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Abstract

We propose a typing system for the true concurrent model of event structures that
guarantees the interesting behavioural properties known as conflict freeness and
confusion freeness. Conflict freeness is the true concurrent version of the notion
of confluence. A system is confusion free if nondeterministic choices are localised
and do not depend on the scheduling of independent components. Ours is the first
typing system to control behaviour in a true concurrent model. To demonstrate its
applicability, we show that typed event structures give a semantics of linearly typed
version of the π-calculi with internal mobility. The semantics we provide is the first
event structure semantics of the π-calculus and generalises Winskel’s original event
structure semantics of CCS.
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1 Introduction

Models for concurrency can be classified according to different criteria. One
possible classification distinguishes between interleaving models and causal
models (also known as true concurrent models). In interleaving models, con-
currency is reduced to the nondeterministic choice between all possible sequen-
tial schedulings of the concurrent actions. Instances of such models are traces
and labelled transition systems [35]. Interleaving models are very successful in
defining observational equivalence, by means of bisimulation [20]. In causal
models, causality and concurrency are explicitly represented. Instances of such
models are Petri nets [25], Mazurkiewicz traces [18] and event structures [23].
True concurrent models can easily represent interesting behavioural properties
such as absence of conflict, independence of the choices and sequentiality [25].

In this paper we address a particular true concurrent model: the model of
event structures [23,32]. Event structures have been used to give semantics to
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concurrent process languages. The earliest and possibly the most intuitive is
Winskel’s semantics of Milner’s CCS [31].

The first contribution of this paper is to present a compositional typing
system for event structures that ensures two important behavioural properties:
conflict freeness and confusion freeness.

Conflict freeness is the true concurrent version of confluence. In a conflict
free system, the only nondeterminism allowed is due to the scheduling of
independent components. To illustrate the less familiar notion of confusion
freeness, let us suppose that a system is composed of two processes P and
Q. Suppose the system can reach a state where P has a choice between two
different actions a1, a2, and where Q, independently, can perform action b.
We say that such a state is confused if the occurrence of b changes the choices
available to P (for instance by disabling a2, or by enabling a third action a3).
Intuitively the choice of process P is not local to that process in that it can
be influenced by an independent action. We say that the system is confusion
free if none of its reachable states is confused.

Confusion freeness was first identified in the context the theory of Petri
nets [25]. It has been studied in that context, in the form of free choice
nets [11]. Confusion free event structures are also known as concrete data
structures [4], and their domain-theoretic counterpart are the concrete do-
mains [17]. Finally, confusion freeness has been recognised as an important
property in the context of probabilistic models [27,1].

The typing system we present guarantees that all typable event structures
are confusion free. A restricted form of typing guarantees the stronger prop-
erty of conflict freeness.

The second contribution of this paper is to give the first direct event struc-
ture semantics of a fragment of the π-calculus [21]. Various causal semantics
of the π-calculus exist [16,7,12,5,10,8], but none is given in terms of event
structures. The technical difficulty in extending CCS semantics to the π-
calculus lies in the handling of α-conversion, which is the main ingredient to
represent dynamic creation of names. We are able to solve this problem for
a restricted version of the π-calculus, a linearly typed version of Sangiorgi’s
πI-calculus [26,37]. This fragment is expressive enough to encode the typed
λ-calculus (in fact, to encode it fully abstractly [37]). We argue that in this
fragment, α-conversion need not be performed dynamically (at “run time”),
but can be done during the typing (at “compile time”), by choosing in advance
all the names that will be created during the computation. This is possible
because the typing system guarantees that, in a sense, every process knows in
advance which processes it will communicate with.

In addition, the derived semantics for the π-calculus preserves the intuitive
notions of Winskel’s original semantics of CCS: syntactic nondeterministic
choice is modelled by conflict, prefix is modelled using causality, and parallel
composition generates concurrent events. Moreover, since our semantics is
given in terms of typed event structures, we obtain that all processes of this
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fragment are confusion free. Our typing system generalises an early idea by
Milner, who devised a syntactic restriction of CCS (a kind of a typing system)
that guarantees confluence of the interleaving semantics [20]. As a corollary
of our work we show that a similar restriction applied to the π-calculus guar-
antees the property of conflict freeness.

The tight correspondence between the linear π-calculus and programming
language semantics opens the door for event structure semantics to the λ-
calculus and other functional and imperative languages.

Structure of the paper

Section 2 presents a linearly typed version of the πI-calculus. This section
is inspired from [37], but our fragment is extended to allow nondeterminis-
tic choice. Section 3 introduces the basic definitions of event structures and
defines formally the notion of confusion freeness. Section 4 presents our new
typing system and an event structure semantics of the types. We then de-
fine a notion of typing of event structures by means of the morphisms of the
category of event structures. Typed event structures are confusion free by
definition. The main theorem of this section is that the parallel composition
of typed event structures is again typed, and thus confusion free. Section 5
provides a sound event structure semantics of the typed πI-calculus. The main
result of the section is that the semantic of a πI-calculus term is a typed event
structure, and thus it is confusion free. Section 6 concludes with related and
future works. Due to the space limitation, materials of an intermediate CCS-
like language which is used to translate the π-calculus into the typed event
structures are left to the full version [28]. Also the detailed definitions and all
proofs can be found in the full version [28].

2 A linear version of the π-calculus

This section briefly summarises an extension of linear version of the π-calculus
in [3] to non-determinism [36]. The reader may refer to [3,36] for a more
detailed description and more examples.

2.1 Syntax and reduction

We assume the reader is familiar with the basic definitions of the π-calculus [21].
As anticipated, we consider a restricted version of the π-calculus, where only
bound names are passed in interaction. The resulting calculus is called the
πI-calculus in the literature [26] and has the same expressive power as the
version with free name passing [37]. Syntactically we restrict an output to
the form (ν ỹ)x(ỹ).P (where ỹ represents a tuple of pairwise distinct names),
which we henceforth write x(ỹ).P .

We consider a version of the calculus more general than the one presented
in [3], in that both input and output are nondeterminstic. Nondeterministic
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input is called branching, and it is already present in [3], while nondeter-
ministic linear output, called selection, is a novelty of this work. Branching
is similar to the “case” construct and selection is “injection” in the typed
λ-calculi; these constructs have been studied in other typed π-calculi [29].

The formal grammar of the calculus is defined below.

