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Abstract. Handshake protocols are asynchronous protocols thateen$everal
properties such as absence of transmission interferenténaansitivity from

delays of propagation on wires. We propose a concurrentepsocalculus for
handshake protocols . This calculus uses two mechanismgnohionization:

rendez-vous communication a la CCS, and shared resourge.u&aenforce the
handshake discipline, the calculus is endowed with a typjrsem .

We provide an LTS semantics of the calculus and show thatitppecesses de-
note handshake protocols. We give the calculus anotherrgm®ién terms of a
special kind of Petri nets called handshake Petri nets. \ig #iat this semantics
is complete and fully abstract with respect to weak bisintifa
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1 Introduction

Asynchronous circuits are used to design systems wheredtaédctivity of each sub-
unit is not restrained by some global condition, like thegdime intervals imposed by
a system clock. When designing such systems, one has todeembquestions. How
do we know when a message we sent has reached its destinatibatsve can use
the same channel again, i.e. how can we aw@idsmission interferen@eHow can we
ensure the correct behavior regardless of computatioma@dspof single modules and
propagation delays over wires, i.e. how can we enfdelay-insensitivity

Handshake protocolsy to answer these questions by imposing an interactive com
munication discipline. In particular, the protocols reguhat after a circuit has sent a
message on a channel, it has to wait for a confirmation thatnéesage was received
before sending again on the same channel. This requiretos@tis enough to rule out
transmission interference. For their simplicity arficéency, handshake protocols have
been employed by enterprises like Philips and Sun in thelderent of a series of
VLSI chips [9].

The first attempts to formalize delay-insensitive proteaoid their properties em-
ployed trace sets [17]. In particular, the first model to #pedly address the handshake
case was given in [18]. Trace models have been able to neathefize the properties
of handshake protocols which ensure delay-insensitility,so far they have failed in
representing correctly their composition [4].

To overcome this limitation, we propose an alternative apph to modeling hand-
shake protocols: we propose a process calculus inspireebinRlilner’s Calculus of
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Communicating Systems (CCS) [13]. Similarly to CCS, ouruhls defines concur-
rent processes that communicate via rendez-vous chahtwi®ver, in order to ensure
the handshake discipline, the calculus features anotimehsgnization mechanism, by
means of shared resources, reminiscent of coordinatiguieges like Linda [7]. Also,
the calculus is endowed with a linear typing system, insping[11, 19]. These design
choices allow to express the external behavior of a han@speiocol, along with a
more complex internal behavior.

We say that this is the first independent syntactical desoripf the handshake
behavior, as ounandshake configuratiorsse independent from any semantical inter-
pretation while the handshake behavior is ensured by thagygystem. This was not
the case in previous process algebras for handshake piofd8p10], where only pro-
cesses whose trace semantics satified the handshake brelhawéoconsidered, thus
processes were trace sets and inevitabfjesed from the compositionality problems
observed in the underlying trace model.

We then compare our calculus and the trace model by definimggefch configu-
ration, the corresponding set gfiiescentraces, i.e. the traces corresponding to com-
putations that may not be extended with an output event. \&& shat this quiescent
trace semantics is sound w.r.t. Van Berkel’s definition [ B3] means of an example, we
show that quiescent trace equivalence is not a congruemd¢eparallel composition.
This confirms the intuition that trace models of handshakéqmols are not informa-
tive enough, and their branching structure needs to be takemccount. Indeed weak
bisimilarity is a congruence for our calculus.

To show the expressive power of the calculus, we give it ai Retr semantics,
where the handshake discipline is imposed by restrictingta external structure. We
studied this model in details in a previous work [6], whereshewed that it captures
precisely the behavior of a protocol, in the sense that tisexg@rotocol for each net and
a net (possibly with an infinite number of places amdransitions) for each protocol.
In this work we show that there is a correspondence betweetshake processes and
finite Petri nets, in the sense that for each finite handshake Ratrihere is a weakly
bisimilar process.

