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What these notes are

These notes were written to accompany a minicourse given in November 2004
at the IT University of Copenhagen, in the context of the FIRST PhD school.
They can be used as a quick introduction to the topic by a reader knowledgeable
in concurrency theory.

What these notes are not

These notes are not meant to be complete in any way, and they are indeed quite
sketchy. I wanted to stay within a reasonable size, and many issues are not even
mentioned. An interested reader should follow the bibliographic links. The
reader should also be warned that the names and the notation I have chosen
are not always universally accepted.
If you find any mistakes, or have any suggestions for improvement, please send
me a mail at varacca@brics.dk.
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1 Introduction and motivations

Mathematics seems complicated, but the real world is much more. That is why
we study mathematical models rather than the real world. Different models of
computation focus on different aspects of computation: the aspects that interest
us. Some models focus on sequential computation, some on security properties,
some on algorithmic issues, and so on. In this course we focus on two aspects
of the notion of computation: probability and concurrency.

A model of computation is probabilistic when it is able to represent different
choices and to provide information on the probability of such choices. It differs
from deterministic models, where no choice is represented, and from nondeter-
ministic models, where different choices are represented, but no information is
provided on how such choices are resolved.

Probabilistic choice can be considered as a refined version of nondetermin-
istic choice. When different behaviours are available, we might decide to make
a choice randomly in order to mislead some kind of “adversary”. This adver-
sary could be the one that finds the worst case for an algorithm, could be an
eavesdropper, or could be a scheduling policy that maintains an undesirable
symmetry. Alternatively, we might know some information on how the choice
is made by the environment. In both cases we can tell with which probability
each possible action is performed.

There are several algorithms which take advantage of random choices during
the computation (e.g.[Rab80]). Cryptographic protocols use random choices to
increase security [GM84]. In a distributed setting, we can use random choices
to break symmetries [Lyn96, HP00]. On the other hand probabilistic models
allow us to consider phenomena (noise, malfunction, intrusion) which in the
real world can affect computations. (Probability theory is also a fundamental
ingredient in the theory of quantum computation [NC00].)

A model of computation is a model for concurrency when it is able to rep-
resent systems as composed of independent autonomous components, possibly
communicating with each other. The notion of concurrency should not be con-
fused with the notion of parallelism. Parallel computations usually involve a
central control which distributes the work among several processors. In con-
currency we stress the independence of the components, and the fact the they
communicate with each other. Parallelism is like ancient Egypt, where the
Pharaoh decides and the slaves work. Concurrency is like modern Italy, where
everybody does what they want, and all use mobile phones.

Mobility is a special case of concurrency, where the topology of the commu-
nication network is not fixed once for ever. In models for mobility, processes
can create, pass and destroy communication links. An excellent introduction on
these issues can be found in Milner’s book [Mil99].

There are several models for concurrency, and in this course we will assume
familiarity with one of them, namely labelled transition systems. For an overview
of models for concurrency we refer to the Handbook chapter [WN95]. Also,
we will assume that the reader is familiar with the notion of bisimulation, see
[Mil99].
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Probability is introduced in models for concurrency in essentially two ways.
In the first kind of models, when a computation can perform different conflicting
actions, the model provides a probability distribution over such actions. We call
these models probabilistic. In the second kind of models, actions are assigned a
duration. The length of the duration of an action is determined by a random
variable. When a computation can perform different conflicting actions, the
fastest is performed. We call these models stochastic. The theory of stochastic
models is closer to the classic theory of stochastic processes, than the theory of
probabilistic models is.

This minicourse will concentrate on probabilistic models.

2 Basic notions of probability

2.1 Measure spaces

Probability theory requires that we give probabilities to events. The probability
of several mutually exclusive events should be the sum of the probabilities of the
individual events. Also the total probability should sum up to 1. This brings
about a difficulty that we are now going to explain.

Consider the set [0,+∞] of the extended nonnegative real numbers. Addition
and multiplication are extended to [0,+∞] by

+∞+ x = +∞; +∞ · x =

{
+∞ if x > 0;
0 if x = 0.

Let X be a set and let f : X → [0,+∞]. For every Y ⊆ X we define

f [Y ] :=
∑

y∈Y
f(y) := sup

Z⊆finY

∑

z∈Z
f(z) .

If X is a set of events, and if f assigns probabilities to the events in X, the
number f [Y ] represents the probability of the totality of events in Y . The
difficulty we mentioned above is expressed by the following proposition.

Proposition 2.1. Let f : X → [0,+∞] be a function, and let Y := {x ∈
X | f(x) > 0} be the set of elements on which f is strictly positive (the support
of f). If f [Y ] < +∞ then Y is at most countable.

Proof: For every n ∈ N consider the set Yn := {y ∈ Y | f(y) ≥ 1
n}. Clearly

|Yn| ≤ n · f [Y ], that is Yn is finite. Notice that Y =
⋃
n∈N Yn. Since the

countable union of finite sets is at most countable, Y is at most countable. �

This means that we cannot assign positive probabilities to uncountably many
events, because the total sum would not be 1. However we often have to deal
with uncountable spaces (like the real line for example, or the euclidean 3-
dimensional space). To deal with such cases the notions of measurable space
and of measure were introduced.
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A σ-algebra on a set Ω is a family of subsets of X which is closed under
countable union and complementation and which contains ∅. The intersection of
an arbitrary family of σ-algebras is again a σ-algebra. In particular if S ⊆ P(Ω),
and Ξ := {F | F is a σ-algebra & S ⊆ F} is the family of all σ-algebras that
contain S, then

⋂
Ξ is again a σ-algebra and it belongs to Ξ. We call

⋂
Ξ the

smallest σ-algebra containing S.
If S is a topology, the smallest σ-algebra containing S is called the Borel σ-

algebra of the topology. Note that although a topology is closed under arbitrary
union, its Borel σ-algebra need not be. A measure space is a pair (Ω,F) where
F is a σ-algebra on Ω. Sets in F are called F-measurable, or simply measurable.
A measure space is discrete if F = P(Ω).

