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We study the combination of probability and nondeterminismfrom a categorical point of view. In
category theory, nondeterminism and probability are represented by suitable monads. Those two
monads do not combine well, as they are. To overcome this problem we introduce the notion of
indexed valuations. This notion is used to define a new monad that can be combined with the usual
nondeterministic monad via a categorical distributive law. We give an equational characterization of
our construction. We discuss the computational meaning of indexed valuations, and we show how
they can be used by giving a denotational semantics of a simple imperative language.

1. Introduction

Nondeterminism and probability are computational effectswhose semantics has been thoroughly
studied. The combination of the two appears to be essential in giving models for concurrent pro-
cesses (Vardi, 1985; Hansson, 1991; Segala and Lynch, 1995). Denotationally, nondeterminism is
handled by the notion of powerdomain functor in a suitable category of domains (Plotkin, 1983),
while probabilistic behaviour is handled by the powerdomain of valuations (Jones and Plotkin,
1989; Jones, 1990; Kirch, 1993). They happen to be monads, thus fitting the general idea, intro-
duced by Moggi, of monads as models for computational effects (Moggi, 1991). As many other
computational monads, they are freely generated from suitable equational theories (Plotkin and
Power, 2002).

There are various ways of combining two monads. When they arefreely generated from equa-
tional theories, we can first combine the theories in some wayand then freely generate a new
monad. In (Hyland et al., 2002) three main ways of combining theories are identified: sum, com-
mutative combination, distributive combination. In the first case, the two equational theories are
combined by joining the operations and the equations, without adding new equations. In the sec-
ond case, one adds equations expressing that every operation of one theory commutes with every
operation of the other theory. In the third case, one adds equations expressing distributivity of
every operation of one theory over every operation of the other theory. This last approach can
sometimes be followed more categorically using the notion of distributive law (Beck, 1969). The

† This work was carried out while the first author was PhD student at BRICS, Aarhus, DK.
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leading example is given by the theory of abelian groups and the theory of monoids. Their dis-
tributive combination (distributing the monoid over the group) yields the theory of rings. The
free ring monad can also be obtained by giving a categorical distributive law between the free
abelian group monad and the free monoid monad.

The study of the operational semantics of systems combiningprobability and nondetermin-
ism suggests that, in some cases, probabilistic choice should distribute over nondeterministic
choice (Morgan et al., 1994; Bandini and Segala, 2001). As wewill explain, there is no cate-
gorical distributive law between the nondeterministic monad and the probabilistic monad. Two
solutions are possible at this point.

We can still form the distributive combination of the equational theories and generate a new
monad. This is the path followed by Tix (Tix, 1999; Tix et al.,2005) and Mislove (Mislove,
2000) who, independently, define the notion of geometrically convex powerdomainPTM . When
X is a real cone (a structure similar to a vector space),PTM (X) is, roughly speaking, the set of
all convexsubsets ofX . The nondeterministic choice is interpreted as union followed by convex
closure. We will briefly recall this construction later.

The other possibility, the one we follow in this work, is to modify the definition of one of
the monads, so as to allow the existence of a categorical distributive law. Analysing the reasons
behind the failure of the distributive law, we are led to define the notion of anindexed valuation.
Mathematically, indexed valuations arise as a free algebrafor an equational theory obtained
from the theory of valuations by removing one equation. In the category of sets, there exists a
distributive law between indexed valuations and the finite nonempty powerset. Moreover, indexed
valuations have an interesting concrete representation. The price we pay is that, since we modify
the equational characterisation, indexed valuations do not satisfy all the laws usually satisfied by
probability distributions.

Besides their categorical justification, indexed valuations have a computational meaning, which
we present by giving semantics to an imperative language containing both random assignment
and nondeterministic choice. The operational semantics isgiven in terms of probabilistic au-
tomata. Such a model comes equipped with a notion of a scheduler for resolving the nondeter-
minism. In the literature there are two main notions of scheduler: deterministic and probabilistic.
Using indexed valuations, we give a denotational semanticswhich is adequate with respect to de-
terministic schedulers. A semantics in terms of the Tix-Mislove construction, instead, is adequate
with respect to probabilistic schedulers.

Finally we briefly sketch the various possible ways to extendthe construction above to some
category of domains.

This work is part of the first author’s PhD thesis (Varacca, 2003). An extended abstract ap-
peared as part of (Varacca, 2002).

2. Background

In this section we outline some of the mathematical notions we need for our work. We assume a
working knowledge of Category Theory (MacLane, 1971) and Universal Algebra (Cohn, 1981).
All notions we need are dealt with in detail in Chapter 2 of (Varacca, 2003). The notation we use
should be self-explanatory.
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2.1. Monads

A monadon a categoryC is an endofunctorT : C → C together with two natural transforma-
tions,ηT : IdC → T , theunit, andµT : T 2 → T , themultiplication, satisfying the following
axioms:

— µT ◦ TηT = IdT = ηT T ◦ µT ;
— µT ◦ TµT = µT ◦ µT T .

If T is a monad and iff : X → T (Y ), theKleisli extensionf † : T (X) → T (Y ) is defined

asT (X)
T (f)

//T (T (Y ))
µT

Y //T (Y ) . TheKleisli Categoryof the monadT , denoted byCT has

the same objects asC, andX
f

−→Y in CT if and only ifX
f

−→T (Y ) in C. The identity is the unit
of the monad, while composition is defined using the Kleisli extension. Monads can equivalently
be defined using the Kleisli extension as a primitive notion and deriving the multiplication by
µT

X := Id
†
T (X).

In a categoryC, analgebrafor an endofunctorF is an objectA together with a morphism
k : F (A) → A. An algebra for a monad(T, ηT , µT ) is an algebra(A, k) for the functorT ,
satisfying the following compatibility axioms:

— k ◦ ηT
A = IdA;

— k ◦ T (k) = k ◦ µT
A.

Algebras for a monad(T, ηT , µT ) in C form a categoryCT , where a morphism(A, k)
φ

−→(A′, k′)

is given by a morphismA
φ

−→A′ such thatφ ◦ k = k′ ◦ T (φ).
Every adjunction(F, G, η, ǫ) : C → D generates a monad onGF : C → C, with ηGF := η

andµGF := GǫF . Conversely, given a monadT , there is an adjunctionFT ⊣ UT : C → CT ,
whereUT is the forgetful functor sending an algebra to its carrier

UT :

(X, k)

φ

��

X

φ

��

(X ′, k′)

7→

X ′

while FT sends an object to its multiplication (thefree algebra)

F T :

X

φ

��

(TX, µT
X)

T (φ)

��

X ′

7→

(TX ′, µT
X′) .

This adjunction generates precisely the monad(T, ηT , µT ).
Suppose we have an adjunction(F, G, η, ǫ) : C → D generating a monad(T, ηT , µT ). Such

a monad generates the adjunction(FT , UT , ηT , ǫT ). There is a “comparison” functorK : D →

CT , defined as

K:

D

f

��

(G(D), G(ǫD))

G(f)

��

D′

7→

(G(D′), G(ǫD′))
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satisfyingUT K = G andKF = FT . An adjunction ismonadicif the comparison functorK
defined above is an equivalence of categories. A functor is monadic if it is the right adjoint of a
monadic adjunction.

