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Abstract. We propose a definition for the class of all fairness properties
of a given system. We provide independent characterizations in terms
of topology, language theory and game theory. All popular notions of
fairness from the literature satisfy our definition. Moreover our class is
closed under union and countable intersection, and it is, in a sense, the
maximal class having this property. On the way, we characterize a class
of liveness properties, called constructive liveness, which is interesting
by itself because it is also closed under union and countable intersection.
Furthermore, we characterize some subclasses of liveness and fairness
that are closed under arbitrary intersection.

1 Introduction

The distinction of safety and liveness properties, first proposed by Lamport [10]
and later formalized by Lamport [11] and Alpern and Schneider [2], is now well-
established in the specification, analysis, and verification of reactive systems [6].
The main reasons for the success of these concepts is their natural and convincing
intuition, their stringent mathematical formalization, and the fact that every
property can be expressed as the conjunction of a safety and a liveness property
(see [7] for a survey). In particular, it turned out that safety properties are the
closed sets and liveness properties are the dense sets in the natural topology of
runs [2].

The distinction of safety and liveness is also reflected in the operational model
of a reactive system: Some sort of state machine or transition system defines the
set of all possible runs of the system, which is a safety property. In order to
guarantee something to happen at all and to guarantee that some particular
choices will eventually be made, there is an additional liveness property. That
liveness property is usually called the fairness assumption of the reactive system.

Fairness usually means that a particular choice is taken sufficiently often
provided that it is sufficiently often possible [3]. Depending on the interpretation
of “choice”, “sufficiently often”, and “possible”, many different fairness notions
arise (cf. e.g. [13, 4, 8]).

In contrast to safety and liveness properties, there is no satisfactory charac-
terization of fairness. Apt, Francez, and Katz [3] gave some criteria that must
be met by fairness. Following Lamport [12], we think that their most important
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criterion is that a fairness assumption must be machine closed 1 with respect to
(w.r.t.) the safety property defined by the underlying transition system. This,
basically, means that fairness is imposed in such a way to the transition system
that the system ‘cannot paint itself into a corner’ [3]; i. e. whatever the system
does, it is possible to continue in such a way that the fairness assumption is met.
However, machine closedness does not exclude some properties that, we think,
should not be considered to be fairness properties. For example, consider the
two properties:

P1: Transition t is always eventually taken if it is always eventually enabled.
P2: Transition t is eventually henceforth never taken.

While P1 (called strong fairness w.r.t. t) is a typical fairness assumption that
enforces a transition to be taken sufficiently often, P2 rather prevents a particular
choice (transition t) from being taken sufficiently often. P2 is therefore not a
fairness property from our point of view. However, both properties are machine
closed with respect to any safety property2.

Another issue is that fairness should be closed under intersection, i.e., the
intersection of finitely many, or better: countably many, fairness assumptions
should be a fairness assumption. This is because fairness assumptions are usually
imposed stepwise and componentwise, e.g., with respect to a particular process
or with respect to a particular transition. The fairness assumption for the system
is then the intersection of all fairness assumptions for its components.

Machine-closure is not sufficient to guarantee closure under intersection: The
intersection of P1 and P2 is the empty set in some systems, and the empty
set is not machine closed w.r.t. any nonempty safety property. Kwiatkowska [9]
proposes a definition of fairness3 that is closed under countable intersection.
However, many popular fairness notions, such as strong fairness are not covered
by her definition.

We propose a definition of fairness that refines machine-closure and excludes
properties like P2 that prohibits a choice to be taken sufficiently often. We show
that fairness is then closed under union and countable intersection and that
popular fairness notions satisfy our definition. We give independent characteri-
zations in terms of game theory, language theory, and topology. It turns out that
fairness as we define it coincides with the co-meager sets of the natural topology
of runs, a subclass of the dense sets. Co-meager sets are “large”, which in our
context means that they, beside of possibly enforcing some choices, also leave
enough choices.

1 Machine closedness was originally called feasibility. The term machine closedness
was introduced in [1].

2 P1 and P2 also meet the other criteria of Apt, Francez, and Katz [3].
3 Kwiatkowska [9] works on the domain of Mazurkiewicz traces. She defines a fairness
property for a system to be a Gδ set of maximal traces that is machine closed w.r.t.
the safety property of the system.
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2 Preliminaries

Runs. A run is a nonempty finite or infinite sequence over some fixed countable
set Σ of states. Σ+, Σω, and Σ∞ = Σ+ ∪ Σω denote the set of all finite runs,
infinite runs, and of all runs respectively. We will use the symbols α, β for
denoting finite runs, and x, y for infinite runs. The length of a run x is denoted by
|x| (= ω if x is infinite). Concatenation of sequences is denoted by juxtaposition;
v denotes the usual (reflexive) prefix order on sequences. Two runs x and x′ are
compatible, if x v x′ or x′ v x. By x↑ = {y | x v y} and x↓ = {y | y v x} we
denote the set of all extensions and prefixes of a run x respectively. The least
upper bound of a sequence (αi)i=0,1,... of finite runs where αi v αi+1 is denoted
by supi αi. For a run x = s0, s1, . . . and a position i ≥ 0 of x, xi denotes the i-th
prefix s0, . . . , si of x.

