-time temporal logic. The
most expressive one is LTL+past [4], which is de�ned by the following syntax
rules, where ξ ranges over atomic propositions and Φ over path formulas:

Φ := ξ | ¬Φ | Φ ∨ Φ | X Φ | ΦU Φ | X− Φ | ΦU− Φ

Additional operators such as true, false,∧, ⇒, F, G, etc. are de�ned as ab-
breviations as usual [4]. We will also make use of the operator F∞, de�ned as
abbreviation for G F, and G∞ the abbreviation for F G. Non-boolean operators
are called temporal operators. If Φ does not contain a temporal operator, it is
called a state formula. By L(op1, . . . , opn) we denote the set of LTL+past for-
mulas that contain only the temporal operators op1, . . . , opn. L(X,U) is known
as LTL, L(F) as RLTL. Note that L(F) ⊆ L(X,U) because F can be expressed
by U. Likewise, formulas in L(F) can also contain G,F∞ and G∞.

Satisfaction x � Φ, x, i � Φ is de�ned as usual [4]. By Sat(Φ) we denote the
set of all paths of the underlying system that satisfy Φ. The size |Φ| of a formula
Φ is given by the number of its temporal and boolean operators.

2.3 Universal and fair correctness

A system is universally correct w. r. t. a speci�cation Y i� each path of the system
belongs to Y . It is universally correct w. r. t. a formula Φ i� each path of the sys-
tem satis�es Φ. Fair correctness can be de�ned equivalently in language-theoretic,
game-theoretic, topological, or probability-theoretic terms [11]. In particular, the
system underlying a �nite-state Markov chain is fairly correct w. r. t. a speci�ca-
tion given by a formula Φ if and only if Sat(Φ) has measure 1. This property is
independent of the precise probabilities in the Markov chain, and fair correctness
can in fact be de�ned without probability. We give the game-theoretic de�nition
here because that will be the most useful in the sequel.

Let Σ = (Q, q0,→, v) be a system and Y a property. The Banach-Mazur
game G(Σ,Y) is played by the two players Alter and Ego, and the state of a
play is a path fragment of Σ. Alter moves �rst by choosing a path fragment
α0 of Σ. The players alternately move, and the player of the i-th move (i ∈ N)
extends the path fragment by a �nite, nonempty sequence αi, yielding the path
fragment α0 . . . αi of Σ. The play goes on forever, converging to a path x of Σ.
Ego wins if x ∈ Y , otherwise Alter wins. A strategy is a mapping f : Q∗ → Q+

such that, for each path fragment α of Σ, αf(α) is a path fragment of Σ. A
strategy f is winning for player P ∈ {Alter,Ego} if, for each strategy g of the
other player, P wins the play that results from P playing f and the other player
playing g. It is well-known that if Y is given by an LTL-formula, then G(Σ,Y)
is determinate (cf. [2]), i.e., either Ego or Alter has a winning strategy.

The system Σ is fairly correct w. r. t. Y i� Ego has a winning strategy
in G(Σ,Y). For convenience, we say that Σ is fairly correct w. r. t. Φ i� Ego
has a winning strategy in G(Σ,Sat(Φ)). Universal model checking, denoted by
UMC(L), is the problem of deciding whether a given system is universally cor-
rect, and fair model checking, denoted by FMC(L), is the problem of deciding
whether a given system is fairly correct w. r. t. a speci�cation. In both cases, the
speci�cation is given by a formula drawn from the language L.

3 Comparing Universal and Fair Model Checking

3.1 Known results

It is known that both universal and fair model checking of LTL are PSPACE-
complete [9, 12, 3]. Both problems can be solved in time linear in the system and
exponential in the formula [6, 3]. The same holds for the language LTL+past. For
universal model checking, this was shown by Sistla and Clarke [9, 8, 6], and for
fair model checking, this was claimed by Courcoubetis and Yannakakis [3], but
no proof was published. A formal original proof is given in Schmalz' thesis [7].

