ICE 2008

A Petri Net Model of Handshake Protocols

Luca Fossatit

Dipartimento di Informatica - Univ. di Torino, Italia
PPS - CNRS & Univ. Paris Diderot, France

Daniele Varacca

PPS - CNRS & Univ. Paris Diderot, France

Abstract

We propose a Petri net model of handshake protocols. These are asynchronous communication protocols
which enforce several properties such as absence of transmission interference and insensitivity from delays
of propagation on wires. We introduce the notion of handshake Petri net, a Petri net with a specific
external interface. We show that the set of observable quiescent traces generated by such a net captures
the properties defining a handshake protocol. Conversely we show that for any handshake protocol we
can g:(ci)ngtruct a corresponding net. We also study different subclasses of the model. Many examples are
provided.

Keywords: Handshake protocol, Petri nets, asynchronous communications, delay-insensitivity,
transmission interference.

1 Introduction

The asynchronous style of computation is characterized by several subunits acting
locally, independently of each other, as opposed to the synchronous style, where a
central clock disciplines everything. Working with asynchronous systems, there are
a few situations one would like to avoid. One is transmission interference which may
occur when two consecutive messages are sent over the same channel, with the risk
of clashing into one another [14|. Another one is computation interference, where a
message is delivered to an unready receiver |9,16].

One way to rule out such situations is by adopting communication protocols
to enforce the desired behavior. For instance, delay-insensitive protocols guaran-
tee that a system’s behavior is independent of propagation delays over wires and
of computational speeds of single units, thus preventing computation interference.
Among those, we focus on the handshake protocol which requires that each message
sent is followed by an acknowledge, thus preventing transmission interference.

I Corresponding author: fossati@di.unito.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:fossati@di.unito.it

FOSSATI AND VARACCA

Thanks to its simplicity and efficiency, the handshake protocol has gained the
interest of enterprises like Sun and Philips [6]. However, little research has been put
forward on foundational aspects. For quite a few years the foundational research on
handshake circuits, circuits obeying the handshake protocol, has relied on the model
introduced by Kees Van Berkel in his PhD thesis [15]. While Van Berkel’s model
will continue to be a reference for many aspects, it contains a serious shortcoming:
the process composition it defines is not associative, as proved by the first author [3].

To solve this problem the first author [3] proposed a game semantics for hand-
shake circuits which describes their composition correctly for the first time. Tech-
nically, the result was accomplished by representing handshake “behaviors” as sums
of deterministic handshake strategies. The price to pay is that there are behaviors
which do not fit in this representation. The crucial example is the mixer component,
MIX, which will be described in Section 3.3.

This led us to look for other kinds of models. A graphical representation is
probably the most natural choice for dealing with asynchronous circuits: in graphs
as in circuits, composition is easy when everything else works properly. Several works
have taken a similar perspective (|1],[8],...). In particular Dan Ghica developed a
language for asynchronous hardware design by taking inspiration from the Geometry
of Interaction and handshake circuits [5]. However his goal was to improve previous
hardware design languages [15,2] and not to capture all handshake behaviors.

The model we present in this paper is based on Petri nets [11]. Petri nets
are widely used as models of asynchrony, and are close to the context in which the
handshake communication protocol originated [12]. However, the properties of delay-
insensitivity and absence of transmission interference had not yet been formalized
under a graphical representation. We call our model handshake Petri nets. We show
that handshake Petri nets capture precisely the handshake protocol, in the sense
that the behavior of every net is a handshake language and that every handshake
language is the behavior of some net.

Plan of the paper

In Section 2 we define the notion of handshake language as set of traces (taking
inspiration from [15] and [3]). In Section 3 we introduce handshake Petri nets and
some of their subclasses. We put a special emphasis on deterministic behaviors,
as well as on those nondeterministic behaviors which cannot be expressed as sums
of deterministic components. Finally, in Section 4 we provide an interpretation of
handshake Petri nets into handshake languages and we prove the correctness and
completeness of this interpretation. Completeness of deterministic handshake Petri
nets with respect to deterministic handshake languages will follow as a corollary.

2 The Handshake Protocol

In this section we characterize the handshake protocol in terms of languages obeying
its communication discipline. We do not exactly give another trace model as, for
instance, we do not define composition. We just need a yardstick against which to
measure the correctness of our model. Moreover, we are only interested in the com-
munication discipline, so we assume circuits have nonput ports (no data is exchanged

2

FOSSATI AND VARACCA

in a communication). We leave the more general case for further work.

Definition 2.1 A handshake structure is a pair (P,d), where P is a finite set of
ports and the function d : P — {act,pas} determines a direction for each port,
active or passive.

As we shall see, active ports are allowed to start a communication, while passive
ports are initially waiting.

