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Abstract. We propose how to present and compute a counterexample halghstic
LTL model checking for discrete-time Markov chains. In qtaive probabilistic model
checking, we present a counterexample as a(paif) wherea, y are finite words such
that all paths that extenal and have infinitely many occurrencesyofiolate the speci-
fication. In quantitative probabilistic model checking, present a counterexample as a
pair (W, R) whereW is a set of such finite words andRis a set of such finite wordg
Moreover, we suggest how the presented counterexample tiedpiser to identify the
underlying error in the system through an interactive garitle the model checker.

1 Introduction

A counterexample in LTL model checking is an execution ph#t iolates the LTL
specification. This counterexample path should help the toseentify and repair an
error in the system. However a counterexample path is inrgémdinite, and if we
want to show it to the user, we must find a finite representaliothe case of classical
LTL model checking, we can exploit the fact thapariodic counterexample always
exists (see e.g. [18]), i.e., an execution path of the fagf, wherea andy are finite
words.

In the probabilistic LTL model checking problem that we coes here, we are
given an LTL formula® and a discrete-time finite state Markov chain generating a
probability measur®, and we want to check whethBf®] >t (or P[] > t). A coun-
terexample witnessing the violation of this assertion erdéifiore a se¥ of execution
paths violatingb such thaf?[Y] > 1—t (resp.P[Y] > 1—t). In general such a set is not
only infinite, but almost all of its paths are aperiodic. Haancsuch a counterexample
be presented to the user to provide useful debugging infiniz

In this paper, we show how a counterexample can be presemtecbanputed, and
we suggest how the user should interact with the model chégKind the error.

We start by considering the special case of qualitative gindistic model checking,
i.e., the question wheth&[d] = 1. We propose to represent a qualitative counterex-
ample as a paifa, y), where

— ais afinite path such thalmost allpaths extending violate the specification and
hence the specification is violated with at least the prdialof a. Thereforea
shows where the probability is lost.
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— yis afinite word in a bottom strongly connected component shatall paths that
extenda and that have infinitely many occurrencesyofiolate the specification.
The wordy witnesses that almost all paths extendingiolate the specification.
The pair(a,y) is presented to the user in an interactive game with the nubdeker.

The user tries to construct a path extendingnd satisfying the specification, while the
model checker ensures thabccurs infinitely often. By failing to construct such a path
the user finds an error in the system.

We then show that this approach can be extended to the catamticaset(< 1),
where in general a s&¥ of such finite pathst and a seR of such finite wordy has to
be considered.

Finally we show how such a counterexample can be computebyildeon a model
checking algorithm by Courcoubetis and Yannakakis [8],cltiiowever has to be sub-
stantially complemented for our purposes.

We discuss related work in Section 6.

2 Preliminaries

We assume that the reader is familiar with Kripke structudiscrete-time Markov
chains, linear temporal logic (LTL) and-regular languages. We briefly recall the basic
definitions to introduce conventions and fix the notation. p¥evide references for
further reading.

2.1 Words

Let Q be a set ofstates The set of infinite, finite, nonempty finite words owv@ris
denotedQ®, Q*,Q™, respectively. Usually, p denote elements @, a, 3.y, d elements
of Q*, x an element 0Q®, zan element 0Q® U Q*, andA the empty word.

We writea C zif a is a prefix ofz. If a C z, zis called arextensiorof a. We define
al:={x|a Cx} andz|:= {a | a C z}. Similarly, givenW C Q* andY C Q°U Q*,
W1:=U{aT] a € W} (the set ofextensions of WandY |:= U{z|| z€ Y}.

2.2 Probabilistic Systems

A system(Kripke structure)Z = (Q,S,—,Vv) consists of a finite se@ of states a
nonempty seBC Q of initial states astate relation—C Q x Q and avaluation function
v: Q— 2*" mapping each statgto a set/(q) C AP of atomic propositionsWe assume
here that for each € Qthere is @p € Q so thatg — p. Thesizeof Z is |Z| := |Q| + |—|.

A path fragment (ok) is a wordgpQs ... € QPUQ* such thagi_1 — ¢, i > 0. A
path (ofZ) is a path fragmergzwith g € S. The empty word is also a path and a path
fragment ofz. The sepath;,(Z) contains all finite, angath, (%) all infinite paths of.

Often we viewX as the directed grapl®, —). A setK C Q s astrongly connected
component (oE) (scc for short) if it is a strongly connected component@f—) (see
e.g. [7]). Abottom strongly connected component ¥df(bscc) is an sc& with no
outgoing edges, i.e., §j € K andq — p, thenp € K.

A (labelled discrete-time) Markov chafgsee e.g. [6, 16]) is a systeln= (Q, S, —,V)
equipped withtransition probabilitiesgiven by P : Q x Q — [0,1] and initial prob-
abilities given byPy,; : Q — [0,1], whereP(q,p) > 0 iff g — p, Pni(q) > 0iff g€ S,
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Y pcoP(a,p) = 1, andy o Pni(q) = 1. Itis well-known (see e.g. [6, 16]) that a Markov
chain induces a measuPeon theo-algebraB(Q®) induced by the basic cylinder sets
af, a € Q* with the propertyP[qo...gnT] = Pini(do) i1 P(Gi-1,Gi), o---Gn € QT

A measure induced by a Markov chain is calldrkov measureWe later refer to a
Markov chain simply a&, P.

2.3 Temporal Properties

A (linear-time temporal) propertydenotedy,Z, is a subset oQ“. We mainly consider
properties expressible in linear temporal logic (LTL) [l use the notation intro-
duced in [11]. A formulain LTL is built from atomic propositins inAP, true, falseand
the boolean and temporal connectives/, -, =, < and X U,G,F. Thesize|®| of a
formula is the number of its temporal and boolean connestive

An LTL formula @ is interpreted in the context of a systéin= (Q,S,—,v) over
wordsx € Q®. Fori € N, x,i F @ means thax satisfiesp at position i(in the usual sense
[11]). Moreoverx E @ (“x satisfies®”) abbreviatex,0F ®; > E ® (“ Z satisfiesd”)
meansc = ® for all x € path,(Z). We writeSa{%, ®) for the set of all infinite paths of
X satisfying®. For convenience, we often wrigai{®) or @ instead ofSa(Z, ®). In
particular,Sa{true) = path,(Z). A formula@ without temporal connectives isstate
formula Forg e Q, gF ¢ (“q satisfiesq’) iff gxF ¢ for all (or equivalently some)
x e QY.

