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We study the combination of probability and nondeterminfssm a categorical point of view. In
category theory, nondeterminism and probability are regméed by suitable monads. Those two
monads do not combine well, as they are. To overcome thidgmotve introduce the notion of
indexed valuations. This notion is used to define a new mdmatccan be combined with the usual
nondeterministic monad via a categorical distributive. g give an equational characterization of
our construction. We discuss the computational meaningdged valuations, and we show how
they can be used by giving a denotational semantics of a simgerative language.

1. Introduction

Nondeterminism and probability are computational effadiese semantics has been thoroughly
studied. The combination of the two appears to be essentigving models for concurrent pro-
cesses (Vardi, 1985; Hansson, 1991; Segala and Lynch, 198&jtationally, nondeterminismis
handled by the notion of powerdomain functor in a suitabtegary of domains (Plotkin, 1983),
while probabilistic behaviour is handled by the powerdami valuations (Jones and Plotkin,
1989; Jones, 1990; Kirch, 1993). They happen to be monagsfitting the general idea, intro-
duced by Moggi, of monads as models for computational effédbggi, 1991). As many other
computational monads, they are freely generated fromldeitaquational theories (Plotkin and
Power, 2002).

There are various ways of combining two monads. When thefreety generated from equa-
tional theories, we can first combine the theories in some avaj/then freely generate a new
monad. In (Hyland et al., 2002) three main ways of combiniepties are identified: sum, com-
mutative combination, distributive combination. In theficase, the two equational theories are
combined by joining the operations and the equations, witadding new equations. In the sec-
ond case, one adds equations expressing that every opes&tioe theory commutes with every
operation of the other theory. In the third case, one addsat&ns expressing distributivity of
every operation of one theory over every operation of theotheory. This last approach can
sometimes be followed more categorically using the notiadigiributive law (Beck, 1969). The
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leading example is given by the theory of abelian groups hedheory of monoids. Their dis-
tributive combination (distributing the monoid over theogp) yields the theory of rings. The
free ring monad can also be obtained by giving a categoriséiilbutive law between the free
abelian group monad and the free monoid monad.

The study of the operational semantics of systems combipiagability and nondetermin-
ism suggests that, in some cases, probabilistic choiceldluistribute over nondeterministic
choice (Morgan et al., 1994; Bandini and Segala, 2001). Aswlleexplain, there is no cate-
gorical distributive law between the nondeterministic mdrand the probabilistic monad. Two
solutions are possible at this point.

We can still form the distributive combination of the eqoatl theories and generate a new
monad. This is the path followed by Tix (Tix, 1999; Tix et &005) and Mislove (Mislove,
2000) who, independently, define the notion of geometsicadhvex powerdomai®r,. When
X is areal cone (a structure similar to a vector spa@e), (X) is, roughly speaking, the set of
all convexsubsets ofX. The nondeterministic choice is interpreted as union fedd by convex
closure. We will briefly recall this construction later.

The other possibility, the one we follow in this work, is to dify the definition of one of
the monads, so as to allow the existence of a categoricaldiste law. Analysing the reasons
behind the failure of the distributive law, we are led to defihe notion of andexed valuation
Mathematically, indexed valuations arise as a free algédoran equational theory obtained
from the theory of valuations by removing one equation. k& ¢ategory of sets, there exists a
distributive law between indexed valuations and the finiteempty powerset. Moreover, indexed
valuations have an interesting concrete representatiospfice we pay is that, since we modify
the equational characterisation, indexed valuations dsattsfy all the laws usually satisfied by
probability distributions.

Besides their categorical justification, indexed valuagibave a computational meaning, which
we present by giving semantics to an imperative languagt&gung both random assignment
and nondeterministic choice. The operational semantiggvisn in terms of probabilistic au-
tomata. Such a model comes equipped with a notion of a soleftulresolving the nondeter-
minism. In the literature there are two main notions of sehed deterministic and probabilistic.
Using indexed valuations, we give a denotational semawtiish is adequate with respect to de-
terministic schedulers. A semantics in terms of the Tixdbie construction, instead, is adequate
with respect to probabilistic schedulers.

Finally we briefly sketch the various possible ways to extéralconstruction above to some
category of domains.

This work is part of the first author's PhD thesis (Varacca)20 An extended abstract ap-
peared as part of (Varacca, 2002).

2. Background

In this section we outline some of the mathematical notioeasieed for our work. We assume a
working knowledge of Category Theory (MacLane, 1971) and/ehsal Algebra (Cohn, 1981).
All notions we need are dealt with in detail in Chapter 2 ofraéxca, 2003). The notation we use
should be self-explanatory.
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2.1. Monads

A monadon a categoryC is an endofunctof’ : C — C together with two natural transforma-
tions,n” : Idc — T, theunit, andu” : T? — T, themultiplication, satisfying the following
axioms:

— pT oy = Ildp =TT opu™;

— T oTu™ = pu" op™T.

If 7is a monad and iff : X — T(Y), theKleisli extensionft : T(X) — T(Y) is defined

asT(X)LfLT(T(Y))LT(Y). TheKleisli Categoryof the monad’, denoted byC; has

the same objects &5, andX v in Crifandonly ifXLT(Y) in C. The identity is the unit
of the monad, while composition is defined using the Kleisteasion. Monads can equivalently
be defined using the Kleisli extension as a primitive notiad deriving the multiplication by
pk = 1dh .

In a categoryC, analgebrafor an endofunctoi’ is an objectA together with a morphism
k : F(A) — A. An algebra for a monadrl’,n*, uT) is an algebrg A4, k) for the functorT,
satisfying the following compatibility axioms:
— ko 77£ = Idy;
— koT(k)=kopuk.
Algebras foramonafr’, n7, uT) in C form a categorCT , where a morphisrtd, k)2 (A’, k')
is given by a morphisrmLA’ suchthatpo k = k' o T'(9).

Every adjunction(F, G, 7, ¢) : C — D generates a monad @' : C — C, with n&¥ := g
andu &t .= GeF. Conversely, given a mondh, there is an adjunctiof” 4 UT : C — CT,
whereU” is the forgetful functor sending an algebra to its carrier

(X, k) X
Ut ‘i’l = l¢
(X' K X/

while FT sends an object to its multiplication (tfree algebra

X (TX, %)
FT: ¢L = lT(tb)
X! (TXI’/J'§/) :

This adjunction generates precisely the mofiagh”, 7).

