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A Petri Net Model of Handshake Proto
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eAbstra
tWe propose a Petri net model of handshake proto
ols. These are asyn
hronous 
ommuni
ation proto
olswhi
h enfor
e several properties su
h as absen
e of transmission interferen
e and insensitivity from delaysof propagation on wires. We introdu
e the notion of handshake Petri net, a Petri net with a spe
i�
external interfa
e. We show that the set of observable quies
ent tra
es generated by su
h a net 
apturesthe properties de�ning a handshake proto
ol. Conversely we show that for any handshake proto
ol we
an 
onstru
t a 
orresponding net. We also study di�erent sub
lasses of the model. Many examples areprovided.Keywords: Handshake proto
ol, Petri nets, asyn
hronous 
ommuni
ations, delay-insensitivity,transmission interferen
e.1 Introdu
tionThe asyn
hronous style of 
omputation is 
hara
terized by several subunits a
tinglo
ally, independently of ea
h other, as opposed to the syn
hronous style, where a
entral 
lo
k dis
iplines everything. Working with asyn
hronous systems, there area few situations one would like to avoid. One is transmission interferen
e whi
h mayo

ur when two 
onse
utive messages are sent over the same 
hannel, with the riskof 
lashing into one another [14℄. Another one is 
omputation interferen
e, where amessage is delivered to an unready re
eiver [9,16℄.One way to rule out su
h situations is by adopting 
ommuni
ation proto
olsto enfor
e the desired behavior. For instan
e, delay-insensitive proto
ols guaran-tee that a system's behavior is independent of propagation delays over wires andof 
omputational speeds of single units, thus preventing 
omputation interferen
e.Among those, we fo
us on the handshake proto
ol whi
h requires that ea
h messagesent is followed by an a
knowledge, thus preventing transmission interferen
e.
1 Corresponding author: fossati�di.unito.it
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Fossati and VaraccaThanks to its simpli
ity and e�
ien
y, the handshake proto
ol has gained theinterest of enterprises like Sun and Philips [6℄. However, little resear
h has been putforward on foundational aspe
ts. For quite a few years the foundational resear
h onhandshake 
ir
uits, 
ir
uits obeying the handshake proto
ol, has relied on the modelintrodu
ed by Kees Van Berkel in his PhD thesis [15℄. While Van Berkel's modelwill 
ontinue to be a referen
e for many aspe
ts, it 
ontains a serious short
oming:the pro
ess 
omposition it de�nes is not asso
iative, as proved by the �rst author [3℄.To solve this problem the �rst author [3℄ proposed a game semanti
s for hand-shake 
ir
uits whi
h des
ribes their 
omposition 
orre
tly for the �rst time. Te
h-ni
ally, the result was a

omplished by representing handshake �behaviors� as sumsof deterministi
 handshake strategies. The pri
e to pay is that there are behaviorswhi
h do not �t in this representation. The 
ru
ial example is the mixer 
omponent,
MIX, whi
h will be des
ribed in Se
tion 3.3.This led us to look for other kinds of models. A graphi
al representation isprobably the most natural 
hoi
e for dealing with asyn
hronous 
ir
uits: in graphsas in 
ir
uits, 
omposition is easy when everything else works properly. Several workshave taken a similar perspe
tive ([1℄,[8℄,. . . ). In parti
ular Dan Ghi
a developed alanguage for asyn
hronous hardware design by taking inspiration from the Geometryof Intera
tion and handshake 
ir
uits [5℄. However his goal was to improve previoushardware design languages [15,2℄ and not to 
apture all handshake behaviors.The model we present in this paper is based on Petri nets [11℄. Petri netsare widely used as models of asyn
hrony, and are 
lose to the 
ontext in whi
h thehandshake 
ommuni
ation proto
ol originated [12℄. However, the properties of delay-insensitivity and absen
e of transmission interferen
e had not yet been formalizedunder a graphi
al representation. We 
all our model handshake Petri nets. We showthat handshake Petri nets 
apture pre
isely the handshake proto
ol, in the sensethat the behavior of every net is a handshake language and that every handshakelanguage is the behavior of some net.Plan of the paperIn Se
tion 2 we de�ne the notion of handshake language as set of tra
es (takinginspiration from [15℄ and [3℄). In Se
tion 3 we introdu
e handshake Petri nets andsome of their sub
lasses. We put a spe
ial emphasis on deterministi
 behaviors,as well as on those nondeterministi
 behaviors whi
h 
annot be expressed as sumsof deterministi
 
omponents. Finally, in Se
tion 4 we provide an interpretation ofhandshake Petri nets into handshake languages and we prove the 
orre
tness and
ompleteness of this interpretation. Completeness of deterministi
 handshake Petrinets with respe
t to deterministi
 handshake languages will follow as a 
orollary.2 The Handshake Proto
olIn this se
tion we 
hara
terize the handshake proto
ol in terms of languages obeyingits 
ommuni
ation dis
ipline. We do not exa
tly give another tra
e model as, forinstan
e, we do not de�ne 
omposition. We just need a yardsti
k against whi
h tomeasure the 
orre
tness of our model. Moreover, we are only interested in the 
om-muni
ation dis
ipline, so we assume 
ir
uits have nonput ports (no data is ex
hanged2