To simplify the presentation, we suppose that for eqehQ there is an atomic
propositionag that holds ing and only there. In our examples, we do not explicitly
mention such atomic propositiorag. For better readability of formulas, we writg
instead ofag, goQz...0n instead ofgg A X(gr A...X(0n)...) andA instead oftrue.
These assumptions do not have an impact on the results oafies.p

An w-regular propertyis a property that is accepted by soBig&hi automatonAny
LTL formula expresses aw-regular property. Anyo-regular property isneasurablg
i.e., a member oB(Q") (see [21]).

3 Qualitative Counterexamples

In this section, we consider the question whethigb] = 1, where® is an LTL for-
mula andP a Markov measure. Probabilistic satisfaction can be searspgcial form
of quantification, but our traditional understanding of aicterexample is tightly con-
nected with universal quantification. Say, we want to un@deswhy a CTL* formula
of the formA.® does not hold, wher@ is an LTL formula. We display a classical linear
counterexample path in this case. The system has more loeh#van expected and the
model checker displays the path as an example of the adaliti@haviour. The user can
then replay the path to see where the actual behaviour deviiam her expectation,
which is where she should find the error in the system.

The situation is different for existential quantificatid®®ay we want to understand
why a CTL* formulaE.® is violated, agairn® being an LTL formula. For example,
E.® could express the property that there exists a run of thesystich that ‘someone
wins the jackpot'. If the formula is false, the answer of thedal checker is just ‘no’.
The information to be returned could be the entire systemvsigpthe absence of a
path satisfyingpd. Of course, that is not very informative. To find the error, suggest

June 9, 2009
3



1. [MS says: changed]

that the proof burden should be reversed, i.e., the useldimyuto display a witness
for the formula. She should have an idea on what the path Ibkdsin the example:
she know$owsomeone could win the jackpot in the system. She can thea tgptay
that path. Since the desired path does not exist in the systenuser will find in this
way a point where the behaviour of the system deviates franexygectations.

The interaction between user and model checker that we pedpothe probabilis-
tic case will be a mixture of the universal and the existécaae.

3.1 Examples of Counterexamples

To approach the problem for Markov chains, we consider nowva dxamples. By

default, the examples are based on the sy&en{Q, S, —,v) below. For the qualitative

case the particular transition probabilities of the Markbwain are not relevant (see e.g.

[20]); so we do not display them.

Each of the examples considers an LTL/_>

formula® for whichP[®] < 1, and in &/@
S a1 G2 a3 7

each case we will discuss what a coun-

terexample should look like.

Example 3.1.Let ® = G—a. Since® is a safety property, if it is violated, there is a
finite patha such that each extension afviolates®. This is the case for the path
o = 10. SinceP[q1021] > 0, we haveP (@] < 1. As in classical model checking, it is
sufficient to display the violating finite pathto the user as a counterexample.

Example 3.2.Let ® = Fa. There is a finite patht := q10z in the system such that each
extension ofx into patho(Z} violates®, i.e., no extension af into path,(X) contains
ana-state. This clearly proves thA{®] < 1. In contrast to the previous example, not all
extensions ofi but only the extensions intoath, (%) violate d. Hence, the inspection
of o may not be sufficient to find the error; the user also has to tadestructure of
> into account. Similar to the CTL* case discussed above, fgg who designed the
system should have an idea on how to reach-atate, once was executed. Trying to
play such a path, which does not exist, she will eventually fire point in the system
where actual and expected behaviour deviate.

Example 3.3.Let ® = F G—b. We recall that, in any Markov chain, a path eventually
enters a bscc with probability one. For each (reachable)sa path eventually enters
K with nonzero probability, and then, with probability 1, isiks all states oK infinitely
often. (These facts are well-known and also follow from Learwin3.) Any run that
infinitely often visits ab-state violatesp. The system above has a (reachable) bscc that
contains &-state, and therefore the specification is violated withzeoo probability.

To show that to the user, we propose that the model checkengsb-state within
a bscc, namelyy. The user then convinces herself that (i) thstate indeed belongs to
a (reachable) bscc and (i) repeatedly visitingbhstate violatesp. The latter point (ii)
is straightforward in this case. To convince herself ofttig user plays the following
interactive game with the model checker: She tries to finditefpath3 so thatq, is
unreachable aftef. If she believes tha® has probability 1, she has an idea of how
to do so. The model checker then goes bacistoThe system must deviate from the
expected behaviour in at least one of these two moves.
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Example 3.4.Let ® = GFb = Fa. Repeatedly visiting #&-state without visiting an
a-state violatesb. The specification does not have probability 1, since theasehbscc
containing a-state but n@-state, and that bscc can be reached without passing through
ana-state. We propose that the model checker outputsda := g10s. The user then
convinces herself that (4 belongs to a bscc, and thateads to that bscc, and (i) any
path starting witho, and visitinggy infinitely often violates®. To this end, she plays

the following game with the model checker: The model chegkaysa. To convince
herself of (i) the user tries to externd so thatgs becomes unreachable; the model
checker then goes back tp. If that does not help to discover the error, she tries to
refute (ii) by extending to o} € path;,(Z) so thatp visits ana-state.

In Example 3.1 and 3.2, a counterexample is represented bigeagatha such that
> FEa=—-®. This representation is not sufficiently expressive forigkes 3.3 and 3.4.
Therefore we use the more general representétion), o € path,(2), g € Q such that
> EaAGFg=—®. Note that, in the above examples, the form@ls violated afte
with probability one, andj witnesses that. The statds in particular important, when
o leads to a large bscc.

There are however still situations, where counterexangdlgse form(a, q) cannot
be found, and instead of the single stqise need a path fragment:

Example 3.5.Considerd = F G(a = aU b) with the following system:

There are nax,q with Z E (a A GFq) = —®. But any

path ofZ that visitsy := g1 infinitely often violatesb. e e Gs
a1

We therefore consider counterexamples of the farm

GFy, a € pathy, (%), y € Q*. Below we prove that such
a counterexample always exists wh@rhas probability G2 ‘ Q Ga
less than one.