Suppose we have an adjunctigii G,7,¢) : C — D generating a monad’, n”, u7). Such
a monad generates the adjunctidgi?, U”,n7, ¢7). There is a “comparison” functds : D —
CT, defined as

D (G(D), G(ep))

K: fl — lG(f)

D’ (G(D'),Glen))
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satisfyingU” K = G and KF = FT. An adjunction ismonadicif the comparison functof’
defined above is an equivalence of categories. A functor isadie if it is the right adjoint of a
monadic adjunction.

2.2. Free algebras and monads

Given a category of algebraic structures defined by an equational theornyfatgeetful functor
U : C — SET has a left adjointt” and is monadic. This means th&tF supports a monad
structure iNSET and thatC is equivalent to the category &f F-algebras. In such a case the
monadU F' is called thefree algebrafor the structures irC. It is equivalently characterised
by the followinguniversal propertywhere, as customary, we omit the mention of the forgetful
functor): there exists a family of functionsy : X — F(X), such that for every seX, for
every structureZ of C, and for every functiorf : X — Z, there exists a unique morphism
f: F(X) — Z (the “homomorphic extension”) that satisfig® nx = f. We say thaf"(X) is
thefree algebraover X (with respect taC).

In the following, we present some relevant examples.

2.3. The nondeterministic monad

Assume thatd (formal union) represents some kind of nondeterministic choice operates B
offers to the environment the choice betweérand B. Usually such an operator satisfies the
following equations:

— AU B=BUYA,

— AY(BUY(C)=(AYB)4dC;

— AQg A=A

Since 4 is associative and commutative, we can introduce the fatigwonvention. IfX is

a set whered is defined, andz; ),¢; is a finite family of elements ok, we write

U

i€l
to denote the formal union of a#t;’s. A similar convention will be used for the operatien
(formal sum which will also be associative and commutative (but notigetent).

A model for the above theory is semilattice The category of semilattices is denoted by
SLAT. It is well known that the free semilattice functor can be cetely represented as (is
naturally isomorphic to) the finite nonempty powerset fond® : SET — SLAT, where the
symbol U is interpreted as union. IX is a set,Z is a semilattice and : X — Z is a function,
the unique homomorphic extensign P(X) — Z is defined by

Fv)=U fy.
yey
The corresponding monaed : SET — SET has the following unit and multiplication
(@) = {z};
py(s) = UJs.
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2.4. The probabilistic monad

Assume that®, represents a probabilistic choice operator of some prograg language:
A @, B is choosingA with probabilityp and B with probability (1 — p). This operator comes
with an equational theory: for example it usually satisfles,, A = A, because the choice be-
tween two equivalent possibilities is considered to be #Hmesas not making any choice at all.
Note that this assumes that the act of making the choice isilih: the coin is always flipped
behind one’s back.

We are going to study a more general equational theory, thadenes the one of the proba-
bilistic choice.

Definition 2.1. A real coneis an algebra for the following equational theory in the gaty
SET (the reason for the numbering will be apparent in the sequel)

(1) A® B=DB® A;

2 Ae(Be(C)=(AaB)aC,

(3) A= 4;
(4) 0A=0;
(5) 1A= 4;

(6) p(A® B) =pA@pB, pe|0,+ocf;

(7) p(ad) = (p9)A, p.q € [0,+o0];

13) (p+q)A=pADqA, p,q€ 0,4+

We callRCONE the category of real cones and homomorphisms.

In a real cone, the probabilistic choice operator is codembagex combinatiap A® (1—p) B.
We choose to deal with the more general notion of real conauseits equational theory is nicer
than the theory of the probabilistic choice. We are now gamgharacterise concretely the free
real cone.

Definition 2.2. A discrete valuatioron a setX is any functiorw : X — [0, +o0].
Thesupportof a discrete valuation on X is the set
Supp(v) :={zx € X |v(z) >0} .

The set of discrete valuations dfis denoted by, (X ). A discrete valuatiom on a setX is a
discrete probability distributionf ) _ . v(z) = 1. The set of discrete probability distributions
on X is denoted by/! (X). Discrete valuations taking values i +oo| are calledveightings
(Jonsson et al., 2001). #nite valuationis a weighting whose support is finite. The set of finite
valuations over a seX is denoted by (X). For eachr € X, the finite valuatiom, defined by

1 y=um

is called apoint valuation
Two operations of sum and scalar product are defined poiatend’ (X ):

v @ w(z) =v(x) + w(z);

po(z) = p(v(x)), p € [0, 400,
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If X is a set, the séf (X) with the pointwise operations defined above is a real coneeMer:
Proposition 2.3. The finite valuations over a s&t form the free real cone ove¥.

Let f : X — R be a function, where® is a real cone. Define the family of function¥ :
X — V(X) by n¥%(z) = n, The unique real cone homomorphistn: V(X) — R which
extendsf is defined as follows:

fw= @ v@fi).

z€ Supp (V)

The multiplication of the generated monad is defined as:

pkE)@) = P Ew@).

2.5. Distributive Laws

A general way for combining two monads is by definingjstributive law(Beck, 1969). Suppose
we have two monadd’, ™, u7), (S,n°, 1) on some category. Aistributive lawof S overT
is a natural transformatiosh : ST—7T'S satisfying the following axioms:
— donST =Tn%
— do SnT =nT's;
— dop T =Tu® odS o Sd;
— doSuT =pTSoTdodT.

A distributive law defines a monad on the functof. If d : ST—T'S is a distributive law,
then(T'S,n"n®, (u* 1) o TdS) is a monad.

TSTS —5—> TTSS ————>TS

A monad morphisnbetweenl’ and.S is a natural transformation : 7—.S which suitably
commutes with units and multiplications.lidting of the monad’” to the category of-algebras
isamonad7,n”, uT) onC?®, such that, iftU° : C® — C is the forgetful functor then

— UST =TUS,;
. USnT _ nTUS-
_ USMT _ MTUS_
Beck has proved the following theorem (Beck, 1969).
Theorem 2.4. Suppose we have two monadg, n”, u7), (S,1°, 1) on some categorg.
Then the existence of each one of the following implies thsterce of the other two:

1 Adistributive lawd : ST—T'S.
2 A multiplicationy : TSTS—TS, such that

— (TS,n"n°, u) is a monad;
— the natural transformationg S : S—T'S andTn® : T—T'S, are monad morphisms;
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— the following middle unit law holds:

TnSnTs

T8 —=T1T85TS

o
Idrs

TS.
3 Alifting T of the monadl” to C*.

