
Handshake Languages do not Compose

Luca Fossati1 and Daniele Varacca2

1Queen Mary University of London 2 PPS - Universit́e Paris Diderot & CNRS

Abstract. The handshake protocol is an asynchronous communication protocolthat
enforces several properties such as absence of computation interference and insensi-
tivity from delays of propagation on wires. One of the simplest formalisations of the
handshake protocol is via sets of traces (languages). However, such a model still lacks
a satisfactory notion of composition. In this paper we propose a minimal set of axioms
and show that there does not exist any notion of composition which respects them all.
The relevance of this finding goes beyond the scope of the handshake protocol, since
the impossibility result applies to any similar model of asynchronous systems which
relaxes the restrictions enforced in handshake communications.

1 Introduction

The handshake protocol is a protocol of asynchronous communication between concur-
rent systems. It is designed to guarantee the absence of bothcomputation-interference(i.e.
that no message is sent to an unready receiver) andtransmission-interference(i.e. that no
channel carries more than one message) by requiring each message to be followed by a
message of confirmation (requestandacknowledge). It has several practical applications,
for instance it has been employed in the implementation of VLSI chips (see, e.g. [9]).

The formal analysis of the handshake protocol was initiatedby Van Berkel [17] who
proposed atrace model. He considered the set of finite traces which describe the commu-
nications of a system abiding to the handshake protocol. We will call such setshandshake
languages1, and their elementshandshake traces. Besides the alternance of requests and
acknowledges on each channel, handshake languages enjoy other properties which model
the fact that systems are receptive and behave correctly in asynchronous environments.
Handshake languages are not prefix-closed, as the traces they contain are meant to repre-
sent the points of a communication where the system isquiescenti.e. where it waits for
further inputs. This allows to represent different forms ofnondeterminism and deadlocks.

Since systems are meant to interact with one another, any formal model must come
equipped with a notion ofcomposition. The notion of composition proposed by Van
Berkel [17] looks natural and intuitive but, as the first author [4] has shown, it is not
associative. To overcome this problem, other models were proposed. One solution was to
to limit the amount of nondeterminism [3]. A Petri nets model[6] and a CCS-inspired
process calculus [5] were subsequently designed (both complete with respect to the lan-
guages in [17]) along with a fully-abstract interpretationfrom the calculus’ terms to nets.

1 Van Berkel used the term “handshake circuit” since his aim was the application to VLSI design.

1

However one question remains open. Is it possible to define a trace-based semantics
of the handshake protocol which:

1. is sound and complete with respect to handshake behaviours
2. can represent nondeterminism and deadlocks, and
3. contains an associative notion of composition which respects some basic constraints?

The requirements (1) and (2) imply that we need to consider languages which adhere to
the conditions requested in the original model ([17]). Then, we need to state which are
the “basic constraints” that a good notion of composition should satisfy (3).

In this paper we proposetwo constraints that any good notion of composition should
satisfy. Intuitively, we want the composed language to contain precisely the traces that can
be observed when the two languages involved in the composition interact. Therefore we
requireit to contain all the traces that result from an external observation of an interaction
in which both systems execute a quiescent trace.

However we also need to take into account theinfinite internal chatteringstaking
place, i.e. those situations in which the two languages are never quiescent at the same time
and yet engage in an infinite internal communication that never produces any observable
message. Therefore, we alsoallow the composed language to possibly include any trace
which ispotentiallythe external observation of some infinite internal chattering situation.

To resume, a composition is:

– required to contain every trace that is definitely observable;
– allowed to contain some additional traces that are potentially observable.

The main result of the paper is that there is no notion of composition that satisfies
these two requirements and that at the same is associative. Since the requirements are
independent from specific features of the handshake protocol, our negative result applies
to any larger class of languages as well. In§ 5 we further discuss and provide more
detailed context to these implications.

The paper is organised as follows. In§ 2, we introduce handshake languages and their
theoretical framework. In§ 3, we provide a minimal set of axioms that any notion of
composition should satisfy. In§ 4, we derive additional properties from the axioms and
show that there does not exist any notion of composition thatsatisfies them all. Finally,
we conclude in§ 5.

2 Alphabets, Traces and Languages

In this section we recall the definition of handshake alphabets and handshake languages.
Handshake alphabets add some structure over the symbols set, laying the basis for defining
the properties of handshake languages.

2.1 Channels, Ports, Alphabets and Traces

According to the handshake paradigm, systems communicate over bidirectional channels
in alternation. Channels are denoted bya, b, c, . . ., while a? anda! denote, respectively,
the input and the output message that a system can receive (respectively, send) over chan-
nel a. We writeMsg(a) to indicate the set{a?, a!}. The uniqueness of such messages
corresponds to the assumption that no data is exchanged in a communication: we only

2

consider the bare synchronisation signals, regardless of what information they might con-
tain. This does simplify the traditional notion of handshake communication but it does
not make our result less general. In fact, a negative result which holds for a sub-class of
handshake languages, automatically holds for the larger class as well.

A system’s interface towards a channel is called port and is defined as follows.

Definition 2.1 (handshake port).A handshake portA
def
= 〈a, λ〉 consists of a channel

a and a polarityλ ∈ {+,−}, which may bepositive(+) or negative(−).

Handshake ports are the simplest forms ofhandshake alphabets. Given a portA = 〈a, λ〉,
we can only observe communication traces of the following forms:

a!a?a!a? . . . (if λ = +)

a?a!a?a! . . . (if λ = −)

asequential handshake trace(onA) is any finite trace of such shape. We callrequeststhe
message occurrences at odd positions in a sequential handshake trace (e.g.a! if λ = +),
andacknowledgesthose at even positions (e.g.a? if λ = +). We callhandshakeany pair
of occurrences consisting of a request and the successive acknowledge in a sequential
handshake trace, e.g. those underlined (and also those not underlined) in the traces below:

a!a?a!a?a!a?a!a?a!a?a!a?a!a? a?a!a?a!a?a!a?a!a?a!a?a!a?a!

The portA admits adual portA⊥ = 〈a, λ∗〉, where+∗ = − and−∗ = +. Thus, dual
ports share the same communication channela but have dual polarities. They represent
the two ports at opposite ends ofa. Note that from any non-empty sequential handshake
trace we can infer both the channel and the polarity of the port over which the trace is
defined.

Alphabets are sets of ports. Below,ch(A) denotes the channel of a handshake portA.