For the rest of this section let (P, d) be a handshake structure and let Upe p{p, p}
be the alphabet of messages on (P,d). In particular, p and p are both messages on
some port p?. Two messages are independent when they are not on the same port.
The function A\p is defined on Upep{p, p} so that Ap(p) = — (input message) and
Ap(Pp) = + (output message), for all p € P. We may write A instead of A\p when P
is redundant or clear from the context.

Let t be a trace on the alphabet of messages Upcp{p,p}. t is a handshake trace
on (P,d) if for all p € P:

* t[{p.p} = pppp... when d(p) = act;

* t[{p,p} = pppp... when d(p) = pas;

We call thread each such restriction and we call request (acknowledge) the message
appearing in the odd (even) positions in each thread of p.

Threads induce an equivalence on traces, the homotopy relation ~p. Given two
handshake traces s and ¢, we say that s ~p t when they have the same set of threads.
As usual, we denote by [s]. the equivalence class of trace s with respect to ~, we
call [s]~ the position of s.

Given a set of traces o we write 0= for its prefix-closure. Let o be a set of
handshake traces, s € o= is passive in o if and only if there is no message o can
output after s:

Vs-m € oS, \(m) = —.

We write Pas(c) for the set of passive traces in o=.

We define rp as the smallest binary relation which is closed by reflexivity, tran-
sitivity and concatenation, and such that for any distinct ports p,q € P:
(i) pqrp qp;
(ii) pqrp qp;
(iii) pgrp qp
We say that s reorders t in P if s rp t. Note that the relation rp is not symmetric.

Let s be a handshake trace and p € P. We write p xp s if sp is still a handshake
trace. We are now ready for the definition of handshake language.

Definition 2.2 A (handshake) language o on (P,d) is a non-empty set of finite
handshake traces on (P, d) such that:

(i) Pas(o) C o (closed under passive prefixes);

(ii) (t€oAsrpt)=s¢€ o (reorder closed);

2 One may object that the same name p is used for both the message and the port. However the context
will always make clear which p we are referring to.

FOSSATI AND VARACCA

(iii) (s € oS Apxps)=s-p€ o= (receptive).

Note that the traces of a handshake language are finite, but the language itself
may contain an infinite number of traces.

Definition 2.3 Let o be a handshake language. We say that o is positional if, for
finite s, s’ € o=, with s ~p ', we have:
(i) s-teos =35 -teoS;
(i) seo =5 €o;
We say that o is deterministic if for any distinct p,q € P:
(i) s-p € 0= = s¢ o (progress);
(ii) s-pETSAs-G€E 0= =5-p-q€ o= (absence of conflict).
Positionality means that the only thing relevant in a choice is the position we
are at and not the way we reached it. As for determinism: when a deterministic
language o is able to produce an output, waiting is not an option; when there is a

choice of two outputs, one choice must not exclude the other. It is not difficult to
prove the following fact.

Proposition 2.4 A deterministic language is positional.

Ezamples

Consider the handshake structures P = ({p},{p — pas}) and A = ({p},{p —
act}), corresponding respectively to a passive and to an active port. Then, pppppp
is a handshake trace on P but not on A. The set

{pp, pppD, PPPPPD, - - .}

is not closed under passive prefixes as it does not contain the empty string, then it
is not a handshake language. Whereas both sets

RUN, = {p, ppp, ppppp,---} and {e,p, ppp, ppppp, - - -}

are handshake languages on A. In particular RUN,, is deterministic, the other is
not. The set

is not a handshake language on A, because it is not receptive: after the last trace
the environment is still supposed to send an acknowledge, but the language is not
ready to receive it. Even the receptive RUN, becomes not receptive if we extend
its structure with a passive port, as in B = ({p, ¢}, {p — act,q — pas}). A process
which is receptive with respect to B is the following:

REP, , = {e,qp, qbpp, qppppp; - - -}

this process is also called repeater since, after reception of a request on its passive
port it “handshakes” indefinitely on the active. Now look at the following sets on B:

{e.,4ap, 4apyq, qqpqp}
4

FOSSATI AND VARACCA

{e,49ap, apq, 43P, apqq, 9aPP; 4PqP; 44PP, 9GPPY> 4PIPY; GPGAP}
Neither of them is reorder-closed, then neither of them is a handshake language. For
example, qqqp ry, .1 9qpq but qgpq is in the prefix-closure of both of the above sets,
while gqqp is in the prefix-closure of none. We leave it to the reader to figure out the
reorder-closures of the above two sets and to show that the second’s is a handshake
language while the first’s is not.
Finally, consider yet another set on B:

{e, ap, 49, aprq, 434p, 4pPaq, 444PpP, 449PPPP}
The reader can verify that it satisfies all the properties of a handshake language,
we show that it does not satisfy those of positionality. Note that ¢ppgq and qqqpp
are two traces with the same position and that both are in the prefix-closure of the
above set. However, while the first is actually an element of the set, the second
is not and, conversely, while the second can be extended with p, the first cannot.

The language is not deterministic either since after the initial ¢ there is a mutually
exclusive choice between p and q.

