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A Petri Net Model of Handshake ProtoolsLua Fossati1Dipartimento di Informatia - Univ. di Torino, ItaliaPPS - CNRS & Univ. Paris Diderot, FraneDaniele VaraaPPS - CNRS & Univ. Paris Diderot, FraneAbstratWe propose a Petri net model of handshake protools. These are asynhronous ommuniation protoolswhih enfore several properties suh as absene of transmission interferene and insensitivity from delaysof propagation on wires. We introdue the notion of handshake Petri net, a Petri net with a spei�external interfae. We show that the set of observable quiesent traes generated by suh a net apturesthe properties de�ning a handshake protool. Conversely we show that for any handshake protool wean onstrut a orresponding net. We also study di�erent sublasses of the model. Many examples areprovided.Keywords: Handshake protool, Petri nets, asynhronous ommuniations, delay-insensitivity,transmission interferene.1 IntrodutionThe asynhronous style of omputation is haraterized by several subunits atingloally, independently of eah other, as opposed to the synhronous style, where aentral lok disiplines everything. Working with asynhronous systems, there area few situations one would like to avoid. One is transmission interferene whih mayour when two onseutive messages are sent over the same hannel, with the riskof lashing into one another [14℄. Another one is omputation interferene, where amessage is delivered to an unready reeiver [9,16℄.One way to rule out suh situations is by adopting ommuniation protoolsto enfore the desired behavior. For instane, delay-insensitive protools guaran-tee that a system's behavior is independent of propagation delays over wires andof omputational speeds of single units, thus preventing omputation interferene.Among those, we fous on the handshake protool whih requires that eah messagesent is followed by an aknowledge, thus preventing transmission interferene.
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Fossati and VaraccaThanks to its simpliity and e�ieny, the handshake protool has gained theinterest of enterprises like Sun and Philips [6℄. However, little researh has been putforward on foundational aspets. For quite a few years the foundational researh onhandshake iruits, iruits obeying the handshake protool, has relied on the modelintrodued by Kees Van Berkel in his PhD thesis [15℄. While Van Berkel's modelwill ontinue to be a referene for many aspets, it ontains a serious shortoming:the proess omposition it de�nes is not assoiative, as proved by the �rst author [3℄.To solve this problem the �rst author [3℄ proposed a game semantis for hand-shake iruits whih desribes their omposition orretly for the �rst time. Teh-nially, the result was aomplished by representing handshake �behaviors� as sumsof deterministi handshake strategies. The prie to pay is that there are behaviorswhih do not �t in this representation. The ruial example is the mixer omponent,
MIX, whih will be desribed in Setion 3.3.This led us to look for other kinds of models. A graphial representation isprobably the most natural hoie for dealing with asynhronous iruits: in graphsas in iruits, omposition is easy when everything else works properly. Several workshave taken a similar perspetive ([1℄,[8℄,. . . ). In partiular Dan Ghia developed alanguage for asynhronous hardware design by taking inspiration from the Geometryof Interation and handshake iruits [5℄. However his goal was to improve previoushardware design languages [15,2℄ and not to apture all handshake behaviors.The model we present in this paper is based on Petri nets [11℄. Petri netsare widely used as models of asynhrony, and are lose to the ontext in whih thehandshake ommuniation protool originated [12℄. However, the properties of delay-insensitivity and absene of transmission interferene had not yet been formalizedunder a graphial representation. We all our model handshake Petri nets. We showthat handshake Petri nets apture preisely the handshake protool, in the sensethat the behavior of every net is a handshake language and that every handshakelanguage is the behavior of some net.Plan of the paperIn Setion 2 we de�ne the notion of handshake language as set of traes (takinginspiration from [15℄ and [3℄). In Setion 3 we introdue handshake Petri nets andsome of their sublasses. We put a speial emphasis on deterministi behaviors,as well as on those nondeterministi behaviors whih annot be expressed as sumsof deterministi omponents. Finally, in Setion 4 we provide an interpretation ofhandshake Petri nets into handshake languages and we prove the orretness andompleteness of this interpretation. Completeness of deterministi handshake Petrinets with respet to deterministi handshake languages will follow as a orollary.2 The Handshake ProtoolIn this setion we haraterize the handshake protool in terms of languages obeyingits ommuniation disipline. We do not exatly give another trae model as, forinstane, we do not de�ne omposition. We just need a yardstik against whih tomeasure the orretness of our model. Moreover, we are only interested in the om-muniation disipline, so we assume iruits have nonput ports (no data is exhanged2



