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Abstract

We propose a typing system for the true concurrent model of event structures that
guarantees the interesting behavioural properties known as conflict freeness and
confusion freeness. Conflict freeness is the true concurrent version of the notion
of confluence. A system is confusion free if nondeterministic choices are localised
and do not depend on the scheduling of independent components. Ours is the first
typing system to control behaviour in a true concurrent model. To demonstrate its
applicability, we show that typed event structures give a semantics of linearly typed
version of the π-calculi with internal mobility. The semantics we provide is the first
event structure semantics of the π-calculus and generalises Winskel’s original event
structure semantics of CCS.

1 Introduction

Models for concurrency can be classified according to different criteria. One
possible classification distinguishes between interleaving models and causal
models (also known as true concurrent models). In interleaving models, con-
currency is reduced to the nondeterministic choice between all possible sequen-
tial schedulings of the concurrent actions. Instances of such models are traces
and labelled transition systems [39]. Interleaving models are very successful in
defining observational equivalences, by means of bisimulation [24]. In causal
models, causality and concurrency are explicitly represented. Instances of such
models are Petri nets [29], Mazurkiewicz traces [22] and event structures [27].
True concurrent models can easily represent interesting behavioural properties
such as absence of conflict, independence of the choices and sequentiality [29].

In this paper we address a particular true concurrent model: the model of
event structures [27,36]. Event structures have been used to give semantics to
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concurrent process languages. The earliest and possibly the most intuitive is
Winskel’s semantics of Milner’s CCS [35].

The first contribution of this paper is to present a compositional typing system
for event structures that ensures two important behavioural properties: conflict
freeness and confusion freeness.

Conflict freeness is the true concurrent version of confluence. In a conflict free
system, the only nondeterminism allowed is due to the scheduling of indepen-
dent components. To illustrate the less familiar notion of confusion freeness,
let us suppose that a system is composed of two processes P and Q. Suppose
the system can reach a state where P has a choice between two different ac-
tions a1, a2, and where Q, independently, can perform action b. We say that
such a state is confused if the occurrence of b changes the choices available to
P (for instance by disabling a2, or by enabling a third action a3). Intuitively
the choice of process P is not local to that process in that it can be influenced
by an independent action. We say that the system is confusion free if none of
its reachable states is confused.

Confusion freeness was first identified in the context the theory of Petri nets [29].
It has been studied in that context, in the form of free choice nets [13]. Confu-
sion free event structures are also known as concrete data structures [4], and
their domain-theoretic counterpart are the concrete domains [21]. Finally, con-
fusion freeness has been recognised as an important property in the context
of probabilistic models [31,1].

The typing system we present guarantees that all typable event structures are
confusion free. A restricted form of typing guarantees the stronger property
of conflict freeness.

The second contribution of this paper is to give the first direct event structure
semantics of a fragment of the π-calculus [25]. Various causal semantics of
the π-calculus existed before [20,9,14,5,12,10], but none was given in terms of
event structures. The technical difficulty in extending CCS semantics to the
π-calculus lies in the handling of α-conversion, which is the main ingredient
to represent dynamic creation of names. We are able to solve this problem for
a restricted version of the π-calculus, a linearly typed version of Sangiorgi’s
πI-calculus (more precisely, the extension of the calculus in [3] to the non-
deterministic one). This fragment is expressive enough to encode the typed
λ-calculus (in fact, to encode it fully abstractly [3,41]). We argue that in this
fragment, α-conversion need not be performed dynamically (at “run time”),
but can be done during the typing (at “compile time”), by choosing in advance
all the names that will be created during the computation. This is possible
because the typing system guarantees that, in a sense, every process knows in
advance which processes it will communicate with.
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To substantiate this intuition, we provide a fully abstract encoding of the lin-
early typed fragment of the π-calculus into an intermediate process language,
which is syntactically similar to the π-calculus except that α-conversion is not
allowed. We devise a typing system for this language that makes use of the
event structure types. We then provide the language with a semantics in terms
of typed event structures. Via this fully abstract intermediate translation, we
thus obtain a sound event structure semantics of the π-calculus, which follows
the same lines as Winskel’s: syntactic nondeterministic choice is modelled by
conflict, prefix is modelled using causality, and parallel composition generates
concurrent events. Moreover, since our semantics is given in terms of typed
event structures, we obtain that all processes of this fragment are confusion
free. Our typing system generalises an early idea by Milner, who devised a
syntactic restriction of CCS (a kind of a typing system) that guarantees con-
fluence of the interleaving semantics [24]. As a corollary of our work we show
that a similar restriction applied to the π-calculus guarantees the property of
conflict freeness.

The tight correspondence between the linear π-calculus and programming lan-
guage semantics opens the door for event structure semantics to the λ-calculus
and other functional and imperative languages.

Structure of the paper This paper is the full version of [32], with complete
definitions and detailed proofs. The present paper provides the full definition
of the intermediate language which was omitted from [32] and gives more ex-
amples and explanations on typing systems and event structures. Comparisons
with related work are also updated.

Section 2 presents a linearly typed version of the πI-calculus. This section
is inspired from [41], but our fragment is extended to allow nondeterministic
choice. Section 3 introduces the basic definitions of event structures and defines
formally the notion of confusion freeness. We briefly introduce the category
of event structures and we explicitly describe the categorical product. The
product of event structures is one of the basic ingredients in the definition of
the parallel composition. The explicit definition we present allows us to carry
out the proofs in the following sections. Section 4 presents our new typing
system and an event structure semantics of the types. We then define a notion
of typing of event structures by means of the morphisms of the category of
event structures. Typed event structures are confusion free by definition. The
main theorem of this section is that the parallel composition of typed event
structures is again typed, and thus confusion free. In Section 5, we present
the intermediate process language which is used to bridge between the typed
event structures and the linear π-calculus. We call this calculus Name Sharing
CCS or NCCS. We define a notion of typing for NCCS processes and its
typed operational semantics. In Section 6, we give a semantics of typed NCCS
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processes in terms of event structures. The main result of this section is that
the semantics of a typed process is a typed event structure. We also show that
this semantics is sound with respect to bisimulation. In Section 7, we provide
a fully abstract translation of the the typed πI-calculus, into NCCS. Through
the sound event structure semantics of NCCS, we obtain a sound semantics
of the π-calculus in terms of event structures. The main result of the section
is that the semantic of a πI-calculus term is a typed event structure, and thus
it is confusion free. Section 8 concludes with related and future works. The
Appendix contains the proofs of the results presented in the paper.

2 A linear version of the π-calculus

This section briefly summarises an extension of linear version of the π-calculus
in [3] to non-determinism [40]. The reader may refer to [3,40] for a more
detailed description and more examples.

2.1 Syntax and reduction

We assume the reader is familiar with the basic definitions of the π-calculus [25].
As anticipated, we consider a restricted version of the π-calculus, where only
bound names are passed in interaction. The resulting calculus is called the
πI-calculus in the literature [30]. We select this calculus since it has the same
expressive power as the version with free name passing [41], but it has a sim-
pler labelled transition semantics. This simplicity will be crucial in giving the
event structure semantics. Syntactically we restrict an output to the form
(ν ỹ)x(ỹ).P (where ỹ represents a tuple of pairwise distinct names), which we
henceforth write x(ỹ).P .

We consider a version of the calculus more general than the one presented
in [3], in that both input and output are nondeterministic. Nondeterministic
input is called branching, and it is already present in [3], while nondeterministic
linear output, called selection, is a novelty of this work. Branching is similar to
the “case” construct and selection is “injection” in the typed λ-calculi; these
constructs have been studied in other typed π-calculi [33].

The formal grammar of the calculus is defined below.

P ::= x
�

i∈I ini(ỹi).Pi | x
⊕

i∈I ini(ỹi).Pi

| P | Q | (ν x)P | 0 | !x(ỹ).P
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The process x
�

i∈I ini(ỹi).Pi (resp. x
⊕

i∈I ini(ỹi).Pi) is a branching input
(resp. selecting output), where I denotes a finite or countably infinite indexing
set. The names in ỹi are bound in the continuation Pi. The process !x(ỹ).P is
a replicated input, binding ỹ. P | Q is a parallel composition and (ν x)P is a
restriction that binds x.

We omit the empty tuple: for example, x stands for x(). When the index in the
branching or selection indexing set is a singleton we use the notation x(ỹ).P
or x(ỹ).P ; when it is binary, we use x((ỹ1).P1&(ỹ2).P2) or x((ỹ1).P1⊕ (ỹ2).P2).
The bound/free names are defined as usual. We use ≡α and ≡ for the standard
α− and structural equivalences [25,3,41,19].

Processes where all selection indexing sets are singletons are called determinis-
tic. Deterministic processes where also branching indexing sets are singletons
are called simple.

The reduction semantics is as follows:

x
�

i∈I ini(ỹi).Pi | x
⊕

j∈J inj(ỹj).Qj −→ (ν ỹh)(Ph |Qh) (h ∈ I ∩ J)

!x(ỹ).P | x(ỹ).Q −→ !x(ỹ).P | (ν ỹ)(P |Q)

closed under evaluation contexts and structural equivalence. A nondetermin-
istic branching synchronises with a selection on one of the common branches,
the communicated names are restricted, and the continuations triggered. An
output can also synchronise with a replicated server. Also in that case the
communicated names are restricted and the continuations triggered, but the
server is still present after the reduction.

Note in particular that input and output synchronise on the channel and
also on the names that are passed along it. However, since the communicated
names are bound, they can always be changed using α-conversion. For in-
stance, consider the process x(y).P | x(z).Q. Assuming y is fresh for Q, it can
be α-converted to x(y).P | x(y).Q[y/z], allowing synchronisation.

2.2 Types and typings

The linear type discipline restricts the behaviour of processes as follows.

(A) for each linear name there are a unique input and a unique output; and
(B) for each replicated name there is a unique stateless replicated input with

zero or more dual outputs.

5



In the context of deterministic processes, the typing system guarantees con-
fluence. We will see that in the presence of nondeterminism this typing system
guarantees confusion freeness.

As an example for the first condition, let us consider:

Q1
def
= x.y | x.z | x Q2

def
= y.x | z.y | x.(z | w)

Then Q1 is not typable as x appears twice as output, while Q2 is typable since
each channel appears at most once as input and output. Typability of simple
processes such as Q2 offers only deterministic behaviour. However branching
and selection can provide non-deterministic behaviour, preserving linearity:

Q3
def
= x.(y ⊕ z) | x.(w & v)

Q3 is typable, and we have either Q3 −→ (y | w) or Q3 −→ (z | v). As an
example of the second constraint, let us consider the following two processes:

Q4
def
= ! y.x | ! y.z Q5

def
= ! y.x | y | ! z.y

Q4 is untypable because y is associated with two replicators: but Q5 is typable
since, while output at y appears twice, a replicated input at y appears only
once.

Channel types are inductively made up from type variables and action modes:
the two input modes ↓, !, and the two output modes ↑, ?. We let p, p′, . . . denote
modes. We define p, the dual of p, by: ↓ =↑, ! = ? and p = p. Then the syntax
of types is given as follows:

σ ::=
�

i∈I (σ̃i)
↓ |

⊕
i∈I (σ̃i)

↑ | (σ̃)! | (σ̃)?

(branching) (selection) (offer) (request)

τ ::= σ | l (closed type)

where σ̃ is a tuple of types. We write MD(τ) for the outermost mode of τ .
The dual of τ , written τ , is the result of dualising all action modes, with l
being self-dual. A type environment Γ is a finite mapping from channels to
channel types. Sometimes we will write x ∈ Γ to mean x ∈ Dom(Γ).

Types restrict the composability of processes: if P is typed under environment
Γ1, Q is typed under Γ2 and if Γ1, Γ2 are “compatible”, then a new environment
Γ1 ⊙Γ2 is defined, such that P |Q is typed under Γ1 ⊙Γ2. If the environments
are not compatible, Γ1⊙Γ2 is not defined and the parallel composition cannot
be typed. Formally, we introduce a partial commutative operation ⊙ on types,
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defined as follows:

(1) τ ⊙ τ = l with MD(τ) =↓

(2) τ ⊙ τ = τ , τ ⊙ τ = τ with MD(τ) =?

Then, then environment Γ1 ⊙ Γ2 is defined homomorphically. Intuitively, the
rules in (2) say that a server should be unique, but an arbitrary number of
clients can request interactions. The rules in (1) say that once we compose
input-output linear channels, the channel becomes uncomposable. Other com-
positions are undefined. The definitions (1) and (2) ensure the two constraints
(A) and (B).

The rules defining typing judgments P ⊲ Γ are defined in Figure 1. They are
identical to the affine π-calculus [3] except a straightforward modification to
deal with the non-deterministic output.

The (Zero) rule types 0. As 0 has no free names, it is not being given any
channel types. In (Par), Γ1 ⊙ Γ2 guarantees the consistent channel usage.
For instance it guarantees that linear inputs are only composed with linear
outputs. In (Res), we only allow ! and l channels to be restricted. A l channel
is a linear channel that is used for synchronisation and that can no longer
interact with the environment. We restrict a ! channel, when we do not want
any more clients to communicate with it.

The rules (WeakOut) and (WeakCl) weaken with ?-names or l-names, re-
spectively. A l name does not interact with the environment, and thus it is
harmless to assume it is there. Similarly, a replicated server can deal with an
unbounded number of clients, and we can always safely assume there a process
contains clients for any server.

Rules (LIn) and (LOut) ensures that x occurs precisely once. (RIn) is the
same as (LIn) except that no free linear channels can be the object of the
communication. This is because a linear channel under replication could be
used more than once. (ROut) has a similar restriction, and allows the presence
of several clients in the same process. Note we need to apply (WeakOut) before
the first application of (ROut).