The graphical approach to the formal analysis of asynchismyot a new one
([1],[22],...). In particular Dan Ghica developed a langedor asynchronous hard-
ware design by taking inspiration from the Geometry of lattion and handshake cir-
cuits [8]. However his goal was to improve previous hardvelegign languages [18, 3]
and not to capture all handshake behaviors.

The paper is structured as follows. In Section 2 we recalfitkeformalization of
handshake protocols as we introduce the notion of handdhageage. In Section 3,
we present syntax, operational semantics and type systearafalculus. We show
that the set of quiescent traces of a typed configuration sral$hake language. We
show that weak bisimilarity is a congruence, while quiestsce semantics is not.
In Section 4, we present handshake Petri nets, with somep&arno show how they
work. In Section 5, we present the interpretation of the uak into handshake nets,
and we show that it is fully abstract with respect to weakrbikirity. To conclude, we
show the universality of the semantics, by showing thatyebeimilarity class of finite
handshake nets is denoted by a process.



2 Handshake protocols

In this section we recall the background properties of hhakis protocols and introduce
the notion ofhandshake language

Definition 1. A handshake structuie a pair (Ports d), where Ports is a finite set of
portsand the function d Ports — {!, ?} determines a direction for each podctiveor
passive

As we shall see, active ports are allowed to start a commtioicavhile passive
ports are initially waiting. For the rest of this section {gtorts d) be a handshake
structure. For each po#, there are two possible messagaginput message), amal
(output message). Lebe a finite trace on the alphabet of messagesqiis{a, a}. tis a
handshake tracen (Ports d) if for all a € Ports

— tl{a,a} = aaaa... whend(a) =!;
— tl{a,al = aaaa...whend(a) =?;

Given a set of traceS we write S* for its prefix-closure. Letr be a set of handshake
traces,s € o= is passiven o if and only if there is no extension &fin o obtained by
appending an output messags: m € o=, mis an input message. We wrigago") for
the set of passive tracesdrt.

We definer ports as the smallest binary relation which is closed by refleyjwian-
sitivity and concatenation and such that for any distinetgm b € Ports

1. aE I'Ports tan'
2. ab rpons ba;
3. a.b rports ba.

We say thas reorders in Portsif Srpgst.
Let s be a handshake trace aad Ports We writea Xports Sif sais still a hand-
shake trace. Finally:

Definition 2. A handshake languageon (Ports d) is a non-empty set of finite hand-
shake traces otPorts d) such that:

1. Pago) C o (closed under passive prefixes);
2. (te o A Srpotst) = se€ o (reorder closed);
3. (S€E 0= AaXports ) = S-ae€ o= (receptive).

Closedness under passive prefixes, rather than under diiy gt is usually the
case for trace semantics, allows us to represat-must nondeterminisnWe want
to represent systems which are able not only to make an éxelcisoice between two
outputs, but also to choose between sending an output artbimat anything.

The intuition is thus that a trace in a handshake languagesepts aquiescent
execution of a protocaol, that is an execution that ends iate & which the system may
decide to wait for more inputs before sending any output. 8fynition, after a passive
trace the system cannot do anything but receiving. Thenaalige traces correspond
to quiescent executions.



Reorder-closedness says that a messagmnnot “block” a messag®” on a dif-
ferent channel unles® is an input and’ an output. The intuition is that inputs may
carry necessary information and thus may block, while thagmission of an output
may require informations and can thus be blocked.

Finally, receptiveness means that whenever it is the enmient’s turn to send a
message, the system must be ready to accept it.

Definition 2 is like VanBerkel's original definition of hanldake process [18] with-
out data-passing. No satisfactory definition of composifior handshake languages
exists. In particular the definition given by VanBerkel i agsociative, as shown by
the first author [4] using a counter-example by Roscoe [16].

In the following sections, handshake languages will be @sed yardstick against
which to measure the correctness of other descriptionsrafstake protocols.