Fossati and Varaccain a 
ommuni
ation). We leave the more general 
ase for further work.De�nition 2.1 A handshake stru
ture is a pair 〈P, d〉, where P is a �nite set ofports and the fun
tion d : P → {act, pas} determines a dire
tion for ea
h port,a
tive or passive.As we shall see, a
tive ports are allowed to start a 
ommuni
ation, while passiveports are initially waiting.For the rest of this se
tion let 〈P, d〉 be a handshake stru
ture and let ∪p∈P{p, p̄}be the alphabet of messages on 〈P, d〉. In parti
ular, p and p̄ are both messages onsome port p 2 . Two messages are independent when they are not on the same port.The fun
tion λP is de�ned on ∪p∈P{p, p̄} so that λP (p) = − (input message) and
λP (p̄) = + (output message), for all p ∈ P . We may write λ instead of λP when Pis redundant or 
lear from the 
ontext.Let t be a tra
e on the alphabet of messages ∪p∈P{p, p̄}. t is a handshake tra
eon 〈P, d〉 if for all p ∈ P :
• t↾{p, p̄} = p̄pp̄p . . . when d(p) = act;
• t↾{p, p̄} = pp̄pp̄ . . . when d(p) = pas;We 
all thread ea
h su
h restri
tion and we 
all request (a
knowledge) the messageappearing in the odd (even) positions in ea
h thread of p.Threads indu
e an equivalen
e on tra
es, the homotopy relation ∼P . Given twohandshake tra
es s and t, we say that s ∼P t when they have the same set of threads.As usual, we denote by [s]∼ the equivalen
e 
lass of tra
e s with respe
t to ∼, we
all [s]∼ the position of s.Given a set of tra
es σ we write σ≤ for its pre�x-
losure. Let σ be a set ofhandshake tra
es, s ∈ σ≤ is passive in σ if and only if there is no message σ 
anoutput after s:

∀s · m ∈ σ≤, λ(m) = −.We write Pas(σ) for the set of passive tra
es in σ≤.We de�ne rP as the smallest binary relation whi
h is 
losed by re�exivity, tran-sitivity and 
on
atenation, and su
h that for any distin
t ports p, q ∈ P :(i) pq̄ rP q̄p;(ii) p̄q̄ rP q̄p̄;(iii) pq rP qpWe say that s reorders t in P if s rP t. Note that the relation rP is not symmetri
.Let s be a handshake tra
e and p ∈ P . We write p xP s if sp is still a handshaketra
e. We are now ready for the de�nition of handshake language.De�nition 2.2 A (handshake) language σ on 〈P, d〉 is a non-empty set of �nitehandshake tra
es on 〈P, d〉 su
h that:(i) Pas(σ) ⊆ σ (
losed under passive pre�xes);(ii) (t ∈ σ ∧ s rP t) ⇒ s ∈ σ (reorder 
losed);
2 One may obje
t that the same name p is used for both the message and the port. However the 
ontextwill always make 
lear whi
h p we are referring to. 3



Fossati and Varacca(iii) (s ∈ σ≤ ∧ p xP s) ⇒ s · p ∈ σ≤ (re
eptive).Note that the tra
es of a handshake language are �nite, but the language itselfmay 
ontain an in�nite number of tra
es.De�nition 2.3 Let σ be a handshake language. We say that σ is positional if, for�nite s, s′ ∈ σ≤, with s ∼P s′, we have:(i) s · t ∈ σ≤ ⇒ s′ · t ∈ σ≤;(ii) s ∈ σ ⇒ s′ ∈ σ;We say that σ is deterministi
 if for any distin
t p, q ∈ P :(i) s · p̄ ∈ σ≤ ⇒ s /∈ σ (progress);(ii) s · p̄ ∈ σ≤ ∧ s · q̄ ∈ σ≤ ⇒ s · p̄ · q̄ ∈ σ≤ (absen
e of 
on�i
t).Positionality means that the only thing relevant in a 
hoi
e is the position weare at and not the way we rea
hed it. As for determinism: when a deterministi
language σ is able to produ
e an output, waiting is not an option; when there is a
hoi
e of two outputs, one 
hoi
e must not ex
lude the other. It is not di�
ult toprove the following fa
t.Proposition 2.4 A deterministi
 language is positional.ExamplesConsider the handshake stru
tures P = 〈{p}, {p 7→ pas}〉 and A = 〈{p}, {p 7→

act}〉, 
orresponding respe
tively to a passive and to an a
tive port. Then, pp̄pp̄pp̄is a handshake tra
e on P but not on A. The set
{pp̄, pp̄pp̄, pp̄pp̄pp̄, . . .}is not 
losed under passive pre�xes as it does not 
ontain the empty string, then itis not a handshake language. Whereas both sets

RUNp = {p̄, p̄pp̄, p̄pp̄pp̄, . . .} and {ε, p̄, p̄pp̄, p̄pp̄pp̄, . . .}are handshake languages on A. In parti
ular RUNp is deterministi
, the other isnot. The set
{p̄, p̄pp̄, p̄pp̄pp̄}is not a handshake language on A, be
ause it is not re
eptive: after the last tra
ethe environment is still supposed to send an a
knowledge, but the language is notready to re
eive it. Even the re
eptive RUNp be
omes not re
eptive if we extendits stru
ture with a passive port, as in B = 〈{p, q}, {p 7→ act, q 7→ pas}〉. A pro
esswhi
h is re
eptive with respe
t to B is the following:

REPp,q = {ε, qp̄, qp̄pp̄, qp̄pp̄pp̄, . . .}this pro
ess is also 
alled repeater sin
e, after re
eption of a request on its passiveport it �handshakes� inde�nitely on the a
tive. Now look at the following sets on B:
{ε, qq̄p̄, qq̄p̄q, qq̄p̄qp}4
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{ε, qq̄p̄, qp̄q̄, qq̄p̄q, qp̄q̄q, qq̄p̄p, qp̄q̄p, qq̄p̄qp, qq̄p̄pq, qp̄q̄pq, qp̄q̄qp}Neither of them is reorder-
losed, then neither of them is a handshake language. Forexample, qq̄qp̄ r{p,q} qq̄p̄q but qq̄p̄q is in the pre�x-
losure of both of the above sets,while qq̄qp̄ is in the pre�x-
losure of none. We leave it to the reader to �gure out thereorder-
losures of the above two sets and to show that the se
ond's is a handshakelanguage while the �rst's is not.Finally, 
onsider yet another set on B:
{ε, qp̄, qq̄, qp̄pq̄, qq̄qp̄, qp̄pq̄q, qq̄qp̄pp̄, qq̄qp̄pp̄p}The reader 
an verify that it satis�es all the properties of a handshake language,we show that it does not satisfy those of positionality. Note that qp̄pq̄q and qq̄qp̄pare two tra
es with the same position and that both are in the pre�x-
losure of theabove set. However, while the �rst is a
tually an element of the set, the se
ondis not and, 
onversely, while the se
ond 
an be extended with p̄, the �rst 
annot.The language is not deterministi
 either sin
e after the initial q there is a mutuallyex
lusive 
hoi
e between p̄ and q̄.3 Handshake Petri NetsWe assume some basi
 knowledge on Petri Nets, whi
h we will use in their standardgraphi
al representation [11℄. Throughout the paper we will 
onsider Petri nets intheir unsafe version, where pla
es are allowed to 
ontain several tokens at the sametime. This is not just for 
onvenien
e. Unsafe nets are ne
essary to 
arry out our
onstru
tion. We also stress that the nets we 
onsider are in general not �nite, inthe sense that they may have in�nitely many pla
es and/or transitions.Handshake Petri nets are 
hara
terized by a spe
ial �external interfa
e� whi
hre�e
ts the stru
ture of handshake ports. Let I and O be disjoint �nite subsets ofthe set of transitions of a Petri net G. We 
all the triple 〈G, I,O〉 an intera
tingPetri net (ipn), where the transitions in I are its input transitions and those in Oare its output transitions. A transition is external if it is an input or an outputtransition, internal otherwise.An ipn 〈G, I,O〉 t-redu
es to 〈G′, I,O〉, 〈G, I,O〉