Fossati and Varaccain a ommuniation). We leave the more general ase for further work.De�nition 2.1 A handshake struture is a pair 〈P, d〉, where P is a �nite set ofports and the funtion d : P → {act, pas} determines a diretion for eah port,ative or passive.As we shall see, ative ports are allowed to start a ommuniation, while passiveports are initially waiting.For the rest of this setion let 〈P, d〉 be a handshake struture and let ∪p∈P{p, p̄}be the alphabet of messages on 〈P, d〉. In partiular, p and p̄ are both messages onsome port p 2 . Two messages are independent when they are not on the same port.The funtion λP is de�ned on ∪p∈P{p, p̄} so that λP (p) = − (input message) and
λP (p̄) = + (output message), for all p ∈ P . We may write λ instead of λP when Pis redundant or lear from the ontext.Let t be a trae on the alphabet of messages ∪p∈P{p, p̄}. t is a handshake traeon 〈P, d〉 if for all p ∈ P :
• t↾{p, p̄} = p̄pp̄p . . . when d(p) = act;
• t↾{p, p̄} = pp̄pp̄ . . . when d(p) = pas;We all thread eah suh restrition and we all request (aknowledge) the messageappearing in the odd (even) positions in eah thread of p.Threads indue an equivalene on traes, the homotopy relation ∼P . Given twohandshake traes s and t, we say that s ∼P t when they have the same set of threads.As usual, we denote by [s]∼ the equivalene lass of trae s with respet to ∼, weall [s]∼ the position of s.Given a set of traes σ we write σ≤ for its pre�x-losure. Let σ be a set ofhandshake traes, s ∈ σ≤ is passive in σ if and only if there is no message σ anoutput after s:

∀s · m ∈ σ≤, λ(m) = −.We write Pas(σ) for the set of passive traes in σ≤.We de�ne rP as the smallest binary relation whih is losed by re�exivity, tran-sitivity and onatenation, and suh that for any distint ports p, q ∈ P :(i) pq̄ rP q̄p;(ii) p̄q̄ rP q̄p̄;(iii) pq rP qpWe say that s reorders t in P if s rP t. Note that the relation rP is not symmetri.Let s be a handshake trae and p ∈ P . We write p xP s if sp is still a handshaketrae. We are now ready for the de�nition of handshake language.De�nition 2.2 A (handshake) language σ on 〈P, d〉 is a non-empty set of �nitehandshake traes on 〈P, d〉 suh that:(i) Pas(σ) ⊆ σ (losed under passive pre�xes);(ii) (t ∈ σ ∧ s rP t) ⇒ s ∈ σ (reorder losed);
2 One may objet that the same name p is used for both the message and the port. However the ontextwill always make lear whih p we are referring to. 3



Fossati and Varacca(iii) (s ∈ σ≤ ∧ p xP s) ⇒ s · p ∈ σ≤ (reeptive).Note that the traes of a handshake language are �nite, but the language itselfmay ontain an in�nite number of traes.De�nition 2.3 Let σ be a handshake language. We say that σ is positional if, for�nite s, s′ ∈ σ≤, with s ∼P s′, we have:(i) s · t ∈ σ≤ ⇒ s′ · t ∈ σ≤;(ii) s ∈ σ ⇒ s′ ∈ σ;We say that σ is deterministi if for any distint p, q ∈ P :(i) s · p̄ ∈ σ≤ ⇒ s /∈ σ (progress);(ii) s · p̄ ∈ σ≤ ∧ s · q̄ ∈ σ≤ ⇒ s · p̄ · q̄ ∈ σ≤ (absene of on�it).Positionality means that the only thing relevant in a hoie is the position weare at and not the way we reahed it. As for determinism: when a deterministilanguage σ is able to produe an output, waiting is not an option; when there is ahoie of two outputs, one hoie must not exlude the other. It is not di�ult toprove the following fat.Proposition 2.4 A deterministi language is positional.ExamplesConsider the handshake strutures P = 〈{p}, {p 7→ pas}〉 and A = 〈{p}, {p 7→

act}〉, orresponding respetively to a passive and to an ative port. Then, pp̄pp̄pp̄is a handshake trae on P but not on A. The set
{pp̄, pp̄pp̄, pp̄pp̄pp̄, . . .}is not losed under passive pre�xes as it does not ontain the empty string, then itis not a handshake language. Whereas both sets

RUNp = {p̄, p̄pp̄, p̄pp̄pp̄, . . .} and {ε, p̄, p̄pp̄, p̄pp̄pp̄, . . .}are handshake languages on A. In partiular RUNp is deterministi, the other isnot. The set
{p̄, p̄pp̄, p̄pp̄pp̄}is not a handshake language on A, beause it is not reeptive: after the last traethe environment is still supposed to send an aknowledge, but the language is notready to reeive it. Even the reeptive RUNp beomes not reeptive if we extendits struture with a passive port, as in B = 〈{p, q}, {p 7→ act, q 7→ pas}〉. A proesswhih is reeptive with respet to B is the following:

REPp,q = {ε, qp̄, qp̄pp̄, qp̄pp̄pp̄, . . .}this proess is also alled repeater sine, after reeption of a request on its passiveport it �handshakes� inde�nitely on the ative. Now look at the following sets on B:
{ε, qq̄p̄, qq̄p̄q, qq̄p̄qp}4