These results can also be transferred to branching-time logics, where the
model checking problems for CTL and a fair version of CTL (as well as for
CTL* and a fair version of CTL*) have the same complexities (cf. [11]). Finally,
fair and universal model checking for speci�cations given by a Büchi automaton
are both PSPACE-complete [12, 3, 10, 13].

3.2 RLTL

Sistla and Clarke [9] have shown that universal model checking for RLTL is co-
NP-complete. In this section, we show that this is also the case for the fair model
checking problem for RLTL. Indeed, fair satisfaction of an RLTL formula can be
expressed by another RLTL formula. In this way, fair model checking for RLTL
can be reduced to universal model checking for RLTL. To this end, we need the
notion of a complete property.

De�nition 1. Let L be a sublanguage of LTL+past and Σ a system that is
fairly correct w. r. t. a property Y . We say that Y is L-complete w. r. t. Σ i�
Y ⊆ Sat(Φ) for each Φ ∈ L such that Σ is fairly correct w. r. t. Φ.

If Y is L-complete, then we have that Σ is fairly correct w. r. t. Φ i� Y ⊆
Sat(Φ), provided that Φ ∈ L (cf. [11]). This yields an alternative way of proving
and disproving fair correctness.

We will use the fact that state fairness is complete for RLTL and expressible
in RLTL. Let x be a path and p, q states of a system Σ = (Q, q0,→, v). We say
that q is enabled at p i� p→ q; moreover, q is enabled at some position i of x i�
q is enabled at xi. We say that q is taken at position i of x i� xi = q. The path
x is state fair w. r. t. Σ i� each state q of Σ that is enabled at in�nitely many
positions of x is also taken at in�nitely many positions of x. The set of all state
fair paths of Σ is denoted by SFΣ .

It is easy to show that Σ is fairly correct w. r. t. SFΣ . A winning strategy
for Ego consists in �rst going to a b. s. c. c., and then, at each subsequent turn,
taking each state of that b. s. c. c. at least once.

Theorem 2. Let Σ be a �nite system. Then, SFΣ is L(F)-complete w. r. t. Σ.

Proof. See appendix.

The intuitive meaning of Theorem 2 is the following: whenever we want to
prove thatΣ is fairly correct w. r. t. a formula Φ ∈ L(F), this can be accomplished
by showing that each state fair path of Σ satis�es Φ. Theorem 2 was observed
already by Zuck et al. [15], who also gave a proof sketch. There, we give a detailed
alternative proof.

State fairness can easily be expressed by the following formula of L(F):

Ψ(Σ) :=
∧
q∈Q

(F∞ enabled(q) ⇒ F∞ q),

where, for each q ∈ Q, enabled(q) is an atomic proposition that holds exactly at
these states of Σ at which q is enabled. As F∞ is a shorthand for G F, and G
can be de�ned in terms of F, Ψ(Σ) ∈ L(F).

We are now ready to prove the main result of this section.

Theorem 3. The problem FMC(L(F)) is co-NP-complete.

Proof. Hardness is a consequence of Theorem 10 stated below or can be shown
similar as in the universal case (cf. [9]).

We prove co-NP membership of FMC(L(F)) by a reduction from FMC(L(F))
to UMC(L(F)). Given a system Σ and a formula Φ ∈ L(F), the reduction maps
(Φ,Σ) to (Φ̂, Σ), where Φ̂ := (Ψ(Σ) ⇒ Φ) ∈ L(F). By Theorem 2, Σ is fairly
correct w. r. t. Φ i� Σ is universally correct w. r. t. Φ̂.

We remark here that also FMC(L(X)) and UMC(L(X)) are co-NP-complete.
See [8] for the universal case. In the fair case, the assertion follows from the fact
that Σ is correct w. r. t. Φ i� Σ is fairly correct w. r. t. Φ, provided that Φ ∈ L(X).