3 Handshake Petri Nets

We assume some basic knowledge on Petri Nets, which we will use in their standard
graphical representation [11]. Throughout the paper we will consider Petri nets in
their unsafe version, where places are allowed to contain several tokens at the same
time. This is not just for convenience. Unsafe nets are necessary to carry out our
construction. We also stress that the nets we consider are in general not finite, in
the sense that they may have infinitely many places and/or transitions.

Handshake Petri nets are characterized by a special “external interface” which
reflects the structure of handshake ports. Let I and O be disjoint finite subsets of
the set of transitions of a Petri net G. We call the triple (G, I,0) an interacting
Petri net (ipn), where the transitions in I are its input transitions and those in O
are its output transitions. A transition is external if it is an input or an output
transition, internal otherwise.

An ipn (G, I,0) t-reduces to (G',1,0), (G,1,0) - (G',1,0), when the tran-
sition ¢ can fire in G and the result of the firing is G'. We call ezecution of (G, I,0O)
any sequence of transition firings starting from (G, I, O).

Definition 3.1 An ipn (G, I,0) is a handshake Petri net (hpn) when:

e [and O have the same cardinality;
e input (output) transitions have exactly one incoming (outgoing) arc;

e each input transition is paired with an output transition by means of the following
structure:

I

P
I~

5

FOSSATI AND VARACCA

where the input transition is denoted by two parallel bars and the output transition
by one thick bar. Such a structure represents a port;

e at any time, each port contains exactly one token. In particular, when the to-
ken enables the input transition the port is passive, when it enables the output
transition it is active.

Two hpns may be composed by linking a set of ports of the first net with a set of
ports of the second net. Each “link” must be between a passive and an active port
and is done by adding two new places (and four new arcs) between them, as follows:

| ~O—|

p]

|01

RN

hed

BON
o/
ey
A\/A

On the left we represent the two ports before the link is done, where the new arcs
and places are not there yet: we draw them dashed to indicate this. On the right we
represent the situation after the link, note that we use a different graphical notation
for the ports’ transitions as, after composition, they become internal. In fact, the
new net will have as external transitions all and only those external transitions of
the two original nets that have not been linked during the composition, and each of
these inherited external transition will keep its status: inputs will stay inputs and
outputs will stay outputs. It is easy to see that the composition of two hpns is still
an hpn, moreover composition of hpns is trivially associative.

In the rest of this section we will show several examples of standard handshake
components represented as handshake Petri nets. We will present each example
within a specific subclass of the general model.

3.1 Handshake Marked Graphs

In the first stage we focus on marked graphs [10], which are Petri nets where each
place has at most one incoming and at most one outgoing arc.

Marked graphs are significant as they allow to identify places with communi-
cation channels and in turn to represent all and only circuits which can be built
out of channel, synchronization and fork operations. Moreover they have a special
historical importance for the handshake protocol [13]. We call handshake marked
graph a handshake Petri net which is also a marked graph.

Ezamples

Marked graphs represent the core of determinism. In particular they allow the
representation of most deterministic handshake components: STOP, RUN, CON,
SEQ, PAR, PAS, JOIN (in the notation of [15]). Two of these components are

6

FOSSATI AND VARACCA

[@<|II>D II/in;>D
P X, >
e oGP

PAR (left) waits for a request on its passive port and then starts two handshakes in
parallel on its active ports. Ounly after successful termination of both it acknowledges
to the first request. SEQ (right) also waits for a request on its passive component,
but then it starts its active ports in sequence, before finally acknowledging to the
initial request.

represented below 3 .

The examples show that handshake marked graphs (or marked graphs in general)
always react in the same way to a given stimulus. For example, SEQ always sends
a request on its first active port after the reception of a request on its passive port.
It can be shown that handshake marked graphs embed a particular subclass of
handshake languages where each pair stimulus/response can be seen as a couple of
brackets in the language and each trace becomes well-bracketed with respect to any
of these couples, after a fixed number of closing brackets.

3.2 Deterministic Extensions

Marked graphs express only deterministic behaviors but not all deterministic behav-
iors are captured by marked graphs. As far as we know, no structural characteriza-
tion of determinism in Petri nets exists in the literature. We propose a definition
that completely characterizes determinism in the context of handshake nets.

Definition 3.2 A handshake deterministic-branching net (a handshake DB net, or
just a DB net, for short) is a handshake Petri net in which every place p with several
outgoing arcs is such that:

e Fach post-transition ¢ of p has a “guard”, a place whose only post-transition is ¢;

e Exactly one of the guards of p’s post-transitions initially contains a token, so that
at most one post-transition may initially be enabled;

e Fach of p’s post-transitions has exactly one outgoing arc to some guard of a post-
transition of p, so that each time one post-transition has fired one post-transition
may be enabled;

e Fach guard of a post-transition of p may have incoming arcs only from p’s post-
transitions, so that no more than one post-transition may ever be enabled.

