
Continuations, Processes, and Sharing

Paul Downen Luke Maurer
Zena M. Ariola

University of Oregon
{pdownen,maurerl,ariola}@cs.uoregon.edu

Daniele Varacca
Université Paris Diderot

varacca@pps.univ-paris-diderot.fr

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages—process mod-
els; F.4.1 [Mathematical Logic and Formal Languages]: Mathe-
matical Logic—lambda calculus and related systems

Keywords continuation-passing style, transforms, effects, call-by-
need, processes, π-calculus, bisimulation

Abstract
Continuation-passing style (CPS) transforms have long been im-
portant tools in the study of programming. They have been shown
to correspond to abstract machines and, when combined with a
naming transform that expresses shared values, they enjoy a direct
correspondence with encodings into process calculi such as the
π-calculus. We present our notion of correctness and discuss the
sufficient conditions that guarantee the correctness of transforms.
We then consider the call-by-value, call-by-name and call-by-need
evaluation strategies for the λ-calculus and present their CPS trans-
forms, abstract machines, π-encodings, and proofs of correctness.
Our analysis covers a uniform CPS transform, which differentiates
the three evaluation strategies only by the treatment of function calls.
This leads to a new CPS transform for call-by-need requiring a less
expressive form of side effect, which we call constructive update.

1. Introduction
For formally specifying the semantics of a programming language,
there are a variety of different tools—from operational semantics
to natural semantics, abstract machines to continuation-passing
style (CPS) transforms, and many others. On the one hand, no
one tool is objectively the best. Each semantic artifact has its own
advantages, and so we can use each one to bring out different
intuition and explore separate aspects of computation. On the other
hand, if we refer to multiple semantics of a language, we need to
be sure that they all agree. To that end, Danvy et al. [2] give a
technique that not only demonstrates that two semantic artifacts
correspond, but provides a mechanism for systematically inter-
deriving one from the other. This lets us generate a variety of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPDP ’14, September 8–10, 2014, Canterbury, UK.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2947-7/14/09. . . $15.00.
http://dx.doi.org/10.1145/2643135.2643155

semantics from one specification with confidence that they all give
the same interpretation.

In that vein, we can also use a process calculus such as the π-
calculus [16, 20] as a basis for understanding the semantics of a
language by encoding programs into processes [15]. In the same
way CPS transforms target the λ-calculus, π-encodings elaborate the
meaning of a program by hardwiring implementation details, such as
the evaluation strategy, into the syntax of a process. However, certain
computational phenomena which are more difficult to express by a
CPS transform come out naturally in the π-calculus. For example,
the π-encoding of memoization in a call-by-need language [20],
which requires a change of state, is no more difficult to express than
basic call-by-value or call-by-name evaluation.

Here, we aim to incorporate the π-calculus and π-encodings into
the Danvy et al. [2] inter-derivation of semantic artifacts. We build
on Sangiorgi’s derivation [19] of π-encodings from CPS transforms
by enriching the basic CPS language with a new effect called
constructive update, and show how it reflects constructions that
occur naturally in the π-calculus. Constructive update is a weaker
effect than mutable state and more precisely describes memoization
in call-by-need languages. For example, even though we don’t
consider recursive bindings, a particular implementation technique
for recursion (i.e., “black holes” in GHC) appears naturally in the
abstract machine from the encoding into constructive update. In the
end, we present π-encodings for the full CPS languages, with and
without constructive update. These can be used to systematically
derive a π-encoding from any CPS transform expressed in the
language, simply by composition—no ad hoc reasoning is required.

In order to establish the correctness of the various transforms, we
introduce a general proof methodology based on bisimulation. We
integrate techniques used by Leroy [14] and Danvy and Zerny [10],
giving us a robust and general framework for simplifying the
different correctness proofs. We use this methodology to establish
the correctness of the π-encoding of the CPS target language, as well
as a less studied uniform [20] CPS transform, which distinguishes
call-by-value from call-by-name evaluation by varying only the
treatment of function application.

We start, in Section 2, with the semantics of the call-by-name
and call-by-value λ-calculi. We present a uniform CPS transform
for both, from which we derive the corresponding uniform abstract
machine. We then outline a general methodology in Section 3 for
establishing that a transform preserves the behavior of programs,
using it in Section 4 to show the correctness of the uniform transform.
Next, we demonstrate in Section 5 how π-encodings of the call-by-
value and call-by-name λ-calculi can be systematically derived from
a naming transform and a syntactic embedding of the CPS language,
which are both shown to be correct. In Section 6, we consider call-
by-need evaluation and present a novel call-by-need CPS transform
in terms of constructive update. We demonstrate the correctness of
this new transform in Section 7, and in Section 8 we derive the call-
by-need π-encoding by translating constructive update to a form of

Evaluation Contexts: E ::= []
∣∣ EM

(λx.M)N −→ M{N/x} βn

Figure 1. The call-by-name λ-calculus, λn

Values: V ::= x
∣∣ λx.M

Evaluation Contexts: E ::= []
∣∣ EM ∣∣ V E

(λx.M)V −→ M{V/x} βv

Figure 2. The call-by-value λ-calculus, λv

process that did not appear in the call-by-value and call-by-name
encodings.

2. Call-by-Name and -Value
The λ-calculus is a simple yet powerful model of computation. It
consists of only three parts: functions, variables, and applications:

Terms: M,N ::= λx.M
∣∣ x ∣∣MN

As the λ-calculus can be seen as a foundation of both strict and
lazy languages, a λ-term can be evaluated according to either a
call-by-name (CBN) or a call-by-value (CBV) strategy. These two
distinct semantics are captured by the two reduction rules, βn and
βv (see Figs. 1 and 2) and by an evaluation context, which concisely
specifies where in a term evaluation may take place [11]. Notice
how βv restricts βn by only allowing a value to be substituted. CBV
evaluation contexts allow computation to take place in the argument
of a function application once the function has already been reduced
to a value. The effect of these two alterations changes the order of
evaluation: where CBN begins evaluating a function body before
the argument to the function, CBV evaluates the argument first.

Notations
Throughout the paper, we will make use of the following notation:
we write M −→ N if N follows by a reduction of some subterm
of M , and write M 7−→ N , read “M standard reduces to N ,” if
M decomposes as E[M ′] for some E and M ′, M ′ −→ N ′ by a
reduction at the top level of M ′, and N , E[N ′]. Note that 7−→
can be seen as a restriction on −→: the former only reduces the
“standard” redex in a term (which must occur inside an evaluation
context), whereas the latter can reduce any redex in a term (which
may occur inside an arbitrary context). We write −→−→ for the
reflexive and transitive closure of −→, denoting zero or more steps;
−→+ for the transitive closure, denoting at least one step; and =
for the reflexive, symmetric, and transitive closure, denoting zero or
more steps in either direction. The relations 7−→−→ and 7−→+ follow
from 7−→ similarly.

Finally, we introduce some notation for the possible outcomes
of computation, which is to say, the observations we can make by
running a program. For each calculus, we have a subset of terms
called answers—that is, computed results. In the basic λ-calculus
setting, an answer is simply a λ-abstraction. Then we write:

• M ↓ if M is an answer;
• M ⇓ if M 7−→−→ N and N is an answer;
• M 6 ↓ if M is stuck, that is, M is not an answer and it cannot

reduce any further;
• M 6⇓ if M 7−→−→ N and N is stuck; or

CJxK , λk. xk
CJλx.MK , λk. k(λ(x, k′). CJMKk′)

CJMNK ,

{
λk. CJMK(λv. v(λk′. CJNKk′, k)) CBN
λk. CJMK(λv. CJNK(λw. v(λk′. k′w, k))) CBV

Figure 3. A uniform CPS transform

• M ⇑ if M takes infinitely many evaluation steps.

A Uniform CPS Transform
As an alternative to specifying the semantics of a language in terms
of rewrite rules for programs, we can give a function that “compiles,”
or transforms, programs into some lower-level form. The advantage
is that analyzing lower-level terms is easier, since the syntax itself
prescribes how a program should be executed, just as assembly
code specifies not only calculations but which registers, including
the program counter, to use to perform them. A transform into
continuation-passing style, called a CPS transform, is an example of
such a compilation function. It produces λ-terms whose evaluation
order is predetermined: the same calculations will be performed, in
the same order, by call-by-name or call-by-value evaluation. The
trick is to pass only precomputed values as arguments to functions,
making the question of when to evaluate arguments moot. Then,
rather than returning its result in the usual way, a CPS function
passes the result to one of its arguments, the so-called continuation.
A continuation represents the evaluation context in which a function
was called; hence it plays a similar role to the call stack used in
most computer architectures. Since their evaluation contexts differ,
we can elucidate the difference between CBN and CBV languages
by translating each into continuation-passing style.