Definition 2.2 (handshake alphabet).A handshake alphabetA
def
= {A1, . . . , An} is a

set of portsA1, . . . , An such thatch(Ai) 6= ch(Aj), for all i 6= j.

We writeA for the singleton alphabet{A}. The functionsch(−) andMsg(−) are ex-
tended to general alphabets as follows:

ch(A) = {ch(A) | A ∈ A} Msg(A) = ∪a∈ch(A)Msg(a)

Given a handshake alphabetA, let s be a sequence of symbols from the setMsg(A) and
let A′ ⊆ A. Theprojection ofs onA′, denoteds ↾ A′, is obtained by removing froms
the symbols which are not inMsg(A′). We define handshake traces as follows:

Definition 2.3 (handshake trace).A handshake traceon a handshake alphabetA is a
sequences of symbols from the setMsg(A) such that, for anyA ∈ A, s ↾ A is a
sequential handshake trace. We writeLA for the set of finite handshake traces overA.

Henceforth we shall speak of “traces”, always meaning handshake traces.
Note that, while the traces observable on handshake ports are constrained to one of

two possible forms, handshake alphabets in general allow the observation of a variety of
traces, since communications over different ports occur inparallel. A single handshake on
a channela may be interleaved with sequences of requests and acknowledges on different
channels. A sequential handshake trace is thus a special case of a handshake trace.

3

2.2 Handshake Languages

We define alanguageas a set of finite handshake traces on a handshake alphabetA,
i.e. a subset ofLA. We letσ, τ, ρ, . . . range over languages. We have already mentioned
that from a non-empty sequential trace we can infer the port over which it is defined.
A straightforward consequence is that we can infer the minimal alphabet on which a
language is defined2. Then we writeAσ to denote such alphabet.

Languages can be conveniently seen as forest-like graphs [17]. For example, the lan-
guageσbad = {a?a!, a?a!a?a!, a?a!a?a!b!c!, a?a!a?b!c!b?} corresponds to the graph:

◦
b! // c! // ◦

a?

// a!

// ◦
a?

//
a! 55jjjjjj

b!
))TTTTTT

c! // b? // ◦

Since languages are in general not prefix-closed, our graphscontain small circles to in-
dicate the prefixes which are actual traces of the language. Such prefixes represent the
points of an execution in which the language may decide to stop (e.g. to wait for further
inputs). For example,σbad may decide to stop ata?a!a?a! and wait indefinitelyor to go
on and output a message onb. Thus, for anyσ, s ∈ σ is said to be aquiescent traceof σ.

Not all languages are handshake languages. Next we set the conditions for languages
to be handshake languages. Let us start by introducing a few notational conventions. We
write s ⊑ t to indicate that the traces is a prefix of the tracet, we writes · t to denote the
concatenation ofs andt, and we writeσ≤ to denote the prefix-closure of a languageσ.

Given s ∈ σ≤, a prefix of some trace ofσ, we say thats is passive(w.r.t. σ) if it
cannot be extended with outputs inσ. Formally,s is passive iff:

∀t ∈ σ s.t.s ⊑ t, ∃a ∈ ch(Aσ) s.t.t = s · a? · t′

σp denotes the passive prefix-closure ofσ (the union ofσ and its set of passive prefixes).
Note that, at a passive trace, a language has no choice but to stop and wait for further

inputs. Then we want all passive traces to be quiescent. Formally, as a first condition, we
demand thatσ = σp (σ is closed under passive prefixes).

The languageσbad defined above is not closed under passive prefixes. For example
the empty traceǫ is passive w.r.t.σbad because it can only be extended with an input on
a, and yetǫ /∈ σbad. By closingσbad under passive prefixes we obtain:

(σbad)
p = {ǫ, a?a!, a?a!a?a!, a?a!a?a!b!c!, a?a!a?b!c!, a?a!a?b!c!b?}

Next we define a relationrA between traces on alphabetA. We first definerA on
traces consisting of only twoindependent messages, where messages are independent if
they belong to two distinct channels. Leta, b ∈ ch(A), s.t.a 6= b. Then we set:

a!b! rA b!a! a?b? rA b?a? a?b! rA b!a?

Further, we closerA by concatenation, reflexivity and transitivity. If no confusion may
arise, we write justs r t, which readss reorderst. Intuitively, whenever we find two inde-
pendent outputs one after the other, we can reorder them by permuting their occurrences,

2 The inferred alphabet is minimal because we can always add further unused ports to it.

4

and similarly for two independent inputs. But also, when an input follows an independent
output, the trace can be reordered by moving the input back before the output.

A languageσ is reorder-closediff s ∈ σ andt r s imply t ∈ σ. We writeσr for the
reorder-closure ofσ. As a second condition, we ask thatσ be reorder-closed:σ = σr.

This requirement is common to most models of asynchronous communication. But,
once again, our languageσbad does not satisfy it. The following is its reorder-closure:

(σbad)
r = { a?a!, a?a!a?a!, a?a!a?a!b!c!, a?a!a?b!a!c!, a?a!a?b!c!a!, a?a!a?c!b!a!,

a?a!a?c!a!b!, a?a!a?b!c!b?, a?a!a?c!b!b?, a?a!a?b!b?c! }

We now define another relationxA as the smallest preorder on traces such that: for
any s ∈ LA anda ∈ ch(A), if s · a? ∈ LA thens · a? xA s. Again, if no confusion
may arise, we writesx t, which reads:s input-extendst. The input-extension closureof
a languageσ, denotedσx, is defined to contain all the traces ofσ, plus those traces which
input-extend some prefix ofσ but which are not prefixes ofσ themselves. As follows:

σx = σ ∪ {t | t /∈ σ≤ ∧ ∃s ∈ σ≤ s.t.txAσ
s}

The last condition we impose is thatσ = σx. When a languageσ satisfies this condition
we say that it isreceptive. Intuitively, a language is receptive ports are always ready to
accept an input, provided the alternation of input and output is respected. We leave it to
the reader to figure out what the languageσgood = (σbad)

pxr = (((σbad)
p)x)r looks like.

To resume, handshake language are defined as follows.

Definition 2.4 (handshake language).Letσ be a non-empty language. Thenσ is ahand-
shake languageif it satisfies the following conditions:

1. σ = σp (σ is closed under passive prefixes);
2. σ = σr (σ is reorder-closed);
3. σ = σx (σ is receptive).

