
The Calculus of Handshake Configurations

Luca Fossati1,2⋆ and Daniele Varacca2

1 Dip. di Informatica - Università di Torino, Italia
2 PPS - CNRS & Univ. Paris Diderot, France

Abstract. Handshake protocols are asynchronous protocols that enforce several
properties such as absence of transmission interference and insensitivity from
delays of propagation on wires. We propose a concurrent process calculus for
handshake protocols . This calculus uses two mechanisms of synchronization:
rendez-vous communication à la CCS, and shared resource usage. To enforce the
handshake discipline, the calculus is endowed with a typingsystem .
We provide an LTS semantics of the calculus and show that typed processes de-
note handshake protocols. We give the calculus another semantics in terms of a
special kind of Petri nets called handshake Petri nets. We show that this semantics
is complete and fully abstract with respect to weak bisimilarity.

Key words: Handshake protocols, Petri nets, process calculus, types.

1 Introduction

Asynchronous circuits are used to design systems where the local activity of each sub-
unit is not restrained by some global condition, like the long time intervals imposed by
a system clock. When designing such systems, one has to face several questions. How
do we know when a message we sent has reached its destination so that we can use
the same channel again, i.e. how can we avoidtransmission interference? How can we
ensure the correct behavior regardless of computational speeds of single modules and
propagation delays over wires, i.e. how can we enforcedelay-insensitivity?

Handshake protocolstry to answer these questions by imposing an interactive com-
munication discipline. In particular, the protocols require that after a circuit has sent a
message on a channel, it has to wait for a confirmation that themessage was received
before sending again on the same channel. This requirement alone is enough to rule out
transmission interference. For their simplicity and efficiency, handshake protocols have
been employed by enterprises like Philips and Sun in the development of a series of
VLSI chips [9].

The first attempts to formalize delay-insensitive protocols and their properties em-
ployed trace sets [17]. In particular, the first model to specifically address the handshake
case was given in [18]. Trace models have been able to neatly formalize the properties
of handshake protocols which ensure delay-insensitivity,but so far they have failed in
representing correctly their composition [4].

To overcome this limitation, we propose an alternative approach to modeling hand-
shake protocols: we propose a process calculus inspired by Robin Milner’s Calculus of

⋆ Corresponding author: fossati@di.unito.it

Communicating Systems (CCS) [13]. Similarly to CCS, our calculus defines concur-
rent processes that communicate via rendez-vous channels.However, in order to ensure
the handshake discipline, the calculus features another synchronization mechanism, by
means of shared resources, reminiscent of coordination languages like Linda [7]. Also,
the calculus is endowed with a linear typing system, inspired by [11, 19]. These design
choices allow to express the external behavior of a handshake protocol, along with a
more complex internal behavior.

We say that this is the first independent syntactical description of the handshake
behavior, as ourhandshake configurationsare independent from any semantical inter-
pretation while the handshake behavior is ensured by the typing system. This was not
the case in previous process algebras for handshake protocols [18, 10], where only pro-
cesses whose trace semantics satified the handshake behavior were considered, thus
processes were trace sets and inevitably suffered from the compositionality problems
observed in the underlying trace model.

We then compare our calculus and the trace model by defining, for each configu-
ration, the corresponding set ofquiescenttraces, i.e. the traces corresponding to com-
putations that may not be extended with an output event. We show that this quiescent
trace semantics is sound w.r.t. Van Berkel’s definition [18]. By means of an example, we
show that quiescent trace equivalence is not a congruence w.r.t. parallel composition.
This confirms the intuition that trace models of handshake protocols are not informa-
tive enough, and their branching structure needs to be takeninto account. Indeed weak
bisimilarity is a congruence for our calculus.

To show the expressive power of the calculus, we give it a Petri net semantics,
where the handshake discipline is imposed by restricting a net’s external structure. We
studied this model in details in a previous work [6], where weshowed that it captures
precisely the behavior of a protocol, in the sense that thereis a protocol for each net and
a net (possibly with an infinite number of places and/or transitions) for each protocol.
In this work we show that there is a correspondence between handshake processes and
finite Petri nets, in the sense that for each finite handshake Petri net, there is a weakly
bisimilar process.

The graphical approach to the formal analysis of asynchronyis not a new one
([1],[12],. . .). In particular Dan Ghica developed a language for asynchronous hard-
ware design by taking inspiration from the Geometry of Interaction and handshake cir-
cuits [8]. However his goal was to improve previous hardwaredesign languages [18, 3]
and not to capture all handshake behaviors.

The paper is structured as follows. In Section 2 we recall thefirst formalization of
handshake protocols as we introduce the notion of handshakelanguage. In Section 3,
we present syntax, operational semantics and type system ofour calculus. We show
that the set of quiescent traces of a typed configuration is a handshake language. We
show that weak bisimilarity is a congruence, while quiescent trace semantics is not.
In Section 4, we present handshake Petri nets, with some examples to show how they
work. In Section 5, we present the interpretation of the calculus into handshake nets,
and we show that it is fully abstract with respect to weak bisimilarity. To conclude, we
show the universality of the semantics, by showing that every bisimilarity class of finite
handshake nets is denoted by a process.