Temporal Properties. A temporal property (property for short) is a set E ⊆
Σ∞; E is finitary if E ⊆ Σ+, and infinitary if E ⊆ Σω. Sometimes (e.g. [2,
14]), a temporal property is defined to be a subset of Σω. That results in the
underlying topology having nicer properties4. However, that needs finite runs
to be ruled out a priori or to be mimicked by infinite runs, e.g., by repeating
the last state infinitely often. Moreover, including finite runs gives rise to a more
natural generalization to other domains such as non-sequential runs (cf. Sect. 6).
We say that some run x satisfies a property E if x ∈ E, otherwise we say that x
violates E. A property S is a safety property if for any run x violating S, there
exists a finite prefix α of x that violates S and each extension of a run violating
S violates S as well, i.e.:

∀x 6∈ S : ∃α v x : α↑ ∩ S = ∅.

Note that every safety property is downward-closed, i.e., x ∈ S and y v x implies
y ∈ S. A property E is live in a finite run α if there exists a run x ∈ E such that
α v x. A property E is live (or a liveness property) if E is live in every α ∈ Σ+.
Let S be a safety property. E is live w.r.t. S (or (S,E) is machine closed) if
E ∩ S is live in every α ∈ Σ+ ∩ S.

Σ+ and Σω are simple examples of liveness properties. The empty set ∅ =
Σω ∩Σ+ is not a liveness property, which shows that liveness properties are not
closed under finite intersection. It is easy to see that for a liveness property E,
every property E′ ⊇ E is also a liveness property. No property except Σ∞ is a
safety and a liveness property.

Basic notions from general topology. A topology on a nonempty set Ω is a family
T ⊆ 2Ω that is closed under union and finite intersection such that Ω,∅ ∈ T .
The elements of T are called open sets. The complement of an open set is called
a closed set. The closure of a set X ⊆ Ω, denoted by X, is the smallest closed
set that contains X. A set X is closed if and only if X = X. A set X is dense if
4 The natural topology on Σω is metrizable while the natural topology on Σ∞ does
not satisfy the separation axiom T1.
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X = Ω. A family B ⊆ T is a base for T if every open set G ∈ T is the union
of members of B. A Gδ set is a set that is the intersection of countably many
open sets. Let X ⊆ Ω be a nonempty set. The family TX = {G ∩X | G ∈ T }
is a topology, called the relativization of T to X.

Scott topology. The Scott topology on Σ∞ is the family of sets G such that

∀x ∈ G : ∃α v x : α↑ ⊆ G.

The family {α↑ | α ∈ Σ+} is a basis for the Scott topology. Note that open sets
are generated by finitary properties Q by G = Q↑ =

⋃
α∈Q α↑, i.e., there is an

exact correspondence between open sets and finitary properties. Open sets can
therefore be interpreted as observations that can be recognized in finite time.

It is easy to see that safety properties are exactly the closed sets and that
liveness properties are exactly the dense sets of the Scott topology. It follows that
each property E is the intersection of a safety property and a liveness property
[2], viz. E = E ∩ lex(E) where E is the smallest safety property that contains
E, and lex(E) is the liveness extension of E, defined by

lex(E) = E ∪ ¬E = E ∪
⋃

α↑∩E=∅
α↑.

Temporal operators. Manna and Pnueli [14] define four operators that construct
temporal properties from finitary properties. While they consider only sets E ⊆
Σω as temporal properties, we generalize their operators here to our setting in a
natural way. Let Q be a finitary property. Define A(Q) = {x | ∀i < |x| : xi ∈ Q},
E(Q) = {x | ∃i : xi ∈ Q}, R(Q) = {x | ∀i < |x| : ∃j ≥ i : xj ∈ Q}, and P(Q) =
{x | ∃i : ∀j : i ≤ j < |x| : xj ∈ Q}. Properties of the form A(Q) are exactly
the safety properties. Properties of the form E(Q), R(Q), and P(Q) are called
guarantee, recurrence, and persistence properties respectively. It is easy to see
that guarantee properties are exactly the open sets (whereQ is the corresponding
observation). We have ¬A(Q) = E(¬Q), ¬E(Q) = A(¬Q), ¬R(Q) = P(¬Q),
and ¬P(Q) = R(¬Q) where ¬· denotes the complement w.r.t. the appropriate
universe. Since A(Q) = R(A(Q) ∩ Σ+) and E(Q) = R(E(Q) ∩ Σ+), we have
that each safety property and each guarantee property is a recurrence property.
Similarly, each safety and each guarantee property is also a persistence property.
We will use a simple linear-time temporal logic with the modalities 3 and 2 to be
interpreted on finite and infinite runs in their usual meaning (see Appendix). The
properties 2ϕ, 3ϕ, 23ϕ, and 3 2ϕ are simple examples of safety, guarantee,
recurrence, and persistence properties respectively where ϕ denotes any state
property.