We focus on a uniform CPS transform C, given in Fig. 3, so
called because the translations for variables and abstractions are
the same between CBN and CBV. This uniformity highlights the
differences in evaluation order by varying only the translation of
applications. Specifically, given an application of the form MN ,
once M has evaluated to a function v, the continuation in the CBN
transform invokes v immediately, passing the unevaluated CPS
term λk′. CJNKk′ as the argument. Evaluating a variable is done
by invoking it with a continuation, so each evaluation of a variable
within the body of a function will evaluate the argument. The CBV
transform evaluates M the same way, but its continuation does
not use v immediately; instead, it first evaluates N to a value w.
Now, the argument to v is a function that simply passes w to its
continuation, and so each evaluation of the argument immediately
returns the precomputed value w.

The CBN portion of the uniform CPS transform corresponds to
Plotkin’s CBN CPS transform [18] up to currying and η-expansion.
The CBV fragment, however, differs fundamentally from Plotkin’s
CBV transform:1 it doesn’t follow the conventional βv rule. In the
CBV λ-calculus, a variable is considered a value, and hence the
term (λx. λy. y)z reduces to λy. y. However, a typical implemen-
tation would attempt to evaluate z and raise an “unbound variable”
error. Accordingly, the CBV portion of the uniform CPS transform
produces a term that becomes stuck on z rather than reducing to a
value.

Since the CPS transform and the CBV λ-calculus do not agree on
stuck states involving free variables, the uniform CPS transform does
not implement the calculus given in Fig. 2. Rather, it implements a
calculus that further restricts values to only include λ-abstractions.

1 Instead, the CBV fragment is a “callee-save” version of Reynold’s CPS
transform (see section 4.2 of [12]).

Values: V ::= λx.M

Evaluation Contexts: E ::= []
∣∣ EM ∣∣ V E

(λx.M)V −→ M{V/x} βv

Figure 4. A revised call-by-value λ-calculus

Terms: M,N ::= V (W+)

Values: V,W ::= x
∣∣ λ(x+).M

(λ(x+).M)(V +) −→ M{V +/x+} β

Figure 5. The syntax and semantics of the CPS λ-calculus, λcps

The restriction impacts the βv rule to apply only when the argument
is a λ-abstraction, and limits evaluation contexts to exclude contexts
like xE. From now on, when we speak of the call-by-value calculus,
we will refer to the version in Fig. 4. In most cases, the change will
make no difference—in standard reductions of closed terms, it never
happens that a free variable appears as an argument, and thus it does
not matter whether it is a value or not.

The terms produced by the uniform CPS transform comprise
a restricted λ-calculus. The grammar is given in Fig. 5. In an
application, the function must be a value, and it can take one or
two values for arguments; we denote this V (W+) (standing for
V (W) and V (W,W ′), we will omit parentheses when there is
one argument). Likewise, M{V +/x+} denotes the simultaneous
substitution of one or two values for the same number of variables.
A value is a variable or a λ-abstraction. Note that the body of an
abstraction must again be a CPS term—that is, an application. In
this CPS calculus, all function calls are tail calls, ad infinitum.

Uniform Abstract Machine
We can derive other artifacts from the uniform CPS transform.
In particular, through the functional correspondence [2], we ob-
tain a uniform abstract machine for both CBN and CBV evalua-
tion (see Fig. 6), where we begin execution of M with the initial
state: 〈M,Ret〈〉, ε〉M . The CBN fragment of the machine is es-
sentially the same as the well-known Krivine machine for CBN
evaluation [13]. On closed terms, the CBV fragment behaves simi-
larly to the CEK machine [11] (without control operators). Unlike
most environment-based abstract machines, ours does not exclude
open terms, and thus its behavior can be more finely specified:
variable lookup happens when a variable is evaluated, and only
λ-abstractions are treated as values. We could instead delay the
variable lookup until a λ-abstraction is required; this machine would
implement the full CBV β-rule.

3. Preservation of Observations
In order to relate transforms like the uniform CPS transform to
reduction in their source language, we consider what we mean when
a transform is “correct.” First, we expect it to preserve termination:

Criterion 1. M ⇓ iff T JMK ⇓.

In the following we will refer to the left-to-right implication as
the forward direction and its converse as backward. In order to
prove Criterion 1, we would want to proceed by induction on the
evaluation steps and establish an invariant: something that is true
at the beginning of evaluation and remains true after each step. The

Terms: M,N ::= x
∣∣ λx.M ∣∣MN

Conts.: k ::= Ret〈〉
∣∣ AppN〈M,k, ρ〉

∣∣
AppV1〈M,k, ρ〉

∣∣ AppV2〈λx.M, k, ρ〉
Envs.: ρ ::= ε

∣∣ ρ[x = Clos〈M,ρ〉]
States: S ::= 〈M,k, ρ〉M

∣∣ 〈k, λx.M, ρ〉K
∣∣

〈λx.M, ρ〉H

〈x, k, ρ〉M 7−→ 〈M,k, ρ′〉M
where ρ(x) ≡ Clos〈M,ρ′〉

〈λx.M, k, ρ〉M 7−→ 〈k, λx.M, ρ〉K
〈MN, k, ρ〉M 7−→ 〈M,k′, ρ〉M

where k′ ,

{
AppN〈N, k, ρ〉 CBN
AppV1〈N, k, ρ〉 CBV

〈Ret〈〉, λx.M, ρ〉K 7−→ 〈λx.M, ρ〉H
〈AppN〈N, k, ρ′〉, λx.M, ρ〉K 7−→ 〈M,k, ρ′′〉M

where ρ′′ , ρ[x = Clos〈N, ρ′〉]
〈AppV1〈N, k, ρ′〉, λx.M, ρ〉K 7−→ 〈N, k

′, ρ′〉M
where k′ , AppV2〈λx.M, k, ρ〉

〈AppV2〈λy.N, k, ρ′〉, λx.M, ρ〉K 7−→ 〈N, k, ρ
′′〉M

where ρ′′ , ρ′[y = Clos〈λx.M, ρ〉]

Figure 6. Uniform abstract machine for CBN and CBV

simplest such invariant is:

M N

T JMK T JNK

∼ ∼ (1)

In words, whenever M reduces to N in one step, T JMK reduces
to T JNK in many steps, where the dashed arrows indicate the exis-
tence of such transformations. The transformed program can take
multiple steps because in general a transformation may introduce
administrative redexes into a term. These are intermediate compu-
tations that do not correspond to actual reductions in the source
language. (Non-administrative redexes are called proper.) Unfortu-
nately, there is a serious issue with (1). As noted by Plotkin [18],
with CPS transforms administrative reductions do not line up in this
way. Because T JNK introduces administrative redexes of its own,
the true situation is this:

M N

T JMK P T JNK

∼ ∼ (2)

Plotkin’s solution was to derive a new transform that eliminated
these initial administrative redexes, thus regaining (1). The problem
with this and similar solutions [8, 9] is that the resulting transforms
are more complex and difficult to reason about than the original
CPS transform. For instance, usually such administration-free CPS
transforms are non-compositional, higher-order, or require multiple
passes. Danvy and Nielsen [9] show how to avoid such issues

for developing compact, administrative-reduction free transforms.
However, this approach does not generalize to handle other cases
when the source and target programs get out of synch, as with
different amounts of sharing caused by copying references to values
in Section 5.

Instead of changing the transform, we can further loosen the
invariant using the bisimulation technique, which requires only
that we find some suitable relation to act as the invariant, allowing
us to still relate program states that have moved away from the
transform. Bisimulation gives us a single proof methodology that
readily applies to all the transforms studied here, solving issues
caused by administrative reductions and sharing. Given a relation ∼
between source and target terms, we can prove Criterion 1 so long
as the following hold:

M

T JMK

∼

M N

P Q

∼ ∼

M N

P Q

∼ ∼

M ↓

P Q ↓

∼

M N ↓

Q ↓

∼

(3)

So, M is related to its image under the transform; when either
related term takes a step, the other can take some number of steps to
remain in the relation; and if either is an answer, the other evaluates
to an answer.

Once we have that successful evaluation to an answer is pre-
served, what can we say about a stuck term? It could happen that M
is stuck but T JMK loops forever, or vice versa. Thus we consider
an additional criterion:

Criterion 2. M 6⇓ iff T JMK 6⇓.