4 Fair Model Checking Can Be Less Expensive than

Universal Model Checking

In this section, we show that for L(F∞) the complexities of fair and universal
model checking di�er. It is known that universal model checking for L(F∞)
formulas is co-NP-complete [5]. We show that fair model checking can be done
in linear time in the size of the formula and the system. For this, we �rst introduce
a natural subclass of L(F∞) for which the two complexities already di�er.

4.1 Muller formulas

A Muller formula is an LTL formula where F∞ is the only temporal operator
and where every variable is in the scope of some temporal operator:

De�nition 4. The language L+(F∞) of Muller formulas is the smallest set of
LTL formulas that satis�es the following two conditions M1 and M2:

M1: If Ψ ∈ L(F∞), then F∞ Ψ ∈ L+(F∞).
M2: If Ψ,Φ ∈ L+(F∞), then Ψ ∨ Φ,¬Ψ ∈ L+(F∞).

The key property of Muller formulas is that their validity in a path x only
depends on the set inf (x), i.e., the set of states that occur in�nitely often in x.

De�nition 5. Let Σ = (Q, q0,→, v) be a system. A property Y over Q is a
Muller property i� for all paths x, y over Q with inf (x) = inf (y) we have x ∈ Y
i� y ∈ Y .

Theorem 6. Let Σ be a system. Then, for each Φ ∈ L+(F∞), Sat(Φ) is a
Muller property.

Proof. See appendix.

It is easy to see that each Muller property can be expressed by a Muller
formula (cf. [7]).

4.2 Fair model checking of Muller formulas

In this subsection, we show that fair model checking of Muller formulas can be
done in linear time w. r. t. the formula. We are going to present an algorithm for
FMC(L+(F∞)) based on the fact that, for systems Σ that consist of only one
s. c. c. and formulas Φ ∈ L(F∞), we have that Σ is either fairly correct w. r. t. Φ
or w. r. t. ¬Φ.

We are given a system Σ and a Muller formula Φ. Without loss of generality,
we assume that Σ has no isolated states, i.e., each state of Σ is eventually taken
by some path of Σ. First, the algorithm computes the b. s. c. c.s of Σ. Then, for
each subformula Υ of Φ, the algorithm partitions each b. s. c. c. K of Σ into KΥ

and K¬Υ := K \KΥ as follows. (The meaning of KΥ is that whenever a state
fair path of Σ takes a state of KΥ , Υ is satis�ed at the same position.)

1. If Υ is a state formula, then exactly these states of K that satisfy Υ belong
to KΥ .

2. If Υ = Θ ∨ Ψ , then KΥ := KΘ ∪KΨ .
3. If Υ = ¬Θ, then KΥ := K¬Θ.
4. If Υ = F∞Θ, then KΥ := K if KΘ 6= ∅; otherwise, KΥ := ∅.

The algorithm accepts its input i� K = KΦ for each b. s. c. c. K of Σ.

Proposition 7. The above algorithm is correct, i.e., the algorithm always ter-
minates, and accepts if and only if Σ is fairly correct w. r. t. Φ.

Proof. The algorithm obviously terminates. It can be shown by induction over
the structure of Υ that the following applies:

1. We have q ∈ KΥ i� SFΣ ⊆ Sat(G(q ⇒ Υ)).
2. We have q ∈ K¬Υ i� SFΣ ⊆ Sat(G(q ⇒ ¬Υ)).

Suppose the algorithm accepts Σ and Φ. As Σ is fairly correct w. r. t. SFΣ ,
it su�ces to show that SFΣ ⊆ Sat(Φ). Let x ∈ SFΣ . It can be shown that there
is a b. s. c. c. K of Σ and a position i ∈ N such that xi ∈ K. Therefore xi ∈ KΦ.
With claim 1, x � G(xi ⇒ Φ). Hence, x, i � Φ. With Theorem 6, x � Φ.

Now, suppose the algorithm rejects Σ and Φ. Because of Theorem 2, it su�ces
to show that SFΣ * Sat(Φ). Let x ∈ SFΣ such that, for some i ∈ N, xi ∈ K¬Φ,
where K is a b. s. c. c. of Σ with K 6= KΦ. With claim 2, x � G(xi ⇒ ¬Φ).
Hence, x, i � ¬Φ. With Theorem 6, x 2 Φ.