The way to obtain (2) from (1) has been sketched above. Tarohtlfting from a distributive
law we definel’(A, o) as theS-algebra

da T(0o)

ST(A) TS(A) T(A) .
Conversely if we have the multiplicatignwe can definel by
T S S
R ARy U - —

If we have a liftingT", we defined by

S

TS ~
ST i STS — USFSTUSFS —_— USFSUSTFS
d lUSGTFS

TS TUSFS _— USTF‘S7

wheree is the counit of the adjunctioRS - U*.
The correctness of the above constructions is shown by aedi@agram chases (Beck, 1969).
When the two monads involved are the free algebras of somatiegal theory, an equational
distributive law may or may not correspond to a categoricgtridbutive law. We discuss this issue
in the next section.

3. The failure of the distributive law
Distributing probabilistic choice over nondeterministitoice amounts to the following equation:
A®,(BUC)=(A®,B) Y48, C).

Intuitively this expresses indifference to whether theiemment chooses before or after the
probabilistic choice is made. Once we accept the distrbuéw, the extr@onvexitjaw (Bandini
and Segala, 2001)

AYJB=AYBY(A®,B)J(B®,A)
must be also accepted, because
AdB=(AYB)®,(AIB)=(A®,A) U(B®, B) J(A®, B) U(B &, A4).

If the equational distributive law corresponded to a catiegd distributive law, by Beck’s
theorem (Theorem 2.4) the nondeterministic monad woultdithe category of algebras for the
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probabilistic monad. In the categoBET this means that the powerset monad would lift to the
category of real cones. The convexity law suggests thaighist possible, because not all sets
satisfy the convexity law. In fact, the following generaéthiem says that the obvious definition

of the operations for the powerset cannot satidfyp,, A = A. Suppose we have an equational
theory. Take a modeX for it. We can extend every operatigiof arity n to the subsets ok by

f(Xl,...,Xn) = {f(xl,...,xn) | r; € X;,1 € In}

Theorem 3.1 (Gautam, 1957) A necessary and sufficient condition for the operations éeffin
on the powerset ok to satisfy an equation of the theory is that each individ@aiable occurs
at most once on each side of the equation.

Equations satisfying the above condition are cadiffithe The equatiom @, A = A is not affine,
thus cannot be satisfied in the powerset. This would not ebecthe possibility of lifting the
operations in a different way, thus obtaining another distive law. However, it turns out that
there is no distributive law at all between the two monadéPify”, ) is the finite nonempty
powerset monad, and’, "', 1) is the finite valuation monad in the categ &% T, we have

Proposition 3.2. There is no distributive law of” over P.
Proof. See the Appendix. ]

Our solution consists in changing the definition of probiabd monad by removing the equa-
tion A ®, A = A. In our presentation, the probabilistic monad is generatethe theory of
real cones and the probabilistic choidep,, B is coded as convex combinatipal & (1 — p)B.
We remove the equatiopAd ® ¢A = (p + q)A from the theory of real cones. In the category
SET, the monad freely generated by the new equational theorgllisccthefinite indexed val-
uationmonad/V. By Theorem 3.1, we can lift the operations to the powerbeis bbtaining a
distributive law. The next section is devoted to this camsion.

4. Indexed valuations

In this section we present the definition of the indexed dnamonad in the categoi§ET,
and we show the existence of the categorical distributmetdatween indexed valuations and the
finite nonempty powerset.

4.1. Definition
We first introduce the concrete characterisation of our taoton.

Definition 4.1. Let X be a set. Adiscrete indexed valuatigiIV) on X is a pair(Ind, v) where
Ind : I — X is a function and is a discrete valuation oh for some sef.

Note that we do not require thd@td be injective. This is indeed the main point of this con-
struction: we want to divide the probability of an elementoeng its indices. One possible inter-
pretation is that indices ih represent computations, while elementskofepresent observations.
The semantics we present in Section 6 will confirm this imuit
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We shall also writer; for Ind(i) andp; for v(i). A discrete indexed valuatioh:= (Ind, v)
will also be denoted ai;, p;)ics-

We are now going to define an equivalence relation on the ofd3B/s. Recall thatSupp (v) =
{i e I'|v(i)>0}.

Definition 4.2. Let (Ind,v) = (z;,pi)icr and(Ind’, w) = (y;, g;) s be two discrete indexed
valuations. We set

(Ind,v) ~ (Ind',w)
if and only if there exists a bijectioh : Supp(v) — Supp(w) such that

Vi € Supp(v). ynay = i,

Vi € Supp(v). qniy = pi -

This says that two DIVs are equivalent up to renaming of thécies, and that only indices
in the support matter. Indices are used to distinguish betvwbfferent computations, but their
precise character is unimportant. What is important is &pkieack of the different computations
there are, and how they relate to observations. Moreovemene as well ignore computations
with probability 0.

From now on we will use the term “discrete indexed valuatidoglenote equivalence classes
under~.

Given a setX and an infinite cardinal numberwe define the sefV (X)) as follows:

IV o (X) = {(zi,pi)ier | | < a}/ ~ .

It is easy to realise thdtV (X)) is indeed a set. For every cardinal numpex. o, choose a set
I3 such thatlz| = . The class{Is | 3 < a} is a set. And clearly'V,(X) is a quotient of
Us<a X1s x [0, +00]e. In particularIVy, (X) is the set of discrete indexed valuations whose
indexing set is finite.

Definition 4.3. A finite indexed valuatioon X is an element of V', (X) for whichp; < 400
for all indices: € I. The set of finite indexed valuations éhis denoted by V (X).

The construction above can be extended to a fundtor SET — SET as follows. Iff : X —
Y then
V() ([ pi)ier]~) = [(f(2i), pi)ier]~ -
It is easy to check that this construction is well defined @@&es not depend on the representa-
tive).
From now on we will drop the explicit mention of equivalendasses, and work with repre-
sentatives to simplify the reading.

4.2. Equational characterisation
We define two operations on discrete indexed valuations.

Definition 4.4. Let v := (Ind,v) = (z;,pi)ier, € == (Ind',w) = (y;,q;);es be two DIVs
on a setX. Assume thatf N J = (. This is not restrictive, because we can always reindex.
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We definer @ ¢ to be (Ind U Ind’,v U w). Forp € [0, +oco| we definepy to be (z;, pp;:)icr-
With 0 we denote the DIV whose indexing set is empty.