To prove Criterion 2, we require two more properties of the simula-
tion ∼, in addition to those in (3):

M 6 ↓ M N 6 ↓

P Q 6 ↓ P 6 ↓

∼ ∼ (4)

In words, if either M or P is stuck, then the other must eventually
get stuck.

The final observation we should preserve is divergence:

Criterion 3. M ⇑ iff T JMK ⇑.

However, because evaluation is deterministic in our calculi, we can
get Criterion 3 “for free” from Criteria 1 and 2: if one term diverges,
it can neither reduce to an answer nor get stuck, and hence the other
term can only diverge.

We can simplify the proof methodology thanks to Leroy’s
observation [14] that if the source language is deterministic, the
forward direction is sufficient, so long as we ensure that no infinite
sequence of evaluation steps in the source maps to a finite sequence
in the target, as this might relate a divergent term with an answer.
It suffices to restrict the second diagram of (3) so that each source
evaluation step maps to at least one evaluation step in the target.
However, this is too restrictive due to the presence of administrative
steps in the source. Borrowing ideas from Danvy and Zerny [10],
we require that each proper step in the source (written 7−→pr) map
to at least one step in the target, whereas an administrative step in
the source (written 7−→ad) may map to zero steps (i.e., equality). We

M

T JMK

∼

M N

P Q

pr

∼ ∼

+

M N

P Q

ad

∼ ∼

M ↓

P Q ↓

∼

M 6 ↓

P Q 6 ↓

∼

Figure 7. Sufficient conditions for correctness of T

have, however, the additional requirement that administrative steps
must be strongly normalizing.

Theorem 4. Given the sufficient conditions of Fig. 7, for any source
term M :

1. M ⇓ iff T JMK ⇓.
2. M 6⇓ iff T JMK 6⇓.
3. M ⇑ iff T JMK ⇑.

Proof. The forward direction follows directly from induction on
the reduction sequence. For the backward direction of 1, we can
argue by contraposition: if M does not reduce to an answer, then
it must either diverge or get stuck. If it diverges, then the reduction
sequence must contain an infinite number of proper steps (because
administrative reduction by itself is strongly normalizing), so by
the second diagram it must hold that T JMK also diverges and by
determinacy it cannot reduce to an answer. Similarly, if M gets
stuck, T JMK must get stuck, and hence cannot reduce to an answer
by determinacy. The reasoning for the backward directions of 2 and
3 is similar. �

We will use the following general procedure for establishing
Theorem 4 from the sufficient conditions. First, we have to define
what we mean by the transform, answers, stuck terms, and the
simulation relation. Second, we need to specify which reduction
steps in the source are administrative, if there are any, and show
that they are strongly normalizing. Third, we need to establish
the sufficient conditions in Fig. 7: that a source term is similar
to its transformed term; that they remain similar after each step
in the source; and that the relation preserves end states so that the
observable outcomes correspond as well.

This procedure employs forward reasoning, in the sense that
we begin with source reductions and give corresponding target
reductions. It is sometimes easier to reason backwards instead.
For instance, the target language of a transform T may express
additional information which is difficult to recover in the source. To
reason backward, we can instead prove correctness of an inverse
transform T −1. Then we can use the fact that T −1〈〈T JMK〉〉 ,M
to derive the correctness of T from the correctness of T −1.

4. Correctness of the Uniform CPS Transform
In order to define the transform into the CPS calculus, let us consider
what it means for a CPS program to be evaluated. A term CJMK
is an inert λ-abstraction; it must be applied to a continuation for
evaluation to occur. This argument represents the context in which
to evaluate M . If we consider M to be the whole program, we need
an initial continuation to represent the top-level context. Thus, we
consider a free variable called ret to be the initial continuation, and
evaluate M in the CPS calculus as CJMK ret. If we think of a term
CJMK as meaning “evaluate M and then,” then CJMK ret reads

“evaluate M and then return.” Intuitively, ret is analogous to the C
function exit, which terminates execution and yields its argument
as the result of the program. Thus, we let T JMK be CJMK ret.

An answer in the source CBV and CBN λ-calculi is a λ-
abstraction value V . A corresponding term in the target CPS
language has the form retV , so this is the form of a CPS answer.
Additionally, a stuck term in the source calculi has the form of a
free variable in an evaluation context, E[x], whereas a stuck term in
the target is one with a free variable other than ret in head position,
xV .

Next, we want to define the simulation ∼ by relating terms in a
way that ignores all administrative reductions. We can keep track of
these reductions in the CPS term by marking certain λ-abstractions
as administrative with the notation λ̄k.M . Referring to Fig. 3, all λ-
abstractions except the one representing a source λ-abstraction (that
is, the λ(x, k).M) are considered administrative. Administrative
reductions are then defined as the β-reductions of the marked λ-
abstractions, as given by the administrative β-rule:

(λ̄(x+).M)(V +) −→ad M{V +/x+} βad

We can now define our simulation relation ∼ in a way that allows
us to reason up to βad equality of the CPS transform:

Definition 5. M ∼ P iff CJMK ret =ad P .

We are now left to show that the conditions in Fig. 7 hold. The
initial condition is trivial, since M ∼ CJMK ret by reflexivity.
Demonstrating the inductive step (the second diagram of Fig. 7),
however, is more challenging. First, observe that substitution may
be pushed through the CPS transform, at the cost of reducing some
non-standard administrative reductions.

Proposition 6. CJMK{CJNK/x} −→−→ad CJM{N/x}K.

Using Proposition 6, it is straightforward to show by calculation
that, if M −→ N at the top level, then

CJMK ret 7−→−→ad 7−→pr=ad CJNK ret (5)

However, this statement needs to be generalized in two ways:
(1) in the source, the reduction M −→ N may occur in any
evaluation context, and (2) in the target, we may begin with any
P =ad CJMK ret.

For the first generalization, we must determine how evaluation
contexts in the source are treated by the CPS transform. As it
happens, administrative reductions of the CPS-transformed term
convert a source-level evaluation context into a continuation, thereby
lifting the next redex to the top of the term. In other words, we
begin with CJE[M]K ret and build toward CJMKK′, where K′ is
a function that encodes the context E.

Proposition 7. For each evaluation contextE in λn or λv , there is a
continuation K′ such that for every term M , CJE[M]K ret 7−→−→ad

CJMKK′.

This allows us to lift reduction into any evaluation context, so that
if E[M] 7−→ E[N] by any standard reduction then (5) still holds
by (i) applying Proposition 7 to convert the evaluation context E
into a function K′, (ii) applying (5) as usual with K′ substituted for
ret, and (iii) applying Proposition 7 again to relate the result with
CJE[N]K ret.

The second generalization of (5) means that we lose the benefit of
starting directly with the transformation of our source term. Rather,
we may be given a CPS term that has gotten out of sync by some
number of administrative steps. Our goal is then to show that this
extra administration at the start does not get in the way of evaluation.
In particular, we can show that any administrative equality can be
deferred past a proper standard reduction while still retaining a
non-trivial reduction sequence.

M ′ N

M M ′′ ·

M ′′′ N ′

pr

ad ad
ad

CR

ad

ad

ST

pr

(2)

(1)ad

pr

ad

Figure 8. A summary of the proof of Lemma 8.

Lemma 8. For λcps terms M , M ′, N , if M =ad M ′ 7−→pr N ,
then there is N ′ such that M 7−→+ N ′ =ad N .

Proof. To begin, we note some facts about the administrative subset
of the CPS language, which consists only of the βad rule. First, note
that the next standard reduction that M ′ takes is a proper step so it
is an administrative answer, defined as the terms that cannot take a
standard step by the βad rule (that is, there is no M ′ 7−→ad N). For
example, both retV and (λ(x, k).M)(V, V ′) are administrative
answers because they cannot take an administrative step, but only the
second one can take a proper step. Second, administrative reduction
(M −→ N by βad on any subterm of M) in λcps is confluent and
enjoys the standardization property, so that if M −→−→ad N and N
is an administrative answer, then there is an administrative answer
M ′ such that M 7−→−→ad M ′ −→−→ad N . Third, non-standard
administrative reductions commute with proper standard reductions,
so they do not create or destroy the top β-redex:

1. If M −→−→ad M
′ 7−→pr N and M is an administrative answer,

then there is N ′ with M 7−→pr N
′ −→−→ad N .

2. If M ←−←−ad M ′ 7−→pr N , then there is N ′ with M 7−→pr

N ′ ←−←−ad N .

Finally, we use confluence and standardization, along with
the above properties, to establish commutation of administrative
equality with proper reduction, as shown in Fig. 8. �

By using Lemma 8, we can strengthen (5) by postponing any
preceding administrative equality to the very end, giving us the
second diagram of Fig. 7.