We writeHsLng to denote the set of handshake languages.

Henceforth we may speak of languages always referring to handshake languages. Here
are three languages that shall be useful in the remaining of the paper.

SKIPa = ◦
a?

// a!

// ◦
a?

// a!

// ◦ . . .

RUNa =
a!

// ◦
a?

// a!

// ◦
a?

// . . .

a!

// ◦
a?

// a!

// ◦
a?

// . . .

HACab = ◦

b?
@@�����

◦

b?
@@�����

◦

b?
??�����

b!
BB����� a!

// ◦
a?

//

b!
@@����� a!

// ◦
a?

//

b!
>>}}}}} . . .

RUNa is initially willing to send a request, then it becomes quiescent until it receives
an acknowledge and starts again.SKIPa instead is initially waiting for a request and,

5

whenever one comes, it acknowledges it and goes back to wait.These two languages are
inspired by [17], although Van Berkel’s definitions were more general.HACab is new
(it stands for “handshake and continue”). LikeRUNa it can keep sending requests ona.
Unlike RUNa, it may decide to send a request onb instead (in a mutual exclusive way).
After the handshake onb completes, it behaves deterministically likeRUNa.

The above languages, as well as others we shall introduce later on, are merely some of
the simplest languages we could find that, combined in certain ways, allow us to expose
the problems of composition. We did not choose them because of their computational
relevance.

3 Handshake Composition

In this section we recall the notion of composable alphabetsand propose a minimal set of
axioms for the composition of two languages on composable alphabets.

3.1 Composable Alphabets and Interaction Traces

In order for two languages to be composable, they should be able to communicate on all
common channels, while channels that are not used for communication should be used by
either language but not by both. This intuition is formalised by the notion of composable
alphabets. Consider an alphabetA and a channela ∈ ch(A). By definition,A contains
exactly one port with channela. Then we writeAa,A to denote the only port such that
Aa,A ∈ A anda ∈ ch(Aa,A). Two alphabetsA1 andA2 arecomposableif and only if
Aa,A1

= (Aa,A2
)⊥, for all a ∈ ch(A1) ∩ ch(A2).

The duality between the two ports at the opposite ends of a communication channel
is reflected in the traces on these ports: outputs on one side become inputs on the other,
and viceversa. This may be a source of confusion if we want to interleave two traces on
composable alphabets, which is often the case when dealing with language composition.
One way to avoid the confusion is by renaming the internal messages, as we show next.

Let A1 andA2 be composable alphabets. For alla ∈ ch(A1) ∪ ch(A2), we de-
fine MsgA1,A2

(a) as a variant ofMsg(a) such that: ifa ∈ ch(A1) ∩ ch(A2), then
MsgA1,A2

(a) = {aA1 , aA2}; otherwise,MsgA1,A2
(a) = Msg(a) = {a?, a!}. Basi-

cally, the variant consists in renaming internal messages,whereaA represents an output
from A’s side. We extend the functionMsgA1,A2

(−) to subsets ofA1 ∪ A2 as done
for Msg(): for all A′ ⊆ A1 ∪ A2, MsgA1,A2

(A′) = ∪a∈ch(A)MsgA1,A2
(a). We write

MsgA1,A2
to indicateMsgA1,A2

(A1 ∪ A2).
Now, consider a sequences of symbols fromMsgA1,A2

. We defines ↾ A1, the
projection ofs onA1, by modifyings as follows: 1) remove allch(A2)\ch(A1) symbols
from s; 2) for all a ∈ ch(A1) ∩ ch(A2), rename all occurrences ofaA1 by a! and all
occurrences ofaA2 by a?. Similarly, we define the projection ofs on subsets ofA1 or of
A2 (e.g. on a single port). Interleavings are defined similarlyto traces (Definition 2.3):

Definition 3.1 (interleaving). An interleavings on composable alphabetsA1 andA2 is
a sequence of symbols fromMsgA1,A2

such that:

– for anya ∈ ch(A1) andb ∈ ch(A2), s ↾ Aa,A1
ands ↾ Ab,A2

are sequential traces.

We writeLA1,A2
to denote the set of all interleavings onA1 andA2.

6

3.2 Axioms for Composition

Interleavings represent all the traces that could ever possibly arise from the interaction of
any pair of languages on their respective composable alphabets. It follows that any notion
of composition between two languagesσ andτ on composable alphabets should consider
a subset of the interleavings onAσ andAτ .

The question is: which subset of interleavings should we retain? Intuitively, among all
the interleavings on the two alphabets, only those that somehow arise from the interaction
betweenσ andτ should be relevant. Indeed a minimal condition could be thatthe projec-
tion of an interleaving onAσ be inσ≤ and that its projection onAτ be inτ≤. But that is
not enough, quiescence should be taken into account as well.

How can we decide if a trace, obtained through external projection of an interleav-
ing, is quiescent or not? We would expect thatσ andτ “agree” upon some interleaving,
which happens when they simultaneously reach a quiescent trace. But this excludes one
scenario, which occurs when the two languages engage in aninfinite internal chat, where
they keep exchanging internal messages and forever avoid tooutput on the outside of the
composition. Then it could well be that, in this infinite internal chat, they never reach
a quiescent trace simultaneously. But since no external output occurs either, we should
consider the external projections of these infinite interleavings as quiescent as well. Let
us formalise the above intuitions.

First, we define theweaveof two languages as the set of all the interleavings in which
both languages have simultaneously reached a quiescent trace. Formally:

Definition 3.2 (weave).We define theweaveof σ andτ (denoted byσw τ) as follows:

σw τ = {s ∈ LA1,A2
| s ↾ Aσ ∈ σ ∧ s ↾ Aτ ∈ τ}

Interleavings that may be extended with an infinite internalchat are calleddivergences
and are defined below. In the following definition, we use the notationSω to denote the
set of all the infinite sequences of symbols fromS (for any set of symbolsS). We also
write u′

❁ u to indicate thatu′ is a strict prefix ofu (it follows thatu′ must be finite,
independently ofu being finite or infinite).