2.2. Free algebras and monads

Given a categoryC of algebraic structures defined by an equational theory, theforgetful functor
U : C → SET has a left adjointF and is monadic. This means thatUF supports a monad
structure inSET and thatC is equivalent to the category ofUF -algebras. In such a case the
monadUF is called thefree algebrafor the structures inC. It is equivalently characterised
by the followinguniversal property(where, as customary, we omit the mention of the forgetful
functor): there exists a family of functionsηX : X → F (X), such that for every setX , for
every structureZ of C, and for every functionf : X → Z, there exists a unique morphism
f : F (X) → Z (the “homomorphic extension”) that satisfiesf ◦ ηX = f . We say thatF (X) is
thefree algebraoverX (with respect toC).

In the following, we present some relevant examples.

2.3. The nondeterministic monad

Assume that∪– (formal union) represents some kind of nondeterministic choice operator: A ∪– B

offers to the environment the choice betweenA andB. Usually such an operator satisfies the
following equations:

— A ∪– B = B ∪– A;
— A ∪– (B ∪– C) = (A ∪– B) ∪– C;
— A ∪– A = A.

Since ∪– is associative and commutative, we can introduce the following convention. IfX is
a set where∪– is defined, and(xi)i∈I is a finite family of elements ofX , we write

⊢⊣
⋃

i∈I

xi

to denote the formal union of allxi’s. A similar convention will be used for the operation⊕
(formal sum) which will also be associative and commutative (but not idempotent).

A model for the above theory is asemilattice. The category of semilattices is denoted by
SLAT. It is well known that the free semilattice functor can be concretely represented as (is
naturally isomorphic to) the finite nonempty powerset functor P : SET → SLAT, where the
symbol ∪– is interpreted as union. IfX is a set,Z is a semilattice andf : X → Z is a function,
the unique homomorphic extensionf : P (X) → Z is defined by

f(Y ) = ⊢⊣
⋃

y∈Y

f(y) .

The corresponding monadP : SET → SET has the following unit and multiplication

ηP
X(x) = {x} ;

µP
X(S) =

⋃

S .
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2.4. The probabilistic monad

Assume that⊕p represents a probabilistic choice operator of some programming language:
A ⊕p B is choosingA with probabilityp andB with probability(1 − p). This operator comes
with an equational theory: for example it usually satisfiesA ⊕p A = A, because the choice be-
tween two equivalent possibilities is considered to be the same as not making any choice at all.
Note that this assumes that the act of making the choice is invisible: the coin is always flipped
behind one’s back.

We are going to study a more general equational theory, that subsumes the one of the proba-
bilistic choice.

Definition 2.1. A real coneis an algebra for the following equational theory in the category
SET (the reason for the numbering will be apparent in the sequel).

(1) A ⊕ B = B ⊕ A;
(2) A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C;
(3) A ⊕ 0 = A;
(4) 0A = 0;
(5) 1A = A;
(6) p(A ⊕ B) = pA ⊕ pB, p ∈ [0, +∞[;
(7) p(qA) = (pq)A, p, q ∈ [0, +∞[;
(13) (p + q)A = pA ⊕ qA, p, q ∈ [0, +∞[.

We callRCONE the category of real cones and homomorphisms.

In a real cone, the probabilistic choice operator is coded asconvex combination: pA⊕(1−p)B.
We choose to deal with the more general notion of real cone because its equational theory is nicer
than the theory of the probabilistic choice. We are now goingto characterise concretely the free
real cone.

Definition 2.2. A discrete valuationon a setX is any functionv : X → [0, +∞].

Thesupportof a discrete valuationv onX is the set

Supp(v) := {x ∈ X | v(x) > 0} .

The set of discrete valuations onX is denoted byV∞(X). A discrete valuationv on a setX is a
discrete probability distributionif

∑

x∈X v(x) = 1. The set of discrete probability distributions
on X is denoted byV 1

∞(X). Discrete valuations taking values in[0, +∞[ are calledweightings
(Jonsson et al., 2001). Afinite valuationis a weighting whose support is finite. The set of finite
valuations over a setX is denoted byV (X). For eachx ∈ X , the finite valuationηx defined by

ηx(y) =

{

1 y = x;

0 y 6= x;

is called apoint valuation.
Two operations of sum and scalar product are defined pointwise onV (X):

v ⊕ w(x) = v(x) + w(x);

pv(x) = p(v(x)), p ∈ [0, +∞[.
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If X is a set, the setV (X) with the pointwise operations defined above is a real cone. Moreover:

Proposition 2.3. The finite valuations over a setX form the free real cone overX .

Let f : X → R be a function, whereR is a real cone. Define the family of functionsηV
X :

X → V (X) by ηV
X(x) = ηx The unique real cone homomorphismf : V (X) → R which

extendsf is defined as follows:

f(ν) =
⊕

x∈Supp(ν)

ν(x)f(x) .

The multiplication of the generated monad is defined as:

µV
X(Ξ)(x) =

⊕

ν∈Supp(Ξ)

Ξ(ν)ν(x) .

2.5. Distributive Laws

A general way for combining two monads is by defining adistributive law(Beck, 1969). Suppose
we have two monads(T, ηT , µT ), (S, ηS , µS) on some category. Adistributive lawof S overT
is a natural transformationd : ST

·
−→TS satisfying the following axioms:

— d ◦ ηST = TηS ;
— d ◦ SηT = ηT S;
— d ◦ µST = TµS ◦ dS ◦ Sd;
— d ◦ SµT = µT S ◦ Td ◦ dT .

A distributive law defines a monad on the functorTS. If d : ST
·

−→TS is a distributive law,
then

(

TS, ηT ηS , (µT µS) ◦ TdS
)

is a monad.

TSTS
TdS

· // TTSS
µT µS

· // TS

A monad morphismbetweenT andS is a natural transformationα : T
·

−→S which suitably
commutes with units and multiplications. Alifting of the monadT to the category ofS-algebras
is a monad(T̃ , ηT̃ , µT̃ ) onCS , such that, ifUS : CS → C is the forgetful functor then

— UST̃ = TUS;
— USηT̃ = ηT US ;
— USµT̃ = µT US .

Beck has proved the following theorem (Beck, 1969).

Theorem 2.4. Suppose we have two monads(T, ηT , µT ), (S, ηS , µS) on some categoryC.
Then the existence of each one of the following implies the existence of the other two:

1 A distributive lawd : ST
·

−→TS.
2 A multiplicationµ : TSTS

·
−→TS, such that

— (TS, ηT ηS , µ) is a monad;

— the natural transformationsηT S : S
·

−→TS andTηS : T
·

−→TS, are monad morphisms;
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— the following middle unit law holds:

TS
TηSηT S

//

IdT S

%%LLLLLLLLLLLLLL TSTS

µ

��

TS .

3 A lifting T̃ of the monadT to CS .

The way to obtain (2) from (1) has been sketched above. To obtain a lifting from a distributive
law we defineT̃ (A, σ) as theS-algebra

ST (A)
dA // TS(A)

T (σ)
// T (A) .

Conversely if we have the multiplicationµ we can defined by

ST
ηT TSηS

// TSTS
µ

// TS .

If we have a liftingT̃ , we defined by

ST
TSηS

//

d
''OOOOOOOOOOOOO STS USFSTUSFS USFSUST̃FS

USǫT̃F S

��

TS TUSFS UST̃ FS ,

whereǫ is the counit of the adjunctionFS ⊣ US .
The correctness of the above constructions is shown by several diagram chases (Beck, 1969).
When the two monads involved are the free algebras of some equational theory, an equational

distributive law may or may not correspond to a categorical distributive law. We discuss this issue
in the next section.