t
−→ 〈G′, I,O〉, when the tran-sition t 
an �re in G and the result of the �ring is G′. We 
all exe
ution of 〈G, I,O〉any sequen
e of transition �rings starting from 〈G, I,O〉.De�nition 3.1 An ipn 〈G, I,O〉 is a handshake Petri net (hpn) when:

• I and O have the same 
ardinality;
• input (output) transitions have exa
tly one in
oming (outgoing) ar
;
• ea
h input transition is paired with an output transition by means of the followingstru
ture:

��7
7

66mmmmmm

&&NNNNNN ...
'&%$ !"#

CC�� '&%$ !"#
����xxpppppp[[77 ...hhQQQQQQ5



Fossati and Varaccawhere the input transition is denoted by two parallel bars and the output transitionby one thi
k bar. Su
h a stru
ture represents a port ;
• at any time, ea
h port 
ontains exa
tly one token. In parti
ular, when the to-ken enables the input transition the port is passive, when it enables the outputtransition it is a
tive.Two hpns may be 
omposed by linking a set of ports of the �rst net with a set ofports of the se
ond net. Ea
h �link� must be between a passive and an a
tive portand is done by adding two new pla
es (and four new ar
s) between them, as follows:

((PPPPPP

''PPPPPP...
��6

6
// //

��6
6

66nnnnnn

&&MMMMMM ... ...
��5

5
//'&%$ !"# //

��5
5

77nnnnnn

&&MMMMMM ...88qqqqqq '&%$ !"#•
CC�� '&%$ !"#

����
'&%$ !"#•

CC�� '&%$ !"#
����xxqqqqqq ⇒

88qqqqqq '&%$ !"#•

DD		 '&%$ !"#
��		

'&%$ !"#•

DD		 '&%$ !"#
��		xxqqqqqq... [[66

ffMMMMMM

vvnnnnnn oo

[[66
oo ... ... ZZ55

ffMMMMMM

wwnnnnnn '&%$ !"#oo

ZZ55
oo ...hhPPPPPP

ggPPPPPPOn the left we represent the two ports before the link is done, where the new ar
sand pla
es are not there yet: we draw them dashed to indi
ate this. On the right werepresent the situation after the link, note that we use a di�erent graphi
al notationfor the ports' transitions as, after 
omposition, they be
ome internal. In fa
t, thenew net will have as external transitions all and only those external transitions ofthe two original nets that have not been linked during the 
omposition, and ea
h ofthese inherited external transition will keep its status: inputs will stay inputs andoutputs will stay outputs. It is easy to see that the 
omposition of two hpns is stillan hpn, moreover 
omposition of hpns is trivially asso
iative.In the rest of this se
tion we will show several examples of standard handshake
omponents represented as handshake Petri nets. We will present ea
h examplewithin a spe
i�
 sub
lass of the general model.3.1 Handshake Marked GraphsIn the �rst stage we fo
us on marked graphs [10℄, whi
h are Petri nets where ea
hpla
e has at most one in
oming and at most one outgoing ar
.Marked graphs are signi�
ant as they allow to identify pla
es with 
ommuni-
ation 
hannels and in turn to represent all and only 
ir
uits whi
h 
an be builtout of 
hannel, syn
hronization and fork operations. Moreover they have a spe
ialhistori
al importan
e for the handshake proto
ol [13℄. We 
all handshake markedgraph a handshake Petri net whi
h is also a marked graph.ExamplesMarked graphs represent the 
ore of determinism. In parti
ular they allow therepresentation of most deterministi
 handshake 
omponents: STOP , RUN , CON ,
SEQ, PAR, PAS, JOIN (in the notation of [15℄). Two of these 
omponents are6



Fossati and Varaccarepresented below 3 .
'&%$ !"# //

��:
::

'&%$ !"# //

��:
::

'&%$ !"#•

AA��� '&%$ !"#
�����

'&%$ !"#•

AA��� '&%$ !"#
�����

BB�������
//

��:
::

'&%$ !"#

��:
::

::
::

����
��

��
�

]]:::

BB�������

��:
::

]]:::

�����'&%$ !"#•

AA��� '&%$ !"#
�����

'&%$ !"#•

AA��� '&%$ !"#
�����

'&%$ !"#
��:

::]]:::
'&%$ !"#oo

��:
::

]]:::

��:
::

'&%$ !"#•

AA��� '&%$ !"#
�����

'&%$ !"#•

AA��� '&%$ !"#
�����

'&%$ !"#

\\:::::::
oo

]]:::
'&%$ !"#

\\:::::::
oo

]]:::