Note, in particular, that when €]0, 1], we haveor & (1 — p)v +# v, because the indexing sets
do not have the same cardinality.
Consider the following equational theory:

(1) A9 B=B®a® A4
2 A (BaoC)=(Aa B)aC;

(3) A®0=4;
(4) 0A=0;
(5) 14 = 4;

(6) p(A® B) =pA®pB p € [0, +o0];
(7) p(qA) = (pg)A p,q € [0, +0o0].

These axioms are almost the ones defining a real cone. Teedtiffe is that we have dropped
the equatior{p + q)A = (pA @ qA).

Definition 4.5. A real quasi-conés an algebra for the equational theory (1)—(7) in the catggo
SET. The category of real quasi-cones is denote@yONES.

Proposition 4.6. The finite indexed valuations over a s€tform the free real quasi-cone over
X.

Proof. For any setX, it is clear that/ VV (X ) with the operations defined above is a quasi-cone.
Define the family of functiong’? : X — IV (X) by

nx () = (,1)se(s -

Let @ be a quasi-cone and I¢t: X — @ be a function. We have to show that there is a unique
quasi-cone homomorphisgh: 1V (X) — Q such thatf(n{" ()) = f(z). The homomorphism
condition forces us to define
Fzi,pi)ier = P pif (i) .
i€l

Equations (1)—(4) guarantee that the definition does noemigmwn the representative for
(4, ps)ier. Equation (5) guarantees thatr, 1) = f(x). The homomorphism condition for the
sum (and)) are obvious, while for the scalar product we have to use mps(6) and (7). [

The above proposition tells us that the funcidt extends to a monad. Its multiplication is as
follows:
i IV(IV(X)) — IV(X)
((@iyspix)iners T )ren) = (%5.45)jes;
where

J = L‘ﬂ Iy, qj‘:pjﬂ')\iijI)\.
AEA
To simplify the definition ofu, recall that a DIV is in fact an equivalence class. We cangther
fore assume that, = I for every\ € A because we can always reindex and add indices with
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probability 0. Therefore

((Tiy s Piy )iselss Ta)aer ~ (2, pN)ier, ™) ren -

This allows us to use a simpler expression for the multipiica

Mg(v (((xi\,pi\)z‘ebm)xeA) = ($Z\7ﬂxp2\)(i,,\)ele-

4.3. The distributive law

Since all the equations in the theory of real quasi-conesaféire, Gautam’s theorem guarantees
that the operations lift to the powerset. Such a lifting ®dibwn to a lifting of the finite nonempty
powerset monad® to the category of real quasi-cone&l/(-algebras). This, by Theorem 2.4,
guarantees the existence of a distributive ttwlV oP—P o IV .

We construct this lifting explicitly, in order to show the rcespondence of the categorical
distributive law with the equational one. Recall that a dettice is a model of the following
theory:

(8) AUB=DBUYA4;

99 AUBUYC)=(AUB)UJC,

(10) AU A= A.

We have seen that the finite nonempty powerset is the fredatod. Consider now the com-
bined equational theory (1)—(10) augmented with the fallgrequations:

(11)p(A U B) = pA U pB;

(12)Ae(BYC)=(A®B)d(Aa ().

Equations (11)—(12) express that the probabilistic opesadistribute over the nondeterministic
one.

Definition 4.7. A quasi-cone semilatticess a model of the theory (1)—(12). The corresponding
category is denoted b CS.

To show thatP lifts to a monad in the category of real quasi-cones we shawitlis left adjoint
of the forgetful functorU : QCS — QCONES. The first observation is that whefi is a
real quasi-cone, theR(Z7) is in QCS. By defining sum and multiplication pointwise, it is not
difficult to verify that all the equations (1)—(12) are stiéd. Then we have to show the following
universal property: for every real quasi-cafiefor every quasi-cone semilattié& and for every
real quasi-cone homomorphisfn: Z — T there exists a unique extensign: P(Z) — W
which is a quasi-cone semilattice homomorphism, and focwlfi({z}) = f(2).

VA
P(\LZ)f>W

The homomorphism condition forces us to define, ¥oC ¢, Z,

Fv)y=J f»),

z€Y
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which gives us uniqueness. It is routine to verify that it slivdefined and a homomorphism.
Since the extension is defined exactly as the extension ehtmadP in the category of sets,
what we have defined is indeed a lifting B8f Using Theorem 2.4, we deduce the existence of
the distributive law.
Concretely, for every seX the componenix : IV(P(X)) — P(IV(X)) is defined as
follows:

dx ((Sispi)icr) = {(M(@),pi)ier | h: T — X, h(i) € S;}.
Note, in particular, the use of the “choice functian”
A direct proof of the fact that the above family of functiossa distributive law can be found
in (Varacca, 2003).

5. The convex powerset

Another solution for combining the nondeterministic andimabilistic monad consists in forming
the distributive combinations of the theories, thus fregperating a new monad. The convexity
law suggests a way of representing this construction coslgrélhis section is inspired by the
work of Tix and Mislove, although they are concerned with @EPwhile we work here in the
categonySET.

5.1. Finitely generated convex sets

Recall that aeal coneis a real quasi-cone satisfying the extra equation
(13) (p+ q)A =pA @ qA.

Definition 5.1. A subsetX of a real cone iconvexif for everyz,y € X, p € [0, 1], we have
pr @ (1 — p)y € X. Given a setX, its convex closureX is the smallest convex set containing
X. A convex setX is finitely generatedf there exists a finite seX, such thatX = X,. Given

a finite set/, elements:;, i € I, of a real cone and nonnegative real numbers € I, such that

> ic1Pi = 1, the elemengD,_; p;z; is said to be @onvex combinatioaf the z;.

The following result is standard.

Proposition 5.2. For a setX, we have thafX is the set of convex combinations of elements of
X.

Definition 5.3. For areal cone Z we define

Pry(Z) ={Y C Z|Y is convex and finitely generatgd

5.2. Equational characterisation
We characterise the functé#r; as a free construction.

Definition 5.4. A real cone-semilatticés a model for the theory (1)—(13). The corresponding
category is calle®RCS.