3.2 Presenting a Qualitative Counterexample

According to the discussion in the previous section, we psepo represent a quali-
tative counterexample as a péir,y) wherea is a finite path of the system ands a
finite path fragment within some bscc of the system.

Definition 3.6. A finite path fragment belonging to a bscc of a systeis called a
recurrent word (o). Leta be a finite path ang a recurrent word o>. We say thay
refutesa property Yin the context: just when:
1. if y# A, thena leads to the bscc of, that is, the bscc of is the unique bscc
reachable aften,
2. a7 NnSa(GFy)NY = g, i.e., any path starting witlu and repeatingy infinitely
often violates Y .

If y refutesY in the contexta, then the pair(a,y) represents the set of paths
ol NSalG Fy) violatingY; a describes how the violations begin anestricts their be-
haviour in the long run. The pafo,y) represents a qualitative counterexample because
a1 NSa{G Fy) has nonzero probability, as we will see in Section 3.3. Irtipalar,
almost all paths that exteredviolateY. In this senseq is a ‘bad’ prefix of the system.
The wordy withesses that is ‘bad’ in this sense.
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2. [MS says: changed]

We propose to use this representation of a qualitative epsexample in an interac-
tion between the user and the model checker as follows.tRgghodel checker outputs
a andy and claims thay is a recurrent word refuting in the contextr. Then the user
can challenge that claim in the following ways:

1. If y= A, then the user tries to construct a path that extendsad satisfiesp. In
failing to do so, she will find a point where actual and expettehaviour deviate.
2.1. She challenges that~ A belongs to any bscc at all or that afteonly that bscc is
reachable by constructing a patP after which, in her opiniony is unreachable.

The model checker refutes this challenge by returdisgch thatBdy € pathy, (X).
2.2. She challenges! NSa{G Fy) N Saf®) = &, wherey # A, by constructing a path

X = 0B1yBay. .., which she believes to satisfyy. In failing to construct such a path,

she will observe that expected and actual behaviour of tsesydiffer.

The pathx can be constructed interactively: The model checker statksa. The

user wants to extenalto a path that ultimately satisfigx but she may only append

a finite word at a time, allowing the model checker to appernd between. If

the user appends a word that allows the model checker to dppeinectly, the

model checker does so. Otherwise the model checker suggasts extension of
the current finite path that allows it to appepdfterwards. This interaction goes
on until the user has found some unexpected behaviour of/tters.

In practice, the user cannot play forever. But she can treteegate a periodic path,

i.e., of the formaB1(yB2)®. It is well-known that an LTL formula is violated only

if it has a periodic counterexample.

3.3 Soundness and Completeness

Let> = (Q,S —,V),P be a Markov chain an¥ a property. In this section, we show
that our proposal to present qualitative counterexamplesuind and complete, i.e., the
existence of(a,y) impliesP[Y] < 1 and vice versa. In fact, using results from [20],
we can show that our proposal is sound for arbitrary progermind complete if the
specification igo-regular.

Theorem 3.7.
1. Ifyis arecurrent word refuting Y in the contextthenP[Y | al] =0andP[Y] < 1.
2. Suppose Y isxregular. If P[Y] < 1, then there is aro € path;,(Z) such that
P[Y | aT] = 0. Moreover, ifa € pathy,(Z) with P[Y | af] = 0 and aftera only one
bscc is reachable, there is a recurrent wgreefuting Y in the contexd.

The assumption in 2 that is w-regular cannot be dropped. Take the Markov chain
with two statesg, p both being initial states. From any state the next statgwsth
probability /3 andp with probability 2/3. On one hand, it can be shown by the Borel-
Cantelli Lemma that the properly “at infinitely many positions, the number of pre-
vious p's equals the number of previogs” has probability zero. On the other hand,
there is no recurrent wongrefuting in some contexti: a path inSa{G Fy)naT nNY
can be constructed by extendiagvisiting y infinitely often and, between thgés, mak-
ing the number of previoup’'s equal the number of previougs. A similar example
shows that the theorem rests on the assumption that thersisstmite.

We conclude this section by comparing our notion of recunngmdyin a contextx
with the periodic path& (¥)® used as counterexamplesin classical model checking. The
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pair (a,y) describes the set of all infinite paths extendingnd executing infinitely

often, which has nonzero probability. The periodic piaff)® has in genergl probability

zero. (The probability is nonzero only §fbelongs to a “ring-like” bscC.)Even the 3. [Ms says: changed]
set of all periodic paths has in general probability zeradose it is a countable set.

In the probabilistic setting, counterexamples must havezam probability; therefore

periodic paths are unsuitable as counterexamples.

4 Quantitative Counterexamples

In this section, we discuss quantitative statements. Iifid@ving, let>~ = (Q,S,—,v)
be a systemP a Markov measurep an LTL formula andY a property. The corre-
sponding question for a counterexample (or a witness) demdae of the following
four shapes:

1. WhyisP[®] <t? (t<l) 3. Why isP[®] < t? (t>0)

2. Why isP[®] >t? (t>0) 4. Why isP[®] >1t? (t<1)
Questions 2 and 4 can be reduced to Questions 1 and 3, reshediy negating the
specification. Usuallz}/, guantitative probabilistic modkeckers compute the probabil-
ity of the specification Hence, we knowP [#] before computing a counterexample, and [ms says: changed]
can therefore reduce Question 3 to Question 1 by considarimgund betweenand
P [®]. We therefore restrict our attention to Question 1.

4.1 Presenting a Quantitative Counterexample

In some cases, a qualitative counterexample can be usediasititgtive counterexam-
ple; that is, however, not always possible:

Example 4.1.Consider the Markov chaib, P below together withh = F Ga.
Note thatP [®] = 0. There is are-
current wordy = gy refuting ®

in the contexta = qi02. What ¢ as

does it tell us about the proba- 05 05
bility of ®? SinceP[® | al] =0, o o
we haveP [®] <1—-P[a7] =0.5. ‘ ‘

0.5 0.5 0.5 0.5

However, this does not answer
the question of why i®[®] < 0.
The problem is that the pain,y) only gives information about one bscc, namely the
left one, but a proof fo? [®] < 0 must involve both bsccs. To overcome this problem,
we will consider counterexamples with several recurrentdspso that different bsccs
can be taken into account.