The computation of the b. s. c. c.s of Σ can be done in O(|Σ|) steps. For a
given subformula Υ of Φ, also the partition of the b. s. c. c.s K into KΥ and K¬Υ

can be accomplished in O(|Σ|). As Φ has O(|Φ|) subformulas, the total running
time of the algorithm is in O(|Σ||Φ|). We have thus shown the following:

Theorem 8. The problem FMC(L+(F∞)) can be solved in O(|Σ||Φ|), where Σ
is the input system and Φ the input formula.

4.3 Fair model checking of L(F∞)

Theorem 8 can be extended from L+(F∞) to L(F∞).

Theorem 9. The problem FMC(L(F∞)) can be solved in O(|Σ||Φ|), where Σ
is the input system and Φ the input formula.

Proof. The algorithm translates Φ to a formula Φ′ by applying the following
rules as often as possible:

1. Replace each atomic proposition, which is not in the scope of a temporal
operator, by its truth value (true or false) at the initial state of Σ.

2. Replace true ∨ Ψ by true.
3. Replace false ∨ Ψ by Ψ .
4. Replace ¬true by false.
5. Replace ¬false by true.

It is straightforward to show that, for each path x of Σ, x � Φ i� x � Φ′. Recall
that the only di�erence between L(F∞) and L+(F∞) is that in L+(F∞) each
atomic proposition is in the scope of a temporal operator. Therefore, it is not
too di�cult to see that Φ′ is a Muller formula.

After this translation, the algorithm applies Theorem 8. As the translation
can be done in O(|Φ|), the total running time belongs to O(|Σ||Φ|).

5 Canonical Subclasses of RLTL

In this section, we shed more light on the above results by studying the com-
plexity of some simple subclasses of RLTL. The formulas in these subclasses are
`�at', i.e., there is no nesting of temporal operators.

5.1 Conjunctive formulas

We start by observing that top-level conjunctions are easily dealt with: in order
to check Φ ∧ Ψ , it is su�cient to check Φ and Ψ in isolation. This is trivial for
universal model checking, but is also easily veri�ed for fair model checking: a
system is fairly correct w. r. t. Φ∧ Ψ i� it is fairly correct w. r. t. Φ and w. r. t. Ψ
(cf. for instance [14]).

Thus, if {Ψ1, . . . , Ψn} is a set of formulas whose length is bounded by some
constant k, then Φ =

∧n
i=1 Ψi can be checked in time O(|Σ| ·n ·2k). This implies,

for example, that Street formulas, i.e., formulas of the form
∧n

i=1(F
∞ ψi∨G∞ ξi)

with ψi, ξi state formulas, can be checked in linear time (i.e. O(|Σ||Φ|)).

5.2 Disjunctive formulas of RLTL

Disjunctions are more interesting. In particular, we show that co-NP-hardness
of fair and universal model checking of RLTL is implied by the fact that fair and
universal model checking for formulas of the form

∨n
i=1(F ψi ∧ F ξi) is already

co-NP-hard.

Theorem 10.

1. Fair and universal model checking a formula Φ =
∨n

i=1(F ψi ∧ F ξi) and a
system Σ are co-NP hard.

2. Fair and universal model checking a formula Φ =
∨n

i=1(G ψi ∧ G ξi) and a
system Σ can be done in linear time.

3. Fair and universal model checking a formula Φ =
∨n

i=1 F ψi and a system Σ
can be done in linear time.

4. Fair and universal model checking a formula Φ =
∨n

i=1 G ψi and a system Σ
can be done in linear time.

Here ψi and ξi are state formulas (1 ≤ i ≤ n).