Definition 3.3 (divergences set).We definethe set of divergences ofσ and τ (denoted
by σ div τ) as follows:

σ div τ =
{

s ∈ LAσ,Aτ
| ∃u ∈ (MsgAσ,Aτ

(Aσ ∩ Aτ))
ω, ∀u′

❁ u, s · u′ ∈ σ≤
w τ≤

}

The above definition of divergence was chosen on purpose to beas weak as possible.
In fact, we do not expect that all these divergences canreally be extended with infinite
internal chats: for instance, some internal chats may be indefinitely long, but always finite.
Indeed, the search for the “good composition” can be seen as an attempt to distinguish
between internal chats that can grow indefinitely long but are bound to end, and those that
can actually go on forever. In chats of the former kind, one ofthe two languages at some
point deviates from the infinite internal chat and perhaps outputs an external message. As
we shall show in the rest of this paper, there is no criterion to tell apart these chats from
real infinite internal ones.

7

STOP = {ǫ} = ◦ 1Fab = {ǫ, a?b!, a?b!b?} = ◦
a
?

// b
!

// ◦
b
?

// ◦

1Ha = {a!, a!a?} =
a
!

// ◦
a
?

// ◦ 1NHa = {ǫ, a!, a!a?} = ◦
a
!

// ◦
a
?

// ◦

◦
b
?

// b
!

// ◦
b
?

// ◦

1Cab = {ǫ, a!, a!b?b!}xr = ◦
b
?

//

a
?

AA����� b
!

//

a
?

DD
�����

◦
b
?

//

a
?

AA�����
◦

a
?

AA�����

◦
b
?

//

a
!

@@����� b
!

//

a
!

BB����� b
?

//

a
!

BB�����

a
!

AA�����

Fig. 1.1-handshake languages used in the proof

Now, letAExt
σ,τ = {Aa,σ | a ∈ (ch(Aσ)\ch(Aτ))}∪{Aa,τ | a ∈ (ch(Aτ)\ch(Aσ))}

denote the external restriction of the alphabets of two languagesσ andτ . The following
definition formalises the criteria for language composition introduced above.

Definition 3.4 (axioms).Let − ◦ − : HsLng × HsLng → HsLng be a function taking a
pair of handshake languages and returning another handshake language. In order to be a
composition between handshake languages, −◦− must satisfy the following axioms, for
all handshake languagesσ, τ andρ:

1. (σ ◦ τ) ◦ ρ = σ ◦ (τ ◦ ρ) (associativity);
2. σ ◦ τ ⊆ (σw τ ∪ σ div τ) ↾ AExt

σ,τ (soundness);
3. (σw τ) ↾ AExt

σ,τ ⊆ σ ◦ τ (completeness).

Associativity is a basic requirement. Soundness and completeness together require that
all interleavings in the weave and, possibly,somedivergences should contribute to define
composition. Implicitly they also require that nothing else should.

4 The Impossibility Result

We start by assuming that some composition− ◦− : HsLng×HsLng → HsLng satisfies
all the axioms given in Definition 3.4. Then, through a seriesof successive results, we
reach a condtratiction implying that◦ cannot exist. The intermediate results are meant
to constrain◦ when given specific pairs of languages as arguments. We startin § 4.1 by
listing all the languages that we use in the proof and establishing a series of immediate
results. Then in§ 4.2, we do the proof. The two subsections can be either read inthe order,
or starting from§ 4.2 and going back to§ 4.1 each time a new language is encountered.

4.1 Introducing the Languages

Figure 1 defines all the finite languages that shall be used in the proof. The advantage of
finite languages is that they never engage in infinite chatterings. Thus we shall use them
in decomposing complex languages into simpler ones. The languages in Figure 1 are not
only finite but also very small sets. We call them1-handshake languages(or simply 1-
languages), because they engage at most in one handshake per channel.

8

SKIPa = {ǫ, a?a!, a?a!a?a!, . . .} = ◦
a
?

// a
!

// ◦
a
?

// a
!

// ◦ . . .

RUNa = {a!, a!a?a!, . . .} =
a
!

// ◦
a
?

// a
!

// ◦
a
?

// . . .

CHAOSa = {ǫ, a!, a!a?, a!a?a!, . . .} = ◦
a
!

// ◦
a
?

// ◦
a
!

// ◦
a
?

// ◦ . . .

HACab = {b!, b!b?a!, b!b?a!a?a!, . . . , a!, a!a?b!, . . . , a!a?a!, . . .} =

a
!

// ◦
a
?

// a
!

// ◦
a
?

// . . .

HACab = ◦

b
?

@@�����
◦

b
?

@@�����
◦

b
?

??�����

b
!

AA����� a
!

// ◦
a
?

//

b
! @@����� a

!

// ◦
a
?

//

b
! >>||||| . . .

CESab = {b!, a!, a!a?b!, a!a?a!, . . .}x =

◦ ◦ ◦

◦

b
? ??~~~~

◦

b
? ??~~~~

◦

b
? ??~~~~

b
! @@���� a

!

// ◦
a
?

//

b
! @@���� a

!

// ◦
a
?

//

b
! @@���� a

!

// ◦ . . .

PESab = {b!, b!a!, b!a!a?, a!a?b!a!, a!a?b!a!a?, . . .}xr =

◦
a
!

// ◦
a
?

// ◦ ...

◦

b
? ??~~~~ a

!

//
b
?

??~~~~~
◦

a
?

//
b
?

??~~~~
◦

b
?

??~~~~ b
?

??~~~~~ ...

a
!

//

b
! ??����

b
! ��?

??
??

a
?

//

b
!

!!B
BB

B
a
!

//

b
!

>>|||||

b
!

!!B
BB

B
a
?

//
b
!

>>|||| a
!

//

b
! !!B

BB
BB

b
!

>>|||| a
?

//

b
!

!!B
BB

B

b
!

>>|||||

b
!

!!B
BB

B ...

a
!

//

b
? ��@

@@
@@

◦
a
?

//

b
? ��@

@@
@ ◦

b
? ��@

@@
@

a
!

//

b
? ��@

@@
@@

◦
a
?

//

b
? ��@

@@
@ ◦

b
? ��@

@@
@

...

a
!

// ◦
a
?

// ◦
a
!

// ◦
a
?

// ◦ ...

ECabc={{c!, a!, a!a?c!b!, a!a?c!b!b?, a!a?b!b?a!, a!a?b!b?a!a?c!b!, . . .}xr =

◦
b
!

// ◦
b
?

// ◦ ...

◦

c
? ??~~~~ b

!

//
c
?

BB�����
◦

b
?

//
c
?

??~~~~
◦

c
?

??~~~~ c
?

@@����� ...

a
!

//

c
! ??���� a

?

// b
!

//

c
!

AA���� b
?