P ::= x
�

i∈I ini(ỹi).Pi | x
⊕

i∈I ini(ỹi).Pi

| P |Q | (ν x)P | 0 | !x(ỹ).P

The process x
�

i∈I ini(ỹi).Pi (resp. x
⊕

i∈I ini(ỹi).Pi) is a branching input
(resp. selecting output), where I denotes a finite or countably infinite indexing
set. P | Q is a parallel composition, (ν x)P is a restriction and !x(ỹ).P is a
replicated input. We omit the empty tuple: for example, x stands for x().
When the index in the branching or selection indexing set is a singleton we
use the notation x(ỹ).P or x(ỹ).P ; when it is binary, we use x((ỹ1).P1&(ỹ2).P2)
or x((ỹ1).P1 ⊕ (ỹ2).P2). The bound/free names are defined as usual. We use
≡α and ≡ for the standard α− and structural equivalences [21,3,37,15].

Processes where all selection indexing sets are singletons are called de-
terministic. Deterministic processes where also branching indexing sets are
singletons are called simple.

The reduction semantics is as follows:

x
�

i∈I ini(ỹi).Pi | x
⊕

j∈J inj(ỹj).Qj −→ (ν ỹh)(Ph |Qh) (h ∈ I ∩ J)

!x(ỹ).P | x(ỹ).Q −→ !x(ỹ).P | (ν ỹ)(P |Q)

closed under evaluation contexts and structural equivalence.

2.2 Types and typings

The linear type discipline restricts the behaviour of processes as follows.

(A) for each linear name there are a unique input and a unique output; and

(B) for each replicated name there is a unique stateless replicated input with
zero or more dual outputs.

In the context of deterministic processes, the typing system guarantees conflu-
ence. We will see that in the presence of nondeterminism this typing system
guarantees confusion freeness.

As an example for the first condition, let us consider:

Q1
def
= a.b | a.c | a Q2

def
= b.a | c.b | a.(c | e)

Then Q1 is not typable as a appears twice as output, while Q2 is typable since
each channel appears at most once as input and output. Typability of simple
processes such as Q2 offers only deterministic behaviour. However branching
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and selection can provide non-deterministic behaviour, preserving linearity:

Q3
def
= a.(b ⊕ c) | a.(d & e)

Q3 is typable, and we have either Q3 −→ (b | d) or Q3 −→ (c | e). As an
example of the second constraint, let us consider the following two processes:

Q4
def
= ! b.a | ! b.c Q5

def
= ! b.a | b | ! c.b

Q4 is untypable because b is associated with two replicators: but Q5 is typable
since, while output at b appears twice, a replicated input at b appears only
once.

Channel types are inductively made up from type variables and action
modes: the two input modes ↓, !, and the two output modes ↑, ?. We let
p, p′, . . . denote modes. We define p, the dual of p, by: ↓ =↑, ! = ? and p = p.
Then the syntax of types is given as follows:

σ ::=
�

i∈I (σ̃i)
↓ |

⊕
i∈I (σ̃i)

↑ | (σ̃)! | (σ̃)?

(branching) (selection) (offer) (request)

τ ::= σ | l (closed type)

where σ̃ is a tuple of types. We write MD(τ) for the outermost mode of τ .
The dual of τ , written τ , is the result of dualising all action modes, with l
being self-dual. A type environment Γ is a finite mapping from channels to
channel types. Sometimes we will write x ∈ Γ to mean x ∈ Dom(Γ).

Types restrict the composability of processes: if P is typed under envi-
ronment Γ1, Q is typed under Γ2 and if Γ1, Γ2 are “compatible”, then a new
environment Γ1 � Γ2 is defined, such that P | Q is typed under Γ1 � Γ2. If
the environments are not compatible, Γ1 � Γ2 is not defined and the parallel
composition cannot be typed. Formally, we introduce a partial commutative
operation � on types, defined as follows:

(1) τ � τ = l with MD(τ) =↓

(2) τ � τ = τ , τ � τ = τ with MD(τ) =?

Then, then environment Γ1 � Γ2 is defined homomorphically. Intuitively, the
rules in (2) say that a server should be unique, but an arbitrary number of
clients can request interactions. The rules in (1) say that once we compose
input-output linear channels, the channel becomes uncomposable. Other com-
positions are undefined. The definitions (1) and (2) ensure the two constraints
(A) and (B).

The rules defining typing judgments P . Γ are identical to the affine
π-calculus [3] except a straightforward modification to deal with the non-
deterministic output. See Appendix A.
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a
⊕

i∈I(ỹi).Pi
āinj(ỹj)−→ Pj a

�
i∈I(ỹi).Pi

ainj(ỹj)−→ Pj

!a(ỹ).P
a(ỹ)−→P | !a(ỹ).P a(ỹ).P

a(ỹ)−→P

P
β−→P ′

P |Q β−→P ′ |Q

P
α−→P ′ Q

β−→Q′ obj(α) = ỹ

P |Q α•β−→(ν ỹ)(P ′ |Q′)

P
β−→P ′ subj(β) 6= x

(ν x)P
β−→(ν x)P ′

P ≡α P ′ P
β−→Q

P ′ β−→Q

Fig. 1. Labelled Transition System for the πI-Calculus

2.3 A typed labelled transition relation

Typed transitions describe the observations a typed observer can make of a
typed process. The typed transition relation is a proper subset of the untyped
transition relation, while not restricting ττ -actions: hence typed transitions
restrict observability, not computation.

Labels are generated by the following grammar:

α, β ::= xini(ỹ) | xini(ỹ) | x(ỹ) | x(ỹ)

(branching) (selection) (offer) (request)

ττ ::= (x, x)ini(ỹ) | (x, x)(ỹ) (synchronisation)

With the notation above, we say that x is the subject of the label β,
denoted as subj(β), while ỹ = y1, . . . , yn are the object names, denoted as
obj(β). For branching/selection labels, the index i is the branch of the label.
The notation “ini” comes from the injection of the typed λ-calculus. The
partial operation α•β is defined as follows: xini(ỹi)•xini(ỹi) = (x, x)ini(ỹi),
x(ỹ) • x(ỹ) = (x, x)(ỹ), and undefined otherwise.