Fossati and Varacca

{ε, qq̄p̄, qp̄q̄, qq̄p̄q, qp̄q̄q, qq̄p̄p, qp̄q̄p, qq̄p̄qp, qq̄p̄pq, qp̄q̄pq, qp̄q̄qp}Neither of them is reorder-losed, then neither of them is a handshake language. Forexample, qq̄qp̄ r{p,q} qq̄p̄q but qq̄p̄q is in the pre�x-losure of both of the above sets,while qq̄qp̄ is in the pre�x-losure of none. We leave it to the reader to �gure out thereorder-losures of the above two sets and to show that the seond's is a handshakelanguage while the �rst's is not.Finally, onsider yet another set on B:
{ε, qp̄, qq̄, qp̄pq̄, qq̄qp̄, qp̄pq̄q, qq̄qp̄pp̄, qq̄qp̄pp̄p}The reader an verify that it satis�es all the properties of a handshake language,we show that it does not satisfy those of positionality. Note that qp̄pq̄q and qq̄qp̄pare two traes with the same position and that both are in the pre�x-losure of theabove set. However, while the �rst is atually an element of the set, the seondis not and, onversely, while the seond an be extended with p̄, the �rst annot.The language is not deterministi either sine after the initial q there is a mutuallyexlusive hoie between p̄ and q̄.3 Handshake Petri NetsWe assume some basi knowledge on Petri Nets, whih we will use in their standardgraphial representation [11℄. Throughout the paper we will onsider Petri nets intheir unsafe version, where plaes are allowed to ontain several tokens at the sametime. This is not just for onveniene. Unsafe nets are neessary to arry out ouronstrution. We also stress that the nets we onsider are in general not �nite, inthe sense that they may have in�nitely many plaes and/or transitions.Handshake Petri nets are haraterized by a speial �external interfae� whihre�ets the struture of handshake ports. Let I and O be disjoint �nite subsets ofthe set of transitions of a Petri net G. We all the triple 〈G, I,O〉 an interatingPetri net (ipn), where the transitions in I are its input transitions and those in Oare its output transitions. A transition is external if it is an input or an outputtransition, internal otherwise.An ipn 〈G, I,O〉 t-redues to 〈G′, I,O〉, 〈G, I,O〉

t
−→ 〈G′, I,O〉, when the tran-sition t an �re in G and the result of the �ring is G′. We all exeution of 〈G, I,O〉any sequene of transition �rings starting from 〈G, I,O〉.De�nition 3.1 An ipn 〈G, I,O〉 is a handshake Petri net (hpn) when:

• I and O have the same ardinality;
• input (output) transitions have exatly one inoming (outgoing) ar;
• eah input transition is paired with an output transition by means of the followingstruture:
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Fossati and Varaccawhere the input transition is denoted by two parallel bars and the output transitionby one thik bar. Suh a struture represents a port ;
• at any time, eah port ontains exatly one token. In partiular, when the to-ken enables the input transition the port is passive, when it enables the outputtransition it is ative.Two hpns may be omposed by linking a set of ports of the �rst net with a set ofports of the seond net. Eah �link� must be between a passive and an ative portand is done by adding two new plaes (and four new ars) between them, as follows:
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ggPPPPPPOn the left we represent the two ports before the link is done, where the new arsand plaes are not there yet: we draw them dashed to indiate this. On the right werepresent the situation after the link, note that we use a di�erent graphial notationfor the ports' transitions as, after omposition, they beome internal. In fat, thenew net will have as external transitions all and only those external transitions ofthe two original nets that have not been linked during the omposition, and eah ofthese inherited external transition will keep its status: inputs will stay inputs andoutputs will stay outputs. It is easy to see that the omposition of two hpns is stillan hpn, moreover omposition of hpns is trivially assoiative.In the rest of this setion we will show several examples of standard handshakeomponents represented as handshake Petri nets. We will present eah examplewithin a spei� sublass of the general model.3.1 Handshake Marked GraphsIn the �rst stage we fous on marked graphs [10℄, whih are Petri nets where eahplae has at most one inoming and at most one outgoing ar.Marked graphs are signi�ant as they allow to identify plaes with ommuni-ation hannels and in turn to represent all and only iruits whih an be builtout of hannel, synhronization and fork operations. Moreover they have a speialhistorial importane for the handshake protool [13℄. We all handshake markedgraph a handshake Petri net whih is also a marked graph.ExamplesMarked graphs represent the ore of determinism. In partiular they allow therepresentation of most deterministi handshake omponents: STOP , RUN , CON ,
SEQ, PAR, PAS, JOIN (in the notation of [15℄). Two of these omponents are6