A measure on a σ-algebra F is a function ν : F → [0,+∞] satisfying:

• (Strictness)
ν(∅) = 0;

• (Countable additivity) if (An)n∈N is a countable family of pairwise disjoint
sets of F , then
ν(
⋃
n∈NAn) =

∑
n∈N ν(An) .

Finite additivity follows by putting An = ∅ for all but finitely many n. A mea-
sure is called a probability measure, when ν(Ω) = 1. It is called a subprobability
measure, when ν(Ω) ≤ 1. (Sub)probability measures over a discrete space are
sometimes called (sub)probability distributions.

σ-algebras represent the sets over which it makes sense to give a notion
of probability. Often, if we require the measure to satisfy some reasonable
conditions, not all subsets of Ω can be made measurable.

Example: consider [0, 1] with the euclidean topology. Define that the mea-
sure of every open interval is its length. This can be extended to a probability
measure on the Borel σ-algebra. It is called the Lebesgue measure.

Another example: consider any set X and a countable subset X0 ⊆ X.
Define a function f : X0 → [0, 1] such that f [X0] = 1. Then the function
ν(Y ) = f [Y ∩ X0] is a discrete probability measure on X. The points of X0

are the points where the “mass is concentrated”. A special example are the
measures where the mass is concentrated in only one point. These measures are
called Dirac measures.

2.2 Markov chains

Markov chains are the simplest example of the notion of stochastic process. To
introduce more general concepts we would need the introduction of the notion
of random variable. This is not necessary in order to introduce Markov chains.

A (discrete, homogeneous) Markov chain is a pair 〈X, p〉, where X is a set
(the state space) and p : X × X → [0, 1] is a “stochastic matrix” that is for
every x ∈ X ∑

y∈X
p(x, y) = 1 .
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A Markov chain represents a process that changes state at every unit of time.
The number p(x, y) represents the probability that, given the fact that the
process is now in state x, at the next unit of time it will be in state y.

x0

1− ε

ε

2/3

1/3

1

1/2 1/2

Figure 1: A Markov chain

The main feature of Markov chains is that the probability of the next state
depends only on the present state, and it does not depend on the history of the
process. “Given the present, the future is independent from the past”: this is
sometimes called a Markov property, or memorylessness. In the more general
stochastic processes, the probability of the next state is allowed to depend on
the history of the process, but these “memoryful” processes cannot be simply
expressed using a stochastic matrix.

Markov chains can also be represented in the following way. Given a set X,
let V 1

∞(X) be the set of discrete probability distributions over X.1 A stochastic
matrix can be then seen as a function

p : X → V 1
∞(X) .

This representation is suitable to be generalised as we will see later.
We can endow a Markov chain with an initial state x0. A path of such

initialised Markov chain is a (finite of infinite) sequence of states x0x1x2x3....
The probability of a finite path is the product of all the p(xn, xn+1). We could
define a probability on infinite paths as well, but in general every single infinite
path will have probability 0. Therefore it is more interesting to define a measure
space on the set Ω of infinite paths.

Let τ be a finite path. The shadow K(τ) is the set of all infinite paths
that extend τ . We define F to be the σ-algebra generated by the shadows of
finite paths. Using standard measure theory results, one can show that there

1See the introduction of [Var03] if you want to know the reason of this notation
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Shadow of τ

τ

Ω

Figure 2: The set of paths

exists a unique probability measure ν on F such that for every finite path τ ,
the probability of τ as described above coincides with ν(K(τ)).

Now any reasonable event that can be described in words defines a set of F
and it can be assigned a probability.

Example: random walk. The state space is Z, the set of positive and negative
integers. The stochastic matrix is given by p(n,m) = 1/2 if m = n + 1 or
m = n − 1, and p(n,m) = 0 otherwise. Let’s also put 0 as the initial state.
Paths are constituted by sequences numbers. We can restrict our attention to
sequences of adjacent numbers, as every other path has probability 0.

What is the probability that an infinite path hits 0 infinitely many times?
It can be shown that the set of paths for which 0 appears infinitely often is
measurable, and that its measure is 1.

3 Probabilistic LTSs

We give a uniform presentation of probabilistic models. This section is based
on [BSdV03].

Let P(X) represent the powerset of X, while by V (X) we will denote the set
of discrete subprobability distributions. 2 Note the difference with the previous
section, where we only consider probability distributions. We don’t always need
this extra generality, but it helps giving an homogeneous presentation. The
missing probability is usually interpreted as the probability of blocking.

We saw that a Markov chain can be seen as a function

X → V (X) .

2It should be V ≤1
∞ (X) to be precise.
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We will present all our probabilistic models in a similar way, following what it is
called the “coalgebraic approach” . This name comes from the fact that in cat-
egory theory, objects of the form X → F (X) for some endofunctor F are called
coalgebras. We will not enter in any detail of the category theory underlying
this approach. It is worth mentioning, though, that coalgebras are equipped
with a natural notion of bisimulation. Presenting models in a coalgebraic way
induces automatically a definition of bisimulation.

Labelled transition systems (LTS) can also be presented coalgebraically. Let
A be a set of labels. Then an LTS with labels A is given by a set of states X and
a transition relation t ⊆ X × A ×X. The transition relation can alternatively
be seen as a function

t : X ×A→ P(X) ,

which can also be written (by “currying”) as

t : X → (A→ P(X)) .

In this way the LTS is seen as a process that, when it is in a state x, and after
receiving in input a label a, nondeterministically chooses to enter in one of the
states in t(x)(a). This is the reactive view of an LTS. Deterministic automata
are a special case, where the transition function is in fact: t : X → (A→ X) .

We can also write the transition as a function

t : X → P(A×X) .

In this way the LTS is seen as a process that, when it is in a state x, nonde-
terministically outputs a label and enters in a new state. This is the generative
view of an LTS.