3 Although handshake Petri nets are formalized here for the first time, a similar representation for both
components had already been given as far back as [12]. Actually, those pictures were an inspiration for this
work.

7

FOSSATI AND VARACCA

Ezamples

As an example, consider COUNTy which, after reception of a request on its
passive port, handshakes N times on its active port. Then it acknowledges to the
first request and returns to wait for an activation. In this case, the circuit needs
to decide (deterministically, of course) when to acknowledge to a passive request
(after N handshakes on the active port). Here is the circuit COUNT5, also known

ﬁ\ |

A DB structure allows us to select each firing of a given transition and associate
it to a brand new dedicated transition, as shown below:

3
%)\ ol
b5
We call the above input (left) and output (right) occurrence selecters.

3.3 General nets

In this subsection we present two examples of nondeterministic nets, the OR (below
left) and the MTX (below right) handshake components:

Wacr I sH
g @M@

8

FOSSATI AND VARACCA

OR has a passive and two active ports. When a request on the passive port arrives
a request on either active port is sent. Acknowledge to this last request enables an
acknowledge to the first one. As the picture shows, this example can be modeled by a
free choice net (transitions with a shared precondition do not have any preconditions
other than that).

Conversely, M IX has two passive and one active port. Each time an environment
request arrives (on either passive port) MIX handshakes on its active port and after
completion it acknowledges to the first request. If by the time the handshake on the
active port completes the environment had sent a request on the other port, MIX
chooses nondeterministically which request to acknowledge first.

This situation could not be described with a free-choice net since the choice of
which request to acknowledge may not be a choice at all if the environment only
sent one request.

4 Soundness and Completeness

Consider an hpn H = (G, I, O), name its ports and let Py be the set of these names.
Now take dp : Py — {act,pas}, the function which maps each port name p to the
appropriate label, act if port p is active in H, pas if it is passive. This allows us to
define the handshake structure HS(H) = (Pg, dp).

Then for any port p, name p (p) its input (output) transition, and name 7 any
internal transition. An execution ¢ of H is quiescent when for no p € Py it can be
extended as H —t»Q»L We define HL(H) as the set of strings consisting of the
external restriction of each quiescent execution of H.

The main results of this paper, the soundness and completeness of the Petri nets
model, can be respectively formalized by the following theorems.

Theorem 4.1 Let H be a handshake Petri net, then HL(H) is a handshake lan-
guage on the handshake structure HS(H).

Theorem 4.2 Let o be a handshake language on a handshake structure (P,d). Then
there is an hpn H, such that HS(H,) = (P,d) and HL(H,) = 0.

The proof of soundness is a rather straightforward verification of the properties
defining a handshake language. In the remaining of this section, we try to hint the
proof of completeness (theorem 4.2). We must warn that the construction of H,
we propose may lead to an infinite net, but let us also point out that an infinite
representation is in general unavoidable. An example of language with no finite
representation is the one which contains an infinite chain of (finite) traces where
outputs are chosen according to a non recursive function.

Let us focus first on positional handshake languages. These languages make their
choices according to the reached position, regardless of the particular interleaving
followed in the execution. In the following we write p; (g;) for the ith occurrence
of input p (output g). Then we can represent a choice as a pair made of a position
[s]~ and an output occurrence or a special symbol %, where ([s]., ;) expresses the
choice of “playing” g; at [s]~ and ([s]~,*) the choice of doing nothing at [s]~.

9

FOSSATI AND VARACCA

Let o be a handshake language and c a choice in 0. Let t € 0=, we say that t
allows ¢ in o (t —, ¢) when [t]. = fst(c) and:

o t €oif snd(c) = *;
e t-snd(c) € o= otherwise.

We say that t prevents ¢ in o (t -+, ¢) when it does not allow it.

If we consider positional strategies we see immediately that positions, rather than
traces, allow choices. Moreover, since we only consider data-less communications and
since outputs do not affect choices (by reordering), a position can be represented by
a set of occurrences of distinct input messages, taking the last input occurrence of
each thread.

Starting from the above observations and systematically using the selecter struc-
tures introduced in Section 3.2 to select occurrences of input and output messages we
are able to construct a handshake Petri net which corresponds to the given positional
handshake language.

Proposition 4.3 Let o be a positional handshake language on (P,d). Then there
is an hpn H, such that HS(H,) = (P,d) and HL(H,) = 0.

Since the construction associates single occurrences to transitions and since a
move may occur infinitely many times, the constructed graph H, is in general infi-
nite.

In the non-positional case, reshuffling the threads of a trace may affect a choice.
We first define an atomic reshuffling of a trace t(=t' -m-n-t") as a trace of the
form t' - n-m-t”, for m and n independent messages.

Definition 4.4 Let S be a set of pairs of the form (p;,g;). S is critical for a choice
c in a handshake language o just when, for all t € o= such that [t]. = fst(c),

V<p27(7]> € Svt =t QJ -t *Pi A" =t g C.
We write crit,(c) for the set of minimal critical sets for ¢ in o.

