
Temporal logics and model checking for fairly correct systems

Daniele Varacca∗

Imperial College London, UK
Hagen Völzer

Universität zu Lübeck, Germany

Abstract

We motivate and study a generic relaxation of correct-
ness of reactive and concurrent systems with respect to a
temporal specification. We define a system to be fairly cor-
rect if there exists a fairness assumption under which it sat-
isfies its specification. Equivalently, a system is fairly cor-
rect if the set of runs satisfying the specification is large
from a topological point of view, i.e., it is a co-meager set.

We compare topological largeness with its more popu-
lar sibling, probabilistic largeness, where a specification is
probabilistically large if the set of runs satisfying the spec-
ification has probability 1. We show that topological and
probabilistic largeness of ω-regular specifications coincide
for bounded Borel measures on finite-state systems. As a
corollary, we show that, for specifications expressed in LTL
or by Büchi automata, checking that a finite-state system is
fairly correct has the same complexity as checking that it is
correct.

Finally we study variants of the logics CTL and CTL*,
where the ‘for all runs’ quantifier is replaced by a ‘for a
large set of runs’ quantifier. We show that the model check-
ing complexity for these variants is the same as for the orig-
inal logics.

1 Introduction

Sometimes, a model of a concurrent or reactive system
does not satisfy a desired linear-time temporal specification
but the runs violating the specification seem to be artificial
and rare. For example, in Dijkstra’s dining philosophers, a
philosopher may starve because his two neighbours ‘con-
spire’ against him by alternately eating in such a way that
the philosopher’s two forks are never available at the same
time. If a specification prescribed starvation-freedom, such
a run would obviously violate it. Although such runs ex-
ist, they require special conditions that in practice may not
arise.

For this particular example, there are also starvation-free
solutions, but for many problems, a system satisfying the
∗Funded by EPSRC grant GR/T04724/01

actual specification is impossible, too difficult, or too ex-
pensive to obtain [13]. In such cases, we could be content
with a system where the specification is almost satisfied,
i.e., the set of runs satisfying the specification is ‘large’.

One natural way to formalise ‘large set’ is to mean prob-
abilistically large, i.e., a set of measure 1 for a given proba-
bility measure. This notion however needs a concrete prob-
ability measure, which may be hard to justify for a given
system. Alternatively, one can define a fairness assump-
tion under which the specification is satisfied, with the in-
tuition that ‘most’ runs are fair. This intuition has a for-
mal counterpart: Ben-Eliyahu and Magidor [7] observe that
for many fairness notions from the literature, the set of fair
runs is topologically large, i.e., a co-meager set in the nat-
ural topology of runs of a given system. Völzer et al. [28]
show that this is in fact true for most of the existing fairness
notions and they also give more arguments why fairness
should be defined as co-meagerness in the natural topol-
ogy. An important consequence of this definition is the fol-
lowing: A linear-time property X is topologically large in
a system iff there exists a fairness assumption F such that
(F ⇒ X) is satisfied in that system.

The notions of probabilistic and topological largeness
share many properties. A classic mathematical text book
[23] is devoted to study their similarities and differences.
Although similar, these notions do not coincide in general—
in fact, even for the most straightforward probability mea-
sure on the set of runs, there are topologically large sets that
have probability 0.

In this paper we propose to call a system fairly correct if
the set of its runs that satisfy the specification is co-meager
or, equivalently, if it is correct under some fairness assump-
tion. We study the problem of verifying when a finite sys-
tem is fairly correct for a specification expressed in some
temporal logic, or via Büchi automata.

We prove that probabilistic and topological largeness of
ω-regular specifications coincide for bounded Borel mea-
sures on finite-state systems. This allows us to decide fair
correctness by using known algorithms for finite Markov
chains.

In particular, we show that fair correctness of a finite sys-
tem is decidable and can be checked with the same com-

1

plexity as correctness for LTL and Büchi automata speci-
fications (but without the necessity to specify any fairness
assumption explicitly). We also show that fair correctness
of a system with respect to an LTL+past specification is ex-
pressible in CTL+past, strengthening a result of Berwanger
et al. [8].

Then, we consider variants of the logics CTL and CTL*,
where the quantifier ‘for all runs’ is replaced by ‘for a large
set of runs’. We show that also for these logics, the model
checking complexity is the same as in the standard case:
PSPACE-complete for CTL* and linear for CTL.

The path quantifier ‘for a large set of runs’ also occurs
(under a different point of view) in a logic introduced by
Pistore and Vardi [24]. We reinterpret their work from a
topological point of view, which allows us to derive some
basic properties of their logic.

2 Preliminary notions

2.1 Systems and temporal properties

Let Σ be a countable set of states. Σ∗, Σ+ and Σω denote
the set of finite, nonempty finite, and infinite sequences over
Σ respectively. Finite sequences are denoted α, β and infi-
nite ones by x, y. We set α↑ = {x | α is a prefix of x} and
x↓ = {α | α is a prefix of x}. A set X ⊆ Σω is called a
(linear-time temporal) property and a set Q ⊆ Σ+ a finitary
(temporal) property.

Let AP be a nonempty set of atomic propositions. A tem-
poral structure M = (Σ,R, L) over AP consists of a set Σ of
states, a total binary relation R ⊆ Σ × Σ, and a mapping
L : Σ → 2AP. A pair (M, s0) of a temporal structure M and
a state s0 of M will be called a system. A path (path frag-
ment) of (M, s0) is an infinite (finite) sequence s0, s1, . . . that
starts in s0 such that (si, si+1) ∈ R for all i ≥ 0. The set of all
paths of (M, s0) is denoted by M(s0).