Definition 4.2. Arecurrent set (o) is a set of recurrent words &. Given a recurrent
set R, a word x Q% is Rfair (for ) iff x € path,(X) and for eachy € R either (i)
X E G Fy or (ii) some prefix of x cannot be extended to a finite path wfith suffixy.
The set of R-fair paths is denoted as F&R).

Lemma 4.3. Let R be a recurrent set. Thé&Fairs(R)] = 1.

Proof. Lety € R. It can be checked th&airs ({y}) is a fairness property according to
[20, 22]. MoreoverFairs ({y}) is w-regular. Varacca and Vélzer [20] have shown that
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anyw-regular fairness property has probability one. The aissettien follows from the
facts thaRis countable anéairs (R) = g Fairs ({y})- O

In the above example, consider= q; and the recurrent s&= {q_,q4}. Note that
everyR-fair runxviolates the specification. Because of LemmaR[8,] NFairs(R)] =
Pla7] =1, and thus we havg[®] < 1—P[a1] = 0. Togethera andR describe a set of
paths violatingp having probability 1. The prefig describes how the violations begin.
The recurrent seéR describes what happens infinitely often in a violating path.

In the preceding exampl® contains exactly one recurrent word for each bscc of
the system, but in general it is possible tRatontains no recurrent word or several
recurrent words for some bscc. Consider for instance thafsggion® = G Fb; again
P[®] = 0. A counterexample would ee= A andR = {qy}. In this case there are two
kinds of R-fair paths: (i) paths going to the left bscc and visitopgnfinitely often; (ii)
paths going to the right bscc, wheggcan no longer be reached. SinceRdfair paths
violate ® andP [Fairs(R)] = 1, we haveP [®] = 0.

We now formalise this intuition.

Definition 4.4. A recurrent set Rrefutes Y in the contexta € path;,(Z) iff
af NRairs(R)NY =o.

Equivalently,R refutesY in the contextr if every path of the system that extermls
and isR-fair violatesY. In that caseyY is violated with at least the probability off .

Corollary 4.5. If there exists a recurrent set refuting Y in the contexthenP[Y | af] =
0, and thereforeP[Y] < 1—P[a1].

It may also be necessary to consider several contexts:

Example 4.6.Consider the Markov chaiB, P below and® = gz U .
To show thatP[®] < 0.7, one context wordx is not

enough. For instance, any recurrent set refdteés the 0.2

context ofgsqs, butP[gsgi 1] = 0.2. This counterexam- 1
ple only shows thaP [®] < 0.8. S ds
In order to gather enough weight, we need to use sev

contexts. For instance let, = g3qi, 02 = g3Qz01 O3 = 1

0303030:- Clearly @ refutes® in the contex. Then 0.4

P[®] < 1-—P[Uia;1]. Since the three sets are disjoint
P[Uia;i7] = 0.2+ 0.08+ 0.032> 0.3.

In this simple example, the recurrent sets do not matteeegl, different contexts
in principle require different recurrent sets:

Example 4.7.Consider the Markov chaib, P below and® = G—-cA (GFb= X a).
Letay = gzqy, 02 =0zq1 andRy =
{95}, R2 = {a1}. Note thatR; re-
futes @ in the contexta;. First, ¢
anyR;-fair path extendingjzga vi- :
olates®, since it visitsgs. Second, ®\_/7
anyRy-fair path extendingjzg vi-

olates®, since it visitsy; infinitely
often, but its second state does not satisfidienceP[®] < 1—P[a1T Uaz1] = 0.3.
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This example also shows that whether a path almost certaatigfiesd depends
not only on which bscc it visits; here, satisfaction alsoategs on the second state of
the path. Therefore, in the case of general LTL propertiesjisccs cannot simply be
partitioned into “accepting” and “rejecting”.

I? a recurrent set refutes a property in a context, a largermecuset does S0, t00.5. [MS says: changed]
We can therefore suppose without loss of generality thahalR, are the same. In the
above exéample we can chod?®e- Ry URy; thenRrefutes® in the contextij, i = 1,2.

Taking only one recurrent set is a design decision simplifying tieoty. In prac- 6. [Ms says: new]
tice, it might be desirable to have several recurrent sets.

Definition 4.8. Let W be a set of finite paths &f A recurrent set R refutes Y in the
contextW iff W NFairs(R)NY = @.

Corollary 4.9. If there exists a recurrent set refuting Y in the context Wenth
PY |W1] =0, and thereforeP[Y] < 1—PW1].

Thus, we present a quantitative counterexample explainimgP [®] <t by the sets
W andRsuch thaR s a recurrent set refuting in the contexi andP [W1] > 1—t.

4.2 Completeness

Corollary 4.9 is a soundness result: if there is a recurmmesutingy in the contexw,
then the property is violated with probability at le&W1]. It turns out that Definition
4.8 also gives us a complete representation of a countepgaifra property is violated
with some probability, there is a paiwv, R) witnessing it. In fact there is a canonical
set that can always be used as the contéxt

Definition 4.10. Let I(Z,Y) be the set of allt € path;,(X) such that there is a recurrent
set refuting Y in the contegt We call I(%,Y) theinitial language (o& w.r.t.Y).

Note thatl (Z,Y) by itself is a context, i.e., there is a recurrent set refp¥irin the
contextl (£,Y). To see that leRy be the recurrent set refutingin the contextr, where
a €1(Z,Y). ThenR:= Ugezy) Ra refutesy in the context (Z,Y).

Theorem 4.11. For any LTL formula®, | (Z, ®) is regular.

In Section 5.2, we will explain how to compute a finite autoomeaccepting (Z, ®).

The next proposition states important properties of thigainanguage. Firstly, al-
most all elements df{Z,Y)1 are violations o . Moreover, if the property is given by an
LTL formula ®, almost all violations ofp belong tol (Z, ®)1. Hence, the probabilities
of =® andl (X, @)1 coincide.

Proposition 4.12.
1. PI(ZY)InY]=0.
2. Forany LTL formulab, P[I (Z,®)T USal(®P)] = 1.
3. Forany LTL formulad, P[I (Z,®)1] = P[~D].
We can now give some equivalent characterisations of thialilinguage.