3. The failure of the distributive law

Distributing probabilistic choice over nondeterministicchoice amounts to the following equation:

A ⊕p (B ∪– C) = (A ⊕p B) ∪– (A ⊕p C) .

Intuitively this expresses indifference to whether the environment chooses before or after the
probabilistic choice is made. Once we accept the distributive law, the extraconvexitylaw (Bandini
and Segala, 2001)

A ∪– B = A ∪– B ∪– (A ⊕p B) ∪– (B ⊕p A)

must be also accepted, because

A ∪– B = (A ∪– B) ⊕p (A ∪– B) = (A ⊕p A) ∪– (B ⊕p B) ∪– (A ⊕p B) ∪– (B ⊕p A).

If the equational distributive law corresponded to a categorical distributive law, by Beck’s
theorem (Theorem 2.4) the nondeterministic monad would lift to the category of algebras for the
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probabilistic monad. In the categorySET this means that the powerset monad would lift to the
category of real cones. The convexity law suggests that thisis not possible, because not all sets
satisfy the convexity law. In fact, the following general theorem says that the obvious definition
of the operations for the powerset cannot satisfyA ⊕p A = A. Suppose we have an equational
theory. Take a modelX for it. We can extend every operationf of arity n to the subsets ofX by

f(X1, . . . , Xn) = {f(x1, . . . , xn) | xi ∈ Xi, i ∈ In}.

Theorem 3.1 (Gautam, 1957).A necessary and sufficient condition for the operations defined
on the powerset ofX to satisfy an equation of the theory is that each individual variable occurs
at most once on each side of the equation.

Equations satisfying the above condition are calledaffine. The equationA⊕pA = A is not affine,
thus cannot be satisfied in the powerset. This would not exclude the possibility of lifting the
operations in a different way, thus obtaining another distributive law. However, it turns out that
there is no distributive law at all between the two monads. If(P, ηP , µP ) is the finite nonempty
powerset monad, and(V, ηV , µV ) is the finite valuation monad in the categorySET, we have

Proposition 3.2. There is no distributive law ofV overP .

Proof. See the Appendix.

Our solution consists in changing the definition of probabilistic monad by removing the equa-
tion A ⊕p A = A. In our presentation, the probabilistic monad is generatedby the theory of
real cones and the probabilistic choiceA ⊕p B is coded as convex combinationpA⊕ (1 − p)B.
We remove the equationpA ⊕ qA = (p + q)A from the theory of real cones. In the category
SET, the monad freely generated by the new equational theory is called thefinite indexed val-
uationmonadIV . By Theorem 3.1, we can lift the operations to the powerset, thus obtaining a
distributive law. The next section is devoted to this construction.

4. Indexed valuations

In this section we present the definition of the indexed valuation monad in the categorySET,
and we show the existence of the categorical distributive law between indexed valuations and the
finite nonempty powerset.

4.1. Definition

We first introduce the concrete characterisation of our construction.

Definition 4.1. Let X be a set. Adiscrete indexed valuation(DIV) on X is a pair(Ind , v) where
Ind : I → X is a function andv is a discrete valuation onI, for some setI.

Note that we do not require thatInd be injective. This is indeed the main point of this con-
struction: we want to divide the probability of an element among its indices. One possible inter-
pretation is that indices inI represent computations, while elements ofX represent observations.
The semantics we present in Section 6 will confirm this intuition.
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We shall also writexi for Ind(i) andpi for v(i). A discrete indexed valuationξ := (Ind , v)

will also be denoted as(xi, pi)i∈I .
We are now going to define an equivalence relation on the classof DIVs. Recall thatSupp(v) =

{i ∈ I | v(i) > 0}.

Definition 4.2. Let (Ind, v) = (xi, pi)i∈I and(Ind′, w) = (yj , qj)j∈J be two discrete indexed
valuations. We set

(Ind, v) ∼ (Ind′, w)

if and only if there exists a bijectionh : Supp(v) → Supp(w) such that

∀i ∈ Supp(v). yh(i) = xi ,

∀i ∈ Supp(v). qh(i) = pi .

This says that two DIVs are equivalent up to renaming of the indices, and that only indices
in the support matter. Indices are used to distinguish between different computations, but their
precise character is unimportant. What is important is to keep track of the different computations
there are, and how they relate to observations. Moreover, wemay as well ignore computations
with probability 0.

From now on we will use the term “discrete indexed valuations” to denote equivalence classes
under∼.

Given a setX and an infinite cardinal numberα we define the setIV α(X) as follows:

IV α(X) := {(xi, pi)i∈I | |I| < α}/ ∼ .

It is easy to realise thatIV α(X) is indeed a set. For every cardinal numberβ < α, choose a set
Iβ such that|Iβ | = β. The class{Iβ | β < α} is a set. And clearlyIV α(X) is a quotient of
⋃

β<α XIβ × [0, +∞]Iβ . In particularIV ℵ0
(X) is the set of discrete indexed valuations whose

indexing set is finite.

Definition 4.3. A finite indexed valuationonX is an element ofIV ℵ0
(X) for whichpi < +∞

for all indicesi ∈ I. The set of finite indexed valuations onX is denoted byIV (X).

The construction above can be extended to a functorIV : SET → SET as follows. Iff : X →

Y then

IV (f)([(xi, pi)i∈I ]∼) := [(f(xi), pi)i∈I ]∼ .

It is easy to check that this construction is well defined (i.e. does not depend on the representa-
tive).

From now on we will drop the explicit mention of equivalence classes, and work with repre-
sentatives to simplify the reading.

4.2. Equational characterisation

We define two operations on discrete indexed valuations.

Definition 4.4. Let ν := (Ind , v) = (xi, pi)i∈I , ξ := (Ind ′, w) = (yj , qj)j∈J be two DIVs
on a setX . Assume thatI ∩ J = ∅. This is not restrictive, because we can always reindex.
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We defineν ⊕ ξ to be(Ind ∪ Ind ′, v ∪ w). For p ∈ [0, +∞[ we definepν to be(xi, ppi)i∈I .
With 0 we denote the DIV whose indexing set is empty.

Note, in particular, that whenp ∈]0, 1[, we havepν ⊕ (1− p)ν 6∼ ν, because the indexing sets
do not have the same cardinality.

Consider the following equational theory:

(1) A ⊕ B = B ⊕ A;
(2) A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C;
(3) A ⊕ 0 = A;
(4) 0A = 0;
(5) 1A = A;
(6) p(A ⊕ B) = pA ⊕ pB p ∈ [0, +∞[;
(7) p(qA) = (pq)A p, q ∈ [0, +∞[.

These axioms are almost the ones defining a real cone. The difference is that we have dropped
the equation(p + q)A = (pA ⊕ qA).

Definition 4.5. A real quasi-coneis an algebra for the equational theory (1)–(7) in the category
SET. The category of real quasi-cones is denoted byQCONES.

Proposition 4.6. The finite indexed valuations over a setX form the free real quasi-cone over
X .

Proof. For any setX , it is clear thatIV (X) with the operations defined above is a quasi-cone.
Define the family of functionsηIV

X : X → IV (X) by

ηIV
X (x) = (x, 1)∗∈{∗} .

