Handshake Languages do not Compose

Luca Fossatiand Daniele Varacéa

!Queen Mary University of London 2 PPS - Universi Paris Diderot & CNRS

Abstract. The handshake protocol is an asynchronous communication prdtatol
enforces several properties such as absence of computationretedeand insensi-
tivity from delays of propagation on wires. One of the simplest formaligatiaf the
handshake protocol is via sets of traces (languages). Howevarasuodel still lacks
a satisfactory notion of composition. In this paper we propose a minirhef sgioms
and show that there does not exist any notion of composition whichetssiiem all.
The relevance of this finding goes beyond the scope of the handstatheqd, since
the impossibility result applies to any similar model of asynchronous sgstemch
relaxes the restrictions enforced in handshake communications.

1 Introduction

The handshake protocol is a protocol of asynchronous cornwation between concur-
rent systems. Itis designed to guarantee the absence afdofiutation-interferencg.e.
that no message is sent to an unready receiverjrandmission-interferendg.e. that no
channel carries more than one message) by requiring eactageeto be followed by a
message of confirmatiomgguestandacknowledgg It has several practical applications,
for instance it has been employed in the implementation dsMthips (see, e.g. [9]).
The formal analysis of the handshake protocol was initiate®¥an Berkel [17] who
proposed drace modelHe considered the set of finite traces which describe themaom
nications of a system abiding to the handshake protocol. Weall such sethandshake
language$, and their elementsandshake tracegesides the alternance of requests and
acknowledges on each channel, handshake languages emgoyobperties which model
the fact that systems are receptive and behave correctlgyimcaronous environments.
Handshake languages are not prefix-closed, as the tragesahtin are meant to repre-
sent the points of a communication where the systequissceni.e. where it waits for
further inputs. This allows to represent different forms&ohdeterminism and deadlocks.
Since systems are meant to interact with one another, anyafanodel must come
equipped with a notion otomposition The notion of composition proposed by Van
Berkel [17] looks natural and intuitive but, as the first astf4] has shown, it is not
associative. To overcome this problem, other models warpgsed. One solution was to
to limit the amount of nondeterminism [3]. A Petri nets mofjland a CCS-inspired
process calculus [5] were subsequently designed (both ledenpith respect to the lan-
guages in [17]) along with a fully-abstract interpretatfoom the calculus’ terms to nets.

! Van Berkel used the term “handshake circuit” since his aim was the appfida VLS| design.

However one question remains open. Is it possible to definecabased semantics
of the handshake protocol which:

1. is sound and complete with respect to handshake behaviour
2. can represent nondeterminism and deadlocks, and
3. contains an associative notion of composition whicheetgpsome basic constraints?

The requirements (1) and (2) imply that we need to consideguages which adhere to
the conditions requested in the original model ([17]). Thea need to state which are
the “basic constraints” that a good notion of compositiooustt satisfy (3).

In this paper we propog®vo constraints that any good notion of composition should
satisfy. Intuitively, we want the composed language toaiorprecisely the traces that can
be observed when the two languages involved in the compositteract. Therefore we
requireit to contain all the traces that result from an external oketén of an interaction
in which both systems execute a quiescent trace.

However we also need to take into account iti@nite internal chatteringgaking
place, i.e. those situations in which the two languages@renquiescent at the same time
and yet engage in an infinite internal communication thaenpvoduces any observable
message. Therefore, we alalbow the composed language to possibly include any trace
which ispotentiallythe external observation of some infinite internal chaittgsituation.

To resume, a composition is:

— required to contain every trace that is definitely obsemabl
— allowed to contain some additional traces that are potgntibservable.

The main result of the paper is that there is no notion of caitipm that satisfies
these two requirements and that at the same is associainee e requirements are
independent from specific features of the handshake prptmeonegative result applies
to any larger class of languages as well.§I% we further discuss and provide more
detailed context to these implications.

The paper is organised as follows.§&, we introduce handshake languages and their
theoretical framework. Ir§ 3, we provide a minimal set of axioms that any notion of
composition should satisfy. 1§14, we derive additional properties from the axioms and
show that there does not exist any notion of composition dhtisfies them all. Finally,
we conclude i 5.

2 Alphabets, Traces and Languages

In this section we recall the definition of handshake alptsmbad handshake languages.
Handshake alphabets add some structure over the symhds/gag the basis for defining
the properties of handshake languages.

2.1 Channels, Ports, Alphabets and Traces

According to the handshake paradigm, systems communigatebairectional channels
in alternation. Channels are denoteddy, c, . . ., while «” anda' denote, respectively,
the input and the output message that a system can recespeterely, send) over chan-
nel a. We write M sg(a) to indicate the sefa’, a'}. The uniqueness of such messages
corresponds to the assumption that no data is exchangeddmmunication: we only

consider the bare synchronisation signals, regardlesfaf information they might con-
tain. This does simplify the traditional notion of handshalommunication but it does
not make our result less general. In fact, a negative resitthwholds for a sub-class of
handshake languages, automatically holds for the largssd@s well.

A system’s interface towards a channel is called port anéfimed as follows.

Definition 2.1 (handshake port).A handshake port def (a, Ay consists of a channel
a and a polaritys € {+, —}, which may beositive(+) or negative(—).