2 Handshake protocols

In this section we recall the background properties of handshake protocols and introduce
the notion ofhandshake language.

Definition 1. A handshake structureis a pair 〈Ports, d〉, where Ports is a finite set of
portsand the function d: Ports→ {!, ?} determines a direction for each port,activeor
passive.

As we shall see, active ports are allowed to start a communication, while passive
ports are initially waiting. For the rest of this section let〈Ports, d〉 be a handshake
structure. For each porta, there are two possible messages:a (input message), and ¯a
(output message). Lett be a finite trace on the alphabet of messages∪a∈Ports{a, ā}. t is a
handshake traceon 〈Ports, d〉 if for all a ∈ Ports:

– t↾ {a, ā} = āaāa. . . whend(a) =!;
– t↾ {a, ā} = aāaā . . . whend(a) =?;

Given a set of tracesS we writeS≤ for its prefix-closure. Letσ be a set of handshake
traces,s ∈ σ≤ is passivein σ if and only if there is no extension ofs in σ obtained by
appending an output message:∀s·m ∈ σ≤, m is an input message. We writePas(σ) for
the set of passive traces inσ≤.

We definer Ports as the smallest binary relation which is closed by reflexivity, tran-
sitivity and concatenation and such that for any distinct portsa, b ∈ Ports:

1. ab̄ r Ports b̄a;
2. āb̄ r Ports b̄ā;
3. ab r Ports ba

We say thats reorders tin Ports if s r Ports t.
Let s be a handshake trace anda ∈ Ports. We writea xPorts s if sa is still a hand-

shake trace. Finally:

Definition 2. A handshake languageσ on 〈Ports, d〉 is a non-empty set of finite hand-
shake traces on〈Ports, d〉 such that:

1. Pas(σ) ⊆ σ (closed under passive prefixes);
2. (t ∈ σ ∧ s r Ports t)⇒ s ∈ σ (reorder closed);
3. (s ∈ σ≤ ∧ a xPorts s)⇒ s · a ∈ σ≤ (receptive).

Closedness under passive prefixes, rather than under any prefix as it is usually the
case for trace semantics, allows us to representmay&must nondeterminism. We want
to represent systems which are able not only to make an exclusive choice between two
outputs, but also to choose between sending an output and notdoing anything.

The intuition is thus that a trace in a handshake language represents aquiescent
execution of a protocol, that is an execution that ends in a state in which the system may
decide to wait for more inputs before sending any output. By definition, after a passive
trace the system cannot do anything but receiving. Then all passive traces correspond
to quiescent executions.

Reorder-closedness says that a messagem′ cannot “block” a messagem′′ on a dif-
ferent channel unlessm′ is an input andm′′ an output. The intuition is that inputs may
carry necessary information and thus may block, while the transmission of an output
may require informations and can thus be blocked.

Finally, receptiveness means that whenever it is the environment’s turn to send a
message, the system must be ready to accept it.

Definition 2 is like VanBerkel’s original definition of handshake process [18] with-
out data-passing. No satisfactory definition of composition for handshake languages
exists. In particular the definition given by VanBerkel is not associative, as shown by
the first author [4] using a counter-example by Roscoe [16].

In the following sections, handshake languages will be usedas a yardstick against
which to measure the correctness of other descriptions of handshake protocols.

3 The calculus

In this section we provide the formal definition for ourCalculus of Handshake Configu-
rations (CHC). We stress that we do not model data-passing as we are only interested in
the communication protocol. The calculus is endowed with two communication mech-
anisms. Besides the external communication via rendez-vous channels, there is also a
form of internal communication, invisible to the outside, where actions may require
resources in order to be performed and may release resourcesfor other actions to use.
This is necessary to model internal synchronizations between different ports of the same
system. However, different systems shall communicate only through channels.

3.1 Syntax and Operational Semantics

We consider a setA of channelsdenoted bya, b3, and a setR of resourcesdenoted
by r, k. The syntax of the calculus uses three syntactic categories: threads, processes
andhandshake configurations. Threads are purely sequential and allow prefixing while
processes are parallel compositions of threads. The prefixes areinputandoutputactions
on a finite set of resources. As we will see later, input actions releaseresources and
output actionsuseresources. Let∆ ⊆ A:

act ::= a{r1,...,rn} | ā{r1,...,rn} Actions
T ::= 0 | act.T | RecT Threads

P,Q ::= T | P | Q | P \ ∆ Processes

A handshake configuration is composed of a processP along with amultisetof
resourcesS for internal synchronization. A configuration can beopenor closed:

M ::= NP,SO | 〈P,S〉 Open and closed configurations

Intuitively, open configurations represent systems under construction, whose resources
are still accessible to the environment. Closed configurations represent completed sys-
tems and can only communicate via handshake channels.