A similar notion is that of critical pair (the above being critical set of pairs) for
cin o: a pair (p;, g;) for which there is s € o such that s =" - ;- p; - s” -+, ¢ while
s"pi-q;-s" =4 c. If (p;,q;) is a critical pair for ¢ in o, we say that it is inverted
intifandonly if t =¢'-q; - t" - p; - t".

Lemma 4.5 Let c be a choice in a handshake language o. Lett € o=, [t]. = fst(c):

t 5 c < 35 € crity(c),Y(pi,q;) € St =t"-q; - t" -p;i - t"

Proof (Sketch) The direction right-to-left is almost immediate. For the other
direction, S is made of all the critical pairs which are inverted in ¢. Then we can
take any trace s with the same threads as ¢ and in which all the pairs of S are
inverted and prove that s -, ¢ by induction on the number of atomic reshuffling
needed to change s into ¢. Note in particular that if an atomic reshuffling affects a
choice, then it must consist of a critical pair which is inverted, as all the others are
reorderings. So S is critical, if it is not minimal we can take the minimal critical set
contained in S and we are done. a

10

FOSSATI AND VARACCA

The construction of the net is a modification of the one for positional handshake
languages, as we briefly sketch here. For any minimal critical set S for ¢ in ¢ and
for all (ps,q;) € S we connect transitions p;, g; and c as follows:

Suppose that the jth firing of ¢ occurs before the ith firing of p, and similarly for
all the other pairs in S (represented in the picture by the other incoming arcs in the
precondition of transition ¢). Then c is clearly prevented. Note that this scheme
works for both a choice to output and a choice not to, as each choice corresponds
to a transition in the graph.

The completeness theorem, specializes to several classes of nets and languages.
For instance to the deterministic case.

Theorem 4.6 Let H be a handshake DB net, then HL(H) is a deterministic hand-
shake language on the handshake structure HS(H). Conversely, if o is a determin-
istic handshake language on (P, d), there is a DB net H, such that HS(H,) = (P, d)
and HL(H,) = 0.

As we mentioned, marked graphs correspond to a particular class of languages
too, the well-bracketed ones. In this case there is even a construction yielding finite
graphs. We still do not know any independent characterization of the nets that
correspond to positional languages.

5 Conclusions

In this paper we presented a version of Petri nets, featuring a particular structure
on external connections, that models the handshake protocol of communication. We
showed that this model embeds the model of handshake games and strategies |3|,
but is more expressive.

Graphical representations as Petri nets are very close to the reality of circuits
and are useful in explaining the circuits’ dynamics. Compared to trace models like
games and strategies they go one level deeper: channels are unidirectional (as it
usually happens in circuits) and bidirectionality can be obtained by pairing.

This higher level of intensionality brings us to reconsider the model of handshake
Petri nets, which can be seen not only as a semantic model for handshake circuits,
but also as their syntax. Carrying on this track we could attempt to provide a
normal form for handshake Petri nets since, as we have seen, two different nets may
have the same behavior.

Also, the graphical representation may drive the definition of a more standard
notion of syntax in the form of a process calculus. Van Berkel already proposed the

11

FOSSATI AND VARACCA

handshake process calculus [15] (see also |7]). However their goal was not to cap-
ture all possible handshake behaviors and a complete process calculus of handshake
circuits is still wanted.

In a recent proposal [4] we define what we call the calculus of handshake config-
urations and we show that it is complete with respect to handshake languages as
defined in Definition 2.2.

Further directions include a deeper analysis of data-exchange, as in this paper
we focused especially on data-less communications. It would also be interesting
to exploit those subclasses which allow finite representations of a given subset of
handshake languages, as we tried to hint in Section 3.1.

Note finally that in recent times the foundational research on the field is starting
to awake again: besides [3], other efforts have been made to apply game semantics
to the synthesis of HDLs for handshake circuits [5]. This strengthens our belief on
the importance of the communication protocol inside the universe of asynchrony,
the idea that the current model is just the core of a larger representation.

Acknowledgments

The first author would like to thank Simona Ronchi della Rocca, Felice Cardone,
Pierre-Louis Curien for interesting discussions and for their support. Thanks to
Gianfranco Balbo, Marco Beccuti, Gianfranco Ciardo and Lucia Pomello for their
advice on Petri nets.

References

[1] S. Abramsky, S. Gay, and R. Nagarajan. Interaction categories and the foundations of types concurrent
programming. In M. Broy, editor, Proceedings of the 199/ Marktoberdorf Summer School on Deductive
Program Design, pages 35-113. Springer, 1996.

[2] A. Bardsley. Balsa: an asynchronous circuit synthesis system. Master’s thesis, Department of Computer
Science, University of Manchester, 1998.