Handshake ports are the simplest formbafidshake alphabet&iven a portd = (a, \),
we can only observe communication traces of the followingi&
a'a’a'a’ ... (if x=+)
a‘d'd’a ... (if x=-)
asequential handshake tra¢en A) is any finite trace of such shape. We galjuestghe
message occurrences at odd positions in a sequential lekedshce (e.qu' if A = +),
andacknowledgethose at even positions (edf. if A\ = +). We callhandshakeny pair
of occurrences consisting of a request and the succesdivmwiedge in a sequential
handshake trace, e.g. those underlined (and also thosedeined) in the traces below:
rte vttt b2 L7 ? VO YOS I OO I ASN I OS Y OO S OO |
aag aa aaaaaaaaaa aagaagagaaaaaagaaa
The portA admits adual port A+ = (a, *), where+* = — and—* = +. Thus, dual
ports share the same communication chamnielit have dual polarities. They represent
the two ports at opposite ends @fNote that from any non-empty sequential handshake
trace we can infer both the channel and the polarity of th¢ @aer which the trace is
defined.
Alphabets are sets of ports. Belawk,(A) denotes the channel of a handshake plort

Definition 2.2 (handshake alphabet)A handshake alphabet def {A1,...,A,}isa

set of portsd,, ..., A, such thath(A;) # ch(A;), foralli # j.

We write A for the singleton alphabdtA}. The functionsch(—) and Msg(—) are ex-
tended to general alphabets as follows:

ch(A) = {ch(A) | A e A} Msg(A) = Uagen(ayMsg(a)

Given a handshake alphahbét let s be a sequence of symbols from the 3&t¢g(.A) and
let A" C A. Theprojection ofs on A’, denoteds | .A’, is obtained by removing from
the symbols which are not i/ sg(.A"). We define handshake traces as follows:

Definition 2.3 (handshake trace) A handshake tracen a handshake alphahdtis a
sequences of symbols from the sebM/sg(A) such that, foranyd € A, s [Ais a
sequential handshake trace. We widtg for the set of finite handshake traces over

Henceforth we shall speak of “traces”, always meaning Haakistraces.

Note that, while the traces observable on handshake patsoastrained to one of
two possible forms, handshake alphabets in general allewliservation of a variety of
traces, since communications over different ports occpanallel. A single handshake on
a channelt may be interleaved with sequences of requests and ackngegdexh different
channels. A sequential handshake trace is thus a speciabtasandshake trace.

2.2 Handshake Languages

We define alanguageas a set of finite handshake traces on a handshake alpHabet
i.e. asubset of 4. We leto, 7, p, . .. range over languages. We have already mentioned
that from a non-empty sequential trace we can infer the pagt which it is defined.
A straightforward consequence is that we can infer the nahiatiphabet on which a
language is definédThen we writeA,, to denote such alphabet.

Languages can be conveniently seen as forest-like graghsHar example, the lan-

2020?20?10 ? 0?00

guager,qg = {a’a',a’d'a’a',a’a'a’a'v'c', a"a'a’b'c'b’} corresponds to the graph:

b' c
a! O—> —>20

! ?

¢
b —_— ——= 0

Since languages are in general not prefix-closed, our gregfsin small circles to in-
dicate the prefixes which are actual traces of the languageh Brefixes represent the
points of an execution in which the language may decide o &a. to wait for further
inputs). For exampler,,q may decide to stop at’a'a’a' and wait indefinitelyor to go
on and output a message &rrhus, for anyr, s € ¢ is said to be @uiescent tracef o.

Not all languages are handshake languages. Next we setrnblgions for languages
to be handshake languages. Let us start by introducing adéational conventions. We
write s C ¢ to indicate that the traceis a prefix of the trace, we writes - ¢ to denote the
concatenation of and¢, and we writes< to denote the prefix-closure of a language

Givens € o<, a prefix of some trace af, we say thats is passive(w.r.t. o) if it
cannot be extended with outputsdnFormally, s is passive iff:

Vteost.sCt,da € ch(A,)St.t= s a1

oP denotes the passive prefix-closuresdfthe union ofo and its set of passive prefixes).
Note that, at a passive trace, a language has no choice toptarsd wait for further
inputs. Then we want all passive traces to be quiescent. &lyras a first condition, we
demand thatr = oP (o is closed under passive prefijes
The languager,,q defined above is not closed under passive prefixes. For erampl
the empty trace is passive w.r.toy,q because it can only be extended with an input on
a, and yete ¢ o3,,4. By closingoy,.q under passive prefixes we obtain:

0?2020 2?2 Ay 220225 14?
(0bad)? ={€,a'a’,a’a’a’a’,a’a’a’a’b'c,a’aa’bc,a’a’a’bch'}

Next we define a relatiom 4 between traces on alphahdt We first definer 4 on
traces consisting of only twimdependent messageghere messages are independent if
they belong to two distinct channels. Leth € ch(A), s.t.a # b. Then we set:

a'braba a’b’rab’a a’b'raba’

Further, we closer 4 by concatenation, reflexivity and transitivity. If no cosfan may
arise, we write just r ¢, which reads; reorderst. Intuitively, whenever we find two inde-
pendent outputs one after the other, we can reorder themrbyutieg their occurrences,

2 The inferred alphabet is minimal because we can always add funiised ports to it.

and similarly for two independent inputs. But also, whenrgut follows an independent
output, the trace can be reordered by moving the input baidkdéhe output.

A languages is reorder-closedff s € o andir s imply t € 0. We writec™ for the
reorder-closure of. As a second condition, we ask thabe reorder-closedr = o*.