3 We will use channels to model ports, but we prefer to keep the conceptual difference between
the two notions

Na{r1,...,rn}.T,SO
a
−→ NT,S + {r1, . . . , rn}O

(inev)
NT · RecT,SO

e
−→ NT ′,S′O

NRecT,SO
e
−→ NT ′,S′O

(rec)

Nā{r1 ,...,rn}.T,S + {r1, . . . , rn}O
ā
−→ NT,SO

(outev)
M

e
−→ M′ ch(e) < ∆

M \ ∆
e
−→ M′ \ ∆

(res)

M
e
−→ M′

M | N
e
−→ M′ | N

(par1)
M

ā
−→ M′ N

a
−→ N′

M | N
τ
−→ M′ | N′

(par2)

P ≡ P′ NP′,SO
e
−→ NQ′,S′O Q ≡ Q′

NP,SO
e
−→ NQ,S′O

(struct)
NP,SO

e
−→ NQ,S′O

〈P,S〉
e
−→ 〈Q,S′〉

(closure)

Fig. 1. Labeled transition semantics

The operational semantics is given in terms of an LTS over handshake configura-
tions. Labels are channels with their polarity, plus the unobservable label:

e ::= ā | a | τ a ∈ A

Given an observable label, the functionchreturns the channel on which it occurred. For-
mally: ch(ā) = ch(a) = a for any channela. The definition of the operational semantics
is simplified thanks to the congruence (≡) between processes:

P | Q ≡ Q | P Rec 0≡ 0

Let res(P) be the set of resources of a processP. As meta-notation, we define sequential
composition of threadsT · T′:

(act.T) · T′ = act.(T · T′) T · T′ = T′ (T ≡ 0) (RecT) · T′ = RecT (T . 0)

and we extend process operators to configurations:

NP1,S1O | NP2,S2O = NP1 | P2,S1 + S2O NP,SO \ ∆ = NP \ ∆,SO

〈P1,S1〉 | 〈P2,S2〉 = 〈µ1(P1) | µ2(P2), µ1(S1) + µ2(S2)〉 〈P,S〉 \ ∆ = 〈P \ ∆,S〉

where+ denotes the union of multisets andµ1 : res(P1) ∪ S1 → R1 andµ2 : res(P2) ∪
S2→ R2 are injective functions between resources such thatR1 andR2 are disjoint and
all the resources they contain are fresh. Moreoverµ(S) is the point-to-point application
of the functionµ to the multisetS, whileµ(P) is the process obtained fromP by renam-
ing any label occurrence according toµ. This guarantees that two closed configurations
can only communicate via channels .

Note that we do not define the parallel composition of an open and a closed config-
uration. The idea is that we may combine two different parts of a system (in the con-
struction stage) or two completed systems (for interaction), but we may not combine a
system under construction with a completed one.

a ∈ A
0⊲!a

(ax)
T⊲!a

RecT⊲!a
(rec)

T⊲?a
ā{r1,...rn}.T⊲!a

(outpref)
T⊲!a

a{r1,...rn}.T⊲?a
(inpref)

P⊲ Γ′ Q⊲ Γ′′ ∀a ∈ Dom(Γ′) ∩ Dom(Γ′′), Γ′(a) , Γ′′(a)
(P | Q) \ (Dom(Γ′) ∩ Dom(Γ′′)) ⊲ Γ′ ⊙ Γ′′

(par)

P⊲ Γ
NP,SO ⊲ Γ

(oconf)
P⊲ Γ
〈P,S〉 ⊲ Γ

(cconf)

Fig. 2.Handshake types

The derivation rules for the operational semantics are shown in Figure 1. When
an input occurs, a set of resources becomes available; whilean output requires a set
of resources in order to occur, then the used resources disappear. The other rules are
quite standard. Note however that the operational distinction between open and closed
configurations comes from the two distinct cases of composition given above. In the
parallel composition of open configurations, one side may influence the other by mod-
ifying a shared resource, as no renaming takes place. This isnot possible for closed
configurations, as renaming prevents the sharing of resources.

A sequence of transitionsM0
e0
−→M1 . . .Mn

en
−→M is denotedM0

t
−։ M, wheret =

e0 . . .en. The stringt is called thestrongtrace of the sequence, while theweaktrace is
the restriction oft to the labels other thanτ. Strong (∼) and weak (≈) bisimilarity are
also defined as usual [13] on the labeled transition system for CHC.

3.2 Typing System

A typeΓ is a partial function from channel names to{!, ?}. We will use the shorthand
notation !a or ?a to describe a type defined on channela, and commas to join types. We
say thata is activein Γ whenΓ(a) =! and we say it ispassivewhenΓ(a) =?.

LetΓ′ andΓ′′ be two types and leta be a channel. Let us define the functionΓ′⊙Γ′′ :
(Dom(Γ′)\Dom(Γ′′)) ∪ (Dom(Γ′′)\Dom(Γ′))→ {!, ?} such that:

– Γ′ ⊙ Γ′′(a) = Γ′(a), whena ∈ Dom(Γ′)\Dom(Γ′′);
– Γ′ ⊙ Γ′′(a) = Γ′′(a), whena ∈ Dom(Γ′′)\Dom(Γ′).

Typing judgementsare of the formT ⊲ Γ, P ⊲ Γ, M ⊲ Γ, whereT is a thread,P
a process,M a configuration andΓ a type. The typing rules are shown in Figure 2.
The empty thread is active: this models receptiveness, because a thread of passive type
must always be able to perform another input. The following three rules guarantee that
threads are alternating on each channel. The parallel composition of two processes is
allowed only if threads on the same channel have dual types. These channels must then

be restricted so that no other process can communicate on them. This models the point-
to-point communication discipline of handshake protocols. Note that resources do not
play any role in the typing.