The standard untyped transition relation is defined in Figure 1. We define
the predicate “Γ allows β” which represents how an environment restricts ob-
servability: for all Γ, Γ allows ττ ; if MD(Γ(x)) =↓, then Γ allows xini(ỹ); and
if MD(Γ(x)) = !, then Γ allows x(ỹ). The cases MD(Γ(x)) =↑, ? are defined
dually. Intuitively, labels only allowed when the type environment is coherent
with them.

Whenever Γ allows β, we define a new environment Γ\β to represent what
remains after the transition labelled by β has happened. Linear channels are
consumed, while replicated channels are not consumed. The new previously
bound channels are released. For instance, if Γ = ∆, x :

�
i∈I (τ̃i)

↓, then

Γ \ xini(ỹ) = ∆, ỹ : τ̃ . Then the typed transition, written P . Γ
β−→ Q . Γ′ is

defined by adding the constraint:
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if P
β−→Q and Γ allows β then P . Γ

β−→Q . Γ \ β

The above rule does not allow a linear input action and an output action
when there is a complementary channel in the process. For example, if a
process has x : (τ̃)! in its action type, then output at x is excluded since such
actions can never be observed in a typed context – cf. [3]. For a concrete
example, consider the process a.b | b.a which is typed in the environment
a :l, b :l. Although the process has some untyped transitions, none of them
is allowed by the environment.

By induction on the rules in Figure 1, we can obtain:

Proposition 2.1 (i) If P . Γ, P
β−→Q and Γ allows β, then Q . Γ \ β.

(ii) (Subject reduction) If P . Γ and P
ττ−→Q, then Q . Γ.

(iii) (Church Rosser for deterministic processes) Suppose P . Γ and P is
deterministic. Assume P

ττ−→Q1, and P
ττ−→Q2. Then Q1 ≡α Q2 or there

exists R such that Q1
ττ−→R and Q2

ττ−→R.

Finally we define the notion of typed bisimulation. Let R be a symmetric
relation between judgments such that if (P . Γ) R (P ′ . Γ′), then Γ = Γ′. We
say that R is a bisimulation if the following is satisfied:

• whenever (P . Γ) R (P ′ . Γ), P . Γ
β−→Q . Γ \ β, then there exists Q′ such

that P ′ . Γ
β−→Q′ . Γ \ β, and (Q . Γ \ β) R (Q′ . Γ \ β).

If there exists a bisimulation between two judgments, we say that they are
bisimilar (P . Γ) ≈ (P ′ . Γ). Note that ≈ is a congruent relation [28].

3 Event structures

Event structures were introduced by Nielsen, Plotkin and Winskel [23,30], and
have been subject of several studies since. They appear in different forms.
The one we introduce in this work is sometimes referred to as prime event
structures [32]. For the relations of event structures with other models for
concurrency, the standard reference is [35].

3.1 Basic definitions

An event structure is a triple E = 〈E,≤, ^〉 such that
• E is a countable set of events ;

• 〈E,≤〉 is a partial order, called the causal order ;

• for every e ∈ E, the set [e) := {e′ | e′ < e}, called the enabling set of e, is
finite;

• ^ is an irreflexive and symmetric relation, called the conflict relation, sat-
isfying the following: for every e1, e2, e3 ∈ E if e1 ≤ e2 and e1 ^ e3 then
e2 ^ e3.
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The reflexive closure of conflict is denoted by �. We say that the conflict
e2 ^ e3 is inherited from the conflict e1 ^ e3, when e1 < e2. If a conflict
e1 ^ e2 is not inherited from any other conflict we say that it is immediate,
denoted by e1 ^µ e2. The reflexive closure of immediate conflict is denoted
by �µ. If two events are not causally related nor in conflict they are said to
be concurrent. A configuration x of an event structure E is a conflict free
downward closed subset of E, i.e. a subset x of E satisfying: (1) if e ∈ x then
[e) ⊆ x and (2) for every e, e′ ∈ x, it is not the case that e ^ e′. Therefore, two
events of a configuration are either causally dependent or concurrent, i.e., a
configuration represents a run of an event structure where events are partially
ordered.

A labelled event structure is an event structure E together with a labelling
function λ : E → L, where L is a set of labels. Events should be thought of
as occurrences of actions. Labels allow us to identify events which represent
different occurrences of the same action. Labels are also essential in defining
the parallel composition, and play a major role in the typed setting. A labelled
event structure generates a labelled transition system as follows.

Definition 3.1 Let E = 〈E,≤, ^, λ〉 be a labelled event structure and let
e be one of its minimal events. The event structure E be = 〈E ′,≤′, ^′, λ′〉 is
defined by: E ′ = {e′ ∈ E | e′ 6� e}, ≤′=≤|E′ , ^′=^|E′ , and λ′ = λE′ .

Roughly speaking, E be is E minus the event e, and minus all events that
are in conflict with e. We can then generate a labelled transition system on
event structures as follows: if λ(e) = β, then

E
β−→E be .

The reachable transition system with initial state E is denoted as TS(E ).

3.2 Conflict free and confusion free event structures

Definition 3.2 An event structure is conflict free if its conflict relation is
empty.

Conflict freeness is the true concurrent version of confluence. Indeed it is
easy to verify that if E is conflict free, then TS(E ) is confluent.

As informally explained, in a confusion free event structure every conflict
is localised. To specify what “local” means in this context, we need the notion
of cell, a set of pairwise conflicting events with the same causal predecessors.

Definition 3.3 A partial cell is a set c of events such that e, e′ ∈ c implies
e �µ e′ and [e) = [e′). A maximal partial cell is called a cell.

In general, two events in immediate conflicts need not belong to the same
cell. If a cell is thought of as a location, this means that not all conflicts are
localised. This leads us to the following definition.
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Definition 3.4 An event structure is confusion free if its cells are closed
under immediate conflict.

Equivalently, in a confusion free event structure reflexive immediate con-
flict is an equivalence relation with cells as its equivalence classes [27].

3.3 Morphisms of event structures

Event structures form the class of objects of a category [35]. The morphisms
are defined as follows. Let E1 = 〈E1,≤1, ^1〉, E2 = 〈E2,≤2, ^2〉 be two event
structures. A morphism f : E1 → E2 is a partial function f : E1 → E2 such
that
• f reflects causality: if f(e1) is defined, then

[
f(e1)

)
⊆ f

(
[e1)

)
;

• f reflects reflexive conflict: if f(e1), f(e2) are defined, and if f(e1) � f(e2),
then e1 � e2.