3 Constructive liveness

Fairness is always defined with respect to a particular system, where a system
can be seen as a safety property. In this section, we define fairness with respect
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to the system where every transition is possible at any time, i.e., with respect to
the safety property Σ∞. The generalization to arbitrary safety properties will be
a simple step, which we take in Sect. 4. Fairness properties with respect to Σ∞
are special liveness properties, which we call constructive liveness. Constructive
liveness is interesting by itself because it is closed under union and countable in-
tersection. We give three independent characterizations of constructive liveness:
a game-theoretic, a language-theoretic, and a topological characterization.

3.1 A game-theoretic view

Fairness may enforce that a particular choice is taken sufficiently often while it
must not prevent any other choice from being taken sufficiently often. This can be
formalized by thinking of a party, which we will call the scheduler, that enforces
a choice to be taken sufficiently often while it cannot prevent other choices from
being taken by another party, called the opponent. Fairness properties (or here:
constructive liveness properties) are those properties that can be realized by
the scheduler regardless of the behaviour of the opponent. In detail: We view
runs now as the result of an infinite interaction between the scheduler and the
opponent. The opponent starts by performing a nonempty sequence α0. The
scheduler then appends a finite, possibly empty, sequence of states yielding a
finite run α1 such that α0 v α1. Now it is the turn of the opponent again,
which also appends a finite, possibly empty, sequence and so on. The result of
this interaction is the run x = supi αi. A liveness property is constructive if,
regardless of what the opponent does, the scheduler can guarantee that a run is
obtained that satisfies the property. This game is similar to the Banach-Mazur
game (see [5], cf. Sect. 3.4).

Definition 1. A play on Σ is an infinite sequence of finite runs (αi)i∈N, such
that αi v αi+1. Given a play (αi)i∈N, we say that the scheduler wins the play
for the game with target E ⊆ Σ∞ if supi αi ∈ E. Otherwise the opponent wins.
A strategy (for the scheduler) is a mapping5 f : Σ+ → Σ+ such that α v f(α)
for all α ∈ Σ+. A strategy f is progressive if f(α) 6= α for all α ∈ Σ+. A play
(αi)i∈N is f -compliant if for every i, f(α2i) = α2i+1. A run x is f -compliant if
it is the result of an f -compliant play (αi)i∈N, i.e., x = supi αi. The set of all
f -compliant runs is denoted by Rf . A strategy f is winning for E if Rf ⊆ E.
Note that a finite run α is f -compliant if and only if f(α) = α. Therefore,
all f -compliant runs are infinite if f is progressive. We could indeed restrict to
consider progressive stratiegies, as the following result shows.

Lemma 1. There exists a winning strategy for E if and only if there exists a
progressive winning strategy for E ∩Σω.

Proof. Let f be a winning strategy for E. Let β ∈ Σ+ be any finite run and
define f ′(α) = f(α)β. Then Rf ′ ⊆ Rf ⊆ E. Moreover Rf ′ ⊆ Σω and hence f ′ is
also a winning for E ∩Σω. The converse is trivial.
5 Considering strategies that depend on the full history of the play do not increase
their power in the game considered here.
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However, we will use non-progressive strategies to neatly characterize some in-
teresting subclasses of liveness.

It is easy to see that, for every strategy f , the property Rf is a liveness
property. Therefore, if a target E has a winning strategy, it is a liveness property.
This justifies the following definition.

Definition 2. A property E is called constructive liveness property if there
exists a winning strategy for E.

Corollary 1. A property E is a constructive liveness property if and only if
E ∩Σω is a constructive liveness property.

Corollary 1 is a direct consequence of Lemma 1. We now get:

Proposition 1. The family of constructive liveness properties is closed under
union and countable intersection.

Proof. Closure under union is trivial. Let Ei be a constructive liveness property
and fi a progressive strategy for Ei for each i ∈ N. Define for α ∈ Σ+ with
|α| = k: f(α) = fk(fk−1(. . . f0(α) . . .)). It is straight-forward to check that f is
a winning strategy for

⋂
i∈NEi.