Let Q be a quasi-cone and letf : X → Q be a function. We have to show that there is a unique
quasi-cone homomorphismf : IV (X) → Q such thatf(ηIV

X (x)) = f(x). The homomorphism
condition forces us to define

f(xi, pi)i∈I =
⊕

i∈I

pif(xi) .

Equations (1)–(4) guarantee that the definition does not depend on the representative for
(xi, pi)i∈I . Equation (5) guarantees thatf(x, 1) = f(x). The homomorphism condition for the
sum (and0) are obvious, while for the scalar product we have to use equations (6) and (7).

The above proposition tells us that the functorIV extends to a monad. Its multiplication is as
follows:

µIV
X : IV (IV (X)) → IV (X)

(((xiλ
, piλ

)iλ∈Iλ
, πλ)λ∈Λ) 7→ (xj , qj)j∈J ;

where

J =
⊎

λ∈Λ

Iλ , qj = pjπλ if j ∈ Iλ .

To simplify the definition ofµ, recall that a DIV is in fact an equivalence class. We can there-
fore assume thatIλ = I for everyλ ∈ Λ because we can always reindex and add indices with
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probability 0. Therefore

((xiλ
, piλ

)iλ∈Iλ
, πλ)λ∈Λ ∼ ((xλ

i , pλ
i )i∈I , πλ)λ∈Λ .

This allows us to use a simpler expression for the multiplication:

µIV
X

(

((xλ
i , pλ

i )i∈I , πλ)λ∈Λ

)

= (xλ
i , πλpλ

i )(i,λ)∈I×Λ .

4.3. The distributive law

Since all the equations in the theory of real quasi-cones areaffine, Gautam’s theorem guarantees
that the operations lift to the powerset. Such a lifting boils down to a lifting of the finite nonempty
powerset monadP to the category of real quasi-cones (IV -algebras). This, by Theorem 2.4,
guarantees the existence of a distributive lawd : IV ◦P

·
−→P ◦ IV .

We construct this lifting explicitly, in order to show the correspondence of the categorical
distributive law with the equational one. Recall that a semilattice is a model of the following
theory:

(8) A ∪– B = B ∪– A;
(9) A ∪– (B ∪– C) = (A ∪– B) ∪– C;
(10) A ∪– A = A.

We have seen that the finite nonempty powerset is the free semilattice. Consider now the com-
bined equational theory (1)–(10) augmented with the following equations:

(11) p(A ∪– B) = pA ∪– pB;
(12) A ⊕ (B ∪– C) = (A ⊕ B) ∪– (A ⊕ C).

Equations (11)–(12) express that the probabilistic operators distribute over the nondeterministic
one.

Definition 4.7. A quasi-cone semilatticeis a model of the theory (1)–(12). The corresponding
category is denoted byQCS.

To show thatP lifts to a monad in the category of real quasi-cones we show that it is left adjoint
of the forgetful functorU : QCS → QCONES. The first observation is that whenZ is a
real quasi-cone, thenP (Z) is in QCS. By defining sum and multiplication pointwise, it is not
difficult to verify that all the equations (1)–(12) are satisfied. Then we have to show the following
universal property: for every real quasi-coneZ, for every quasi-cone semilatticeW and for every
real quasi-cone homomorphismf : Z → W there exists a unique extensionf : P (Z) → W

which is a quasi-cone semilattice homomorphism, and for whichf({z}) = f(z).

Z

ηP

��

f

""EE
EE

EE
EE

E

P (Z)
f

//___ W

The homomorphism condition forces us to define, forY ⊆fin Z,

f(Y ) =
⋃

z∈Y

f(z) ,
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which gives us uniqueness. It is routine to verify that it is well defined and a homomorphism.
Since the extension is defined exactly as the extension of themonadP in the category of sets,

what we have defined is indeed a lifting ofP . Using Theorem 2.4, we deduce the existence of
the distributive law.

Concretely, for every setX the componentdX : IV (P (X)) → P (IV (X)) is defined as
follows:

dX ((Si, pi)i∈I) = {(h(i), pi)i∈I | h : I → X, h(i) ∈ Si} .

Note, in particular, the use of the “choice function”h.
A direct proof of the fact that the above family of functions is a distributive law can be found

in (Varacca, 2003).

5. The convex powerset

Another solution for combining the nondeterministic and probabilistic monad consists in forming
the distributive combinations of the theories, thus freelygenerating a new monad. The convexity
law suggests a way of representing this construction concretely. This section is inspired by the
work of Tix and Mislove, although they are concerned with DCPOs, while we work here in the
categorySET.

5.1. Finitely generated convex sets

Recall that areal coneis a real quasi-cone satisfying the extra equation

(13) (p + q)A = pA ⊕ qA.

Definition 5.1. A subsetX of a real cone isconvexif for every x, y ∈ X, p ∈ [0, 1], we have
px ⊕ (1 − p)y ∈ X . Given a setX , its convex closureX is the smallest convex set containing
X . A convex setX is finitely generatedif there exists a finite setX0 such thatX = X0. Given
a finite setI, elementsxi, i ∈ I, of a real cone and nonnegative real numberspi, i ∈ I, such that
∑

i∈I pi = 1, the element
⊕

i∈I pixi is said to be aconvex combinationof thexi.

The following result is standard.

Proposition 5.2. For a setX , we have thatX is the set of convex combinations of elements of
X .

Definition 5.3. For a real cone Z we define

PTM (Z) = {Y ⊆ Z |Y is convex and finitely generated} .

5.2. Equational characterisation

We characterise the functorPTM as a free construction.

Definition 5.4. A real cone-semilatticeis a model for the theory (1)–(13). The corresponding
category is calledRCS.

Given a real coneZ, we define the following operations onPTM (Z):
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— pY := {py | y ∈ Y };
— Y ⊕ Y ′ := {y ⊕ y′ | y ∈ Y, y′ ∈ Y ′};
— 0 := {0};
— Y ∪– Y ′ := Y ∪ Y ′ = {py ⊕ (1 − p)y′ | p ∈ [0, 1], y ∈ Y, y′ ∈ Y ′}.

The above operations are well defined: ifY, Y ′ are convex sets, it is easy to show that the sets
pY, Y ⊕ Y ′, Y ∪– Y are also convex; ifY0, Y

′
0 are finite generators forY, Y ′ thenpY0 is a finite

generator forpY , Y0 ⊕ Y ′
0 is a finite generator forY ⊕ Y ′ andY0 ∪ Y ′

0 is a finite generator for
Y ∪– Y ′.

The above operations satisfy (1)–(13) so as to makePTM (Z) a real cone-semilattice. The only
nontrivial ones to verify are (12)-(13): here is where convexity is needed.

We now show the universal property characterising freeness. For every real coneZ, real cone-
semilatticeH and real cone homomorphismf : Z → H , there exists a uniqueRCS-morphism
f : PTM (Z) → H such thatf({z}) = f(z). For everyY ∈ PTM (Z) let Y0 be one of its finite
generators. Then define

f(Y ) := ⊢⊣
⋃

y∈Y0

f(y) .

We need to show that the above definition does not depend on thechosen finite generator. This
requires some lemmas.

Proposition 5.5. In a real cone-semilattice, ifw is a convex combination ofy, y′ then

y ∪– y′ = y ∪– y′ ∪– w .