Proposition 4.13.
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1. The initial language (Z,Y) is the largest set WC path;,(Z) such that there is a
recurrent set refuting Y in the context W.
2. ForanyLTL formulab, | (X, ®) is the set of altx € path,(X) so thatP [@ | al] =0.

The first statement asserts that the initial language isattgee$t context in which a
recurrent set refutiny exists. The second statement provides an alternative tiefini
of the initial language in terms df.

Finally we prove completeness.

Theorem 4.14.Let ® be an LTL formulap <t < 1 andP[®] <t. Then there is a
nonempty set WL path;, (%) such thatP[® |W1] = 0 andP[W1] > 1—t. Moreover,
for any WC pathy, (), W # & with P[® | WT] = 0 there is a recurrent set R refuting
® in the context W.

We will see in Section 5.3 that the detcan be chosen to contain exactly one re-
current word per bscc. If the boumds tight, i.e.,t = P [®], the contexW is in general
infinite. If t > P[®], one can show — using standard results of measure theory i tha
is always possible to choo¥¢ as a finite subset d{ %, P).

4.3 Interaction with the Model Checker

In this section, we discuss the interaction between usenaukl checker for quanti-
tative counterexamples. The model checker compBifdg and presentg/ C | (X, D)
such thafP[W1] > t, wheret is given by the user. The user then inspé&btsand may
identify somex € W for which she does not believe tHaf®d | af] = 0. To convince the
user, the model checker computes a recurrerRsefuting ® in the contexw, which
contains at most one element for each bscc of the system ¢stier$5.3). The interac-
tion between user and model checker that follows is simildhé qualitative case. The
user can challenge:
1. Ris arecurrent set: each elemgret R can be checked as in the qualitative case.
2. Rrefutes® in the contexti: similar as in the qualitative case, the user interactively
tries to construct a path m] NFairs (R) N @ and fails. Note that the model checker
can assure fairness while the user can concentrate on gotirsty a path that ulti-
mately satisfiesb. Once a bscc is reached, the model checker can also output the

y € Rthat is associated with that bscc.

The setW may be too large or even infinite so that inspecting each elemdi-
vidually is not feasible (see [5, 9]). This raises the questf how the user can under-
stand what words are containedwh Also, the reader may want evidence that indeed
P[W1] > t. Similar questions arise in the study of counterexamplepfobabilistic
CTL ([14]) model checking, and we refer to the literaturefossible approaches [4, 5,
9]. We also discuss these issues further in Section 6.

5 Computing Counterexamples

In this section, we explain how the counterexamples defitedecan be computed.
Our algorithm is based on, but substantially complemeng&gorithm of Courcoubetis
and Yannakakis [8}. We follow [19] in our presentation. In Section 5.1 we re¢h#

1 We refer to the optimal algorithm in Section 3.1 of [8] and twthe automata based algorithm
in Section 4.1, which is non-optimal for LTL.
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underlying model checking algorithm. In Sections 5.2 arfMe address the computa-
tion of an automaton accepting the initial language and timeputation of a recurrent
set, respectively.
Throughout the entire sectiok,= (Q,S,—,V),P is a Markov chain an@ an LTL
formula. Without loss of generality, we assume téabnly contains the temporal con-
nectives X and U. Itis well-known that whethfd] = 1 is independent of the underly-
ing Markov measur® (see e.g. [20]). (It depends only on which transition prolitéds
are nonzero, which is uniquely determined-by) We therefore say that a formuie 7. [vs says: changed]
islarge (inZ) iff P[®] = 1.

5.1 Recalling Courcoubetis and Yannakakis

The algorithm presented in [8] works in steps. At each stefirtinates one temporal
operator from the specification and at the same time refirresytstem so that the large-
ness of the specification is preserved. After eliminatingpérators the specification
becomes a state formuda for which largeness can be easily checkedk large iff all
initial states satisfyp. We now briefly recall how the transformation takes place.

If @is not a state formula, then it has a subformula of the f@rmapU& oro =X¢g,
wherey, ¢ are state formulas. The algorithm chooses such a for@w@ad replaces it
by a fresh atomic propositicth We call the resulting formule’.

The algorithm then partitions the set of sta@snto three blockRQy, Q3, QY. If
the initial states ok are replaced by a state % then® becomes large. If the initial
states ot are replaced by a state@é, then—-© becomes larged becomes “small”).
If the initial states of are replaced by a state @g' then neithe® nor -© becomes
large @ becomes “medium-sized”).

The new system’ = (Q',S,—',V) has the set of states

Q = Qéx{@} U Q%X{ﬂ@} U Qg x {0,706},

that is, the states i@(La are annotated witl, the states ing with —=@, and the states
in Q“e" are split into a copy witl® and a copy with-©. We denote the first projection
asT so that, for instancei(q,©) = g. We extendrt to words in the natural way. The
initial states of the new system are the states that areqtegf¢o an initial state of the
original system. The new valuation functiehis just like v, whereasd holds in the
states annotated wit® and only there. Finally, the transition relation ©fis defined
so thatd’ is large inY’ iff ® is large inZ (see [8, 19]).

A single transformation step takes ting#|Z||®|). Moreover, the size oF’ is at
most the double of the size &f hence, it can be shown that the overall complexity of
the algorithm isO(|Z]2/®)).

5.2 Computing the Initial Language

In this section we explain how to compute a deterministiddimiutomaton (DFA) ac-
ceptingl (Z, ®). The algorithm from 5.1 terminates aftertransformation steps on
and® resulting in the systeri, and state formul&y,. Then-fold projection on states
and paths of, is denotedt", that is, " maps a state (path) &, to the correspond-
ing state (path) of. The following lemma shows how(Z, ®) can be expressed by
Sai(Zp, Pp):
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Lemma 5.1. We have (X, ®) = path;,(Z) \ " (SaiZ,, ®n)) |-

The elements oft"(Sa{Z,, ®,))| are (modulort") the finite paths of, starting
in a state satisfying,. It is therefore straightforward to compute a non-deterstin
finite automaton (NFA) accepting'(Sa{Z,, ®,))]. It is also straightforward to com-
pute a deterministic finite automaton (DFA) acceptiagh;,(X). By applying standard
automata constructions, we obtain a DFA f@x, ®).