3 The calculus

In this section we provide the formal definition for dbalculus of Handshake Configu-
rations (CHC) We stress that we do not model data-passing as we are oatgstéed in
the communication protocol. The calculus is endowed with ¢@mmunication mech-
anisms. Besides the external communication via rendeg-gbannels, there is also a
form of internal communication, invisible to the outsidehave actions may require
resources in order to be performed and may release resdoraaber actions to use.
This is necessary to model internal synchronizations bevaéterent ports of the same
system. However, élierent systems shall communicate only through channels.

3.1 Syntax and Operational Semantics

We consider a seh of channelsdenoted bya, b%, and a seR of resourcesdenoted

by r, k. The syntax of the calculus uses three syntactic categdhiesads processes
andhandshake configuration§hreads are purely sequential and allow prefixing while
processes are parallel compositions of threads. The psefiemputandoutputactions

on a finite set of resources. As we will see later, input astieteaseresources and
output actionsiseresources. Letl C A:

T::=0 | actT | RecT Threads
PQ:=T | P|Q | P\4 Processes

A handshake configuration is composed of a prodesdong with amultiset of
resources for internal synchronization. A configuration candygenor closed

M = {P,S§ | (P,S) Open and closed configurations

Intuitively, open configurations represent systems undastuction, whose resources
are still accessible to the environment. Closed configomatrepresent completed sys-
tems and can only communicate via handshake channels.

3 We will use channels to model ports, but we prefer to keep tineeptual dference between
the two notions



(inev)

@ TS5 -5 0T, S+ {re, ..., Fal§

(outev)

Tl =S 1TSS

M- M

—— = (par)
MIN -5 M| N

P=P (P,S§-51Q.,5§ Q=Q
IP,S§—1Q, 'S

(struct)

{T-RecT,S§ — (T, S'S

P (rec)
(RecT,S§ — (T’,S’§
M- M che) ¢ 4
s (res)
M\4— M\ 4
a ’ a ’
M—>MT N_)N(parz)
M|N— M| N

P,S§ - 1Q,S'S
(PS)5(Qs)

(closure)

Fig. 1. Labeled transition semantics

The operational semantics is given in terms of an LTS oved$laake configura-
tions. Labels are channels with their polarity, plus thehsssvable label:

e =alalr aceA

Given an observable label, the functidmreturns the channel on which it occurred. For-
mally: ch(a) = ch(a) = a for any channea. The definition of the operational semantics
is simplified thanks to the congruence) between processes:

PIQ=QIP

LetreqP) be the set of resources of a procBs#s meta-notation, we define sequential
composition of threads - T’:

Rec0=0

(actT)-T' = act(T-T") T-T'=T"(T=0) (RecT)-T"=RecT (T £0)

and we extend process operators to configurations:
(P1,S1§ | {P2, S2§ = {P1 | P2, S1 + S2f

(P1,S1) | (P2, S2) = (u1(P1) | u2(P2), u1(S1) + p2(S2))  (P.S)\4=(P\ 4,S)

where+ denotes the union of multisets and: reqP1) US; — Ry andu; : reqP,) U

S, — Ry are injective functions between resources suchRhandR; are disjoint and

all the resources they contain are fresh. Moregy8)) is the point-to-point application
of the functioru to the multises, while u(P) is the process obtained frofhby renam-
ing any label occurrence accordingtoThis guarantees that two closed configurations
can only communicate via channels .

Note that we do not define the parallel composition of an opeheaclosed config-
uration. The idea is that we may combine twdelient parts of a system (in the con-
struction stage) or two completed systems (for interagtioat we may not combine a
system under construction with a completed one.