//
c
!

??���� a
!

//
c
!

>>|||| a
?

//

c
!

@@���� ...

Fig. 2. Infinite handshake languages used in the proof

STOP is the language which does nothing3. 1Ha outputs on channela once and then
waits for an acknowledgement (it does “one handshake”).1NHa (“one non-deterministic

3 Adhering to our assumption of alphabet minimality,STOP is defined on the empty alphabet.

9

handshake”). non-deterministically chooses whether to dothe handshake or to wait (for-
ever). The difference between1Ha and1NHa is subtle (ǫ /∈ 1Ha andǫ ∈ 1NHa) but
the impossibility proof rests largely on this subtle difference.1Fab (“one forwarding”)
forwards onb any request it receives froma, but it never replies ona. 1Cab stands for
“one-time confusion”. Like1NHa, it can also choose to send ona or to wait. But this
choice can be resolved by the arrival of an input on a different channelb: once a request
on b is received then the request ona must be sent (and also the acknowledge onb).

Figure 2 defines all the infinite languages that we shall use inthe proof. For conve-
nience, we have also included those that we introduced at theend of§ 2 (RUNa, SKIPa

andHACab). CHAOSa = RUN≤
a is the prefix closure ofRUNa. It can become qui-

escent at any time.CESab stands for “chattering with end signal”. Every time it may
send a request on channela, it has a choice to either do it or end the communication on
a, by sending a “signal” onb. PESab (“postponable end signal”) can be best understood
by comparison withCESab. In PESab, an output on channelb may either signal that
the chattering ona has ended (like inCESab) or that it will end after one more hand-
shake. Note that the choice between two distinct “b!” branches (which can be seen in the
graphical representation of Figure 2) is internal, and thusnot observablein the language
definition.ECabc stands for “early choice”. Periodically, it has a choice between sending
an output ona or onc, but the choice may be done before the output ona is even enabled.

Before we move on to the impossibility proof, we state the following facts about the
composition◦, which follow immediately by application of Definition 3.2 (weave). In
each of them, channelsa, b andc are to be understood as arbitrary and distinct.

Fact 1 ∀σ, STOP ◦ σ = σ ◦ STOP = σ

Fact 2 HACac ◦ 1Cbc = RUNa ◦ 1NHb

Fact 3 CESab = HACac ◦ 1Fcb

Fact 4 SKIPa ◦ CHAOSa = STOP

Fact 5 PESab ◦ 1Ccb = CHAOSa ◦ 1Hc

Fact 6 SKIPa ◦ ECabc = PESbc

Fact 7 SKIPb ◦ ECabc = CESac

Fact 8 CESab ◦ 1Fbc = CESac

As illustration, Figure 3 shows the graph of the compositionfor Fact 2 and Fact 5.
Even though we have not required the symmetry of◦ as an axiom, each composition

in any of the facts above is symmetric, as the following lemmashows.

Lemma 4.1. Letσ andτ be handshake languages s.t.σ div τ = ∅, thenσ ◦ τ = τ ◦ σ.

Proof. It follows from the symmetry of the weave (Definition 3.2). ✷

10

(Fact 2) HACac ◦ 1Cbc = RUNa ◦ 1NHb =

a
!

// ◦
a
?

// a
!

// ◦
a
?

// ...

a
!

//

b
?

@@�����
◦

a
?

//
b
?

??~~~~ a
!

//
b
?

@@�����
◦

a
?

//
b
?

??~~~~ b
?

@@����� ...

a
!

//

b
!

BB�����
◦

a
?

//
b
!

??~~~~ a
!

//
b
!

@@�����
◦

a
?

//
b
!

??~~~~ b
!

??����� ...

(Fact 5) PESab ◦ 1Ccb = CHAOSa ◦ 1Hc =

◦
a
!

// ◦
a
?

// ◦
a
!

// ◦
a
?

// ◦ ...

◦
a
!

//

c
? ;;xxxxx

◦
a
?

//
c
?

;;xxxxx
◦

a
!

//
c
?

;;xxxxx
◦

a
?

//
c
?

;;xxxxx
◦
c
?

;;xxxxx
...

a
!

//

c
! ;;xxxxx a

?

//
c
!

::vvvvvv a
!

//
c
!

::vvvvvv a
?

//
c
!

::vvvvvv
c
!

::vvvvvv ...

Fig. 3. Some compositions with empty set of divergences

4.2 Proving the Result

The proof of the impossibility goes as follows: we consider three specific languages
σ, τ, ρ. Using associativity, soundness and completeness, we determine the languages
(σ ◦ τ) ◦ ρ andσ ◦ (τ ◦ ρ) We show then that these two languages are different, which
contradicts associativity.

The following is a basic lemma that is used in the proof.

Lemma 4.2. RUNa ◦ SKIPa = SKIPa ◦RUNa = STOP

Proof. By definition of weave (Definition 3.2), we haveRUNa wSKIPa=∅. Similarly,
(RUNa divSKIPa) ↾A

Ext
RUNa,SKIPa

= {ǫ} (Definition 3.3). Then soundness (axiom2
of Definition 3.4) implies thatRUNa ◦ SKIPa ⊆ {ǫ}. But handshake languages are
non-empty (Definition 2.4). ThenRUNa ◦ SKIPa = STOP = {ǫ}. Sincew anddiv

are symmetric operators, we showSKIPa ◦RUNa = STOP in the same way. ✷

Lemma 4.2 relies on the non-emptiness of languages. In§ A, we give a formal account of
the inconsistency of the alternative (allowing languages to be empty). For now, observe
that a language with no traces at all does not make sense if we want it to represent the
quiescentexecutions (as opposed to a language containing only the empty trace).