Proof. Let w = py ⊕ (1 − p)y′. Then

y ∪– y′ = p(y ∪– y′) ⊕ (1 − p)(y ∪– y′)

= y ∪– y′ ∪– (py ⊕ (1 − p)y′) ∪– (py′ ⊕ (1 − p)y)

= y ∪– y′ ∪– (py ⊕ (1 − p)y′)

as in any semilattice, ifx = x ∪– x′ ∪– x′′, thenx = x ∪– x′.

Lemma 5.6. Let H be a real cone-semilattice, letY0, Z0 be finite subsets ofH . If Y0 = Z0, then
⊢⊣
⋃

Y0 = ⊢⊣
⋃

Z0

Proof. We prove this for the simple case whereY0 = {y, y′}, Z0 = {z, z′}. The general case
can be proved in a similar way. We want to prove thaty ∪– y′ = z ∪– z′. It is enough to prove
that y ∪– y′ = y ∪– y′ ∪– z ∪– z′, which, by symmetry, implies our result. Note that, from the
assumption,z, z′ must be convex combinations ofy, y′. The statement is thus a consequence of
Proposition 5.5.

Now pick two different finite generatorsY0, Y
′
0 for Y . We want to prove that⊢⊣

⋃

f(Y0) =

⊢⊣
⋃

f(Y ′
0). Sincef is a homomorphism of real cones we have thatf(Y0) = f(Y0) = f(Y ).

Thereforef(Y0) = f(Y ′
0). By Lemma 5.6 we have⊢⊣

⋃

f(Y0) = ⊢⊣
⋃

f(Y ′
0).

It is easy to verify thatf respects the operations, using the equational distributive laws (11)-
(12), and the fact thatf is already a homomorphism of real cones. Moreover the homomorphism
condition implies uniqueness.

We have thus proved the following:
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Proposition 5.7. The operatorPTM with the operations as above defines a functorRCONE →

RCS which is left adjoint of the forgetful functor.

The combination of the two adjunctions

SET
//

⊥ RCONEoo

//
⊥ RCSoo

gives rise to a monad inSET. Note that the monadPTM on RCONE is not a lifting of the
monadP , because, in general, convex sets are not finite. Therefore the monadPTM ◦V onSET

is not obtained from any distributive lawV ◦ P
·

−→P ◦ V .

6. Semantics of programs

We give an example of how to use the constructions of the previous sections by giving a de-
notational semantics to a simple imperative language with probabilistic and nondeterministic
primitives. We give the language an operational semantics in terms of a simplified version of
probabilistic automata. We present two denotational semantics: one in terms of indexed valu-
ations and the standard powerset, the other in terms of the standard valuations and the convex
powerset. We show adequacy theorems relating the first semantics to deterministicschedulers,
and the second semantics toprobabilisticschedulers. Finally we discuss the computational intu-
ition lying behind the mathematics.

6.1. Probabilistic automata

Probabilistic automata were introduced as such in (Segala,1995). Their relationships with other
probabilistic models are well known (Bartels et al., 2003; Stoelinga, 2002). We are going to adapt
that general framework to our needs. We recall that ifY is a subset ofV 1

∞(X), by Y we denote
the set of convex combinations of elements ofY .

Let P⊥(X) denoteP (X) ∪ {∅}. A probabilistic automatonon a set of statesX is a function
k : X → P⊥(V 1

∞(X)) together with an initial statex0 ∈ X . We will use the notation of (Herescu
and Palamidessi, 2000): wheneverν ∈ k(x) we write

x(
pi
−→xi)i∈I

wherexi ∈ X , i 6= j =⇒ xi 6= xj , andν(xi) = pi. We also write
p

−→x for (
p

−→x)i∈{∗}. A finite
pathof a probabilistic automaton is an element in(X×V 1

∞(X))∗X , written asx0ν1x1 . . . νnxn,
such thatνi(xi) > 0. The path isdeterministicif νi+1 ∈ k(xi). It is probabilisticif νi+1 ∈ k(xi).
The last state of a paths is denoted byl(s). The probability of a paths := x0ν1x1 . . . νnxn is
defined as

Π(s) =
∏

1≤i≤n

νi(xi) .

A probabilistic schedulerfor a probabilistic automatonk is a partial function

S : (X × V 1
∞(X))∗X → V 1

∞(X)

such that, ifk(l(r)) 6= ∅, thenS(r) is defined andS(r) ∈ k(l(r)). Equivalently, a probabilistic
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Fig. 1. A probabilistic automaton

scheduler can be defined as a partial function

S : (X × V 1
∞(X))∗X → V 1(V 1

∞(X)) ,

requiring thatSupp(S(r)) ⊆ k(l(r)).
A deterministicscheduler is a probabilistic scheduler that does not make use of the convex

combinations. That is for a deterministic scheduler we haveS(r) ∈ k(l(r)).
Now given a statex ∈ X and a schedulerS for k, we consider the setB(k,S) of maximal

paths, obtained fromk by the action ofS. That is the pathsx0ν1x1 . . . νnxn such that for every
i < n, νi+1 = S(x0ν1 . . . xi), andk(xn) = ∅. A deterministic scheduler generates deterministic
paths, a probabilistic scheduler generates probabilisticpaths.

A good way of visualising probabilistic automata is by usingalternating trees (Hansson, 1991).
Figure 1 shows an example of an alternating tree, where blacknodes represent states, while
hollow nodes represent probability distributions. The useof trees instead of graphs is a way of
keeping track of the paths: a deterministic scheduler is thus a function that, for every black node,
chooses one of its hollow sons.

6.2. A simple imperative language

We present a small imperative languageL. It has the following (abstract) syntactic categories:

— integersNum, ranged over byn;
— locationsLoc, ranged over byX ;
— finite probability distributions over integersProb, ranged over byχ;
— arithmetical expressionsAexp, ranged over bya;
— boolean expressionsBexp, ranged over byb;
— commandsComm, ranged over byc.

The (abstract) BNF for the last three syntactic categories are as follows:

a ::= n | X | a + a | a − a | a ∗ a ;

b ::= true | false | a ≤ a | ¬b | b ∧ b ;

c ::= skip | X := a | X := χ| c; c | if b then c else c | c or c .

We also need the notion ofstate. A state is a functionσ : Loc → Num. We callΣ the set of
states. We call any pair〈c, σ〉 a configuration. We denote the set of all configurations byΓ. The
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〈skip, σ〉
1

−→〈ǫ, σ〉

〈X := a, σ〉
1

−→〈ǫ, σ[n/X]〉 wheren = [[a]]σ

〈X := χ, σ〉(
χ(n)
−→〈ǫ, σ[n/X]〉 )n∈Num

〈c, σ〉(
pi−→〈ci, σi〉)i∈I

〈c; c′, σ〉(
pi−→〈ci; c′, σi〉)i∈I

〈if b then c0 else c1, σ〉
1

−→〈c1, σ〉 if [[b]]σ = false

〈if b then c0 else c1, σ〉
1

−→〈c0, σ〉 if [[b]]σ = true

〈c, σ〉(
pi−→γi)i∈I

〈c or c′, σ〉(
pi−→γi)i∈I

〈c′, σ〉(
pj
−→γj)j∈J

〈c or c′, σ〉(
pj
−→γj)j∈J

Fig. 2. Operational semantics ofL

setΓ is ranged over byγ. To make the notation more uniform we introduce (at the metalevel) the
empty commandǫ. We use it with the following meaning:

〈ǫ, σ〉 ≡ σ , ǫ; c ≡ c; ǫ ≡ c .