{P,S5\4 ={P\4,S§
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Fig. 2. Handshake types

The derivation rules for the operational semantics are shiowFigure 1. When
an input occurs, a set of resources becomes available; ahilgutput requires a set
of resources in order to occur, then the used resourcespdiaaprhe other rules are
quite standard. Note however that the operational distindietween open and closed
configurations comes from the two distinct cases of comjposgiven above. In the
parallel composition of open configurations, one side méyémce the other by mod-
ifying a shared resource, as no renaming takes place. Thistipossible for closed
configurations, as renaming prevents the sharing of ressurc

A sequence of transitiorMOiMl ... MniM is denotedVlp —t» M, wheret =
€ ...6en. The stringt is called thestrongtrace of the sequence, while thweaktrace is
the restriction ot to the labels other than Strong ¢) and weak £) bisimilarity are
also defined as usual [13] on the labeled transition syste@HtLC.

3.2 Typing System

A typer is a partial function from channel names{to?}. We will use the shorthand
notation b or ?ato describe a type defined on chanaghnd commas to join types. We
say thatais activein I whenr'(a) =! and we say it ipassivevhenl'(a) =7.

LetI” andl™” be two types and letbe a channel. Let us define the functidol™ :
(Dom(I'")\Dom(I'"")) U (Dom(I""")\Dom(I"")) — {!, ?} such that:

— I"oI(a) =I"(a), whena e Dom(I")\Dom(I"");
— I"orI(a) =TI"(a), whena e DomI")\Dom(I"’).

Typing judgementare of the formT > I, P> 1T, M > I', whereT is a threadP
a processM a configuration and” a type. The typing rules are shown in Figure 2.
The empty thread is active: this models receptivenessusecathread of passive type
must always be able to perform another input. The followhrg¢ rules guarantee that
threads are alternating on each channel. The parallel csitigpoof two processes is
allowed only if threads on the same channel have dual tygessd@ channels must then



be restricted so that no other process can communicate on ffiés models the point-
to-point communication discipline of handshake protochlste that resources do not
play any role in the typing.

The following results show the intuition behind the typirygtem.

Lemma 3 (Reduction).Let M be a configuration such that MI". Then:

- = I@=2
-MS = r'(a) =!;
-MS5MAaerr = MsI'st Don{l”) = Dom(I") A
¥b e Dom(I),b # ch(e) & I'(b) = I’ (b);
- M5S5M > M r;

Corollary 4 (Subject Reduction).Let M>I" and M > M’ then there is a typé”
such that M 1.

3.3 Examples

As a first example, we show a configuration representingpiRéandshake protocol.
OR= (a" .Recay,.a"™.0| Recby,.b™.0| Recg,,.c?.0, 0)

We have thaDR>?a, !b, Ic. When a request on the passive pidrrives, the resource
r; becomes available and this enaliidto send a request on either active doit. An
acknowledge to this last request enables an acknowleddeetirst one. The second
configuration represents tivI X protocol.

MIX = (b".Recby,.b.0| ¢! Recty,.c.0 | Recdy,.d".0, 0)

We have thaMIX >?b, 7c, !d. Each time an environment request arrives (on either pas-
sive portb, ¢), the component| X handshakes on its active pdrand after completion
it acknowledges to the first request. If, by the time the hhaks on the active port is
complete, the environment has sent a request on the othieMidt chooses nondeter-
ministically which request to acknowledge first.

The two protocols can be composed in parallel, communigaiim the common
ports. We have@R| MIX) \ {b, c}>?a, !d.

3.4 Soundness

In this section we show that typed CHC configurations inde&fthd handshake lan-
guages, using the weak traces of the labeled transitionrg@sa

Each feature of the calculus plays a role in modeling the slaakk discipline. Let
us see informally how. First of all, handshake languagesradte input and output on
the same port. This is enforced by the typing system. Thalegalosure is guaranteed
by the fact that dferent ports are on fierent parallel threads. The only reordering that
is in general not allowed is when an input blocks an outputngmit can block an output
because an output may need resources that will only be prd\ig the input. Finally,



receptiveness is guaranteed by the fact that inputs do edtresources, and can always
occur, provided that the alternation with the correspogdiatputs is respected.