This requirement is common to most models of asynchronoosramication. But,
once again, our language,q does not satisfy it. The following is its reorder-closure:

r YOI SN S0 IR SN S YU S0 N A B U SR A BN S SRS S PR
(0bad)" ={a’a’ya’d’a’a’;a’a’a’a’bc,a’aa’ba'c,a’a'a’bca,a aa cba,

020 0140 20 240 14? 0?2 14147 ? 0 271771
a'aa’cab,a’aa’bch a’aa cbb ,a’a’a’bbc}

We now define another relatiorn 4 as the smallest preorder on traces such that: for
anys € L4 anda € ch(A), if s-a’ € L4 thens - a’ x4 s. Again, if no confusion
may arise, we write x ¢, which readss input-extendg. Theinput-extension closuref
alanguage, denotedr*, is defined to contain all the tracesafplus those traces which
input-extend some prefix af but which are not prefixes ef themselves. As follows:

c*=cU{t|t¢oSANIscoSstixy, s}

The last condition we impose is that= ¢*. When a language satisfies this condition

we say that it igeceptive Intuitively, a language is receptive ports are always yetad

accept an input, provided the alternation of input and dutptespected. We leave it to

the reader to figure out what the languagg,q = (0baqd)®** = (((0baa)P)*)" lo0Ks like.
To resume, handshake language are defined as follows.

Definition 2.4 (handshake language).et o be a non-empty language. Theis ahand-
shake languagé it satisfies the following conditions:

1. 0 = oP (o is closed under passive prefijes
2. 0 = o' (o isreorder-closed
3. 0 = o* (o isreceptive.

We write HsLng to denote the set of handshake languages.

Henceforth we may speak of languages always referring tddteake languages. Here
are three languages that shall be useful in the remaininfgegbaper.

? ! ? !

SKIP, = o —2 2 o2 Cso ...
a! a‘? a! a‘!
RUN, = o)
(L| (er (L! Cl?
[e] [¢]
by b7 b7
HAC,, = ° ° °

RUN, is initially willing to send a request, then it becomes qo&d until it receives
an acknowledge and starts agaff¥ 1 P, instead is initially waiting for a request and,

whenever one comes, it acknowledges it and goes back toTeise two languages are
inspired by [17], although Van Berkel's definitions were maeneral H AC,; is new
(it stands for “handshake and continue”). Lik&/ N, it can keep sending requests @n
Unlike RU N,, it may decide to send a requestiomstead (in a mutual exclusive way).
After the handshake ancompletes, it behaves deterministically liR& N,,.

The above languages, as well as others we shall introdwerediat are merely some of
the simplest languages we could find that, combined in cewalys, allow us to expose
the problems of composition. We did not choose them becatifiees computational
relevance.

3 Handshake Composition

In this section we recall the notion of composable alphadetspropose a minimal set of
axioms for the composition of two languages on composabpleadets.

3.1 Composable Alphabets and Interaction Traces

In order for two languages to be composable, they should leetaltommunicate on all
common channels, while channels that are not used for comeation should be used by
either language but not by both. This intuition is formadid® the notion of composable
alphabets. Consider an alphabétind a channet € ch(.A). By definition, A contains
exactly one port with channel. Then we write4, 4 to denote the only port such that
Aga € Aanda € ch(A, 4). Two alphabetsd; and.A; arecomposabléf and only if
Ag A, = (A(LAQ)J‘, foralla € ch(A;) Nch(As).

The duality between the two ports at the opposite ends of aruoritation channel
is reflected in the traces on these ports: outputs on one sictatie inputs on the other,
and viceversa. This may be a source of confusion if we wanitarleave two traces on
composable alphabets, which is often the case when deaithdamguage composition.
One way to avoid the confusion is by renaming the internalsagss, as we show next.

Let A; and A, be composable alphabets. For alle ch(A;) U ch(Az), we de-
fine Msga, 4,(a) as a variant ofM sg(a) such that: ifa € ch(A;) N ch(Asz), then
Msga, a,(a) = {a?,a*2}; otherwise,Msg4, 4,(a) = Msg(a) = {a’,a'}. Basi-
cally, the variant consists in renaming internal messaghsrea” represents an output
from A’s side. We extend the functioM/sg.4, 4,(—) to subsets of4; U A, as done
for Msg(): for all A" C Ay U Ag, Msga, 4, (A’) = Useccn(ayMsga,,a,(a). We write
Msga, 4, toindicateM sga, a,(A; U As).

Now, consider a sequenceof symbols fromM sg 4, 4,. We defines [A, the
projection ofs on .4, by modifyings as follows: 1) remove alth(.As) \ ch(A;) symbols
from s; 2) for all @ € ch(A;) N ch(A), rename all occurrences af'' by o' and all
occurrences of2 by a’. Similarly, we define the projection afon subsets ofd; or of
As (e.g. on a single port). Interleavings are defined similtrliraces (Definition 2.3):

Definition 3.1 (interleaving). An interleavings on composable alphabets and.A; is
a sequence of symbols frofd sg 4, 4, such that:

— foranya € ch(A;) andb € ch(Asz), s | Aq 4, @ands [A, 4, are sequential traces.

We write £ 4, 4, to denote the set of all interleavings e and.A,.

3.2 Axioms for Composition

Interleavings represent all the traces that could everilplgsarise from the interaction of
any pair of languages on their respective composable afpbabfollows that any notion

of composition between two languageandr on composable alphabets should consider
a subset of the interleavings oh, and.A..

The question is: which subset of interleavings should wam&tintuitively, among all
the interleavings on the two alphabets, only those that Bomearise from the interaction
betweernr andr should be relevant. Indeed a minimal condition could bettiaprojec-
tion of an interleaving o, be ing= and that its projection onl. be in7=. But that is
not enough, quiescence should be taken into account as well.

How can we decide if a trace, obtained through external ptioje of an interleav-
ing, is quiescent or not? We would expect thaandr “agree” upon some interleaving,
which happens when they simultaneously reach a quiesaad. tBut this excludes one
scenario, which occurs when the two languages engageiitfiaite internal chatwhere
they keep exchanging internal messages and forever avoiatpoit on the outside of the
composition. Then it could well be that, in this infinite imel chat, they never reach
a quiescent trace simultaneously. But since no externglubwatccurs either, we should
consider the external projections of these infinite insarlegs as quiescent as well. Let
us formalise the above intuitions.