The above discussion shows that in a LTS the notion of input and output
are not defined. This is reflected in process languages like CCS, where the
synchronization is completely symmetric, and the distinction between the roles
of emitter and receiver is irrelevant.

Let us now substitute nondeterministic choice with probabilistic choice. This
amounts to writing V in place of P. The first probabilistic model we obtain is
given by a set of states X together with a transition function

t : X → (A→ V (X)) .

This model represents a process that, when it is in a state x, and after receiving
in input a label a, enters the state y with probability t(x)(a)(y). We call such
a model a reactive (probabilistic) LTS. They are also known as labelled Markov
processes (and in fact they are called in many other ways!).

The second probabilistic model is given by a set of states X together with a
transition function

t : X → V (A×X) .

This model represents a process that, when it is in a state x, emits the label
a and enters the state y with probability t(x)(a, y). We call such a model
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a generative (probabilistic) LTS. Unlike the nondeterministic case, generative
LTSs and reactive LTSs are not two aspects of the same notion. In both cases
the transition function can be seen as a function t : X × A×X → [0, 1] but in
a generative LTS we have that for every x ∈ X

∑

a∈A,y∈X
t(x, a, y) ≤ 1 ,

while in a reactive LTS we have that for every x ∈ X and for every a ∈ A
∑

y∈X
t(x, a, y) ≤ 1 .

In probabilistic systems it is important to know who is outputting and who is
inputting.

But this is not the whole story. The next probabilistic model we present is
given by a set of states X together with a transition function

t : X → (A→ P(V (X))) .

This model represents a process that, when it is in a state x, and after receiving
a label a, nondeterministically chooses a probability distribution ν in t(x)(a)
and then enters in state y with probability ν(y). We call this model a simple
Segala automaton. (This model, or slight variations of it, is known under very
many other different names.) Reactive systems are a special case of simple
Segala automata, where for every x and a the set t(x)(a) is a singleton.

Note that in Segala automata, the symmetry is regained. In fact, a Segala
automaton in the “reactive” form as above is equivalent to a more “generative”
version where the transition function is of the form

t : X → P(A× V (X)) .

This can be seen as a process that nondeterministically chooses a label and
a probability distribution over next states. We can generalise even more the
model to obtain the generalised Segala automaton. This is given by a set of
states X together with a transition function

t : X → P(V (A×X)) .

This can be seen as a process that nondeterministically chooses a probability
distribution over labels and next states. The combination of probability and
nondeterminism is an important factor. For example it is essential in order to
give a semantics to the probabilistic π calculus.

4 Reactive systems

Recall that a reactive system S is a pair 〈X, t : X → (A→ V (X))〉. To simplify
the the notation we consider the transition function as t : A → (X → V (X))

9



and we denote t(a) as ta. For every x ∈ X, a ∈ A, ta(x) is a subprobability
distribution over X. The most important instances are probability distributions
(ta(x)[X] = 1) and “null functions” (ta(x)[X] = 0). In the second case we say
that the label a is not enabled at x.

A reactive system is initialised when an initial state x0 is specified.

beer

1/3

2/3

1/3

x0

2/3

2E 20DKr

1 1

coffe

Figure 3: A reactive vending machine

Figure 3 represents a reactive vending machine that is more likely to give
you beer if you use Danish Kroner. In the picture, if a label a does not appear
in any edge with source x, it means that a is not enabled at x.

4.1 Bisimulation and logic

The main equivalence relation on reactive LTSs is that of bisimilarity, defined
by means of the notion of bisimulation.

A bisimulation between two reactive systems S, S ′ is an equivalence relation
R on X∪X ′ such that whenever xRx′, for every equivalence class C of X∪X ′/R
and for every label a:

ta(x)[C] = t′a(x′)[C] .

Two states are bisimlar when there is a bisimulation relating them. Two ini-
tialised processes are bisimlar when their initial states are.

Roughly speaking, two states are bisimilar when for every label, the corre-
sponding probabilities of reaching bisimilar states are the same.

We can characterise bisimilarity using a logic, that we call the Larsen-Skou
logic. This logic is a generalisation of the Hennessy-Milner logic that charac-
terises bisimilarity for nonprobabilistic LTSs.

The formulas of the Larsen-Skou logic are as follows:

ϕ ::= T | ϕ1 ∧ ϕ2 | ¬ϕ | 〈a〉qϕ
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The semantics of the formulas is given in terms of a satisfaction relation

x �S ϕ

Where x is a state of the reactive system S. The semantic of the boolean
combinators is obvious. To express the semantics of the “modal” operator, let
[[ϕ]]S denote the set of states of S that satisfy the formula ϕ. Then we say that

x �S 〈a〉qϕ

whenever
ta(x)[[ϕ]]S > q .

The Hennessy-Milner logic is a special case, where simply q = 0 in every
formula. In the nonprobabilistic case, two processes are bisimilar if and only if
they satisfy the same formulas of the Hennessy-Milner logic. Similarly to the
nonprobabilistic case we have the following result:

Theorem 4.1. Two states of a reactive system are bisimilar if and only if they
satisfy the same formulas of the Larsen-Skou logic.

The interesting part is that this result is still true for a logic without negation.
The proof involves the use of uncountable spaces, and measure theory. This fact
is very important, so we stress it

Theorem 4.2. Two states of a reactive system are bisimilar if and only if they
satisfy the same formulas of the Larsen-Skou logic without negation.

4.2 Approximate bisimulation and metrics

Bisimulation is a very fine equivalence. A slight difference in the probability
distributions makes two processes non bisimilar. However precise numbers in
this framework make little sense: they should be intended as estimates. Real
numbers can never be exactly computed anyway.

These considerations suggest the use of a more flexible notion than the one
of exact equivalence: approximate equivalence. The formal way to define this is
via the notion of metrics.

A metrics on a set X is a function specifying, for every pair of elements of
X, their relative distance. It has to satisfy some reasonable axioms that we are
now going to present.