Fossati and Varaccarepresented below 3 .
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PAR (left) waits for a request on its passive port and then starts two handshakes inparallel on its ative ports. Only after suessful termination of both it aknowledgesto the �rst request. SEQ (right) also waits for a request on its passive omponent,but then it starts its ative ports in sequene, before �nally aknowledging to theinitial request.The examples show that handshake marked graphs (or marked graphs in general)always reat in the same way to a given stimulus. For example, SEQ always sendsa request on its �rst ative port after the reeption of a request on its passive port.It an be shown that handshake marked graphs embed a partiular sublass ofhandshake languages where eah pair stimulus/response an be seen as a ouple ofbrakets in the language and eah trae beomes well-braketed with respet to anyof these ouples, after a �xed number of losing brakets.3.2 Deterministi ExtensionsMarked graphs express only deterministi behaviors but not all deterministi behav-iors are aptured by marked graphs. As far as we know, no strutural harateriza-tion of determinism in Petri nets exists in the literature. We propose a de�nitionthat ompletely haraterizes determinism in the ontext of handshake nets.De�nition 3.2 A handshake deterministi-branhing net (a handshake DB net, orjust a DB net, for short) is a handshake Petri net in whih every plae p with severaloutgoing ars is suh that:
• Eah post-transition t of p has a �guard�, a plae whose only post-transition is t;
• Exatly one of the guards of p's post-transitions initially ontains a token, so thatat most one post-transition may initially be enabled;
• Eah of p's post-transitions has exatly one outgoing ar to some guard of a post-transition of p, so that eah time one post-transition has �red one post-transitionmay be enabled;
• Eah guard of a post-transition of p may have inoming ars only from p's post-transitions, so that no more than one post-transition may ever be enabled.
3 Although handshake Petri nets are formalized here for the �rst time, a similar representation for bothomponents had already been given as far bak as [12℄. Atually, those pitures were an inspiration for thiswork. 7



Fossati and VaraccaExamplesAs an example, onsider COUNTN whih, after reeption of a request on itspassive port, handshakes N times on its ative port. Then it aknowledges to the�rst request and returns to wait for an ativation. In this ase, the iruit needsto deide (deterministially, of ourse) when to aknowledge to a passive request(after N handshakes on the ative port). Here is the iruit COUNT2, also knownas DUP :
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We all the above input (left) and output (right) ourrene seleters.3.3 General netsIn this subsetion we present two examples of nondeterministi nets, the OR (belowleft) and the MIX (below right) handshake omponents:
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OR has a passive and two ative ports. When a request on the passive port arrivesa request on either ative port is sent. Aknowledge to this last request enables anaknowledge to the �rst one. As the piture shows, this example an be modeled by afree hoie net (transitions with a shared preondition do not have any preonditionsother than that).Conversely, MIX has two passive and one ative port. Eah time an environmentrequest arrives (on either passive port) MIX handshakes on its ative port and afterompletion it aknowledges to the �rst request. If by the time the handshake on theative port ompletes the environment had sent a request on the other port, MIXhooses nondeterministially whih request to aknowledge �rst.This situation ould not be desribed with a free-hoie net sine the hoie ofwhih request to aknowledge may not be a hoie at all if the environment onlysent one request.4 Soundness and CompletenessConsider an hpn H = 〈G, I,O〉, name its ports and let PH be the set of these names.Now take dH : PH → {act, pas}, the funtion whih maps eah port name p to theappropriate label, act if port p is ative in H, pas if it is passive. This allows us tode�ne the handshake struture HS(H) = 〈PH , dH〉.Then for any port p, name p (p̄) its input (output) transition, and name τ anyinternal transition. An exeution t of H is quiesent when for no p ∈ PH it an beextended as H
t

−։
(τ)∗

−։
p̄

−→. We de�ne HL(H) as the set of strings onsisting of theexternal restrition of eah quiesent exeution of H.The main results of this paper, the soundness and ompleteness of the Petri netsmodel, an be respetively formalized by the following theorems.Theorem 4.1 Let H be a handshake Petri net, then HL(H) is a handshake lan-guage on the handshake struture HS(H).Theorem 4.2 Let σ be a handshake language on a handshake struture 〈P, d〉. Thenthere is an hpn Hσ suh that HS(Hσ) = 〈P, d〉 and HL(Hσ) = σ.The proof of soundness is a rather straightforward veri�ation of the propertiesde�ning a handshake language. In the remaining of this setion, we try to hint theproof of ompleteness (theorem 4.2). We must warn that the onstrution of Hσwe propose may lead to an in�nite net, but let us also point out that an in�niterepresentation is in general unavoidable. An example of language with no �niterepresentation is the one whih ontains an in�nite hain of (�nite) traes whereoutputs are hosen aording to a non reursive funtion.Let us fous �rst on positional handshake languages. These languages make theirhoies aording to the reahed position, regardless of the partiular interleavingfollowed in the exeution. In the following we write pi (q̄i) for the ith ourreneof input p (output q̄). Then we an represent a hoie as a pair made of a position
[s]∼ and an output ourrene or a speial symbol ∗, where 〈[s]∼, q̄i〉 expresses thehoie of �playing� q̄i at [s]∼ and 〈[s]∼, ∗〉 the hoie of doing nothing at [s]∼.9