First, we define theveaveof two languages as the set of all the interleavings in which
both languages have simultaneously reached a quiesceat Farmally:

Definition 3.2 (weave)We define thaveaveof o andr (denoted by w 7) as follows:
owr={s€La s A €aNs| A €T}

Interleavings that may be extended with an infinite intectadt are calledlivergences
and are defined below. In the following definition, we use th&ation S« to denote the
set of all the infinite sequences of symbols fréhffor any set of symbols). We also
write v/ C wu to indicate that’ is a strict prefix ofu (it follows thatu’ must be finite,
independently of: being finite or infinite).

Definition 3.3 (divergences set)We definethe set of divergences efand ~ (denoted
by o div 7) as follows:

odivr ={s€ L, 4, |Fuec (Msga, a (A NA))Y VU Cu,s v €o=wrs}

The above definition of divergence was chosen on purpose #slveeak as possible.
In fact, we do not expect that all these divergencesreally be extended with infinite
internal chats: for instance, some internal chats may kefimitely long, but always finite.
Indeed, the search for the “good composition” can be seem adt@mpt to distinguish
between internal chats that can grow indefinitely long betrund to end, and those that
can actually go on forever. In chats of the former kind, ontheftwo languages at some
point deviates from the infinite internal chat and perhagputs an external message. As
we shall show in the rest of this paper, there is no criteriotell apart these chats from
real infinite internal ones.

STOP = {e} = o 1Fp = {e,a’b,a’b'b’} = o —= Y >0 o

! ? 1 ?

] 17 a’ a’ 1 [a’ a’
1Ha:{a‘7a‘a'}: ———>0—>o0 1NHa:{57a"a'a‘}: 0O——>0—>0

b'? b! b‘?
[©) o [©)
/b7 /b! /b7 /
= le) o] o
/b7 /4b! /b? /
o)
Fig. 1. 1-handshake languages used in the proof

Now, let AZ2! = {A, o | a € (ch(Ao)\ch(A;))}U{Aq - | a € (ch(Ar)\ch(As))}
denote the external restriction of the alphabets of twouaggss andr. The following
definition formalises the criteria for language compositiatroduced above.

1Cap = {e,a',a'b"p' }>*r

Definition 3.4 (axioms).Let — o — : HsLng x HsLng — HsLng be a function taking a

pair of handshake languages and returning another hareltdraguage. In order to be a
composition between handshake languages — must satisfy the following axioms, for
all handshake languages T andp:

1. (coT)op=oco(Top) (associativity);
2.007 C (owT U odivr) | AFY (soundness);
3. (owr) [AE Coor (completeness).

Associativity is a basic requirement. Soundness and cdenmes together require that
all interleavings in the weave and, possildgmedivergences should contribute to define
composition. Implicitly they also require that nothingeshould.

4 The Impossibility Result

We start by assuming that some composition — : HsLng x HsLng — HsLng satisfies

all the axioms given in Definition 3.4. Then, through a sedésuccessive results, we
reach a condtratiction implying thatcannot exist. The intermediate results are meant
to constraino when given specific pairs of languages as arguments. Weirstat.1 by
listing all the languages that we use in the proof and esfaiblj a series of immediate
results. Then i§ 4.2, we do the proof. The two subsections can be either rethe iorder,

or starting fromg 4.2 and going back t§ 4.1 each time a new language is encountered.

4.1 Introducing the Languages

Figure 1 defines all the finite languages that shall be usdtkiptoof. The advantage of
finite languages is that they never engage in infinite chagser Thus we shall use them
in decomposing complex languages into simpler ones. Thyukages in Figure 1 are not
only finite but also very small sets. We call thednhandshake languagésr simply 1-
language}, because they engage at most in one handshake per channel.

21 71 71 a a a a
SKIP, ={¢,a’a’ya’a’a’a’,...} = © o o

1 1 1 a! U/? a! ll)

?
RUN, ={a’,d'a’a’,...} = ° °
ll! (l? a! a?
1 1?7 7?1

CHAOS, ={¢,a’,a'a’,a'a’a’,...} = © o o o)

HAC, = {b',b'0°ad",b'b"a'd’d’, ... d',d'a’V,. .. a'd"d',.. .} =

a ll" a a
(0] o
v v v
HACab = o | © | o
v V v
1 ? 1 ?
a a a a
(0]
! ! 1 741! 1?1
CESw ={b,a',aa'b,aa’a,.. =
? o ? o ? °
" " "
, o) , o] , o)
b b B!
7 . .
a a a a a
(0] (o] o

2 1 ?

PES,, = {b',b'a',b'a'a’,a'a’b'a', d'a’b'a'a’, .. .} =

! ?
a a
o]

” o
b’ ? ? .
/ b?/a’ b /a? b / b?/
, © | o o .
b b \ | b
! ? | b 2 b | 2
a a a a a a
! Y ! Y
b!\\ agb\ a'}b\ B! a!b\ agb\
[0 [[e) le)
b7\\ o b7\ o7 b7\ b7\\ = b7\ o7 b7\
o o o

o

| A P B A P A A A A R R S A O A A
ECw.={{c,a',a’a’ct,aa’cbb ,aa'bba,aabbaach,. . }=

b?
[e]

b!
(¢}

e’ ? ?