2.2 Temporal-logical properties

We consider various temporal logics here. The most ex-
pressive one is CTL*+past [16], which is defined by the fol-
lowing syntax rules (S1)-(P1), where a ranges over atomic
propositions, p over state formulas, h over history formulas,
and φ over path formulas:

p := a | ¬p | p ∧ p (S1)
p := A φ | E φ (S2)
h := p | ¬h | h ∧ h | Y h | h S h (H1)
h := φ (H2)
φ := h | ¬φ | φ ∧ φ | X φ | φ U φ (P1)

LTL+past is the sublanguage where rule (S2) is removed.
CTL+past [16] is the sublanguage where (H2) is removed

and (P1) is replaced by (P3) below. Finally, versions with-
out past are defined by replacing (H1) by (H3) below.

φ := X h | h U h (P3)
h := p (H3)

Satisfaction is defined as usual [10, 16]. In particular, we
follow the Ockhamist interpretation of the past, where each
state has a unique past. The semantics of history formulas
is as follows:

• M, x, i |= Y h iff (i > 0) and M, x, i − 1 |= h

• M, x, i |= h S g iff ∃ j ≤ i : M, x, j |= g and ∀k : j <
k ≤ i : M, x, k |= h

Additional operators, such as⊥,>, F φ, G φ, F−1 φ, (φ W
ψ), etc. are also defined as usual. In particular, (φ W ψ)
stands for (φ U ψ) ∨ G φ and F−1 φ for > S φ. For an
LTL(+past) formula φ, we will also use φ to denote the set
of paths that satisfy φ when no confusion arises.

An ω-regular property is a property that is accepted by
some Büchi automaton (see e.g. [26]).

2.3 Path games and the Pistore-Vardi logic

The path quantifiers A (‘for all paths’) and E (‘there
exists a path’) of CTL* are two extreme notions of satisfac-
tion of a path formula in a system. We can think of them
as a hostile player (A) and a friendly player (E) that resolve
the nondeterminism in the system. Player A tries to violate
the formula and E tries to satisfy the formula. Intermediate
notions of satisfaction can be derived through a path game
[8, 24] where hostile and friendly player alternately resolve
the nondeterminism for some time.

Let κ ∈ {A ,E }ω, X ⊆ Σω a linear-time property, and
(M, s0) be a system. The game G(κ, X, M, s0) is played by
the two players A (Alter) and E (Ego) and the state of a play
is a path fragment of (M, s0). A play starts in s0 and in the
i-th move (i ≥ 0), player κ(i) extends by a finite, possibly
empty1 sequence αi yielding the path fragment s0α0 . . . αi.
The play goes on forever converging either to a path x or
a path fragment α of the system. Ego wins if x ∈ X (resp.
α↑ ⊆ X), otherwise Alter wins.

A strategy is a mapping2 f : Σ+ → Σ∗ such that for
each path fragment α of (M, s), α f (α) is a path fragment
of (M, s). A strategy f is winning for player P ∈ {A ,E } if
for each strategy g of the other player, P wins the play that
results from P playing f and the other player playing g.

It can be shown [24, 8] that each game G(κ, X, M, s0) is
equivalent to a game G(κ′, X, M, s0) where κ′ is one of the

1This version of the game is essentially equivalent with those described
in [8, 24].

2More general strategies that depend on what moves produced the cur-
rent path fragment are not more powerful in the game considered here.

2

following: Aω,AEAω, (AE)ω,AEω,EAω, (EA)ω,EAEω,Eω,
abbreviated A, AEA, AE, AE, EA, EA, EAE, E respectively.

Pistore and Vardi [24] proposed the following extension
of LTL. A formula in the Pistore-Vardi logic is of the form
κ.φ where κ ∈ {A ,E }ω is a path quantifier and φ is an LTL
formula. Satisfaction is defined by

• M, s0 |= κ.φ iff Ego has a winning strategy in the game
G(κ, φ, M, s0).

More general, we write M, s0 |= κ.X for any X ⊆ Σω iff
Ego has a winning strategy in the game G(κ, X, M, s0). It is
known [8] that G(κ, X, M, s0) is determined, i.e., either Ego
or Alter has a winning strategy if X is ω-regular.

To exemplify the properties that can be expressed in the
Pistore-Vardi logic, consider the temporal structure M =

(Σ,R, L), where Σ = {a, b},R = Σ × Σ,AP = Σ, and
L(a) = {a}, L(b) = {b}. The system (M, a) generates all
infinite sequences on {a, b} starting with a. We therefore
have: M, a |= A .a, M, a |= AEA .F b, M, a |= AE .G F b,
M, a |= AE .F G b, M, a |= E .G a.

3 Topological classifications

Different topological classifications of linear-time prop-
erties have improved our understanding of the verification
problem. In this section, we recall those topological classi-
fications.

3.1 Some topological notions

The natural, i.e., Cantor topology on Σω is defined by the
sets of the form α↑ for α ∈ Σ∗. Such a set is a basic open
set of that topology. As usual, an open set is an arbitrary
union of basic open sets, a closed set is the complement of
some open set, and a dense set is a set that has a nonempty
intersection with every open set.

The family G of open sets is closed under arbitrary union
and finite intersection. By duality, the family F of closed
sets is closed under arbitrary intersection and finite union.
Given a family F ⊆ 2Σω , the family Fδ (Fσ) is the family
of countable intersections (unions) of members of F . Thus,
Gδ is the family of sets that can be represented as the inter-
section of countably many open sets. The family of Borel
sets is the smallest family F ⊆ 2Σω that contains all open
and closed sets and is closed under countable union and in-
tersection.