In order to denote handshake languages we consider the vaeak df the transition
sequences of a configuration. If we considered the tracdbtodsition sequences, the
denoted languages would always be prefix closed and somsliiakellanguages would
excape us. To characterize the larger class of languagesdclonder passive prefixes,
we consider only the traces of thegiescentransition sequences.

A configurationM is quiescentf it cannot (weakly) perform an output, i.e. if there is

no transmon sequence of the forh —)»—> for any channeh. A transition sequence
M —» M’ is guiescentf M’ is.

Definition 5. Let M be a handshake configuration. We defingM).to be the set of
weak traces of all the quiescent transition sequences wgtar from M.

Let M be a configuration anfi a type such tham > I". The handshake structure
HS(I") = (Ports-, dr) is defined by settinforts- = Dom(I") anddy = I'

Proposition 6 (Soundness)Let M be a handshake configuration, such that-M".
Then HI(M) is a handshake language on the handshake structuref S

We observe, however, that the other direction, the factédhah language is the de-
notation of some configuration, cannot be established. ishisie to the presence of
non recursive handshake languages which could never beredgiy finite configura-
tions. It would still be interesting to characterize thesslaf handshake languages that
correspond to CHC configurations. We leave this as futurdéwor

3.5 Compositionality

Open configurations can communicate via shared resoungethis is not directly ob-
servable in the labeled transition semantics. Thus we daaxpect a labeled equiva-
lence to be fully congruent for them. However weak bisinitijais a congruence with
respect to composition of closed configurations:

Proposition 7. Let My, M2, N be closed handshake configurations such that\ >
I',N>I"and(My | N)\A>ToI”, (Mz | N)\A4>T'el”, whered = Dom(I")nDom(I™).
Then M ~ My implies(M1 | N) \ 4 = (M2 | N) \ 4.

This is consistent with our intepretation of resourcem#ernal means of commu-
nication. Our main goal was to describe theernally observablbehavior of a system
and we do so by considering only those configurations whasmurees cannot be ac-
cessed by the environment.

In Section 2 we talked about thefiiiculty of finding a good definition of compo-
sition for handshake languages. This intuition is confirragdquiescent trace equiva-
lence” is not a congruence. Consider the following processe

Py = Cirpry)-€.0 | b,y b Rechy,,.b™ .0 | (dyr,r,).d"™.0 | d".dy.d?.0) \ {d}
P, = Cr,.c.0 | Recby,).b™.0



Consider the closed configuratioMsy = (P1,{r1,rz,r3}) and My = (P2, {r1,rz,rs}).
They are both interpreted as the same handshake language:

HL(My) = {C, Cc, b, bbc, bbce bib, . ..} = HL(My)

however, if we compose them with = (b Recb;;.b!.0 | c¥.0 | a.a!".0, 0) we obtain
two configurations with dferent interpretations:

HL(M1IN)\{b,c}) ={s,a,aa8) ~ HL((Mz|N)\ {b,c}) = {a aa}

Therefore the parallel composition of CHC configurationsea be used to define
the composition of handshake languages. In order to comipasdshake protocols,
some more knowledge on the branching structure is neede@. @blvides a suitable
formalism to study this structure.

4 Handshake Petri Nets

We argued that not all handshake languages can be reprébgr@diC configurations,
as, for instance, there are non recursive handshake laegufg show the expressive
power of our calculus, we provide an alternative semanfi€HC based on Petri nets.
In [6], we studied a Petri net representation of handshastpols, called handshake
Petri net, and we showed that all handshake languages canahaossibly infinite,
handshake Petri net representation. In this paper we shatvweteryfinite handshake
Petri net is weakly bisimilar to a CHC configuration.

In this section we introduce handshake Petri nets. The preséinition is slightly
different from the one in [6], but the results of that paper camgr.dNe assume some
basic knowledge on Petri nets, which we will use in their dead graphical represen-
tation [15]. Throughout the paper we will consider Petrisniet theirunsafeversion,
where places are allowed to contain several tokens at the 8ara. This is not just for
convenience. Unsafe nets are necessary to carry out ourectisn.