Fossati and VaraccaLet σ be a handshake language and c a hoie in σ. Let t ∈ σ≤, we say that tallows c in σ (t →σ c) when [t]∼ = fst(c) and:
• t ∈ σ if snd(c) = ∗;
• t · snd(c) ∈ σ≤ otherwise.We say that t prevents c in σ (t 9σ c) when it does not allow it.If we onsider positional strategies we see immediately that positions, rather thantraes, allow hoies. Moreover, sine we only onsider data-less ommuniations andsine outputs do not a�et hoies (by reordering), a position an be represented bya set of ourrenes of distint input messages, taking the last input ourrene ofeah thread.Starting from the above observations and systematially using the seleter stru-tures introdued in Setion 3.2 to selet ourrenes of input and output messages weare able to onstrut a handshake Petri net whih orresponds to the given positionalhandshake language.Proposition 4.3 Let σ be a positional handshake language on 〈P, d〉. Then thereis an hpn Hσ suh that HS(Hσ) = 〈P, d〉 and HL(Hσ) = σ.Sine the onstrution assoiates single ourrenes to transitions and sine amove may our in�nitely many times, the onstruted graph Hσ is in general in�-nite.In the non-positional ase, reshu�ing the threads of a trae may a�et a hoie.We �rst de�ne an atomi reshu�ing of a trae t(= t′ · m · n · t′′) as a trae of theform t′ · n · m · t′′, for m and n independent messages.De�nition 4.4 Let S be a set of pairs of the form 〈pi, q̄j〉. S is ritial for a hoie
c in a handshake language σ just when, for all t ∈ σ≤ suh that [t]∼ = fst(c),

∀〈pi, q̄j〉 ∈ S, t = t′ · q̄j · t
′′ · pi · t

′′′ ⇒ t 9σ c.We write critσ(c) for the set of minimal ritial sets for c in σ.A similar notion is that of ritial pair (the above being ritial set of pairs) for
c in σ: a pair 〈pi, q̄j〉 for whih there is s ∈ σ suh that s = s′ · q̄j · pi · s

′′
9σ c while

s′ · pi · q̄j · s
′′ →σ c. If 〈pi, q̄j〉 is a ritial pair for c in σ, we say that it is invertedin t if and only if t = t′ · q̄j · t

′′ · pi · t
′′′.Lemma 4.5 Let c be a hoie in a handshake language σ. Let t ∈ σ≤, [t]∼ = fst(c):

t 9σ c ⇐⇒ ∃S ∈ critσ(c),∀〈pi, q̄j〉 ∈ S, t = t′ · q̄j · t
′′ · pi · t

′′′Proof (Sketh) The diretion right-to-left is almost immediate. For the otherdiretion, S is made of all the ritial pairs whih are inverted in t. Then we antake any trae s with the same threads as t and in whih all the pairs of S areinverted and prove that s 9σ c by indution on the number of atomi reshu�ingneeded to hange s into t. Note in partiular that if an atomi reshu�ing a�ets ahoie, then it must onsist of a ritial pair whih is inverted, as all the others arereorderings. So S is ritial, if it is not minimal we an take the minimal ritial setontained in S and we are done. 210



Fossati and VaraccaThe onstrution of the net is a modi�ation of the one for positional handshakelanguages, as we brie�y sketh here. For any minimal ritial set S for c in σ andfor all 〈pi, q̄j〉 ∈ S we onnet transitions pi, q̄j and c as follows:
'&%$ !"#• //

��

q̄j //

pi // //'&%$ !"#

  A
AAA ABC

D

__????

��''NN
NNN

N ... '&%$ !"# // c //77ppppppSuppose that the jth �ring of q̄ ours before the ith �ring of p, and similarly forall the other pairs in S (represented in the piture by the other inoming ars in thepreondition of transition c). Then c is learly prevented. Note that this shemeworks for both a hoie to output and a hoie not to, as eah hoie orrespondsto a transition in the graph.The ompleteness theorem, speializes to several lasses of nets and languages.For instane to the deterministi ase.Theorem 4.6 Let H be a handshake DB net, then HL(H) is a deterministi hand-shake language on the handshake struture HS(H). Conversely, if σ is a determin-isti handshake language on 〈P, d〉, there is a DB net Hσ suh that HS(Hσ) = 〈P, d〉and HL(Hσ) = σ.As we mentioned, marked graphs orrespond to a partiular lass of languagestoo, the well-braketed ones. In this ase there is even a onstrution yielding �nitegraphs. We still do not know any independent haraterization of the nets thatorrespond to positional languages.5 ConlusionsIn this paper we presented a version of Petri nets, featuring a partiular strutureon external onnetions, that models the handshake protool of ommuniation. Weshowed that this model embeds the model of handshake games and strategies [3℄,but is more expressive.Graphial representations as Petri nets are very lose to the reality of iruitsand are useful in explaining the iruits' dynamis. Compared to trae models likegames and strategies they go one level deeper: hannels are unidiretional (as itusually happens in iruits) and bidiretionality an be obtained by pairing.This higher level of intensionality brings us to reonsider the model of handshakePetri nets, whih an be seen not only as a semanti model for handshake iruits,but also as their syntax. Carrying on this trak we ould attempt to provide anormal form for handshake Petri nets sine, as we have seen, two di�erent nets mayhave the same behavior.Also, the graphial representation may drive the de�nition of a more standardnotion of syntax in the form of a proess alulus. Van Berkel already proposed the11
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Fossati and VaraccaA AppendixWe state two de�nitions whih will be useful in the proofs whih follow.De�nition A.1 Let s and t be two handshake traes on a given handshake stru-ture, suh that s ∼ t. We de�ne d∼ (s, t), the homotopy distane between s and tas follows:
• d∼ (s, t) = 0 ⇐⇒ s = t