? ! ?
/ 67/1)! € /b? ¢ / c'/
! © ' o e} ,
c c' , , c
/a! a’ b C./ b’ c./a! a’

Fig. 2. Infinite handshake languages used in the proof

STOP is the language which does nothingH,, outputs on channel once and then
waits for an acknowledgement (it does “one handshake¥)H,, (“one non-deterministic

8 Adhering to our assumption of alphabet minimalif{i’O P is defined on the empty alphabet.
9

handshake”). non-deterministically chooses whether tthddandshake or to wait (for-
ever). The difference betwedrf/, and1NH, is subtle ¢ ¢ 1H, ande € 1NH,) but
the impossibility proof rests largely on this subtle diffece.1F,;, (“one forwarding”)
forwards onb any request it receives from but it never replies om. 1C,;, stands for
“one-time confusion”. Likel N H,, it can also choose to send aror to wait. But this
choice can be resolved by the arrival of an input on a diffeckanneb: once a request
onb is received then the request emust be sent (and also the acknowledgé)n

Figure 2 defines all the infinite languages that we shall usherproof. For conve-
nience, we have also included those that we introduced a&ntiefs 2 (RUN,, SKIP,
andHAC,;). CHAOS, = RUNZ is the prefix closure oRU N, . It can become qui-
escent at any timel’ES,,;, stands for “chattering with end signal”. Every time it may
send a request on channglit has a choice to either do it or end the communication on
a, by sending a “signal” on. PES,; (“postponable end signal”) can be best understood
by comparison withC'ES,;,. In PES,,;,, an output on channél may either signal that
the chattering o has ended (like ilCES,;) or that it will end after one more hand-
shake. Note that the choice between two distinttBranches (which can be seen in the
graphical representation of Figure 2) is internal, and tietsobservablén the language
definition. EC,;. stands for “early choice”. Periodically, it has a choicenmsn sending
an output oru or one, but the choice may be done before the output ®even enabled.

Before we move on to the impossibility proof, we state théofeing facts about the
compositiono, which follow immediately by application of Definition 3.2v€ave). In
each of them, channels b andc are to be understood as arbitrary and distinct.

Factl Vo, STOPooc =00STOP =0

Fact2 HAC,. 0 1Cy. = RUN, o 1N H,

Fact3 CES,, = HAC, .0 1Fy,

Fact4 SKIP,ocCHAOS, = STOP

Fact5 PES,, 01Cy = CHAOS, o 1H,

Fact6 SKIP, o ECy,. = PES}.

Fact7 SKIP, o ECyu,. = CES,.

Fact8 CES,, o 1F,. = CES,.

As illustration, Figure 3 shows the graph of the composifmract 2 and Fact 5.
Even though we have not required the symmetry ab an axiom, each composition

in any of the facts above is symmetric, as the following lensinaws.

Lemma 4.1. Leto and 7 be handshake languages &idivr = (), thenc o7 =70 0.

Proof. It follows from the symmetry of the weave (Definition 3.2). O

10

! ? ! ?

(Fact2) HACuco01Ch. = RUN, o INH, =

) o o
b’ ? . ? .
/ \ b / . b?/ ! b / . b-’/
a ° a a ° a .
b B! . B! ,
! / ? b I / ? b’
a o a a a .

o

(Fact5) PES,,01Cy, = CHAOS, o 1H, =

I ? ! ?
a a a a
, o o o o o
< ? ? ? ?
! € ? ¢ ! ¢ ? ¢
a a a a

) o o o o

! ! ! !

! c ? c | c 2 c

a a a a

Fig. 3. Some compositions with empty set of divergences

4.2 Proving the Result

The proof of the impossibility goes as follows: we considarete specific languages
o, T, p. Using associativity, soundness and completeness, wendate the languages
(coT)opando o (T o p) We show then that these two languages are different, which
contradicts associativity.

The following is a basic lemma that is used in the proof.

Lemma4.2. RUN, o SKIP, = SKIP, o RUN, = STOP

Proof. By definition of weave (Definition 3.2), we haveU N, w SK 1P, =0. Similarly,
(RUN, div SKIP,) | AG{'~, skip, = {€} (Definition 3.3). Then soundness (axiam
of Definition 3.4) implies thalRUN, o SKIP, C {e}. But handshake languages are
non-empty (Definition 2.4). TheRUN, o SKIP, = STOP = {e}. Sincew and div
are symmetric operators, we sh& I P, o RUN, = STOP in the same way. O

Lemma 4.2 relies on the non-emptiness of languagesAlnve give a formal account of
the inconsistency of the alternative (allowing languagebda empty). For now, observe
that a language with no traces at all does not make sense ifameitvo represent the
quiescenexecutions (as opposed to a language containing only théydrape).

Then we show:

Lemma4.3. SKIP, o HAC,. = HAC,.o SKIP, = INH,

Proof. Note thate' € (SKIP, w HAC,.) | A§Ep. 1 ac,.- Itfollows by completeness
(axiom 3 of Definition 3.4) that' € SKIP, o HAC,.. Then by receptiveness of hand-
shake languages (conditi@rof Definition 2.4), we also havéc’ € SKIP, o HAC,..
The question now is whethere SKI1P, o HAC,.. To answer it, note that:

SKIP, o (HACy.01Cy.) = SKIP, o (RUN, o 1NH;) (Fact2)
= (SKIP,o RUN,) o 1INH, (assoc. - Def. 3.4(1))
=STOPo1NH, =1NH, (Lemmad4.2, Factl)

11

First suppose that ¢ SKIP, o HAC,., which impliesSKIP, o HAC,. = 1H..
Then(SKIP, c HAC,.) o 1Cy. = 1H. o 1Cy,. = 1H,, where the last equivalence is
becausd C),. always outputs oh once it has received an input enHowever, this breaks
associativity of composition (axiomof Definition 3.4):

(SKIP, 0 HAC,.) 0 1Cy. = 1H, # INH, = SKIP, o (HAC,. o 1Cj.)