Proof. For 1, we de�ne a reduction from the complement of 3−SAT to both fair
and universal model checking of formulas Φ =

∨n
i=1(F ψi∧F ξi). Let φ =

∧m
i=1 ψi

be a 3-CNF formula, where ψi = ξi,1∨ξi,2∨ξi,3 and ξi,j ∈ {ζ1, . . . , ζn, ζ1, . . . , ζn}
(1 ≤ i ≤ m, 1 ≤ j ≤ 3). Then the reduction maps φ to the formula Φ :=∨n

k=1(F ζk∧F ζk) and the system Σ = (Q, q0,→, v) with the following properties:

� Q = {q0, . . . , qm} ∪ {pi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ 3},
� → is the smallest relation such that, for 0 ≤ i < m, 1 ≤ j ≤ 3,

• qi → pi+1,j ,
• pi+1,j → qi+1,
• qm → qm.

� v(qi) = {qi} (0 ≤ i ≤ m),
� v(pi,j) = {ξi,j , pi,j} (1 ≤ i ≤ m).

First, we prove that φ is satis�able i� Σ is not universally correct w. r. t. Φ.
Suppose that φ is satis�able. Then there are j1, . . . , jm ∈ {1, 2, 3} such that, for
each i ∈ {1, . . . ,m}, ξi,ji = ζk implies that, for each i′ ∈ {1, . . . ,m}, ξi′,ji′ 6=
ζk. Intuitively, ξi,ji is the satisfying literal of the i-th clause. We de�ne x :=
q0p1,j1q1p2,j2 . . . qm−1pm,jmqmqmqm . . . Then x is a path of Σ violating Φ; thus,
Σ is not universally correct w. r. t. Φ.

The opposite direction can be shown with similar arguments. For the case
of fair model checking, note that Σ is universally correct w. r. t. an arbitrary
speci�cation i� it is fairly correct w. r. t. that speci�cation. So the reduction is
also valid for fair model checking. Clearly, the reduction can be computed in
polynomial time; part 1 of the assertion follows.

For 4, we assume, without loss of generality, that Σ has no isolated states.
In the case of universal model checking, we propose the following algorithm:

1. Compute the s. c. c. graph of Σ and a topological ordering of the s. c. c.s.
2. Travel through the s. c. c.s in topological order, and compute for each s. c. c.
K of Σ:

valid(K) = {i ∈ {1, . . . , n} | ∀q ∈ K : q � ψi} ∩
⋂

K′: K′→K

valid(K ′).

Given s. c. c.s K1,K2 of Σ, K1 → K2 means that there are p ∈ K1, q ∈ K2

such that p→ q.

Wn
i=1(F ψi ∧G ξi)

co-NPC / co-NPC

RLTL

Wn
i=1 F ψi

Wn
i=1 G ψi

L(F)

? / ?

linear / linearlinear / linear

Wn
i=1(G ψi ∧G ξi)

linear / linear

Wn
i=1(F ψi ∧ F ξi)

co-NPC / co-NPC

Fig. 1. Results for subclasses of L(F) showing the complexity of universal model check-
ing / fair model checking.

3. The input is accepted i� there is no s. c. c. K of Σ with valid(K) = ∅.

By induction over the number of s. c. c.s the algorithm has already processed,
it can be shown that i ∈ valid(K) i� each path fragment α of Σ that ends in a
state ofK at each position satis�es ψi. From this, the correctness of the algorithm
can be derived:

Let x be a path of Σ with x 2 Φ. Choose j such that each of the ψi is violated
at at least one position of x0x1 . . . xj . Let K be the s. c. c. of Σ such that xj ∈ K.
Then, for each i ∈ {1, . . . , n}, we have i /∈ valid(K), because x0x1 . . . xj does not
satisfy ψi at each position. Thus, valid(K) = ∅.

On the other hand, suppose that valid(K) = ∅ for some s. c. c. K of Σ. Then
there is a path fragment α of Σ such that, for each i ∈ {1, . . . , n}, ψi is violated
at some position of α. Thus, α can be extended to a path of Σ that violates the
speci�cation Sat(Φ).