Proposition 9. If M 7−→ N and M ∼ P then there is a N ∼ Q
such that P 7−→+ Q.

Proof. Beginning with (5) for M 7−→ N , we have

CJMK ret · · CJNK ret

P Q

ad

ad

pr ad

ad

+Lemma 8

ad ad �

The remaining diagrams establishing the preservation of observa-
tions follow from the fact that “answerness” and “stuckness” are
preserved by administrative operations:

Proposition 10. 1. If P =ad P
′ and P ↓, then P ′ ⇓.

2. If P =ad P
′ and P 6 ↓, then P ′ 6⇓.

5. CPS and Processes
The π-calculus describes computation as the exchange of simple
messages by independent agents, called processes. Each term in the
π-calculus describes a process, and processes are built by composing
them together in parallel, prefixing them with I/O actions, and
replicating them. Communication takes place over channels, each
of which has a name; processes interact when one is writing to a

Processes: P,Q ::= x〈y+〉
∣∣ x(y+). P

∣∣ (P |Q)
∣∣ !P

∣∣ νz P
Eval. Cxts.: E ::= []

∣∣ (E |Q)
∣∣ νz E

x〈y+〉 | x(z+). P −→ P{y+/z+}

P |Q ≡ Q | P (P |Q) |R ≡ P | (Q |R) !P ≡ P | !P
νx νy P ≡ νy νx P (νz P) |Q ≡ νz (P |Q) z /∈ FV (Q)

νx P ≡ νy P{y/x} x(y+). P ≡ x(z+). P{z+/y+}

Figure 9. A fragment of the (polyadic) π-calculus.

channel and, in parallel, another is reading from it. The values sent
over the channels are themselves channel names, so processes can
discover each other dynamically. Names act much like variables in
the λ-calculus, with α-equivalent terms identified in the same way.
They can be allocated by the ν construct, which guarantees that the
name it binds will be distinct from any other allocated or free name.

The syntax and semantics for the fragment of the π-calculus
we are considering are given in Fig. 9. This fragment is called the
asynchronous π-calculus because there are no processes of the form
x〈y〉. P . In other words, no process is ever blocked waiting for a
write operation to complete. This property reflects the behavior of
CPS terms: They never wait for a subterm to compute, instead they
provide a continuation that performs the remaining work.

Processes in the π-calculus are meant to be considered up to a
relation called structural congruence, which we write as ≡, which
expands upon the usual notion of α-equivalence. The rules are given
in Fig. 9, and the E[P] operation is considered up to structural
congruence. Besides eliminating unimportant differences such as
the order of parallel composition, structural congruence accounts for
the spawning of replicated processes and the scoping of allocated
names.

Despite the radically different approaches to expressing compu-
tation, CPS transforms and π-encodings are interrelated. The major
difficulty in deriving a π-encoding from a CPS transform arises
from an important difference: functions in the λ-calculus can take
functions as arguments, but processes in the π-calculus send names,
rather than processes, over channels. In other words, λ is higher-
order, but π is first-order. We address this issue by introducing an
environment-based CPS transform, which uses names to refer to
values indirectly.

Take note that the translation into the π-calculus, both the naming
step and the transformation of functions into processes, is defined
generally for the entire CPS calculus. The translation from the CPS
λ-calculus to the π-calculus is not tied to the uniform CPS transform
discussed in Section 2 in particular, but can be used to convert any
CPS transform expressed in λcps into a π-encoding. For example,
we can derive a π-encoding for both Plotkin’s [18] original call-
by-value CPS transform and Danvy and Nielsen’s [9] first-order
one-pass CPS transform by composing them with the naming and
π-calculus translations.2

Environment-Based CPS Transform
So far, we have expressed argument passing by substitution: each
β-reduction substitutes the arguments for the free occurrences of
the corresponding variables. Effectively the term is rewritten so the
argument is copied in place of each occurrence. Interpreters typically
operate differently: each argument is put into an environment,

2 Additionally, multiple-argument functions produced by the CPS transforms
would need to be uncurried, as λcps does not allow for curried functions.

Terms: M,N ::= V (x+) | νx. x := λ(x+).M inN

Values: V ::= x
∣∣ λ(x+).M

Eval. Contexts: E ::= []
∣∣ νx. x := λ(x+).M in E

(λ(x+).M)(y+) −→ M{y+/x+} β

νf. f := λ(x+).M

in E[f(y+)]
−→

νf. f := λ(x+).M

in E[(λ(x+).M)(y+)]
deref

Figure 10. The value-named CPS λ-calculus, λcps,vn

indexed by the variable it is bound to. Then, when a variable appears,
its value is retrieved from the environment.

We can simulate this mechanism by giving a name to each
abstraction in argument position, substituting only names during
β-reduction and copying the value only as necessary. This is
analogous to graph rewriting, and it can be captured by extending
the syntax with a let construct [5]: a bound name identifies a
node in a graph. However, we present an alternative syntax which
explicitly expresses the dynamic allocation of fresh names. We write
νx. x :=λ(x+).M inN to indicate that a new name x is generated
and a λ-abstraction is bound to it. Note that we will always bind an
abstraction to a name immediately after allocation, and only then.
The value-named CPS λ-calculus, λcps,vn , is given in Fig. 10. Each
term is now an application inside some number of bindings, which
effectively serve as the environment. Each function application must
have only variables as the arguments.

Note that we now have nontrivial evaluation contexts, unlike
with λcps , whose only evaluation context was []. However, the
contexts in λcps,vn do not specify work to be done but simply
bindings for variables. To emphasize this, we call a context providing
only bindings a binding context, and say that a CPS calculus has
only binding contexts as evaluation contexts. It is also important to
observe that a ν specifies the static scope of the introduced name, so
that it is subject to α-equivalence in the same way as a λ-abstraction.
Furthermore, the deref rule carries the restriction that the the free
variables of λ(x+).M are not captured by a ν in the binding context
E, so that dereferencing a value does not unintentionally cause
capture of free names.

To convert an unnamed term to a named term, we introduce
a naming transform, N . The naming transform goes through all
arguments appearing in a term, referring to each λ-abstraction
indirectly by a new variable.

N JV (λ(x+).M)K , νy. y := λ(x+).N JMK inN JV (y)K

N JV (λ(x+).M,W)K , νy. y := λ(x+).N JMK inN JV (y,W)K

N JV (y, λ(x+).M)K , νz. z := λ(x+).N JMK inN JV (y, z)K

N JV (z+)K , N JV K(z+)

N JfK , f N Jλ(x+).MK , λ(x+).N JMK

For clarity, here we assume that each function has at most two argu-
ments, as is true for our CPS terms;N generalizes straightforwardly
by iteration. The naming transform may also be made compositional
by unfolding the definition ofN for every combination of named and
unnamed arguments (splitting clauses like N JV (λ(x+).M,W)K
into cases for W and then unfolding all non-compositional applica-
tions ofN on the right-hand side). Fig. 11 shows the composition
of the uniform CPS transform and the naming transform.

CvnJxK , λk. xk

CvnJλx.MK , λk. νf. f := λ(x, k′). CvnJMKk′ in kf

CvnJMNK ,

λk. νk′. k′ :=
(
λv.

νx. x := λk′′. CvnJNKk′′

in v(x, k)
)
in CvnJMKk′

CBN

λk. νk′. k′ :=
(
λv. νk′′. k′′ := (λw.

νx. x := λk′. k′w in v(x, k))
in CvnJNKk′′

)
in CvnJMKk′

CBV

Figure 11. Uniform CPS transform in named form

Correctness of the Naming Transform
Passing names instead of values has a subtle effect on the execution
of a program: the CPS terms now express sharing. Since values
aren’t copied but are shared among subterms, relating reductions of
unnamed terms to those of named terms requires care. For instance,
consider the CPS term M , (λx. f(x, x))(λx.N). It β-reduces
and duplicates (λx.N): M 7−→ f(λx.N, λx.N). Now consider
M under the naming transform, and how it only duplicates the name
for (λx.N):

N JMK , νy. y := λx.N JNK in (λx. f(x, x))y

7−→ νy. y := λx.N JNK in f(y, y)

Notice, however, that if we reduce M and then translate, we get
something different:

N Jf(λz.N, λz.N)K ,
νx. x := λz.N JNK in νy. y := λz.N JNK in f(x, y)

Now there is no sharing of the value λz.N . In short, reduction does
not commute with naming: reducing the named term can produce
shared references that do not appear when naming the reduced term.