2.3 A typed labelled transition relation

Typed transitions describe the observations a typed observer can make of a
typed process. The typed transition relation is a proper subset of the untyped
transition relation, while not restricting τ -actions: hence typed transitions
restrict observability, not computation.
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P ⊲ Γ, x : τ x 6∈ Γ MD(τ) = !, l

(ν x)P ⊲ Γ
Res

0 ⊲ ∅
Zero

P ⊲ Γ x 6∈ Γ

P ⊲ Γ, x :l
WeakCl

Pi ⊲ Γ, ỹi : τ̃i x 6∈ Γ I ⊆ J

x
⊕

i∈I ini(ỹi).Pi ⊲ Γ, x :
⊕

i∈J(τ̃i)
↑ LOut

P ⊲ Γ x 6∈ Γ

P ⊲ Γ, x : (τ̃ )?
WeakOut

Pi ⊲ Γ, ỹi : τ̃i x 6∈ Γ

x
�

i∈I ini(ỹi).Pi ⊲ Γ, x :
�

i∈I(τ̃i)
↓ LIn

Pi ⊲ Γi (i = 1, 2)

P1 | P2 ⊲ Γ1 ⊙ Γ2
Par

P ⊲ Γ, ỹ : τ̃ x 6∈ Γ ∀(z :τ) ∈ Γ. MD(τ) =?

!x(ỹ).P ⊲ Γ, x : (τ̃)!
RIn

P ⊲ Γ, x : (τ̃)? , ỹ : τ̃

x(ỹ).P ⊲ Γ, x : (τ̃)?
ROut

Fig. 1. Linear Typing Rules

Labels are generated by the following grammar:

α, β ::= xini(ỹ) | xini(ỹ) | x(ỹ) | x(ỹ)

(branching) (selection) (offer) (request)

τ ::= (x, x)ini(ỹ) | (x, x)(ỹ) (synchronisation)

With the notation above, we say that x is the subject of the label β, denoted
as subj(β), while ỹ = y1, . . . , yn are the object names, denoted as obj(β). For
branching/selection labels, the index i is the branch of the label. The notation
“ini” comes from the injection of the typed λ-calculus. The partial operation
α • β is defined as follows: xini(ỹi) • xini(ỹi) = (x, x)ini(ỹi), x(ỹ) • x(ỹ) =
(x, x)(ỹ), and undefined otherwise. It is convenient, for the proofs, to use
synchronisation labels that keep track of which synchronisation took place.
However, as it is customary, we consider synchronisation transitions not to
be observable. Thus for the purpose of defining observational equivalences, all
τ -labels will be identified.

The standard untyped transition relation is defined in Figure 2. We define the
predicate “Γ allows β” which represents how an environment restricts observ-
ability:

• for all Γ, Γ allows τ ;
• if MD(Γ(x)) =↓, then Γ allows xini(ỹ);
• if MD(Γ(x)) =↑, then Γ allows xini(ỹ);
• if MD(Γ(x)) = !, then Γ allows x(ỹ);
• if MD(Γ(x)) = ?, then Γ allows x(ỹ).
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x
⊕

i∈I(ỹi).Pi

x̄inj(ỹj)
−→ Pj x

�
i∈I(ỹi).Pi

xinj(ỹj)
−→ Pj

!x(ỹ).P
x(ỹ)
−→P | !x(ỹ).P x(ỹ).P

x(ỹ)
−→P

P
β

−→P ′

P | Q
β

−→P ′ | Q

P
α

−→P ′ Q
β

−→Q′ obj(α) = ỹ

P | Q
α•β
−→(ν ỹ)(P ′ | Q′)

P
β

−→P ′ subj(β) 6= x

(ν x)P
β

−→(ν x)P ′

P ≡α P ′ P
β

−→Q

P ′ β
−→Q

Fig. 2. Labelled Transition System for the πI-Calculus

Intuitively, labels only allowed when the type environment is coherent with
them.

Whenever Γ allows β, we define a new environment Γ \ β as follows:

• for all Γ, Γ \ τ = Γ;
• if Γ = ∆, x :

�
i∈I (τ̃i)

↓, then Γ \ xini(ỹ) = ∆, ỹ : τ̃ ;
• if Γ = ∆, x :

⊕
i∈I(τ̃i)

↑, then Γ \ xini(ỹ) = ∆, ỹ : τ̃ ;
• if Γ = ∆, x : (τ̃)! , then Γ \ x(ỹ) = Γ, ỹ : τ̃ ;
• if Γ = ∆, x : (τ̃)? , then Γ \ x(ỹ) = Γ, ỹ : τ̃ .

The environment Γ \ β represents what remains of Γ after the transition la-
belled by β has happened. Linear channels are consumed, while replicated
channels are not consumed. The new previously bound channels are released.

The typed transition, written P ⊲ Γ
β

−→ Q ⊲ Γ′ is defined by adding the
constraint:

if P
β

−→Q and Γ allows β then P ⊲ Γ
β

−→Q ⊲ Γ \ β

The above rule does not allow a linear input action and an output action when
there is a complementary channel in the process. For example, if a process has
x : (τ̃ )! in its action type, then output at x is excluded since such actions
can never be observed in a typed context – cf. [3]. For a concrete example,
consider the process x.y | y.x which is typed in the environment x :l, y :l.
Although the process has some untyped transitions, none of them is allowed
by the environment.

By induction on the rules in Figure 2, we can obtain:

Proposition 2.1 • If P ⊲ Γ, P
β

−→Q and Γ allows β, then Q ⊲ Γ \ β.
• (Subject reduction) If P ⊲ Γ and P

τ

−→Q, then Q ⊲ Γ.
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• (Church Rosser for deterministic processes) Suppose P ⊲ Γ and P is deter-
ministic. Assume P

τ

−→Q1, and P
τ

−→Q2. Then Q1 ≡α Q2 or there exists R
such that Q1

τ

−→R and Q2
τ

−→R.

Finally we define the notion of typed bisimulation. Let R be a symmetric
relation between judgments such that if (P ⊲ Γ) R (P ′ ⊲ Γ′), then Γ = Γ′. We
say that R is a bisimulation if the following is satisfied:

• whenever (P ⊲ Γ) R (P ′ ⊲ Γ), P ⊲ Γ
β

−→Q ⊲ Γ \ β, then there exists Q′ such

that P ′ ⊲ Γ
β

−→Q′ ⊲ Γ \ β, and (Q ⊲ Γ \ β) R (Q′ ⊲ Γ \ β).

As anticipated, in the above definition we allow a τ label to be matched by
a different τ label. The identities of different τ labels are considered only in
some of the proofs.

If there exists a bisimulation between two judgments, we say that they are
bisimilar (P ⊲ Γ) ≈ (P ′ ⊲ Γ). It can be proved that ≈ is a congruent relation.
The proof is analogous to the one in Appendix C.3 of [41].

3 Event structures

Event structures were introduced by Nielsen, Plotkin and Winskel [27,34],
and have been subject of several studies since. They appear in different forms.
The one we introduce in this work is sometimes referred to as prime event
structures [36]. For the relations of event structures with other models for
concurrency, the standard reference is [39].

3.1 Basic definitions

An event structure is a triple E = 〈E,≤, ⌣〉 such that

• E is a countable set of events ;
• 〈E,≤〉 is a partial order, called the causal order ;
• for every e ∈ E, the set [e) := {e′ | e′ < e}, called the enabling set of e, is

finite;
• ⌣ is an irreflexive and symmetric relation, called the conflict relation, sat-

isfying the following: for every e1, e2, e3 ∈ E if e1 ≤ e2 and e1 ⌣ e3 then
e2 ⌣ e3.

The reflexive closure of conflict is denoted by ≍. We say that the conflict
e2 ⌣ e3 is inherited from the conflict e1 ⌣ e3, when e1 < e2. If a conflict
e1 ⌣ e2 is not inherited from any other conflict we say that it is immediate,
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denoted by e1 ⌣µ e2. The reflexive closure of immediate conflict is denoted
by ≍µ. Causal order and conflict are mutually exclusive. If two events are
not causally related nor in conflict they are said to be concurrent. The set of
maximal elements of [e) is denoted by parents(e).

A configuration x of an event structure E is a conflict free downward closed
subset of E, i.e. a subset x of E satisfying: (1) if e ∈ x then [e) ⊆ x and (2)
for every e, e′ ∈ x, it is not the case that e ⌣ e′. Therefore, two events of a
configuration are either causally dependent or concurrent, i.e., a configuration
represents a run of an event structure where events are partially ordered.

The set of configurations of E , partially ordered by inclusion, is denoted as
L(E). It is a coherent ω-algebraic domain [27], whose compact elements are
the finite configurations.

If x is a configuration and e is an event such that e 6∈ x and x ∪ {e} is a
configuration, then we say that e is enabled at x. Two configurations x, x′ are
said to be compatible if x∪x′ is a configuration. For every event e of an event
structure E , we define [e] := [e) ∪ {e}. It is easy to see that both [e] and [e)
are configurations for every event e and that therefore any event e is enabled
at [e).

A labelled event structure is an event structure E together with a labelling
function λ : E → L, where L is a set of labels. Events should be thought of
as occurrences of actions. Labels allow us to identify events which represent
different occurrences of the same action. Labels are also essential in defining
the parallel composition, and play a major role in the typed setting. A labelled
event structure generates a labelled transition system as follows.

Definition 3.1 Let E = 〈E,≤, ⌣, λ〉 be a labelled event structure and let e be
one of its minimal events. The event structure E⌊e = 〈E ′,≤′, ⌣′, λ′〉 is defined
by: E ′ = {e′ ∈ E | e′ 6≍ e}, ≤′=≤|E′, ⌣′=⌣|E′, and λ′ = λE′.

Roughly speaking, E⌊e is E minus the event e, and minus all events that are
in conflict with e. We can then generate a labelled transition system on event
structures as follows: if λ(e) = β, then

E
β

−→E⌊e .

The reachable transition system with initial state E is denoted as TS(E).

3.2 Conflict free and confusion free event structures

A interesting subclass of event structures is the following.
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Definition 3.2 An event structure is conflict free if its conflict relation is
empty.

Conflict freeness is the true concurrent version of confluence. Indeed it is easy
to verify that if E is conflict free, then TS(E) is confluent.

As informally explained, in a confusion free event structure every conflict is
localised. To specify what “local” means in this context, we need the notion
of cell, a set of pairwise conflicting events with the same causal predecessors.

Definition 3.3 A partial cell is a set c of events such that e, e′ ∈ c implies
e ≍µ e′ and [e) = [e′). A maximal partial cell is called a cell.

In general, two events in immediate conflicts need not belong to the same
cell. If a cell is thought of as a location, this means that not all conflicts are
localised. This leads us to the following definition.

Definition 3.4 An event structure is confusion free if its cells are closed un-
der immediate conflict.

Equivalently, in a confusion free event structure reflexive immediate conflict
is an equivalence relation with cells as its equivalence classes [31].

3.3 A category of event structures

Event structures form the class of objects of a category [39]. The morphisms
are defined as follows. Let E1 = 〈E1,≤1, ⌣1〉, E2 = 〈E2,≤2, ⌣2〉 be two event
structures. A morphism f : E1 → E2 is a partial function f : E1 → E2 such
that

• f preserves configurations: if x is a configuration of E1, then f(x) is a con-
figuration of E2;

• f is locally injective: let x be a configuration of E1, if e, e′ ∈ x and f(e), f(e′)
are both defined with f(e) = f(e′), then e = e′.

It is straightforward to verify that the identity is a morphism and that mor-
phisms compose, so that what we obtain is indeed a category.

Morphisms reflect conflict and causality and preserve concurrency. They can
be equivalently characterised as follows.

Proposition 3.5 ([39]) A partial function f : E1 → E2 is a morphism of
event structures f : E1 → E2 if and only if the following are satisfied:

• f reflects causality: if f(e1) is defined, then [f(e1)] ⊆ f([e1]);
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• f reflect reflexive conflict: if f(e1), f(e2) are defined, and if f(e1) ≍ f(e2),
then e1 ≍ e2.

There are various ways of dealing with labels. For the general treatment we
refer to [39]. Here we present the simplest notion: take two labelled event
structures E1 = 〈E1,≤1, ⌣1, λ1〉, E2 = 〈E2,≤2, ⌣2, λ2〉 on the same set of
labels L. A morphism f : E1 → E2 is said to be label preserving if, whenever
f(e1) is defined, λ2(f(e1)) = λ1(e1).

3.4 Operators on event structures

We can define several operations on labelled event structures.

• Prefixing α.E , where E = 〈E,≤, ⌣, λ〉. It is the event structure 〈E ′,≤′, ⌣′

, λ′〉, where E ′ = E ⊎ {e′} for some new event e′, ≤′ coincides with ≤ on
E and moreover, for every e ∈ E we have e′ ≤ e, the conflict relation ⌣′

coincides with ⌣, that is e′ is in conflict with no event. Finally λ′ coincides
with λ on E and λ′(e′) = α. Intuitively, we add a new initial event, labelled
by a.

• Prefixed sum
∑

i∈I αi.Ei. This is obtained by disjoint union of copies of the
event structures αi.Ei, where the order relation is the disjoint union of the
orders, the labelling function is the disjoint union of the labelling functions,
and the conflict is the disjoint union of the conflicts extended by putting in
conflict every two events in two different copies. This is a generalisation of
prefixing, where we add an initial cell, instead of an initial event.

• Restriction E \X where E = 〈E,≤, ⌣, λ〉 and X ⊆ L is a set of labels. This
is obtained by removing from E all events with label in X and all events
that are above one of those. On the remaining events, order, conflict and
labelling are unchanged.

• Relabelling E [f ]. This is just composing the labelling function λ with a
function f : L → L. The new event structure has thus labelling function
f ◦ λ.

It is easy to verify that all these constructions preserve the class of confusion
free event structures. Also, with the obvious exception of the prefixed sum,
they preserve the class of conflict free event structures

3.5 The parallel composition

The parallel composition of event structures is defined in [39] as the categorical
product followed by restriction and relabelling. The existence of the product
is deduced via general categorical arguments, but not explicitly constructed.
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In order to carry out our proofs, we needed a more concrete representation of
the product. We have devised such a representation, which is inspired by the
one given in [11], but which is more suitable to an inductive reasoning.