PAR (left) waits for a request on its passive port and then starts two handshakes inparallel on its a
tive ports. Only after su

essful termination of both it a
knowledgesto the �rst request. SEQ (right) also waits for a request on its passive 
omponent,but then it starts its a
tive ports in sequen
e, before �nally a
knowledging to theinitial request.The examples show that handshake marked graphs (or marked graphs in general)always rea
t in the same way to a given stimulus. For example, SEQ always sendsa request on its �rst a
tive port after the re
eption of a request on its passive port.It 
an be shown that handshake marked graphs embed a parti
ular sub
lass ofhandshake languages where ea
h pair stimulus/response 
an be seen as a 
ouple ofbra
kets in the language and ea
h tra
e be
omes well-bra
keted with respe
t to anyof these 
ouples, after a �xed number of 
losing bra
kets.3.2 Deterministi
 ExtensionsMarked graphs express only deterministi
 behaviors but not all deterministi
 behav-iors are 
aptured by marked graphs. As far as we know, no stru
tural 
hara
teriza-tion of determinism in Petri nets exists in the literature. We propose a de�nitionthat 
ompletely 
hara
terizes determinism in the 
ontext of handshake nets.De�nition 3.2 A handshake deterministi
-bran
hing net (a handshake DB net, orjust a DB net, for short) is a handshake Petri net in whi
h every pla
e p with severaloutgoing ar
s is su
h that:
• Ea
h post-transition t of p has a �guard�, a pla
e whose only post-transition is t;
• Exa
tly one of the guards of p's post-transitions initially 
ontains a token, so thatat most one post-transition may initially be enabled;
• Ea
h of p's post-transitions has exa
tly one outgoing ar
 to some guard of a post-transition of p, so that ea
h time one post-transition has �red one post-transitionmay be enabled;
• Ea
h guard of a post-transition of p may have in
oming ar
s only from p's post-transitions, so that no more than one post-transition may ever be enabled.
3 Although handshake Petri nets are formalized here for the �rst time, a similar representation for both
omponents had already been given as far ba
k as [12℄. A
tually, those pi
tures were an inspiration for thiswork. 7



Fossati and VaraccaExamplesAs an example, 
onsider COUNTN whi
h, after re
eption of a request on itspassive port, handshakes N times on its a
tive port. Then it a
knowledges to the�rst request and returns to wait for an a
tivation. In this 
ase, the 
ir
uit needsto de
ide (deterministi
ally, of 
ourse) when to a
knowledge to a passive request(after N handshakes on the a
tive port). Here is the 
ir
uit COUNT2, also knownas DUP :
'&%$ !"# //

##G
GG

GG
GG

//

55kkkkkkkkkkkkk

##H
HH

HH
HH

'&%$ !"# // //'&%$ !"# //

##H
HH

HH
HH

'&%$ !"#•

;;vvvvvvv '&%$ !"#

zzvvv
vv

vv
'&%$ !"#

ll

oo
@G

��?
??

??
??

??

'&%$ !"#oo '&%$ !"#•

;;vvvvvvv '&%$ !"#

zzvvv
vv

vv
ddHHHHHHH

'&%$ !"#

iiSSSSSSSSSSSSS

uukkkkkkkkkkkkk oo

ddHHHHHHH

@G

??���������

'&%$ !"#•ooA DB stru
ture allows us to sele
t ea
h �ring of a given transition and asso
iateit to a brand new dedi
ated transition, as shown below:
'&%$ !"#•

��5
5

&&MMMMMM '&%$ !"#•
��5

5

CD
uukkk   A

AA
AA

A

::uuuuu ... ... CD
uukkk

ED
��// //'&%$ !"#

GF
//

@A
//

##F
FF

FF
FF

'&%$ !"#

��/
//

;;xxxxxxx

##F
FF

FF
FF '&%$ !"#

��/
//

'&%$ !"# // //

CD
ssgggg

>>}}}}}}

!!C
CC

CC
C ... ... CD

ssgggg

CC����... ::vvvvvvv ... BC

OO

We 
all the above input (left) and output (right) o

urren
e sele
ters.3.3 General netsIn this subse
tion we present two examples of nondeterministi
 nets, the OR (belowleft) and the MIX (below right) handshake 
omponents:
//'&%$ !"# //

��6
6

��

��6
6

'&%$ !"#•
CC�� '&%$ !"#

����
'&%$ !"#•

CC�� '&%$ !"#
����

//

��1
11

'&%$ !"#

��/
//

JJ�����
[[77

����
��
��
��

[[77
'&%$ !"# //

��1
11

'&%$ !"#•

FF


 '&%$ !"#

��





//'&%$ !"# //

��1
11

��1
11

>>}}}}} '&%$ !"#•

FF


 '&%$ !"#

��



XX111

'&%$ !"#oo '&%$ !"#•

FF


 '&%$ !"#

��





'&%$ !"#•

FF


 '&%$ !"#

��





'&%$ !"#

XX00000000

nn

oo

XX111

\\ XX111
XX1118



Fossati and Varacca

OR has a passive and two a
tive ports. When a request on the passive port arrivesa request on either a
tive port is sent. A
knowledge to this last request enables ana
knowledge to the �rst one. As the pi
ture shows, this example 
an be modeled by afree 
hoi
e net (transitions with a shared pre
ondition do not have any pre
onditionsother than that).Conversely, MIX has two passive and one a
tive port. Ea
h time an environmentrequest arrives (on either passive port) MIX handshakes on its a
tive port and after
ompletion it a
knowledges to the �rst request. If by the time the handshake on thea
tive port 
ompletes the environment had sent a request on the other port, MIX
hooses nondeterministi
ally whi
h request to a
knowledge �rst.This situation 
ould not be des
ribed with a free-
hoi
e net sin
e the 
hoi
e ofwhi
h request to a
knowledge may not be a 
hoi
e at all if the environment onlysent one request.4 Soundness and CompletenessConsider an hpn H = 〈G, I,O〉, name its ports and let PH be the set of these names.Now take dH : PH → {act, pas}, the fun
tion whi
h maps ea
h port name p to theappropriate label, act if port p is a
tive in H, pas if it is passive. This allows us tode�ne the handshake stru
ture HS(H) = 〈PH , dH〉.Then for any port p, name p (p̄) its input (output) transition, and name τ anyinternal transition. An exe
ution t of H is quies
ent when for no p ∈ PH it 
an beextended as H
t