Given areal cone’, we define the following operations dfy,; (Z):
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— pY ={pylyeY}

— YooY ={yay|lyeYy eY'}

— 0:= {0}

— YUY =YUY' ={pyo(1-p)y|pe0,1],yeY,y €Y'}

The above operations are well definedYifY’ are convex sets, it is easy to show that the sets
pY, Y @Y’ )Y UY are also convex; it}, Y, are finite generators fdr, Y’ thenpYj is a finite
generator fopY’, Yy @ Yj is a finite generator fo¥ & Y’ andY; U Yj is a finite generator for
YUY’

The above operations satisfy (1)—(13) so as to nfakg (Z) a real cone-semilattice. The only
nontrivial ones to verify are (12)-(13): here is where cofityeis needed.

We now show the universal property characterising freertemsevery real cong, real cone-
semilatticeH and real cone homomorphisfn: Z — H, there exists a uniquB.CS-morphism
f: Pry(Z) — H suchthatf({z}) = f(z). For everyY € Pry(Z) letY, be one of its finite
generators. Then define

f)y= " fw.
y€Yo
We need to show that the above definition does not depend arhtsen finite generator. This
requires some lemmas.

Proposition 5.5. In a real cone-semilattice, if is a convex combination af, v’ then
yuy =yuy Yuw.
Proof. Letw = py @ (1 — p)y’. Then

yuy = plygy)e(l-p(yYy)
= yuy Ypye (1 -py) Yy el -py)
= yuy Ypye (1-py)
as in any semilattice, if =z U 2’ U 2, thenx =z 4 2. ]

Lemma 5.6. Let H be a real cone-semilattice, g}, Z, be finite subsets of. If Y, = Z,, then

UYo =%

Proof. We prove this for the simple case whéfg= {y,y'}, Zo = {z, 2’}. The general case
can be proved in a similar way. We want to prove that ¥/ = z U 2. It is enough to prove
thaty Uy’ = y Uy’ Uz U2, which, by symmetry, implies our result. Note that, from the
assumptionz, 2’ must be convex combinations gfy’. The statement is thus a consequence of
Proposition 5.5. [

Now pick two different finite generatorky, Y for Y. We want to prove tha f(Yy) =
Y f(Yy). Since f is a homomorphism of real cones we have tfieYy) = f(Yy) = f(Y).
Thereforef (Yy) = f(Yy). By Lemma 5.6 we havie) f(Yo) = f(Yy).

It is easy to verify thalf respects the operations, using the equational distrieudiws (11)-
(12), and the fact that is already a homomorphism of real cones. Moreover the honnphigm
condition implies unigueness.

We have thus proved the following:
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Proposition 5.7. The operatoPrj, with the operations as above defines a funR&IONE —
RCS which is left adjoint of the forgetful functor.

The combination of the two adjunctions
SET _ L~ RCONE _ L~ RCS

gives rise to a monad iISET. Note that the monad;,; on RCONE is not a lifting of the
monadP, because, in general, convex sets are not finite. TherdfemmonadPr,; oV on SET
is not obtained from any distributive laW o P—Po V.

6. Semantics of programs

We give an example of how to use the constructions of the pusvsections by giving a de-
notational semantics to a simple imperative language witibgbilistic and nondeterministic
primitives. We give the language an operational semantiderims of a simplified version of
probabilistic automata. We present two denotational séicgrone in terms of indexed valu-
ations and the standard powerset, the other in terms of #melatd valuations and the convex
powerset. We show adequacy theorems relating the first s@maodeterministicschedulers,
and the second semanticspimbabilisticschedulers. Finally we discuss the computational intu-
ition lying behind the mathematics.

6.1. Probabilistic automata

Probabilistic automata were introduced as such in (Se@8Rb). Their relationships with other
probabilistic models are well known (Bartels et al., 200@efinga, 2002). We are going to adapt
that general framework to our needs. We recall thaf i a subset of/} (X), by Y we denote
the set of convex combinations of elementdof

Let P, (X) denoteP(X) U {(}. A probabilistic automatoron a set of stateX is a function
k: X — P, (VL(X))togetherwith aninitial state, € X . We will use the notation of (Herescu
and Palamidessi, 2000): whenewvee k() we write

x(ﬂ’wi)iel

wherez; € X,i # j = x; # x;j, andv(z;) = p;. We also write—2-x for (i»x)ie{*}. Afinite
pathof a probabilistic automaton is an element X x V. (X))* X, written asrov1 21 . . . Vp Ty,
such thav;(z;) > 0. The path igleterministidf v; 1 € k(x;). Itis probabilisticif v;11 € k(z;).
The last state of a pathis denoted by (s). The probability of a path := zov121 ... vpzy, IS
defined as

I(s) = ] viz:).

1<i<n
A probabilistic schedulefor a probabilistic automatohis a partial function
S: (X x VEL(X)*X — VL(X)

such that, ifk(I(r)) # 0, thenS(r) is defined andS(r) € k(I(r)). Equivalently, a probabilistic
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Fig. 1. A probabilistic automaton

scheduler can be defined as a partial function
S (X x Vg (X)X — VIV (X)),

requiring thatSupp(S(r)) C k(I(r)).

A deterministicscheduler is a probabilistic scheduler that does not makeofithe convex
combinations. That is for a deterministic scheduler we &g € k(I(r)).

Now given a stater € X and a schedule$ for k£, we consider the sé(k,S) of maximal
paths, obtained frork by the action ofS. That is the pathsgvyx; . . . vz, such that for every
i <mn,viy1 = S(zovy ... 2;), andk(x,) = 0. A deterministic scheduler generates deterministic
paths, a probabilistic scheduler generates probabifistibs.

A good way of visualising probabilistic automata is by usattgrnating trees (Hansson, 1991).
Figure 1 shows an example of an alternating tree, where hiades represent states, while
hollow nodes represent probability distributions. The ak&ees instead of graphs is a way of
keeping track of the paths: a deterministic scheduler is thiunction that, for every black node,
chooses one of its hollow sons.

6.2. A simple imperative language

We present a small imperative langudgdt has the following (abstract) syntactic categories:

— integersNum, ranged over by:;

— locationsLoc, ranged over by ;

— finite probability distributions over integerob, ranged over by;
— arithmetical expressionAexp, ranged over byi;

— boolean expressioBBexp, ranged over by;

— command€Comm, ranged over by.

The (abstract) BNF for the last three syntactic categoriesa follows:
a = n|X|at+ala—alaxa;
true |false |a <a|-b|bADb;
¢ == skip|X:=a|X :=x|¢c|ifbthencelsec|corc.