The following results show the intuition behind the typing system.

Lemma 3 (Reduction).Let M be a configuration such that M⊲ Γ. Then:

– M
a
−→ ⇐⇒ Γ(a) =?;

– M
ā
−→ ⇒ Γ(a) =!;

– M
e
−→ M′ ∧ e, τ ⇒ M′ ⊲ Γ′ s.t. Dom(Γ′) = Dom(Γ) ∧

∀b ∈ Dom(Γ), b, ch(e)↔ Γ(b) = Γ′(b);
– M

τ
−→ M′ ⇒ M′ ⊲ Γ;

Corollary 4 (Subject Reduction). Let M ⊲ Γ and M
s
−։ M′ then there is a typeΓ′

such that M′ ⊲ Γ′.

3.3 Examples

As a first example, we show a configuration representing theORhandshake protocol.

OR= 〈a{r1}.Recā{r2}.a
{r1}.0 | Rec b̄{r1}.b

{r2}.0 | Rec c̄{r1}.c
{r2}.0, ∅〉

We have thatOR⊲?a, !b, !c. When a request on the passive porta arrives, the resource
r1 becomes available and this enablesORto send a request on either active portb, c. An
acknowledge to this last request enables an acknowledge to the first one. The second
configuration represents theMIX protocol.

MIX = 〈b{k1}.Recb̄{k2}.b
{k1}.0 | c{k1}.Rec c̄{k2}.c

{k1}.0 | Rec d̄{k1}.d
{k2}.0, ∅〉

We have thatMIX ⊲?b, ?c, !d. Each time an environment request arrives (on either pas-
sive portb, c), the componentMIX handshakes on its active portd and after completion
it acknowledges to the first request. If, by the time the handshake on the active port is
complete, the environment has sent a request on the other port, MIX chooses nondeter-
ministically which request to acknowledge first.

The two protocols can be composed in parallel, communicating on the common
ports. We have (OR | MIX) \ {b, c}⊲?a, !d.

3.4 Soundness

In this section we show that typed CHC configurations indeed define handshake lan-
guages, using the weak traces of the labeled transition semantics.

Each feature of the calculus plays a role in modeling the handshake discipline. Let
us see informally how. First of all, handshake languages alternate input and output on
the same port. This is enforced by the typing system. The reorder closure is guaranteed
by the fact that different ports are on different parallel threads. The only reordering that
is in general not allowed is when an input blocks an output. Aninput can block an output
because an output may need resources that will only be provided by the input. Finally,

receptiveness is guaranteed by the fact that inputs do not need resources, and can always
occur, provided that the alternation with the corresponding outputs is respected.

In order to denote handshake languages we consider the weak traces of the transition
sequences of a configuration. If we considered the traces of all transition sequences, the
denoted languages would always be prefix closed and some handshake languages would
excape us. To characterize the larger class of languages closed under passive prefixes,
we consider only the traces of thequiescenttransition sequences.

A configurationM is quiescentif it cannot (weakly) perform an output, i.e. if there is

no transition sequence of the formM
(τ)∗

−։
ā
−→, for any channela. A transition sequence

M
t
−։ M′ is quiescentif M′ is.

Definition 5. Let M be a handshake configuration. We define HL(M) to be the set of
weak traces of all the quiescent transition sequences whichstart from M.

Let M be a configuration andΓ a type such thatM ⊲ Γ. The handshake structure
HS(Γ) = 〈PortsΓ , dΓ〉 is defined by settingPortsΓ = Dom(Γ) anddΓ = Γ.

Proposition 6 (Soundness).Let M be a handshake configuration, such that M⊲ Γ.
Then HL(M) is a handshake language on the handshake structure HS(Γ).

We observe, however, that the other direction, the fact thateach language is the de-
notation of some configuration, cannot be established. Thisis due to the presence of
non recursive handshake languages which could never be captured by finite configura-
tions. It would still be interesting to characterize the class of handshake languages that
correspond to CHC configurations. We leave this as future work.

3.5 Compositionality

Open configurations can communicate via shared resources, but this is not directly ob-
servable in the labeled transition semantics. Thus we cannot expect a labeled equiva-
lence to be fully congruent for them. However weak bisimilarity is a congruence with
respect to composition of closed configurations:

Proposition 7. Let M1,M2,N be closed handshake configurations such that M1,M2 ⊲

Γ, N⊲Γ′ and(M1 | N)\∆⊲Γ⊙Γ′, (M2 | N)\∆⊲Γ⊙Γ′, where∆ = Dom(Γ)∩Dom(Γ′).
Then M1 ≈ M2 implies(M1 | N) \ ∆ ≈ (M2 | N) \ ∆.

This is consistent with our intepretation of resources asinternal means of commu-
nication. Our main goal was to describe theexternally observablebehavior of a system
and we do so by considering only those configurations whose resources cannot be ac-
cessed by the environment.