Each nonempty set X ⊆ Σω is equipped with the Cantor
topology relative to X, which is defined by the basic open
sets of the form α↑∩ X for each α ∈ Σ∗. In particular, a sys-
tem (M, s0) defines the Cantor topology relative to M(s0).
A set is dense in X if it is dense in the topology relative to
X.

A set X is somewhere dense if it is dense in some open
set. X is nowhere dense if it is not somewhere dense (or
equivalently, if its complement contains a dense open set).
A set is meager if it is the countable union of nowhere dense
sets. A complement of a meager set is called co-meager. In
this paper, we also say that a co-meager set is topologically
large or T-large.

3.2 The safety-liveness classification

We say that a property X ⊆ Σω is live in α ∈ Σ∗ if
α↑ ∩ X , ∅. Following Alpern and Schneider [1], a safety
property is a property X such that x < X implies that x has a
finite prefix α where X is not live. X is live in a safety prop-
erty S (also: (S , X) is machine-closed) if X is live in every
α ∈ S↓, where S↓ :=

⋃
x∈S x↓. X is a liveness property if X

is live in every α ∈ Σ∗.
It is easy to see that safety properties are exactly the

closed sets and that liveness properties are exactly the dense
sets of the Cantor topology [1]. Moreover, X is live in S
iff X is dense in S . Every set in a topological space can
be obtained as the intersection of a closed and a dense set,
therefore every property is the intersection of a safety and a
liveness property [1].

3.3 The safety-progress classification

As an alternative to the safety-liveness classification,
Manna and Pnueli [22] propose the safety-progress classifi-
cation. Let X ⊆ Σω.

• X is a safety property iff there exists a finitary property
Q such that for each x ∈ X, all finite prefixes of x are
in Q,

• X is a guarantee property iff there exists a finitary
property Q such that for each x ∈ X, there exists a
finite prefix of x that is in Q,

• X is an obligation property if X is expressible as a posi-
tive boolean combination of safety and guarantee prop-
erties,

• X is a recurrence property if there is a finitary property
Q such that for each x ∈ X, there are infinitely many
prefixes of x in Q,

• X is a persistence property if there is a finitary property
Q such that for each x ∈ X, all but finitely many finite
prefixes of x are in Q,

• X is a reactivity property if X is expressible as a posi-
tive boolean combination of recurrence and persistence
properties.

3

Simple examples are: guarantee: F a, obligation: F a →
F b, recurrence: G F a, persistence: F G a, and reactivity:
G F a→ G F b. It can be shown [22] that safety, guarantee,
recurrence, persistence are exactly closed, open, Gδ, and
Fσ sets, respectively. Obligation is exactly Gδ ∩ Fσ and
reactivity is exactly Fσδ∩Gδσ. Furthermore, each ω-regular
property and hence each property expressible in LTL+past
is a reactivity property [26, 22]. The classes of the safety-
progress classification also have natural characterisations in
temporal-logical and automata-theoretical terms [22, 9].

3.4 Fairness

Fairness is defined with respect to a given system (M, s)
or, more general, with respect to a safety property S . (Note
that M(s) is a safety property.) It has been pointed out by
Apt, Francez, and Katz [5] and by Lamport [18] that a fair-
ness property for S should be live (i.e., dense) in S . This
requirement alone, however, does not rule out some proper-
ties that are intuitively not fairness properties, and it implies
that fairness is not closed under (finite) intersection [28].
We propose elsewhere [28] to call a property X a fairness
property for S iff X is co-meager in S , that is a co-meager
set in the topology relative to S . The following statements
are equivalent with X being a fairness property for M(s):

• X contains a dense Gδ set (relative to M(s)), i.e., a re-
currence property that is live in M(s),

• Ego has a winning strategy in the game G(AE, X, M, s).

The first statement intuitively says that fairness requires,
possibly under some condition, that some live finitary prop-
erty is satisfied infinitely often. The latter statement is a
classical result by Banach and Mazur. That game is also
called Banach-Mazur game. We can view Ego here as a
scheduler that wants to guarantee that all paths are fair.

It follows that:

• each fairness property for S is dense relative to S ,

• fairness for S is closed under countable intersection,
and

• fairness for S includes some basic intuitive fairness
properties, viz. all recurrence properties that are live
in S .

It can be shown [28] that this is, in a strong sense, the
most liberal definition of fairness that has all three prop-
erties above. Furthermore, most fairness notions from the
literature fall into this class, i.e., the usual fairness notions
such as strong fairness map each system (safety property)
S to a fairness property for S .

For examples of fairness properties, consider the sys-
tem (M, a) described in Sect. 2. The property G F b is a

fairness property for M(a). Another fairness property is
G F a → G F(a ∧ X b). These formulas do not represent
fairness notions, as for some systems, the set of paths satis-
fying them may not be large. Note that F G b is live but not
a fairness property in M(a).

We say that a system (M, s) is fairly correct with respect
to a linear time specification X if X is large in (M, s). Equiv-
alently, (M, s) is fairly correct wrt X if there exists a fairness
assumption F for M(s) such that F ∩ M(s) ⊆ X.

4 T- versus P-largeness

In this section, we compare topological and probabilistic
largeness and prove that they coincide for ω-regular proper-
ties in finite-state systems with bounded Borel measures.

4.1 Probabilistic largeness

Given a system (M, s0), a probability measure µ on Ω =

M(s0) over the family of Borel sets of the Cantor topology
relative to Ω is called a Borel measure over Ω. A Borel
measure µ is a Markov measure when µ(αss′↑ | αs↑) =

µ(βss′↑ | βs↑) for all α, β ∈ Σ∗ and s, s′ ∈ Σ such that αss′

and βss′ are path fragments of (M, s0). A Borel measure µ
is positive if µ(α↑) > 0 for each path fragment α of (M, s0),
µ is said to be bounded if there exists a c > 0 such that
µ(αs↑ | α↑) > c for each path fragment αs of (M, s0). A
Borel set X ⊆ M(s0) is µ-large (or probabilistically large or
P-large when µ is understood from the context) if µ(X) = 1.