Let E1 := 〈E1,≤1, ⌣1〉 and E2 := 〈E2,≤2, ⌣2〉 be two event structures. Let
E∗

i := Ei ⊎ {∗}. Consider the set Ẽ obtained as the initial solution of the
equation X = Pfin(X) ×E∗

1 × E∗
2 . Its elements have the form (x, e1, e2) for x

finite, x ⊆ Ẽ. Initiality allows us to define inductively a notion of height of an
element of Ẽ as

h(∅, e1, e2) = 0 and h(x, e1, e2) = max{h(e) | e ∈ x} + 1

Most of our reasoning will be by induction on the height of the elements. We
now carve out of Ẽ a set E which will be the support of our product event
structure E . At the same time we define the order relation and the conflict
relation on E .

Base: we have that (∅, e1, e2) ∈ E if

• e1 ∈ E1, e2 ∈ E2, and e1 minimal in E1, e2 minimal in E2 or
• e1 ∈ E1, e2 = ∗ and e1 minimal in E1 or
• e1 = ∗, e2 ∈ E2 and e2 minimal in E2.

The order on the elements of height 0 is trivial.

Finally we have (∅, e1, e2) ≍ (∅, d1, d2) if e1 ≍ d1 or e2 ≍ d2.

Inductive Case: assume that all elements in E of height ≤ n have been
defined. Assume that an order relation and a conflict relation has been defined
on them. Let (x, e1, e2) of height n + 1. Let y be the set of maximal elements
of x. Let y1 = {d1 ∈ E1 | (z, d1, d2) ∈ y} and y2 = {d2 ∈ E2 | (z, d1, d2) ∈ y},
be the projections of y onto the two components. We have that (x, e1, e2) ∈ E
if x is downward closed and conflict free, and furthermore:

• Suppose e1 ∈ E1, e2 = ∗. Then it must be the case that y1 = parents(e1).
• Suppose e2 ∈ E2, e1 = ∗. Then it must be the case that y2 = parents(e2).
• Suppose e1 ∈ E1, e2 ∈ E2. Then
· if (z, d1, d2) ∈ y, then either d1 ∈ parents(e1) or d2 ∈ parents(e2);
· for all d1 ∈ parents(e1), there exists (z, d1, d2) ∈ x;
· for all d2 ∈ parents(e2) there exists (z, d1, d2) ∈ x.

• Let x1 = {d1 ∈ E1 | (z, d1, d2) ∈ x} and x2 = {d2 ∈ E2 | (z, d1, d2) ∈ x}.
Then for no d1 ∈ x1, d1 ≍ e1 and for no d2 ∈ x2, d2 ≍ e2.

The partial order is extended by e ≤ (x, e1, e2) if e ∈ x, or e = (x, e1, e2). Note
that if e < e′ then h(e) < h(e′).

Finally for the conflict, take e = (x, e1, e2) and d = (z, d1, d2), where either
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h(e) = n + 1 or h(d) = n + 1 or both. Then we define e ⌣ d if one of the
following holds:

• e1 ≍ d1 or e2 ≍ d2, and e 6= d;
• there exists e′ = (x′, e′1, e

′
2) ∈ x such that e′1 ≍ d1 or e′2 ≍ d2, and e′ 6= d;

• there exists d′ = (z′, d′
1, d

′
2) ∈ z such that e1 ≍ d′

1 or e2 ≍ d′
2, and e 6= d′;

• there exists e ∈ x, d ∈ z such that e ⌣ d.

As the following lemma shows, some of the clauses above are redundant, but
are kept for simplicity.

Lemma 3.6 (Stability) If (x, e1, e2), (x
′, e1, e2) ∈ E and x 6= x′, then there

exist d ∈ x, d′ ∈ x′ such that d ⌣ d′.

Now we are ready to state the main new result of this section: take two event
structures E1, E2, and let E = 〈E,≤, ⌣〉 be defined as above. Then we have:

Theorem 3.7 The structure E is an event structure and it is the categorical
product of E1, E2.

We will not make explicit use of the properties of the categorical product,
except that projections preserve configurations. However Theorem 3.7 is nec-
essary to fit in the general framework of models for concurrency, and to avoid
building “ad hoc” models.

For event structures with labels in L, the labelling function of the product
takes on the set L∗ × L∗, where L∗ := L ⊎ {∗}. We define λ(x, e1, e2) =
(λ∗

1(e1), λ
∗
2(e2)), where λ∗

i (ei) = λi(ei) if ei 6= ∗, and λ∗
i (∗) = ∗. A synchroni-

sation algebra S is given by a partial binary operation •S defined on L∗ [39].
Given two labelled event structures E1, E2, the parallel composition E1‖SE2

is defined as the categorical product followed by restriction and relabelling:
(E1×E2\X)[f ] where X is the set of pairs (α1, α2) ∈ L∗×L∗ for which α1•S α2

is undefined, while the function f : is defined as f(α1, α2) = α1 •S α2. The
subscripts S are omitted when the synchronisation algebra is clear from the
context.

The simplest possible synchronisation algebra is defined as α • ∗ = ∗ • α = α,
and undefined in all other cases. In this particular case, the induced parallel
composition can be represented as the disjoint union of the sets of events, of
the causal orders, and of the conflict. This can be also generalised to an arbi-
trary family of event structures (Ei)i∈I . In such a case we denote the parallel
composition as

∏
i∈I Ei.

Parallel composition does not preserve in general the classes of conflict free
and confusion free event structures. New conflicts can be created through
synchronisation. One of the main reasons to devise a typing system for event
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structures is to guarantee the preservation of these two important behavioural
properties.

3.6 Examples of event structures

We collect in this section a series of examples, with graphical representation.

Example 3.1 Consider the following event structures E1, E2, E3, defined on
the same set of events E := {a, b, c, d, e}. In E1, we have a ≤ b, c, d, e and
b ⌣µ c, c ⌣µ d, b ⌣µ d. In E2, we do not have a ≤ d, while in E3, we
do not have b ⌣µ d. The three event structures are represented in Figure 3,
where curly lines represent immediate conflict, while the causal order proceeds
upwards along the straight lines.

The event structure E1 is confusion free, with three cells: {a}, {b, c, d}, {e}. In
E2, there are four cells: {a}, {b, c}, {d}, {e}. E2 is not confusion free, because
some cells are not closed under immediate conflict. This is an example of
asymmetric confusion [28]. In E3 there are four cells: {a}, {b, c}, {c, d}, {e}. E3

is not confusion free, because immediate conflict is not transitive. This is an
example of symmetric confusion.
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Fig. 3. Event structures

E4

β

E5 E6

β β

α α α /o τ /o α

Fig. 4. Parallel composition of event structures

Example 3.2 Next we show an example of parallel composition, see Figure 4.
Consider the two labelled event structures E4, E5, where E4 = {a, b}, E5 = {a′},
conflict and order being trivial, and λ(a) = α, λ(b) = β, λ(a′) = α. Consider
the symmetric synchronisation algebra α • α = τ , α • ∗ = α, α • ∗ = α,
β • ∗ = β and undefined otherwise. Then E6 := E4‖E5 is as follows: E6 = {e :=
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Fig. 5. Morphisms of event structures

(∅, a, ∗), e′ := (∅, ∗, a′), e′′ := (∅, a, a′), d := ({e}, a′, ∗), d′′ := ({e′′}, a′, ∗)},
with the ordering defined as e ≤ d, e′′ ≤ d′′, while the conflict is defined as
e ⌣ e′′, e′ ⌣ e′′, e ⌣ d′′, e′ ⌣ d′′, e′′ ⌣ d, d ⌣ d′′. The labelling function is
λ(e) = α, λ(e′) = α, λ(e′′) = τ , λ(d) = λ(d′′) = β. Note that, while E4, E5 are
confusion free, E6 is not, since reflexive immediate conflict is not transitive.

Example 3.3 Finally we show two examples of morphisms. Frist, consider
the two event structures E7, E8 defined as follows:

• E7 = {a′, b′, c′, d′, e′, a′′, b′′, c′′, d′′} with a′ ⌣µ a′′ b′ ⌣µ c′, d′ ⌣µ e′, b′′ ⌣µ c′′

and a′ ≤ b′, c′, d′, e′ and a′′ ≤ b′′, c′′, d′′.
• E8 = {b, c, d, e} with b ⌣µ c, d ⌣µ e, and trivial ordering.

Note that both E7 and E8 are confusion free.

We define a morphism f : E7 → E8 by putting f(x′) = f(x′′) = x for x =
b, c, d, e while f is undefined on a′, a′′. Note that b′ and b′′ are mapped to
the same element b, and they are indeed in conflict, because they inherit the
conflict a′ ⌣ a′′.

For another example consider the two event structures E9, E10, where E9 =
E10 = {a, b}, both have empty conflict, and in E9 we have a ≤ b. The identity
function on {a, b} is a morphism E9 → E10 but not vice versa. We can say that
the causal order of E9 refines the causal order of E10.

4 Typed event structures

In this section we present a notion of types for an event structure, which
are inspired from the types for the linear π-calculus. Every such type is repre-
sented by an event structure which interprets the causality between the names
contained in the type. We then assign types to event structures by allowing a
more general notion of causality.
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4.1 Types and environments

Types and type environments are generated by the following grammar

Γ, ∆ ::= y1 : σ1, . . . , yn : σn (type environment)

τ, σ ::=
�

i∈I Γi |
⊕

i∈I Γi |
⊗

i∈I Γi |
⊎

i∈I Γi | l

(branching) (selection) (offer) (request) (closed type)

A type environment Γ is well formed if any name appears at most once.
Only well formed environments are considered for typing event structures. An
environment can also be thought of as a partial function from names to types.
In this view we can talk of domain and range of an environment.

We say a name is confidential for a type environment Γ if it appears inside a
type in the range of Γ. A name is public if it is in the domain of Γ. Intuitively,
confidential names are used to identify different occurrences of events that have
the same public label. We will see this explicitly when we introduce the event
structure semantics. Technically, in client and server types, we also require the
enviroments Γi to be nonempty in order to distinguish different components.
This is not restrictive, as we can always introduce “dummy” names.

The form of event structures types and environments is similar to those of
the π-calculus. In the π-calculus we only keep track of the types of the object
names, as their precise identity is irrelevant. In event structure types we re-
cursively keep track of the not only of the types, but also of the identity of
the confidential names. Moreover server and client types explicitly represent
each copy of the resource.

Branching types represent the notion of “environmental choice”: several choices
are available for the environment to choose. Selection types represent the no-
tion of “process choice”: some choice is made by the process. In both cases
the choice is alternative: one excludes all the others. Server types represent
the notion of “available resource”: I offer to the environment something that
is available regardless of whatever else happens. Client types represent the
notion of “concurrent request”: I want to reserve a resource that I may use at
any time.

It is straightforward to define duality between types by exchanging branching
and offer, with selection and request, respectively. Therefore, for every type
τ and environment Γ, we can define their dual τ , Γ. However types and en-
vironments enjoy a more general notion of duality that is expressed by the
following definition. We define a notion of matching for types. The match-
ing of two types also produces a set of names that are to be considered as
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“closed”, as they have met their dual. Finally, after two types have matched,
they produce a “residual” type.

We define the relations match[τ, σ] → S, match[Γ, ∆] → S symmetric in the
first two arguments, and the partial function res[τ, σ] as follows:

• let Γ = x1 : σ1 . . . xn : σn and ∆ = y1 : τ1 . . . ym : τm. Then match[Γ, ∆] → S
if n = m, for every i ≤ n xi = yi, match[σi, τi] → Si and S =

⋃
i≤n Si∪{xi};

• let τ =
�

i∈I Γi and σ =
⊕

j∈J ∆j . Then match[τ, σ] → S if I = J , for all
i ∈ I, match[Γi, ∆i] → Si and S =

⋃
i∈I Si In such a case res[τ, σ] =l ;

• let τ =
⊗

i∈I Γi and σ =
⊎

j∈J Γj Then match[τ, σ] → S if J ⊆ I, for all
j ∈ J , match[Γj , ∆j] → Sj , and S =

⋃
j∈J Sj In such a case res[τ, σ] =

⊗
i∈I\J Γi.

• match[l, l] → ∅, res[l, l] =l.

A branching type matches a corresponding selection types, all their names are
closed and the residual type is the special type recording that the matching has
taken place. A client type matches a server type if every request corresponds
to an available resource. The residual type records which resources are still
available.

We now define the composition of two environments. Two environments can be
composed if the types of the common names match. Such names are given the
residual type by the resulting environment. All the closed names are recorded.
Client types can by joined, so that the two environments are allowed to in-
dependently reserve some resources. Given two type environments Γ1, Γ2 we

define the environment Γ1⊙Γ2
def
= Γ and the set of names cl(Γ1, Γ2) as follows:

• if x 6∈ Dom(Γ1) and no name in Γ2(x) appears in Γ1, then Γ(x) = Γ2(x),
Sx = ∅ and symmetrically;

• if Γ1(x) = τ, Γ2(x) = σ and match[τ, σ] → S, then Γ(x) = res[τ, σ] and
Sx = S;

• if Γ1(x) =
⊎

i∈I ∆i and Γ2(x) =
⊎

j∈J ∆j and no name appears in both ∆i

and ∆j for every i, j ∈ I ∪ J we have then Γ(x) =
⊎

i∈I∪J ∆i and Sx = ∅;
• if any of the other cases arises, then Γ is not defined;
• cl(Γ1, Γ2) =

⋃
x∈Dom(Γ1,Γ2) Sx.

4.2 Semantic of types

Type environments are given a semantics in terms of labelled confusion free
event structures.

The labels are the ones described in the Section 2. Labels can be allowed or
disallowed by a type environments, similarly to the π-calculus case, but recur-
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sively considering the confidential names. Consider a label α, an environment
Γ, and suppose Γ(x) = σ, then:

• if α = xinj(ỹ), and if σ =
�

i∈I Γi where ỹ is the domain of Γj, then α is
allowed by Γ;

• if α = xinj(ỹ), and if σ =
⊕

i∈I Γi where ỹ is the domain of Γj then α is
allowed by Γ;

• if α = x(ỹ), and if σ =
⊗

i∈I Γi where ỹ is the domain of Γj then α is allowed
by Γ;

• if α = x(ỹ), and if σ =
⊎

i∈I Γi where ỹ is the domain of Γj then α is allowed
by Γ;

• if α = τ , then α is allowed by Γ;
• if α is allowed by any of the environments appearing in the types in the

range of Γ, then α is allowed by Γ.