−։
(τ)∗

−։
p̄

−→. We de�ne HL(H) as the set of strings 
onsisting of theexternal restri
tion of ea
h quies
ent exe
ution of H.The main results of this paper, the soundness and 
ompleteness of the Petri netsmodel, 
an be respe
tively formalized by the following theorems.Theorem 4.1 Let H be a handshake Petri net, then HL(H) is a handshake lan-guage on the handshake stru
ture HS(H).Theorem 4.2 Let σ be a handshake language on a handshake stru
ture 〈P, d〉. Thenthere is an hpn Hσ su
h that HS(Hσ) = 〈P, d〉 and HL(Hσ) = σ.The proof of soundness is a rather straightforward veri�
ation of the propertiesde�ning a handshake language. In the remaining of this se
tion, we try to hint theproof of 
ompleteness (theorem 4.2). We must warn that the 
onstru
tion of Hσwe propose may lead to an in�nite net, but let us also point out that an in�niterepresentation is in general unavoidable. An example of language with no �niterepresentation is the one whi
h 
ontains an in�nite 
hain of (�nite) tra
es whereoutputs are 
hosen a

ording to a non re
ursive fun
tion.Let us fo
us �rst on positional handshake languages. These languages make their
hoi
es a

ording to the rea
hed position, regardless of the parti
ular interleavingfollowed in the exe
ution. In the following we write pi (q̄i) for the ith o

urren
eof input p (output q̄). Then we 
an represent a 
hoi
e as a pair made of a position
[s]∼ and an output o

urren
e or a spe
ial symbol ∗, where 〈[s]∼, q̄i〉 expresses the
hoi
e of �playing� q̄i at [s]∼ and 〈[s]∼, ∗〉 the 
hoi
e of doing nothing at [s]∼.9



Fossati and VaraccaLet σ be a handshake language and c a 
hoi
e in σ. Let t ∈ σ≤, we say that tallows c in σ (t →σ c) when [t]∼ = fst(c) and:
• t ∈ σ if snd(c) = ∗;
• t · snd(c) ∈ σ≤ otherwise.We say that t prevents c in σ (t 9σ c) when it does not allow it.If we 
onsider positional strategies we see immediately that positions, rather thantra
es, allow 
hoi
es. Moreover, sin
e we only 
onsider data-less 
ommuni
ations andsin
e outputs do not a�e
t 
hoi
es (by reordering), a position 
an be represented bya set of o

urren
es of distin
t input messages, taking the last input o

urren
e ofea
h thread.Starting from the above observations and systemati
ally using the sele
ter stru
-tures introdu
ed in Se
tion 3.2 to sele
t o

urren
es of input and output messages weare able to 
onstru
t a handshake Petri net whi
h 
orresponds to the given positionalhandshake language.Proposition 4.3 Let σ be a positional handshake language on 〈P, d〉. Then thereis an hpn Hσ su
h that HS(Hσ) = 〈P, d〉 and HL(Hσ) = σ.Sin
e the 
onstru
tion asso
iates single o

urren
es to transitions and sin
e amove may o

ur in�nitely many times, the 
onstru
ted graph Hσ is in general in�-nite.In the non-positional 
ase, reshu�ing the threads of a tra
e may a�e
t a 
hoi
e.We �rst de�ne an atomi
 reshu�ing of a tra
e t(= t′ · m · n · t′′) as a tra
e of theform t′ · n · m · t′′, for m and n independent messages.De�nition 4.4 Let S be a set of pairs of the form 〈pi, q̄j〉. S is 
riti
al for a 
hoi
e
c in a handshake language σ just when, for all t ∈ σ≤ su
h that [t]∼ = fst(c),

∀〈pi, q̄j〉 ∈ S, t = t′ · q̄j · t
′′ · pi · t

′′′ ⇒ t 9σ c.We write critσ(c) for the set of minimal 
riti
al sets for c in σ.A similar notion is that of 
riti
al pair (the above being 
riti
al set of pairs) for
c in σ: a pair 〈pi, q̄j〉 for whi
h there is s ∈ σ su
h that s = s′ · q̄j · pi · s

′′
9σ c while

s′ · pi · q̄j · s
′′ →σ c. If 〈pi, q̄j〉 is a 
riti
al pair for c in σ, we say that it is invertedin t if and only if t = t′ · q̄j · t

′′ · pi · t
′′′.Lemma 4.5 Let c be a 
hoi
e in a handshake language σ. Let t ∈ σ≤, [t]∼ = fst(c):

t 9σ c ⇐⇒ ∃S ∈ critσ(c),∀〈pi, q̄j〉 ∈ S, t = t′ · q̄j · t
′′ · pi · t

′′′Proof (Sket
h) The dire
tion right-to-left is almost immediate. For the otherdire
tion, S is made of all the 
riti
al pairs whi
h are inverted in t. Then we 
antake any tra
e s with the same threads as t and in whi
h all the pairs of S areinverted and prove that s 9σ c by indu
tion on the number of atomi
 reshu�ingneeded to 
hange s into t. Note in parti
ular that if an atomi
 reshu�ing a�e
ts a
hoi
e, then it must 
onsist of a 
riti
al pair whi
h is inverted, as all the others arereorderings. So S is 
riti
al, if it is not minimal we 
an take the minimal 
riti
al set
ontained in S and we are done. 210



Fossati and VaraccaThe 
onstru
tion of the net is a modi�
ation of the one for positional handshakelanguages, as we brie�y sket
h here. For any minimal 
riti
al set S for c in σ andfor all 〈pi, q̄j〉 ∈ S we 
onne
t transitions pi, q̄j and c as follows:
'&%$ !"#• //