In the case of fair model checking, the same algorithm can be applied, because
Σ is universally correct w. r. t. Φ i� Σ is fairly correct w. r. t. Φ.

Part 2 of the assertion can be derived from 4, as we have Sat(G ψi ∧G ξi) =
Sat(G(ψi ∧ ξi)) for 1 ≤ i ≤ n.

For 3, observe that Sat(
∨n

i=1 F ψi) = Sat(F
∨n

i=1 ψi). So the problems of 3
can be reduced to the related model checking problems for a formula of the form
F ζ, where ζ ∈ AP . The latter can be solved in linear time (cf. [6, 3]), as the
formula has bounded size.

Figure 1 summarises the results for the disjunctive formulas of L(F). An
arrow denotes containment, where we also allow trivial translations, e.g., G ψi

can be written as G ψi ∧ G true and G ψi ∧ G ξi can be written as G(ψi ∧ ξi).
The complexities of fair and universal model checking of formulas of the form∨n

i=1(F ψi ∧G ξi) remain open.

Wn
i=1 F∞ ψi

Wn
i=1 G∞ ψi

L+(F∞)

co-NPC / linear

Muller formulas

Rabin formulas

linear / linearlinear / linear

Wn
i=1(F

∞ ψi ∧G∞ ξi)
Wn

i=1(F
∞ ψi ∧ F∞ ξi)

co-NPC / linear linear / linear

Wn
i=1(G

∞ ψi ∧G∞ ξi)

linear / linear

Fig. 2. Results for subclasses of L+(F∞) showing the complexity of universal model
checking / fair model checking.

5.3 Disjunctive formulas of L(F∞)

The dual of a Streett formula, called a Rabin formula, is a formula of the form∨n
i=1(F

∞ ψi ∧G∞ ξi). Universal model checking of Rabin formulas can be done
in linear time, whereas the proof of co-NP-hardness of L(F∞) uses only formulas
of the form

∨n
i=1(F

∞ ψi ∧ F∞ ξi) (cf. [5]). We thus have:

Theorem 11.

1. Universal model checking a formula Φ =
∨n

i=1(F
∞ ψi ∧ F∞ ξi) and a system

Σ is co-NP hard.
2. Universal model checking a formula Φ =

∨n
i=1(F

∞ ψi ∧G∞ ξi) and a system
Σ can be done in linear time.

In particular universal model checking for formulas of the form
∨n

i=1 F∞ ψi or∨n
i=1 G∞ ψi can be done in linear time.
Figure 2 summarises the results for subclasses of L+(F∞).

6 Conclusion

We have shown that for formulas in L(F∞) fair model checking can be done
more e�ciently than universal model checking. We are not aware of any natural
sublanguage of LTL for which universal model checking can be done more e�-
ciently than fair model checking. This adds another argument in favour of fair
model checking as an interesting alternative or complement to universal model
checking, as mentioned in the introduction.

Studying model checking for sublanguages can help to optimise algorithms,
as the more general algorithms may not perform optimally for the sublanguage.
In fact, the algorithm of Courcoubetis and Yannakakis [3] for fair model check-
ing of LTL can perform exponentially worse on L(F∞) than our algorithm (see

[7]). Moreover, our algorithm for Muller formulas can be integrated with the
algorithm of Courcoubetis and Yannakakis [3], which allows us to detect Muller
formulas as subformulas of the input LTL formula (or any intermediate formula
produced by the algorithm), solve the fair model checking problem for these
Muller formulas in linear time and use the result for checking the input formula.
The presentation of this integration is beyond the scope of this paper, but it is
available in Schmalz' thesis [7]. There it is also shown that, with this optimisa-
tion, the algorithm never performs worse but can perform exponentially better
than the original.

References

1. R. Alur and T. A. Henzinger. Local liveness for compositional modeling of fair
reactive systems. In P. Wolper, editor, CAV, volume 939 of Lecture Notes in
Computer Science, pages 166�179. Springer, 1995.