In Section 2 we talked about the difficulty of finding a good definition of compo-
sition for handshake languages. This intuition is confirmedas “quiescent trace equiva-
lence” is not a congruence. Consider the following processes:

P1 = c̄{r1,r2}.c
{}.0 | b̄{r3,r1}.b

{r1}.Recb̄{r1}.b
{r1}.0 | (d̄{r3,r2}.d

{r3}.0 | d{}.d̄{}.d{}.0) \ {d}

P2 = c̄{r1}.c
{}.0 | Recb̄{r1}.b

{r1}.0 .

Consider the closed configurationsM1 = 〈P1, {r1, r2, r3}〉 and M2 = 〈P2, {r1, r2, r3}〉.
They are both interpreted as the same handshake language:

HL(M1) = {c̄, c̄c, b̄, b̄bc̄, b̄bc̄c, b̄bb̄, . . .} = HL(M2)

however, if we compose them withN = 〈b{}.Recb̄{}.b{}.0 | c{k}.0 | ā{k}.a{}.0, ∅〉we obtain
two configurations with different interpretations:

HL((M1 | N) \ {b, c}) = {ε, ā, āa} HL((M2 | N) \ {b, c}) = {ā, āa}

Therefore the parallel composition of CHC configurations cannot be used to define
the composition of handshake languages. In order to composehandshake protocols,
some more knowledge on the branching structure is needed. CHC provides a suitable
formalism to study this structure.

4 Handshake Petri Nets

We argued that not all handshake languages can be represented by CHC configurations,
as, for instance, there are non recursive handshake languages. To show the expressive
power of our calculus, we provide an alternative semantics of CHC based on Petri nets.
In [6], we studied a Petri net representation of handshake protocols, called handshake
Petri net, and we showed that all handshake languages can have a, possibly infinite,
handshake Petri net representation. In this paper we show that everyfinite handshake
Petri net is weakly bisimilar to a CHC configuration.

In this section we introduce handshake Petri nets. The present definition is slightly
different from the one in [6], but the results of that paper carry over. We assume some
basic knowledge on Petri nets, which we will use in their standard graphical represen-
tation [15]. Throughout the paper we will consider Petri nets in theirunsafeversion,
where places are allowed to contain several tokens at the same time. This is not just for
convenience. Unsafe nets are necessary to carry out our construction.

4.1 Definition

Handshake Petri nets are Petri nets with a special “externalinterface”, reflecting the
structure of handshake ports. We define handshake ports in two phases. We first define
the static structure of ports, and then we specify the markings.

Let G be a Petri net and letNO andNI be a partition of its nodes (places and transi-
tions). The elements ofNO will be calledoutput transitions/ placeswhile the elements
of NI will be calledinput transitions/ places. We give an inductive definition of astatic
handshake port a= 〈G,NO,NI 〉 as follows:

– (Basic cases)NO andNI contain no transition;
– (Inductive cases) leta′ = 〈G′,N′O,N

′
I 〉 be a static port:

• (input prefixing) given a placep ∈ N′I with no outgoing arcs,a is obtained from
a′ by adding an input transitiont and an arc fromp to t;

!!C
CC

C

!!C
CC

C

76540123•
I

//
I

//

!!C
CC

C

=={{{{
76540123

O
//

O
//76540123

I
//

I
//

!!C
CC

C

=={{{{
76540123

O
//

EDO

BC@A

OO=={{{{
=={{{{

Fig. 3. A passive port (I is for input andO is for output)

• (output prefixing) given a placep ∈ N′O with no outgoing arcs and a place
p′ ∈ N′I with exactly one outgoing arc,a is obtained froma′ by adding an
output transitiont, an arc fromp to t and an arc fromt to p′;
• (alternation) given a placep ∈ N′O and a transitiont ∈ N′I with no outgoing

arcs,a is obtained froma′ by adding an arc fromt to p.

Let a′ be a static port and letp be a place of (the Petri net of)a′ such that ifp is an
input place,p has an outgoing arc. Leta be the net obtained froma′ either by adding
one token top or by keepinga′ with no tokens, thena is ahandshake port. Moreover, if
a is asa′ (no tokens) or ifp is an output place we say thata is anactive port, otherwise
we say thata is apassive port.

Let G be a Petri net,G′ a subgraph ofG anda = 〈G′,NO,NI 〉 a port s.t. :

– a place ofG′ may only be connected to transitions ofG′;
– a transitiont ∈ NO of G′ may only have outgoing arcs to places ofG′;
– a transitiont ∈ NI of G′ may only have incoming arcs from places ofG′.

thena is a handshake port of G. Figure 3 shows an example of a passive handshake
port of some net. The arrows without source or target indicate the way the port may
connect to the rest of the net. The statical structure imposes alternation between the
firings of input and output transitions. It is also ensured that, if an input place may ever
contain a token, then it must have an outgoing arc to an input transition (receptiveness).
Finally, by allowing a port to contain several input and output transitions we are able
to model each event separately. For instance, two distinct input transitions may connect
differently to the rest of the net, thus providing different resources.

Definition 8. The pair H= 〈GH ,PortsH〉 is a handshake Petri net (hpn)just when GH

is a Petri net and PortsH a set of disjoint handshake ports of GH .