A pseudo-metrics on a set X is a function d : X × X → [0,+∞] which
satisfies:

• d(x, x) = 0 (reflexivity)

• d(x, y) = d(y, x) (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) (triangular inequality)
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If the pseudo-metrics satisfies also d(x, y) = 0 =⇒ x = y then it is called a
metrics.

Given a pseudo-metrics d, we can define an equivalence relation R by saying
that (x, y) ∈ R if d(x, y) = 0 — if they live in the same “place”.3 The aim is
to define a pseudo-metrics between (states of) processes, with the property the
d(x, y) = 0 exactly when x and y are probabilistically bisimilar.

To define this distance we use the logics. Formulas before were valued in
{0, 1} (either they are satisfied or they aren’t). We will now make them take
values in [0, 1]. The new formulas are interpreted as functions f : X → [0, 1].
They are as follows

f ::= 1 | 1− f | min(f1, f2) | sup
i∈I

fi

f � q | 〈a〉f

Given a reactive system S = 〈X, t : A × X → V (X)〉, and fixed a constant
0 < c < 1, these expressions define functions X → [0, 1] as follows:

• 1(x) = 1;

• f � q(x) = max(f(x)− q, 0);

• 〈a〉f(x) = c
∑
y∈X ta(x)(y)f(y);

while min, sup, and 1− f are defined in the obvious way.
The constant c discounts the future behaviour. The distance between two

states is defined as the “Kantorowich” metrics:

d(x, y) = sup
f
|f(x)− f(y)|

It can be proved that this function d is a pseudo-metrics on the set of states,
and that d(x, y) = 0 if and only if x, y are bisimilar.

The modal operator of the Larsen-Skou logic is split here into two parts: we
have a translation ϕ 7→ f such that

x �S ϕ⇔ f(x) > 0

with 〈a〉qϕ 7→ 〈a〉f � q.
Given this translation, and the logical characterisation of bisimilarity given

above, it is intuitive (although not automatic) that d(x, y) = 0 if and only if x
and y are bisimilar.

The exact value of the distance depends on the constant c. However the
constant c is not important in the sense that different choices for it produce the
same topology (in fact the same “uniformity”). Roughly speaking they define
the same notion of “being closer”: the inequality d(x, y) ≤ d(x′, y′) does not
depend on c.

3Like Qfwfq, de XueaeuX and Mrs. Ph(i)nk0 - Italo Calvino, “All at one point”, from the
collection “Cosmicomics”, 1965.
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This distance compares the initial behaviours of systems. If two systems
differ at the beginning, they are far apart. It is possible to define a distance
that compares the eventual infinite behaviour, in such a way that systems that
are very different at the start, can be very close to each other at the limit.

Other metrics, and other notions of approximate bisimilarity are defined in
the literature.

5 Generative systems

An (initialised) generative probabilistic LTS is constituted by 〈X,x0, t : X →
V (A×X)〉, where x0 is the initial state.

Generative systems were used to give semantics to a language called “prob-
abilistic synchronous CCS”. Given a set of atomic actions Atom, its syntax is
the following

P ::= a.P | P +p Q | P ×Q | recXP | X
where a ∈ Atom. The operational semantics is given in terms of generative
systems on the set of labels A = Atom∗, the finite strings of actions in Atom.

a.P
a

1
// P

P
σ

q
// P ′

P +p Q
σ

pq
// P ′

Q
σ

q
// Q′

P +p Q
σ

q(1−p)
// Q′

P
σ

p
// P ′ Q

τ

q
// Q′

P ×Q στ

pq
// P ′ ×Q′

and the standard rule for recursion.
It is not difficult to prove that the above rules produce a generative system.

By imposing commutativity of the composition in Atom∗, we can also make the
operator × commutative.

6 Segala automata

Segala automata were introduced by Segala in is PhD thesis [Seg95] under the
supervision on Nancy Lynch. A recent presentation in [Sto02]. Similar models
can be found elsewhere, see the bibliographic section.
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6.1 Notation

A generalised Segala automaton is given by a set of states X together with a
transition function

t : X → P(V (A×X)) .

Simple Segala automata are a special case, where every (sub)probability
distribution concerns only one label, so that the transition function can be seen
as

t : X → P(A× V (X)) .

Sometimes a special blocking state ⊥ is chosen so that the transition function
is in fact

t : X → P(A× (V (X) ∪ {⊥}) .
Initialised automata are automata with a special initial state x0.

In the following, for simplicity we will consider only automata without block-
ing state, and only subprobability distributions that are in fact probability dis-
tributions.

The notation we use comes from [HP00]. Consider a transition function t.
Whenever a probability distribution ν belongs to t(x) for a state x ∈ X we will
write

x{ ai

pi
// xi}i∈I

where xi ∈ X, i 6= j =⇒ (ai, xi) 6= (aj , xj), and ν(ai, xi) = pi.
A good way of visualising probabilistic automata is by using alternating

graphs [Han91], see Figure 4. Black nodes represent states, hollow nodes repre-
sent probability distributions.

c b

a

aba

1/2 1/2
1/3 2/3 1− ε

ε

Figure 4: A Segala automaton
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ac
a

ε

1− ε

Figure 5: A simple Segala automaton

In a simple Segala automaton we can move the labels to the arcs outgoing
a black node, see Figure 5.

An important notion that we will need is that of (extended) convex combi-
nation of (sub)probability distributions.

Given a set of probability distributions D on a set X, we define the set D
to be the set of probability distributions ν on X such that there exist νi ∈ D
and pi ∈ [0, 1], for i ∈ I satisfying:

• ∑i∈I pi = 1;

• for all x ∈ X, ν(x) =
∑
i∈I piνi(x).

A convex combination of probability distributions represents, in some sense,
a probability distribution over probability distributions. To excite the curios-
ity of the reader I can say that this corresponds to the multiplication of the
probabilistic monad. See [Var03] for more details.

6.2 Paths and schedulers

A finite path of an (intialised) Segala automaton is an element in (X × V (X ×
A) × A)∗X, written as x0ν1a1x1 . . . νnanxn. An infinite path is defined in a
similar way as an element of (X × V (X ×A)×A)ω. The path is deterministic
if νi+1 ∈ t(xi). It is probabilistic if νi+1 ∈ t(xi).