Σω is a constructive liveness property, while Σ+ is a liveness property but
not constructive because the opponent can enforce the outcome of the play to
be infinite. Similarly, the property {αx | α ∈ Σ+} is a liveness property but
not constructive, for any run x. The property 23ϕ is a constructive liveness
property while 3 2ϕ is a liveness property but not constructive—for any non-
trivial state property ϕ. More examples for constructive liveness properties are
2(ϕ⇒ 3ψ), 3 2ϕ⇒ 23ψ, and 23ϕ⇒ 23ψ.

Call a run periodic if it is of the form αβω for α, β ∈ Σ+ and aperiodic
otherwise. The set of aperiodic runs is a constructive liveness property while
the set of periodic runs is a liveness property but not constructive; f defined by
f(α) = αsnr where |α| = n is a winning strategy for aperiodic runs.

3.2 A language-theoretic view

In this section, we study what guarantee, recurrence, and persistence properties
are constructive liveness properties. (Recall that a safety property is a liveness
property only if it equals Σ∞.) Furthermore, we derive an independent charac-
terization of constructive liveness that is based on recurrence properties.

Proposition 2. Let Q be a finitary property.

1. E(Q) is a liveness property if and only if Q is a pseudo-liveness property,
that is, for each α ∈ Σ+ exists an x ∈ Q that is compatible with α.

2. R(Q) is a liveness property if and only if Q is a liveness property.
3. P(Q) is a liveness property if and only if Q is a liveness property.
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It is easy to check that each live guarantee as well as each live recurrence
property is constructive. More precisely, live recurrence properties correspond
to the runs complying with idempotent strategies, i.e., strategies f that satisfy
f(f(α)) = f(α) for all α ∈ Σ+. Live guarantee properties correspond to the
runs complying with stable strategies, i.e., strategies f that satisfy f(α) v β ⇒
f(β) = β for all α, β ∈ Σ+. Each stable strategy is idempotent.

Proposition 3. We have:

1. {E(Q) | Q is a pseudo-liveness property} = {Rf | f is a stable strategy} and
2. {R(Q) | Q is a liveness property} = {Rf | f is an idempotent strategy}.

Proof. See Appendix.

It follows from Prop. 3 that each property that contains a live guarantee
property or a live recurrence property is a constructive liveness property. We
show now that live persistence properties are in general not constructive.

Proposition 4. A live persistence property is constructive if and only if it con-
tains a live guarantee property.

Proof. See Appendix.

We have shown that each property that contains a live recurrence property
is a constructive liveness property. The converse does not hold. However, we can
give a characterization of constructive liveness in terms of recurrence properties
if we restrict ourselves to the infinitary subset of a recurrence property in the
spirit of Corollary 1. Define Rω(Q) = R(Q) ∩ Σω, i.e., Rω(Q) consists of all
runs that have infinitely many prefixes in Q. A property is called infinitary
recurrence property if it is of the form Rω(Q). Infinitary recurrence properties are
closed under countable intersection (and finite union) [14]. In contrast, recurrence
properties are not closed under finite intersection.

Proposition 5. The family of live infinitary recurrence properties is closed un-
der finite union and countable intersection.

This gives rise to the the following characterization of constructive liveness.

Proposition 6. A property is a constructive liveness property if and only if it
contains a live infinitary recurrence property.

Proof. The claim is part of the more general Thm. 1 below.

The property 3ϕ is a live guarantee property, 2 3ϕ is a live recurrence
property and hence, 23ϕ ∩Σω is a live infinitary recurrence property.
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3.3 A topological view

In this section, we characterize constructive liveness in terms of dense Gδ sets. As
we have stated, a dense open set is a live guarantee property. Such a property has
a nice intuition: It requires one finite observation to be made. Often it is natural
to require countably many finite observations to be made. This corresponds to
the intersection of countably many dense open sets, which is a dense Gδ set:

Proposition 7. A property E is a dense Gδ set if and only if it is the intersec-
tion of countably many dense open sets.

Topological spaces that satisfy Prop. 7 are called Baire spaces.

Corollary 2. The family of dense Gδ sets is closed under finite union and
countable intersection.

Each Gδ set E is, like any open set, upward-closed, i.e., x ∈ E and x v y implies
y ∈ E. Recurrence properties are therefore not Gδ sets in general. However, they
are related as follows.

Proposition 8. E is a Gδ set if and only if E = E(Q) ∪ Rω(Q′) for some
finitary Q and Q′.

In particular, each infinitary recurrence property is a Gδ set. Furthermore, lex(E)
is a dense open set if E is open and a dense Gδ set if E is a Gδ set. We define
now two more classes of liveness properties.