• d∼ (s, t) = 1 ⇐⇒ (s = s′ · m · n · s′′) ∧ (t = s′ · n · m · s′′), for two messages mand n;
• In general d∼ (s, t) = k > 0 if and only if s 6= t and there is a sequene of k + 1(and no less) traes s0, s1, . . . sk suh that s = s0, sk = t and for all 0 ≤ i < k,

d∼ (si, si+1) = 1.The seond de�nition is less signi�ant, but still useful. Let H be an hpn and tand t′ two distint external transitions of H. We all t′ the omplement of t, andvieversa, when t and t′ belong to the same port.Proof of Proposition 2.4 Let σ be a deterministi handshake language and let
s, t ∈ σ≤, suh that s ∼ t. Suppose that s · s̄ ∈ σ≤. We show that t · s̄ ∈ σ≤ byindution on d = d∼(s, t):
• d = 0. s = t, then t · s̄ ∈ σ≤;
• d = l + 1. There is a sequene s = t0, . . . tl+1 = t suh that d∼(ti, ti+1) = 1 and

ti · s̄ ∈ σ≤, ∀0 ≤ i ≤ l. Let tl = t′ · m · n · t′′ and tl+1 = t′ · n · m · t′′. If m is anoutput or n an input, tl+1 · s̄ r tl · s̄, whih implies tl+1 · s̄ ∈ σ≤. Let m be aninput and n an output, then we prove tl+1 · s̄ ∈ σ≤ by indution on the length of
s̄.
· s̄ = ε. Then tl+1 · ε = tl+1 ∈ σ≤ by hypothesis;
· s̄ = s̄′a. tl+1 · s̄′ ∈ σ≤ by hypothesis. If a is an input, tl+1 · s̄′ · a ∈ σ≤ byreeptivity. Then let a be an output and let a1, . . . ak be all the outputs that σan send at tl+1 · s̄

′. Then determinism implies tl+1 · s̄
′ · a1 . . . ak ∈ σ≤. Notealso that if an output was possible at tl+1 · s̄

′ ·a1 . . . ak, it would also be possibleat tl+1 · s̄′, by reordering. Then tl+1 · s̄′ · a1 . . . ak is passive in σ. Then also
tl · s̄

′ · a1 . . . ak ∈ σ, as it reorders tl+1 · s̄
′ · a1 . . . ak. Then a ∈ {a1, . . . ak}, as ais an output and tl · s̄

′ · a ∈ σ≤. Then tl+1 · s̄
′ · a ∈ σ≤.The proof that s ∈ σ ⇒ t ∈ σ is even simpler, as the outer indution alone will do.2Proof of Theorem 4.1 We proeed by suessive steps:

• HL(H) is a set of �nite handshake traes on HS(H). The struture of handshakeports implies that all observable threads alternate inputs and outputs, startingwith an input on passive ports and with an output on ative ports. Moreover,exeutions are �nite sequenes of �rings, then their external restritions are also�nite.
• HL(H) is non-empty. By de�nition an exeution is a sequene of �rings, thenthe empty sequene is also an exeution and its external restrition is an external14



Fossati and Varaccatrae. If the empty sequene is not quiesent in H it is the pre�x of a quiesentexeution (as we will show in the next point).
• HL(H) is losed with respet to passive pre�xes. HL(H) is the set of externaltraes of all the quiesent exeutions of H. By ontradition, suppose there is

s ∈ Pas(HL(H)) whih does not ome from a quiesent exeution of H. Thenthere is an extension of this exeution whih, after a sequene of internal �rings,lets an output transition ō �re. If this is still not quiesent we an do the samething over again. Note however that H only ontains a �nite number of externalports and ould not ontinue to output inde�nitely, eventually it shall stop andwait for an input, thus reahing a quiesent exeution. Then s · ō ∈ HL(H)≤ and
s is not passive (ontradition).