Then we show:

Lemma 4.3. SKIPa ◦HACac = HACac ◦ SKIPa = 1NHc

Proof. Note thatc! ∈ (SKIPa wHACac) ↾ A
Ext
SKIPa,HACac

. It follows by completeness
(axiom3 of Definition 3.4) thatc! ∈ SKIPa ◦HACac. Then by receptiveness of hand-
shake languages (condition3 of Definition 2.4), we also havec!c? ∈ SKIPa ◦HACac.
The question now is whetherǫ ∈ SKIPa ◦HACac. To answer it, note that:

SKIPa ◦ (HACac ◦ 1Cbc) = SKIPa ◦ (RUNa ◦ 1NHb) (Fact 2)
= (SKIPa ◦RUNa) ◦ 1NHb (assoc. - Def. 3.4(1))
= STOP ◦ 1NHb = 1NHb (Lemma 4.2, Fact 1)

11

First suppose thatǫ /∈ SKIPa ◦ HACac, which impliesSKIPa ◦ HACac = 1Hc.
Then(SKIPa ◦ HACac) ◦ 1Cbc = 1Hc ◦ 1Cbc = 1Hb, where the last equivalence is
because1Cbc always outputs onb once it has received an input onc. However, this breaks
associativity of composition (axiom1 of Definition 3.4):

(SKIPa ◦HACac) ◦ 1Cbc = 1Hb 6= 1NHb = SKIPa ◦ (HACac ◦ 1Cbc)

Then supposeǫ ∈ SKIPa ◦HACac, which impliesSKIPa ◦HACac = 1NHc. Now
we have(SKIPa◦HACac)◦1Cbc = 1NHc◦1Cbc = 1NHb, where the last equivalence
is because1NHc does not guarantee that it will send a request onc. Then:

(SKIPa ◦HACac) ◦ 1Cbc = 1NHb = SKIPa ◦ (HACac ◦ 1Cbc)

Thus we haveSKIPa ◦ HACac = 1NHc. By applying a symmetric reasoning and
Lemma 4.1, we also haveHACac ◦ SKIPa = 1NHc. ✷

The following lemma is the main result for one direction of the impossibility proof.

Lemma 4.4. SKIPa ◦ CESab = CESab ◦ SKIPa = 1NHb

Proof.

SKIPa ◦ CESab = SKIPa ◦ (HACac ◦ 1Fcb) (Fact 3)
= (SKIPa ◦HACac) ◦ 1Fcb (assoc. - Def. 3.4(1))
= 1NHc ◦ 1Fcb = 1NHb (Lemma 4.3)

By a symmetric reasoning (and using Lemma 4.1 in the first and last equalities) we can
also stateCESab ◦ SKIPa = 1NHb. ✷

The proof of the following lemma has the same structure as that of Lemma 4.3.

Lemma 4.5. SKIPa ◦ PESab = PESab ◦ SKIPa = 1Hb

Proof. Note thatb!, b!b? ∈ (SKIPa wPESab) ↾ AExt
SKIPa,PESab

. It follows by com-
pleteness (axiom3 of Definition 3.4) thatb!, b!b? ∈ SKIPa ◦ PESab. The question now
is whetherǫ ∈ SKIPa ◦ PESab. To answer it, note that:

SKIPa ◦ (PESab ◦ 1Ccb) = SKIPa ◦ (CHAOSa ◦ 1Hc) (Fact 5)
= (SKIPa ◦ CHAOSa) ◦ 1Hc (assoc. - Def. 3.4(1))
= STOP ◦ 1Hc = 1Hc (Fact 4, Fact 1)

First suppose thatǫ ∈ SKIPa ◦ PESab, which impliesSKIPa ◦ PESab = 1NHb.
Then(SKIPa ◦PESab) ◦ 1Ccb = 1NHb ◦ 1Ccb = 1NHc, where the last equivalence is
because1Ccb does not guarantee that it will output onc. However, this breaks associativity
of composition (axiom1 of Definition 3.4):

(SKIPa ◦ PESab) ◦ 1Ccb = 1NHc 6= 1Hc = SKIPa ◦ (PESab ◦ 1Ccb)

Then supposeǫ /∈ SKIPa ◦ PESab, which impliesSKIPa ◦ PESab = 1Hb. Now we
have(SKIPa ◦ PESab) ◦ 1Ccb = 1Hb ◦ 1Ccb = 1Hc, where the last equivalence is
because1Ccb always outputs onc once it has received an input onb. Then:

(SKIPa ◦ PESab) ◦ 1Ccb = 1Hc = SKIPa ◦ (PESab ◦ 1Ccb)

Thus we haveSKIPa ◦ PESab = 1Hb. By a symmetric reasoning and Lemma 4.1, we
also havePESab ◦ SKIPa = 1Hb. ✷

12

We are now ready to show that◦ does not exist.

Theorem 4.1 (impossibility).Let − ◦ − : HsLng × HsLng → HsLng. Then◦ cannot
satisfy the three axioms given in Definition 3.4.

Proof. By contradiction, assume that◦ satisfies all the axioms. Letσ = SKIPa, τ =
ECabc andρ = SKIPb ◦ 1Fcd. With the results that we have established, we are able to
determine the composition ofσ, τ andρ in both directions. We now show that we obtain
one language in one direction and a different one in the other. First direction:

σ ◦ (τ ◦ ρ) = σ ◦ (ECabc ◦ (SKIPb ◦ 1Fcd)) (substitution)
= σ ◦ ((ECabc ◦ SKIPb) ◦ 1Fcd) (assoc. - Def. 3.4(1))
= σ ◦ ((SKIPb ◦ ECabc) ◦ 1Fcd) (Lemma 4.1)
= σ ◦ (CESac ◦ 1Fcd) (Fact 7)
= σ ◦ CESad (Fact 8)
= SKIPa ◦ CESad = 1NHd (subst., Lemma 4.4)

Second direction:

(σ ◦ τ) ◦ ρ = (SKIPa ◦ ECabc) ◦ τ (substitution)
= PESbc ◦ τ (Fact 6)
= (PESbc ◦ SKIPb) ◦ 1Fcd (subst., assoc. - Def. 3.4(1))
= 1Hc ◦ 1Fcd = 1Hd (Lemma 4.5)

where the last equivalence is because1Fcd forwards ontod the request1Hc sends onc.
To resume, we have:

σ ◦ (τ ◦ ρ) = 1NHd 6= 1Hd = (σ ◦ τ) ◦ ρ

Then◦ does not respect associativity (axiom1 of Def. 3.4). ✷

5 Discussion

In this paper we have considered a specific protocol of asynchronous communication, the
handshake protocol. We have defined handshake languages, byexploiting the standard
formalisation of its properties in sets of traces [17]. Thenwe introduced a set of axioms
for language composition and we showed that they may not all hold simultaneously.

We observe that:

1. our axioms do not refer to specific features of the handshake protocol, they refer to
the extensional behaviour of composition in general, by imposing the loosest possible
boundaries on what must and what may be observed;

2. the specificity of our class of languagesHsLng implies that all the languages we used
in the impossibility proof are contained in any larger classof languages as well.