��

q̄j //

pi // //'&%$ !"#

  A
AAA ABC

D

__????

��''NN
NNN

N ... '&%$ !"# // c //77ppppppSuppose that the jth �ring of q̄ o

urs before the ith �ring of p, and similarly forall the other pairs in S (represented in the pi
ture by the other in
oming ar
s in thepre
ondition of transition c). Then c is 
learly prevented. Note that this s
hemeworks for both a 
hoi
e to output and a 
hoi
e not to, as ea
h 
hoi
e 
orrespondsto a transition in the graph.The 
ompleteness theorem, spe
ializes to several 
lasses of nets and languages.For instan
e to the deterministi
 
ase.Theorem 4.6 Let H be a handshake DB net, then HL(H) is a deterministi
 hand-shake language on the handshake stru
ture HS(H). Conversely, if σ is a determin-isti
 handshake language on 〈P, d〉, there is a DB net Hσ su
h that HS(Hσ) = 〈P, d〉and HL(Hσ) = σ.As we mentioned, marked graphs 
orrespond to a parti
ular 
lass of languagestoo, the well-bra
keted ones. In this 
ase there is even a 
onstru
tion yielding �nitegraphs. We still do not know any independent 
hara
terization of the nets that
orrespond to positional languages.5 Con
lusionsIn this paper we presented a version of Petri nets, featuring a parti
ular stru
tureon external 
onne
tions, that models the handshake proto
ol of 
ommuni
ation. Weshowed that this model embeds the model of handshake games and strategies [3℄,but is more expressive.Graphi
al representations as Petri nets are very 
lose to the reality of 
ir
uitsand are useful in explaining the 
ir
uits' dynami
s. Compared to tra
e models likegames and strategies they go one level deeper: 
hannels are unidire
tional (as itusually happens in 
ir
uits) and bidire
tionality 
an be obtained by pairing.This higher level of intensionality brings us to re
onsider the model of handshakePetri nets, whi
h 
an be seen not only as a semanti
 model for handshake 
ir
uits,but also as their syntax. Carrying on this tra
k we 
ould attempt to provide anormal form for handshake Petri nets sin
e, as we have seen, two di�erent nets mayhave the same behavior.Also, the graphi
al representation may drive the de�nition of a more standardnotion of syntax in the form of a pro
ess 
al
ulus. Van Berkel already proposed the11



Fossati and Varaccahandshake pro
ess 
al
ulus [15℄ (see also [7℄). However their goal was not to 
ap-ture all possible handshake behaviors and a 
omplete pro
ess 
al
ulus of handshake
ir
uits is still wanted.In a re
ent proposal [4℄ we de�ne what we 
all the 
al
ulus of handshake 
on�g-urations and we show that it is 
omplete with respe
t to handshake languages asde�ned in De�nition 2.2.Further dire
tions in
lude a deeper analysis of data-ex
hange, as in this paperwe fo
used espe
ially on data-less 
ommuni
ations. It would also be interestingto exploit those sub
lasses whi
h allow �nite representations of a given subset ofhandshake languages, as we tried to hint in Se
tion 3.1.Note �nally that in re
ent times the foundational resear
h on the �eld is startingto awake again: besides [3℄, other e�orts have been made to apply game semanti
sto the synthesis of HDLs for handshake 
ir
uits [5℄. This strengthens our belief onthe importan
e of the 
ommuni
ation proto
ol inside the universe of asyn
hrony,the idea that the 
urrent model is just the 
ore of a larger representation.A
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Fossati and VaraccaA AppendixWe state two de�nitions whi
h will be useful in the proofs whi
h follow.De�nition A.1 Let s and t be two handshake tra
es on a given handshake stru
-ture, su
h that s ∼ t. We de�ne d∼ (s, t), the homotopy distan
e between s and tas follows:
• d∼ (s, t) = 0 ⇐⇒ s = t

• d∼ (s, t) = 1 ⇐⇒ (s = s′ · m · n · s′′) ∧ (t = s′ · n · m · s′′), for two messages mand n;
• In general d∼ (s, t) = k > 0 if and only if s 6= t and there is a sequen
e of k + 1(and no less) tra
es s0, s1, . . . sk su
h that s = s0, sk = t and for all 0 ≤ i < k,

d∼ (si, si+1) = 1.The se
ond de�nition is less signi�
ant, but still useful. Let H be an hpn and tand t′ two distin
t external transitions of H. We 
all t′ the 
omplement of t, andvi
eversa, when t and t′ belong to the same port.Proof of Proposition 2.4 Let σ be a deterministi
 handshake language and let
s, t ∈ σ≤, su
h that s ∼ t. Suppose that s · s̄ ∈ σ≤. We show that t · s̄ ∈ σ≤ byindu
tion on d = d∼(s, t):
• d = 0. s = t, then t · s̄ ∈ σ≤;
• d = l + 1. There is a sequen
e s = t0, . . . tl+1 = t su
h that d∼(ti, ti+1) = 1 and

ti · s̄ ∈ σ≤, ∀0 ≤ i ≤ l. Let tl = t′ · m · n · t′′ and tl+1 = t′ · n · m · t′′. If m is anoutput or n an input, tl+1 · s̄ r tl · s̄, whi
h implies tl+1 · s̄ ∈ σ≤. Let m be aninput and n an output, then we prove tl+1 · s̄ ∈ σ≤ by indu
tion on the length of
s̄.
· s̄ = ε. Then tl+1 · ε = tl+1 ∈ σ≤ by hypothesis;
· s̄ = s̄′a. tl+1 · s̄′ ∈ σ≤ by hypothesis. If a is an input, tl+1 · s̄′ · a ∈ σ≤ byre
eptivity. Then let a be an output and let a1, . . . ak be all the outputs that σ
an send at tl+1 · s̄

′. Then determinism implies tl+1 · s̄
′ · a1 . . . ak ∈ σ≤. Notealso that if an output was possible at tl+1 · s̄

′ ·a1 . . . ak, it would also be possibleat tl+1 · s̄′, by reordering. Then tl+1 · s̄′ · a1 . . . ak is passive in σ. Then also
tl · s̄

′ · a1 . . . ak ∈ σ, as it reorders tl+1 · s̄
′ · a1 . . . ak. Then a ∈ {a1, . . . ak}, as ais an output and tl · s̄

′ · a ∈ σ≤. Then tl+1 · s̄
′ · a ∈ σ≤.The proof that s ∈ σ ⇒ t ∈ σ is even simpler, as the outer indu
tion alone will do.2Proof of Theorem 4.1 We pro
eed by su

essive steps:

• HL(H) is a set of �nite handshake tra
es on HS(H). The stru
ture of handshakeports implies that all observable threads alternate inputs and outputs, startingwith an input on passive ports and with an output on a
tive ports. Moreover,exe
utions are �nite sequen
es of �rings, then their external restri
tions are also�nite.
• HL(H) is non-empty. By de�nition an exe
ution is a sequen
e of �rings, thenthe empty sequen
e is also an exe
ution and its external restri
tion is an external14
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e. If the empty sequen
e is not quies
ent in H it is the pre�x of a quies
entexe
ution (as we will show in the next point).
• HL(H) is 
losed with respe
t to passive pre�xes. HL(H) is the set of externaltra
es of all the quies
ent exe
utions of H. By 
ontradi
tion, suppose there is

s ∈ Pas(HL(H)) whi
h does not 
ome from a quies
ent exe
ution of H. Thenthere is an extension of this exe
ution whi
h, after a sequen
e of internal �rings,lets an output transition ō �re. If this is still not quies
ent we 
an do the samething over again. Note however that H only 
ontains a �nite number of externalports and 
ould not 
ontinue to output inde�nitely, eventually it shall stop andwait for an input, thus rea
hing a quies
ent exe
ution. Then s · ō ∈ HL(H)≤ and
s is not passive (
ontradi
tion).

• HL(H) is reorder-
losed. Reorder-
losedness 
omes as a 
onsequen
e of the fa
tthat no output transition may blo
k any other transition but its 
omplement andno input transition may blo
k another input transition. (We say that t blo
ks t′in H just when H 
ontains a path from t to t′, where ea
h pla
e has at most onein
oming ar
.)
• HL(H) is re
eptive. Handshake DB nets are unsafe, that means that pla
es may
ontain an unlimited number of tokens. So, every time an input transition isenabled to �re it 
an. Note also that the enabling of an input transition dependsonly on the alternation with its 
omplement output transition. Then HL(H) isre
eptive.

2

Proof of Proposition 4.3 We set up Hσ's external stru
ture by providing bothan input and an output transition for ea
h port p ∈ P and by pairing them togetherby means of a port stru
ture, as showed in de�nition 3.1. In parti
ular, the 
hoi
eof an a
tive or of a passive port stru
ture is taken a

ording to the label d(p). Thenwe 
an already state HS(Hσ) = 〈P, d〉. Note also that we have a spe
i�
 externaltransition for ea
h message in the alphabet.Now the internal stru
ture. The o

urren
e sele
ters de�ned in Se
tion 3.2 allowus to asso
iate a new (internal) transition to ea
h o

urren
e of message: we usespe
i�
 sele
ters for inputs as for outputs. The next step is to asso
iate a transitionto ea
h position. Re
all that a position 
an be represented as a set 
ontaining thelast input o

urren
e of ea
h thread. Then we take a new transition and we link ea
htransition asso
iated to any of these input o

urren
es into it: the link is a dire
tar
-pla
e-ar
 one. We also add a transition for ea
h 
hoi
e c allowed at a givenposition [s]∼. In parti
ular, if c does not stand for the 
hoi
e to do nothing, we link
[s]∼'s transition to c's transition, again by a dire
t ar
-pla
e-ar
 link. Note howeverthat c might be in mutual ex
lusion with another 
hoi
e c′ at [s]∼, then we need ashared pre
ondition before the 
orresponding transitions. But the 
hoi
e of whi
hone to �re should be made on
e and for all, then this same pre
ondition should beused in any position where the two 
hoi
es are allowed and mutually ex
lusive(we15



Fossati and Varaccadraw several outgoing ar
s from ea
h 
hoi
e to mean this):
'&%$ !"# // //... . . . ...
'&%$ !"# // //
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'&%$ !"# // //... . . . ...
'&%$ !"# // //A spe
ial treatment is reserved for the do-nothing 
hoi
e. In this 
ase we add atransition with no outgoing ar
s and put it in mutual ex
lusion dire
tly with p'stransition:

'&%$ !"# // //

'&%$ !"#•
c
99sssss

%%KKKKK

//

AA��������

��6
66

66
66

66
... ......
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'&%$ !"# // //When the 
hoi
e to do nothing is taken, Hσ has to wait for another input (thusmoving to a new position) before doing anything else.Let us now move to the output side, where ea
h output o

urren
e p̄i might beenabled in several positions. Then we make the ar
s 
oming from the 
hoi
e of p̄i atea
h of these positions 
onverge into a unique pla
e, whi
h will have an outgoing ar
towards p̄i's transition. One might obje
t that so doing the same output o

urren
emight �re twi
e. But this is prevented by the sele
ter stru
ture (Se
tion 3.2) whi
hensures that ea
h transition asso
iated to an o

urren
e of p̄ may �re at most on
e.The 
onstru
tion is �nally 
omplete, now we prove by indu
tion that s ∈ σ≤ ifand only if s ∈ HL(Hσ)≤.
• s = ε. Trivial sin
e both σ and HL(Hσ) are handshake languages.
• s = s′ · a. Let a be an input. Both σ and HL(Hσ) are handshake languageson the same handshake stru
ture 〈P, d〉. Then any dire
tion we look, s′a mustbe a handshake tra
e on 〈P, d〉. Sin
e s′ is a pre�x of both languages, s′a is too(re
eptivity). Now let a be the ith o

urren
e of output p̄. sp̄ ∈ σ≤ means that

p̄i is allowed by the position [s]∼ in σ and that no mutually ex
lusive 
hoi
e has16
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hosen yet. Then in Hσ, [s]∼'s transition enables the transition asso
iatedto the 
hoi
e of p̄i at [s]∼. Plus, if ever there was a shared pre
ondition amongthe 
hoi
e of p̄i and another 
hoi
e at [s]∼, we may assume that it still 
ontains amark sin
e the other 
hoi
e has not produ
ed any e�e
t so far. Then p̄i's transitionmay �re be
ause it has not yet �red and be
ause all the transitions asso
iated toprevious o

urren
es of p̄ have already �red in s. Then sp̄ ∈ HL(Hσ)≤. On theother hand, sp̄ ∈ HL(Hσ)≤ implies that the transition asso
iated to the 
hoi
eof p̄i at position [s]∼ is enabled by the transition asso
iated to [s]∼ in Hσ. Then
[s]∼ allows p̄i in σ, by de�nition of Hσ. Moreover, if there was another 
hoi
eex
luding p̄i at [s]∼ in σ, this was not 
hosen inside s. Then sp̄ ∈ σ≤.Now, s is passive in σ if and only if the transition [s]∼ does not have any outgoingar
s in Hσ, that is if and only if s is passive in HL(Hσ). s is a non-passive tra
ein σ if and only if the transition [s]∼ has a shared pre
ondition with a transitionwhi
h has no outgoing ar
s in Hσ, that is if and only if s is a non-passive tra
e in