4.1 Definition

Handshake Petri nets are Petri nets with a special “extémtexface”, reflecting the
structure of handshake ports. We define handshake portoiphases. We first define
the static structure of ports, and then we specify the mgekin

Let G be a Petri net and Iép andN, be a patrtition of its nodes (places and transi-
tions). The elements dfp will be calledoutput transitiong placeswhile the elements
of N; will be calledinput transitiong places We give an inductive definition of static
handshake port & (G, No, N,) as follows:

— (Basic casesiNo andN, contain no transition;
— (Inductive cases) le’ = (G’, Nj, N/) be a static port:
e (input prefixing) given a placp € N with no outgoing arcsa is obtained from
& by adding an input transitionand an arc fronp to t;



Fig. 3. A passive portl(is for input andO is for output)

e (output prefixing) given a placp € Nj with no outgoing arcs and a place
p’ € N/ with exactly one outgoing ar@ is obtained froma’ by adding an
output transitiont, an arc fromp tot and an arc fromto p’;

e (alternation) given a placp € Ng and a transitiort € N/ with no outgoing
arcs,a is obtained frona’ by adding an arc fronto p.

Let & be a static port and lgt be a place of (the Petri net of§ such that ifp is an
input place,p has an outgoing arc. Letbe the net obtained from either by adding
one token tg or by keepingy’ with no tokens, thea is ahandshake poriMoreover, if
ais asa’ (notokens) or ifp is an output place we say thats anactive port otherwise
we say that is apassive port

Let G be a Petri nets’ a subgraph o6 anda = (G’, No, N;) a port s.t. :

— aplace ofG’ may only be connected to transitions@&f
— atransitiont € No of G’ may only have outgoing arcs to places@5f
— atransitiort € N, of G’ may only have incoming arcs from places&ft

thena is ahandshake port of GFigure 3 shows an example of a passive handshake
port of some net. The arrows without source or target inditla¢ way the port may
connect to the rest of the net. The statical structure impa#fernation between the
firings of input and output transitions. It is also ensureat tif an input place may ever
contain a token, then it must have an outgoing arc to an impnsition (receptiveness).
Finally, by allowing a port to contain several input and autpansitions we are able

to model each event separately. For instance, two distipecttitransitions may connect
differently to the rest of the net, thus providingfdient resources.

Definition 8. The pair H= (Gy, Portsy) is ahandshake Petri net (hppist when G,
is a Petri net and Ports a set of disjoint handshake ports of;G

Let H = (Gy, Portsy) and lett (p) be a transition (place) dby. Thent (p) is
internal of H if it is neither of input nor of output (in some paatof H).

4.2 Composition

A linkagebetween an active posa € Portsy and a passive polt € Portsy of an hpn
H = (Gy, Portsy) is the hpnL(H, a,b) = (Gp ap, Portsy\{a, b}), whereGy oy is the
net obtained by adding two fresh plagesand p, to Gy and arcs from each output
transition ofa to p;, from p; to each input transition df, from each output transition
of b to pp and fromp;, to each input transition cf.



Fig. 4. Example of composition of ports

We calllink of L(H, a, b), denotedink(H, a, b) , the graph consisting of the graphs
of a andb plus p;, p2 and any arc connecting them to transitionsaadr b. Figure 4
shows an example of link between an active port (left) andszipa port (right).

Definition 9. Let H; = (G4, Ports)) and B = (G,, Ports,) be two handshake Petri
nets. Let{as,...an} € Ports U Ports be a set of active handshake ports and let
{b1,...bn} € Ports U Ports, be a set of passive handshake ports, such thal far

i <n,a e Portg ifand only if h € Ports,. Then:

H1 llia.by)....(anbo)y H2

L(...L((G1 + Gy, Ports U Portsy), a1, by), ... an, by)
is the composition of Hwith H, by linking the pairgay, by), .. .(an, bn).

Itis easy to see that the composition of two hpns is well-@efiand associative.