The simplest way to build a simulation that relates terms up to
sharing is to remove all sharing from the terms and compare the
unnamed forms. This suggests a transform that “flattens” a term’s
bound variables:

N−1〈〈V (x+)〉〉 , N−1〈〈V 〉〉(x+)

N−1〈〈νx. x := λ(x+). N inM〉〉 , N−1〈〈M〉〉{λ(x+).N−1〈〈N〉〉/x}

N−1〈〈f〉〉 , f N−1〈〈λ(x+).M〉〉 , λ(x+).N−1〈〈M〉〉

Note thatN−1〈〈N JMK〉〉 is the same as M , so correctness ofN−1

implies thatN JMK is also correct.
Now we then wish to relate a final state of the form E[f(x+)],

where f is not bound by E, with a similar one f(V +) in the
unnamed calculus. We say that such a state is an answer if f is
ret and stuck otherwise. Our simulation relation then becomes just
the unnaming transform.

Definition 11. For a named CPS term P and an unnamed CPS term
M , let P ∼M when M ≡ N−1〈〈P 〉〉 by α-equivalence.

When we check that reduction in the named CPS calculus maps
to reduction in the unnamed CPS calculus, we find that deref steps
disappear since they are erased by the N−1 transform. Therefore,
we must consider deref to be an administrative step, which is
strongly normalizing since the next standard reduction is always a
β step. With this definition of administrative reduction in the named
calculus, the sufficient conditions from Fig. 7 follow immediately.
Observe that answers and stuck states in λcps,vn are preserved by
the substitution performed byN−1. The remaining diagrams from
Fig. 7 can be checked for the (proper) β and (administrative) deref
reductions of λcps,vn .

EJxKk , x〈k〉
EJλx.MKk , νf (k〈f〉 | !f(x, k). EJMKk)

EJMNKk ,

νk′ (EJMKk′ |

!k′(v).νx (v〈x, k〉 | !x(k′′). EJNKk′′))
CBN

νk′ (EJMKk′ | !k′(v).νk′′ (EJNKk′′ |
!k′′(w).νx (v〈x, k〉 | !x(k′). k′〈w〉))) CBV

Figure 12. The uniform π-encoding for CBN and CBV

Deriving a π-Encoding from the CPS Transform
We can now see that the value-named CPS language λcps,vn is “first-
order” in much the same way as the π-calculus. In fact, nearly every
construct in the named CPS calculus λcps,vn corresponds directly
to a construct in the π-calculus.

• An application x(y+) becomes a process x〈y+〉, which per-
forms a write on channel x, transmitting the tuple (y+), and
then halts.
• Each binding νx. x := λ(y+). N inM becomes a process of

the form νx (P | !x(y+). Q), where P and Q correspond to M
and N , respectively. This process allocates a fresh channel name
x, then runs a process P in parallel with the process !x(y+). Q.
The latter acts as a “server”: it listens on the channel x for a
request, then runs the process Q with the request’s values as
arguments. Notice that the read, x(y+), is always prefixed by
replication, !. This lets the server process handle any number of
requests over time. For example, when the process !x(k). k〈a〉
receives a request on channel x, it responds with a and creates a
duplicate of itself to do the same thing on the next request.

The only terms without counterparts are applications with λ-
abstractions in head position—that is, β-redexes. But we can handle
them by having them eliminated as part of the translation. Thus, we
can faithfully translate λcps,vn to the π-calculus:

PJV (y+)K , PJV Ky+

PJνx. x := λ(y+). N inMK , νx (PJMK | !x(y+).PJNK)

PJfKy+ , f〈y+〉
PJλ(x+).MKy+ , PJMK{y+/x+}

The subscripted form of P translates a term, given the arguments
it is being applied to, performing β-reduction as needed. These
reductions are strongly normalizing (as we will see shortly) and the
transform is compositional and defined by structural induction on
terms, ensuring that P is well-defined. Finally, we can derive the
π-calculus encoding, E , corresponding to any CPS transform, C,
targeting λcps by composing it with the naming transform N and
the π-calculus translation P:

EJMKk , PJN JCJMKkKK

The π-encoding derived from the uniform CPS transform in this way
is shown in Fig. 12. The final product coincides with the established
uniform π-encoding [20].3

Correctness of the π-Encoding
To prove the transform P correct, we need to be able to relate
the final states of the named CPS calculus with observations in
the π-calculus. For a π-calculus term P , we can observe whether

3 The final transform in Fig. 12 differs slightly from the uniform π-encoding
in the literature, in that all input processes are replicated, even those used
at most once (e.g. continuation processes). However, this is harmless, as
garbage collection is sound in the π-calculus (up to bisimulation).

Expressions: M,N ::= x
∣∣ λx.M ∣∣MN

∣∣
letx=M inN

Values: V ::= λx.M

Answers: A ::= V
∣∣ letx=M inA

Eval. Contexts: E,F ::= []
∣∣ EM ∣∣

letx= E in F [x]
∣∣

letx=M in E

(λx.M)N −→ letx=N inM βneed

(let y = L inA)N −→ let y = L inAN lift

letx= V in E[x] −→ letx= V in E[V] deref

letx=
let y = L

inA
in E[x] −→

let y = L in

letx=A in E[x]
assoc

Figure 13. The call-by-need λ-calculus, λneed

P is capable of performing a write on the free channel name
ret (possibly after some reductions). Therefore an answer of the
form E[retV] should relate to some process with an externally
visible write on channel ret. Stuck states similarly correspond
to observable writes. The simulation relation, M ∼ P , is just
the transform up to structural congruence, PJMK ≡ P . One
detail to note is that all available β-reductions in the named CPS
calculus are performed during the P transform. This means that
we need to consider β to be an administrative reduction; it is
strongly normalizing since every β-reduction reduces the number
of λ-abstractions in a term (since only names can be duplicated).
From this definition of the simulation relation and administrative
reduction, the sufficient conditions in Fig. 7 follow directly. Observe
that P turns answers and stuck states in λcps,vn into processes with
externally visible writes, and the remaining diagrams can be checked
for the (proper) deref and (administrative) β reductions.

6. Call-by-Need and Constructive Update
In order to better describe the behavior of implementations of lazy
languages, Ariola et al. [4] devised the call-by-need λ-calculus,
shown in Fig. 13, which accounts for memoization of computed
values. It introduces answers as a syntactic category: an answer
is a value surrounded by some number of let bindings. As let is
understood to be lazy, control passes into the bound expression
only when the value of a binding is needed. This is expressed by
evaluation contexts of the shape letx = E in F [x]: if the inner
expression has the form F [x] for some evaluation context F , that
means the value of x is required, so computation should take place
inside the binding for x.

There does exist a call-by-need CPS transform due to Okasaki
et al. [17] It requires mutable storage, which our CPS languages do
not support. However, suppose we borrow the := syntax from the
named CPS language λcps,vn . Then we can build on the uniform
CPS transform (Fig. 3) and use a call-by-need application rule:

CJMNK , λk. CJMK(λv. νx. x:=(
λk′. CJNK(λw. x := λk′′. k′′w in k′w)

)
in v(x, k))

This is similar to the Okasaki CPS transform. Unfortunately, it is
not valid λcps,vn syntax, as the operator := is only allowed to assign
to a variable immediately inside the ν that introduces it. The inner
continuation, λw. x := (λk′′. k′′w) in k′w, violates this restriction
by attempting to “overwrite” x. Of course, this is precisely what
we wish to happen: the term bound to x should change in order to

CJMNK , λk. CJMK(λv. νx. x :=1 memox(N) in v(x, k))

CJletx=N inMK

, λ̄k. νx. x :=1 memox(N) in CJMKk

memox(M) , λk. CJMK(λw. x := (λk′. k′w) in kw)

Figure 14. A call-by-need CPS transform using constructive update

cache the computed value. However, we don’t need the full power
of mutable storage; a much weaker effect will suffice.

To see this, suppose for a moment we allow := anywhere,
with the semantics of destructive update (that is, each assignment
overwrites any previous one). Inspecting the rule, we see that
each variable is now assigned to (at most) twice: once when it
is initialized with a thunk, and again when the thunk’s result is
memoized. However, after the second assignment, the stored value
never changes again. Furthermore, note that the initial thunk cannot
refer to x, even indirectly, as x is not in the scope of the computation
(our let is not recursive). Therefore, the initial thunk is only used
once; since that very thunk performs the second assignment, the first
lookup (via deref) must precede the second assignment, with no
other accesses in between.