We also need the notion sfate A state is a functiom : Loc — Num. We call¥ the set of
states. We call any pair, o) a configuration We denote the set of all configurationsByThe
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(skip, o) — (e, o)

(X = x,0) (e, 0[n/X]) Jnenum

(¢,0) (5 (ci, 04))ier

(e;c o) (Esleisd,00))ier
(if b then co else c1,0)——(c1,0) if[b]o = false
(if b then co else c1,0)——(co, o) if[b]o = true
)(“)ses

(cord,o)(T5yi)ier (cor ¢, U>(i>’}/j)jgj

<Cv U>(ﬂ>’yi)i€f <C/,(T

Fig. 2. Operational semantics bf

setl" is ranged over byy. To make the notation more uniform we introduce (at the negtd) the
empty command. We use it with the following meaning:

(e,0) =0, ec=ce=c.

Consequently, we extend the notion of configuration so tretaeo is a configuration(c, o)
wherec = e.

It is straightforward to define the value of arithmetic analean expressions in a given state
so as to have

[a]Jo € Num and [b]o € {true, false} .

6.3. The operational semantics

The operational semantics bfis given in terms of probabilistic automata on the set of aurfi
rations. For every configuratiop we have the probabilistic automatan~, = (T, k, vo) where
k is defined inductively using the rules in Figure 2.

Definition 6.1. Let S be a scheduler faM (¢, o). To simplify the notation we say tha& is a
scheduler forc, o). We defineB3(c, 0, S) to be the set of maximal paths 8ft{c, o) generated
by S. We defineVul(S, ¢, o) to be the probability distribution such that

Val(S,c,0)(0') = > TI(s).

seB(c,0,S)
I(s)=0c’

We definelval (S, ¢, o) to be the discrete indexed valuation

(l(S), H(S))SEB(C,U,S) .

The last definition is a formalisation of the intuitive inpeetation of indexed valuations. Here
the indexing set is the set of paths (the computations) vihédelements considered are the final
states (the observations).
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[skiplo = {(o,1)}
[X :=a]c = {(o[n/X],1)} wheren = [a]c
[X :==x]o {(o[n/X], x(n))nesuppi }
[co;er] =[] o [eo]
[coor ci]lo = [ei]o U eo]o
. [eo](o) if [b]o = true
[if b then g else c1]o = { [e1](o) it [b]or — false

Fig. 3. Denotational semantics bfusing indexed valuations

[skiplrmo = {ns}
[X :=a]rmo = {nom/x)} Wheren = [a]o
. B , x(n) if o/ = o[n/X]
[X = x]rmoe = {X\o'€X. { 0 otherwise 1
[eoser]rar = [ealba o [eolrm
[co or ci]lrmvo = [ei]rmo Gco]rmo
. . [eolra (o) if [b]o = true
[if b then co else e1}rao = { [ei]lrae (o) if [b]o = false

Fig. 4. Denotational semantics hfusing the convex powerset

One could prove directly (by structural induction on the enamds) thatVal(S,c,0) is a
probability distribution. However, this is also a conseqgeeof the adequacy theorem.

6.4. Two adequate denotational semantics

The denotational semantics
[e] : X — PUIV (X))
is defined in Figure 3. The indexed valuation p).c(., is denoted ago, p). If X,Y are sets
andf : X — P(IV(Y)) thenft : P(IV(X)) — P(IV(Y)) is the Kleisli extension of for
the monadP o IV
There is a very tight correspondence between the denothimal the operational semantics.

Theorem 6.2 (Adequacy).Let ¢ be a command oL, andv be a finite indexed valuation in
IV (X). Thenv € [c]o if and only if there exists a schedul&rfor (¢, o) s.t.v = Ival(S, ¢, o).

Proof. See the Appendix. [

The main feature of Theorem 6.2 is the use of deterministiedulers. A semantics in terms
of the convex powerset functor is adequate with respectdbatrilistic schedulers.
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L 1) [ 3} L] o

Fig. 5. The automaton af;; c2; cs

The new denotational semantipgry, : ¥ — Pry(V (X)) is defined in Figure 4. Here, if
X,Y aresets ang : X — Pry(V(Y)) thenf' : Pry(V(X)) — Pra(V(Y)) is the Kleisli
extension off for the monadPr,; o V.

Theorem 6.3 (Adequacy).Let ¢ be a command ok andv be a finite valuation iV (X). Then
v € [c]rao if and only if there exists a probabilistic schedufefor (¢, o) s.t.v = Val(S, ¢, 0)

Proof. See the Appendix. [

6.5. Discussion

We have seen the mathematical reasons why there is no distédaw between the functors
P andV. We can exemplify this with a program in our language. Supgbs denotation of a
command is to be defined as a functidn] : ¥ — P(V(X)). If we want it to be compositional,
we have to defingc; ; co] in terms offeq], [e2]. The first intuitive idea would be to define it as

[e1;e2](0) = {Ao’. Z v(o")-h(a") (") | v € [a](o),h : & — V(E),h(c”) € [c2] (")} .
//GE
However, this definition would make sequential composition-associative. To see this with an
example, let
— ¢ be the comman& := x, wherex(0) = 1/2, x(1) = 1/2;
— ¢ be the comman& := 0;
— c3 bethecomman& :=0or X :=1;
and consider the program; co; c3.
In this example we can assume there are only two st&tes{0,1}. Fori = 0, 1 we have

— [el](@) = {3m0 + 3m };

— le2] (@) = {mo};

— [erse2] (@) = {mo};

— les](@) = {no, m};

— [e2ses] (@) = {mo,m}.
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If we readc; ; co; ¢35 asey; (co; ¢3), then[er; ea; es] (1) = {no, %T}o + %771,771}.
If we readc; ; co; ¢35 as(cq; ca); cs, then[er; ca; e3] (1) = {no, m1 }-

In the second case the functién(which roughly speaking does the job of the scheduler),
when choosing a valuation {lz3] (0) does not “remember” that the process has reached the state
0 by two different paths. Therefore we miss one valuatiorhmftnal set. When the denotation
is given in terms of indexed valuations, the functiois given enough information to remember
this. Indeed, in the case of indexed valuatidnshooses with regard to at the paths, rather than
only with regard to the states.

However, a memoryless scheduler can simulate the combmatischedulers with memory by
flipping a coin. That is why a semantics that is adequate vegipect to probabilistic schedulers
does not need to be given in terms of indexed valuations tee@roofs in the Appendix for
more details). A similar phenomenon was recently obsemebe context of Stochastic Games
(Chatterjee et al., 2004).