Definition 3. A property is an open-liveness property if it contains a dense
open set, i.e., a dense guarantee property. A property is a Gδ-liveness property
if it contains a dense Gδ set.

An open-liveness property is a property satisfying

∀α ∈ Σ+ : ∃β : α v β ∧ β↑ ⊆ E.

Examples of open-liveness properties are 3ϕ ⇒ 3ψ and 23ϕ ⇒ 3ψ if ψ is
nonempty. E is an open-liveness property if and only if E = lex(E(Q)) for some
finitary Q. Due to Prop. 7, a property is a Gδ-liveness property if and only if it
is the intersection of countably many open-liveness properties.

In probability theory, a set is “large” when its measure is 1, that is when its
complement has measure 0. Gδ-liveness properties are not large in this sense of
the word as, even for the most straightforward probability measure, there are
Gδ-liveness properties of measure 0. However, they are “large” in a topological
sense. In a topological space we say that a set is nowhere dense if its closure does
not contain any nonempty open set. A set is meager, if it is the countable union
of nowhere dense sets. The complement of a meager set is called co-meager (or
residual). The class of co-meager sets shares many properties with the class of
sets of measure 1 [15]. Moreover:
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Proposition 9 (E.g. [15], page 41). In a Baire space, a set is co-meager if
and only if it contains a dense Gδ set.

We prove now that our three views on constructive liveness coincide.

Theorem 1. Let E be a temporal property. The following statements are equiv-
alent:

1. E is a constructive liveness property.
2. E contains a dense infinitary recurrence property.
3. E is a Gδ-liveness property.

Proof.

1. ⇒ 2. Let f be a progressive winning strategy for E. It is easy to check that
Rf = R(f(Σ+)) ∩Σω.

2. ⇒ 3. Each infinitary recurrence property is a Gδ set due to Prop. 8.
3. ⇒ 1. Each open-liveness property is constructive (Prop. 3.1). Since construc-

tive liveness is closed under countable intersection, each Gδ-liveness property
is constructive as well.

Fig. 1.a shows the relationships between the subfamilies of constructive liveness.

3.4 A maximality theorem

We would like to argue that constructive liveness is in some sense maximal among
all the subclasses of liveness that are closed under countable intersection. We are
not able to prove such a result. However we are able to prove that it is maximal
if we restrict to determinate sets.

Definition 4. A counter strategy (for the opponent) is a pair g = (α, f) of a
finite run α ∈ Σ+ and a strategy g; g is progressive if f is progressive. A play
(αi)i∈N is g-compliant if α0 = α and for every i, f(α2i+1) = α2i+2. A run x
is said to be g-compliant if it is the result of a g-compliant play (αi)i∈N , i.e.,
x = supi αi. The set of all g-compliant runs is denoted by Rg. A counter strategy
g is winning for target E if Rg ⊆ ¬E. We say that E is determinate if it has
either a winning strategy or a winning counter strategy.

Determinate sets have been extensively studied in the classical theory of
Banach-Mazur games. In the standard definition of Banach-Mazur games, both
players must play progressively and strategies may also depend on the full history
of the previous play. However, in our setting, both definitions characterize the
same class of sets (see [5]). In particular

Proposition 10. E is determinate if and only if E ∩Σω is determinate in the
Banach-Mazur game.
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Using the axiom of choice, it is possible to show the existence of indeterminate
sets. Nevertheless, the class of determinate sets is quite general. For instance,
every Borel set of the natural topology6 on Σ∞ is determinate in the Banach-
Mazur game (see [5]), where the family of Borel sets of a topology is the smallest
family of sets that contains the open sets and is closed under countable union and
complementation. It easily follows from Prop. 10 that each Borel set of the Scott
topology is determinate. In particular, this means that the class of determinate
sets contains all properties that can be expressed by Büchi automata and hence
all properties that can be expressed by common linear-time temporal logics.

We show now the maximality of constructive liveness within the determinate
sets. Note that each constructive liveness property is determinate.

Theorem 2. The family of constructive liveness properties is the largest family
of determinate liveness properties that contains all dense Gδ sets and is closed
under finite intersection.

Proof. Consider a determinate set E that is not a constructive liveness property.
E must therefore have a winning counter strategy g = (α0, f). Note that Rf is a
constructive liveness property. We claim that Rf ∩E is not dense: Consider the
finite run α0. Since g is a winning counter strategy, any extension of α0 into Rf
is in ¬E. Therefore, there is no extension of α0 into Rf ∩ E and hence Rf ∩ E
is not dense. Since Rf is constructive, it contains a dense Gδ set L. It follows
that L ∩ E is not a liveness property. Hence no non-constructive determinate
liveness property can be added to the dense Gδ sets without losing closedness
under finite intersection.