4.2 Similarities

Topological and probabilistic largeness are very similar
notions. Oxtoby’s classic book [23] is devoted to study this
similarity. The following observations, taken from there,
are true for both T-largeness and P-largeness and confirm
our intuition of largeness.

• If a set is large, its complement is not. (Note that this is
not true for density.) Call a set small if its complement
is large.

• Largeness is closed under superset and countable in-
tersection (, i.e., the family of large sets is a σ-filter).

• If A is large and B is not small, then A∩ B is not small.

• Every large set is nonempty. Since we restrict to posi-
tive Borel measures, every large set is also dense.

• Every countable set is small, but there are uncountable
sets that are small.

Furthermore, there is also a strong duality between the two
notions [23, Ch.19].

4

4.3 Separation

Although similar, the two notions do not coincide in gen-
eral: there are sets that are T-large but not P-large as well as
sets where it is the other way around.

Consider an (unrestricted asymmetric) random walk on
the integer line starting at 0 going right with probability p ,
1/2 and going left with probability 1 − p. The property X1
= ‘The walk returns to 0 infinitely often’ has probability 0
but is T-large. (One easily displays a winning strategy for
Ego in the Banach-Mazur game.) The complement of X1
has probability 1 but is not T-large.

A similar set can be displayed in a finite system: Con-
sider an initial state from which one can go to a state a with
probability p , 1/2 and to a state b with probability 1 − p.
From a and b we always go back to the initial state. The
set X2 = ‘The number of previous a’s equals the number of
previous b’s infinitely often’ has probability 0 but is clearly
T-large. Note however that a winning strategy for Ego is
unbounded, i.e., the length of the sequences Ego adds is
unbounded because it has to be able to compensate for un-
bounded moves by Alter.

The following proposition says that, under mild assump-
tions, a set can always be found that is large in one sense
but small in the other.

Proposition 1 Let (M, s0) be a finite system such that every
path x = s0, . . . has infinitely many choices, i.e., positions i
such that si has more than one R-successor in M. Let µ be
a positive Markov measure on M(s0). Then M(s0) can be
partitioned into a T-large and a µ-large set.

4.4 Coincidence

We now prove that for bounded Borel measures on finite
systems and ω-regular properties, the two notions of large-
ness coincide. Note that the property X2 described in the
counterexample in Sect. 4.3. is not accepted by any finite-
state automaton.

Proposition 2 Let (M, s0) be a finite system, µ a bounded
Borel measure on M(s0), and X an ω-regular property. If X
is T-large, then it is also µ-large.

Proof: If X is T-large, Ego has a winning strategy for X in
the Banach-Mazur game. Berwanger, Grädel, and Kreutzer
[8] have shown that Ego has then also a positional winning
strategy, i.e., a strategy f such that f (αs) = f (βs) for all
α, β ∈ Σ∗ and s ∈ Σ. Since there are only finitely many
states, the positional strategy is also bounded, i.e., there ex-
ists a k such that | f (α)| < k for all α. It follows that, in each
path fragment, playing f has a positive probability bounded
away from zero and therefore the property {x | x has in-
finitely many positions where the extension is according to

f } has probability 1 (by application of Borel-Cantelli Lem-
mas). Hence {x | x is the result of some play of the Banach-
Mazur game where Ego plays f } has probability 1. Because
f is winning for X, X is µ-large. �

The converse also holds.

Proposition 3 Let (M, s0) be a finite system, µ a bounded
Borel measure on M(s0), and X an ω-regular property. If X
is µ-large, then it is also T-large.

Proof: If X is not T-large, then Alter has, due to determi-
nacy, a winning strategy f in the Banach-Mazur game. Let
α0 be the first move of Alter in that strategy. We have
µ(α0↑) > 0. Since f is a winning strategy for Alter, f is
also a winning strategy for Ego in the Banach-Mazur game
that starts in α0 and in which Ego plays for Ω \ X. From
Prop. 2 now follows that µ(Ω \ X | α0↑) = 1. Hence we
conclude µ(X) < 1. �

We obtain:

Theorem 1 T-largeness and P-largeness of ω-regular
properties coincide for bounded Borel measures on finite
systems.

In particular they also coincide for properties expressible in
LTL(+past).

4.5 Complete fairness

To prove T-largeness of a property X in a system (M, s), it
suffices to show F ∩M(s) ⊆ X for some fairness property F
for (M, s). We now ask whether there is a complete fairness
notion to prove T-largeness.

Definition 1 Let (M, s) be a system and F a family of
linear-time properties. A fairness property F for (M, s)
is F -complete with respect to (M, s) if for each property
X ∈ F that is T-large in (M, s), we have F ∩ M(s) ⊆ X.

Note that if F is complete for a family F then it is also
complete for every subfamily of F . Lichtenstein et al.
[21] introduced α-fairness and showed that it is complete
for showing P-largeness of ω-regular properties of finite-
state systems. Zuck, Pnueli, and Kesten [29] point out
that state fairness is complete for showing P-largeness of
properties that are expressible in LTL without the next- and
until-operators.

We show now that completeness w.r.t. ω-regular and
LTL expressible properties can be characterised through
word fairness. Say that a word β ∈ Σ+ is enabled in a state
s of a M if sβ is a path fragment of (M, s) and say that β
is taken in a position i of a path x = s0, . . . if there exists a
position j such that β = si, si+1, . . . , s j. Call a path x of a
system (M, s) fair w.r.t. β if β is enabled only finitely many
times in x or β is taken infinitely many times in x; x is word
fair if it is fair w.r.t. all β ∈ Σ+.