Let H = 〈GH ,PortsH〉 and lett (p) be a transition (place) ofGH . Thent (p) is
internalof H if it is neither of input nor of output (in some porta of H).

4.2 Composition

A linkagebetween an active porta ∈ PortsH and a passive portb ∈ PortsH of an hpn
H = 〈GH ,PortsH〉 is the hpnL(H, a, b) = 〈GH,a,b,PortsH\{a, b}〉, whereGH,a,b is the
net obtained by adding two fresh placesp1 and p2 to GH and arcs from each output
transition ofa to p1, from p1 to each input transition ofb, from each output transition
of b to p2 and fromp2 to each input transition ofa.

((QQQQQQQQ

...
��7

77
//___ 76540123 //___

��7
77

66mmmmmmmm

&&MMMMMMMM ...88qqqqqqqq 76540123•

CC���
76540123

�����
76540123•

CC���
76540123

�����xxqqqqqqqq

...

[[777
ffMMMMMMMM

vvmmmmmmmm
76540123oo_ _ _

[[777
oo_ _ _ ...

hhQQQQQQQQ

Fig. 4.Example of composition of ports

We call link of L(H, a, b), denotedlink(H, a, b) , the graph consisting of the graphs
of a andb plus p1, p2 and any arc connecting them to transitions ofa or b. Figure 4
shows an example of link between an active port (left) and a passive port (right).

Definition 9. Let H1 = 〈G1,Ports1〉 and H2 = 〈G2,Ports2〉 be two handshake Petri
nets. Let{a1, . . .an} ⊆ Ports1 ∪ Ports2 be a set of active handshake ports and let
{b1, . . .bn} ⊆ Ports1 ∪ Ports2 be a set of passive handshake ports, such that for1 ≤
i ≤ n, ai ∈ Ports1 if and only if bi ∈ Ports2. Then:

H1 ‖{(a1,b1),...(an,bn)} H2

=

L(. . . L(〈G1 +G2,Ports1 ∪ Ports2〉, a1, b1), . . .an, bn)

is the composition of H1 with H2 by linking the pairs(a1, b1), . . .(an, bn).

It is easy to see that the composition of two hpns is well-defined and associative.

4.3 Observational Properties of hpns

Let us labela (ā) each input (output) transition of porta, for anya ∈ PortsH , andτ

each internal transition ofH. We writeH
l
→ H′ (which readsH l-reduces toH′) if a

transition labeledl is enabled inGH and its firing leads to the hpnH′. Seen as labeled
transition systems, hpns naturally inherit many definitions that we gave for CHC. Two of
these are strong (∼) and weak (≈) bisimilarity. The generality of these definitions allow
us to go as far as saying that an hpn is (weakly or strongly) bisimilar to a handshake
configuration.

Another inherited definition is that of the functionHL, which is identical to the one
we gave in Section 3.4 for a handshake configuration. However, we still need to adapt
HS. Let H = 〈GH ,PortsH〉 be an hpn and letdH : PortsH → {!, ?} be the function
which maps each porta to !, whena is active inH, or to ?, when it is passive. We define
HS(H) = 〈PortsH , dH〉.

Proposition 10. [6]Let H be a handshake Petri net, then HL(H) is a handshake lan-
guage on the handshake structure HS(H).

Proposition 11. [6] Letσ be a handshake language on a handshake structure〈P, d〉.
Then there is an hpn Hσ such that HS(Hσ) = 〈P, d〉 and HL(Hσ) = σ.

��8
88

��

��8
88

76540123•

CC���
76540123

�����
76540123•

CC���
76540123

�����
//

��3
33

76540123

//

00

[[888

����
��

��
��

��

[[888
76540123 //

��3
33

76540123•

EE���
76540123

����
�

��3
33

��3
33

OO

76540123•

EE���
76540123

����
�YY333

76540123oo 76540123•

EE���
76540123

����
�

76540123•

EE���
76540123

����
�

76540123

YY3333333333

oo

oo

YY333

[[YY333
YY333

Fig. 5.OR(left) andMIX (right) handshake components

Note that, for the last result, the netHσ may contain an infinite number of internal
places and transitions. This is unavoidable as languages are in general not recursive
and thus not finitely representable. Figure 5 shows two simple examples of handshake
protocols:ORandMIX described in Section 3.3.

5 Full Abstraction and Definability

In this section we relate the calculus CHC with its Petri netsmodel . We only sketch the
constructions, the detailed proofs are available on the extended version [5].

5.1 Full Abstraction

Let M be a handshake configuration, such thatM ⊲ Γ. We can assumeM = 〈P,S〉 and
define the hpn~M�Γ by cases ofP. The definitions for open configurations are identical,
~NP,SO�Γ = ~〈P,S〉�Γ.

Let P = 0. ThenΓ =!a for some channela. Now, define a port which contains a
single output placep holding a token and call ita as the channel. LetG be the Petri net
which containsp plus an internal placeq, labeledr, for eachr ∈ S, whereq contains as
many tokens as there are occurrences ofr in S. Then~M�Γ is the hpn〈G, {a}〉.