The probability of a path τ := x0ν1a1x1 . . . νnanxn is defined as

Π(τ) =
∏

1≤i≤n
νi(aixi) .
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The last state of a finite path τ is denoted by l(τ). A path τ is maximal if
it is infinite or if t(l(τ)) = ∅.

A probabilistic scheduler for a probabilistic automaton with transition func-
tion t is a partial function S : (X × V (X × A) × A)∗X → V (X × A) such
that

• if t(l(τ)) 6= ∅ then S(τ) is defined;

• S(τ) ∈ t(l(τ)).

Equivalently, a probabilistic scheduler can be defined as a partial function S :
(X × V (X × A)× A)∗X → V (V (X × A)), requiring that S(τ)(ν) > 0 =⇒ ν ∈
t(l(τ)).

A deterministic scheduler is a probabilistic scheduler that does not make
use of the convex combinations. That is for a deterministic scheduler we have
S(τ) ∈ t(l(τ)).

A deterministic scheduler chooses the next probability distribution, knowing
the history of the process. Using the representation with alternating graphs, we
can say that, for every path ending in a black node, a scheduler chooses one
of his hollow sons. A probabilistic scheduler chooses a convex combination of
distributions, which corresponds to putting a probability distribution over prob-
ability distributions. Schedulers can also decide to ignore the history, in such
a case we talk of memoryless schedulers. For every black node,a deterministic
memoryless scheduler chooses one of his hollow sons.

Now, given an (initial) state x0 ∈ X and a scheduler S for t, we consider
the set B(t, x0,S) of maximal paths, obtained from t by the action of S. Those
are the paths x0ν1a1x1 . . . νnanxn such that νi+1 = S(x0ν1a1x1 . . . νiaixi). A
deterministic scheduler produces deterministic paths, a probabilistic scheduler
produces probabilistic paths.

The set B(t, x0,S) of maximal paths obtained by a scheduler S is endowed
with the σ-algebra generated by finite paths, in the similar way as seen for
Markov chains. Let X := {K(τ) | τ finite} be the set of shadows of finite paths,
let F be the smallest σ-algebra containing X . Let v : X → [0, 1] be defined
as v(K(τ)) := Π(τ). It can be proved that v extends to a unique probability
measure ν on F .

If we are interested in the labels only, we can remove states and distributions
from the paths and get a probability measure over the set of sequences Aω. This
procedure is more easily understood when applied to finite paths.

The finite paths semantics is given in terms of “probabilistic languages”:
given an alphabet A, a probabilistic word of length n over A is a probability
distribution over strings in An. A probabilistic language is a set of probabilistic
words. Given a length n, a scheduler S for a Segala automaton t produces
a probabilistic word of length n as follows. Consider the paths in B(t, x0,S)
that have length n with their probability. Let erase(τ) be the string in An

obtained from τ by erasing states and probability distributions. Given such a
string ρ ∈ An, its probability is the sum of the probabilities of the paths that
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produce it.

Π(ρ) :=
∑

erase(τ)=ρ

Π(τ)

This induces a probabilistic word. Given a class of schedulers for the automaton,
its language is the set of probabilistic words obtained by the schedulers in the
class.

6.3 A verification logic

The logic PCTL has the following syntax. It’s divided in path formulas and
state formulas.

State formulas ϕ ::= > | ¬ϕ | ϕ ∧ ϕ | 〈a〉 | α
∃>pψ | ∀>pψ

Path formulas ψ ::= Xϕ | ϕUϕ

The semantics of the formulas is the following (consider only simple Segala
automata for simplicity). For state formulas we define a satisfaction semantics

x � ϕ

where x is a state of the automaton. We have

x � 〈a〉

if x{ a

pi
// xi}i∈I . More generally we can have “atomic” propositions α such

that the set of states x for which

x � α

is assigned in some way, which is not relevant here (α can represent “internal”
properties of a state).

For path formulas we define
τ � ψ

where τ is a path of the automaton. Suppose τ = x0ν1a1x1 . . . νnanxn, then we
have that

τ � Xϕ
if x1 � ϕ. We have

τ � ϕ1Uϕ2

if there is i such that xi � ϕ2 and for all j < i, xj � ϕ1. So far the semantics
is very similar to the classic semantics of CTL. Now for the two “probabilistic”
operators, we have that

x � ∃>pψ
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if there exists a scheduler S for t, x such that the set of paths τ ∈ B(t, x0,S)
such that τ � ψ has measure > p. Dually

x � ∀>pψ

if for all schedulers S for t, x the set of paths τ ∈ B(t, x0,S) such that τ � ψ
has measure > p. Of course, in order for this definition to make sense, one has
to check first that the sets described above are measureable. This is indeed the
case.

PCTL is used in probabilistic verification. This involves several algorithmic
issues that are beyond the scope of this course.

7 Probabilistic π calculus

This section is taken from [HP00]. We assume the reader is familiar with the
π-calculus [Mil99].

The probabilistic asynchronous π-calculus has the following syntax:

Prefixes α ::= x(y) | τ
Processes P ::= 0 | x̄y |

∑

i

piαi.Pi | P‖P | νxP | X | recXP

Similarly to the asynchronous π-calculus, output actions x̄y cannot have a con-
tinuation. This represents the asynchrony of messages: the sender does not wait
for the message to be received.

The difference with usual π-calculus is that the nondeterministic sum is
replaced by the probabilistic sum

∑
i piαi.Pi, where pi > 0 and

∑
i pi = 1.

The semantic of π can be given in terms of generalised Segala automata over
labels of the form

λ ::= x(y) | x̄y | νyx̄y | τ
where x(y) represents input of a name y along channel x, x̄y represents output
of the name y along channel x, νyx̄y represents output of a fresh name, and τ
represents a silent action. (For the details of the labelled transition semantics
of π, ask your nearest π-calculus guru.)