Then suppose € SKIP, o HAC,., which impliesSKIP, o HAC,. = 1N H,.. Now
we have(SKIP,o HAC,.)o1Cy. = 1INH.01Cy. = 1N Hy, where the last equivalence
is becausé N H,. does not guarantee that it will send a request.orhen:

(SKIP, o HAC,.) 0 1Cy. = INH, = SKIP, o (HAC,. 0 1C}.)
Thus we haveSKIP, o HAC,. = 1NH,.. By applying a symmetric reasoning and
Lemma4.1, we also haw® AC,. o SKIP, = 1NH,.]
The following lemma is the main result for one direction af impossibility proof.
Lemma4.4. SKIP, o CES,, = CES,, o SKIP, = 1IN H,
Proof.

SKIP,oCESy, = SKIP, o (HAC,. o0 1F,,) (Fact 3)
= (SKIP,o HAC,.) o 1F,, (assoc. - Def. 3.4(1))
=1NH.0o1F,;, =1NH, (Lemma 4.3)

By a symmetric reasoning (and using Lemma 4.1 in the first asddqualities) we can
also stat&”’ ES,, o SKIP, = 1N H,y,. O

The proof of the following lemma has the same structure asfHaemma 4.3.
Lemma4.5. SKIP, o PES,, = PES,, 0o SKIP, =1H,

Proof. Note thatb',b'b” € (SKIP,w PESaw) | A§%p. prs,,- It follows by com-
pleteness (axior of Definition 3.4) that', b'b’ € SKIP, o PESy,;. The question now
is whetherc € SKIP, o PES,;. To answer it, note that:

SKIP, o (PESy,01Cy) = SKIP, o (CHAOS, o 1H,) (Fact5)
= (SKIP,oCHAOS,)o1H, (assoc. - Def. 3.4(1))
=STOPo1H.=1H, (Fact 4, Fact 1)

First suppose that ¢ SKIP, o PES,;, which impliesSKIP, o PES,, = 1NH,.
Then(SKIP,o PES,)01Ces = 1NH, 01C,, = 1N H,., where the last equivalence is
becauséaC,;, does not guarantee that it will output erHowever, this breaks associativity
of composition (axion of Definition 3.4):

(SKIP, 0 PESy) 01Cy = INH, # 1H, = SKIP, o (PESu 0 1C4)

Then suppose ¢ SKIP, o PES,;, which impliesSKIP, o PES,, = 1H,. Now we
have(SKIP, o PES,) o 1Cy, = 1H, 0 1Cy, = 1H,, where the last equivalence is
becausd C., always outputs on once it has received an input énThen:

(SKIP, 0 PES) 01C, = 1H, = SKIP, o (PES,, 0 1Cy)

Thus we haveéSKIP, o PES,, = 1H,. By a symmetric reasoning and Lemma 4.1, we
also havePES,, o SKIP, = 1H,. O

12

We are now ready to show thatdoes not exist.

Theorem 4.1 (impossibility).Let — o — : HsLng x HsLng — HsLng. Theno cannot
satisfy the three axioms given in Definition 3.4.

Proof. By contradiction, assume thatsatisfies all the axioms. Let = SKIP,, 7 =

EC .. andp = SKIP, o 1F,4. With the results that we have established, we are able to
determine the composition &f, = andp in both directions. We now show that we obtain
one language in one direction and a different one in the oFest direction:

cgo(top)=00(ECu.0(SKIP,01F,;)) (substitution)
=00 ((ECue.0SKIP,)o1F.;) (assoc. - Def. 3.4(1))
=00 ((SKIPyo ECyp.)01F.;) (Lemma4.l)
=00 (CESs.01F.) (Fact7)
=00CESyq (Fact 8)
=SKIP,oCES,g =1NHy (subst., Lemma 4.4)

Second direction:

(coT)op=(SKIP,0ECg)oT (substitution)
= PESp.0oT (Fact 6)
= (PESp. 0 SKIP,)o1F.; (subst., assoc. - Def. 3.4(1))
=1H.01F.; = 1H, (Lemma 4.5)

where the last equivalence is becauge, forwards ontad the request H. sends ort.
To resume, we have;

co(top)=1NHy#1H;=(coT)op
Theno does not respect associativity (axidnof Def. 3.4). |

5 Discussion

In this paper we have considered a specific protocol of asgnolus communication, the
handshake protocol. We have defined handshake languagegplwjting the standard
formalisation of its properties in sets of traces [17]. Themintroduced a set of axioms
for language composition and we showed that they may notddl $imultaneously.

We observe that:

1. our axioms do not refer to specific features of the handspastocol, they refer to
the extensional behaviour of composition in general, bydsipg the loosest possible
boundaries on what must and what may be observed,;

2. the specificity of our class of languagds_ng implies that all the languages we used
in the impossibility proof are contained in any larger claBlnguages as well.

The above two observations underpin the realisation thaingpiossibility proof has im-

plications on a vast range of trace-models, not limited talet® of the specific protocol
considered in this study. One straightforward way to extndesult is by allowing mes-
sages to carry data (as in the original formalisation of taedshake protocol [17]). We

13

can even go one step further and allow dynamic creation ofi@ctions through name-
passing (inr-calculus style [14]).

On the other hand, we can also extend the class of languagg$h(as our result) by
relaxing the constraints that define the handshake prqoteanlstrict alternation between
requests and acknowledges on each channel of communicktiomstance, it is well-
known that handshake languages can be encoded into thedtags of delay-insensitive
languages [2, 12, 16], which also ensure the absence of datigpuinterference and of
transmission-interference (mentioned;it).