5

Proposition 4 A fairness property F is F -complete w.r.t. a
system (M, s) if and only if each run in F∩M(s) is word fair,
where F denotes the family ofω-regular or LTL expressible
properties. In particular, word fairness is complete for ω-
regular properties.

Proof: (⇐) If X is an ω-regular property that is large in
M(s), then it follows as in the proof of Prop. 2 that Ego has
a positional winning strategy f . However, that means that
every word-fair path x ∈ M(s) is the result of some play
where Ego plays f . Therefore x is in X and hence word
fairness is complete. (⇒) Follows from the fact that word
fairness w.r.t. a particular word can be expressed in LTL. �

Note that Prop. 4 does not assume the system to be finite.
However, to use Prop. 4 for P-largeness we need to restrict
to finite systems.

Clearly, there is a complete fairness property for every
countable family F that contains at least one fairness prop-
erty. It is obtained by intersecting all fairness properties for
(M, s) in F . However, that intersection is not necessarily a
member of F . (Note that in Def. 1, F is not required to be
a member of F .) It can be shown that this is in fact the case
for ω-regular and LTL-expressible properties:

Proposition 5 There are finite systems (M, s) such that
there is no ω-regular fairness property that is complete for
the family of LTL expressible properties w.r.t. (M, s).

For the proof, we consider a completely connected graph
and show that Ego has no positional strategy for word fair-
ness. Prop. 5 shows that largeness of an LTL formula φ can
in general not be checked by expressing a complete fairness
property as LTL formula ψ and then checking the formula
(ψ→ φ).

5 Checking largeness

Berwanger et al. [8] showed that checking largeness
of an LTL specification for a finite system is decidable by
showing that largeness of an LTL formula can be expressed
as satisfaction of a CTL* formula. Their translation how-
ever is of non-elementary complexity and hence not suit-
able for complexity analysis. Pistore and Vardi [24] provide
an efficient translation into the logic EGCTL* of Kupfer-
man [15], whose model checking complexity is double ex-
ponential time [15]. Kupferman and Vardi [17] show that
model checking the Pistore-Vardi logic without AE and EA
is EXPSPACE-complete leaving the complexity of check-
ing largeness open.

From Thm. 1, we can immediately conclude that check-
ing largeness is PSPACE-complete for LTL or Büchi au-
tomata specifications.

5.1 Büchi automata and LTL specifications

Vardi [27] has shown that checking P-largeness of an ω-
regular property given by a Büchi automaton is PSPACE-
complete in the size of the automaton. Hence we obtain:

Theorem 2 The problem of checking T-largeness of a
Büchi automata specification against a finite system is
PSPACE-complete in the size of the automaton.

Courcoubetis and Yannakakis [11] have shown that
checking P-largeness of an LTL formula is PSPACE-
complete in the size of the formula. Therefore:

Theorem 3 The problem of checking T-largeness of an LTL
formula in a finite system is PSPACE-complete in the size of
the formula.

Note that the corresponding algorithms for Thms. 2 and
3 use time linear in the size of the temporal structure.

5.2 Reactivity formulas and Streett constraints

It is interesting to provide an independent algorithm for
LTL(+past) formulas which, although less efficient in gen-
eral, can be efficiently applied to an important class of for-
mulas.

A reactivity formula [22] is a formula of the form

φ =

n∧

i=1

(G F hi ∨ F G gi)

where hi and gi are past formulas, that is, history formu-
las that do not contain the future operators X, U, and their
derivatives. In case all pi and qi are state formulas we
call φ a state reactivity formula. A formula of the form
(G F p ∨ F G q) is called a Streett constraint [3].

Consider the following translation of a reactivity formula
into a CTL+past formula:

• ~F G h� = AG EF AG h

• ~G F h� = AG EF h

• ~G F h ∨ F G g� = AG(¬~F G ¬h� ∨ ¬~G F ¬g�)

• ~φ ∧ ψ� = ~φ� ∧ ~ψ�
Proposition 6 For every system (M, s), we have that a reac-
tivity formula φ is large in (M, s) if and only if M, s |= ~φ�.

For the first two clauses, the CTL+past formula essen-
tially describes the winning strategy for Ego. (They can
also be seen as applications of Proposition 10.3 and 10.4
below, respectively.) For the last clause, we observe that
the intersection of two sets is large if and only if both sets

6

are large. In the third clause, the union of two sets could
be large even if neither of them is. The proof instead uses
determinacy. We know that all sets involved are determi-
nate [8]. The translated formula says that in every state,
Ego does not have a winning strategy for the negation of
one of the disjuncts. By determinacy, this happens if and
only if Alter has a winning strategy for one of the disjuncts.
But this means that after the first move of Alter, Ego (who
has now the first move) has a winning strategy for one of
the disjuncts.

To check the largeness of a reactivity formula we check
the satisfaction of the corresponding CTL+past formula.
The model checking problem for CTL+past is PSPACE-
complete [19, 25].

Reactivity formulas encompass many interesting formu-
las, e.g. safety formulas such as G p or G(p → F−1 q),
persistence formulas such as F G p and recurrence formu-
las such as G F p, also forms of response such as F G p →
G F q and G F p→ G F q.

In fact, every LTL formula can be expressed as a reactiv-
ity formula [22]. However, the translation can produce an
exponential blowup. Therefore we do not obtain the opti-
mal upper bound of Thm. 3 for the above procedure applied
to general LTL formulas.