In Theorem 5.2 we give the keypoints of our complexity anialys

Theorem 5.2.
1. An NFA acceptingt'(Sa{Z,,®,))| can be computed in time linear | and
exponential if®|.
2. ADFA acceptingt’(Sa(Z,, ®n))] can be computed in time linear j&| and doubly
exponential ind|.
3. A DFA accepting (%, @) can be computed in time linear j&| and doubly expo-
nential in|®|.

The overall running time is linear ifZ| and doubly exponential it®b|, and we do
not know whether an exponential algorithm can be found. IctiSe 5.3 we explain
how to compute a single element &, ®) without computing the whole DFA,; the
running time of the latter approach is linear ¥} and exponential ifd].

5.3 Computing a Recurrent Set

In this subsectiort’ and®’ denote the system and formula after one transformation
step applied t& and®. Moreover@ is the subformula of that has been replaced by
the new atomic propositioth during the transformation.

We explain how to compute a recurrent Batefuting @ in the context (X, ®) and
therefore in any conted/ C | (X, ®). For each bscK of £, our algorithm calls the func-
tion computeRecurrentWorh compute a path fragmegt € K* such that (2, @)1
NSa(G Fyk) NSa{®) = @. The resultR is then defined aR := {yk | K bscc ofZ}.
Note thatFairs (R) = Uk Sa{G Fyk). Hence | (£,®)T NFairz(R) N Sa(P) = &, i.e.,
Rrefutes® in the context (Z, ®).

The functioncomputeRecurrentWong outlined in Figure 1. Correctness can be
shown by induction ove®.

Lemma 5.3. The function computeRecurrentWord terminates and estadsiits post-
conditions.

We now explain how Lines 9-11 can be implemented. Supfosap U¢&. Giveny
from Line 8, choos®' minimal w.r.t.C such that the following conditions hold:
1. y¥ is a finite path fragment o'
2. m(y®d) does not end QY.
3. If (Y ®) visits a state satisfyind, thenti(y' &) visits a state satisfying.
Sety:=1(Y?d).
It can be shown that from each stateQ¥l both a state ifQy satisfyingg and a
state ian is reachable. An examination of the state relatio@’ahen yields that &
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Fig. 1. Function: y = computeRecurrentWo(&, ®, q)
1 Precondition: X is a systemg a formula,q a state of.
2 Postcondition:
(1) yis afinite path fragment o with first stateqg.
(In particular, ifq belongs to the bsdg, theny € K.)
2) 1(Z,9)T NSa(GFy)NSa(P) = 2.

3 begin

4 if ® is a state formulghen

5 yi=g

6 else

7 choosea statef of ¥’ with () = q;

8 Y := computeRecurrentWo(@', ®',q);

9 choosea finite path fragmeny of = such that
10 (1) for each path fragmeft of &', if y=1(Y), theny C ¥,
11 (2) for eachx’ € path,(Z'), if (X') E GFy, thenX E G(©<-d).
12 end
13 end

satisfying the above conditions exists and can therefomb®puted by a breadth-first
search.

Now suppose® = X &. Giveny from Line 8, we construcy as follows. If i(y)
does not end iQY, we sety:= (Y. Otherwise, we exteng by one state/ toyq' €
path,(Z') and sey :=m(yq/).

We prove in the appendix thgtsatisfies the conditions in Lines 9-11. The running
time of computeRecurrentWoid as follows:

Theorem 5.4. Executing computeRecurrentWOEl®, q) takes timeO(|Z||d[21®1).

Proof. Let n be the number of transformation steps andl < i < n, the system af-
ter theith transformation step. The length p&= computeRecurrentWoiB, ®,q) is
bounded byO(3{,|Zi|), since thdth incarnation ocomputeRecurrentWoidcreases
yby at mos{Z;|, 1<i < n. As|%j| < |Z|2', the length ofyis in O(|Z[2/®).

Computingy from Y includes reading’ and computing some extension; both can
be accomplished in tim@(|Z|2/®!). This has to be repeatertimes; hence the overall
running time isO(|Z||®|2/®l). 0

The functioncomputeRecurrentWolths to be executed once for each bscE;dfence
the overall running time is linear in the number of bsccs @ndand exponential ifd|.

Note that the user does not need to compute the entire retsetat once. Instead,
after computing one recurrent word, she can already indpedbscc of the recurrent
word. If she then wants to find an error in a different bscc,drecompute a recurrent
word of that bscc. Hence, although the worst case running ignguadratic in the size
of the system, the user already obtains the first diagnastidtfack afteo(|Z||®|2/*!)
steps.
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8. [MS says: inserted]

The functioncomputeRecurrentWorchn be adopted to compute a single element
a of I (Z,®), whereas the complexity remains the same. The details cBubd in the
appendix.

Theorem 5.5.
If I (Z,®) # @, a single element of E, ®) can be computed io(|Z||®|2/®) steps.

Theorem 5.5 and 5.4 mean that a representation of a quaditadiunterexample
can be computed in time linear in the system and exponenttal specification. This
running time is optimal, since it is also the running time loé optimal probabilistic
model checking algorithm in [8].

6 Conclusion

We have proposed a way of presenting and computing coumtenges in probabilis-
tic LTL model checking for Markov chains. Our notion is sowsntd complete, which
means that a counterexample in our sense can be computed dréy if the speci-

fication is not met with the desired probability. We have gdsinted out how such a
counterexample can be utilised to find an error in the system.

Aljazzar and Leue [2] propose solutions for counterexaspl@robabilistic model
checking with respect to timed probabilistic reachabititpperties in Markov chains.
Han and Katoen [12] and Wimmet al.[23] present algorithms computing counterex-
amples for model checking PCTL (probabilistic CTL [14])diaulas in Markov chains.
There are also suggestions of how to present such countepéesto the user [4, 9]. In
[1,13] the problem has been tackled for continuous time Madhains. In [3] Aljaz-
zar and Leue generalise their proposal in [2] for (unnesipdiards-bounded) PCTL
formulas and Markov decision processes.