[3] L. Fossati. Handshake games. In I. Mackie, editor, Proceedings of DCM’06, volume 171-3, pages 21-41.
ENTCS, Elsevier, 2007.

[4] L. Fossati and D. Varacca. A calculus for handshake configurations. submitted to FoSSaCS’09.

[5] Dan R. Ghica. Geometry of synthesis: a structured approach to VLSI design. In Proceedings of
POPL’07, pages 363-375. ACM Press, 2007.

[6] http://www.handshakesolutions.com/.

[7] M.B. Josephs, J.T. Udding, and Y. Yantchev. Handshake algebra. Technical Report SBU-CISM-93-1,
School of Computing, Information Systems and Mathematics, South Bank University, London, 1993.

[8] Ian Mackie. The geometry of interaction machine. In Proceedings of POPL’95, pages 198-208. ACM
Press, 1995.

[9] C.E. Molnar, T.-P. Fang, and F.U. Rosenberg. Synthesis of delay-insensitive modules. In Proceedings
of the 1985 Chapel Hill Conference on Very Large Scale Integration, pages 67-86. Computer Science
Press, 1985.

[10] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, 1981.

[11] Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of Monographs in Theoretical Computer
Science. An EATCS Series. Springer, 1985.

[12] The Computation Structures Group. Progress report 1969-70. Technical Report MIT-MAC-memo-53,
Massachussets Institute of Technology, Project MAC, 1972.

[13] The Computation Structures Group. Progress report 1970-71. Technical Report MIT-MAC-memo-64,
Massachussets Institute of Technology, Project MAC, 1972.

12

http://www.handshakesolutions.com/

FOSSATI AND VARACCA

[14] J.T. Udding. Classification and Composition of Delay-Insensitive Circuits. PhD thesis, Department
of Math. and C.S., Eindhoven University of Technology, 1984.

[15] K. Van Berkel. Handshake Circuits: an Asynchronous Architecture for VLSI Design, volume 5 of
Cambridge International Series on Parallel Computation. Cambridge University Press, 1993.

[16] T. Verhoeff. Characterizations of delay-insensitive communication protocols. Computing Science Notes
’89/6, Department of Math. and C.S., Eindhoven University of Technology, Eindhoven, May 1989.

13

FOSSATI AND VARACCA

A Appendix

We state two definitions which will be useful in the proofs which follow.

Definition A.1 Let s and ¢ be two handshake traces on a given handshake struc-
ture, such that s ~ ¢t. We define d.. (s,t), the homotopy distance between s and t
as follows:

*do(s51t)=0 < s=t

cd.(s,t)=1 < (s=5 - m-n-s")AN({t =5 -n-m-s"), for two messages m
and n;

e In general d~ (s,t) = k > 0 if and only if s # ¢ and there is a sequence of k + 1
(and no less) traces sg, $1, ... Sk such that s = sg, s = t and for all 0 < i < k,
d,\, (SZ‘,SZ'_H) =1.

The second definition is less significant, but still useful. Let H be an hpn and ¢
and t’ two distinct external transitions of H. We call ¢’ the complement of t, and
viceversa, when t and t’ belong to the same port.

Proof of Proposition 2.4 Let ¢ be a deterministic handshake language and let
s,t € 0=, such that s ~ t. Suppose that s-5 € 0=. We show that ¢t -5 € o= by

induction on d = d..(s,t):

e d=0.s=t thent-5€oS;

e d =1+ 1. There is a sequence s = tg,...t;+1 = t such that d(¢;,t;+1) = 1 and
ti-5€oS,V0<i<Il Lett;y=t-m-n-t"and tj,y =t -n-m-t". If mis an
output or n an input, t;,1 - 5 r t; - 5, which implies t;4; - 5 € 0=. Let m be an
input and n an output, then we prove ¢4 - 5 € 0= by induction on the length of

S.

@)

=e¢c. Then tj41 - e =141 € o< by hypothesis;

- 5 = 5a. tj41 -5 € oS by hypothesis. If @ is an input, t;41 -5 -a € 0= by
receptivity. Then let a be an output and let aq,...a; be all the outputs that o
can send at ¢, - 5. Then determinism implies #;,1 -5 - ay...ar € 0=. Note
also that if an output was possible at t;41-5 -aq .. .ag, it would also be possible
at t;11 - §, by reordering. Then ¢;.1 -5 - aj...a; is passive in o. Then also
t;-8-ay...a € 0, as it reorders t;41 -5 - ay...ax. Then a € {ay,...a;}, as a
is an output and ;-5 -a € 0=. Then t;4, -5 -a € o=.