Note that if a label is allowed, the definition of well-formedness guarantees
that it is allowed in a unique way. Note also that if a label α has subject x
and x does not appear in Γ, then α is not allowed by Γ. Let Dis(Γ) be the set
of labels that are not allowed by the environment Γ.

The semantics of selection and branching is obtained using the sum of event
structures. The semantics is presented in Figure 6, where we assume that
ỹi represents the sequence of names in the domain of Γi. A name used for
branching/selection identifies a cell. A name used for offer/request identifies
a “cluster” of parallel events.

The semantics of client and server is given using the parallel composition. To
define the parallel composition, we use a symmetric synchronisation algebra
which extends the one defined in Section 2: α • ∗ = α, xini(ỹi) • xini(ỹi) =
(x, x)ini(ỹi), x(ỹ)•x(ỹ) = (x, x)(ỹ), and undefined otherwise. Also the seman-
tics of an environment is obtained as the parallel composition of the semantics
of the types, with initial events labelled using the corresponding names. Such
parallel compositions do not involve synchronisation due to the condition on
uniqueness of names and thus, as we already explained, they can be thought
of as disjoint unions.

The following result is a sanity check for our definitions. It shows that matching
of types corresponds to parallel composition with synchronisation.

Proposition 4.1 Take two environments Γ1, Γ2, and suppose Γ1 ⊙ Γ2 is de-
fined. Then ([[Γ1]]‖[[Γ2]]) \ (Dis(Γ1 ⊙ Γ2) ∪ τ ) = [[Γ1 ⊙ Γ2]].
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[[y1 : σ1, . . . , yn : σn]] = [[y1 : σ1]]‖ . . . ‖[[yn : σn]]

[[x :
�

i∈I Γi]] =
∑

i∈I xini(ỹi).[[Γi]] [[x :
⊕

i∈I Γi]] =
∑

i∈I xini(ỹi).[[Γi]]

[[x :
⊗

i∈I Γi]] =
∏

i∈I x(ỹi).[[Γi]] [[x :
⊎

i∈I Γi]] =
∏

i∈I x(ỹi).[[Γi]]

[[x :l]] = ∅

Fig. 6. Denotational semantics of types

4.3 Typing event structures

Given a labelled confusion free event structure E on the same set of labels
as above, we define when E is typed in the environment Γ, written as E ⊲ Γ.
A type environment Γ defines a general behavioural pattern via its semantics
[[Γ]]. The intuition is that for an event structure E to have type Γ, E should
follow the pattern of [[Γ]], possibly “refining” the causal structure of [[Γ]] and
possibly omitting some of its actions.

Definition 4.2 We say that E ⊲ Γ, if the following conditions are satisfied:

• each cell in E is labelled by x, x or (x, x), and labels of the events correspond
to the label of their cell in the obvious way;

• there exists a label-preserving morphism of labelled event structures
f : E → [[Γ]] such that f(e) is undefined if and only if λ(e) ∈ τ .

Roughly speaking a confusion free event structure E has type Γ if cells are
partitioned into branching, selection, request, offer and synchronisation cells,
all the non-synchronisation events of E are represented in Γ and causality in
E refines causality in [[Γ]].

As we said, the parallel composition of confusion free event structures is not
confusion free in general. The main result of this section shows that the parallel
composition of typed event structures is still confusion free, and moreover is
typed.

Lemma 4.3 Suppose E ⊲ Γ, and let e, e′ ∈ E be distinct events.

• If λ(e) = λ(e′) 6= τ , then e ⌣ e′.
• If λ(e), λ(e′) 6= τ and λ(e) and λ(e′) have the same subject and different

branch,then e ⌣ e′.
• If e ⌣µ e′, then λ(e) and λ(e′) have the same subject and different branch.

Theorem 4.4 Take two labelled confusion free event structures E1, E2. Sup-
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Fig. 7. Typed event structure

pose E1⊲Γ1 and E2⊲Γ2. Assume Γ1⊙Γ2 is defined. Then (E1‖E2)\(Dis(Γ1⊙Γ2))
is confusion free and (E1‖E2) \ (Dis(Γ1 ⊙ Γ2)) ⊲ Γ1 ⊙ Γ2 .

The proof relies on the fact that the typing system, in particular the uniqueness
condition on well formed environments, guarantees that no new conflict is
introduced through synchronisation.

Special cases are obtained when some or all cells are singletons. We call a
typed event structure deterministic if its selection cells and its τ cells are
singletons. We call a typed event structure simple if all its cells are singletons.
In particular, a simple event structure is conflict free.

Theorem 4.5 Take two labelled deterministic (resp. simple) event structures
E1 ⊲ Γ1 and E2 ⊲ Γ2. Suppose Γ1 ⊙ Γ2 is defined. Then (E1‖E2) \ Dis(Γ1 ⊙ Γ2)
is deterministic (resp. simple).

4.4 Examples

In the following, when the indexing set of a branching type is a singleton, we
use the abbreviation (Γ)↓. Similarly, for a singleton selection type we write
(Γ)↑. When the indexing set of a type is {1, 2}, we write (Γ1&Γ2) or (Γ1⊗Γ2).

Example 4.1 Consider the types τ1 = (x : ()↓ & y : ()↓), σ1 =
⊎

i∈{2}(zi :l)
τ2 = (x : ()↑ ⊕ y : ()↑), σ2 =

⊗
i∈{1,2,3}(zi :l). We have match[τ1, τ2], with

res[τ1, τ2] =l; and match[σ1, σ2], with res[σ1, σ2] =
⊗

i∈{2}(zi :l). If we put
Γ1 = a : τ1, b : σ1, and Γ2 = a : τ2, b : σ2, we have that Γ1 ⊙ Γ2 = a :l, b :
⊗

i∈{1,3}(zi :l).

Example 4.2 As an example of typed event structures, consider the environ-
ment Γ = a : (x : ()↓ & y : ()↓), b :

⊎
i∈{1}(zi : ()↑). Figure 7 shows an event

structure E , such that E ⊲Γ, together with a morphism E → [[Γ]]. Note that the
two events in E labelled with b(z1) are mapped to the same event and indeed
they are in conflict.
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5 Name sharing CCS

Our goal is to use typed event structures to interpret the linearly typed π-
calculus. We would like this interpretation to be similar, in a sense to extend,
Winskel’s semantics of CCS [35]. However we face two main difficulties.

The first problem is that Winskel’s semantics is strictly related to the la-
belled transition semantics of CCS. The labelled transition semantics of the
π-calculus is more complex, and in particular the communication rule involves
α-conversion. This rule seems difficult to represent using the available tech-
niques. The second problem is that we want to use typed event structures,
and this implies confusion free event structures. However, even if we applied
Winskel’s semantics to a fragment of the π-calculus without name passing, we
would obtain confused event structures. This is due to the replicated server. If
we interpret the replicated sever as an infinite parallel composition of copies
of the resource, Winskel’s semantics allows each of such components to com-
pete for the same client. This competition creates some spurious conflicts that
break confusion freeness. Alternatively, we can model the server as one single
resource that, after providing its service, spawns another copy of itself. This
would create another spurious conflict between two clients to decide who is
going to be served first.

To see this with an example, imagine the server to be a post office. A post
office allows a client to post a letter. How do we implement this service? If the
post office has only one employee, that accepts one letter at a time, then two
clients could end up fighting for the right of going first. If the post office has
infinitely many employees, still two clients may fight over the same one (for
instance because she is more efficient), or two employees could fight over the
same client (because their salary is proportional to their activity).

Our solution to this problem would be to assign in advance an employee for
each client, so that when the client decides to post his letter, he knows which
till to go to. This solution has also the advantage to solve the α-conversion
problem. If we know in advance whom we are going to communicate with, we
can also decide in advance which “private” channels we are going to share.
In a sense we perform α-conversion before we start the computation, or, one
could say, at compile time.

To formalise this intutition we first introduce a variant of CCS that will be
interpreted using typed event structures. Our language differs from CCS in
many technical details, but the only relevant difference is that synchronisation
between actions happens only if the actions share the same confidential names.
In a second moment we will see the correspondence between this calculus, and
the π-calculus.

23



5.1 Syntax

Syntactically the calculus we present is very similar to the π-calculus. Com-
munication happens along channels, and information is “passed” along such
channels. The difference between the two is in the semantics. In our variant
of CCS names are not sent from a process to another: processes decide their
confidential names before communicating, and there is not α-conversion. If
the chosen names do not coincide, the processes do not synchronise.

Another important technical difference from standard π-calculus and CCS is
that we allow infinite parallel composition and infinite restriction. The for-
mer is necessary in order to translate replicated processes of the π-calculus.
The standard intuition in the π-calculus is that the process !P represents the
parallel composition of infinitely many copies of P . We need to represent this
explicitly in order to be able to provide each copy with different confidential
names. Infinite restriction is also necessary, because we need to restrict all con-
fidential names that are shared between two processes in parallel, and these
are in general infinitely many.

We call this language Name Sharing CCS, or NCCS. The syntax is as follows:

P ::= x
�

i∈I ini(ỹi).Pi branching

| x
⊕

i∈I ini(ỹi).Pi selection

| x(ỹ).P single offer

| x(ỹ).P single request

|
∏

i∈I Pi parallel composition

| P \ S restriction

| 0 zero

For the notation, we use conventions analogous to the π-calculus. Processes
are identified up to a straightforward structural congruence, which includes
the rule (P \S) \T ≡ P \ (S ∪T ), but no notion of α-equivalence. Names of a
process are partitioned into public and confidential, similarly to the free/bound
partition in the π-calculus. The change of name undelines the fact that α-
conversion is not allowed.

As for the π-calculus, the fragment of NCCS where the indexing sets of branch-
ing and selection are always singleton is called simple. The fragment where the
selection is always a singleton, but the branching is arbitrary is called deter-
ministic. The general language is for clarity denoted as the nondeterministic
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x
⊕

i∈I ini(ỹi).Pi

xinj(ỹj)
−→ Pj x

�
i∈I ini(ỹi).Pi

xinj(ỹj)
−→ Pj

x(ỹ).P
x(ỹ)
−→P x(ỹ).P

x(ỹ)
−→P

P
β

−→P ′ subj(β) 6∈ S

P \ S
β

−→P ′ \ S

P
τ

−→P ′

P \ S
τ

−→P ′ \ S

Pn
β

−→P ′

∏
i∈N Pi

β
−→(

∏
i∈N\{n} Pi) | P ′

Pn
α

−→P ′ Pm
β

−→P ′′

∏
i∈N Pi

α•β
−→(

∏
i∈N\{n,m} Pi) | P ′ | P ′′

Fig. 8. Labelled Transition System for Name Sharing CCS

fragment.

The operational semantics is completely analogous to the one of CCS, and it
is shown in Figure 8. Labels are the same as for the π-calculus, and synchro-
nisation labels are globally denoted by τ .

As in CCS, prefixes generate the labelled actions. Processes in parallel can
proceed independently or synchronise over complementary actions. Restriction
inhibits actions over a particular set of names, but not τ . The main difference
with CCS is the presence of the confidential names that are used only for
synchronisation. Note also that only the subject of an action is taken into
account for restriction.

Example 5.1 For instance the process

(x(y).P | x(z).R) \ {x}

cannot perform any transition, because y and z do not match. The process

(x(y).P | x(y).Q | x(y).R) \ {x}

can perform two different initial τ transitions. Since the name x is not bound,
it does not become private to the subprocesses involved in the communication.
The process

(x
�

i∈{1,2} ini.Pi | x
⊕

i∈{1,2} ini.Ri) \ {x}

can perform, nondeterministically, two τ transitions to (P1 | R1) \ {x} or to
(P2 | R2) \ {x}.
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5.2 Typing rules

Using the notions of type and type enviroment presented in Section 4, we are
going to present a typing system for NCCS. This typing system is very similar
to the one of the π-calculus.

Before introducing the typing rules, we have to define the operation of “parallel
composition of environments”. This operation intuitevly combine enviroments
for which the only possible shared public names are client requests.

Let Γh h ∈ H be a family of enviroments such that for every name x, either for
every h, Γh(x) =

⊎
kh∈Kh

∆kh
, or x ∈ Dom(Γh) for at most one h. We define

Γ =
∏

h∈H Γh as follows. If for every h, Γh(x) =
⊎

kh∈Kh
∆kh

, then Γ(x) =
⊎

kh∈Kh,h∈H ∆kh
, assuming all the names involved are distinct. If x ∈ Dom(Γh)

for at most one h, then Γ(x) = Γh(x).

A special case, which will be of particular interest when encoding the π-
calculus, is when all the Γh are different instances of the same environment,
up to renaming of the confidential names. For any set K, let FK : Names →
P(Names) be a function such that, for every name x, there is a bijection
between K and FK(x). Concretely we can represent FK(x) = {xk | k ∈ K}.
In the following we assume that each set K is associated to a unique FK , and
that for distinct x, y, FK(x) ∩ FK(y) = ∅.

Given a type τ , and an index k, define τk as follows:

•
⊗

h∈H(ỹh : τ̃h)
k =

⊗
h∈H(ỹk

h : τ̃k
h ), where ỹh = (yi,h)i∈I and ỹk

h = (yk
i,h)i∈I ;

• and similarly for all other types.

Given an environment Γ, we define Γk were for every name x ∈ Dom(Γ),
Γk(x) = Γ(x)k. The environment Γ[K] is defined as

∏
k∈K Γk, and is thus

defined only when for every x ∈ Dom(Γ), MD(Γ(x)) = ?. We will also assume
that all names in the range of the substitution are fresh, in the sense that no
name in the range of FK appears in the domain of Γ. Under this assumption
we easily have that if Γ is well formed and if Γ[K] is defined, then Γ[K] is also
well formed.