4.3 Observational Properties of hpns

Let us labela (a) each input (output) transition of poat for anya € Portsy, andr

each internal transition dfi. We write H iR H’ (which readsH I-reduces tdH’) if a
transition labeled is enabled ifGy and its firing leads to the hpiH’. Seen as labeled
transition systems, hpns naturally inherit many defingitvat we gave for CHC. Two of
these are strong-j and weak £) bisimilarity. The generality of these definitions allow
us to go as far as saying that an hpn is (weakly or stronglynidee to a handshake
configuration.

Another inherited definition is that of the functiéfiL, which is identical to the one
we gave in Section 3.4 for a handshake configuration. Howexestill need to adapt
HS. LetH = (Gy, Portsy) be an hpn and ledy, : Portsy — {!,?} be the function
which maps each poatto !, whena is active inH, or to ?, when it is passive. We define
HS(H) = (Portsy, dy).

Proposition 10. [6]Let H be a handshake Petri net, then () is a handshake lan-
guage on the handshake structure {S.

Proposition 11. [6]Let o be a handshake language on a handshake strucira).
Then there is an hpn Hsuch that H§H,,) = (P,d) and HL(H,,) = o
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Note that, for the last result, the nidt, may contain an infinite number of internal
places and transitions. This is unavoidable as languagemageneral not recursive
and thus not finitely representable. Figure 5 shows two giraphmples of handshake
protocols:ORandMIX described in Section 3.3.

5 Full Abstraction and Definability

In this section we relate the calculus CHC with its Petri metslel . We only sketch the
constructions, the detailed proofs are available on thenebed version [5].

5.1 Full Abstraction

Let M be a handshake configuration, such tklat I". We can assumb! = (P, S) and
define the hpfiM] by cases oP. The definitions for open configurations are identical,

[P, S5 = [KP. S)]ir-

Let P = 0. Thenl" =!a for some channeh. Now, define a port which contains a
single output place holding a token and call & as the channel. L& be the Petri net
which containg plus an internal place, labeledr, for eachr € S, whereq contains as
many tokens as there are occurrencesiafS. Then[M]r is the hprXG, {a}).

Let P = al"»~™ P’. Then the last applied typing rule {gpref), thenI" =?a and
P>la. Let [(P’,S)]ia = (G, Ports). By constructionPorts = {a} wherea is an
active port. Letp’ be the place o& with a token. Let’s extend by adding a fresh input
placep, a fresh input transitiohlabeleda and arcs fronp to t and fromt to p’, then by
removing the token fronp’ and putting a token int@. Finally let's add arcs fronhto
any place labeled, for 1 <i < n. If any of these places does not exist yet, add it anew.
We thus obtain a grapB. Then[M]r = (G, {a}). The case of the output prefix is dual.



Let P = Red®. ThenI' =la andP’>la, for some channeh. Let [{P’,S)]ia =
(G, Ports). By constructionPorts = {a} wherea is also the active port associated to
channela. Let p be the place o& which holds a token. Ip has an incoming arc or if
any other place im has two incoming arcg(P, S)Ilr = [{(P’, S)]a- Otherwisea must
contain a placg’ with no outgoing arcs, by construction. Note that bpthndp’ must
be output places, also by construction. Then repfaaadp’ by a placeq obtained by
“joining” them. In particularg must be the new source pf outgoing arc and the new
target ofp’’s incoming arc. CalG the graph so obtained. Th¢(P, S)] = (G, {a}).

LetP = (P | P”)\ 4. We construc(P, S)]r in three steps. First Iq{t(P’,S)]]jl1
be obtained from{(P’, S)]-, by renaming each pow such that § a) € 4, asa
whenT;(a) =! and asa’ whenl'i(a) =?. Define anangousI}Y(P”,S)]]ﬁz. Then let
(G, Ports) = [[(P’,S)]]j‘.1 @ a7jaca) [[(P”,S)]]‘r’z. Then, for any two distinct placgs
and p’ of G’ labeled by the same resouncelo the following: substitutgp and p’ by
a single place also labeled byhaving all the arcs of botp and p’; note also that by
constructionp andp’ contained the same number of tokénshen putk tokens in the
new place as well. Lgt be the net so obtained. ThgM], = (G, Ports).