Note that we have a complete proof strategy for showing that a determinate
set is a constructive liveness property or not: Either display a winning strategy
for the scheduler or a winning counter strategy for the opponent.

4 Defining fairness

We consider now an arbitrary system, represented by a safety property S. We
are interested in properties E ⊆ S of the system under consideration. These
properties are equipped with the Scott topology relativized to S. Liveness of a
property F w.r.t. S is exactly density of F ∩ S in the Scott topology relative to
S. We now define fairness properties in S analogously to constructive liveness.
All notions and theorems from Sect. 3 easily carry over to the relativized case.

Definition 5. Let S be a safety property, F a temporal property, and let S> =
{x ∈ S | x↑ ∩ S = {x}} denote the set maximal runs w.r.t. S. A strategy f
is closed in S if α ∈ S ⇒ f(α) ∈ S for all α ∈ Σ+; f is progressive in S if
f(α) = α⇒ α ∈ S>; f is a winning strategy for F in S if f is closed in S and
Rf ∩ S ⊆ F . F is a fairness property for S if there is a winning strategy for
6 This means the Cantor topology on Σω, which coincides with the Scott topology on
Σ∞ relativized to Σω.
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F in S. A fairness notion is a mapping that maps each safety property S to a
fairness property for S.

Clearly, each fairness property for S is live w.r.t. S, moreover:

Theorem 3. The family of fairness properties for S is closed under union and
countable intersection.

Theorem 4. The following statements are equivalent:

1. F is a fairness property for S.
2. There exists a finitary Q such that F ′ = R(Q)∩S> ⊆ F and F ′ is live w.r.t.

S.
3. There exists a Gδ set E such that F ′ = E ∩ S ⊆ F and F ′ is live w.r.t. S.

Note that statement 3 is equivalent with F being co-meager in the Scott topology
relativized to S.

Theorem 5. The family of all fairness properties w.r.t. S is the largest family
of live determinate properties w.r.t. S that contains the live Gδ sets w.r.t. S and
that is is closed under finite intersection.

Note that E is a liveness property does not imply that E is live w.r.t. S, nor
does the converse hold. However for the converse case we have: If E is live w.r.t.
S then E ∪¬S is a liveness property that is live w.r.t. S. Therefore, it is neither
necessary nor wrong to think of fairness properties as liveness properties, i.e.,
we would not gain or lose anything if we additionally required that a fairness
property for S has to be a liveness property.

4.1 Examination of popular fairness notions

We show now that our definition of a fairness covers popular fairness notions in
the literature. To check this, one can use the following. Define lexS(E) to be the
liveness extension of E relative to S by

lexS(E) = E ∪
⋃

α∈S,α↑∩E∩S=∅
α↑.

Proposition 11. If E is recurrence property or an infinitary recurrence prop-
erty then any superset of lexS(E) is a fairness property for S.

Define a transition to be a relation t ⊆ Σ × Σ of states. Let S be a safety
property and x = s0, s1, . . . ∈ S. Transition t is enabled in S at position i of x
if there exists a state s such that xis ∈ S and (si, s) ∈ t; t is taken at position
i if (si, si+1) ∈ t. The following examples of fairness notions can be checked by
using Prop. 11, but it is also easy to define a winning strategy in each case. The
following list cannot be exhaustive due to lack of space. We also omit here the
references to the papers where the fairness notions were introduced.
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1. Maximality w.r.t. a transition t defined as 2(enabledS(t)⇒ ∃t′ : 3 taken(t′))
is a fairness notion.

2. Weak and strong fairness w.r.t. a transition t defined as 3 2 enabledS(t)⇒
23 taken(t) and 23 enabledS(t) ⇒ 23 taken(t) respectively are fairness
notions. Weak and strong fairness w.r.t. words is similar.

3. Let ϕ ⊆ Σ be a state property. Say that ϕ is enabled in S at a position i of
a run x if there is a state s ∈ ϕ such that xis ∈ S. State fairness w.r.t. ϕ
defined as 2 3 enabledS(ϕ)⇒ 23ϕ is a fairness notion.

4. Extreme fairness w.r.t. a transition t and a state property ϕ defined as
23(ϕ ∧ enabledS(t)) ⇒ 23(ϕ ∧ taken(t)) is a fairness notion. The notion
of α-fairness is similar.

5. Say that a transition t is k-enabled in S at position i of x if there is a finite
sequence α with |α| ≤ k such that xiα ∈ S and xiα enables t; k-fairness
w.r.t. t defined as 2 3 enabledS(k, t)⇒ 23 taken(t) is a fairness notion.