The above two observations underpin the realisation that our impossibility proof has im-
plications on a vast range of trace-models, not limited to models of the specific protocol
considered in this study. One straightforward way to extendour result is by allowing mes-
sages to carry data (as in the original formalisation of the handshake protocol [17]). We

13

can even go one step further and allow dynamic creation of connections through name-
passing (inπ-calculus style [14]).

On the other hand, we can also extend the class of languages (and thus our result) by
relaxing the constraints that define the handshake protocol, e.g. strict alternation between
requests and acknowledges on each channel of communication. For instance, it is well-
known that handshake languages can be encoded into the larger class of delay-insensitive
languages [2, 12, 16], which also ensure the absence of computation-interference and of
transmission-interference (mentioned in§ 1).

To be clear, it is not our intention here to dismiss the whole literature of concurrent and
non-deterministic trace-models as flawed, since it would beout of the scope of this paper.
Many models achieve composition by sacrificing the information on quiescence (e.g. by
considering prefix-closed languages), thus failing to represent deadlocks. Other models
have different and often more elaborate ways of characterising deadlocks (e.g. failures and
divergences models [1, 8]). Rather than rushing to dismiss all the neighbouring literature,
we set it as the next challenge to check if and how our impossibility proof can be applied
to variant trace-models, starting with models of delay-insensitive andspeed-independent
communications [10, 11] (the latter being a yet larger class).

However, we can say that characterising divergences simplyas infinite chatterings
(as we did), without further “decorating” languages with special traces, is arguably the
most natural way of proceeding, without altering the natureof the model. Then it may be
unsurprising that our proof reflects an observation that haskept two different “schools”
debating for some time: the school of linear-time (e.g. [7, 15]) and that of branching-time
(e.g. [13, 14, 18]) semantics, where trace-semantics belong to the former. The observation
is that trace models do not allow to distinguish the following two CCS processes:a.b +
a.c anda.(b + c); while composing them with̄a.b̄ may give rise to a deadlock in one
case but not in the other. Nonetheless, as our proof shows, the absence of a satisfactory
notion of composition in trace-models is not just a mere consequence of such well-known
observation: it does require a careful selection of a set of ad-hoc languages to exploit such
behavioural understanding in a formal proof.

Another objection one can make to our proof is that Lemma 4.2 was proved only
because our languages are non-empty by definition. One can argue that the language on
the empty alphabet should be∅ (the empty language), rather than{ǫ} (the language con-
taining only the empty trace). We note that, from an observational viewpoint,∅ and{ǫ}
are indistinguishable, which is the reason why we did not allow handshake languages
to include∅. Moreover, adding the empty language does not remedy the problem with
composition, as we show in§ A.

A possibility we have not considered is to allow languages tocontain infinite traces.
However, this may not be a viable alternative, since the three main properties stated in
Definition 2.4 each enforce a closedness condition which would be undecidable over sets
of infinite traces. Note also that in such a framework, the problem would not be that
of finding a good notion of composition, since infinite chatterings would be explicitly
represented through interleavings. The aim there would be to give criteria to characterise
the infinite traces that a language should contain. Our guessis that it should not be possible
either, although we leave it as a future work.

14

Another question we leave open for now is that of finding the minimal limitations to
non-determinism and/or concurrency, which allow a satisfactory notion of composition.

References
1. S. Brooks and A. Roscoe. An improved failures model for communicating processes.Lecture

Notes in Computer Science, 197:281–305, 1985.
2. W. Clark and C. Molnar. Macromodular computer systems. InComputers in Biomedical

Research, volume IV, chapter 3. Academic Press, 1974.
3. L. Fossati. Handshake games. InDevelopments in Computational Models, DCM’06, volume

171 ofENTCS, pages 21–41. Elsevier, 2007.
4. L. Fossati.Modeling the Handshake Protocol for Asynchrony. PhD thesis, Università di Torino

& Université ‘Denis Diderot’ Paris VII, Turin, 2009.
5. L. Fossati and D. Varacca. A calculus for handshake configurations. InFoundations of Software

Science and Computation Structures, FoSSaCS’09, volume 5504 ofLNCS, pages 227–241.
Springer, 2009.

6. L. Fossati and D. Varacca. A petri net model of handshake protocols. In Interaction and
Concurrency Experience, ICE’08, volume 229 ofENTCS, pages 59–76. Elsevier, 2009.

7. C. Hoare. A model for communicating sequential processes. InOn the Construction of Pro-
grams. Cambridge University Press, 1980.

8. C. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.
9. http://www.keil.com/dd/docs/datashts/handshake/ht80c51.pdf.

10. M. B. Josephs. Receptive process theory.Acta Informatica, 29(1):17–31, 1992.
11. M. B. Josephs and J. T. Udding. Delay-insensitive circuits: an algebraic approach to their

design.Lecture Notes in Computer Science, 458:342–366, 1990.
12. Macromodules Project. Macromodular computer systems. Technical Report 4, Computer Sys-

tems Laboratory, Washington University, 1967.
13. R. Milner. A Calculus of Communicating Systems, volume 92 ofLecture Notes in Computer

Science. Springer, 1980.
14. R. Milner, G. Parrow, and D. Walker. A calculus of mobile processes. Information and Com-

putation, 100(1):1–77, 1992.
15. S. Nain and M. Y. Vardi. Trace semantics is fully abstract. InLICS, pages 59–68, 2009.
16. J. Udding. Classification and Composition of Delay-Insensitive Circuits. PhD thesis, Eind-

hoven University of Technology, Eindhoven, 1984.
17. K. Van Berkel.Handshake Circuits: an Asynchronous Architecture for VLSI Design, volume 5

of Cambridge International Series on Parallel Computation. Cambridge University Press,
1993.

18. R. Van Glabbeek. The linear time - branching time spectrum I: the semantics of concrete
sequential processes.Handbook of Process Algebra, pages 3–99, 2001.

15

A Taking Empty Languages into Account

In the proof of Lemma 4.2, we were able to determine the resultof composing a pair of
infinite languages only because our languages are non-emptyby definition. However, one
could argue that the language on the empty alphabet should be∅ (the empty language),
rather than{ǫ} (the language containing only the empty trace). We note that, from the
point of view of an external observer,∅ and{ǫ} are indistinguishable, which is the reason
why we did not allow handshake languages to include∅.