We are now ready to write the rules. The rule for weakening of the client
type tells us that we can request a resource even if we are not actually using
it. The rule for the selection tells us that we can choose less than what the
types offers. The parallel composition is well typed only if the names used for
communication have matching types, and if the matched names are restricted.
This makes sure that communication can happen, and that the shared names
are indeed private to the processes involved. The rules are shown in Figure 9.
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0 ⊲ ∅
Zero

P ⊲ Γ x 6∈ Γ

P ⊲ Γ, x :
⊎

h∈H Γh
WeakReq

P ⊲ Γ x 6∈ Γ

P ⊲ Γ, x :l
WeakCl

P ⊲ Γ, x : τ MD(τ) = !, l

P \ x ⊲ Γ
Res

Pi ⊲ Γ, ỹi : τ̃i x 6∈ Γ

x
�

i∈I ini(ỹi).Pi ⊲ Γ, x :
�

i∈I(ỹi : τ̃i)
Branch

Pi ⊲ Γ, ỹi : τ̃i x 6∈ Γ I ⊆ J

x
⊕

i∈I inipi(ỹi).Pi ⊲ Γ, x :
⊕

i∈J(ỹi : τ̃i)
Sel

P ⊲ Γ, w̃j : τ̃j , x :
⊎

h∈H(w̃h : τ̃h) w̃j fresh

x(w̃j).P ⊲ Γ, x :
⊎

h∈H⊎{j}(w̃h : τ̃h)
Req

Ph ⊲ Γh, ỹh : τ̃h a 6∈ Γ
∏

h∈H x(ỹh).Ph ⊲
∏

h∈H Γh, a :
⊗

h∈H(ỹh : τ̃h)
Offer

Pi ⊲ Γi (i = 1, 2) S = cl(Γ1, Γ2)

(P1‖P2) \ S ⊲ Γ1 ⊙ Γ2
Par

Fig. 9. Typing Rules for NCCS

5.3 Typed semantics

The relation Γ allows β was defined in Section 4. We also need a definition of
the environment Γ \ β, similar to the one defined in Section 2.

• Γ \ τ = Γ;
• if Γ = ∆, x :

�
i∈I(ỹi : τ̃i), then Γ \ xini(ỹi) = ∆, ỹi : τ̃i;

• if Γ = ∆, x :
⊕

i∈I(ỹi : τ̃i), then Γ \ xini(ỹi) = ∆, ỹi : τ̃i;
• if Γ = ∆, x :

⊗
h∈H⊎{j}(ỹh : τ̃h), then Γ \ x(ỹj) = ∆, ỹj : τ̃j ,

⊗
h∈H(ỹh : τ̃h);

• if Γ = ∆, x :
⊎

h∈H⊎{j}(ỹh : τ̃h), then Γ \ x(ỹj) = ∆, ỹj : τ̃j ,
⊎

h∈H(ỹh : τ̃h).

Note that Γ \ β is defined precisely when Γ allows β. We have the following

Proposition 5.1 If P ⊲ Γ, P
β

−→Q and Γ allows β, then Q ⊲ Γ \ β.

Corollary 5.2 (Subject Reduction) If P ⊲ Γ, P
τ

−→Q then Q ⊲ Γ.
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Proposition 5.1 allows us to define the notion of typed transition, written P ⊲

Γ
β

−→ Q ⊲ Γ′ by adding the constraint:

P
β

−→Q Γ allows β

P ⊲ Γ
β

−→Q ⊲ Γ \ β

We are going to define a notion of bisimulation which is slightly different from
one might expect. The reason is that labels, as we have presented them, contain
somehow too much information, more than a typed context should recognise.
Normal CCS bisimulation would be too fine and our full abstraction result
would fail. In principle a label should represent what a context can observe.
But a typed context cannot really take apart two processes with different
confidential names. Either the context does not synchronise on the subject
of the label, and then the confidential names do not matter. Or, if it does
synchronise, the typing rules ensure it must do it with the proper confidential
names, whatever they are. We want thus to allow processes that use different
confidential names to be identified.

In the following ρ will be a fresh injective renaming of the confidential names of
an environment ∆. In such a case then ∆[ρ] is also a well formed environment.

Definition 5.3 Let R be a symmetric relation between judgments such that
if (P ⊲ Γ) R (P ′ ⊲ Γ′), then Γ′ = Γ[ρ], for some injective renaming ρ. We say
that R is a bisimulation up to renaming if the following is satisfied:

• whenever (P ⊲Γ)R (P ′ ⊲Γ′), P ⊲Γ
β

−→Q⊲Γ\β, then there exists a renaming

ρ and a process Q′ such that P ′[ρ] ⊲ Γ′[ρ]
β

−→Q′ ⊲ Γ[ρ′ ◦ ρ] \ β, and (Q ⊲ Γ \
β) R (Q′ ⊲ Γ′[ρ] \ β).

If there exists a bisimulation up to renameing between two judgments, we say
that they are bisimilar (P ⊲ Γ) ≈ (P ′ ⊲ Γ′).

6 Event structure semantics of Name Sharing CCS

6.1 Semantics of nondeterministic NCCS

The event structure semantics of typed NCCS is presented in Figure 10. It
is given in terms of labelled event structures, using the operations, in partic-
ular the parallel composition, as defined in Section 3.5. This construction is
perfectly analogous to the one in [39], the only difference being the synchro-
nisation algebra. However, since the synchronisation algebra is the same for
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[[0 ⊲ ∅]] = ∅

[[P ⊲ Γ, x :
⊎

h∈H Γh]] = [[P ⊲ Γ]]

[[P ⊲ Γ, x :l]] = [[P ⊲ Γ]]

[[P \ x ⊲ Γ]] = [[P ⊲ Γ, x : τ ]] \ {x}

[[x
⊕

i∈I ini(ỹi).Pi ⊲ Γ, x :
⊕

i∈I(ỹi : τ̃i)]] =
∑

i∈I xini(ỹi).[[Pi ⊲ Γ, ỹi : τ̃i]]

[[x
�

i∈I ini(ỹi).Pi ⊲ Γ, x :
�

i∈I(ỹi : τ̃i)]] =
∑

i∈I xini(ỹi).[[Pi ⊲ Γ, ỹi : τ̃i]]

[[x(ỹ).P ⊲ Γ, x :
⊎

k∈K⊎{j}(ỹk : τ̃k)]] = x(ỹ).[[P ⊲ Γ, x :
⊎

k∈K(ỹk : τ̃k), ỹj : τ̃j ]]

[[
∏

k∈K x(ỹk).Pk ⊲
∏

k∈K Γk, x :
⊗

k∈K(ỹk : τ̃k)]] =
∏

k∈K x(ỹk).[[Pk ⊲ Γk, ỹk : τ̃k]]

[[(P1‖P2) \ S ⊲ Γ1 ⊙ Γ2]] = [[P1 ⊲ Γ1]] | [[P2 ⊲ Γ2]] \ (Dis(Γ1 ⊙ Γ2))

Fig. 10. Denotational semantics of simple Name Sharing CCS

both the operational and the denotational semantics, we obtain automatically
the correspondence between the two, as in [39].

In the parallel composition, we have to restrict all the channels that are subject
of communication. More generally, we need to restrict all the actions that are
not allowed by the new type environment.

The main property of the typed semantics is that all denoted event structures
are confusion free. More generally the semantics of a typed process is a typed
event structure.

Theorem 6.1 Let P be a process and Γ an environment such that P ⊲Γ. Then
[[P ⊲ Γ]] is confusion free; and [[P ⊲ Γ]] ⊲ [[Γ]].

6.2 Semantics of deterministic NCCS

The syntax of NCCS introduces the conflict explicitly, therefore we cannot
obtain conflict free event structures. The result above shows that no new
conflict is introduced through synchronisation. Moreover, in the deterministic
fragment, synchronisation does indeed resolve the conflicts.

First it is easy to show that the semantics of deterministic NCCS is in term
of deterministic event structures:
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Proposition 6.2 Suppose P is a deterministic process, and that P ⊲Γ. Then
[[P ⊲ Γ]] is deterministic.

The main theorem is the following, which justifies the term “deterministic”.
It states that once all choices have been matched with selections, or cancelled
out, what remains is a conflict free event structure.

Theorem 6.3 If let X be the set of names in P , then [[P ⊲Γ]]\X is a conflict
free event structure.

Corollary 6.4 If [[Γ]] = ∅, then [[P ⊲ Γ]] is conflict free.

6.3 Semantics of simple NCCS

Although the syntax of NCCS does not introduce directly any conflict, there
is in principle the possibility that conflict is introduced by the parallel com-
position. The typing system is designed in such a way that this is not the
case.

Theorem 6.5 Suppose P is a simple process such that P ⊲ Γ. Then [[P ⊲ Γ]]
is conflict free.

6.4 Correspondence between the semantics

In order to show the correspondence between the operational and the denota-
tional semantics, we invoke Winskel and Nielsen’s handbook chapter [39]. Note
that our semantics are a straightforward modification of the standard CCS se-
mantics. This is the main reason why we chose the formalism presented in this
paper: we wanted to depart as little as possible from the treatment of [39].

The main difference is that typed semantics modifies the behaviour, by for-
bidding some of the actions. However this modification acts precisely as a
special form of name restriction: in the labelled transition system it blocks
some action, while in event structures it cancel them out (together with all
events enabled by them). With a straightforward generalisation of the notion
of restriction, we then preserve the correspondence between the two semantics
and the technique of [39] carries over.

A denotational model which is very close to the operational semantics is that of
synchronisation trees. Synchronisation trees are just labelled transition system
structured as trees, with an initial state as the root. They form a category in
a straightforward way, and they support constructions similar to the one used
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for event structures (prefixing, hiding, product). Using these constructions, we
can define a new semantics of NCCS in terms of synchronisation trees [[P ]]T .

There is a functor F between the category of labelled event structures and
the category of synchronisation trees that unfolds event structures into trees.
F is right adjoint of the functor that sees trees as event structures (where
every two events are causally related or in conflict). It can be shown that F
commutes with the semantics, that is F [[P ]] = [[P ]]T , the key point being that
F is right adjoint and therefore preserves products. Then, it can be shown
that the synchronisation tree [[P ]]T is bisimilar to the operational semantics
described in Section 5. The proof of this is quite technical, and can be found
in [39]. Recall that the typing restricts the behaviour in the same way as the
hiding.

Using this correspondence it is easy to prove that the semantics in terms of
event structures is sound with respect to bisimilarity.

Theorem 6.6 Take two typed NCCS processes P ⊲ Γ, Q ⊲ Γ. Suppose that
[[P ⊲ Γ]] = [[Q ⊲ Γ]], then P ⊲ Γ ≈ Q ⊲ Γ.

The above theorem holds because if [[P ⊲Γ]] = [[Q⊲Γ]], then [[P ⊲Γ]]T = [[Q⊲Γ]]T ,
and thus P ⊲ Γ ≈ Q ⊲ Γ.

This theorem is the best result we can get: indeed, as for standard CCS, we
cannot expect the event structure semantics to be fully abstract. Bisimilarity
is a “interleaving” semantics, equating the two processes τ‖τ and τ .τ , which
have different event structure semantics.

A more direct correspondence is described next. Recall the way we derive
a transition system from an event structure, as presented in Section 3: if

λ(e) = β, then E
β

−→E⌊e.

We can therefore state the following correspondence:

Theorem 6.7 Let ∼= denote isomorphism of labelled event structures;

• if P ⊲ Γ
β

−→P ′ ⊲ Γ \ β, then [[P ⊲ Γ]]
β

−→ ∼= [[P ′ ⊲ Γ \ β]].

• if [[P ⊲ Γ]]
β

−→E ′ then P ⊲ Γ
β

−→P ′ ⊲ Γ \ β and E ′ ∼= [[P ′ ⊲ Γ \ β]].

The proof is by induction on the operational rules. The only difficult case is
the parallel composition.
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7 Correspondence between the calculi

7.1 Translation

We are now going to present a fully abstract translation of the π-calculus into
Name Sharing CCS. The translation is parametrised over a fixed choice for
the confidential names. This parametrisation is necessary because π-calculus
terms are identified up to α-conversion, and so the identity of bound names is
irrelevant, while in Name Sharing CCS, the identity of confidential names is
important. Also, since servers are interpreted as infinite parallel compositions,
every bound name of a server must correspond to infinitely many names in
the interpretation.

The translation is a family of functions {{−}}ρ, that take a judgment of the
π-calculus and return a process of NCCS. The semantic functions are indexed
by a “choice” function ρ that for every bound name assigns a set (possibly
a singleton) of fresh distinct names. In order to make this work, we have
to use the convention that all bound names in the π-calculus are distinct,
and different from the free names. In this way ρ cannot identify two different
bindings. Although the translation is defined for all ρ, the target process will
not always be typable. In particular, for some choice of renaming, the parallel
composition in NCCS will not be typed.

We define the translation by induction on the derivation of the typing judg-
ment. Without loss of generality, we will assume that all the weakenings are
applied to the empty process. The translation is defined in Figure 11.

The notation has to be explained. The notation ρ, y → S denotes the function
ρ extended on a name y not already in the domain of ρ, and such that all
names in S are fresh and distinct from any other name in the range of ρ.
In the translation of the server, we use Y to denote the set of confidential
names of the translation of P . We also use the choice function ρ[K] defined
as follows: assume the range of ρ are only singletons, say for every name x in
the domain, ρ(x) = {y}. Then ρ[K](x) = {yk | k ∈ K}, where yk are obtained
by a function FK : Names → P(Names) as in Section 5. In the translation
of the parallel composition, S denotes the set of names that are in the range
of both ρ1 and ρ2.

Once past the rather heavy notation, the translation is rather simple. Note
the way bound variables become confidential information. Observe also that
the server is translated into an infinite parallel composition.