To be clear, itis not our intention here to dismiss the whitdedture of concurrent and
non-deterministic trace-models as flawed, since it woulduief the scope of this paper.
Many models achieve composition by sacrificing the infoiorabn quiescence (e.g. by
considering prefix-closed languages), thus failing to @spnt deadlocks. Other models
have different and often more elaborate ways of charaatgriteadlocks (e.g. failures and
divergences models [1, 8]). Rather than rushing to disniisseaneighbouring literature,
we set it as the next challenge to check if and how our impd#giproof can be applied
to variant trace-models, starting with models of delayeirstive andspeed-independent
communications [10, 11] (the latter being a yet larger glass

However, we can say that characterising divergences siamplinfinite chatterings
(as we did), without further “decorating” languages witlesjal traces, is arguably the
most natural way of proceeding, without altering the natiréne model. Then it may be
unsurprising that our proof reflects an observation thatkdeps$ two different “schools”
debating for some time: the school of linear-time (e.g. 1) &nd that of branching-time
(e.g.[13, 14, 18]) semantics, where trace-semantics petthe former. The observation
is that trace models do not allow to distinguish the follogviwo CCS processes:b +
a.c anda.(b + c); while composing them witli.b may give rise to a deadlock in one
case but not in the other. Nonetheless, as our proof showsltbence of a satisfactory
notion of composition in trace-models is not just a mere egognce of such well-known
observation: it does require a careful selection of a setldf@c languages to exploit such
behavioural understanding in a formal proof.

Another objection one can make to our proof is that Lemma 42 proved only
because our languages are non-empty by definition. One gae #rat the language on
the empty alphabet should Bgthe empty language), rather thé} (the language con-
taining only the empty trace). We note that, from an obs@mat viewpoint,(and{e}
are indistinguishable, which is the reason why we did naivalhandshake languages
to include(. Moreover, adding the empty language does not remedy tHegonowith
composition, as we show KA.

A possibility we have not considered is to allow languagesaistain infinite traces.
However, this may not be a viable alternative, since theetimnain properties stated in
Definition 2.4 each enforce a closedness condition whichdvoe undecidable over sets
of infinite traces. Note also that in such a framework, thebjgnm would not be that
of finding a good notion of composition, since infinite chettgs would be explicitly
represented through interleavings. The aim there would Igéve criteria to characterise
the infinite traces that a language should contain. Our gaéisat it should not be possible
either, although we leave it as a future work.

14

Another question we leave open for now is that of finding theimal limitations to

non-determinism and/or concurrency, which allow a satisfy notion of composition.

References

1

2.

10.
11.

12.

13.

14.

15.
16.

17.

18.

. S. Brooks and A. Roscoe. An improved failures model for comoatimg processed.ecture

Notes in Computer SciencE97:281-305, 1985.

W. Clark and C. Molnar. Macromodular computer systems.Cémputers in Biomedical

Researchvolume IV, chapter 3. Academic Press, 1974.

. L. Fossati. Handshake games.Oavelopments in Computational Models, DCM'@6lume
171 of ENTCS pages 21-41. Elsevier, 2007.

. L. FossatiModeling the Handshake Protocol for Asynchro”PhD thesis, Universitdi Torino
& Université ‘Denis Diderot’ Paris VII, Turin, 2009.

. L. Fossatiand D. Varacca. A calculus for handshake configmsatinFoundations of Software
Science and Computation Structures, FoSSaCS/0Rime 5504 ofLNCS pages 227-241.
Springer, 2009.

. L. Fossati and D. Varacca. A petri net model of handshake @otsto In Interaction and
Concurrency Experience, ICE'08olume 229 oENTCS pages 59-76. Elsevier, 2009.

. C. Hoare. A model for communicating sequential processe€@nlthe Construction of Pro-
grams Cambridge University Press, 1980.

. C. Hoare.Communicating Sequential ProcessBEsentice Hall, 1985.

. http://Iwww.keil.com/dd/docs/datashts/handshake/ht80c51.pdf.

M. B. Josephs. Receptive process thebita Informatica29(1):17-31, 1992.

M. B. Josephs and J. T. Udding. Delay-insensitive circuits: arbedge approach to their

design.Lecture Notes in Computer Sciend®8:342—-366, 1990.

Macromodules Project. Macromodular computer systems. Tedliréport 4, Computer Sys-

tems Laboratory, Washington University, 1967.

R. Milner. A Calculus of Communicating Systenaslume 92 ofLecture Notes in Computer

Science Springer, 1980.

R. Milner, G. Parrow, and D. Walker. A calculus of mobile procesi&ormation and Com-

putation 100(1):1-77, 1992.

S. Nain and M. Y. Vardi. Trace semantics is fully abstracLI®S, pages 59-68, 2009.

J. Udding. Classification and Composition of Delay-Insensitive CircuihD thesis, Eind-

hoven University of Technology, Eindhoven, 1984.

K. Van Berkel.Handshake Circuits: an Asynchronous Architecture for VLSI Desiglume 5

of Cambridge International Series on Parallel Computatio@ambridge University Press,

1993.

R. Van Glabbeek. The linear time - branching time spectrum [the rd@saf concrete

sequential processeldandbook of Process Algebrpages 3—99, 2001.