Given two labelled event structures E1 = 〈E1,≤1, ^1, λ1〉, E2 =
〈E2,≤2, ^2, λ2〉 on the same set of labels L, a morphism f : E1 → E2 is
said to be label preserving if, whenever f(e1) is defined, λ2(f(e1)) = λ1(e1).

3.4 Operators on event structures

We can define several operations on labelled event structures. We provide here
an informal description of some of them. See [32] for more details.
• Prefixing a.E . This is obtained by adding a new minimum event, labelled

by a. Conflict, order, and labels remain the same on the old events.

• Prefixed sum
∑

i∈I ai.Ei. This is obtained by disjoint union of copies of the
event structures ai.Ei, where the order relation is the disjoint union of the
orders, the labelling function is the disjoint union of the labelling functions,
and the conflict is the disjoint union of the conflicts extended by putting
in conflict every two events in two different copies. It is a generalisation of
prefixing, where we add an initial cell, instead of an initial event.

• Restriction E \ X where X ⊆ A is a set of labels. This is obtained by
removing from E all events with label in X and all events that are above
one of those. On the remaining events, order, conflict and labelling are
unchanged.

• Relabelling E [f ]. This is just composing the labelling function λ with a
function f : L → L. The new event structure has thus labelling function
f ◦ λ.

All these constructions preserve the class of confusion free event structures.
Also, with the exception of the prefixed sum, they preserve the class of conflict
free event structures
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3.5 The parallel composition

The parallel composition of event structures is defined in [35] as the categor-
ical product followed by restriction and relabelling. Although the categorical
product of two event structures is unique up to isomorphism, it can be ex-
plicitly constructed in different ways. We provide here a brief outline of one
such construction [28,9]. Let E1 := 〈E1,≤1, ^1〉 and E2 := 〈E2,≤2, ^2〉 be
two event structures. Let E∗

i := Ei ] {∗}. Consider the set Ẽ obtained as the
initial solution of the equation X = Pfin(X) × E∗

1 × E∗
2 . Its elements have

the form (x, e1, e2) for x finite, x ⊆ Ẽ. We define a set E ⊆ Ẽ, an order ≤
and a conflict relation ^ on E, such that E = 〈E,≤, ^〉 is an event struc-
ture. This is the categorical product of E1, E2, with the projections defined as
π1(x, e1, e2) = e1 and π2(x, e1, e2) = e2.

For event structures with labels in L, the labelling function of the prod-
uct takes on the set L∗ × L∗, where L∗ := L ] {∗}. We define λ(x, e1, e2) =
(λ∗

1(e1), λ
∗
2(e2)), where λ∗

i (ei) = λi(ei) if ei 6= ∗, and λ∗
i (∗) = ∗. A synchroni-

sation algebra S is given by a partial binary operation •S defined on L∗ [35].
Given two labelled event structures E1, E2, the parallel composition E1‖SE2

is defined as the categorical product followed by restriction and relabelling:
(E1×E2 \X)[f ] where X is the set of pairs (l1, l2) ∈ L∗×L∗ for which l1 •S l2 is
undefined, while the function f : is defined as f(l1, l2) = l1•S l2. The subscripts
S are omitted when the synchronisation algebra is clear from the context.

The simplest possible synchronisation algebra is defined as l •∗ = ∗• l = l,
and undefined in all other cases. In this particular case, the induced parallel
composition can be represented as the disjoint union of the sets of events,
of the causal orders, and of the conflict. This can be also generalised to an
arbitrary family of event structures (Ei)i∈I . In such a case we denote the
parallel composition as

∏
i∈I Ei.

Parallel composition does not preserve in general the classes of conflict
free and confusion free event structures. New conflicts can be created through
synchronisation. One of the main reasons to devise a typing system for event
structures is to guarantee the preservation of these two important behavioural
properties.

3.6 Examples

We collect in this section a series of examples, with graphical representa-
tion.

Example 3.5 Consider the following event structures E1, E2, E3, defined on
the same set of events E := {a, b, c, d, e}. In E1, we have a ≤ b, c, d, e and
b ^µ c, c ^µ d, b ^µ d. In E2, we do not have a ≤ d, while in E3, we
do not have b ^µ d. The three event structures are represented in Figure 2,
where curly lines represent immediate conflict, while the causal order proceeds
upwards along the straight lines.
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The event structure E1 is confusion free, with three cells: {a}, {b, c, d}, {e}.
In E2, there are four cells: {a}, {b, c}, {d}, {e}. E2 is not confusion free, be-
cause immediate conflict is not cellular. This is an example of asymmetric
confusion [24]. In E3 there are four cells: {a}, {b, c}, {c, d}, {e}. E3 is not con-
fusion free, because immediate conflict is not transitive. This is an example
of symmetric confusion.

b /o/o/o/o/o/o

&f&f&f d
x8 x8 x8 e b /o/o/o/o/o/o

&f&f&f d
x8 x8 x8 e b

&f&f&f d
x8 x8 x8 e

c c c

a

66666666

��������

vvvvvvvvvvvv
a

66666666

vvvvvvvvvvvv
a

66666666

��������

vvvvvvvvvvvv

E1 E2 E3

Fig. 2. Event structures

E4

β

E5 E6

β β

α α α /o ττ /o α

Fig. 3. Parallel composition of event structures

E7

b′ /o

��

c′

��

d′ /o

!!

e′

""

b′′ /o

}}

c′′

||

d′′

E9

b

��

a′

CCCCCCCC

111111








/o/o/o/o/o/o/o/o a′′

333333








a

��
E8 b /o c d /o

��
e E10 a b

Fig. 4. Morphisms of event structures

Example 3.6 Next we show an example of parallel composition, see Figure 3.
Consider the two labelled event structures E4, E5, where E4 = {a, b}, E5 =
{a′}, conflict and order being trivial, and λ(a) = α, λ(b) = β, λ(a′) = α.
Consider the symmetric synchronisation algebra α•α = ττ , α•∗ = α, α•∗ = α,
β •∗ = β and undefined otherwise. Then E6 := E4‖E5 is as follows: E6 = {e :=
(∅, a, ∗), e′ := (∅, ∗, a′), e′′ := (∅, a, a′), d := ({e}, a′, ∗), d′′ := ({e′′}, a′, ∗)},
with the ordering defined as e ≤ d, e′′ ≤ d′′, while the conflict is defined as
e ^ e′′, e′ ^ e′′, e ^ d′′, e′ ^ d′′, e′′ ^ d, d ^ d′′. The labelling function is
λ(e) = α, λ(e′) = α, λ(e′′) = ττ, λ(d) = λ(d′′) = β. Note that, while E4, E5 are
confusion free, E6 is not, since reflexive immediate conflict is not transitive.
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Example 3.7 Finally we show an example of morphism. Consider the two
event structures E7, E8 defined as follows:

• E7 = {a′, b′, c′, d′, e′, a′′, b′′, c′′, d′′} with a′ ^µ a′′ b′ ^µ c′, d′ ^µ e′, b′′ ^µ c′′

and a′ ≤ b′, c′, d′, e′ and a′′ ≤ b′′, c′′, d′′.