SUM
∑
i piαi.Pi{

αi

pi
// Pi}i

OUT x̄y{ x̄y

1
// 0}

OPEN
P{ x̄y

1
// P ′}

νyP{ νyx̄y

1
// P ′}

x 6= y
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PAR
P{ λi

pi
// Pi}i

P‖Q{ λi

pi
// Pi‖Q}i

RES
P{ λi

pi
// Pi}i

νyP{ λi

p′i

// νyPi}i:y 6∈fn(λi)

Where p′i is a probability, renormalised over the set of labels whose free names
are not restricted4

p′i =
pi∑

j:y 6∈fn(λj)
pj

Then we have the two communication rules. In order to introduce them, we
need the notation

{ λi

pi
// Pi}i∈I ⊕ {

λj

pj
// Pj}j∈J

which represents

{ λi

pk
// Pk}k∈I]J

where I ] J denotes the disjoint union.

COM
P{ x̄y

1
// P ′} Q{ λi

pi
// Qi}i

P‖Q{ τ

pi
// P ′‖Qi[y/zi]}i:λi=x(zi) ⊕ {

λi

pi
// P ′‖Qi}i:λi 6=x(zi)

CLOSE
P{ νyx̄y

1
// P ′} Q{ λi

pi
// Qi}i

P‖Q{ τ

pi
// νy(P ′‖Qi[y/zi])}i:λi=x(zi) ⊕ {

λi

pi
// P ′‖Qi}i:λi 6=x(zi)

The two rules differ only in whether the communicated name is fresh or not.
This issue is inherited from the π calculus. The intuitive behaviour expressed
by this rule is the following: when P and Q decide to synchronise on x, such
synchronisation happens “maximally”, that is for every input action of Q whose
subject channel is x. If Q is listening over other channels, or doing other τ tran-
sitions, those actions are not affected. The last rule are the standard congruence
rule, where the structural congruence ≡ is defined as in the π-calculus (so as to
make parallel composition commutative, for instance)

CONG
P ≡ P ′ P ′{ λi

pi
// Q′i}i Qi ≡ Q′i

P{ λi

pi
// Qi}i

and the standard rule for recursion.
4A name is not free only if it is the object on an input or of a fresh output.
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8 Event structures

A different approach to concurrency is represented by the so called causal mod-
els, where information of causality and concurrency is recorded. One of such
models is the one we present here.

An event structure is a triple E = 〈E,≤,#〉 such that

• E is a countable set of events;

• 〈E,≤〉 is a partial order, called the causal order, such that for every e ∈ E,
the set of events ↓ e is finite;

• # is an irreflexive and symmetric relation, called the conflict relation,
satisfying the following: for every e1, e2, e3 ∈ E if e1 ≤ e2 and e1#e3 then
e2#e3.

We say that the conflict e2#e3 is inherited from the conflict e1#e3, when e1 <
e2. Causal dependence and conflict are mutually exclusive. If two events are
not causally dependent nor in conflict they are said to be concurrent.

A configuration x of an event structure E is a conflict-free downward closed
subset of E, i.e., a subset x of E satisfying (1) whenever e ∈ x and e′ ≤ e
then e′ ∈ x and (2) for every e, e′ ∈ x, it is not the case that e#e′. Therefore,
two events of a configuration are either causally dependent or concurrent, i.e., a
configuration represents a run of an event structure where events are partially
ordered. The set of configurations of E , partially ordered by inclusion, is denoted
as L(E). The set of finite configurations is written by Lfin(E). We denote the
empty configuration by ⊥. If x is a configuration and e is an event such that
e 6∈ x and x ∪ {e} is a configuration, then we say that e is enabled at x. Two
configurations x, x′ are said to be compatible if x ∪ x′ is a configuration. For
every event e of an event structure E , we define [e] := ↓ e, and [e) := [e] \ {e}.
It is easy to see that both [e] and [e) are configurations for every event e and
that therefore any event e is enabled at [e).

We say that events e1 and e2 are in immediate conflict, and write e1#µe2

when e1#e2 and both [e1)∪ [e2] and [e1]∪ [e2) are configurations. Note that the
immediate conflict relation is symmetric. It is also easy to see that a conflict
e1#e2 is immediate if and only if there is a configuration where both e1 and e2

are enabled. Every conflict is either immediate or inherited from an immediate
conflict.

8.1 Confusion-free event structures

The most intuitive way to add probability to an event structure is to identify
“probabilistic events”, such as coin flips, where probability is associated locally.
A probabilistic event can be thought of as probability distribution over a cell,
that is, a set of events (the outcomes) that are pairwise in immediate conflict
and that have the same set of causal predecessors. The latter implies that all
outcomes are enabled at the same configurations, which allows us to say that
the probabilistic event is either enabled or not enabled at a configuration.
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Definition 8.1. A partial cell is a non-empty set c of events such that e, e′ ∈ c
implies e#µe

′ and [e) = [e′). A maximal partial cell is called a cell.

We will now restrict our attention to event structures where each immediate
conflict is resolved through some probabilistic event. That is, we assume that
cells are closed under immediate conflict. This implies that cells are pairwise
disjoint.

Definition 8.2. An event structure is confusion-free if its cells are closed under
immediate conflict.

If this is the case, cells are the equivalence classes of the reflexive closure
of immediate conflict. In a confusion-free event structure, if an event e ∈ c is
enabled at a configuration x, all the events of c are enabled as well.

Once an event structure is confusion-free, we can associate a probability
distribution with each cell. Intuitively it is as if we have a die local to each cell,
determining the probability with which the events at that cell occur.

Recall that when f : X → [0,+∞] is a function, for every Y ⊆ X, we define
f [Y ] :=

∑
x∈Y f(x).

Definition 8.3. A cell valuation on a confusion-free event structure 〈E,≤,#〉
is a function p : E → [0, 1] such that for every cell c, we have p[c] = 1. A
probabilistic event structure is an event structure together with a cell valuation.