2. D. Berwanger, E. Grädel, and S. Kreutzer. Once upon a time in the west - determi-
nacy, de�nability, and complexity of path games. In M. Y. Vardi and A. Voronkov,
editors, LPAR, volume 2850 of Lecture Notes in Computer Science, pages 229�243.
Springer, 2003.

3. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic veri�cation.
Journal of the ACM, 42(4):857�907, 1995.

4. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 16, pages 995�1072. Elsevier
Science, 1990.

5. E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic
strikes back. Sci. Comput. Program., 8(3):275�306, 1987.

6. O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent programs sat-
isfy their linear speci�cation. In Proceedings of the 12th Annual ACM Symposium
on Principles of Programming Languages (New Orleans, La., Jan. 14-16), pages
97�107. ACM, New York, 1985.

7. M. Schmalz. Extensions of an algorithm for generalised fair model checking.
Diploma Thesis, Technical Report B 07-01, Institute for Theoretical Computer
Science, University of Lübeck, 2007,
www.tcs.uni-luebeck.de/pages/voelzer/sch07.pdf.

8. Ph. Schnoebelen. The complexity of temporal logic model checking. In Selected
Papers from the 4th Workshop on Advances in Modal Logics (AiML'02), pages
393�436, 2003. Invited paper.

9. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733�749, 1985.

10. A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi
automata with applications to temporal logic. In ICALP, volume 194 of Lecture
Notes in Computer Science, pages 465�474. Springer-Verlag, 1985.

11. D. Varacca and H. Völzer. Temporal logics and model checking for fairly correct
systems. In LICS, pages 389�398. IEEE Computer Society, 2006.

12. M. Y. Vardi. Automatic veri�cation of probabilistic concurrent �nite-state pro-
grams. In Proceedings of 26th FOCS, pages 327�338, 1985.

13. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
veri�cation. In LICS, pages 332�344. IEEE Computer Society, 1986.

14. H. Völzer, D. Varacca, and E. Kindler. De�ning fairness. In M. Abadi and L. de Al-
faro, editors, CONCUR, volume 3653 of Lecture Notes in Computer Science, pages
458�472. Springer-Verlag, 2005.

15. L. D. Zuck, A. Pnueli, and Y. Kesten. Automatic veri�cation of probabilistic free
choice. In A. Cortesi, editor, VMCAI, volume 2294 of Lecture Notes in Computer
Science, pages 208�224. Springer, 2002.

A Proofs

A.1 Semantical properties of RLTL and L+(F∞)

First, we introduce some notations. Let Σ = (Q, q0,→, v) be a system, x, y ∈ Qω

and Φ an LTL+past formula. Given T ⊆ Q, we set R(T) := {x ∈ Tω | inf (x) =
T}. Moreover, we write that x ∼Φ y i� x � Φ ⇔ y � Φ. For a sublanguage L of
LTL+past, we write x ∼L y i� we have x ∼Υ y for each Υ ∈ L.

Theorem 6. Let Σ = (Q, q0,→, v) be a system. Then, for each Φ ∈ L+(F∞),
Sat(Φ) is a Muller property.

Proof. Let x, y be paths over Q such that inf (x) = inf (y). First, one can show by
structural induction over Φ that x ∼F∞ Φ y and x ∼G∞ Φ y, for each Φ ∈ L(F∞).
Then it can be shown by structural induction over Φ that x ∼Φ y for each
Φ ∈ L+(F∞). See [7] for the details.

Lemma 12. Let Σ = (Q, q0,→, v) be a system and x, y be paths over Q. Then
x ∼L(F) y if

1. x0 = y0,
2. inf (x) = inf (y), and
3. there are n ∈ N, α ∈ Qn such that

x, y ∈ {α0}+ . . . {αn−1}+R(inf (x)).

Proof. For ease of notation, we de�ne x[i,∞] := xixi+1 . . . (i ∈ N).
We show by structural induction over Φ that 1 - 3 imply

x � Φ⇔ y � Φ (1)

for each Φ ∈ L(F). Note that it su�ces to show that x � Φ⇒ y � Φ. The reverse
direction follows from symmetry arguments.