The translation is also interesting in that it shows that
largeness of an LTL+past formula can be expressed in
CTL+past, a temporal logic strictly less expressive than
CTL* [16], thus strengthening the result of Berwanger et al.
[8], who showed that largeness of an LTL+past formula can
be translated into satisfaction of a CTL* formula.

Checking whether a state reactivity formula is dense in
a structure requires time quadratic in the size of the for-
mula [12]. On the other hand, Alur and Henzinger [3] claim
that checking whether a state reactivity is large requires lin-
ear time. We provide an alternative proof of their result.

For a state reactivity formula, the translation produces a
CTL formula without past, whose model checking problem
is linear. Thus we have:

Proposition 7 The problem of checking T-largeness of a
state reactivity formula in a finite system can be solved in
time linear in the size of the formula.

In the light of Thm. 1, also checking P-largeness of a
state reactivity formula can be done in linear time. We are
not aware of any analogous result in the literature.

6 Branching-time largeness

We now study the problem of expressing largeness in
a branching time context. We consider logics that are ob-
tained from CTL* and CTL by replacing the universal and
existential path quantifiers by path quantifiers expressing
largeness and non-smallness respectively.

6.1 The Lehmann-Shelah logic

First consider the logic T-large CTL*, which is defined
as CTL* but where instead of the path quantifiers A and E
we have the path quantifiers AE and EA with their meaning
defined above. This is essentially the logic studied by Ben-
Eliyahu and Magidor [7]. By P-large CTL* we refer to the
logic that is defined as CTL* but where instead of the path
quantifiers A and E we have the path quantifiers

`
and

a
,

where
`
.φ means φ is satisfied with probability 1 and

a
.φ

means φ is satisfied with probability > 0. This is essentially
the logic studied by Lehmann and Shelah [20]. Call τ the bi-
jection between T-large CTL* and P-large CTL* where AE
is replaced by

`
and EA by

a
. Using structural induction

and Thm. 1 it is easy to prove that:

Theorem 4 For any T-large-CTL* formula φ and finite
probabilistic system (M, s), we have M, s |= φ if and only
if M, s |= τ(φ).

Lehmann and Shelah [20] provide sound and complete
axiomatic systems for P-large CTL* and different classes of
probabilistic systems. Ben-Eliyahu and Magidor [7] show
that the axiomatic system for finite systems is sound and
complete for T-large CTL* and systems of arbitrary size.
This is now a corollary of Lehmann and Shelah’s work,
Thm. 4, and the finite model property of T-large CTL*,
where the latter is shown by Ben-Eliyahu and Magidor [7].

It is straightforward to adapt the model checking algo-
rithm for CTL* [10] to our case, thus obtaining:

Theorem 5 The model-checking problem for T-large CTL*
and P-large CTL* is PSPACE-complete in the size of the
formula.

The procedure is precisely the same as in [10]. For every
subformula of the form AE φ, where φ is a formula with-
out quantifiers, we label the states of the system with a
new proposition p, depending on whether AE φ is true or
not. This requires polynomial space, as it amounts to check
largeness of φ for every state. We substitute p for AE φ
and we repeat the procedure until there are no more nested
quantifiers. Hardness follows from the fact that checking
largeness of LTL is PSPACE-hard.

The logic P-large CTL* can be also seen as a restricted
version of more expressive probabilistic logics, such as
pCTL* [6], which can express all probabilities between 0
and 1. The model checking of pCTL* is also in PSPACE.

One can consider a logic that combines the uni-
versal/existential and largeness/non-smallness quantifiers.
Again, this does not change the model checking complex-
ity. One could also consider a version of CTL* containing
all eight quantifiers of the Pistore-Vardi logics. In the light
of the EXPSPACE-completeness of the model checking of
the Pistore-Vardi logic [17], the model checking problem
for this version would also be EXPSPACE-complete.

7

6.2 Large CTL

The logic T-Large CTL is obtained by restricting T-large
CTL* just like CTL is obtained as restriction of CTL*. We
now prove that model checking T-large CTL can be done
by a simple algorithm in linear time. To this end, we use
the following translation into standard CTL3:

~a� = a

~¬p� = ¬~p�

~p1 ∧ p2� = ~p1� ∧ ~p2�

~AE X p� = A X~p�

~EA X p� = E X~p�

~EA(p1 U p2)� = E
(
~p1� U ~p2�

)

~AE(p1 U p2)� =

A
(
~p1� W ~p2�

) ∧ ¬E
(
~p1� U AG¬~p2�

)

Proposition 8 For a T-large CTL formula p we have

M, s |= p⇔ M, s |= ~p� .

The translation is homomorphic, except for the formula
p = p1 U p2. For this case suppose that the translation of p
is true. We prove that there is a winning strategy for p. It is
easy to see that such strategy is winning in only one move.
Indeed if Alter has already produced a run which satisfies
p, Ego does nothing. If Alter has produced a run in which
p1 is always true, Ego just needs to produce a continuation
where p1 is always true until p2 is true.

The first part of the translation makes sure that Alter can-
not produce a path that violates p. The second part makes
sure that if Alter has not yet validated p, Ego can always
get to a place where p2 is true. In order for p to be validated
by such a play, Ego must not have touched a state where p1
and p2 are both false. This is again ensured by the first part.

Conversely, suppose the translated formula is false. If the
first part is false, then Alter can produce a path that violates
p. If the second part is false, then Alter can force the play
to a place where Ego can never validate p, as he can never
make p2 true.

In all the other cases it is easy to verify that the homo-
morphic translation is enough. For instance, since for every
state there are only finitely many ‘next’ states, we have that
a large set of runs satisfies X p if and only if all runs satisfy
X p.