Assuming probabilistic independence of all probabilistic events, every finite
configuration can be given a “probability” which is obtained as the product of
probabilities of its constituent events. This gives us a weight function Lfin(E)→
[0, 1] defined by v(x) = Πe∈xp(e). This weight function defines a probability
measure on the set of maximal configurations Ω(L(E)):

For every finite configuration x the set K(x) := ↑x ∩ Ω(L(E)) is called the
shadow of x. We shall consider the σ-algebra S on generated by the shadows of
the compact elements.

Theorem 8.4. Let v be weighting function as defined above. Then there is a
unique probability measure µ on S such that for every finite configuration x,
µ(K(x)) = v(x).

Independence of cells means the following: let µ be a probability measure
on S that is generated by a cell valuation. Then every two configurations are
probabilistically independent given the common past

Theorem 8.5. let µ be a probability measure on S that is generated by a cell
valuation. Then for every two finite compatible configurations x, y

µ
(
K(x) ∩K(y) | K(x ∩ y)

)
= µ

(
K(x) | K(x ∩ y)

)
· µ
(
K(y) | K(x ∩ y)

)
.

(The statement of this theorem requires some more probability theory than
that we have presented. Exercise: understand it!)

What is the meaning of lack of independence? Read [VVW04] :-)
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8.2 Finite runs

What is the probabilistic version of finite configurations? If probabilistic words
are probability distributions over words, probabilistic finite configurations should
be probability distribution over finite configurations. But which sets are suit-
able to be the support of such distribution? In the case of Segala automata, the
sets of runs of the same length do the job. For event structures this won’t do.

To see why consider the event structure with only two concurrent events
a, b. The only maximal run assigns probability 1 to the maximal configuration
{a, b}. This corresponds to a configuration valuation which assigns 1 to both
{a} and {b}. Now these are two configurations of the same size, but their
common “probability” is equal to 2. Not a probability! The reason is that the
two configurations are compatible: they do not represent alternative choices.
We therefore need to represent alternative choices, and we need to represent
them all. This leads us to the following definition.

Definition 8.6. Let E be an event structure. A partial test of E is a set C of
pairwise incompatible configurations of E . A test is a maximal partial test. A
test is finitary if all its elements are finite.

Maximality of a partial test C can be characterised equivalently as complete-
ness: for every maximal configuration z, there exists x ∈ C such that x ⊆ z.
The set of tests is naturally endowed with the Egli-Milner order: C ≤ C ′ if and
only if

• for every x ∈ C there exists x′ ∈ C ′ such that x ⊆ x′;
• for every x′ ∈ C ′ there exists x ∈ C such that x ⊆ x′.
Tests were designed to support probability distributions. They indeed do,

as the following result shows.

Definition 8.7. Let v be a function Lfin(E) → [0, 1]. Then v is called a test
valuation if for all finitary tests C we have v[C] = 1.

Theorem 8.8. Let v be a weighting function generated by a cell valuation.
Then v is a test valuation.

8.3 A process language

Confusion-freeness is a strong requirement. But it is still possible to give a
semantics to a fairly rich language for probabilistic processes in terms of proba-
bilistic event structures with independence. The language we sketch is a prob-
abilistic version of value passing CCS.

Assume a set of channels A, and a set of values V that can be communicated
over any channel a ∈ A. The syntax of processes is given by:

P ::= 0 |
∑

v∈V
a!(pv, v).Pv | a?(x).P | P1‖P2 |

if b then P1 else P2 | X | recXP
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Here x ranges over value variables and b over boolean expressions (which make
use of values and value variables). The coefficients pv are real numbers such
that

∑
v∈V pv = 1.

A closed process denotes a probabilistic event structure with an additional
labelling function from events to output labels a!v, input labels a?v where a is
a channel and v a value, or τ . We sketch the probabilistic semantics in terms of
the non probabilistic semantics of CCS. (See e.g. the handbook chapter [WN95]
for an explanation of the event structure semantics of CCS.)

The nil process 0 denotes the empty probabilistic event structure. A closed
output process

∑
v∈V a!(pv, v).Pv outputs a value v on a channel a with proba-

bility pv, and then continues as the process Pv. Each Pv, for v ∈ V , will denote
a labelled probabilistic event structure E [[Pv]]. The event structure denoted by∑
v∈V a!(pv, v).Pv is the juxtaposition of the family of prefixed event structures

a!v.E [[Pv]] ,

with v ∈ V , in which the additional prefixing events labelled a!v are put in
(immediate) conflict; the new prefixing events labelled a!v are then assigned
probabilities pv.

A closed input process a?(x).P inputs a value v on channel a and resumes as
the closed process P [v/x]. Such a process P [v/x] denotes a labelled probabilistic
event structure E [[P [v/x]]]. The event structure of the input process is got as
the parallel juxtaposition of the family of prefixed event structures

a?v.E [[P [v/x]]] ,

with v ∈ V ; each new prefixing event labelled a?v is then assigned probability
1.

The probabilistic parallel composition corresponds to the usual CCS parallel
composition followed by restricting away on all channels used for communica-
tion. In order for the parallel composition P1‖P2 to be well formed the set of
input channels of P1 and P2 must be disjoint, as must be their output channels.
So, for instance, it is not possible to form the parallel composition

∑

v∈V
a!(pv, v).0‖a?(x).P1‖a?(x).P2 .

In this way we ensure that no confusion is introduced through synchronisation.
The parallel composition of the corresponding probabilistic event structures

s got by CCS parallel composition followed by restricting away events in a set
S:

(E1 ‖E2) \ S
where S consists of all labels a!v, a?v for which a!v appears in E1 and a?v in E2,
or vice versa. In this way any communication between E1 and E2 is forced when
possible. The newly introduced τ -events, corresponding to a synchronisation
between an a!v-event with probability pv and an a?v-event with probability 1,
are assigned probability pv.
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A closed conditional (if b then P1 else P2) has the denotation of P1 when
b is true and of P2 when b is false.