• E8 = {b, c, d, e} with b ^µ c, d ^µ e, and trivial ordering.

Note that both E7 and E8 are confusion free.

We define a morphism f : E7 → E8 by putting f(x′) = f(x′′) = x for
x = b, c, d, e while f is undefined on a′, a′′. Note that b′ and b′′ are mapped to
the same element b, and they are indeed in conflict, because they inherit the
conflict a′ ^ a′′.

For another example consider the two event structures E9, E10, where E9 =
E10 = {a, b}, both have empty conflict, and in E9 we have a ≤ b. The identity
function on {a, b} is a morphism E9 → E10 but not vice versa. We can say
that the causal order of E9 refines the causal order of E10.

4 Typed event structures

In this section we present a notion of types for an event structure, which
are inspired from the types for the linear π-calculus. Every such type is
represented by an event structure which interprets the causality between the
names contained in the type. We then assign types to event structures by
allowing a more general notion of causality.

4.1 Types and environments

Types, type environmentsare generated by the following grammar

Γ, ∆ ::= y1 : σ1, . . . , yn : σn (type environment)

τ, σ ::=
�

i∈I Γi |
⊕

i∈I Γi |
⊗

i∈I Γi |
⊎

i∈I Γi | l

(branching) (selection) (offer) (request) (closed type)

A type environment Γ is well formed if any name appears at most once.
Only well formed environments are considered for typing event structures. An
environment can also be thought of as a partial function from names to types.
In this view we can talk of domain and range of an environment.

Event structures types and environments are similar to those of the π-
calculus, but they recursively keep track of the object names. Moreover server
and client types explicitly represent each copy of the resource.

A notion of composition of environments is defined in a similar way to the
π-calculus. The difference is that we not only match modes, but we recursively
match the object names. As in the π-calculus, the composition is only partially
defined. Given two type environments Γ1, Γ2 we denote their composition
(when defined) as Γ1 � Γ2. See Appendix B for the formal definition.

12
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[[y1 : σ1, . . . , yn : σn]] = [[y1 : σ1]]‖ . . . ‖[[yn : σn]]

[[x :
�

i∈I Γi]] =
∑

i∈I xini(ỹi).[[Γi]] [[x :
⊕

i∈I Γi]] =
∑

i∈I xini(ỹi).[[Γi]]

[[x :
⊗

i∈I Γi]] =
∏

i∈I x(ỹi).[[Γi]] [[x :
⊎

i∈I Γi]] =
∏

i∈I x(ỹi).[[Γi]]

[[x :l]] = ∅

Fig. 5. Denotational semantics of types

4.2 Semantic of types

Type environments are given a semantics in terms of labelled confusion free
event structures.

The labels are the ones described in the Section 2. Labels can be allowed
or disallowed by a type environments, similarly to the π-calculus case, but
recursively considering the object names [28]. We denote by Dis(Γ) the set of
labels that are disallowed by the environment Γ.

The semantics is presented in Figure 5, where we assume that ỹi repre-
sents the sequence of names in the domain of Γi. A name used for branch-
ing/selection identifies a cell. A name used for offer/request identifies a “clus-
ter” of parallel events.

The following result is a sanity check for our definitions. It shows that
matching of types corresponds to parallel composition with synchronisation.
The synchronisation algebra we use is the one defined in Section 2 extended
with α • ∗ = ∗ • α = α.

Proposition 4.1 Take two environments Γ1, Γ2, and suppose Γ1 � Γ2 is de-
fined. Then ([[Γ1]]‖[[Γ2]]) \ (Dis(Γ1 � Γ2) ∪ ττ) = [[Γ1 � Γ2]].

4.3 Typing event structures

Given a labelled confusion free event structure E on the same set of labels
as above, we define when E is typed in the environment Γ, written as E . Γ.
A type environment Γ defines a general behavioural pattern via its semantics
[[Γ]]. The intuition is that for an event structure E to have type Γ, E should
follow the pattern of [[Γ]], possibly “refining” the causal structure of [[Γ]] and
possibly omitting some of its actions.

Definition 4.2 We say that E . Γ, if the following conditions are satisfied:
• each cell in E is labelled by x, x or (x, x), and labels of the events correspond

to the label of their cell in the obvious way;

• there exists a label-preserving morphism of labelled event structures f :
E → [[Γ]] such that f(e) is undefined if and only if λ(e) ∈ ττ .

13
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x

++

y

++

z1

++E (w, w) b(z1)

,,

b(z1)

�������

((

x y z1

[[Γ]]

ain1(x) /o

DDDDDDDD ++
ain2(y) 33ain1(x) /o ain2(y) b(z1)

Fig. 6. Typed event structure

Roughly speaking a confusion free event structure E has type Γ if cells are
partitioned into branching, selection, request, offer and synchronisation cells,
all the non-synchronisation events of E are represented in Γ and causality in
E refines causality in [[Γ]].

As we said, the parallel composition of confusion free event structures is
not confusion free in general. The main result of this section shows that
the parallel composition of typed event structures is still confusion free, and
moreover is typed.

Theorem 4.3 Take two labelled confusion free event structures E1, E2. Sup-
pose E1 .Γ1 and E2 .Γ2. Assume Γ1�Γ2 is defined. Then (E1‖E2)\ (Dis(Γ1�
Γ2)) is confusion free and (E1‖E2) \ (Dis(Γ1 � Γ2)) . Γ1 � Γ2 .

The proof relies on the fact that the typing system, in particular the
uniqueness condition on well formed environments, guarantees that no new
conflict is introduced through synchronisation.