We said that the translation is not always typable. In particular, for the wrong
choice of ρ1, ρ2, the parallel composition may not be typed because the cho-
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{{0 ⊲ xi : (τi)
? , yj :l}}ρ = 0

{{(ν x)P ⊲ Γ}}ρ = {{P ⊲ Γ, x : τ}}ρ \ x

{{P1‖P2 ⊲ Γ1 ⊙ Γ2}}ρ1∪ρ2 =

({{P1 ⊲ Γ1}}ρ1‖{{P2 ⊲ Γ2}}ρ2) \ S

{{x
⊕

i∈I ini(ỹi).Pi ⊲ Γ, x :
⊕

i∈I(τ̃i)
↑}}ρ,(ỹi→z̃i)i∈I =

x
⊕

i∈I ini(z̃i).{{Pi[z̃i/ỹi] ⊲ Γ, z̃i : τi}}ρ

{{x
�

i∈I ini(ỹi).Pi ⊲ Γ, x :
�

i∈I(τ̃i)
↓}}ρ,(ỹi→z̃i)i∈I =

x
�

i∈I ini(z̃i).{{Pi[z̃i/ỹi] ⊲ Γ, z̃i : τi}}ρ

{{!x(ỹ).P ⊲ Γ, x : (τ̃)!}}ρ[K],ỹ→{ỹk}k∈K =

∏
k∈K x(ỹk).{{P ⊲ Γ}}ρ[ỹk/ỹ][Y k/Y ]

{{x(ỹ).P ⊲ Γ, x : (τ̃)?}}ρ,ỹ→w̃ =

x(w̃).{{P ⊲ Γ, x : (τ̃)? [w̃/ỹ]}}ρ

Fig. 11. Translation from π to NCCS

sen confidential names may not match. However it is always possible to find
suitable ρ1, ρ2. Intuitively we can say that in translating typed π into typed
NCCS, we perform α-conversion “at compile time”.

Lemma 7.1 For every judgment P ⊲Γ in the π-calculus, there exists a choice
function ρ and a type environment ∆ such that {{P ⊲ Γ}}ρ ⊲ ∆. Moreover, for
every injective fresh renaming ρ′, if {{P ⊲ Γ}}ρ ⊲ ∆ then {{P ⊲ Γ}}ρ′◦ρ ⊲ ∆[ρ′].

Example 7.1 We demonstrate how the process which generates an infinite
behaviour with infinite new name creation is interpreted into NCCS. Consider
the process Fw(ab) =!a(x).b(y).y.x . This agent links two locations a and b and
it is called a forwarder. It can be derived that Fw(ab)⊲a : τ, b : τ with τ = (()↑)! .
Consider the process Pω = Fw(ab)|Fw(ba) so that Pω⊲(a : τ, b : τ)⊙(b : τ, a : τ ),
that is Pω ⊲ a, b : τ . One possible translation for Fw(ab) ⊲ a : (()↑)! , b : (()↓)? is

Q1 =
∏

k∈K a(xk).b(yk).yk.xk ⊲ a :
⊗

k∈K(xk : ()↑), b :
⊎

k∈K(yk : ()↓)
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while for Fw(ba) ⊲ b : (()↑)! , a : (()↓)? is

Q2 =
∏

h∈H b(zh).a(wh).wh.zh ⊲ b :
⊗

h∈H(zh : ()↑), a :
⊎

h∈H(()?wh : ()↓)

Assuming there are two “synchronising” injective functions f : K → H, g :
H → K, such that yk = zf(k), wh = xg(h) (if not, we can independently perform
a fresh injective renaming on both environments), we obtain that the corre-
sponding types for a, b match, so that we can compose the two environments.
Therefore the translation of Pω ⊲ a, b : τ is (Q1 | Q2) \ S ⊲ ∆ for

∆ = a :
⊗

k∈K\g(H)(x
k : ()↑), b :

⊗
h∈H\f(K)(z

h : ()↑).

The reader can check that any transition of Pω is matched by a corresponding
transition of its translation. This is what we formally show next.

7.2 Full abstraction

To show the correctness of the translation, we first prove the correspondence
between the labelled transition semantics. If ρ is a choice function and S is a
set of names, by ρ \S we denote the function ρ restricted to the names not in
S.

Theorem 7.2 Suppose P ⊲ Γ
β

−→P ′ ⊲ Γ \ β in the π-calculus, then there exists

ρ and ∆ such that {{P ⊲Γ}}ρ⊲∆ and {{P ⊲Γ}}ρ⊲∆
β

−→{{P ′⊲Γ\β}}ρ\obj(β)⊲∆\β.

Conversely, suppose {{P ⊲Γ}}ρ ⊲∆
β

−→Q⊲∆\β. Then there exists P ′ such that

P ⊲ Γ
β

−→P ′ ⊲ Γ \ β and {{P ′ ⊲ Γ \ β}}ρ\obj(β) = Q.

The full abstraction is then a corollary.

Theorem 7.3 (Full abstraction) We have P ⊲Γ ≈ P ′ ⊲ Γ if and only if for
some ρ, ρ′, ∆, ∆′ we have {{P ⊲ Γ}}ρ ⊲ ∆ ≈ {{P ′ ⊲ Γ}}ρ′ ⊲ ∆′.

Recall that in NCCS we use bisimilarity up to renaming.

7.3 Event structure semantics of the π-calculus

By composing the translation obtained in this section with the event struc-
ture semantics of Section 6, we obtain an event structure semantics of the
π-calculus.

Given a π-calculus judgment P ⊲ Γ, we define
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[[P ⊲ Γ]]ρ∆ = [[{{P ⊲ Γ}}ρ ⊲ ∆]]

We thus have

Lemma 7.4 For every judgment P ⊲ Γ in the π-calculus, there exist ρ and ∆
such that [[P ⊲ Γ]]ρ∆ is defined. When this is the case [[P ⊲ Γ]]ρ∆ is a confusion
free event structure, and [[P ⊲ Γ]]ρ∆ ⊲ ∆.

Proposition 7.5 (Soundness) Suppose that for some ρ, ρ′, ∆, ∆′, [[P⊲Γ]]ρ∆ =

[[P ′ ⊲ Γ]]ρ
′

∆′. Then P ⊲ Γ ≈ P ′ ⊲ Γ.

Note that the event structure semantics of CCS is already not fully abstract
with respect to bisimulation [35], hence the other direction does not hold in
our case either.

However, there is another kind of correspondence between the labelled tran-
sition systems and the event structures, analogous to the one discussed in
Section 6.4. Combining Theorem 6.7 with Theorem 7.2, we obtain:

Theorem 7.6 Suppose P ⊲Γ
β

−→P ′ ⊲Γ\β in the π-calculus, and that [[P ⊲Γ]]ρ∆
is defined. Then [[P ⊲ Γ]]ρ∆

β
−→ ∼= [[P ′ ⊲ Γ \ β]]

ρ\obj(β)
∆\β .

Conversely, suppose [[P ⊲Γ]]ρ∆
β

−→E ′. Then there exists P ′ such that P ⊲Γ
β

−→P ′⊲

Γ \ β and [[P ′ ⊲ Γ \ β]]
ρ\obj(β)
∆\β

∼= E ′.

8 Conclusions and related work

This paper has provided a typing system for event structures and exploited it
to give an event structure semantics of the π-calculus. As far as we know, this
work offers the first formalisation of a notion of types in event structures, and
the first direct event structure semantics of the π-calculus.

The work is quite technical and it requires a little effort to be read. The readers
may ask themselves what they gain from this effort. We think the contribution
of this paper are as follows.

• It is a standard intuition that confluence means absence of conflict, deter-
minism. In this work we have formalised this intuition. In the process of
this formalisation some conflict situations that are hidden by the interleav-
ing semantics were discovered. This fact can be underlined by noting that
the standard event structure semantics of the so called confluent CCS [24]
is not conflict free.
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• It is well known how to compose event structures in order to obtain event
structures. However it was not known how to compose confusion free event
structures in order to obtain confusion free event structures. Our work offers
a solution to this problem. Concrete data structures, a fundamental concept
in various fields of semantics, can be seen as confusion free event structures.
Therefore our work also shows how to compose concrete data structures.

• Although several causal semantics of the π-calculus exist (see related work
below), no one ever gave a direct event structure semantics, that could be
seen as an extension of Winskel’s semantics of CCS. We believe the main dif-
ficulty of an event structures semantics of the π-calculus lies in the handling
of name generation. Name generation is a inherently dynamic operation,
while event structures have a more static, denotational flavour. We have
shown that, by restricting the amount of concurrency to that permitted by
the linear type discipline, we can deal with name generation statically, and
thus we can extend Winskel’s semantics. This restricted π-calculus is still
very expressive, in that it can encode fully abstractly functional program-
ming languages.

• Finally, this work is an important preliminary step of several research di-
rections that we believe to be fruitful and interesting, as shown in the next
paragraph.

8.1 Future work

Future works include extending this approach to a probabilistic framework,
for instance the probabilistic π-calculus [18], by using a typed version of prob-
abilistic event structures [31]. The typed λ-calculus can be encoded into the
typed π-calculus. This provides an event structure semantics of the λ-calculus,
that we want to study in detail. Also the types of the λ-calculus are given an
event structure semantics. We aim at comparing this “true concurrent” se-
mantics of the λ-types with concurrent games [23], and with ludics nets [15].
Some preliminary result of the connection between game semantics and event
structures can be found in [16].

An event structure terminates if all its maximal configurations are finite. It
would be interesting to study a typing system of event structures that guaran-
tees termination applying the idea of the strongly normalising typing system
of the π-calculus [41].

8.2 Related work

There are several causal models for the π-calculus, that use different tech-
niques. In [5,12], the causal relations between transitions are represented by
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“proofs” of the transitions which identify different occurrences of the same
transition. In our case a similar role is played by names in types. In [10], a
more abstract approach is followed, which involves indexed transition systems.
In [20], a semantics of the π-calculus in terms of pomsets is given, following
ideas from dataflow theory. The two papers [9,14] present Petri nets semantics
of the π-calculus. Since we can unfold Petri nets into event structures, these
could indirectly provide event structure semantics of the π-calculus. In [2],
an event structure unfolding of double push-out rewriting systems is studied,
and this could also indirectly provide an event structure semantics of the π-
calculus, via the double push-out semantics of the π-calculus presented in [26].
In [7], Petri Nets are used to provide a type theory for the Join-calculus, a
language with several features in common with the π-calculus. None of the
above semantics directly uses event structures and no notion of compositional
typing systems in true concurrent models is presented. In addition, none of
them is used to study a correspondence between semantics and behavioural
properties of the π-calculus in our sense.

A recent work [6] claims to provide an event structure semantics of the full
π-calculus. However they cater only for the reduction semantics. Consequently
their semantics is not compositional, nor it is an extension of Winskel’s se-
mantics of CCS.

In [38], event structures are used in a different way to give semantics to a
process language, a kind of value passing CCS. That technique does not apply
yet to the π-calculus where we need to model creation of new names, although
recent work [37] is moving in that direction.

Infinite behaviour is introduced in our version of CCS by means of the infi-
nite parallel composition. NCCS does not support recursion. Infinite parallel
composition is similar to replication in that it provides infinite behaviour “in
width” rather that “in depth”. Recent studies on recursion versus replication
are [8,17].
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A Appendix: Proofs

A.1 Proof of Lemma 3.6

We prove it by induction on the joint size of x, x′. The base case is vac-
uously true. Now take (x, e1, e2), (x

′, e1, e2) ∈ E with x 6= x′. Since x, x′

are downward closed sets, if their maximal elements coincide, they coincide.
Therefore, w.l.o.g. there must be a maximal element (y, d1, d2) ∈ x such that
(y, d1, d2) 6∈ x′. By definition of E, and without loss of generality, we can as-
sume that d1 ∈ parents(e1). Therefore, by definition of E, there must be a
(y′, d1, d

′
2) ∈ x′. Suppose d2 6= d′

2. Then by definition of conflict (y, d1, d2) ⌣
(y′, d1, d

′
2). If d2 = d′

2 then it must be y 6= y′. Then by induction hypothesis
there exist f ∈ y, f ′ ∈ y′ such that f ⌣ f ′. And since x, x′ are downward
closed, we have f ∈ x, f ′ ∈ x′.

A.2 Proof of Theorem 3.7

Recall the the definition of (E,≤, ⌣). In order to show that it is an event
structure, we first o have to show that the relation ≤ is a partial order. We
have that

• it is reflexive by construction;
• it is antisymmetric: suppose e′ ≤ e = (x, e1, e2). If e′ 6= e, then, by construc-

tion h(e′) < h(e), so that it cannot be e ≤ e′.
• it is transitive: suppose e′ ≤ e ≤ d = (y, d1, d2). This means that e ∈ y.

Since, by construction, y is downward closed, this means that e′ ∈ y, so that
e′ ≤ d.

Next, for every event e = (x, e1, e2), we have that [e) is finite, as it coincides
with x.

Then we need to show that the conflict is irreflexive and hereditary. It is
hereditary essentially by definition: suppose e := (x, e1, e2) ⌣ d := (y, d1, d2),
and let d ≤ d′ := (y′, d′

1, d
′
2). By considering all the cases of the definition of

e ⌣ d, we derive e ⌣ d′. For instance, suppose there exists e′ := (x′, e′1, e
′
2) ≤ e

such that e′1 ≍ d1, and e′ 6= d. This means that e′ ⌣ d. Notice that e′ ≤ e,
and d ≤ d′. By the fourth clause of the definition, e ⌣ d′. The other cases are
analogous.

To prove that the conflict relation is irreflexive, suppose (x, e1, e2) ⌣ (x, e1, e2).
There are two possible ways of deriving this. First, if there are e, d ∈ x such
that e ⌣ d, but this contradicts the fact that x is a configuration. The other
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possibility is that, there exist (x′, e′1, e
′
2) ∈ x such that (x′, e′1, e

′
2) ⌣ (x, e1, e2).

Take a minimal such. Then it must be e′1 ≍ e1 or e′2 ≍ e2. But this contradicts
the definition of E.

Now we have to show that such event structure is the categorical product of E1,
E2. First thing to show is that projections are morphisms. Using Proposition
3.5, it is enough to show that they reflect reflexive conflict and preserves
downward closure.

• Take e, e′ ∈ E and suppose by that π1(e) ≍ π1(e
′). Then, by definition we

have e ≍ e′.
• To show that π1 preserves downward closure let e = (x, e1, e2) suppose

e′1 ≤ e1 = π1(e). Then we show that there is a e′ ≤ e such that π1(e
′) = e′1.

By induction on the height of e: the basis is vacuously true, since e1 is
minimal. For the step, consider first the case where e′1 ∈ parents(e1). Then,
by definition of E, we have that there exists e′ = (x′, e′1, e

′
2) ∈ x. Therefore

e′ ≤ e and π1(e
′) = e′1. If e′1 6∈ parents(e1), then there is a e′′1 ∈ parents(e1)

such that e′1 ≤ e′′1 ≤ e1 so that there is e′′ = (x′′, e′′1, e
′′
2) ∈ x. By induction

hypothesis there is e′ ∈ x′′ such that π1(e
′) = e′1. And by transitivity, e′ ≤ e.