In the language of data-flow analysis, after the first lookup, x
cannot be live. Hence its value does not matter. In other words, it
may as well have no value. If we clear x after the first lookup, then
the second assignment is just like the first: it is giving a value to
a variable that currently has none. This analysis suggests a special
assignment operation that always clears the variable the next time
it is used. The assigned value will therefore only be used once,
and thus the assignment is ephemeral, as opposed to permanent.
After a permanent assignment, the variable will never be cleared, so
permanent assignments are final.

Call-by-Need in the Uniform Transform
Writing x :=V inN for a permanent assignment and x :=1 V inN
for an ephemeral assignment, we can modify the call-by-need CPS
transform so that it does not require destructive update, as shown
in Fig. 14 (the cases for variables and abstractions are the same as
before). The initial thunk is now assigned ephemerally.

Note what has happened here: x takes on different values over
time, due to multiple assignments. Therefore it is fair to say it
was updated. However, no previous value was destroyed by any
update, and in fact a previous value cannot be destroyed. In other
words, update never changes the value associated with a name, but
only gives new meaning to names with no assigned value. In this
language, updates only construct, never destroy; hence we call the
phenomenon constructive update. The syntax and semantics for
permanent and ephemeral assignment are given in Fig. 15. The
deref 1 rule is similar to deref , only it also removes the ephemeral
assignment.

We have shown that terms produced by the call-by-need CPS
transform never attempt a double assignment—that is, they never
reduce to a term such as x := V in x :=W inM . Let us call such
terms safe:

Definition 12. A λ:=1
cps term M is safe when it does not reduce to a

term with a subterm of the form

x :=∗ V in E[x :=∗W inN]

where :=∗ stands for either := or :=1 in each appearance.

Proposition 13. For any term M , CJMK ret is safe.

Terms: M,N ::= V (V +)
∣∣ νx.M ∣∣

x := λ(x+).M inN
∣∣

x :=1 λ(x+).M inN

Values: V ::= x
∣∣ ret ∣∣ λ(x+).M

Eval. Cxts.: E ::= []
∣∣ νx.E ∣∣ x := λ(x+).M in E

∣∣
x :=1 λ(x+).M in E

(λ(x+).M)(V +) −→ M{V +/x+} β

f := λ(x+).M in

E[f(V +)]
−→

f := λ(x+).M in

E[(λ(x+).M)(V +)]
deref

f :=1 λ(x+).M in

E[f(V +)]
−→ E[(λ(x+).M)(V +)] deref 1

Figure 15. The CPS λ-calculus with constructive update, λ:=1
cps

Call-by-Need Abstract Machine
Just as we did with the uniform CPS transform, we can derive an
abstract machine from the call-by-need transform. First, we repre-
sent ephemeral assignment in store-passing style: a thunk assigned
ephemerally should be erased from store when it is accessed. We use
the symbol ⊥ to denote such a “missing” value; the store will bind
⊥ to a variable that has been allocated (by a ν) but currently has
no value. Using this representation, the functional correspondence
gives us the abstract machine in Fig. 16. There are machine states
for examining a term, a thunk, a continuation, or a closure, and a halt
state returning the final value and store. The store maps locations to
thunks, and the environment maps local variables to locations in the
store.

Notably, up to a few transition compressions, this abstract
machine is the same as one derived by Ager, Danvy, and Midtgaard
[2]4, except that a suspended computation is removed when it is
retrieved from the environment. In this way, it resembles the original
call-by-need abstract machine by Sestoft [21]. Without a letrec
form in the source, however, this difference in behavior cannot be
observed, since the symbol binding a computation cannot appear
free in the term being computed.

It is also quite similar to one derived recently by Danvy and
Zerny [10], which they call the lazy Krivine machine. The mecha-
nisms are superficially different in a few ways. For them, a thunk
is simply an unevaluated term, whereas we remember whether the
thunk has been evaluated before (and a few bookkeeping details).
However, this is merely a different choice for the division of respon-
sibility: we hand control to the thunk, and then the thunk determines
whether to set up an update or simply return a value. The lazy Kriv-
ine machine instead inspects the thunk when it is retrieved: if it is
a value, it is returned immediately, and otherwise it is evaluated.
Hence our thunks are tagged and theirs are not. The tags are largely
an artifact of the connection to the π-calculus translation—whether
an argument has been evaluated is evident from the structure of the
process representing it. Another difference is that the lazy Krivine
machine lacks an environment, relying entirely on the store.

7. Correctness of the Call-by-Need CPS
Transform

We would like to follow the same general outline used in Section 4
for the uniform CPS transform to show the correctness of the call-

4 Specifically, it resembles the first variant mentioned in section 3 of [2].

Locations: `, . . .

Terms: M,N ::= x
∣∣ λx.M ∣∣MN

Thunks: t ::= Susp〈M, `, ρ〉
∣∣ Memo〈f〉

∣∣ ⊥
Continuations: k ::= Ret〈〉

∣∣ Apply〈M,ρ, k〉
∣∣

Update〈`, k〉
Closures: f ::= Clos〈x,M, ρ〉

Stores: σ ::= ε
∣∣ σ[` = t]

Environments: ρ ::= ε
∣∣ ρ[x = `]

States: S ::= 〈M,σ, ρ, k〉M
∣∣ 〈t, σ, k〉T ∣∣

〈k, f, σ〉K
∣∣ 〈f, `, σ, k〉F ∣∣ 〈f, σ〉H

〈x, σ, ρ, k〉M 7−→ 〈t, σ, k〉T
where ρ(x) ≡ ` and σ(`) ≡ t

〈λx.M, σ, ρ, k〉M 7−→ 〈k,Clos〈x,M, ρ〉, σ〉K
〈MN,σ, ρ, k〉M 7−→ 〈M,σ, ρ,Apply〈N, ρ, k〉〉M

〈Susp〈M, `, ρ〉, σ, k〉T 7−→ 〈M,σ[` = ⊥], ρ,Update〈`, k〉〉M
〈Memo〈f〉, σ, k〉T 7−→ 〈k, f, σ〉K

〈Ret〈〉, f, σ〉K 7−→ 〈f, σ〉H
〈Apply〈M,ρ, k〉, f, σ〉K 7−→ 〈f, `, σ[` = Susp〈M, `, ρ〉], k〉F

where ` /∈ σ
〈Update〈`, k〉, f, σ〉K 7−→ 〈k, f, σ[` = Memo〈f〉]〉K

〈Clos〈x,M, ρ〉, `, σ, k〉F 7−→ 〈M,σ, ρ[x = `], k〉M
Figure 16. The abstract machine derived from C

by-need transform as well. However, attempting to do so directly
raises two serious issues:

1. The transformations of a function application and a let
binding introduce code that memoizes the result of a bound term
so that the result may be reused in the future. That means that
the first time a bound term is accessed and a result is returned,
that memoization code is “used up.” In other words, a term like
letx= V inM means something different in the CPS transform
before and after the first time M accesses the variable x.

2. The proof in Section 4 relied on Proposition 7, which implies
that for a source term E[R] where the next redex R is hidden in an
evaluation context, administrative reduction of the CPS transformed
term is strong enough to bring out the redex. This would suffice for
the call-by-need calculus except for evaluation contexts of the form
letx= E in F [x]. In this case, reduction of the transformed term
will have to look up x before finding the redex in E, which we may
not want to consider a mere administrative step.

In both cases, the root problem is that the call-by-need CPS
transform brings out some of the inherent statefulness of memo-
ization which is not expressed by the source calculus. Therefore
we address these issues by introducing annotations that track such
stateful transitions and allow us to devise reduction rules that more
closely mimic what is done by the CPS terms. Thus we factor the
correctness of the call-by-need CPS transform into two parts: cor-
rectness of the annotations, and correctness of the annotated CPS
transform.

Expressions: M,N ::= x
∣∣ V ∣∣MN

∣∣ lets x=M inN
∣∣

leta x=M in E[x]
∣∣

letv x= V inN

Values: V ::= λx.M

Eval. Cxts.: E,F ::= []
∣∣ EM ∣∣ lets x=M in E

∣∣
leta x= E in F [x]

∣∣
letv x= V in E

Bind. Cxts.: B ::= []
∣∣ lets x=M inB

∣∣
letv x= V inB

B[λx.M]N −→ B[lets x=N inM] βa

lets x=M in E[x] −→ leta x=M in E[x] act

leta x=B[V] in E[x] −→ B[letv x= V in E[V]] deact

letv x= V in E[x] −→ letv x= V in E[V] deref a

Figure 17. The annotated call-by-need λ-calculus, λaneed

Annotations
As discussed previously, there is an implicit statefulness in mem-
oization that is made manifest by the CPS transform. Specifically,
there are three stages in the life cycle of a let binding.