Special cases are obtained when some or all cells are singletons. We call
a typed event structure deterministic if its selection cells and its ττ cells are
singletons. We call a typed event structure simple if all its cells are singletons.
In particular, a simple event structure is conflict free.

Theorem 4.4 Take two labelled deterministic (resp. simple) event structures
E1 . Γ1 and E2 . Γ2. Suppose Γ1 � Γ2 is defined. Then (E1‖E2) \Dis(Γ1 � Γ2)
is deterministic (resp. simple).

4.4 Examples

In the following, when the indexing set of a branching type is a singleton, we
use the abbreviation (Γ)↓. Similarly, for a singleton selection type we write
(Γ)↑. Also, when the indexing set of a type is {1, 2}, we write (Γ1&Γ2) or
(Γ1 ⊗ Γ2).

Example 4.5 Consider the types τ1 = (x : ()↓ & y : ()↓), σ1 =
⊎

i∈{2}(zi :l)
τ2 = (x : ()↑ ⊕ y : ()↑), σ2 =

⊗
i∈{1,2,3}(zi :l). If we put Γ1 = a : τ1, b : σ1, and

Γ2 = a : τ2, b : σ2, we have that Γ1 � Γ2 = a :l, b :
⊗

i∈{1,3}(zi :l).

14
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Example 4.6 As an example of typed event structures, consider the environ-
ment Γ = a : (x : ()↓ & y : ()↓), b :

⊎
i∈{1}(zi : ()↑). Figure 6 shows an event

structure E , such that E . Γ, together with a morphism E → [[Γ]]. Note that
the two events in E labelled with b(z1) are mapped to the same event and
indeed they are in conflict.

5 Event structure semantics of the typed π-calculus

In this section we provide the event structure semantics of the π-calculus, and
study some of its properties.

5.1 Definition of the semantics

The semantics is given by a family of partial functions [[−]]∆, parametrised by
an event structure type environment ∆, that take a judgment of the π-calculus
and return an event structure. The parameter is essentially providing a fixed
choice for the object names. This parametrisation is necessary because π-
calculus terms are identified up to α-conversion, and so the identity of (bound)
object names is irrelevant, while in the typed event structures, the identity of
object names is important.

The semantics is defined in Figure 7, by induction on the derivation of the
typing judgment. In the semantics of the replicated input, we also need the
following definitions. For any set K, let K(x) := {xk | k ∈ K} be a set of
names such that for distinct x, y, K(x) ∩ K(y) = ∅. Given a type τ , and an
index k ∈ K, we write τ k for the type obtained from τ by substituting yk

for every name y. Given an environment Γ, we define Γk to be such that for
every x ∈ Dom(Γ), Γk(x) = Γ(x)k. Let Γ be an environment such that for
every name x ∈ Dom(Γ), Γ(x) =

⊎
h∈H ∆h The environment Γ[K] is defined

as follows: for every x ∈ Dom(Γ), Γ[K](x) =
⊎

(k,h)∈K×H ∆k
h. If we assume

that all names in K(x) are fresh for Γ, we have that Γ[K] is well formed.

Note in particular that in the parallel composition we restrict all names
that are subject of communication, by restricting all names that are not al-
lowed by the new type environment.

The interpretation functions are indeed partial functions: for the wrong
choice of ∆1, ∆2, the interpretation of the parallel composition could be un-
defined, because ∆1 � ∆2 may be undefined. However it is always possible
to find suitable ∆1, ∆2. Intuitively we can say that in interpreting the typed
π-calculus into event structures, we perform α-conversion “at compile time”.

Theorem 5.1 For every judgment P . Γ in the π-calculus, there exists an
environment ∆ such that [[P . Γ]]∆ is defined.

Example 5.2 We demonstrate how the process which generates an infinite
behaviour with infinite new name creation is interpreted into the event struc-
tures. Consider the process Fw(ab) =!a(x).b(y).y.x . This agent links two lo-
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[[a
⊕

i∈I ini(ỹi).Pi . Γ, a :
⊕

i∈I(τ̃i)]]
∆,a:

L
i∈I z̃i:σ̃i

=
∑

i∈I aini(z̃i).[[Pi[z̃i/ỹi] . Γ, z̃i : τ̃i]]
∆,z̃i:σ̃i

[[a
�

i∈I ini(ỹi).Pi . Γ, a :
�

i∈I τ̃i]]
∆,a:
�

i∈I z̃i:σ̃i

=
∑

i∈I aini(z̃i).[[Pi[z̃i/ỹi] . Γ, z̃i : τ̃i]]
∆,z̃i:σ̃i

[[!a(ỹ).P . Γ, a : (τ̃)! ]]∆[K],a:
N

k∈K(ỹk:σ̃k) =
∏

k∈K a(ỹk).[[P [ỹk/ỹ] . Γ[ỹk/ỹ]]]∆
k,ỹk:σ̃k

[[a(ỹ).P . Γ, a : (τ̃)? ]]∆,a:
U

h∈H]{∗}(w̃h:σ̃h) = a(w̃∗).[[P [w̃∗/ỹ] . Γ, w̃∗ : τ̃∗]]
∆,w̃h:σ̃h

[[P1 | P2 . Γ1 � Γ2]]
∆1�∆2 = ([[P1 . Γ1]]

∆1‖[[P2 . Γ2]]
∆2) \Dis(∆1 �∆2)

[[0 . xi : (τi)
? , yj :l]]xi:

U
h∈H Γh,yj :l = ∅

[[(ν a)P . Γ]]∆ = [[P . Γ, a : τ ]]∆,a:σ \ {a}

Fig. 7. Event Structure Semantics of the πI-Calculus

cations a and b and it is called a forwarder. It can be derived that Fw(ab) . a :
τ, b : τ with τ = (()↑)! . Consider the process Pω = Fw(ab) | Fw(ba) so that
Pω . a, b : τ . The interpretation [[Fw(ab) . a : τ, b : τ ]]∆1 is defined for

∆1 = a :
⊗

k∈K(xk : ()↑), b :
⊎

k∈K(yk : ()↓).

Similarly the semantics [[Fw(ba) . b : τ, a : τ ]]∆2 is defined for

∆2 = b :
⊗

h∈H(zh : ()↑), a :
⊎

h∈H(wh : ()↓) .