Recently, Andrést al.[5] propose an approach for LTL formulas on Markov chains
(and also Markov decision processes). They refer to thetfettprobabilistic model
checking of an LTL formula in a Markov chaikl; can be reduced to probabilistic
model checking of an upwards-bounded reachability prgpgara generated Markov
chainMs, which is doubly exponentially larger thaut; in the size of the LTL formula
[10]. Then they develop a counterexample representatittreietyl% of Han and Katoen
[12], which can be mapped to a subset of the initial languadé4. The authors pro-
pose an interesting way of convincing the user that the ugsvaounded reachability
property is indeed violated in the generated Markov civdnHowever, in contrast to
our approach, they do not address how to convince the uséegsrobability of the
original LTL formula in the original systeri;.

The above approaches [2,4,5,9, 12, 23] have in common thatsterexample is
finitary, i.e., a set of finite path&/ so that any path of the system extendiigyiolates
the specification. In our terminologyy is a subset of the initial language. We have
pointed out in Section 3.1 that sets of finite paths are ndicserfit to refute general
LTL properties — in particular liveness properties. Eventle techniques of presenting
finitary counterexamples to the user can be applied to whattave called a conte/
in our counterexample presentation. In future work, it vaoog interesting to combine
these techniques with our approach. Another importanttioe is to carry out some
case studies to evaluate the interaction between user adel cizecker.
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A Proofs

We have reordered the sections so that all proofs only rebtatements that have been
previously proved.

Proofs in Section 3.3

Theorem 3.7
1. Ifyis arecurrent word refuting Y in the contextthenP[Y | a1] = 0 and therefore
PY] < L.
2. Suppose Y isxregular. If P[Y] < 1, then there is amx € path;,(Z) such that
P[Y | af] = 0. Moreover, ifa € pathy,(Z) with P[Y | a1] = 0 and aftera only one
bscc is reachable, there is a recurrent wgrdefuting Y in the contexa.

Proof. We prove 1. As a special case of Lemma 4.3, we B¢&Fy| af] = 1. Hence,
P[Y |aT] =P[Y |a AGFy] =0 and therefor@®[Y] < P[a1¢] < 1.

We prove 2. Using the results from [20] it can be shown thaB[¥] < 1, then
there is a recurrent worgrefutingY in some contextt. According to 1P[Y | al] = 0.
Moreover by [20], ifP[Y | af] = 0 for somea € path,(Z) after which only one bscc
is reachable, then there is a recurrent wprdfutingY in the contextr. O

A More Detailed Description of Courcoubetis and Yannakakis

LetY = (Q,S —,V) be a system an® a formula. In this section we consider the case
that® is not a state formula. In that cagehas a subformula of the for@ = QYU or
© = X &, wherey, ¢ are state formulas. The algorithm chooses such a for@wad
replaces it by a fresh atomic propositidnwe call the resulting formule’.

The algorithm then partitions the set of sta@snto three blockQj, Q3, QY. If
the initial states ok are replaced by a state % then® becomes large. If the initial
states ot are replaced by a state@é, then—-© becomes larged becomes “small”).
If the initial states of are replaced by a state @g' then neithe® nor -© becomes
large @ becomes “medium-sized”).

The new system’ = (Q',S,—',V) has the set of states

Q = Qéx{@} U Q%X{ﬂ@} U Qg x {0,706},

that is, the states i@(La are annotated witl, the states ing with —-©, and the states
in Q“e" are split into a copy witf® and a copy with-©. We denote the first projection
asT so that, for instancei(q,©) = g. We extendrt to words in the natural way. The
initial states of the new system are the states that praeut tnitial state of the original
system. The new valuation functiahis just likev, whereasd holds precisely in the
states annotated with. Formally,v'(q,©) := v(q)U{d,aqe)}, andv'(q,—@) := v(q) U
{a-e)}- The atomic propositiongy, g € Q" are fresh and pairwise different (cf.
Section 2.3). In the implementation, the atomic proposgtg, can also be dropped.
If @ =yYUE, then—'is the smallest relation satisfying conditions 1 and 2 below

Letd,p' € Q with(q) = q, (p’) = pandp’ = (p,=).

1. If g— pandq ¢ QY, thenq —' p'.

2. Ifg— pandg e QY, then(q,Z) —' (p,=).
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If @ =X¢, then—'is the smallest relation satisfying conditions 1 and 2 belat
ge Qandp’ € Q with (p’) = p.

1. Ifg— pandpkE g, then(q,0) - p'.
2. Ifq— pandp¥ &, then(q,—@) —' p'.

Courcoubetis and Yannakakis have proved thais large in%’ iff ® is large inZ.
For an alternative correctness proof see [19].

A single transformation step takes tirdg|||®|). Since the size of’ is at most the
double of the size o, it can be shown that the overall complexity of the algoritism
O(|Z)21*1. (As usual, this complexity analysis is under the uniforratamiterion.)

The following lemma, already observed by Courcoubetis aarthékakis, illustrates
the relation between the path fragment&afnds’.

Lemma A.1. For the systemg, 2’ as defined above, the following statements hold:
1. If Z is a path (fragment) of’, thenT(Z) is a path (fragment) oF.
2. For each path (fragment) z &f there is a path (fragment} of &’ such that(Z) =
z.
3. If the last states of the nonempty finite path fragmerjtsi, of X coincide and
m(a}) = 1(a5), thena) = ab,.

Proof. Statement 1 is an immediate consequence of the definitien’ @ndS. State-
ment 2 and 3 of the assertion follow from these factss & S, then there exists a
=1 €{0,-0} such tha(s,Z1) € S. For eacty € Q and each{p,=2) € @ with q— p,
there is a uniqu&; € {©,-0} such tha(qg,=1) —' (p,=2).