Suspended Initially, in letx = M inN the binding represents a
suspended computation. Computation takes place within N .

Active For x to be demanded, N must reduce to the form E[x].
Then the binding becomes active, with the form letx=M in
E[x], and computation takes place within M .

Memoized Eventually, M becomes an answer B[V], and the body
E[x] receives V , while the bindings in B are added to the
environment. Subsequently, the binding is letx= V inN , and
computation takes place within N .

Therefore we annotate each let, giving it a subscript s, a, or v
(for suspended, active, or value, respectively). We will need new
reduction rules, which we call act and deact , to represent binding
state transitions. The act rule simply marks the let as active, while
deact is more involved, as it must take the computed answer B[V],
add the bindings B to the surrounding context, mark the let as a
value, and finally plug V into the context that demanded x. Next, we
can simplify the language by considering the lift and assoc rules
as administrative, as they only serve to move parts of a redex closer
together. We can avoid this administrative work in the annotated
calculus by using a suggestion of Accattoli [1] for the π-calculus:
we express λneed using rules that apply at a distance, that is, where
parts of a redex are separated by an evaluation context. This lets us
merge every sequence of lifts with a β step, and every sequence of
assocs with a deref . These modifications to reduction give us the
annotated λa

need -calculus shown in Fig. 17.
We can transform an unannotated term into an annotated one,

writtenAJMK, by annotating every let with s. However, it is easier
to begin with an annotated term since it contains more information,
and to work the other way by removing all the annotations with
the inverse transform A−1. Note that A−1〈〈AJMK〉〉 ,M , so that
the correctness of A−1 implies the correctness of A. We want to
relate answers of the form B[V] and stuck terms of the form E[x],
for a free variable x, in their respective calculi. The simulation
relation that we will use, M ∼ P , relates annotated terms to
their erasure, P , A−1〈〈M〉〉. With this relation, we can see that
the act rule in the annotated calculus is administrative, and it is

CaJxK , λ̄k. xk

CaJλx.MK , λ̄k. k(λ(x, k′). CaJMKk′)

CaJMNK , λ̄k. CaJMK(λ̄v. νx. x :=1 memox(N) in v(x, k))

CaJlets x=N inMK

, λ̄k. νx. x :=1 memox(N) in CaJMKk
CaJleta x=N in E[x]K

, λ̄k. νx. (λ̄y. CaJE[y]Kk)(memox(N))

CaJletv x= V inMK

, λ̄k. νx. x := CaJV K in CaJMKk

memox(M) , λ̄k. CaJMK(λv. x := (λ̄k′. k′v) in kv)

Figure 18. The call-by-need CPS transform on annotated terms.

strongly normalizing since it reduces the number of s annotations in
a term. The sufficient conditions in Fig. 7 then follow immediately.
Observe that removing the annotations preserves answers and stuck
states, and the remaining diagrams can be checked by cases for
the proper (βa, deact, derefa) and administrative (act) reductions
of λa

need . Note that βa incorporates some lift steps in λneed , and
deact incorporates some assoc steps.

Annotated CPS Transform
We would like to follow the proof in Section 4 of the correctness of
the uniform CPS transform as closely as possible. To that end, we
define our transform similarly as CaJMK ret, as shown in Fig. 18.
Notice that in the transformation of leta, by choosing a fresh y we
can use an administrative reduction substitute the memoized term
exactly once into the hole in E. Our goal is then to ensure that an
answer in the annotated calculus, which is of the form B[V], relates
to an answer in the CPS transform, which is of the form B[retV].
Likewise, we also want evaluation to stuck states of the form E[x]
in the annotated calculus to relate to some stuck state of the form
B[xV] in the CPS transform.

As before, we need to define the simulation relation ∼ to
relate terms in a way that lets us ignore administrative reductions.
The administrative reductions include the βad rule for marked λ-
abstractions, which are shown in Fig. 18. However, we will find that
this alone is not enough, since reduction of the CPS transform gets
out of sync with the original term in another way. Specifically, the
deact rule for a term like leta x = B[V] in E[x] remembers the
shared value by updating the binding of a variable x. In the CPS
transform this updated assignment to x occurs inside of E[x], but
if we were to transform the resulting term B[letv x= V in E[V]]
we would find the assignment to x at the introduction of the let.
Therefore, we also need to be able to relate terms up to a stronger
notion of congruence that ignores different orders of assignments,
and so we extend the administrative reductions with a rule

x := λ(x+). N in E[M] −→ad E[x := λ(x+). N inM] lift

that transports an assignment. As a side condition, lift requires that
x is not captured by a νx in E.

In the end, we define the simulation relation ∼ in terms of βad
and lift congruence:

Definition 14. M ∼ P iff CaJMK ret =ad P .

Note that the lift rule is purely for mediating the simulation and is
never a standard reduction, since the next β or deref step neither
depends on nor is affected by lift .

We now need to demonstrate the conditions in Fig. 7, and
as in Section 4 the initial condition is trivial. Next, because the
reduction rules of λa

need make use of evaluation contexts, we need
to understand how the CPS transform interprets evaluation contexts
to show the inductive step. What we find is similar to Proposition 7,
except now administrative standard reduction converts an evaluation
context in the annotated calculus into a continuation and a binding
context in the CPS calculus.

Proposition 15. For each evaluation context E in λa
need , there is a

continuation K′ and binding context B′ such that for every term
M , CaJE[M]K ret 7−→−→ad B

′[CaJMKK′].

Intuitively, the continuation K′ represents the applicative part of
the evaluation context of the form EM and the binding context
B′ represents the part of the evaluation context that goes under a
let binding. We can then make use of Proposition 15 to show by
calculation that if M −→ N at the top level, then

CaJMK ret 7−→−→ad 7−→pr=ad CJNK ret (6)

For most rules, the final =ad is just βad, but for the act rule, the
final =ad must make use of lift to pull out the updated assignment
of the bound variable. Generalizing this statement to establish the
inductive step of the simulation follows the same procedure as
before in Section 4. First, in order to establish (6) for reduction in
an evaluation context, we make further use of Proposition 15 to
bring out the redex inside of M and the result of reduction inside
of N . Second, in order to establish (6) for any starting point in the
relation, we need to commute administrative equality across proper
reductions, as we did before with Lemma 8.

Lemma 16. If M =ad M
′ 7−→pr N then there is an N ′ such that

M 7−→+ N ′ =ad N .

Proof. The same as the proof of Lemma 8, again relying on similar
properties of confluence, standardization, and commutation of
administrative and proper steps for the administrative reduction
relation of λ:=1

cps . �

This allows us to complete the diagrams in Fig. 7; the remainder of
the proof follows similarly to Section 4.

Proposition 17. If M 7−→ N and M ∼ P then there is a N ∼ Q
such that P 7−→+ Q.

Proposition 18. 1. If P =ad P
′ and P ↓ then P ⇓′.

2. If P =ad P
′ and P 6 ↓, then P ′ 6⇓.

8. Call-by-Need and Processes
In Section 5, the π-encoding of the λcps,vn -calculus reached a very
small subset of the π-calculus. Recall that the “server” processes,
created by permanent assignments, always respond in exactly the
same way every time they are invoked. However, the full π-calculus
allows us to write server processes that change their behavior
over the course of their lifetime, responding differently from one
request to the next. This is achieved by having processes with read
operations that are not replicated. For example, we could have a
process like x(k). (k〈b〉 | !x(k). k〈a〉), which responds to its first
request with the answer b and then becomes a replicated process
that always responds with a. This type of statefulness is key for
encoding call-by-need, as a thunk’s behavior changes after its first
evaluation.

Naming and Constructive Update
The naming transform of λ:=1

cps is effectively the same as before in
Section 5, with the small difference that we are now starting with
terms that already have some amount of naming in them. Therefore,

we extend the previous transform to preserve any existing naming
in a term, and to give names to function arguments as before:

N Jνx.MK , νx.N JMK

N Jx := (λ(y+). N) inMK , x := (λ(y+).N JNK) inN JMK

N Jx :=1 (λ(y+). N) inMK , x :=1 (λ(y+).N JNK) inN JMK

Note that this newN transform converts a λ:=1
cps term into a subset of

the full λ:=1
cps -calculus where function arguments must be variables.

Before, we proved correctness of the naming transform by
instead considering the inverse transform that removes all sharing
from a term. However, since we now begin with a term that has
some amount of sharing, an inverse transform is no longer so
straightforward. For that reason, we instead show the correctness
of naming directly, which forces us to reason up to “extra sharing.”
This relation M ≺ P , read “M has less sharing than P ,” is defined
as the reflexive, transitive closure of the rule

M{V/x} ≺ νy. y := V inM{y/x}
where y is not a free variable of V or M . Intuitively, this relation
states that substitution can just as well be implemented by a
permanent assignment on a private name without changing the
behavior of a term. We then define the simulation relation as the
naming transform up to extra sharing.