Assuming there are two “synchronising” injective functions f : K → H, g :
H → K, such that yk = zf(k), wh = xg(h) (if not, we can independently
perform a fresh injective renaming on both environments), we obtain that the
corresponding types for a, b match, so that ∆1 �∆2 is defined. Therefore the
semantics of [[Pω . (Γ1 � Γ2)]]

∆ is defined for

∆ = a :
⊗

k∈K\g(H)(x
k : ()↓), b :

⊗
h∈H\f(K)(z

h : ()↓).

5.2 Properties of the semantics

The main property of the typed semantics is that all denoted event structures
are confusion free. More specifically, the semantics of a typed process is a
typed event structure.

Theorem 5.3 Let P be a process and Γ an environment such that P . Γ.
Suppose that [[P . Γ]]∆ is defined. Then [[P . Γ]]∆ . ∆.
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The syntax introduces the conflict explicitly, therefore we cannot obtain
conflict free event structures. The result above shows that no new conflict
is introduced through synchronisation. In the deterministic fragment, syn-
chronisation does indeed resolve the conflicts. Firstly, the semantics of the
deterministic πI-calculus is in term of deterministic event structures:

Proposition 5.4 Suppose P is a deterministic process, and that [[P . Γ]]∆ is
defined. Then [[P . Γ]]∆ is deterministic.

Secondly, once all choices have been matched with selections, or cancelled
out, what remains is a conflict free event structure.

Proposition 5.5 Let X be the set of names in a deterministic process P .
Then [[P . Γ]]∆ \X is a conflict free event structure. In particular if [[Γ]] = ∅,
then [[P . Γ]]∆ is conflict free.

Finally we have the simple fragment. In this case the syntax does not
introduce directly any conflict and the typing guarantees that no conflict is
introduced by the parallel composition.

Proposition 5.6 Suppose P is a simple process such that [[P .Γ]]∆ is defined.
Then [[P . Γ]]∆ is simple (and thus conflict free).

There is a correspondence between the event structure semantics and the
operational semantics. The basic result is that the semantics is sound with
respect to bisimulation.

Proposition 5.7 (Soundness) Suppose that for some ∆, [[P . Γ]]∆ = [[P ′ .
Γ]]∆. Then P . Γ ≈ P ′ . Γ.

Note that the event structure semantics of CCS is already not fully abstract
with respect to bisimulation [31], hence the other direction does not hold in
our case either. However, as in the event structure semantics of CCS, there is
another kind of correspondence between the labelled transition systems and
the event structures.

Theorem 5.8 Let ∼= denote isomorphism of labelled event structures.

Suppose P . Γ
β−→P ′ . Γ \ β in the π-calculus. Then there exists ∆ such

that [[P . Γ]]∆ is defined and [[P . Γ]]∆
β−→ ∼= [[P ′ . Γ \ β]]∆\β.

Conversely, suppose [[P . Γ]]∆
β−→E ′. Then there exists P ′ such that P .

Γ
β−→P ′ . Γ \ β and [[P ′ . Γ \ β]]∆\β ∼= E ′.

6 Conclusions and related work

This paper has provided a typing system for event structures and exploited
it to give an event structure semantics of the π-calculus. As far as we know,
this work offers the first formalisation of a notion of types in event structures,
and the first direct event structure semantics of the π-calculus.
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The work is quite technical and it requires a little effort to be read. The
readers may ask themselves what they gain from this effort. We think the
contribution of this paper are as follows.

• It is a standard intuition that confluence means absence of conflict, deter-
minism. In this work we have formalised this intuition. In the process of
this formalisation some conflict situations that are hidden by the interleav-
ing semantics were discovered. This fact can be underlined by noting that
the standard event structure semantics of the so called confluent CCS [20]
is not conflict free.

• It is well known how to compose event structures in order to obtain event
structures. However it was not known how to compose confusion free event
structures in order to obtain confusion free event structures. Our work
offers a solution to this problem. Concrete data structures, a fundamental
concept in various fields of semantics, can be seen as confusion free event
structures. Therefore our work also shows how to compose concrete data
structures.

• Although several causal semantics of the π-calculus exist (see related work
below), no one ever gave a direct event structure semantics, that could be
seen as an extension of Winskel’s semantics of CCS. We believe the main dif-
ficulty of an event structures semantics of the π-calculus lies in the handling
of name generation. Name generation is a inherently dynamic operation,
while event structures have a more static, denotational flavour. We have
shown that, by restricting the amount of concurrency to that permitted by
the linear type discipline, we can deal with name generation statically, and
thus we can extend Winskel’s semantics. This restricted π-calculus is still
very expressive, in that it can encode fully abstractly functional program-
ming languages.

• Finally, this work is an important preliminary step of several research di-
rections that we believe to be fruitful and interesting, as shown in the next
paragraph.

Future work

Future works include extending this approach to a probabilistic framework,
for instance the probabilistic π-calculus [14], by using a typed version of prob-
abilistic event structures [27]. The typed λ-calculus can be encoded into the
typed π-calculus. This provides an event structure semantics of the λ-calculus,
that we want to study in detail. Also the types of the λ-calculus are given
an event structure semantics. We aim at comparing this “true concurrent”
semantics of the λ-types with concurrent games [19], and with ludics nets [13].

Related work

There are several causal models for the π-calculus, that use different tech-
niques. In [5,10], the causal relations between transitions are represented by
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“proofs” of the transitions which identify different occurrences of the same
transition. In our case a similar role is played by names in types. In [8], a
more abstract approach is followed, which involves indexed transition systems.
In [16], a semantics of the π-calculus in terms of pomsets is given, following
ideas from dataflow theory. The two papers [7,12] present Petri nets semantics
of the π-calculus. Since we can unfold Petri nets into event structures, these
could indirectly provide event structure semantics of the π-calculus. In [2],
an event structure unfolding of double push-out rewriting systems is studied,
and this could also indirectly provide an event structure semantics of the π-
calculus, via the double push-out semantics of the π-calculus presented in [22].
In [6], Petri Nets are used to provide a type theory for the Join-calculus, a
language with several features in common with the π-calculus. None of the
above semantics directly uses event structures and no notion of compositional
typing systems in true concurrent models is presented. In addition, none of
them is used to study a correspondence between semantics and behavioural
properties of the π-calculus in our sense.