Nonetheless, letEMPTY = ∅ denote the empty language and let us consider an
alternative set of handshake languagesHsLng ∪ {EMPTY }, just to show that this does
not help finding a satisfactory notion of composition. In Definition 2.4 we avoided any
explicit reference to the alphabet on which a language is defined. However, in order to
extend receptiveness (Condition3 in Def. 2.4) we ask thatEMPTY may not be defined
on an alphabet containing negative ports. The principle is the usual one for receptiveness:
a language should be ready to accept any input from the environment. Formally:

Definition A.1 (∅-receptive,HsLng∅). Let σ ∈ HsLng ∪ {EMPTY } be a language on
alphabetA. We say thatσ is ∅-receptiveiff, for any a ∈ ch(A), 〈a,−〉 ∈ A implies
σ 6= EMPTY . We writeHsLng∅ to denote the set of languages inHsLng∪{EMPTY }
which additionally satisfy the∅-receptiveness condition.

In the proof, we also use the following additional axiom, asking that composition be
closed under channel renaming. Below, letσ[b/a] be the language obtained fromσ after
replacing all occurrences ofa! and ofa? by occurrences ofb! and ofb?, respectively.

Definition A.2 (renaming). A composition− ◦ − : HsLng∅ × HsLng∅ −→ HsLng∅ is
closed under renamingif for all b /∈ ch(Aσ)∪ ch(Aτ) and for alla ∈ ch(Aσ)∪ ch(Aτ),
σ[b/a] ◦ τ [b/a] = (σ ◦ τ)[b/a].

To resume, a satisfactory notion of composition should satisfy the following:

Definition A.3 (HsLng∅-axioms).InHsLng∅, asatisfactory notion of composition−◦− :
HsLng∅ × HsLng∅ → HsLng∅ is required to be closed under renaming (Definition A.2),
associative (axiom1 from Definition 3.4) and such that soundness and completeness (ax-
ioms2 and3 from Definition 3.4) hold only for languages inHsLng.

The reason why we did not extend soundness and completeness to EMPTY is because
EMPTY has empty weave and divergence set when composed with any other language.

The main issue is to understand howEMPTY should compose with other languages
and especially with non-trivial ones, where a languageσ ∈ HsLng∅ is non-trivial if σ /∈
{EMPTY, STOP }. First we show that it may only behave in two possible ways.

Lemma A.1. Letσ be a non-trivial language. Then:

(σ ◦ EMPTY = σ ∨ σ ◦ EMPTY = EMPTY)
∧

(EMPTY ◦ σ = σ ∨ EMPTY ◦ σ = EMPTY)

16

Proof. Let ch(Aσ) = {a1, . . . an} and letτ = σ[b1/a1] . . . [bn/an], wherebi /∈ ch(Aσ),
for all i ∈ {1, . . . , n}.

By contradiction, suppose there iss ∈ σ ◦EMPTY such thats /∈ σ. Sinceσ is non-
trivial, τ is also non-trivial, hence non-empty. Then takes′ ∈ τ and lett be an interleaving
of s ands′. SinceAσ◦EMPTY andAτ are disjoint,t ∈ (σ ◦EMPTY) ◦ τ . On the other
hand,t /∈ σ ◦ (EMPTY ◦τ), sinces /∈ σ. And this contradicts the associativity of−◦−.
Hence we have:

σ ◦ EMPTY ⊆ σ

In the same way we could show that there may not exists ∈ σ such thats /∈ σ◦EMPTY .
But note that we would need the additional assumptionσ◦EMPTY 6= EMPTY , which
brings us to conclude that eitherσ ◦ EMPTY = σ or σ ◦ EMPTY = EMPTY . We
show(EMPTY ◦ σ = σ ∨ EMPTY ◦ σ = EMPTY) in the same way. ✷

Next we show thatEMPTY may not behave as the identity for− ◦ −.

Lemma A.2. There exists a non-trivialσ ∈ HsLng∅ such that:

σ ◦ EMPTY 6= σ 6= EMPTY ◦ σ

Proof. Note that if onlyEMPTY ◦1NHb = 1NHb, the whole impossibility proof of§ 4
would still hold even if we dismissed Lemma 4.2 to allowSKIPa ◦RUNa = EMPTY
(Lemma 4.2 is used only once in the proof, and that is within the proof of Lemma 4.3).
Then it must be the case that1NHb 6= EMPTY ◦ 1NHb. Note also that, by slightly
remodelling the proof of§ 4, we can similarly show1NHb ◦ EMPTY 6= 1NHb. ✷

Similarly we exclude thatEMPTY ◦ − and− ◦ EMPTY may act as the constant
EMPTY .

Lemma A.3. There exists a non-trivialσ ∈ HsLng∅ such that:

σ ◦ EMPTY 6= EMPTY 6= EMPTY ◦ σ

Proof. Just take as an exampleSKIPa, although any handshake language defined on
a port with negative polarity would do. Note thatASKIPa

= {〈a,−〉} consists of a port
with negative polarity. W.l.o.g. assume the languageEMPTY occurring before the com-
position is defined on the empty alphabet, so that when we composeσ with EMPTY (in
any order) we obtain a language which is still defined onASKIPa

. Hence the composition
may not yieldEMPTY , or ∅-receptiveness (Definition A.1) would break. ✷

Then we conclude:

Theorem A.1 (HsLng∅-impossibility). Let− ◦− : HsLng∅ ×HsLng∅ → HsLng∅. Then
◦ may not simultaneously satisfy all the axioms given in Definition A.3.

Proof. By Lemma A.1, the result of composingEMPTY with any non-trivial language
is eitherEMPTY or that language. Then by Lemma A.3, there is a non-trivial language
σ such thatσ ◦EMPTY = σ, and by Lemma A.2, there is a non-trivial languageτ such

17

thatEMPTY ◦ τ = EMPTY . Note also that renaming (Definition A.2) allows us to
chooseσ andτ such thatch(Aσ) ∩ ch(Aτ) = ∅. Then:

(σ ◦ EMPTY) ◦ τ = σ ◦ τ

whereσ ◦ τ contains all the interleavings of traces ofσ with traces ofτ , sincech(Aσ) ∩
ch(Aτ) = ∅. Hence it is different from bothσ andτ , sinceσ andτ are both non-trivial.
On the other hand we have:

σ ◦ (EMPTY ◦ τ) = σ ◦ EMPTY = σ

which contradicts the associativity axiom requested by Definition A.3. ✷

18