15

A Taking Empty Languages into Account

In the proof of Lemma 4.2, we were able to determine the reguidbmposing a pair of
infinite languages only because our languages are non-dmplgfinition. However, one
could argue that the language on the empty alphabet shouldthe empty language),
rather than{e} (the language containing only the empty trace). We note frah the
point of view of an external observérand{¢} are indistinguishable, which is the reason
why we did not allow handshake languages to inclide

Nonetheless, leEM PTY = () denote the empty language and let us consider an
alternative set of handshake languablesng U { EM PTY }, just to show that this does
not help finding a satisfactory notion of composition. In Difon 2.4 we avoided any
explicit reference to the alphabet on which a language isiééfiHowever, in order to
extend receptiveness (Conditidrin Def. 2.4) we ask thak’ M/ PT'Y may not be defined
on an alphabet containing negative ports. The principleeasual one for receptiveness:
a language should be ready to accept any input from the emaiat. Formally:

Definition A.1 (-receptive,HsLng?). Let o € HsLng U {EMPTY} be alanguage on
alphabetA. We say that is (J-receptiveiff, for any a € ch(A), (a,—) € A implies
o # EMPTY . We writeHsLng” to denote the set of languagesHsLng U { EM PTY }
which additionally satisfy th@-receptiveness condition.

In the proof, we also use the following additional axiom, ingkthat composition be
closed under channel renaming. Below,d#i/a] be the language obtained framafter
replacing all occurrences af and ofa’ by occurrences df' and ofb’, respectively.

Definition A.2 (renaming). A composition— o — : HsLngQ X HsLngQ) — HsLngw is
closed under renaminigfor all b ¢ ch(A,)Uch(A,) and for alla € ch(A;) Uch(A,),
olb/a] o 7b/a] = (o o T)[b/al.

To resume, a satisfactory notion of composition shouldggathe following:

Definition A.3 (HsLng”-axioms).In HsLng”, asatisfactory notion of compositiono— :
HsLng(D X HsLng@ — HsLng” is required to be closed under renaming (Definition A.2),
associative (axionm from Definition 3.4) and such that soundness and completgags
ioms2 and3 from Definition 3.4) hold only for languages kisLng.

The reason why we did not extend soundness and completengdd PTY is because
EMPTY has empty weave and divergence set when composed with agnjatiguage.
The main issue is to understand h&a/ PTY should compose with other languages
and especially with non-trivial ones, where a language HsLng‘D is non-trivial if o ¢
{EMPTY, STOP }. First we show that it may only behave in two possible ways.

Lemma A.1. Leto be a non-trivial language. Then:

(0 o EMPTY =0 V 0 o EMPTY = EMPTY)
A
(EMPTY oo =0 V EMPTY oo = EMPTY)

16

Proof. Letch(A,) = {a1,...a,} and letr = a[b1/a1]. .. [bn/an], whereb; ¢ ch(A,),
foralli e {1,...,n}.

By contradiction, suppose theresis o o EM PTY such thats ¢ o. Sinceo is non-
trivial, 7 is also non-trivial, hence non-empty. Then take = and lett be an interleaving
of s ands’. SinceA,.gn pry andA, are disjointt € (0 o EM PTY) o 7. On the other
handt ¢ oo (EMPTY o), sinces ¢ o. And this contradicts the associativity 6fo —.
Hence we have:

co EMPTY Co

In the same way we could show that there may not exist suchthat ¢ co EM PTY .
But note that we would need the additional assumptioB M PTY # EM PTY , which
brings us to conclude that eithero EM PTY = ocoroco EMPTY = EMPTY . We
show(EMPTY oo =0V EMPTY oo = EMPTY) in the same way. O

Next we show thaty M PTY may not behave as the identity fero —.
Lemma A.2. There exists a non-triviat € HsLngw such that:
co EMPTY #0# EMPTY oo

Proof. Note thatif onlyE M PTY o1 N H, = 1N H,, the whole impossibility proof of 4
would still hold even if we dismissed Lemma 4.2 to allé I P, o RUN, = EMPTY
(Lemma 4.2 is used only once in the proof, and that is withenghoof of Lemma 4.3).
Then it must be the case thealvVH, # EM PTY o 1N H,. Note also that, by slightly
remodelling the proof of 4, we can similarly show N H, o EM PTY # 1N Hy,. O

Similarly we exclude that? M PTY o — and— o EM PTY may act as the constant
EMPTY.

Lemma A.3. There exists a non-triviat € HsLngw such that:
0o EMPTY # EMPTY # EMPTY oo

Proof. Just take as an exampleK I P,, although any handshake language defined on
a port with negative polarity would do. Note thdix;p, = {(a, —)} consists of a port
with negative polarity. W.l.0.g. assume the langu&ge PT'Y" occurring before the com-
position is defined on the empty alphabet, so that when we osespwith EAM PTY (in

any order) we obtain a language which is still defineddy ; p, . Hence the composition
may not yieldEM PTY, or ()-receptiveness (Definition A.1) would break. O

Then we conclude:

Theorem A.1 HsLng-impossibility). Let— o — : HsLng” x HsLng? — HsLng”. Then
o may not simultaneously satisfy all the axioms given in DafimiA.3.

Proof. By Lemma A.1, the result of composidgM PTY with any non-trivial language
is eitherEM PTY or that language. Then by Lemma A.3, there is a non-triviagjleage
o suchthat o EM PTY = o, and by Lemma A.2, there is a non-trivial languagguch

17

that EM PTY o1 = EMPTY . Note also that renaming (Definition A.2) allows us to
chooser andr such thath(A,) N ch(A;) = 0. Then:

(0o EMPTY)oT=00T
whereo o 7 contains all the interleavings of traceswofvith traces ofr, sincech(A,) N
ch(A;) = 0. Hence it is different from botlr andr, sinces andr are both non-trivial.
On the other hand we have:

co(EMPTY or)=00EMPTY =0

which contradicts the associativity axiom requested byriasn A.3. O

18