Definition 19. M ∼ P iffN JMK ≺ P .

We now need to establish the sufficient conditions for correct-
ness. The initial condition is satisfied by reflexivity, and the final
conditions come from the fact that if M ≺ P then M is an answer
iff P is (and likewise for stuck terms). We therefore only need to
demonstrate the inductive step. We can show that ifM 7−→ N , then
there is a Q such that:

N JMK 7−→ Q N JNK ≺ Q (7)

So it remains to show that any P with more sharing than N JMK
will do something similar.

Proposition 20. If M 7−→ N and M ≺ P then there is a Q such
that P 7−→+ Q and N ≺ Q.

For the deref and deref1 rules, this is immediate. The most difficult
case is for the β rule, where in the worst case P may have to do a
deref step to lookup the extra name followed by a β step. Therefore,
all the conditions of Fig. 7 hold.

Deriving a π-Encoding with Update
We also extend our previous π-encoding from Section 5 to account
for both permanent and ephemeral assignments as follows:

PJνx.MK , νx (PJMK)

PJx := λy+. N inMK , PJMK | !x(y+).PJNK

PJx :=1 λy
+. N inMK , PJMK | x(y+).PJNK

As discussed, a permanent assignment corresponds to a repli-
cated server process that continually responds in the same way,
whereas for ephemeral assignment the server is not replicated
and therefore disappears when it is first invoked. Composing to-
gether the call-by-need CPS, naming, and π transforms, so that
EJMKk , PJN JCJMKkKK, we arrive at the same call-by-need π-
encoding (Fig. 19) found in the literature [6, 20] (up to replication
of processes that are only used once).

Correctness of the extended P transform follows the same
general proof as from Section 5: finished terms of the form B[xV]
correspond to processes with an externally visible write on channel
x, and the simulation relation is just the P transform. The deref1
rule for ephemeral assignment is exactly simulated by the behavior

EJxKk , x〈k〉
EJλx.MKk , νf (k〈f〉 | !f(x, k). EJMKk)

EJMNKk , νh (EJMKh | !h(v).νx (v〈x, k〉 |memox(M)))

EJletx=N inMK

, νx (EJMKk |memox(M))

memox(M) , x(k).νh (EJMKh | !h(w). (k〈w〉 | !x(k′). k′〈w〉))

Figure 19. The π-encoding for call-by-need

of an unreplicated server process. The conditions from Fig. 7 follow
directly, since P preserves the final states and reductions of λ:=1

cps .

9. Related Work
Brock and Ostheimer [6] gave a proof of correctness for the call-by-
need π-calculus encoding, but without connecting it to CPS. Okasaki
et al. [17] gave a CPS transform for call-by-need by targeting a
calculus with mutable storage.

The first proof that the λ-calculus could be encoded in the π-
calculus was due to Milner [15], who gave encodings (quite different
from those considered here) for call-by-value and call-by-name.
The connection to CPS was developed by Sangiorgi [19], who
showed that CBN and CBV CPS transforms could be translated
into the higher-order π-calculus, which can then be compiled to
the usual first-order π-calculus. The compilation is analogous to the
naming transforms considered here. Our approach, where names
and sharing are handled outside of the π-calculus, was introduced
by Amadio [3].

Accattoli [1] arrives at different CBN and CBV π-encodings
by taking another approach entirely: he begins by extending the
source calculi with explicit substitutions, employing a linear head
reduction strategy reminiscent of call-by-need. Since linear head
reduction performs substitutions one at a time and only when
needed, reductions in the modified calculi then correspond to π-
calculus reductions one-to-one, making for straightforward proofs
of correctness for the derived encodings. His development is related
to that by Toninho, Caires, and Pfenning [22], which relates the
simply-typed λ-calculus to the π-calculus via linear logic.

The advantages of using distance rules to eliminate adminis-
trative work have been explored by Chang and Felleisen [7], who
reformulate the call-by-need λ-calculus using a single β-rule; and
by Accattoli [1], who expresses both (modified) λ-calculi and the
π-calculus using distance rules.

Finally, while the exact form of the annotated call-by-need λ-
calculus considered here is new, such “preprocessed” forms have
been considered elsewhere and are similar. In particular, both Brock
and Ostheimer [6] and Danvy and Zerny [10] include versions of
what we call leta, the “active let.”

10. Conclusion and Future Work
Separate lines of work have connected CPS transforms to the π-
calculus and to abstract machines, both in the context of call-by-
value and call-by-name evaluation. In this paper, we bring them
together, extending the inter-derivation of semantic artifacts to
include π-encodings, and moreover we show that a more limited
effect than mutable state in the target CPS calculus is required
to give a direct account of memoization and to extend the full
correspondence to call-by-need evaluation. The transformation from
CPS to processes applies to an entire language of CPS programs,
giving a general and systematic method for deriving a π-encoding

from CPS transforms. To show this, we study a less-known uniform
CPS transform with variations for each evaluation strategy and
present how to derive the different semantic artifacts. Considering
the correspondence between the call-by-need CPS transform and
π-encoding has brought to light a new effect which more precisely
expresses memoization and which may be interesting in its own
right. As future work, we plan to capitalize on this connection by
exploring whether the type systems for the π-calculus [20] can
delineate a typed call-by-need CPS transform.

Acknowledgements
We would like to thank Olivier Danvy for his encouragement in
pursuing this line of research, as well as the anonymous reviewers
for their feedback and help in improving this paper. Paul Downen,
Luke Maurer, and Zena M. Ariola have been supported by NSF
grant CCF-0917329. Luke Maurer was also supported by an INRIA
internship in the joint team πr2.

References
[1] B. Accattoli. Evaluating functions as processes. In TERMGRAPH,

pages 41–55, 2013.
[2] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional

correspondence between evaluators and abstract machines. In PPDP,
pages 8–19, 2003.

[3] R. Amadio. A decompilation of the pi-calculus and its application to
termination. (CNRS 7126), 2011.

[4] Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. JFP,
7(3):265–301, 1997.

[5] Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursion.
IC, 139, 1996.

[6] S. Brock and G. Ostheimer. Process semantics of graph reduction. In
CONCUR, pages 471–485, 1995.

[7] S. Chang and M. Felleisen. The call-by-need lambda calculus, revisited.
In PLS, pages 128–147. 2012.

[8] O. Danvy and A. Filinski. Representing control: A study of the CPS
transformation. MSCS, 2(04), 1992.

[9] O. Danvy and L. R. Nielsen. A first-order one-pass CPS transformation.
TCS, 308(1):239–257, 2003.

[10] O. Danvy and I. Zerny. A synthetic operational account of call-by-need
evaluation. In PPDP, 2013.

[11] M. Felleisen and D. Friedman. Control operators, the SECD-machine,
and the λ-calculus. In FDPC, 1986.

[12] J. Hatcliff and O. Danvy. A generic account of continuation-passing
styles. In POPL, pages 458–471, 1994.

[13] J.-L. Krivine. A call-by-name lambda-calculus machine. HOSC,
20(3):199–207, 2007.

[14] X. Leroy. A formally verified compiler back-end. Journal of Automated
Reasoning, 43(4):363–446, 2009.

[15] R. Milner. Functions as processes. MSCS, 2(02):119–141, 1992.
[16] R. Milner. Elements of interaction: Turing award lecture. Commun.

ACM, 36(1):78–89, Jan. 1993.
[17] C. Okasaki, P. Lee, and D. Tarditi. Call-by-need and continuation-

passing style. LISC, 7(1):57–81, 1994.
[18] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. TCS,

1(2):125–159, 1975.
[19] D. Sangiorgi. From λ to π; or, rediscovering continuations. MSCS,

9(4):367–401, July 1999.
[20] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile

Processes. Cambridge Univ. Press, 2003.
[21] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional

Programming, 7(03):231–264, 1997.
[22] B. Toninho, L. Caires, and F. Pfenning. Functions as session-typed

processes. In FoSSaCS, pages 346–360, 2012.

	Introduction
	Call-by-Name and -Value
	Preservation of Observations
	Correctness of the Uniform CPS Transform
	CPS and Processes
	Call-by-Need and Constructive Update
	Correctness of the Call-by-Need CPS Transform
	Call-by-Need and Processes
	Related Work
	Conclusion and Future Work