6. Say that a transition t is∞-enabled in S at position i of x if there exists a k
such that t is k-enabled at i;∞-fairness w.r.t. t (called hyperfairness in [12])
defined as 23 enabledS(∞, t)⇒ 23 taken(t) equals lexS(23 taken(t)) and
is therefore a fairness notion. Note that ∞-fairness is not the intersection of
all k-fairness for k ∈ N.

7. Unconditional fairness, defined as 23 taken(t) is not a fairness notion be-
cause it is not live w.r.t. all S.

8. Say that a transition t is k-taken at position i of a run x if t is taken at a
position j ≤ i + k in x. The property 2 enabledS(t) ⇒ taken(k, t) is not a
fairness property for any S since it is a safety property and in particular not
live w.r.t. S.

9. Let y ∈ Σ∞. Say that y is enabled in S at a position i of a run x if xiy ∈ S;
it is taken at i if x = xiy. The property 23 enabledS(y) ⇒ 3 taken(y) is
live w.r.t. S but not a fairness property in general. Similarly, lexS(3 2ϕ) is
not a fairness property in general.

10. Finitary fairness w.r.t. a transition t defined as
⋃
k 2(enabledS(t)⇒ taken(k, t))

is live w.r.t. S but not a fairness property. A winning counter strategy is de-
fined by f(α) = αsk where k = |α|, s ∈ Σ. Note that finitary fairness w.r.t. t
is in conflict with the intersection of countably many strong fairness require-
ments (w.r.t. transitions ti, i ∈ N).

5 A complete lattice of liveness properties

The family of fairness properties for a given S and in particular the family of
constructive liveness properties is not closed under arbitrary intersection. In
particular, there is not a strongest fairness property in general.

Proposition 12. Constructive liveness is not closed under arbitrary intersec-
tion.

Proof. The property ¬{x} is a constructive liveness property for each run x.⋂
x∈Σ∞ ¬{x} = ∅ is not a liveness property.
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In this section, we identify a subclass of constructive liveness that is closed
under arbitrary union and intersection, i.e., it forms a complete lattice. Therefore
it possesses a strongest and a weakest property. We develop the theory here
for constructive liveness, the transcription to fairness in the relative case being
straight-forward. That family contains most fairness properties encountered in
practice. We start with the definition of two families of liveness properties which
have been mentioned by Alpern and Schneider [2], where absolute liveness was
introduced earlier by Sistla [16].

Definition 6. A temporal property E is a uniform liveness property if there
exists an x such that αx ∈ E for all α ∈ Σ+. E is an absolute liveness property
if E 6= ∅ and x ∈ E ⇒ αx ∈ E for all α ∈ Σ+.

Each absolute liveness property is a uniform liveness property and each uniform
liveness property is a liveness property. Moreover:

Proposition 13. A property is a uniform liveness property if and only if it
contains an absolute liveness property.

Both properties, 23ϕ and 3 2ϕ are absolute and hence uniform liveness prop-
erties. Absolute and uniform liveness properties are closed under union but not
under finite intersection.

Definition 7. Let E be a temporal property.

1. E is an open-uniform liveness property if there exists a finite run β such
that αβ↑ ⊆ E for all α ∈ Σ+.

2. E is a Gδ-uniform liveness property if it is the intersection of countably
many open-uniform liveness properties.

3. E is a Gδ-absolute liveness property if it is the intersection of countably
many absolute open sets.

Proposition 14.
1. Each open-uniform liveness property is a uniform open-liveness property.
2. Each Gδ-uniform liveness property is a uniform Gδ-liveness property.
3. Each Gδ-absolute liveness property is an absolute Gδ set.

An example of an absolute open set is 3ϕ. The properties 2 3ϕ and 2(ϕ ⇒
3ψ) are Gδ-uniform liveness properties; 3 2ϕ is uniform but not Gδ-uniform.
The converse of Prop. 14.1 and 2 does not hold. Consider, for example, the
property E =

⋂
k∈N(sk ⇒ 3 rk) for s, r ∈ Σ. E is a uniform open-liveness

property, the witness for uniformity being the infinite sequence rω. However, it
is not an open-uniform liveness property.

Proposition 15.
1. A property is an open-uniform liveness property if and only if it contains an

absolute open set.
2. A property is a Gδ-uniform liveness property if and only if it contains a

Gδ-absolute liveness property.
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Fig. 1. Relationships between various subclasses of liveness: An arrow denotes inclu-
sion. L , G, and Rω denote the family of liveness properties, open sets, and infinitary
recurrence properties respectively. LF denotes the family of sets that contain a dense
set from the family F . By A , U , AGδ , UG, and UGδ we denote the absolute, uniform,
Gδ-absolute, open-uniform, and Gδ-uniform liveness properties respectively.

Proposition 16. The family of Gδ-absolute liveness properties is closed under
intersection.