Consequently, we extend the notion of configuration so that astateσ is a configuration〈c, σ〉
wherec = ǫ.

It is straightforward to define the value of arithmetic and boolean expressions in a given state
so as to have

[[a]]σ ∈ Num and [[b]]σ ∈ {true, false} .

6.3. The operational semantics

The operational semantics ofL is given in terms of probabilistic automata on the set of configu-
rations. For every configurationγ0 we have the probabilistic automatonMγ0 = (Γ, k, γ0) where
k is defined inductively using the rules in Figure 2.

Definition 6.1. Let S be a scheduler forM〈c, σ〉. To simplify the notation we say thatS is a
scheduler for〈c, σ〉. We defineB(c, σ,S) to be the set of maximal paths ofM〈c, σ〉 generated
by S. We defineVal(S, c, σ) to be the probability distribution such that

Val(S, c, σ)(σ′) =
∑

s∈B(c,σ,S)
l(s)=σ′

Π(s) .

We defineIval (S, c, σ) to be the discrete indexed valuation

(l(s), Π(s))s∈B(c,σ,S) .

The last definition is a formalisation of the intuitive interpretation of indexed valuations. Here
the indexing set is the set of paths (the computations) whilethe elements considered are the final
states (the observations).
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[[skip]]σ = {(σ, 1)}

[[X := a]]σ = {(σ[n/X], 1)} wheren = [[a]]σ

[[X := χ]]σ = {(σ[n/X], χ(n))n∈Supp(χ)}

[[c0; c1]] = [[c1]]
† ◦ [[c0]]

[[c0 or c1]]σ = [[c1]]σ ∪ [[c0]]σ

[[if b then c0 else c1]]σ =

(

[[c0]](σ) if [[b]]σ = true

[[c1]](σ) if [[b]]σ = false

Fig. 3. Denotational semantics ofL using indexed valuations

[[skip]]TMσ = {ησ}

[[X := a]]TMσ = {ησ[n/X]} wheren = [[a]]σ

[[X := χ]]TMσ = {λσ′ ∈ Σ.

(

χ(n) if σ′ = σ[n/X]

0 otherwise
}

[[c0; c1]]TM = [[c1]]
†
TM ◦ [[c0]]TM

[[c0 or c1]]TMσ = [[c1]]TMσ ∪– [[c0]]TM σ

[[if b then c0 else c1]]TMσ =

(

[[c0]]TM (σ) if [[b]]σ = true

[[c1]]TM (σ) if [[b]]σ = false

Fig. 4. Denotational semantics ofL using the convex powerset

One could prove directly (by structural induction on the commands) thatVal(S, c, σ) is a
probability distribution. However, this is also a consequence of the adequacy theorem.

6.4. Two adequate denotational semantics

The denotational semantics

[[c]] : Σ → P (IV (Σ))

is defined in Figure 3. The indexed valuation(σ, p)∗∈{∗} is denoted as(σ, p). If X, Y are sets
andf : X → P (IV (Y )) thenf † : P (IV (X)) → P (IV (Y )) is the Kleisli extension off for
the monadP ◦ IV .

There is a very tight correspondence between the denotational and the operational semantics.

Theorem 6.2 (Adequacy).Let c be a command ofL andν be a finite indexed valuation in
IV (Σ). Thenν ∈ [[c]]σ if and only if there exists a schedulerS for 〈c, σ〉 s.t.ν = Ival(S, c, σ).

Proof. See the Appendix.

The main feature of Theorem 6.2 is the use of deterministic schedulers. A semantics in terms
of the convex powerset functor is adequate with respect to probabilistic schedulers.
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Fig. 5. The automaton ofc1; c2; c3

The new denotational semantics[[c]]TM : Σ → PTM (V (Σ)) is defined in Figure 4. Here, if
X, Y are sets andf : X → PTM (V (Y )) thenf † : PTM (V (X)) → PTM (V (Y )) is the Kleisli
extension off for the monadPTM ◦ V .

Theorem 6.3 (Adequacy).Let c be a command ofL andν be a finite valuation inV (Σ). Then
ν ∈ [[c]]TMσ if and only if there exists a probabilistic schedulerS for 〈c, σ〉 s.t.ν = Val(S, c, σ)

Proof. See the Appendix.

6.5. Discussion

We have seen the mathematical reasons why there is no distributive law between the functors
P andV . We can exemplify this with a program in our language. Suppose the denotation of a
commandc is to be defined as a function[[c]] : Σ → P (V (Σ)). If we want it to be compositional,
we have to define[[c1; c2]] in terms of[[c1]], [[c2]]. The first intuitive idea would be to define it as

[[c1; c2]](σ) =
{

λσ′.
∑

σ′′∈Σ

ν(σ′′) ·h(σ′′)(σ′) | ν ∈ [[c1]](σ), h : Σ → V (Σ), h(σ′′) ∈ [[c2]](σ
′′)

}

.

However, this definition would make sequential compositionnon-associative. To see this with an
example, let

— c1 be the commandX := χ, whereχ(0) = 1/2, χ(1) = 1/2;
— c2 be the commandX := 0;
— c3 be the commandX := 0 or X := 1;

and consider the programc1; c2; c3.
In this example we can assume there are only two states:Σ = {0, 1}. For i = 0, 1 we have

— [[c1]](i) = { 1
2η0 + 1

2η1};
— [[c2]](i) = {η0};
— [[c1; c2]](i) = {η0};
— [[c3]](i) = {η0, η1};
— [[c2; c3]](i) = {η0, η1}.
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If we readc1; c2; c3 asc1; (c2; c3), then[[c1; c2; c3]](i) = {η0,
1
2η0 + 1

2η1, η1}.
If we readc1; c2; c3 as(c1; c2); c3, then[[c1; c2; c3]](i) = {η0, η1}.

In the second case the functionh (which roughly speaking does the job of the scheduler),
when choosing a valuation in[[c3]](0) does not “remember” that the process has reached the state
0 by two different paths. Therefore we miss one valuation in the final set. When the denotation
is given in terms of indexed valuations, the functionh is given enough information to remember
this. Indeed, in the case of indexed valuations,h chooses with regard to at the paths, rather than
only with regard to the states.

However, a memoryless scheduler can simulate the combination of schedulers with memory by
flipping a coin. That is why a semantics that is adequate with respect to probabilistic schedulers
does not need to be given in terms of indexed valuations (see the proofs in the Appendix for
more details). A similar phenomenon was recently observed in the context of Stochastic Games
(Chatterjee et al., 2004).

7. Indexed valuations and domains

In this section, we sketch how to extend the above discussionto domain theory. Recall that a
domain is a partial order with lubs of directed subsets (and some extra properties). When doing
universal algebra on domains, instead of equational theories we have inequational theories, while
operations and homomorphisms are required to be continuous(Abramsky and Jung, 1994).

Consider the equational theory of semilattices. In the category of continuous domains its free
algebra functor is known as thePlotkin powerdomain. However, we can also modify the equa-
tional theory by adding an extra inequation. If we addA ⊑ A ∪– B, we obtain the theory ofjoin-
semilattices. The free join-semilattice functor is known as theHoare powerdomain. If instead we
add the inequalityA ∪– B ⊑ A, we obtain the theory ofmeet-semilattices. The corresponding
free algebra functor is known as theSmyth powerdomain. Being freely generated by a theory, all
the above functors give rise to monads.