Theorem 6 The model checking problem for T-large CTL
can be solved in linear time.

3A similar translation can be found in [4], where it is used for model
checking CTL under transition fairness.

The translation produces an exponential blow up, but the
model checking algorithm can by-pass this, by a form of dy-
namic programming. The algorithm proceeds as for CTL,
labelling each state with the subformulas that are satisfied
in that state. In checking the subformulas, every time we
check for a subformula p that appears as second formula
within and until operator, we also check for the formula
AG¬p. When checking A(p1 U p2), we have to run two
procedures, one for each part of the translation. This at most
doubles the time of the checking, but does not change the
asymptotic complexity.

Note that, by Thm. 4, this algorithm can also be used for
checking P-large CTL formulas on a finite Markov chain.
This provides an alternative to the known linear time algo-
rithm for P-large CTL [2]. Other polynomial model check-
ing algorithms could be derived by viewing P-large CTL as
a restricted version of pCTL [6] and PCTL [14].

7 Pistore-Vardi revisited

As indicated in Sect. 2.3, besides AE, also the other path
quantifiers of the Pistore-Vardi logic could be considered as
relaxations of correctness. In this section, we observe that
also those other path quantifiers have a perfect topological
meaning. We use this to derive some basic properties of the
path quantifiers.

Proposition and Definition 9 Let X be a linear-time prop-
erty and (M, s) a system.

• M, s |= A .X iff X contains M(s). We say that X is
satisfied in (M, s) or that X holds in all paths.

• M, s |= AEA .X iff X contains a dense open set in M(s)
(or equivalently, it is the complement of a nowhere
dense set in M(s)). We say that X is observably large
in M(s).

• M, s |= AE .X iff X is co-meager in M(s). We say that
X is large or fairly satisfied in (M, s) or that X holds
for almost all paths.

• M, s |= AE .X iff X is dense in M(s). We say that X is
live or everywhere satisfiable in (M, s) or that X holds
everywhere for some path.

• M, s |= EA .X iff X contains a nonempty open subset
of M(s) (or equivalently its complement is not dense in
M(s)). We say that X is somewhere satisfied in (M, s)
or that X holds somewhere for all paths.

• M, s |= EA .X iff X is co-meager in some open subset
of M(s). We say that X is somewhere large in (M, s) or
somewhere fairly satisfied.

8

universe +3 contains dense open +3

��

contains dense Gδ

= co-meager
+3

��

contains dense
= dense

��
contains open +3 co-meager in open +3 dense in open +3 not empty

Figure 1. A schema of implications

• M, s |= EAE .X iff X is dense in some open subset of
M(s). We say that X is somewhere dense or some-
where live in (M, s).

• M, s |= E .X iff X is a nonempty subset of M(s). We say
X is satisfiable in (M, s) or X holds for some path.

Note that density is not a good notion of largeness be-
cause, for instance, there are dense sets whose complement
is also dense. Nevertheless density is interesting because
it formalises that at least the safety property implied by
the specification is not violated, i.e., a property is dense in
(M, s) iff X is satisfied in (M, s), where X denotes the small-
est safety property that contains X.

Note that all the above classes of properties are upward
closed, that is, M, s |= κ.X and X ⊆ Y implies M, s |= κ.Y .
The following implications, taken from [24, 8],

A +3 AEA +3

��

AE +3

��

AE

��
EA +3 EA +3 EAE +3 E

can be seen topologically (see Fig. 1). All the implications
are trivial there.

Furthermore we observe that for LTL formulas φ, the lat-
ter four path quantifiers are duals of the former four, that is

M, s |= A .φ iff M, s 6|= E .¬φ
M, s |= AEA .φ iff M, s 6|= EAE .¬φ
M, s |= AE .φ iff M, s 6|= EA .¬φ
M, s |= AE .φ iff M, s 6|= EA .¬φ

Only the proof for AE is not straightforward. There, we
must use the fact that φ is determinate in the Banach-Mazur
game.

Recall that checking the quantifiers A and AE and their
duals is PSPACE-complete. Checking AE and its dual is
EXPSPACE-complete [17]. The complexity of checking
AEA and its dual remains open.

Finally, the topological interpretation allows us to prove
that in particular situations, different classes collapse.

Proposition 10 Consider a property X ⊆ Σω. All the
following statements are true relative to any fixed system
(M, s):

1. If X is a safety property, then X is satisfied iff X is live
and X is somewhere satisfied iff it is somewhere live.

2. If X is a guarantee property then X is observably large
iff X is live and X is somewhere satisfied iff it is satisfi-
able.

3. If X is a persistence property then X is observably
large iff it is fairly satisfied and X is somewhere sat-
isfied iff somewhere fairly satisfied.

4. If X is a recurrence property then X is fairly satisfied
iff it is live in M and X is somewhere satisfied iff X is
somewhere live.

5. If X is a obligation property then X is observably large
iff it is live and X is somewhere satisfied iff it is some-
where live.

8 Conclusions

We argued that topological largeness is an interesting no-
tion as it can serve as a natural relaxation of correctness of
a system: It has similar properties as probabilistic largeness
that confirm our intuitive understanding of largeness, it for-
malises the intuitive notion of fairness. It is pleasing that
topological largeness has various independent characterisa-
tions in terms of game-theory, language-theory, automata-
theory, and temporal logic.

By showing coincidence of topological and probabilis-
tic largeness, we solved the model checking problem for
topological largeness of LTL and ω-regular specifications.
Coincidently, this settles the complexity of model checking
of the full Pistore-Vardi logic [24] and the complexity of
deciding Banach-Mazur games for ω-regular goals [8]. As
a side effect,

1. we obtain new characterisations of probabilistic large-
ness in finite Markov chains, and

2. this shows that any ω-regular fairness property has
probability 1 under randomised scheduling.