7. Indexed valuations and domains

In this section, we sketch how to extend the above discugsiatomain theory. Recall that a
domain is a partial order with lubs of directed subsets (amdesextra properties). When doing
universal algebra on domains, instead of equational tae@re have inequational theories, while
operations and homomorphisms are required to be continfdaramsky and Jung, 1994).

Consider the equational theory of semilattices. In thegmateof continuous domains its free
algebra functor is known as th&otkin powerdomainHowever, we can also modify the equa-
tional theory by adding an extra inequation. If we atidc A U B, we obtain the theory gbin-
semilatticesThe free join-semilattice functor is known as tHeare powerdomainif instead we
add the inequalityd g B C A, we obtain the theory aheet-semilatticesThe corresponding
free algebra functor is known as tBenyth powerdomaimeing freely generated by a theory, all
the above functors give rise to monads.

In the category of continuous domains, the theory of reabs@enerates the monadscoh-
tinuous valuationgJones and Plotkin, 1989; Jones, 1990; Kirch, 1993). Indhisgory, we can
weaken the theory of real cones by removing the equatibm gA = (p + ¢)A, or by trans-
forming it into an inequatiorpA® ¢A J (p+q)A orpA® qA C (p+q)A. Also, we can decide
whether the scalar multiplication is continuous with thegrect to the domain of scaldfs +oc],
or not. All these choices have an important effect on theaspronding monad. Some results were
already presented in (Varacca, 2002; Varacca, 2003), wherexistence of certain distributive
laws is shown, and the relation between indexed valuatindsantinuous valuations is studied.
A recent related work is (Mislove, 2005).

A detailed study of all the cases, with particular attentima concrete characterisation of the
monads, is the subject of ongoing work.
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Appendix: Proofs

We produce here the proofs of three results: Propositionidhih states the lack of a distributive
law between the nondeterministic and the probabilistic athand the two adequacy theorems,
Theorem 6.2 and Theorem 6.3.

Proof of Proposition 3.2The idea for this proof is due to Gordon PlotkirAssume that! :
V P—PV is a distributive law in the catego§ET. Consider the seX := {a,b, ¢, d}. Take

E = Inpapy + 30c,ay € VP(X). We try to find out what? := dx () is.
LetY := {a,b}. Consider:

a = a
f: X—=Y f: b= b
cC = a
d — b
a = a
FiX oY [ b — b
c +— b
d — a.
We have thaV P(f)(Z) = ny = VP(f’)(Z). Consider the naturality diagram fgr
=2 R
VP(f)I IPV(f)
Yy T S.

One of the unit laws forl tells us thatS := dy (ny) = {n.,n}. Therefore, considering the
functorial action ofPV, we must have that

0#RC{pna+ (1 —phne|pel0,1}U{gn+ (1 —qnalqgel0,1]}.
Consider the same diagram fif.
dx R

VP(f) IPV(f')
S.

< [1]

Ui

><

——
dy
This tells us that

0#RC{pna+ 1 —pmalp €0, 1}U{gm+ 1 —q)m|qd €[0,1]}.

t Personal communication
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Combining these pieces of information, we conclude tRamust be a nonempty subset of

{Um M5 Tes nd}
Now letZ := {a, c}. Consider

o oK
1111
90@@

fl/ . X N Z f/l .
d
We have thal’ P(f”)(Z) = 374} + 37¢c}. Let us look at the naturality diagram fgt’:

dx
—R

IPV(f”)

1 1
3May T 3Mey > T

VP(f")

<—[1]

SinceT = PV (f")(R), thenT must be a nonempty subset{of,, 7. }. But the other unit law
for d tells us thafl’ = d(3n(4} + 37(c}) = {374 + 37} Contradiction. O

Before proving Theorem 6.2, we need to look concretely aKilegsli extension of the monad
P o IV generated by the distributive law. L¢t: X — P(IV(Y)) be a function. Consider a
finite set of indexed finite valuation$ € P(IV(X)). Let ff : P(IV(X)) — P(IV(Y)) be the
Kleisli extension off. We want to evaluatg®(A).

WhenA is a singletory (z;, p;)ic1 }, we have that

fT({(xiapi)iEI}) = @qu(xq) .

il

By induction on the size of one can prove that

Pris@) = {W i) gaera|h:T—IVY), hG) = (U} ))ses € Fla) }
el
(Sincel and allf(z;) are finite, it is not restrictive to assume that all the vahua involved are
indexed by the same sdt) The functionsh above are “choice” functions: For eveiye I, h
chooses an indexed valuationjfiz;).
For generald we have
iy =1 rideh .
cecA
Proof of Theorem 6.8y structural induction. The nontrivial case is the seqigmompo-
sition. A maximal path ofM (co; ¢1, o) is the concatenation of a maximal pattof M(co, o)
together with a maximal pathin M(cq,1(r)), renaming the configurations of the first part.
Therefore a schedule for (cy; c1,0) can be thought of as a schedufy for (cq, o) together
with schedulersS,. for (c1,(r)) for every maximal path of M({co, o).
By the induction hypothesis we havé(r), IL(r)),cB(co,0,5,) € [co]o and for everyr,
(1), I1(t))teB(er i(r).5,) € [e1]l(r). We have to show that

(l(s)’ H(S))seB(co;chms) € IIcl]]T(IICO]]O').
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Recalling the characterisation ¢f, it is enough to show that

(U5), 1L(3))seB(eoser,ons) € ler]” (L), T renieo,0n80) }) -
Let us define the choice functidn: B(cg, 0, Sp) — IV (X) as

h(r) = (1(t), I1())teB(cr 1(r).s,) € [ea]l(r).
Therefore by the characterisation pf:

WO WD) yepeposy € ] ({0 reBieoos0) }) -
teB(c1,l(r),Sr)

Since a path itB(cy; ¢1, 0, S) is the concatenation of a patlin B(co, 0, Sp) together with a path
tin B(ci,1(r),S,), we have

(l(t)a H(T)H(t)) reB(co,0,80) = (l(s)a H(S))SEB(co;cl,n,S) .
teB(c1,i(r),Sr)

Conversely suppose € [c1]([co]o). By the characterisation of the Kleisli extension, there
exist (o, pi)ier € [colo andh : I — IV(X), h(i) = (y5,q})jes € [c1]o: such that
v= (y§7p¢Q§)(j,i)eJx1 .
By the induction hypothesis there exists a schedfjesuch that