Let Φ be a state formula. Assertion (1) follows from x0 = y0.
Let Φ = G Ψ for some Ψ ∈ L(F), and suppose the left-hand side of (1) holds.

Hence x[j,∞] � Ψ for each j ∈ N. Let i ∈ N. By assumption, we have

y[i,∞] ∈ {α`}+ . . . {αn−1}+R(inf (x)),

for some ` with 0 ≤ ` ≤ n. We choose j ∈ N such that xj = yi and also

x[j,∞] ∈ {α`}+ . . . {αn−1}+R(inf (x)).

Note that 1 - 3 also hold if we replace x by x[j,∞] and y by y[i,∞]. Thus,
the induction hypothesis yields y[i,∞] � Ψ . As i was arbitrarily chosen, the
right-hand side of (1) holds.

In the cases Φ = ¬Υ and Φ = Υ ∨ Ψ , for some Υ, Ψ ∈ L(F), Equation (1)
immediately follows from the induction hypothesis.

Schmalz [7] showed that 1 - 3 of Lemma 12 are also necessary for x ∼L(F) y.

A.2 State fairness is complete for RLTL

Lemma 13. Let Σ be a system and x ∈ SFΣ. Then x = αy such that, for a
b. s. c. c. K of Σ, we have y ∈ R(K).

Proof. Let q be a state that is visited in�nitely often by x. We �x i ∈ N such
that xi = q. Now choose β such that x0 . . . xiβ is a path fragment of Σ that ends
in a b. s. c. c., say K. It can be shown by induction over the length of β that each
state on β is taken in�nitely often by x. As the last state of β may be arbitrarily
chosen, each state in K is taken in�nitely often by x. The assertion follows.

Lemma 14. Let Σ be a system, Z a property such that Alter has a winning
strategy for G(Σ,Zc), and Y a property such that Ego has a winning strategy
for G(Σ, Y). If (Z ∩ Y)c is determinate, then Alter has a winning strategy for
G(Σ, (Z ∩ Y)c).

Proof. Suppose Ego has a winning strategy for G(Σ, (Z ∩ Y)c). As fair correct-
ness is preserved under intersection of the speci�cation [14], Ego has a winning
strategy for G(Σ, (Z ∩Y)c ∩Y). Because (Z ∩Y)c ∩Y ⊆ Zc, Ego has a winning
strategy for G(Σ,Zc) � a contradiction. Because of determinacy, Alter has a
winning strategy for G(Σ, (Z ∩ Y)c).

Theorem 2. Let Σ be a �nite system. Then, SFΣ is L(F)-complete w. r. t. Σ.

Proof. Let Φ ∈ L(F) such that Σ is fairly correct w. r. t. Φ and x be a state fair
path of Σ. We have to show that x � Φ.

With Lemma 13, we choose α ∈ Q∗, q ∈ Q, y ∈ Qω such that x = αqy and
qy ∈ R(K), where K is a b. s. c. c. of Σ. For ease of notation, we set β↑:= {x ∈
Qω | β is a pre�x of x}. Note that Alter has a winning strategy for G(Σ, (αq↑)c)
and Ego one for G(Σ,SFΣ). With Lemma 14, Alter has a winning strategy g
for G(Σ, (αq↑ ∩ SFΣ)c). (Note that (αq↑ ∩ SFΣ)c is determinate, as it can
be expressed by an LTL formula [2].) Moreover, f is a winning strategy for
Ego in G(Σ,Sat(Φ)). If Ego plays according to f and Alter according to g,
then they create a path u = αqz of Σ that is state fair and satis�es Φ. Clearly,
x0 = u0. As both x and u are state fair and eventually take a state of K, we have
inf (x) = K = inf (u). Moreover, x, u ∈ αR(K). With Lemma 12, x ∼L(F) u. As
Φ ∈ L(F) and u � Φ, we conclude that x � Φ.