9

Checking largeness of a specification maybe useful
whenever the specifications is satisfied only under some,
possibly strong, fairness assumption and the fairness as-
sumption is either unknown, expensive to specify, or im-
possible to specify in the temporal logic.

We have shown that the complexity of checking large-
ness is the same as the complexity of checking satisfaction
for the most popular specification formalisms. We have ex-
plicitly mentioned only the complexity with respect to the
formula, however, as for standard satisfaction algorithms,
all algorithms described use time linear in the size of the
system.

Our work could be generalised to a situation where fair-
ness is not required for all choices. Some choices would be
fair, and some would be completely nondeterministic. This
leads us to a model analogous to the concurrent Markov
chains of [27], with fair states substituted for probabilistic
states. In terms of the Banach-Mazur game, this amounts to
not giving Ego access to all transitions. Again we can use
Theorem 1 and the results in [11] to get the complexity of
model checking for these systems.

References

[1] B. Alpern and F. B. Schneider. Defining liveness. Inf. Proc.
Letters, 21:181–185, Oct. 1985.

[2] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking
for probabilistic real-time systems (extended abstract). Proc.
ICALP, LNCS 510, pp. 115–126. Springer, 1991.

[3] R. Alur and T. A. Henzinger. Local liveness for composi-
tional modeling of fair reactive systems. In Proc. CAV, LNCS
939, pp. 166–179. Springer, 1995.

[4] B. Aminof, T. Ball, and O. Kupferman. Reasoning about
systems with transition fairness. In Proc. LPAR, LNCS 3452,
pp. 194–208. Springer, 2004.

[5] K. R. Apt, N. Francez, and S. Katz. Appraising fairness
in languages for distributed programming. Distr. Comput.,
2:226–241, 1988.

[6] A. Aziz, V. Singhal, F. Balarin, R. K. Brayton, and
A. L. Sangiovanni-Vincentelli. It usually works: The tem-
poral logic of stochastic systems. In Proc. CAV, LNCS 939,
pp. 155–165. Springer, 1995.

[7] R. Ben-Eliyahu and M. Magidor. A temporal logic for prov-
ing properties of topologically general executions. Inf. and
Comp., 124(2):127–144, 1996.

[8] D. Berwanger, E. Grädel, and S. Kreutzer. Once upon a
time in the west - determinacy, definability, and complex-
ity of path games. In Proc. LPAR, LNAI 2850, pp. 229–243,
2003.

[9] E. Y. Chang, Z. Manna, and A. Pnueli. Characterization of
temporal property classes. In Proc. ICALP, LNCS 623, pp.
474–486. Springer, 1992.

[10] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications. ACM Trans. Program. Lang. Syst.,
8(2):244–263, 1986.

[11] C. Courcoubetis and M. Yannakakis. The complexity of
probabilistic verification. J. ACM, 42(4):857–907, 1995.

[12] E. A. Emerson and C.-L. Lei. Modalities for model check-
ing: Branching time strikes back. In Proc. POPL, pp. 84–96,
1985.

[13] F. E. Fich and E. Ruppert. Hundreds of impossibility results
for distributed computing. Distr. Comput., 16(2-3):121–163,
2003.

[14] H. Hansson and B. Jonsson. A logic for reasoning about time
and reliability. Formal Asp. Comput., 6(5):512–535, 1994.

[15] O. Kupferman. Augmenting branching temporal logics with
existential quantification over atomic propositions. J. Log.
Comput., 9(2):135–147, 1999.

[16] O. Kupferman and A. Pnueli. Once and for all. In Proc.
LICS, pp. 25–35. IEEE Computer Society, 1995.

[17] O. Kupferman and M. Y. Vardi. Memoryful branching-time
logic. This volume.

[18] L. Lamport. Fairness and hyperfairness. Distr. Comput.,
13(4):239–245, 2000.

[19] F. Laroussinie and P. Schnoebelen. Specification in
CTL+past for verification in CTL. Inf. and Comput., 156(1-
2):236–263, 2000.

[20] D. Lehmann and S. Shelah. Reasoning with time and chance.
Inf. and Contr., 53(3):165–198, 1982.

[21] O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of the
past. In Proc. of Logic of Programs, LNCS 193, pp. 196–218.
Springer, 1985.

[22] Z. Manna and A. Pnueli. A hierarchy of temporal properties.
In Proc. PODC, pp. 377–408. ACM, 1990.

[23] J. C. Oxtoby. Measure and Category. A Survey of the Analo-
gies between Topological and Measure Spaces. Springer-
Verlag, 1971.

[24] M. Pistore and M. Y. Vardi. The planning spectrum - one,
two, three, infinity. In Proc. LICS, pp. 234–243, 2003.

[25] P. Schnoebelen. The complexity of temporal logic model
checking. In Selected Papers from the 4th Workshop on Ad-
vances in Modal Logics (AiML’02), pp. 393–436, 2003.

[26] W. Thomas. Automata on infinite objects. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume
B: Formal Models and Semantics. Elsevier, 1990.

[27] M. Y. Vardi. Automatic verification of probabilistic con-
current finite-state programs. In Proc. FOCS, pp. 327–338,
1985.

[28] H. Völzer, D. Varacca, and E. Kindler. Defining fairness. In
Proc. CONCUR, LNCS 3653, pp. 458–472. Springer, 2005.

[29] L. D. Zuck, A. Pnueli, and Y. Kesten. Automatic verification
of probabilistic free choice. In Proc. VMCAI, LNCS 2294,
pp. 208–224. Springer, 2002.

10