In [34], event structures are used in a different way to give semantics to a
process language, a kind of value passing CCS. That technique does not apply
yet to the π-calculus where we need to model creation of new names, although
recent work [33] is moving in that direction.
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A Appendix: π-calculus types

The typing system for the linear nondeterministic π-calculus is defined in
Figure A.1. The (Zero) rule types 0. As 0 has no free names, it is not being
given any channel types. In (Par), Γ1 � Γ2 guarantees the consistent channel
usage like linear inputs being only composed with linear outputs, etc. In (Res),
we do not allow ↑, ? or ↓-channels to be restricted since they carry actions
which expect their dual actions to exist in the environment. (WeakOut) and
(WeakCl) weaken with ?-names or l-names, respectively, since these modes
do not require further interaction. (LIn) ensures that x occurs precisely once.
(LOut) is dual. (RIn) is the same as (LIn) except that no free linear channels
are suppressed. This is because a linear channel under replication could be
used more than once. (ROut) is similar with (LOut). Note we need to apply
(WeakOut) before the first application of (ROut).

We recall that for a label β, the predicate Γ allows β is defined as follows:

• for all Γ, Γ allows ττ ;

• if MD(Γ(x)) =↓, then Γ allows xini(ỹ);

• if MD(Γ(x)) =↑, then Γ allows xini(ỹ);

• if MD(Γ(x)) = !, then Γ allows x(ỹ);

• if MD(Γ(x)) = ?, then Γ allows x(ỹ).

Whenever Γ allows β, we define Γ \ β as follows:

• for all Γ, Γ \ ττ = Γ;

• if Γ = ∆, x :
�

i∈I (τ̃i)
↓, then Γ \ xini(ỹ) = ∆, ỹ : τ̃ ;

• if Γ = ∆, x :
⊕

i∈I(τ̃i)
↑, then Γ \ xini(ỹ) = ∆, ỹ : τ̃ ;

• if Γ = ∆, x : (τ̃)! , then Γ \ x(ỹ) = Γ, ỹ : τ̃ ;

• if Γ = ∆, x : (τ̃)? , then Γ \ x(ỹ) = Γ, ỹ : τ̃ .

B Appendix: Event structure types

In this section we refer to the types and the type environments defined in
Section 4.

It is straightforward to define duality between types by exchanging branch-
ing and offer, with selection and request, respectively. Therefore, for every
type τ and environment Γ, we can define their dual τ , Γ. However types and
environments enjoy a more general notion of duality that is expressed by the
following definition. We define a notion of matching for types. The matching
of two types produces a “residual” type.

We define the symmetric relations match[τ, σ], match[Γ, ∆] and the partial
function res[τ, σ] as follows:
• let Γ = x1 : σ1 . . . xn : σn and ∆ = y1 : τ1 . . . ym : τm. Then match[Γ, ∆] if

n = m and for every i ≤ n we have that xi = yi and match[σi, τi];
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P . Γ, a : τ a 6∈ Γ MD(τ) = !, l

(ν a)P . Γ Res 0 . ∅ Zero
P . Γ x 6∈ Γ

P . Γ, x :l WeakCl

Pi . Γ, ỹi : τ̃i a 6∈ Γ I ⊆ J

a
⊕

i∈I ini(ỹi).Pi . Γ, a :
⊕

i∈J(τ̃i)↑
LOut

P . Γ x 6∈ Γ

P . Γ, x : (τ̃)?
WeakOut

Pi . Γ, ỹi : τ̃i a 6∈ Γ

a
�

i∈I ini(ỹi).Pi . Γ, a :
�

i∈I(τ̃i)↓
LIn

Pi . Γi (i = 1, 2)

P1 | P2 . Γ1 � Γ2
Par

P . Γ, ỹ : τ̃ a 6∈ Γ ∀(x :τ) ∈ Γ. MD(τ) =?

!a(ỹ).P . Γ, a : (τ̃)!
RIn

P . Γ, a : (τ̃)? , ỹ : τ̃

a(ỹ).P . Γ, a : (τ̃)?
ROut

Fig. A.1. Linear Typing Rules

• let τ =
�

i∈I Γi and σ =
⊕

j∈J ∆j. Then match[τ, σ] if I = J and for all
i ∈ I, match[Γi, ∆i]; in such a case res[τ, σ] =l ;

• let τ =
⊗

i∈I Γi and σ =
⊎

j∈J Γj. Then match[τ, σ] if J ⊆ I and for all
j ∈ J , match[Γj, ∆j]; in such a case res[τ, σ] =

⊗
i∈I\J Γi ;

• match[l, l], res[l, l] =l.
A branching type matches a corresponding selection types and the residual

type is the special type recording that the matching has taken place. A client
type matches a server type if all requests correspond to an available resource.
The residual type records which resources are still available.

We now define the composition of two environments. Two environments
can be composed if the types of the common names match. Such names
are given the residual type by the resulting environment. Client types can
by joined, so that the two environments are allowed to independently reserve
some resources. Given two type environments Γ1, Γ2 we define the environment

Γ1 � Γ2
def
= Γ as follows:

• if x 6∈ Dom(Γ1) and no name in Γ2(x) appears in Γ1, then Γ(x) = Γ2(x),
and symmetrically;

• if Γ1(x) = τ, Γ2(x) = σ and match[τ, σ], then Γ(x) = res[τ, σ];

• if Γ1(x) =
⊎

i∈I ∆i and Γ2(x) =
⊎

j∈J ∆j and no name appears in both ∆i

and ∆j for every i, j ∈ I ∪ J then Γ(x) =
⊎

i∈I∪J ∆i;

• if any of the other cases arises, then Γ is not defined.

We now define what it means for a label α to be allowed by a type envi-
ronment Γ. Suppose Γ(x) = σ, then:
• if α = xinj(ỹ), and if σ =

�
i∈I Γi where ỹ is the domain of Γj, then α is

allowed;
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• if α = xinj(ỹ), and if σ =
⊕

i∈I Γi where ỹ is the domain of Γj then α is
allowed;

• if α = x(ỹ), and if σ =
⊗

i∈I Γi where ỹ is the domain of Γj then α is
allowed;

• if α = x(ỹ), and if σ =
⊎

i∈I Γi where ỹ is the domain of Γj then α is allowed;

• if α = τ , then α is allowed.

And finally, α is also allowed by Γ if α is allowed by any of the environments
appearing in the types in the range of Γ. Note that if a label is allowed, the
definition of well-formedness guarantees that it is allowed in a unique way.
Note also that if a label α has subject x and x does not appear in Γ, then α
is not allowed by Γ.
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