The proof that s € 0 = t € o is even simpler, as the outer induction alone will do.OI

Proof of Theorem 4.1 We proceed by successive steps:

e HL(H) is a set of finite handshake traces on HS(H). The structure of handshake
ports implies that all observable threads alternate inputs and outputs, starting
with an input on passive ports and with an output on active ports. Moreover,
executions are finite sequences of firings, then their external restrictions are also
finite.

e HL(H) is non-empty. By definition an execution is a sequence of firings, then
the empty sequence is also an execution and its external restriction is an external

14

FOSSATI AND VARACCA

trace. If the empty sequence is not quiescent in H it is the prefix of a quiescent
execution (as we will show in the next point).

e HL(H) is closed with respect to passive prefizes. HL(H) is the set of external
traces of all the quiescent executions of H. By contradiction, suppose there is
s € Pas(HL(H)) which does not come from a quiescent execution of H. Then
there is an extension of this execution which, after a sequence of internal firings,
lets an output transition o fire. If this is still not quiescent we can do the same
thing over again. Note however that H only contains a finite number of external
ports and could not continue to output indefinitely, eventually it shall stop and
wait for an input, thus reaching a quiescent execution. Then s-6 € HL(H)< and
s is not passive (contradiction).

e HL(H) is reorder-closed. Reorder-closedness comes as a consequence of the fact
that no output transition may block any other transition but its complement and
no input transition may block another input transition. (We say that t blocks t’
in H just when H contains a path from ¢ to ¢/, where each place has at most one
incoming arc.)

e HL(H) is receptive. Handshake DB nets are unsafe, that means that places may
contain an unlimited number of tokens. So, every time an input transition is
enabled to fire it can. Note also that the enabling of an input transition depends
only on the alternation with its complement output transition. Then HL(H) is
receptive.

O

Proof of Proposition 4.3 We set up H,’s external structure by providing both
an input and an output transition for each port p € P and by pairing them together
by means of a port structure, as showed in definition 3.1. In particular, the choice
of an active or of a passive port structure is taken according to the label d(p). Then
we can already state HS(H,) = (P,d). Note also that we have a specific external
transition for each message in the alphabet.

Now the internal structure. The occurrence selecters defined in Section 3.2 allow
us to associate a new (internal) transition to each occurrence of message: we use
specific selecters for inputs as for outputs. The next step is to associate a transition
to each position. Recall that a position can be represented as a set containing the
last input occurrence of each thread. Then we take a new transition and we link each
transition associated to any of these input occurrences into it: the link is a direct
arc-place-arc one. We also add a transition for each choice ¢ allowed at a given
position [s].. In particular, if ¢ does not stand for the choice to do nothing, we link
[s]~’s transition to ¢’s transition, again by a direct arc-place-arc link. Note however
that ¢ might be in mutual exclusion with another choice ¢’ at [s]., then we need a
shared precondition before the corresponding transitions. But the choice of which
one to fire should be made once and for all, then this same precondition should be
used in any position where the two choices are allowed and mutually exclusive(we

15

FOSSATI AND VARACCA

draw several outgoing arcs from each choice to mean this):

|~

|-

e

/@\

7

e

c|]_>
|~

A special treatment is reserved for the do-nothing choice. In this case we add a
transition with no outgoing arcs and put it in mutual exclusion directly with p’s

<

When the choice to do nothing is taken, H, has to wait for another input (thus
moving to a new position) before doing anything else.

Let us now move to the output side, where each output occurrence p; might be
enabled in several positions. Then we make the arcs coming from the choice of p; at
each of these positions converge into a unique place, which will have an outgoing arc
towards p;’s transition. One might object that so doing the same output occurrence
might fire twice. But this is prevented by the selecter structure (Section 3.2) which
ensures that each transition associated to an occurrence of p may fire at most once.

The construction is finally complete, now we prove by induction that s € o= if
and only if s € HL(H,)=.

e s =¢. Trivial since both o and HL(H,) are handshake languages.

e s =5 -a. Let a be an input. Both ¢ and HL(H,) are handshake languages
on the same handshake structure (P,d). Then any direction we look, s'a must
be a handshake trace on (P,d). Since s’ is a prefix of both languages, s'a is too
(receptivity). Now let a be the ith occurrence of output p. sp € 0= means that
pi 1s allowed by the position [s]. in o and that no mutually exclusive choice has

16

FOSSATI AND VARACCA

been chosen yet. Then in H,, [s].’s transition enables the transition associated
to the choice of p; at [s]~. Plus, if ever there was a shared precondition among
the choice of p; and another choice at [s]., we may assume that it still contains a
mark since the other choice has not produced any effect so far. Then p;’s transition
may fire because it has not yet fired and because all the transitions associated to
previous occurrences of p have already fired in s. Then sp € HL(H,)<. On the
other hand, sp € HL(H,)< implies that the transition associated to the choice
of p; at position [s]. is enabled by the transition associated to [s]. in H,. Then
[s]~ allows p; in o, by definition of H,. Moreover, if there was another choice
excluding p; at [s]~ in o, this was not chosen inside s. Then sp € o=.

Now, s is passive in o if and only if the transition [s]. does not have any outgoing
arcs in H,, that is if and only if s is passive in HL(H,). s is a non-passive trace
in o if and only if the transition [s]. has a shared precondition with a transition
which has no outgoing arcs in H,, that is if and only if s is a non-passive trace in
HL(H,).)