Now we want to show that E enjoys the universal property that makes it a
categorical product. That is for every event structure D, such that there are
morphisms f1 : D → E1, f2 : D → E2, there exists a unique f : D → E such
that π1 ◦ f = f1 and π2 ◦ f = f2.

Clearly, if such f exists, it must be defined as f(d) = (x, f1(d), f2(d)), for
some x. By this we mean f(d) = (x, f1(d), ∗), if f2(d) is undefined, f(d) =
(x, ∗, f2(d)), if f1(d) is undefined, and undefined if both are undefined. We now
define x, by induction on the size of [d). Suppose d is minimal. Then, since
f1, f2 are morphisms and in particular preserve downward closure, we have
that f1(d), f2(d) are both minimal. Since every maximal element of x must
contain the parent of at least one of them, the only possibility is that x be
empty.

Putting f(d) = (∅, f1(d), f2(d)), we obtain, that, on element of height 0,

• f(d) is uniquely defined: we have seen that all choices are forced
• f reflects reflexive conflict: suppose (∅, f1(d), f2(d)) ≍ (∅, f1(d

′), f2(d
′)), then

either f1(d) ≍ f1(d
′) or f2(d) ≍ f2(d

′). In the first case, since f1 is a mor-
phism, and thus reflects reflexive conflict, we have d ≍ d′. Symmetrically
for the other case.

• f preserves downward closure vacuously

Now suppose f is uniquely defined for all elements of height less or equal than
n, it reflects reflexive conflict and preserves downward closure. Consider d of
height n + 1. We want to define f(d) = (x, f1(d), f2(d)). Define x as follows.
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For a set A, let ↓A be the downward closure of A. Let X = {f(d′) | d′ <
d & [ f1(d

′) ∈ parents(f1(d)) or f2(d
′) ∈ parents(f2(d)) ]} and define x

as ↓X. First of all we should check that this is indeed an element of E. x
is downward closed by definition. It is finite because X is and each element
of X has finitely many predecessors. Suppose there are d′, d′′ < d such that
f(d′) ⌣ f(d′′). We know by induction that f reflects reflexive conflict on
elements of height smaller than d, which means that d′ ⌣ d′′, contradiction.

Now the maximal elements of x contain either a parent of f1(d) or a parent of
f2(d) by construction. Take a parent e1 of f1(d). I claim that e1 is of the form
f1(d

′) for some d′ < d. Since e1 ∈ parents(f1(d)), in particular e1 ≤ f1(d).
since f1 preserves downward closure, there must exists d′ as above. Thus all
parents are represented in X. Finally, suppose there is (z, e1, e2) ∈ x such
that e1 ≍ f1(d) or e2 ≍ f2(d). If (z, e1, e2) ∈ X, then (z, e1, e2) = f(d′)
for some d′ < d. So that e1 = f1(d

′), and e2 = f2(d
′). Since f1, f2 reflect

reflexive conflict, we would have d′ ⌣ d, contradiction. Otherwise there must
be f(d′) ∈ X such that (z, e1, e2) < f(d′). Since f preserves downward closure
on elements of height less or equal than n, there must be d′′ < d′ such that
f(d′′) = (z, e1, e2). As above we conclude d′′ ⌣ d, contradiction.

Thus putting f(d) = (x, f1(d), f2(d)), we have that f is well defined on d.
Moreover

• f(d) is uniquely defined: suppose we have another possible x. Since f must
preserve downward closure, for all e ∈ x, we have that e = f(d′) for some
d′ < d. Now, suppose there is an element f(d′) ∈ X which is not in x. W.l.o.g
assume that f1(d

′) ∈ parents(f1(d)). Then, there must be an element e′ =
(y, f1(d

′), d′
2) maximal in x. By the observation above it must be e′ = f(d′),

contradiction.
• f preserves downward closure: take d, and consider e ≤ f(d). By construc-

tion, either e ∈ X, in which case we have e = f(d′) for some d′ < d, of
e ≤ e′ ∈ X, in which case we have e′ = f(d′) for d′ < d. Since, by induction
f preserves downward closure, we have e = f(d′′) for d′′ < d′ < d.

• f reflects reflexive conflict: suppose (x, f1(d), f2(d)) ≍ (x′, f1(d
′), f2(d

′)),
then
· either f1(d) ≍ f1(d

′) or f2(d) ≍ f2(d
′). In either case, since f1, f2 reflects

reflexive conflict, we have d ≍ d′.
· there exists (x′′, e1, e2) ≤ (x′, f1(d

′), f2(d
′), such that f1(d) ≍ e1 or f2(d) ≍

e2. Since f preserves downward closure, we have (x′′, e1, e2) = f(d′′) for
some d′′ < d′ and we reason as above.

· the symmetric case is similar
· there exists (y, e1, e2) ≤ (x, f1(d), f2(d)) and there exists

(y′, e′1, e
′
2) ≤ (x′, f1(d

′), f2(d
′)), and the reasoning is as above, using that

f preserves downward closure.
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Thus f is a morphism, is uniquely defined for every d ∈ D, and commutes
with the projections. This concludes the proof.

A.3 Proof of Proposition 4.1

Consider a minimal element of [[Γ1]].

• If it synchronises, by the condition on the definition of Γ1 ⊙ Γ2, it must
synchronise with a dual minimal element in [[Γ2]]. Every event above these
two events is either a τ , or it is not allowed, therefore it is deleted by the
restriction.

• If it does not synchronise it is left alone, with all above it not synchronising
either, and not being restricted.

Thus we can think of [[Γ1⊙Γ2]], as a disjoint union of [[Γ1]] and [[Γ2]], plus some
hiding.

A.4 Proof of Lemma 4.3

Suppose E ⊲ Γ, witnessed by a morphism f : E → [[Γ]].

• Let e, e′ ∈ E be such that λ(e) = λ(e′) 6= τ . Therefore, by uniqueness of the
labels in [[Γ]], f(e) = f(e′), and since f reflects reflexive conflict, we have
e ⌣ e′.

• A similar reasoning applies for the case when λ(e) = aini(x̃) and λ(e′) =
ainj(ỹ). Then f(e), f(e′) belong to the same cell, and thus they are in
conflict. Since f reflects conflict, we have e ⌣ e′.

• Suppose E ⊲ Γ, and let e, e′ ∈ E be such that e ⌣µ e′. Then they belong to
the same cell, and by definition they must have same subject but different
branch.

A.5 Proof of Theorem 4.4

Define Γ = Γ1 ⊙Γ2 Suppose E1 ⊲Γ1, and E2 ⊲Γ2. Let E = (E1‖E2) \Dis(Γ). We
invite the reader to review the definition of the product of event structures,
and the consequent definition of parallel composition.

Lemma A.1 Let (x, e1, e2), (y, d1, d2) be two events in E . Suppose (x, e1, e2) ⌣
(y, d1, d2). Then there exists (x′, e′1, e

′
2) ≤ x, (y′, d′

1, d
′
2) ≤ y such that either

e′1 ⌣µ d′
1 or d′

1 ⌣µ d′
2.
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We check this by cases, on the definition of conflict.

• e1 ⌣ d1. In this case there must exists e′1 ≤ e1 and e′2 ≤ e2 such that
e′1 ⌣µ e′2. Since projection are morphisms of event structures, and since in
particular preserve configurations, for every event f below e1 there must be
an event in E below (x, e1, e2) that is projected onto f . And similar for d1.
Therefore there are (x′, e′1, e

′
2) ∈ x, (y′, d′

1, d
′
2) ∈ y for some x′, y′, e′2, d

′
2. Note

also that (x′, e′1, e
′
2) ⌣ (y′, d′

1, d
′
2).

• e2 ⌣ d2 is symmetric.
• e1 = d1 and e2 6= d2. This is the crucial case, where we use the typing. In

this case it is not possible that e2 = ∗ and d2 6= ∗ (nor symmetrically).
This is because of the typing. If the label dual of e1 is not in Γ2 then both
e2, d2 = ∗. If the label dual of e1 is in Γ2, then the label of e1 is matched
and thus it becomes disallowed, so that the event (x, e1, ∗) is removed. So
both e2 and d2 have the same label (the dual of the label of e1). Thus they
are mapped on the same event in [[Γ2]], and thus they must be in conflict.
Then we reason as above.

• e2 = d2 and e1 6= d1 is symmetric.
• e1 = d1 and e2 = d2. Then the conclusion follow from stability (Lemma 3.6).
• suppose there exists (x̄, ē1, ē2 ∈ x such that ē1 ≍ d1 or ē2 ≍ d2. Then

we reason as above to find (x′, e′1, e
′
2) ∈ x̄, (y′, d′

1, d
′
2) ∈ y such that either

e′1 ⌣µ d′
1 or d′

1 ⌣µ d′
2. Note that, by transitivity, (x′, e′1, e

′
2) ∈ x.

• the symmetric case is analogous.
• Suppose there is e ∈ x, and d ∈ y such that e ⌣ d. By wellfoundedness this

case can be reduce to one of the previous ones.

Lemma A.2 If (x, e1, e2) ≍µ (y, d1, d2), then their labels have the same sub-
ject, but different branch and different confidential names.

By Lemma A.1, either e1 ≍µ d1 or e2 ≍µ d2 (or both). In the first case, the
labels of e1, d1 have the same subject. Thus the labels of (x, e1, e2), (y, d1, d2)
also have the same subject (whether they are synchronisation labels or not).
The second case is symmetric.

Lemma A.3 If (x, e1, e2) ≍µ (y, d1, d2), then x = y

First suppose e2 = d2 = ∗. Then e1 ≍µ d1. Dually when e1 = d1 = ∗. Finally,
suppose e1, d1, e2, d2 6= ∗. Without loss of generality we have e1 ≍µ d1. But
then e2 ≍ d2, because they have dual labels. Then it must be e2 ≍µ d2 because
otherwise we would not have (x, e1, e2) ≍µ (y, d1, d2).

In all cases we have that (x, d1, d2) ∈ E. Indeed it satisfies the condition for
being in the product (because parents(e1) = parents(d1) and parents(e2) =
parents(d2)), and it is allowed if and only if (x, e1, e2) is allowed. Suppose
x 6= y. By stability we have that there are e′ ∈ x, d′ ∈ y such that e′ ⌣ d′.
Which contradicts (x, e1, e2) ≍µ (y, d1, d2).
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Lemma A.4 The relation ≍µ is transitive in E .

Suppose (x, e1, e2) ≍µ (y, d1, d2), and (y, d1, d2) ≍µ (z, g1, g2), Then reasoning
as above we have that e1 ≍µ d1 ≍µ g1 and e2 ≍µ d2 ≍µ g2. Which implies
e1 ≍µ g1 and e2 ≍µ g2, from which we derive (x, e1, e2) ≍µ (z, g1, g2).

Lemmas A.3, and A.4 together prove that E is confusion free.

To prove that E ⊲ Γ, suppose f1 : E1 → [[Γ1]] and f2 : E2 → [[Γ2]]. Recall that
[[Γ]] = ([[Γ1]]‖[[Γ2]]) \ (Dis(Γ) ∪ τ ). As we observed we can think of [[Γ]] as the
disjoint union of [[Γ1]] and [[Γ2]], plus some hiding.

We define the following partial function f : E → [[Γ]]. f(x, e1, ∗) = f1(e1),
f(x, ∗, e2) = f2(e2) (where by equality we mean weak equality), and undefined
otherwise. We have to check that f satisfies the conditions required. The first
two conditions are a consequence of (the proof) of the first part of the theorem.
It remains to show that f is a morphism of event structures. This follows from
general principles, but we repeat the proof here.

We have to check that if d ≤ f(x, e1, e2) in [[Γ]], then there exists (y, d1, d2)
in E such that f(y, d1, d2) = d. Without loss of generality, we assume e2 = ∗,
so that f(x, e1, e2) = f1(e1). Let d ≤ f1(e1). Since f1 is a morphism, then
there is d1 ≤ e1 such that f1(d1) = d. Since projections are morphisms, there
must be a (y, d1, d2) ≤ (x, e1, e2). I claim that d2 must be equal to ∗, so that
f(y, d1, d2) = f1(d1) = d. If d2 were not ∗, then its label would be dual to label
of d1. This means that both labels are in Dis(Γ), and that no event in [[Γ]],
and in particular the d, can be labelled by either of them. This contradicts
f1(d1) = d.

Then we have to check that f reflects ≍. So, suppose f(x, e1, e2) ≍ f(x′, e′1, e
′
2).

By the structure of [[Γ]] it cannot be that f(x, e1, ∗) ≍ f(x′, ∗, e′2), because
they are mapped to disjoint concurrent components. Therefore, w.l.o.g, the
only case to consider is f(x, e1, ∗) ≍ f(x′, e′1, ∗). This means f1(e1) ≍ f1(e

′
1).

Since f1 is a morphism, then e1 ≍ e′1, which implies (x, e1, ∗) ≍ (x′, e′1, ∗).

A.6 Proof of Proposition 5.1

By a straightforward case analysis.
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A.7 Proof of Theorem 6.1

The proof is by induction on the semantics. All the cases are easily done
directly, with the exception of the parallel composition. The case of the parallel
composition is a direct consequence of Theorem 4.4.

A.8 Proof of Theorem 6.7

The proof is by induction on the rules of the operational semantics. All cases
are rather straightforward, except the parallel composition. For this we need
the following lemma. To avoid distinguishing different cases, lets say that, for
every event structure E , we have E

∗
−→E⌊∗ = E .

Lemma A.5 Let ∼= denote isomorphism of event structures. We have that

E1
α

−→E1⌊e1, and E2
β

−→E2⌊e2 if and only if E1‖E2
α•β
−→E1‖E2⌊(∅, e1, e2). More-

over, in such a case, we have E1‖E2⌊(∅, e1, e2) ∼= (E1⌊e1)‖(E2⌊e2).