The semantics is well defined and fully abstract with respeeteak bisimilarity:

Lemma 12. Let M be a configuration such that MI". Then[M] as defined above is
a handshake Petri net and M [M]r.

Theorem 13 (Full Abstraction).Let M and M be two configurations such that ivil”
and M >T1". Then M M’ — [M]r = [M']r.

5.2 Definability
For each finite hpn there is a weakly bisimilar handshake gardtion:

Theorem 14 (Definability).Let H = (G, Ports) be a handshake Petri net. Then there
are a closed handshake configuration M and a handshakeltypech that M>I" and
[M]r = H.

We present here a simplified construction of the configunagsociated tbl. The
idea is that each poaof the netH can be modeled by a thre&doc(a, H), inductively
on the structure of the port.

Each internal transition is first unfoldedas a link between two ports and then
associated to a process. ltdiave incoming arcs from internal places labaled. . r;
and outgoing arcs to internal places labelgg, . . . r,. Thent is unfolded as follows:

K A 2\
o o

| —O—|
p dp
| —O—1



wherery, ...r, are place labels. . Then Iet be a hpnu(H) is the hpn obtained frorAl
by unfolding each of its internal transitions. It can be shdtatH ~ u(H).

For each internal transitiof) let |; be a fresh label associated to it. Consider the
following process.

Prog(t, H) = (Recly, 1.0 [ 1" Recl. {1+ 0) \ {l;)
Then we define
Proc(H) = Prog(as, H) | ... | Proc(an, H) | Proc(ts, H) | ... | Proc(tm, H)

whereay, . .. a, are the ports oH andt;, ...ty are the internal transitions &f. Then

let Conf(H) = (Proc(H), Sp), whereSy is the multiset of labels of internal places of
H with a token and a label appears3p as many times as the number of tokens in the
corresponding place. Finally leh(Ports) be the set of names of ports Rorts, then

I'y : ch(Portg — {!,7?} is the function which associates ! to its active ports’ names
and ? to its passive ports’ names. It can be shown [{8ain f(H)], ~ u(H). Thus
[Conf(H)Ir, =~ H.

6 Conclusions

We presented the calculus CHC which describes handshat@cpt® of communica-
tion. We have given it an Its semantics and a Petri nets séesanterms of handshake
Petri nets. We have shown that every finite handshake Pé¢irbneesponds to a closed
configuration of the calculus.

We have argued that a branching semantics is necessary ¢ostemd handshake
protocols, as the trace model cannot properly define coriposihe calculus and the
two semantics provide the necessary framework to formaligyshandshake protocols.

Our original aim had been to devise a typing system for CC8 Would ensure the
handshake discipline. After many attempts, we came to\eetteat such typing system
would be cumbersome, if at all possible. Consider in paldicthe MIX component
defined in Section 4.3. It is essentially characterized i fofinclusively disjunctive
causality: The request sent on the active port causallyrdépen either of the requests
received on the passive ports. However, if both are receiv@@nnot be established
which of the two is actually the cause. This is in contrashulite fact that CCS can be
modeled using safe occurrence nets (which correspondiie gteent structures), where
this kind of causality cannot be represented. Therefore emdéd to use a second,
different form of communication, in the form of shared resources

As usual, a result opens new directions to inspect. We walkidtb characterize
the handshake languages that are described by CHC configigréand thus by finite
nets). We would also like to study restrictions on the lamguar the types to char-
acterize behavioral classes of protocols: determinigtisitional, free choice, etc. It
would be interesting to extend the calculus with mobilitynptives, like the ones of
the r-calculus, and study its expressive power. We also woukdtlikuse the calculus
to specify and prove the correctness of specific protocols.
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