And for everyr € B(co, 0,Sp), there is a schedule, such that

h(r) = (1), (1)) teB(cr i(r).5,) -

CombiningS, with the S, we obtain a schedul&® for {(cy; c1, o). In order to obtain an overall
schedulesS, formally we have to define it also for the paths noffry, o, Sp). But this choice
can be arbitrary, because it does not influence the definiid#{(co; ¢1, o, S). Therefore

V= (y;‘apiQ;‘)(j,i)eJxI = (I(t), H(r)II(2)) reB(co,0,80)
teB(cr,l(r),Sr)
= (l(s)aH(S))SEB(CO;C1,U,S) .
[
Before proving Theorem 6.3 we need to look concretely at tleésK extension of the monad

Prj oV defined in Section 5.
Takef : X — Pry(V(Y)), sayf(x) = B,. We havethaf' : Pry (V (X)) — Pras(V(Y))

is defined as
i) =4 @ s..
EeAgxeX
We have following characterisation:

i) = @ew@B. = {69 E@)h(@)[h: X — V(Y),h(z) € By, £ € A} :

EeAzeX rzeX

In order to prove it, let’s call
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— V= Ueea, Drex E(2)Be;

—U:= Uger @zex &(x) By,

— W= UgeA @r{:GX §(z)By.

Remember thal/ = V/, by definition. We have to prove that = .
ClearlyV C W. MoreoverlV is convex:

p P E@)h@) & (1 -p) P @) (@) = P péa)h(z) (1 - p)€' () ().

zeX zeX zeX

Define¢” = p£® (1—p)¢’ € A, andh’ (z) = gﬁ%zgh(m)-’- (1_537)(5)(‘”)/1’(@. SinceB,, is convex,

thenh” (z) € B,. (If ¢’ (x) = 0 thenh”(z) can be set equal to any elementff.) We have

" (@)h" (x) = pé(z)h(x) © (1 = p)¢'(x)l (z).

ThereforeU C .
For the other direction tak@, . y {(z)h(z). We know thatf = P, ; p:&; with &; € Ag. So

P ¢(@)h@) = P P piti(a)h(z) = Pp: @ &i(@)h(x)

zeX zeX i€l el zeX
which is a convex combination of elementsiof

It is worth making the following observation. Suppgée X — Prp(V(Y)) is such that the

range off contains only probability distributions (rather than geaidinite valuations). Suppose
W is a finitely generated convex sets containing only proligtdistributions. Then, it is not
difficult to show thatf (W) contains only probability distributions. This observatican be
used to show that the denotational semantids ages probability distributions only.

Proof of Theorem 6.8y structural induction. Note that the probabilistic schleds are nec-
essary for the semantics of the nondeterministic choicealrse the operatoy is defined as
union followed by convex closure.

Again the nontrivial case is sequential composition. TalseleedulesS for (cy; c1, o). Such
ansS can be thought of as a schedufigrfor (¢, o) together with schedulets. for (cy,{(r)) for
every maximal path im of M({cg, o).

By the induction hypothesis we have thet!(Sy, co,0) € [co]raro and that for every,
Val(Sy, c1,1(r)) € [ei]ral(r). We have to show that

Aol Y 1(s) € [elhy (Teolraro) -

I(s)=0’
s€B(co;c1,0,8)

Recall the characterisation of the Kleisli extensiory. if X — Prp(V(Y)), then

Fi(4) = {@ §)h(@) [ h: X = V(Y),h(z) € f(z),§ € A}

reX
To prove our claim it is then enough to show that
Aol YT T(s) € [ealhy (f Val(So. o0, 0) ) -

I(s)=0'
s€B(co;c1,0,S)
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Letus defing, : ¥ — V(X)) as

"o II(r)
ho”) = Z Val(So, co,0)(c")

I(r)=c"
reB(co,0,80)

Val(S,,c1,0").

Remember that, by definition:

Z I(r) = Val(So, co,o)(c”) .

I(r)=0"
reB(co,0,80)

Therefore

Z II(r) -1
e Val(So,Co,O')(O'”) '
7’68((:0_,17750)

Since[c;|raro” is convex, therh(o”) € ([e1]raro’). Therefore, by the characterisation of the
Kleisli extension,

D" Val(So,co,0)(0")h(0") € [er]ny ({ Val(So. o, 0) }) -
agl’ex

But
Z Val(So, cg, o) (a”)h(c")(a")

o’ex

1_‘[ T 1" !
= Z Z II(r) Z Val(So,(Eo,)a)(a’/) Val(Sy,c1,0")(c")

aSY I(r)=c" I(r)=0"
reB(co,0,80) reB(co,0,S0)

_ H(T) 1" !
B Z Z Val(So, co, ) (0”) Z Hr) Val(Sr, e1,07)(o")

reE N\ Ur)=o" I(r)=0""
TEB(CO707SO) 7’66(60,(7750)

_ H(T) 1" /
B Z Z Val(So, co, ) (0”) Z Hir) Val(Sy, e1,07)(o)

areEE N\ Ur)=o" 1(r)=c""
reB(co,0,80) reB(co,0,80)

= Z Z II(r) Val(S,,c1,0")(c")

o'’eX I(r)=c"
reB(co,0,80)
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= > I Y )

o’es l(r):o’” l(t):U,
reB(co,0,80) teB(c1,0",Sr)

= > U Y )

r€B(co,0,50) 1(t)=c"
teB(c1,l(r),Sr)

= ) ),
I(s)=o'
s€B(co;c1,0,8)
and the claim is proved. For the last step, note that a pattB(c; c1, 0, S) is the concatenation
of a pathr € B(co, 0, Sp) together with a path € B(cy,1(r), S,).

Conversely, suppose thate [[cl]]TTM([[co]]TMa). Then there exist € [co]rao andh : ¥ —
V(%) such thath(c”) € [ci]rmo” andv = > ., £(6”)h(c”). By the induction hypothesis
there exist scheduleisy, S,~ such thatt = Val(Sy, co, o), andh(c”) = Val(S,,c1,0").
As earlier with deterministic schedulers, we combine thergdt a schedule$ such that =
Val(S, co; c1, o). Notice that in this case the combined scheduler has someombass charac-
ter: it behaves the same for every subautomaton startingatfiguration(c;, o), regardless of
the previous history.

[
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