The recursive definition of probabilistic event structures follows that of event
structures [Win87] carrying the extra probabilities along, though care must be
taken to ensure that a confusion-free event structure results.

9 Exercises

Questions (Q) and Exercises (E). Exercises can be used for evaluation, questions
are more something one asks oneself.

9.1 Section 1

(Q) Why is the study of semantic models relevant?
(Q) We said that algorithms can use random choices. Human beings can flip a
coin to obtain a random bit. How do computers do?
(Q) What is the difference between “probabilistic” models, and “stochastic”
models. Which ones are the more general?

9.2 Section 2

(Q) What does it mean “to pick a natural number at random”? What it’s the
probability that this number is 42?

Consider the Lebesgue probability measure on [0, 1].
(E) Fact: not all subsets of [0, 1] are Borel. Use this fact to prove that the Borel
σ-algebra is not closed under arbitrary union.
(E) What is the probability that a real number picked at random in [0, 1] is
rational? Does this question make sense?
(E**) What is the probability that a real number picked at random in [0, 1]
does not contain the digit 5 in the decimal expansion? Does this question make
sense?
(E***) Show a set which is not Borel. (This will require a bibliographic research.
If you come up with a solution without looking it up you are a genius. Hint:
you should use the axiom of choice!)

Consider the random walk on the integers.
(E*) Prove that the set of paths that hit 0 infinitely often is measurable.
(E**) Prove that the set of paths that hit 0 at least once is measurable. What
is its measure? Suppose you know it is 1. Then what is the measure of the set
of paths that hit 0 infinitely often?

9.3 Section 3

(E) In which sense is a generalised Segala automaton the most general model.
Show in which way a generative LTS, a reactive LTS and a simple Segala au-
tomaton can be interpreted as generalised Segala automata.
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(E) Can you interpreted a generative LTS as a simple Segala automaton?
(E) In the definitions of probabilistic LTSs we allow the use of subprobability
distribution instead of just probability distribution. The missing probability
represents the probability of blocking. Suppose we give an alternative definition
where only probability distributions are allowed. Can you simulate subproba-
bilities in this restricted setting?

9.4 Section 4

(E) If in the definition of reactive LTS we only allow probability distributions
(instead of subprobability distributions), then every two processes are bisimlar.
Prove it.
(E) Consider the following reactive LTSs. For every pair of systems, check
whether their initial states are bisimilar. If they are, describe the bisimulation,
if they are not, find a formula of the Larsen-Skou logic that distinguishes them.

beer

1/3

2/3

1/3

x0

2/3

2E 20DKr

1 1

coffe
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coffe

beer

1/3 1/3

2E 20DKr

1 1

1/3

1/3
1/3

1/3

1

x1

coffe

1

beer

1/3 1/3

2E 20DKr

1 1

1/3
1/3

1

2/3

x2

beer

coffe

beer

(E) Consider the following reactive LTSs. For every pair of systems, find a
formula of the Larsen-Skou logic without negation that distinguishes them.
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(E*) Assuming the translation from Larsen-Skou logic to the functional expres-
sions ϕ 7→ f such that

x � ϕ⇔ f(x) > 0

prove that if the distance between two states is 0, then they are bisimlar.

9.5 Section 5

(E) What is “standard rule of recursion”?
(E*) Define the semantics of the parallel composition

P‖pqQ
in probabilistic SCCS

9.6 Section 6

(E) Define a notion of bisimulation for Segala automata. Your definition will be
OK if, when restricted to reactive LTSs it coincides with the bisimulation defined
in Section 4. You may or may not need the notion of convex combination.
(E*) Define formally the notion of memoryless scheduler. Define the notion of
scheduler with finite memory of size n.

9.7 Section 7

(Q) In [HP00] you find an alternative way to defining the rules COM and CLOSE.
Can you think of other ways of defining it? Could we have PAR as special case?
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(Q) Why do we need Segala automata? Try to define a semantics using generatve
or reactive LTS.

9.8 Section 8

(E*) Give a semantics to the probabilistic language of Section 8.3. Would you
rather use generative LTS, reactive LTS or Segala automata?

10 Commented bibliography

For a general introduction on probability theory there are several books, see for
instance [Hal50, Bil95, Wil91]. For an introduction more orientated to random
processes (including Markov chains), see [GS01]. Markov decision process are
also relevant to our topic, see [Put94].

As for applications of probability to computer science, many randomised
distributed algorithms are discussed in [Lyn96]. An important algorithm that
uses probability is the Rabin-Miller primality test [Rab80]. Probability is also
very important in the context of cryptography. A good introduction is [GB99],
an important classic paper is [GM84].

For probability in domain theory, the original paper [JP89] is still a gentle
introduction, see also [AM00, TKP04, Var03].

One of the first probabilistic models for concurrency, the alternating model,
appears in [Var85, Han91]. This is a slight variation of simple Segala automata.
The reactive model was introduced in [LS91], where the notion of probabilistic
bisimulation, and the Larsen-Skou logic are also introduced. The distinction
between “generative” and “reactive” models goes back to [vG+90], where a
semantics of a probabilistic CCS is sketched. The more refined logical charac-
terisation of bisimulation is found in [DEP02]. A notion of metrics is defined in
[D+04]. Another recent paper on the subject is [vB+03], which connects with
domain theory and topology. A different notion of approximate bisimilarity
appears in [DP+04].

Segala automata where introduced in [Seg95], where also a version of the
logic PCTL is considered. A gentle introduction to the subject is [Sto02]. A
semantic in terms of probabilistic words is proposed in [dAHJ01]. Probabilistic
automata are used for the semantics of a probabilistic π-calculus in [HP00]. A
verification tool that uses probabilistic automata is PRISM [KNP02].

A coalgebraic presentation of all the above models, and more, is to be found
in [BSdV03].

Event structures where introduced by Winskel in his PhD thesis. See the
tutorial [Win87] for a good introduction. Probabilistic event structures are
introduced in [VVW04].
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