Let P = a{r1,...rn}.P′. Then the last applied typing rule is(inpref), thenΓ =?a and
P′⊲!a. Let ~〈P′,S〉�!a = 〈G′,Ports′〉. By construction,Ports′ = {a} wherea is an
active port. Letp′ be the place ofa with a token. Let’s extenda by adding a fresh input
placep, a fresh input transitiont labeleda and arcs fromp to t and fromt to p′, then by
removing the token fromp′ and putting a token intop. Finally let’s add arcs fromt to
any place labeledr i , for 1 ≤ i ≤ n. If any of these places does not exist yet, add it anew.
We thus obtain a graphG. Then~M�Γ = 〈G, {a}〉. The case of the output prefix is dual.

Let P = RecP′. ThenΓ =!a and P′⊲!a, for some channela. Let ~〈P′,S〉�!a =
〈G′,Ports′〉. By construction,Ports′ = {a} wherea is also the active port associated to
channela. Let p be the place ofa which holds a token. Ifp has an incoming arc or if
any other place ina has two incoming arcs,~〈P,S〉�Γ = ~〈P′,S〉�!a. Otherwisea must
contain a placep′ with no outgoing arcs, by construction. Note that bothp andp′ must
be output places, also by construction. Then replacep andp′ by a placeq obtained by
“joining” them. In particular,q must be the new source ofp’s outgoing arc and the new
target ofp′’s incoming arc. CallG the graph so obtained. Then~〈P,S〉�Γ = 〈G, {a}〉.

Let P = (P′ | P′′) \ ∆. We construct~〈P,S〉�Γ in three steps. First let~〈P′,S〉�∆
Γ1

be obtained from~〈P′,S〉�Γ1 by renaming each porta such that (a, a) ∈ ∆, as a!

whenΓ1(a) =! and asa? whenΓ1(a) =?. Define analogously~〈P′′,S〉�∆
Γ2

. Then let
〈G′,Ports〉 = ~〈P′,S〉�∆

Γ1
‖{(a! ,a?)|a∈∆} ~〈P

′′,S〉�∆
Γ2

. Then, for any two distinct placesp
and p′ of G′ labeled by the same resourcer do the following: substitutep and p′ by
a single place also labeled byr, having all the arcs of bothp andp′; note also that by
construction,p andp′ contained the same number of tokensk, then putk tokens in the
new place as well. LetG be the net so obtained. Then~M�Γ = 〈G,Ports〉.

The semantics is well defined and fully abstract with respectto weak bisimilarity:

Lemma 12. Let M be a configuration such that M⊲Γ. Then~M�Γ as defined above is
a handshake Petri net and M≈ ~M�Γ.

Theorem 13 (Full Abstraction).Let M and M′ be two configurations such that M⊲Γ
and M′ ⊲ Γ′. Then M≈ M′ ⇐⇒ ~M�Γ ≈ ~M′�Γ′ .

5.2 Definability

For each finite hpn there is a weakly bisimilar handshake configuration:

Theorem 14 (Definability).Let H = 〈G,Ports〉 be a handshake Petri net. Then there
are a closed handshake configuration M and a handshake typeΓ, such that M⊲ Γ and
~M�Γ ≈ H.

We present here a simplified construction of the configuration associated toH. The
idea is that each porta of the netH can be modeled by a threadProc(a,H), inductively
on the structure of the port.

Each internal transitiont is first unfoldedas a link between two ports and then
associated to a process. Lett have incoming arcs from internal places labeledr1, . . . r i

and outgoing arcs to internal places labeledr i+1, . . . rn. Thent is unfolded as follows:

76540123
r1

��>
>>

>>
>>

>>
>

76540123

76540123

t

r1

##GG
GG

GG
76540123 ...

...
r i+1 ;;wwwwww

rn
$$JJ

JJ
JJ

76540123
r i

//

��7
77

//76540123 //

��7
77

rn

//

r i+1 =={{{{{{{{{{{
76540123

76540123 r i

::tttttt 76540123 76540123•

CC���
76540123

�����
76540123•

CC���
76540123

�����
[[777

76540123oo

[[777
oo

wherer1, . . . rn are place labels. . Then letH be a hpn,u(H) is the hpn obtained fromH
by unfolding each of its internal transitions. It can be shown thatH ≈ u(H).

For each internal transitiont, let lt be a fresh label associated to it. Consider the
following process.

Proc(t,H) = (Rec l̄t{r1,...r i }
.lt.0 | l

{r i+1,...rn}
t .Rec l̄t.l

{r i+1,...rn}
t .0) \ {lt}

Then we define

Proc(H) = Proc(a1,H) | . . . | Proc(an,H) | Proc(t1,H) | . . . | Proc(tm,H)

wherea1, . . .an are the ports ofH andt1, . . . tm are the internal transitions ofH. Then
let Con f(H) = 〈Proc(H),SH〉, whereSH is the multiset of labels of internal places of
H with a token and a label appears inSH as many times as the number of tokens in the
corresponding place. Finally letch(Ports) be the set of names of ports inPorts, then
ΓH : ch(Ports) → {!, ?} is the function which associates ! to its active ports’ names
and ? to its passive ports’ names. It can be shown that~Con f(H)�ΓH ≈ u(H). Thus
~Con f(H)�ΓH ≈ H.