In the category of continuous domains, the theory of real cones generates the monads ofcon-
tinuous valuations(Jones and Plotkin, 1989; Jones, 1990; Kirch, 1993). In thiscategory, we can
weaken the theory of real cones by removing the equationpA ⊕ qA = (p + q)A, or by trans-
forming it into an inequation:pA⊕qA ⊒ (p+q)A or pA⊕qA ⊑ (p+q)A. Also, we can decide
whether the scalar multiplication is continuous with the respect to the domain of scalars[0, +∞],
or not. All these choices have an important effect on the corresponding monad. Some results were
already presented in (Varacca, 2002; Varacca, 2003), wherethe existence of certain distributive
laws is shown, and the relation between indexed valuations and continuous valuations is studied.
A recent related work is (Mislove, 2005).

A detailed study of all the cases, with particular attentionto a concrete characterisation of the
monads, is the subject of ongoing work.
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Appendix: Proofs

We produce here the proofs of three results: Proposition 3.2, which states the lack of a distributive
law between the nondeterministic and the probabilistic monad, and the two adequacy theorems,
Theorem 6.2 and Theorem 6.3.

Proof of Proposition 3.2The idea for this proof is due to Gordon Plotkin†. Assume thatd :

V P
·

−→PV is a distributive law in the categorySET. Consider the setX := {a, b, c, d}. Take
Ξ := 1

2η{a,b} + 1
2η{c,d} ∈ V P (X). We try to find out whatR := dX(Ξ) is.

Let Y := {a, b}. Consider:

f : X → Y f :















a 7→ a

b 7→ b

c 7→ a

d 7→ b

f ′ : X → Y f ′ :















a 7→ a

b 7→ b

c 7→ b

d 7→ a .

We have thatV P (f)(Ξ) = ηY = V P (f ′)(Ξ). Consider the naturality diagram forf :

Ξ
� dX //

_

V P (f)

��

R_

PV (f)

��
ηY

�
dY

// S.

One of the unit laws ford tells us thatS := dY (ηY ) = {ηa, ηb}. Therefore, considering the
functorial action ofPV , we must have that

∅ 6= R ⊆
{

pηa + (1 − p)ηc | p ∈ [0, 1]} ∪ {qηb + (1 − q)ηd | q ∈ [0, 1]
}

.

Consider the same diagram forf ′:

Ξ
� dX //

_

V P (f ′)

��

R_

PV (f ′)

��
ηY

�
dY

// S.

This tells us that

∅ 6= R ⊆
{

p′ηa + (1 − p′)ηd | p′ ∈ [0, 1]} ∪ {q′ηb + (1 − q′)ηc | q
′ ∈ [0, 1]

}

.

† Personal communication
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Combining these pieces of information, we conclude thatR must be a nonempty subset of
{ηa, ηb, ηc, ηd}.

Now letZ := {a, c}. Consider

f ′′ : X → Z f ′′ :















a 7→ a

b 7→ a

c 7→ c

d 7→ c .

We have thatV P (f ′′)(Ξ) = 1
2η{a} + 1

2η{c}. Let us look at the naturality diagram forf ′′:

Ξ
� dX //

_

V P (f ′′)
��

R_

PV (f ′′)

��
1
2η{a} + 1

2η{c}
�

dZ

// T.

SinceT = PV (f ′′)(R), thenT must be a nonempty subset of{ηa, ηc}. But the other unit law
for d tells us thatT = d(1

2η{a} + 1
2η{c}) = { 1

2ηa + 1
2ηc}. Contradiction.

Before proving Theorem 6.2, we need to look concretely at theKleisli extension of the monad
P ◦ IV generated by the distributive law. Letf : X → P (IV (Y )) be a function. Consider a
finite set of indexed finite valuationsA ∈ P (IV (X)). Let f † : P (IV (X)) → P (IV (Y )) be the
Kleisli extension off . We want to evaluatef †(A).

WhenA is a singleton
{

(xi, pi)i∈I

}

, we have that

f †
(

{

(xi, pi)i∈I

}

)

=
⊕

i∈I

pif(xi) .

By induction on the size ofI one can prove that
⊕

i∈I

pif(xi) =
{

(yi
j, piq

i
j)(j,i)∈J×I |h : I → IV (Y ), h(i) = (yi

j , q
i
j)j∈J ∈ f(xi)

}

.

(SinceI and allf(xi) are finite, it is not restrictive to assume that all the valuations involved are
indexed by the same setJ .) The functionsh above are “choice” functions: For everyi ∈ I, h

chooses an indexed valuation inf(xi).
For generalA we have

f †(A) =
⋃

ξ∈A

f †({ξ}) .

Proof of Theorem 6.2By structural induction. The nontrivial case is the sequential compo-
sition. A maximal path ofM〈c0; c1, σ〉 is the concatenation of a maximal pathr of M〈c0, σ〉

together with a maximal patht in M〈c1, l(r)〉, renaming the configurations of the first part.
Therefore a schedulerS for 〈c0; c1, σ〉 can be thought of as a schedulerS0 for 〈c0, σ〉 together
with schedulersSr for 〈c1, l(r)〉 for every maximal pathr of M〈c0, σ〉.

By the induction hypothesis we have(l(r), Π(r))r∈B(c0,σ,S0) ∈ [[c0]]σ and for everyr,
(l(t), Π(t))t∈B(c1,l(r),Sr) ∈ [[c1]]l(r). We have to show that

(l(s), Π(s))s∈B(c0 ;c1,σ,S) ∈ [[c1]]
†([[c0]]σ) .
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Recalling the characterisation off †, it is enough to show that

(l(s), Π(s))s∈B(c0;c1,σ,S) ∈ [[c1]]
†
(

{ (l(r), Π(r))r∈B(c0,σ,S0) }
)

.

Let us define the choice functionh : B(c0, σ,S0) → IV (Σ) as

h(r) = (l(t), Π(t))t∈B(c1,l(r),Sr) ∈ [[c1]]l(r) .

Therefore by the characterisation off †:

(l(t), Π(r)Π(t)) r∈B(c0,σ,S0)
t∈B(c1 ,l(r),Sr)

∈ [[c1]]
†
(

{ (l(r), Π(r))r∈B(c0,σ,S0) }
)

.

Since a path inB(c0; c1, σ,S) is the concatenation of a pathr in B(c0, σ,S0) together with a path
t in B(c1, l(r),Sr), we have

(l(t), Π(r)Π(t)) r∈B(c0,σ,S0)
t∈B(c1 ,l(r),Sr)

= (l(s), Π(s))s∈B(c0;c1,σ,S) .

Conversely supposeν ∈ [[c1]]
†([[c0]]σ). By the characterisation of the Kleisli extension, there

exist(σi, pi)i∈I ∈ [[c0]]σ andh : I → IV (Σ), h(i) = (yi
j , q

i
j)j∈J ∈ [[c1]]σi such that

ν = (yi
j , piq

i
j)(j,i)∈J×I .

By the induction hypothesis there exists a schedulerS0, such that

I = B(c0, σ,S0), pr = Π(r), σr = l(r) .

And for everyr ∈ B(c0, σ,S0), there is a schedulerSr such that

h(r) = (l(t), Π(t))t∈B(c1,l(r),Sr) .