• HL(H) is reorder-losed. Reorder-losedness omes as a onsequene of the fatthat no output transition may blok any other transition but its omplement andno input transition may blok another input transition. (We say that t bloks t′in H just when H ontains a path from t to t′, where eah plae has at most oneinoming ar.)
• HL(H) is reeptive. Handshake DB nets are unsafe, that means that plaes mayontain an unlimited number of tokens. So, every time an input transition isenabled to �re it an. Note also that the enabling of an input transition dependsonly on the alternation with its omplement output transition. Then HL(H) isreeptive.

2

Proof of Proposition 4.3 We set up Hσ's external struture by providing bothan input and an output transition for eah port p ∈ P and by pairing them togetherby means of a port struture, as showed in de�nition 3.1. In partiular, the hoieof an ative or of a passive port struture is taken aording to the label d(p). Thenwe an already state HS(Hσ) = 〈P, d〉. Note also that we have a spei� externaltransition for eah message in the alphabet.Now the internal struture. The ourrene seleters de�ned in Setion 3.2 allowus to assoiate a new (internal) transition to eah ourrene of message: we usespei� seleters for inputs as for outputs. The next step is to assoiate a transitionto eah position. Reall that a position an be represented as a set ontaining thelast input ourrene of eah thread. Then we take a new transition and we link eahtransition assoiated to any of these input ourrenes into it: the link is a diretar-plae-ar one. We also add a transition for eah hoie c allowed at a givenposition [s]∼. In partiular, if c does not stand for the hoie to do nothing, we link
[s]∼'s transition to c's transition, again by a diret ar-plae-ar link. Note howeverthat c might be in mutual exlusion with another hoie c′ at [s]∼, then we need ashared preondition before the orresponding transitions. But the hoie of whihone to �re should be made one and for all, then this same preondition should beused in any position where the two hoies are allowed and mutually exlusive(we15



Fossati and Varaccadraw several outgoing ars from eah hoie to mean this):
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'&%$ !"# // //... . . . ...
'&%$ !"# // //A speial treatment is reserved for the do-nothing hoie. In this ase we add atransition with no outgoing ars and put it in mutual exlusion diretly with p'stransition:
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'&%$ !"# // //When the hoie to do nothing is taken, Hσ has to wait for another input (thusmoving to a new position) before doing anything else.Let us now move to the output side, where eah output ourrene p̄i might beenabled in several positions. Then we make the ars oming from the hoie of p̄i ateah of these positions onverge into a unique plae, whih will have an outgoing artowards p̄i's transition. One might objet that so doing the same output ourrenemight �re twie. But this is prevented by the seleter struture (Setion 3.2) whihensures that eah transition assoiated to an ourrene of p̄ may �re at most one.The onstrution is �nally omplete, now we prove by indution that s ∈ σ≤ ifand only if s ∈ HL(Hσ)≤.
• s = ε. Trivial sine both σ and HL(Hσ) are handshake languages.
• s = s′ · a. Let a be an input. Both σ and HL(Hσ) are handshake languageson the same handshake struture 〈P, d〉. Then any diretion we look, s′a mustbe a handshake trae on 〈P, d〉. Sine s′ is a pre�x of both languages, s′a is too(reeptivity). Now let a be the ith ourrene of output p̄. sp̄ ∈ σ≤ means that

p̄i is allowed by the position [s]∼ in σ and that no mutually exlusive hoie has16



Fossati and Varaccabeen hosen yet. Then in Hσ, [s]∼'s transition enables the transition assoiatedto the hoie of p̄i at [s]∼. Plus, if ever there was a shared preondition amongthe hoie of p̄i and another hoie at [s]∼, we may assume that it still ontains amark sine the other hoie has not produed any e�et so far. Then p̄i's transitionmay �re beause it has not yet �red and beause all the transitions assoiated toprevious ourrenes of p̄ have already �red in s. Then sp̄ ∈ HL(Hσ)≤. On theother hand, sp̄ ∈ HL(Hσ)≤ implies that the transition assoiated to the hoieof p̄i at position [s]∼ is enabled by the transition assoiated to [s]∼ in Hσ. Then
[s]∼ allows p̄i in σ, by de�nition of Hσ. Moreover, if there was another hoieexluding p̄i at [s]∼ in σ, this was not hosen inside s. Then sp̄ ∈ σ≤.Now, s is passive in σ if and only if the transition [s]∼ does not have any outgoingars in Hσ, that is if and only if s is passive in HL(Hσ). s is a non-passive traein σ if and only if the transition [s]∼ has a shared preondition with a transitionwhih has no outgoing ars in Hσ, that is if and only if s is a non-passive trae in