Proof of Theorem 4.6 The proof of the completeness part of the theorem is a
simplification of the proof of Proposition 4.3%. As for the the soundness part, the
only properties left to prove are determinism’s two, given that we already proved the
preliminary properties for Theorem 4.1. For both of them, the proof is based on the
following simple observation. In a DB net, even if a place may have several outgoing
arcs, only one of its post-transitions is actually enabled at any given time: each one
has a guard and only one guard contains a mark in the initial state; successively,
the firing of the enabled post-transition takes away a mark from its guard and puts
it into another guard. This prevents any situation of confusion, so that once a
transition is enabled it will stay enabled until it fires.

Also, given two executions ez’ and ex”, we can define an execution ex which
completes ex’ with those firings which occur in ez” and not in ex’ itself. We show
how to do this by providing a counstructive algorithm which gradually deletes the
two original strings ez’ and ex” while writing ez. We initially set ex to the empty
string. If at a given time ex” = a-u” and ez’ =« -a-v', where a does not appear in
u’, we append a to ex while removing it from the two original strings. So that ez’
becomes u/v" and ex” becomes u”. If a does not appear in ex’ we remove it from
er” and we append it at the end of ex’. If ex” = ¢, we append what is left of ez’
at the end of ex. Eventually, ex will consist of all the firings of ex’ (possibly in a
different order) followed by the firings of ex” that were not there in ex’. About the
order of the firings, note that if ez’ and ez” had the same external trace, ex would
still have that external trace.

Now, let sp € HL(H)<. Recall that sp is the prefix of an external trace of a
quiescent execution of H. Then sp is also the external trace of a prefix of a quiescent
execution, then the external trace of an execution of H. For the first property we
need to prove that there is no quiescent execution of H whose external trace is s.
Since s-p € HL(H)S, there is an execution ex of H whose external trace is s and
which can be extended by p. Then any execution ex’ of H whose external trace is s

4 Recall also that all deterministic handshake languages are positional (Prop. 2.4).

17

FOSSATI AND VARACCA

can be completed with those firings which occur in ex - p and not in ex’. Note that
the external trace of the execution we obtain is s-p. Then no execution of H whose
external trace is s is quiescent. For the second property, let sp, sq € HL(H)=<. Let
also ex’p be an execution whose external trace is sp and ez” ¢ be an execution whose
external trace is sq. Just as above we can interleave ex’p and ez”q, so to obtain
execution ex whose external trace is spg € HL(H)=. O

Proof of Lemma 4.5 The direction right-to-left is almost immediate: if there
exists such a critical set, by definition ¢ -, ¢. Then suppose that ¢t -», c¢. Let S be
the set of all critical pairs for ¢ in o which are inverted in ¢ and let s be a handshake
trace with the same threads as ¢° and in which all pairs of S are inverted. We prove
by induction on d = d.(s,t) that s », ¢

e d=0. s=t, then s =, ¢;

e d =1+ 1. There is a sequence t = tg,...t;+1 = s such that d(¢;,t;+1) = 1 and
t; 4 ¢, VO < i <. By contradiction assume t;11 —4 c. Let t; =t'-m-n-t" and
tixr =t -n-m-t”. If m is an input or n an output, ¢; r t;41. Then since t;11; —, ¢,
also t; —, c. Contradiction. Then m is an output, say the jth occurrence of b,
and n is an input, say the ¢th occurrence of a. By definition (ai,l;j> is a critical
pair and since the sequence t, ...t is minimal by definition of d~., (a;,b;) € S.

But (a;, b;) is not inverted in s: contradiction!

Then S is critical for ¢ in o. If S is not minimal we just need to take the minimal
critical set contained in S and we are done. O

Proof of Theorem 4.2 We already described the general construction of H, for
o positional (proof of proposition 4.3) as well as its extension to the non-positional
case (end of section 4). Lemma 4.5 justifies this extended construction by telling
us that an “exception” to positionality has all the pairs of a critical set inverted
and, viceversa, if a trace has all the pairs of a critical set inverted, then it is an
exception to positionality. Then the proofs that s € 0= <= s € HL(H,)S and
s €0 <= s & HL(H,) are just adaptations of the corresponding proofs that we
gave for proposition 4.3. O

5 To be more precise we should take s from a larger set, where the number of input occurrences in each
thread of s is equal to the number of input occurrences in the corresponding thread of ¢. This allows a
thread of s to differ from the corresponding thread of ¢ by an output occurrence. However reorder-closedness
implies that outputs do not affect choices, so that we can assume s and t have exactly the same threads.

18

	Introduction
	The Handshake Protocol
	Handshake Petri Nets
	Handshake Marked Graphs
	Deterministic Extensions
	General nets

	Soundness and Completeness
	Conclusions
	References
	Appendix