The first part of theorem is straightforward: if e1, e2 are minimal in E1, E2,
then (∅, e1, e2) is a minimal event in E1‖E2, and vice versa. Assuming this is
the case, we are now going to prove that E1‖E2⌊(∅, e1, e2) ∼= (E1⌊e1)‖(E2⌊e2).
We will define a bijective function f : E1‖E2⌊(∅, e1, e2) → (E1⌊e1)‖(E2⌊e2), such
that both f and f−1 are morphism of event structure. We define f by induction
on the height of the events. Also by induction we show the properties required.
That is we prove that

• for every n, f is bijective on elements of height n;
• f preserves and reflects the conflict relation;
• f preserves and reflects the order relation;
• Π1 ◦ f = Π1 and Π2 ◦ f = Π2, where Π1, Π2 denote the projections in the

parallel composition.

In particular. the above properties imply that both f , and f−1 are morphisms
of event structure. The preservation of the labels follows from the last point,
noting that the labels of an event in the product depend only on the labels of
the projected events.

Base: height = 0
Events of height 0 in E1‖E2⌊(∅, e1, e2) are of two forms:

• the form (∅, d1, d2), with d1 minimal in E1 and d2 minimal in E2 (when
different from ∗) 2 . In such a case we define f(∅, d1, d2) = (∅, d1, d2).

2 We omit this remark in the following: it will be considered implicit throughout.
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• the form ((∅, e1, e2), d1, d2), with e1 ≤ d1 and d2 minimal in E2, or e2 ≤ d2

and d1 minimal in E1, or both e1 ≤ d1, e2 ≤ d2. In such a case we define
f(∅, d1, d2) = (∅, d1, d2).

Note that from the discussion above, it follows that the events (∅, d1, d2) and
((∅, e1, e2), d1, d2) cannot be both in E1‖E2⌊(∅, e1, e2). We prove that f is well
defined on events of height 0. Consider d = (∅, d1, d2). Then both d1, d2 are
minimal in E1, E2 respectively. Also it is not the case that d1 ≍ e1, nor d2 ≍ e2,
as otherwise we would have (∅, d1, d2) ≍ (∅, e1, e2). This means that d1, d2

belong to E1⌊e1, E2⌊e2 and are minimal there. So that f(d) = (∅, d1, d2) ∈
(E1⌊e1)‖(E2⌊e2). A similar reasoning applies when d = ((∅, e1, e2), d1, d2). Now
we prove

• f is bijective on events of height 0; it is surjective: take an event (∅, d1, d2)
in (E1⌊e1)‖(E2⌊e2). There are several cases. If both d1 is minimal in E1 and
d2 is minimal in E2, and it is not the case that e1 ≍ d1 nor e2 ≍ d2, then
(∅, d1, d2) ∈ E1‖E2⌊(∅, e1, e2). Similarly, in the other cases, it is easy to see
that ((∅, e1, e2), d1, d2) ∈ E1‖E2⌊(∅, e1, e2). Also f is injective. The only thing
to check is that (∅, d1, d2) and ((∅, e1, e2), d1, d2) cannot be both events in
E1‖E2⌊(∅, e1, e2), which, as we have observed, is the case.

• f preserves and reflects conflict on events of height 0. This is easily veri-
fied by checking all the cases of definition of conflict. Note that it cannot
be the case that (∅, d1, d2) ≍ (∅, e1, e2), as such events do not belong to
E1‖E2⌊(∅, e1, e2).

• f preserves and reflects order on events of height 0, trivially.
• Π1 ◦ f = Π1 and Π2 ◦ f = Π2, by definition.

Step: height = n + 1
We assume that f is defined for all events of height ≤ n, and that it satis-
fies the required properties there. On events of height n + 1, we define f as
follows. f(x, d1, d2) = (f(x), d1, d2). We prove that f is well defined. Note
that in order to show that (f(x), d1, d2) is an event, we only use proper-
ties of Π1(f(x)) and Π2(f(x)), by induction hypothesis they coincide with
Π1(x), Π2(x) respectively. We consider one case, the others being similar. Sup-
pose d1 ∈ E1, d2 ∈ E2. Then let y be the set of maximal elements of x.
Since f preserves and reflects order, we have that f(y) is the set of maxi-
mal elements of f(x). Let y1 = Π1(y), y2 = Π2(y). Note that we also have
y1 = Π1(f(y)), y2 = Π2(f(y)). Since (x, d1, d2) is an event, we have

• if (z, d1, d2) ∈ y, then either d1 ∈ parents(e1) ord2 ∈ parents(e2);
• for all d1 ∈ parents(e1), there exists (z, d1, d2) ∈ x;
• for all d2 ∈ parents(e2) there exists (z, d1, d2) ∈ x.
• for no d1 ∈ Π1(x), d1 ≍ e1 and for no d2 ∈ Π2(x), d2 ≍ e2.

These conditions, show that (f(x), d1, d2) is also an event.
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We now prove that

• f is bijective on event of height n+1. First, if (x, d1, d2) is of height n+1, so
is (f(x), d1, d2), because by induction hypothesis, f is bijective on events of
height n, so that x contains one such event if and only if f(x) does. To prove
that f is surjective, consider now an event (y, d1, d2) ∈ (E1⌊e1)‖(E2⌊e2).
Since f is biejctive on events of height ≤ n, we have that there exists x
such that y = f(x), and moreover since f preserves and reflects order and
conflict, x is a configuration if and only if f(x) is. We have to argue that
if (f(x), d1, d2) is an event of (E1⌊e1‖E2⌊e2) then (x, d1, d2) is an event of
E1‖E2⌊(∅, e1, e2). This is done in a similar way than the base case. To prove
that f is injective, consider (x, d1, d2), (x

′, d1, d2), such that f(x) = f(x′).
By induction hypothesis f is injective, so that x = x′ and we are done.

• f preserves and reflects conflict. This is done as in the base case.
• f preserves and reflects order. In fact by definition d ∈ x if and only if

f(d) ∈ f(x), which is precisely what we need.
• Π1 ◦ f = Π1 and Π2 ◦ f = Π2, by definition.

This concludes the proof.

A.9 Proof of Lemma 7.1

Given a NCCS type σ, we define its erasure er(σ) to be the π type obtained
from σ by removing all confidential names. It is a partial function defined as
follows

• er(y1 : σ1, . . . , yn : σn) = er(σ1), . . . , er(σn)
• er(

�
i∈I Γi) = (

�
i∈I er(Γi))

↓

• er(
⊕

i∈I Γi) = (
⊕

i∈I er(Γi))
↑

• er(
⊗

i∈I Γi) = (er(Γ))! if for all i ∈ I, er(Γi) = er(Γ).
• er(

⊎
i∈I Γi) = (er(Γ))? if for all i ∈ I, er(Γi) = er(Γ).

• er(l) =l

We have the following lemma.

Lemma A.6 Suppose er(σ) = er(τ), and suppose σ, τ have disjoint sets of
names. Suppose for every type of the form

⊗
k∈K Γk, the set K is infinite.

Then there is a renaming ρ, such that match[τ, σ[ρ]] → S and if res[τ, σ[ρ]] =
⊗

k∈K Γk, then K is infinite.

By induction on the structure of the types.

We want to prove that for every judgement P ⊲Γ, there exists a choice function
ρ and an environment ∆, such that {{P ⊲Γ}}ρ⊲∆. We will prove it by induction
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on the typing rules. However we need a stronger statement for the induction to
go through. We prove that a ∆ exists such that it has the following properties

• if ∆(x) = τ , then Γ(x) = er(τ)
• if Γ(x) = τ , then there exists τ ′ such that ∆(x) = τ ′ and er(τ ′) = τ .
• for every type of the form

⊗
k∈K Γk, the set K is infinite.

Finally we prove that if {{P ⊲ Γ}}ρ ⊲ ∆, then for every fresh renaming ρ′,
{{P ⊲ Γ}}ρ′◦ρ ⊲ ∆[ρ′].

The proof is trivial for Zero, WeakCl, WeakOut, Res, LIn, LOut, Rout. For
Rin, one has just to take care to choose K to be infinite. For the parallel
composition, assume {{P1 ⊲ Γ1}}ρ1 ⊲ ∆1 and {{P2 ⊲ Γ2}}ρ2 ⊲ ∆2. First rename all
the variables in ∆1, ∆2, so that they are disjoint. In this way we can substitute
a name of ∆1 for a name in ∆2, and ∆2 would still be well formed.

Then consider a judgement a : τ in Γ1 such that there is a matching judgement
a : σ in Γ2. Consider the type τ ′ such that a : τ ′ is in ∆1. Since er(τ) = er(τ ′),
by Lemma A.6 we find a ρa such that match[τ, σ[ρa]] → S. For every matching
name, we obtain such a renaming. All renamings can be joined to obtain a fresh
injective renaming ρ, because no name is involved in two different renamings.
Therefore ∆1 ⊙ ∆2[ρ] is defined.

A.10 Proof of Theorem 7.2

The proof is by structural induction on P ⊲ Γ.

All the cases are rather easy, taking into account that π-calculus terms can
perform any fresh α-variant of an action.

For the parallel composition, one has to notice that names that are closed after
the transition in the π-calculus are closed before the transition in NCCS.

A.11 Proof of Theorem 7.3

One direction of the proof (soundness) is easy and it is left to the reader.

To prove full abstraction we define a relation as follows (we omit the environ-
ments for simplicity): ({{P}}ρ, {{Q}}ρ′) ∈ R if and only if P ≈ Q.

We want to prove it is a bisimulation. Suppose {{P}}ρ β
−→R. Then P

β
−→P ′

and R = {{P ′}}ρ\obj(β). Since P ≈ Q, then Q
β

−→Q′ with P ′ ≈ Q′. Then there
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exists ρ′′ such that {{Q}}ρ′′ β
−→{{Q′}}ρ′′\obj(β). The choice function ρ′′ can be

obtained from ρ′ via a bijection of names ρ′′′ (note that the cardinality of the

Ks is always the same). Then we can write {{Q}}ρ′[ρ′′′]
β

−→{{Q′}}ρ′′\obj(β). We
conlcude by noting that ({{P ′}}ρ\obj(β), {{Q′}}ρ′′\obj(β)) ∈ R.
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[23] Paul-André Melliès. Asynchronous games 4: A fully complete model of
propositional linear logic. In Proceedings of 20th LICS, pages 386–395, 2005.

[24] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[25] Robin Milner. Communicating and Mobile Systems: The Pi Calculus.
Cambridge University Press, 1999.

[26] Ugo Montanari and Marco Pistore. Concurrent semantics for the π-calculus.
Electr. Notes Theor. Comput. Sci., 1, 1995.

[27] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event
structures and domains, part I. Theoretical Computer Science, 13(1):85–108,
1981.

49



[28] Grzegorz Rozenberg and Joost Engelfriet. Elementary net systems. In Dagstuhl

Lecturs on Petri Nets, volume 1491 of LNCS, pages 12–121. Springer, 1996.

[29] Grzegorz Rozenberg and P.S. Thiagarajan. Petri nets: Basic notions, structure,
behaviour. In Current Trends in Concurrency, volume 224 of LNCS, pages
585–668. Springer, 1986.

[30] Davide Sangiorgi. π-calculus, internal mobility and agent passing calculi.
Theoretical Computer Science, 167(2):235–271, 1996.

[31] Daniele Varacca, Hagen Völzer, and Glynn Winskel. Probabilistic event
structures and domains. In Proceedings of 15th CONCUR, volume 3170 of
LNCS, pages 481–496. Springer, 2004. A full version appeared in TCS, 358(2-
3):173–199, 2006.

[32] Daniele Varacca and Nobuko Yoshida. Typed event structures and the π-
calculus. In Proceedings of XXII MFPS, ENTCS, 2006.

[33] Vasco Vasconcelos. Typed concurrent objects. In Proc. ECOOP’94, volume 821
of Lecture Notes in Computer Science, pages 100–117. Springer, 1994.

[34] Glynn Winskel. Events in Computation. Ph.D. thesis, Dept. of Computer
Science, University of Edinburgh, 1980.

[35] Glynn Winskel. Event structure semantics for CCS and related languages. In
Proceedings of 9th ICALP, volume 140 of LNCS, pages 561–576. Springer, 1982.

[36] Glynn Winskel. Event structures. In Advances in Petri Nets 1986, Part

II; Proceedings of an Advanced Course, volume 255 of LNCS, pages 325–392.
Springer, 1987.

[37] Glynn Winskel. Name generation and linearity. In Proceedings of 20th LICS,
pages 301–310. IEEE Computer Society, 2005.

[38] Glynn Winskel. Relations in concurrency. In Proceedings of 20th LICS, pages
2–11. IEEE Computer Society, 2005.

[39] Glynn Winskel and Mogens Nielsen. Models for concurrency. In Handbook of

logic in Computer Science, volume 4. Clarendon Press, 1995.

[40] Nobuko Yoshida. Type-based liveness guarantee in the presence of
nontermination and nondeterminism. Technical Report 2002-20, MCS Technical
Report, University of Leicester, 2002.

[41] Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong Normalisation in
the π-Calculus. In Proceedings of LICS’01, pages 311–322. IEEE, 2001. The
full version in Journal of Inf. & Comp.., 191 (2004) 145–202, Elsevier.

50


	Introduction
	A linear version of the -calculus
	Syntax and reduction
	Types and typings
	A typed labelled transition relation

	Event structures
	Basic definitions
	Conflict free and confusion free event structures
	A category of event structures
	Operators on event structures
	The parallel composition
	Examples of event structures

	Typed event structures
	Types and environments
	Semantic of types
	Typing event structures
	Examples

	Name sharing CCS
	Syntax
	Typing rules
	Typed semantics

	Event structure semantics of Name Sharing CCS
	Semantics of nondeterministic NCCS
	Semantics of deterministic NCCS
	Semantics of simple NCCS
	Correspondence between the semantics

	Correspondence between the calculi
	Translation
	Full abstraction
	Event structure semantics of the -calculus

	Conclusions and related work
	Future work
	Related work

	Appendix: Proofs
	Proof of Lemma 3.6
	Proof of Theorem 3.7
	Proof of Proposition 4.1
	Proof of Lemma 4.3
	Proof of Theorem 4.4
	Proof of Proposition 5.1
	Proof of Theorem 6.1
	Proof of Theorem 6.7
	Proof of Lemma 7.1
	Proof of Theorem 7.2
	Proof of Theorem 7.3

	References