CombiningS0 with theSr we obtain a schedulerS for 〈c0; c1, σ〉. In order to obtain an overall
schedulerS, formally we have to define it also for the paths not inB(c0, σ,S0). But this choice
can be arbitrary, because it does not influence the definitionof B(c0; c1, σ,S). Therefore

ν = (yi
j , piq

i
j)(j,i)∈J×I = (l(t), Π(r)Π(t)) r∈B(c0,σ,S0)

t∈B(c1 ,l(r),Sr)

= (l(s), Π(s))s∈B(c0;c1,σ,S) .

Before proving Theorem 6.3 we need to look concretely at the Kleisli extension of the monad
PTM ◦ V defined in Section 5.

Takef : X → PTM (V (Y )), sayf(x) = Bx. We have thatf † : PTM (V (X)) → PTM (V (Y ))

is defined as

f †(A) = ⊢⊣
⋃

ξ∈A0

⊕

x∈X

ξ(x)Bx .

We have following characterisation:

f †(A) =
⋃

ξ∈A

⊕

x∈X

ξ(x)Bx =

{

⊕

x∈X

ξ(x)h(x) |h : X → V (Y ), h(x) ∈ Bx, ξ ∈ A

}

.

In order to prove it, let’s call
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— V :=
⋃

ξ∈A0

⊕

x∈X ξ(x)Bx;
— U := ⊢⊣

⋃

ξ∈A0

⊕

x∈X ξ(x)Bx;
— W :=

⋃

ξ∈A

⊕

x∈X ξ(x)Bx.

Remember thatU = V , by definition. We have to prove thatU = W .
ClearlyV ⊆ W . MoreoverW is convex:

p
⊕

x∈X

ξ(x)h(x) ⊕ (1 − p)
⊕

x∈X

ξ′(x)h′(x) =
⊕

x∈X

pξ(x)h(x) ⊕ (1 − p)ξ′(x)h′(x) .

Defineξ′′ = pξ⊕ (1−p)ξ′ ∈ A, andh′′(x) = pξ(x)
ξ′′(x)h(x)+ (1−p)ξ′(x)

ξ′′(x) h′(x). SinceBx is convex,
thenh′′(x) ∈ Bx. (If ξ′′(x) = 0 thenh′′(x) can be set equal to any element ofBx.) We have

ξ′′(x)h′′(x) = pξ(x)h(x) ⊕ (1 − p)ξ′(x)h′(x) .

ThereforeU ⊆ W .
For the other direction take

⊕

x∈X ξ(x)h(x). We know thatξ =
⊕

i∈I piξi with ξi ∈ A0. So
⊕

x∈X

ξ(x)h(x) =
⊕

x∈X

⊕

i∈I

piξi(x)h(x) =
⊕

i∈I

pi

⊕

x∈X

ξi(x)h(x)

which is a convex combination of elements ofV .
It is worth making the following observation. Supposef : X → PTM (V (Y )) is such that the

range off contains only probability distributions (rather than general finite valuations). Suppose
W is a finitely generated convex sets containing only probability distributions. Then, it is not
difficult to show thatf †(W ) contains only probability distributions. This observation can be
used to show that the denotational semantics ofL uses probability distributions only.

Proof of Theorem 6.3By structural induction. Note that the probabilistic schedulers are nec-
essary for the semantics of the nondeterministic choice, because the operator∪– is defined as
union followed by convex closure.

Again the nontrivial case is sequential composition. Take aschedulerS for 〈c0; c1, σ〉. Such
anS can be thought of as a schedulerS0 for 〈c0, σ〉 together with schedulersSr for 〈c1, l(r)〉 for
every maximal path inr of M〈c0, σ〉.

By the induction hypothesis we have thatVal(S0, c0, σ) ∈ [[c0]]TMσ and that for everyr,
Val(Sr, c1, l(r)) ∈ [[c1]]TM l(r). We have to show that

λσ′.
∑

l(s)=σ′

s∈B(c0;c1,σ,S)

Π(s) ∈ [[c1]]
†
TM ([[c0]]TMσ) .

Recall the characterisation of the Kleisli extension: iff : X → PTM (V (Y )), then

f †(A) =

{

⊕

x∈X

ξ(x)h(x) | h : X → V (Y ), h(x) ∈ f(x), ξ ∈ A

}

To prove our claim it is then enough to show that

λσ′.
∑

l(s)=σ′

s∈B(c0;c1,σ,S)

Π(s) ∈ [[c1]]
†
TM ( {Val(S0, c0, σ) }) .
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Let us defineh : Σ → V (Σ) as

h(σ′′) =
∑

l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)

Val(S0, c0, σ)(σ′′)
Val(Sr, c1, σ

′′) .

Remember that, by definition:
∑

l(r)=σ′′

r∈B(c0,σ,S0)

Π(r) = Val(S0, c0, σ)(σ′′) .

Therefore
∑

l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)

Val(S0, c0, σ)(σ′′)
= 1 .

Since[[c1]]TMσ′′ is convex, thenh(σ′′) ∈ ([[c1]]TMσ′′). Therefore, by the characterisation of the
Kleisli extension,

∑

σ′′∈Σ

Val(S0, c0, σ)(σ′′)h(σ′′) ∈ [[c1]]
†
TM ( {Val(S0, c0, σ) }) .

But
∑

σ′′∈Σ

Val(S0, c0, σ)(σ′′)h(σ′′)(σ′)

=
∑

σ′′∈Σ











∑

l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)











∑

l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)

Val(S0, c0, σ)(σ′′)
Val(Sr, c1, σ

′′)(σ′)





















=
∑

σ′′∈Σ











∑

l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)

Val(S0, c0, σ)(σ′′)











∑

l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)Val (Sr, c1, σ
′′)(σ′)





















=
∑

σ′′∈Σ











∑

l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)

Val(S0, c0, σ)(σ′′)





















∑

l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)Val (Sr, c1, σ
′′)(σ′)











=
∑

σ′′∈Σ











∑

l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)Val (Sr, c1, σ
′′)(σ′)
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=
∑

σ′′∈Σ











∑

l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)











∑

l(t)=σ′

t∈B(c1,σ′′,Sr)

Π(t)





















=
∑

r∈B(c0,σ,S0)

Π(r)











∑

l(t)=σ′

t∈B(c1,l(r),Sr)

Π(t)











=
∑

l(s)=σ′

s∈B(c0;c1,σ,S)

Π(s) ,

and the claim is proved. For the last step, note that a paths ∈ B(c0; c1, σ,S) is the concatenation
of a pathr ∈ B(c0, σ,S0) together with a patht ∈ B(c1, l(r),Sr).

Conversely, suppose thatν ∈ [[c1]]
†
TM ([[c0]]TMσ). Then there existξ ∈ [[c0]]TMσ andh : Σ →

V (Σ) such thath(σ′′) ∈ [[c1]]TMσ′′ andν =
∑

σ′′ ξ(σ′′)h(σ′′). By the induction hypothesis
there exist schedulersS0, Sσ′′ such thatξ = Val(S0, c0, σ), andh(σ′′) = Val(Sσ′′ , c1, σ

′′).
As earlier with deterministic schedulers, we combine them to get a schedulerS such thatν =

Val(S, c0; c1, σ). Notice that in this case the combined scheduler has some memoryless charac-
ter: it behaves the same for every subautomaton starting at aconfiguration〈c1, σ

′′〉, regardless of
the previous history.
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