HL(Hσ). 2Proof of Theorem 4.6 The proof of the 
ompleteness part of the theorem is asimpli�
ation of the proof of Proposition 4.3 4 . As for the the soundness part, theonly properties left to prove are determinism's two, given that we already proved thepreliminary properties for Theorem 4.1. For both of them, the proof is based on thefollowing simple observation. In a DB net, even if a pla
e may have several outgoingar
s, only one of its post-transitions is a
tually enabled at any given time: ea
h onehas a guard and only one guard 
ontains a mark in the initial state; su

essively,the �ring of the enabled post-transition takes away a mark from its guard and putsit into another guard. This prevents any situation of 
onfusion, so that on
e atransition is enabled it will stay enabled until it �res.Also, given two exe
utions ex′ and ex′′, we 
an de�ne an exe
ution ex whi
h
ompletes ex′ with those �rings whi
h o

ur in ex′′ and not in ex′ itself. We showhow to do this by providing a 
onstru
tive algorithm whi
h gradually deletes thetwo original strings ex′ and ex′′ while writing ex. We initially set ex to the emptystring. If at a given time ex′′ = a ·u′′ and ex′ = u′ ·a ·v′, where a does not appear in
u′, we append a to ex while removing it from the two original strings. So that ex′be
omes u′v′ and ex′′ be
omes u′′. If a does not appear in ex′ we remove it from
ex′′ and we append it at the end of ex′. If ex′′ = ε, we append what is left of ex′at the end of ex. Eventually, ex will 
onsist of all the �rings of ex′ (possibly in adi�erent order) followed by the �rings of ex′′ that were not there in ex′. About theorder of the �rings, note that if ex′ and ex′′ had the same external tra
e, ex wouldstill have that external tra
e.Now, let sp̄ ∈ HL(H)≤. Re
all that sp̄ is the pre�x of an external tra
e of aquies
ent exe
ution of H. Then sp̄ is also the external tra
e of a pre�x of a quies
entexe
ution, then the external tra
e of an exe
ution of H. For the �rst property weneed to prove that there is no quies
ent exe
ution of H whose external tra
e is s.Sin
e s · p̄ ∈ HL(H)≤, there is an exe
ution ex of H whose external tra
e is s andwhi
h 
an be extended by p̄. Then any exe
ution ex′ of H whose external tra
e is s

4 Re
all also that all deterministi
 handshake languages are positional (Prop. 2.4).17
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an be 
ompleted with those �rings whi
h o

ur in ex · p̄ and not in ex′. Note thatthe external tra
e of the exe
ution we obtain is s · p̄. Then no exe
ution of H whoseexternal tra
e is s is quies
ent. For the se
ond property, let sp̄, sq̄ ∈ HL(H)≤. Letalso ex′p̄ be an exe
ution whose external tra
e is sp̄ and ex′′q̄ be an exe
ution whoseexternal tra
e is sq̄. Just as above we 
an interleave ex′p̄ and ex′′q̄, so to obtainexe
ution ex whose external tra
e is sp̄q̄ ∈ HL(H)≤. 2Proof of Lemma 4.5 The dire
tion right-to-left is almost immediate: if thereexists su
h a 
riti
al set, by de�nition t 9σ c. Then suppose that t 9σ c. Let S bethe set of all 
riti
al pairs for c in σ whi
h are inverted in t and let s be a handshaketra
e with the same threads as t 5 and in whi
h all pairs of S are inverted. We proveby indu
tion on d = d∼(s, t) that s 9σ c:
• d = 0. s = t, then s 9σ c;
• d = l + 1. There is a sequen
e t = t0, . . . tl+1 = s su
h that d∼(ti, ti+1) = 1 and

ti 9σ c, ∀0 ≤ i ≤ l. By 
ontradi
tion assume tl+1 →σ c. Let tl = t′ ·m · n · t′′ and
tl+1 = t′ ·n ·m ·t′′. If m is an input or n an output, tl r tl+1. Then sin
e tl+1 →σ c,also tl →σ c. Contradi
tion. Then m is an output, say the jth o

urren
e of b̄,and n is an input, say the ith o

urren
e of a. By de�nition 〈ai, b̄j〉 is a 
riti
alpair and sin
e the sequen
e t0, . . . tl+1 is minimal by de�nition of d∼, 〈ai, b̄j〉 ∈ S.But 〈ai, b̄j〉 is not inverted in s: 
ontradi
tion!Then S is 
riti
al for c in σ. If S is not minimal we just need to take the minimal
riti
al set 
ontained in S and we are done. 2Proof of Theorem 4.2 We already des
ribed the general 
onstru
tion of Hσ for

σ positional (proof of proposition 4.3) as well as its extension to the non-positional
ase (end of se
tion 4). Lemma 4.5 justi�es this extended 
onstru
tion by tellingus that an �ex
eption� to positionality has all the pairs of a 
riti
al set invertedand, vi
eversa, if a tra
e has all the pairs of a 
riti
al set inverted, then it is anex
eption to positionality. Then the proofs that s ∈ σ≤ ⇐⇒ s ∈ HL(Hσ)≤ and
s ∈ σ ⇐⇒ s ∈ HL(Hσ) are just adaptations of the 
orresponding proofs that wegave for proposition 4.3. 2

5 To be more pre
ise we should take s from a larger set, where the number of input o

urren
es in ea
hthread of s is equal to the number of input o

urren
es in the 
orresponding thread of t. This allows athread of s to di�er from the 
orresponding thread of t by an output o

urren
e. However reorder-
losednessimplies that outputs do not a�e
t 
hoi
es, so that we 
an assume s and t have exa
tly the same threads.18
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