Proof. Consider the property

Ê = {x | ∀α∃β : βα v x} =
⋂

α∈Σ+

E(α) where E(α) = {x | ∃β : βα v x}.

Ê is a Gδ-absolute liveness property because each E(α) is an absolute open set.
Furthermore, each Gδ-absolute liveness property E contains Ê: Let E =

⋂
i∈NGi

where Gi is an absolute open set. Let x ∈ Ê. Consider a Gi and a y ∈ Gi. Since
Gi is absolute and open, there exists β v y such that αβ↑ ⊆ Gi for all α ∈ Σ+.
Since x ∈ Ê, there is an α′ such that α′β v x. Hence x ∈ Gi.

Proposition 17. The family of Gδ-uniform liveness properties is closed under
union and intersection.

Proof. Closedness under union is trivial. Closedness under intersection follows
from Props. 15.2 and 16.

Fig. 1.b shows the inclusion of the defined families.

6 Conclusion

For this presentation, we have restricted ourselves to sequential runs. But our
definitions and results can be generalized to non-sequential runs. In topological
terms, the results can be generalized to any Baire space and, in particular, to
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the Scott topology of ω-algebraic domains. Since the configurations of an event
structure form an ω-algebraic domain, our results immediately carry over to
event structures. However, the game-theoretic point of view could allow us to
refine fairness in a non-sequential setting. The details, however, remain to be
worked out.

Apt, Francez, and Katz [3] proposed that fairness should be machine-closed
w.r.t. the safety property of the system. We refined this to exclude some proper-
ties that should not be called fairness properties in our point of view. We did not
consider their other two criteria: equivalence robustness and liveness enhance-
ment. Equivalence robustness is an issue when concurrency plays an important
role in the modelling of the reactive system. That issue is then best dealt with
in the domain of non-sequential runs. Since our results carry over to these do-
mains, equivalence robustness is orthogonal to our definition of fairness. Liveness
enhancement refers to the view that every system is equipped with the basic as-
sumption of maximality with respect to every transition. Liveness enhancement
means that fairness should be strictly stronger than this basic assumption—at
least with respect to one safety property. Liveness enhancement is also orthogo-
nal to our definition and can be additionally used when relevant.
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A Appendix

(Not to be included in final version of the extended abstract.)

Temporal formulas. We use the following simple standard temporal logic for
specification of temporal properties. We don’t care about specifying state prop-
erties, so any state property ϕ ⊆ Σ is also a formula. Let x = s0, s1, . . . be a run
and i a position of x.

1. Any ϕ ⊆ Σ is a formula and x, i |= ϕ if si ∈ ϕ.
2. If Φ is a formula then ¬Φ is a formula and x, i |= ¬Φ if x, i 6|= Φ.
3. If Φ, Ψ are formulas then Φ ∨ Ψ is a formula and x, i |= Φ ∨ Ψ if x, i |= Φ or
x, i |= Ψ .

4. If Φ is a formula then 2Φ is a formula and x, i |= 2Φ if x, j |= Φ for all
positions j ≥ i of x.

If Φ is a formula then x |= Φ if x, 0 |= Φ. As usual, other Boolean combinators
are used as abbreviations and 3Φ stands for ¬2¬Φ. Furthermore we set

5. Any γ ⊆ Σ+ is a formula and x, i |= γ if si, si+1, . . . , si+|γ|−1 = γ.

Proposition 3. We have:

1. {E(Q) | Q is a pseudo-liveness property} = {Rf | f is a stable strategy}
and

2. {R(Q) | Q is a liveness property} = {Rf | f is an idempotent strategy}.

Proof. 1. For a given Q, define f such that f(α) = α if α ∈ E(Q) and let
otherwise f(α) be any extension of α into Q; f is then stable. For a given f ,
define Q = f(Σ+). 2. For a given Q, define f such that f(α) = α if α ∈ Q and
let otherwise f(α) be any extension of α into Q; f is then idempotent. For a
given f , define Q = f(Σ+).

Proposition 4. A dense persistence property is constructive if and only if it
contains a dense guarantee property.

Proof. Let f be a winning strategy for P(Q) and let α ∈ Σ+. Let α0 = α and let
αi+1, for each i ∈ N, be any extension of f(αi) that is not in Q, provided that
such an extension exists. If such an extension exists for each i ∈ N, we obtain
a run x = supi∈N αi where x ∈ R(¬Q) and hence x 6∈ P(Q). However, x ∈ Rf ,
which contradicts f being a winning strategy for P(Q). Therefore, there is an
i ∈ N such that βα := f(αi) has no extension into ¬Q, hence all extensions of
βα satisfy Q. Define Q′ = {βα | α ∈ Σ+}; Q′ is clearly dense. Furthermore, we
have E(Q′) ⊆ P(Q).

16