HL(Hσ). 2Proof of Theorem 4.6 The proof of the ompleteness part of the theorem is asimpli�ation of the proof of Proposition 4.3 4 . As for the the soundness part, theonly properties left to prove are determinism's two, given that we already proved thepreliminary properties for Theorem 4.1. For both of them, the proof is based on thefollowing simple observation. In a DB net, even if a plae may have several outgoingars, only one of its post-transitions is atually enabled at any given time: eah onehas a guard and only one guard ontains a mark in the initial state; suessively,the �ring of the enabled post-transition takes away a mark from its guard and putsit into another guard. This prevents any situation of onfusion, so that one atransition is enabled it will stay enabled until it �res.Also, given two exeutions ex′ and ex′′, we an de�ne an exeution ex whihompletes ex′ with those �rings whih our in ex′′ and not in ex′ itself. We showhow to do this by providing a onstrutive algorithm whih gradually deletes thetwo original strings ex′ and ex′′ while writing ex. We initially set ex to the emptystring. If at a given time ex′′ = a ·u′′ and ex′ = u′ ·a ·v′, where a does not appear in
u′, we append a to ex while removing it from the two original strings. So that ex′beomes u′v′ and ex′′ beomes u′′. If a does not appear in ex′ we remove it from
ex′′ and we append it at the end of ex′. If ex′′ = ε, we append what is left of ex′at the end of ex. Eventually, ex will onsist of all the �rings of ex′ (possibly in adi�erent order) followed by the �rings of ex′′ that were not there in ex′. About theorder of the �rings, note that if ex′ and ex′′ had the same external trae, ex wouldstill have that external trae.Now, let sp̄ ∈ HL(H)≤. Reall that sp̄ is the pre�x of an external trae of aquiesent exeution of H. Then sp̄ is also the external trae of a pre�x of a quiesentexeution, then the external trae of an exeution of H. For the �rst property weneed to prove that there is no quiesent exeution of H whose external trae is s.Sine s · p̄ ∈ HL(H)≤, there is an exeution ex of H whose external trae is s andwhih an be extended by p̄. Then any exeution ex′ of H whose external trae is s

4 Reall also that all deterministi handshake languages are positional (Prop. 2.4).17



Fossati and Varaccaan be ompleted with those �rings whih our in ex · p̄ and not in ex′. Note thatthe external trae of the exeution we obtain is s · p̄. Then no exeution of H whoseexternal trae is s is quiesent. For the seond property, let sp̄, sq̄ ∈ HL(H)≤. Letalso ex′p̄ be an exeution whose external trae is sp̄ and ex′′q̄ be an exeution whoseexternal trae is sq̄. Just as above we an interleave ex′p̄ and ex′′q̄, so to obtainexeution ex whose external trae is sp̄q̄ ∈ HL(H)≤. 2Proof of Lemma 4.5 The diretion right-to-left is almost immediate: if thereexists suh a ritial set, by de�nition t 9σ c. Then suppose that t 9σ c. Let S bethe set of all ritial pairs for c in σ whih are inverted in t and let s be a handshaketrae with the same threads as t 5 and in whih all pairs of S are inverted. We proveby indution on d = d∼(s, t) that s 9σ c:
• d = 0. s = t, then s 9σ c;
• d = l + 1. There is a sequene t = t0, . . . tl+1 = s suh that d∼(ti, ti+1) = 1 and

ti 9σ c, ∀0 ≤ i ≤ l. By ontradition assume tl+1 →σ c. Let tl = t′ ·m · n · t′′ and
tl+1 = t′ ·n ·m ·t′′. If m is an input or n an output, tl r tl+1. Then sine tl+1 →σ c,also tl →σ c. Contradition. Then m is an output, say the jth ourrene of b̄,and n is an input, say the ith ourrene of a. By de�nition 〈ai, b̄j〉 is a ritialpair and sine the sequene t0, . . . tl+1 is minimal by de�nition of d∼, 〈ai, b̄j〉 ∈ S.But 〈ai, b̄j〉 is not inverted in s: ontradition!Then S is ritial for c in σ. If S is not minimal we just need to take the minimalritial set ontained in S and we are done. 2Proof of Theorem 4.2 We already desribed the general onstrution of Hσ for

σ positional (proof of proposition 4.3) as well as its extension to the non-positionalase (end of setion 4). Lemma 4.5 justi�es this extended onstrution by tellingus that an �exeption� to positionality has all the pairs of a ritial set invertedand, vieversa, if a trae has all the pairs of a ritial set inverted, then it is anexeption to positionality. Then the proofs that s ∈ σ≤ ⇐⇒ s ∈ HL(Hσ)≤ and
s ∈ σ ⇐⇒ s ∈ HL(Hσ) are just adaptations of the orresponding proofs that wegave for proposition 4.3. 2

5 To be more preise we should take s from a larger set, where the number of input ourrenes in eahthread of s is equal to the number of input ourrenes in the orresponding thread of t. This allows athread of s to di�er from the orresponding thread of t by an output ourrene. However reorder-losednessimplies that outputs do not a�et hoies, so that we an assume s and t have exatly the same threads.18
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