6 Conclusions

We presented the calculus CHC which describes handshake protocols of communica-
tion. We have given it an lts semantics and a Petri nets semantics in terms of handshake
Petri nets. We have shown that every finite handshake Petri net corresponds to a closed
configuration of the calculus.

We have argued that a branching semantics is necessary to understand handshake
protocols, as the trace model cannot properly define composition. The calculus and the
two semantics provide the necessary framework to formally study handshake protocols.

Our original aim had been to devise a typing system for CCS, that would ensure the
handshake discipline. After many attempts, we came to believe that such typing system
would be cumbersome, if at all possible. Consider in particular the MIX component
defined in Section 4.3. It is essentially characterized by a form of inclusively disjunctive
causality: The request sent on the active port causally depends on either of the requests
received on the passive ports. However, if both are received, it cannot be established
which of the two is actually the cause. This is in contrast with the fact that CCS can be
modeled using safe occurrence nets (which correspond to stable event structures), where
this kind of causality cannot be represented. Therefore we decided to use a second,
different form of communication, in the form of shared resources.

As usual, a result opens new directions to inspect. We would like to characterize
the handshake languages that are described by CHC configurations (and thus by finite
nets). We would also like to study restrictions on the language or the types to char-
acterize behavioral classes of protocols: deterministic,positional, free choice, etc. It
would be interesting to extend the calculus with mobility primitives, like the ones of
theπ-calculus, and study its expressive power. We also would like to use the calculus
to specify and prove the correctness of specific protocols.

Acknowledgments:We thank Roberto Amadio, Catuscia Palamidessi and Frank Valen-
cia for their useful comments. We thank an anonymous refereefor spotting a mistake
in a previous version of our proofs. The first author would like to thank Simona Ronchi
della Rocca, Felice Cardone, Pierre-Louis Curien for theirvaluable inputs and support.
The second author acknowledges the support of the ANR project ParSec: ANR-06-
SETI-010-02.

References

1. S. Abramsky, S. Gay, and R. Nagarajan. Interaction categories and the foundations of types
concurrent programming. InProc. of the 1994 Marktoberdorf Summer School on Deductive
Program Design, pages 35–113. Springer, 1996.

2. S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes.Acta Informatica,
29(9):737–760, 1992.

3. A. Bardsley. Balsa: an asynchronous circuit synthesis system. Master’s thesis. Department
of Computer Science, University of Manchester, 1998.

4. L. Fossati.Modeling the Handshake Protocol for Asynchrony. PhD thesis, Dip. di Informat-
ica, Univ. di Torino & Lab. Preuves Programmes et Systèmes (PPS), Univ. Paris 7, 2009.

5. L. Fossati and D. Varacca. The calculus of handshake configurations (extended version).
Available at http://www.di.unito.it/ fossati/, 2008.

6. L. Fossati and D. Varacca. A Petri net model of handshake circuits. InProc. of First Interna-
tional Workshop on Interactive Concurrency Experience, ICE’08. ENTCS, Elsevier, 2008.
To be published, available at http://www.di.unito.it/ fossati/.

7. D. Gelernter. Generative communication in Linda.ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

8. D. R. Ghica. Geometry of synthesis: a structured approachto VLSI design. InProc. of POPL
’07, pages 363–375. ACM Press, 2007.

9. http://www.handshakesolutions.com/.
10. M. Josephs, J. Udding, and Y. Yantchev. Handshake algebra. Technical Report SBU-CISM-

93-1, School of Computing, Information Systems and Mathematics, South Bank University,
London, 1993.

11. N. Kobayashi, B. Pierce, and D. Turner. Linearity and theπ-calculus.ACM Transactions on
Programming Languages and Systems, 21(5):914–947, 1999.

12. I. Mackie. The geometry of interaction machine. InProc. of POPL ’95, pages 198–208.
ACM Press, 1995.

13. R. Milner.Communication and Concurrency. Prentice-Hall, 1989. Second Edition (1991).
14. R. Milner and D. Sangiorgi. Techniques for “weak bisimulation up-to”. Revised version of

a paper appeared inProc. ofCONCUR ’92, LNCS 630. Available on Sangiorgi’s webpage.
15. W. Reisig.Petri Nets: An Introduction, volume 4 ofMonographs in Theoretical Computer

Science. An EATCS Series. Springer, 1985.
16. A. W. Roscoe. Unbounded nondeterminism in CSP.Journal of Logic and Computation,

3(2):131–172, April 1993. Previously appeared in ‘Two Papers on CSP’, tech. monograph
PRG-67, Oxford University Computing Laboratory, July 1988.

17. J. Udding.Classification and Composition of Delay-Insensitive Circuits. PhD thesis, De-
partment of Math. and C.S., Eindhoven University of Technology, Eindhoven, 1984.

18. K. Van Berkel. Handshake Circuits: an Asynchronous Architecture for VLSIDesign, vol-
ume 5 ofCambridge International Series on Parallel Computation. Cambridge University
Press, 1993.

19. N. Yoshida, K. Honda, and M. Berger. Linearity and bisimulation. InProc. of FoSSaCs ’02,
volume 2303 ofLNCS, pages 417–433. Springer, 2002.