Proofs in Section 5.2

Lemma A.2. LetZ,P be a Markov chain, Y am-regular property andx € path,(%).
If P[Y | af] = O, then there is a recurrent set R refuting Y in the context

Proof. We cannot apply Theorem 3.7 directly &g since aftera several bsccs might
be reachable. But, for arfye path;,(Z) extendingn such that aftef only one bscc is

reachable, leyg be a recurrent word refuting in the contexp3. Let R be the set of alll

suchyg. ThenRrefutesy in the contextr. ad

Lemma 5.1 We have (Z, ®) = path;,(Z) \ "(Sa(Zn, ®n))|.
Proof. Leta be a finite path oE. Then

ael(Z,®)
iff thereis arecurrent s®with a7 NFairs(R)NnSa(Z, ) = o
iff —av-®islargeinX
iff —oVv-®,islargeinZ,
iff ZpFE-oV-ody
iff vX:XeSa(Z,,d,)=XFEa
iff  Vx,X: X eSal(Z, Py Ax=1"(X)=aZx
iff  Wx: (3X: X € Sa(Z,, Pn) Ax=1"(X))=0a ZX
iff  —3x: xen"(Sa(Zn,®n)) Ao Cx
iff a¢mn'(Sa(Z,, ®n))l .
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The second line follows with the definition bfz, ®). The third line can be derived from
Lemma4.3 and Lemma A.2. The fourth line holds because theftvemations of Cour-
coubetis and Yannakakis preserve largeness. The fifthdifens becaus8aiz,, —a v
—®y) is a safety property. The remaining lines are derived bytlemtretical and first
order reasoning. O

Finite Automata: before we prove Theorem 5.2, we fix the notation for finite endta.
A nondeterministic finite automaton (NFA)(8ee e.g. [15]) is a tupléQ, I, p,qo, F)

consisting of aet of states Qaninput alphabef’, atransition functiorp: Q x I — 29,

an initial state @ and a sef C Q of accepting statesAs usual,A acceptsa word
wi ... Wy over[ if there is a word of stateg . . . qn such thatyi € p(gi—1,w;), 1 <i <n

andqgn € F. If |p(g,a)| <1 for eachg € Q anda € I, the automaton is deterministic
finite automaton (DFA)

Theorem 5.2
1. An NFA acceptingt'(Sa{Z,,®n))| can be computed in time linear ix| and
exponential if®|.
2. A DFA acceptingt’(Sa(Z,, ®,))| can be computed in time linear j&| and doubly
exponential ind|.
3. A DFA accepting (%, @) can be computed in time linear j&| and doubly expo-
nential in|®|.

Proof. We prove 1. Suppose thag =: (Qn, Sh, —n,Vn). We define
B:= (Qn U {q0}7 Q7 P, do, Qn U {qO}) with
— 0o ¢ Qn,
= P(do,q) ={d' € S | '(q) =gAd F P}, (@€Q),
—p(P.a)={d e |m(d)=arp —nd}, (PFEQ, d€Q).
It is straightforward to check th& can be computed in time linear jB| and exponen-
tial in |P|.

We prove 2. First observe the following propertiesBofAny state ofB different
from the initial state is of the forg, ann), whereq is a state ok andanna sequence
of n (possibly negated) subformulas@f which have been introduced by the transfor-
mations of Courcoubetis and Yannakakis. (For simplicitg, take the convention that
(a,(b,c)) = ((a,b),c)).) If Bis in the statey’ and reads the symbgle Q, then all the
possible successor states are of the fopgann), i.e., they have the first compongmt

To obtain a DFABe; acceptingt'(Sa{Z,, @n)) |, we apply the well-known subset
construction toB. Because of the special structure Bif all reachable states @yt
(besides the initial state) are of the foffg,anmn ), (g,anrp), (g,anry),... }, whereq
is a state ok andann is a sequence af (possibly negated) subformulas introduced
by the algorithm of Courcoubetis and Yannakakis. In otherdspthe elements of a
reachable state e (N0t being the initial state) coincide in their first compohéf
the first component ig, we call such a state gstate. The number of reachable states
of Bis linear in|Q| and doubly exponential in.

If Bgetis in ag-state and reads, then the successor state is nonempty onjylifas
the transitiorg — p (cf. Lemma A.1). Hence, the number of transition®8gf; is linear
in |Z| and doubly exponential ifb|. The automatoBge; can therefore be computed by
a depth-first search in time linear jB| and doubly exponential if#¥|.
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We prove 3. We compute a DFB® acceptingQ* \ '(Sa{Zn, ®,)) | from Byet
as usual by adding an error state and complementing the satcepting states. It
is straightforward to determine an automatén acceptingpath;,(Z). According to
Lemma 5.1, the product automatdnof B¢ andAs acceptd (2, d). It can be shown
with similar arguments as in the proof of 2 thfatan be computed in time linear j&|
and doubly exponential if®|. O

Proofs in Section 4.2

Proposition 4.12

1. P[I(Z,Y)] NY] = 0.

2. Forany LTL formula®, P[I (3,®)T USa(®)] = 1.
3. Forany LTL formulad, P[I (Z,®)1] = P[~d].

Proof. Let R be a recurrent set refutingin the context (%,Y). That means|,(Z,Y)1
NFairs(R)NY = @. Assertion 1 follows with Lemma 4.3.

For a proof of 2, supposB|[l (X, ®)T USafP)] < 1. Note thatl (X, P) 1 USa(P)
is w-regular (cf. Theorem 5.2). With Theorem 3.7 choose a rectunwordy refuting
I(Z,®)T USa(P) in some contexti. Since afteix only the bscc of is reachable,

af NFairs({y}) N (1(Z,®)1 USa(®)) = 2.

Hencea € 1(Z,®). Theng = af nFairs({y})NI(Z,®)T=al NnFairs({y}) — a con-
tradiction.

Assertion 3 can be derived from 1 and 2:

)7 ASa(®)] +
)T NSa(-®)] +
,®)1°N Sa(—~®)]

e 6

Proposition 4.13
1. The initial language (Z,Y) is the largest set WC path;,(Z) such that there is a
recurrent set refuting Y in the context W.

2. ForanyLTL formulab, | (Z, @) is the set of altr € pathy,(Z) such thal? [@ | af] =
0.

Proof. We prove 1. We have already seen that there is a recurrenéfsging Y in
the contextl (£,Y). Suppose some recurrent $&f refutesY in some contextv C
path;,(Z). For anya € W, Ry refutesY in the contextr, and thereforet € 1 (Z,Y). We
conclude thatvV C 1(Z,Y).

We prove 2. Because of Corollary 4.5 and Lemma &2p | a1] = 0 if and only
if there is a recurrent set refutir in the contextr. Thereford (Z, @) is the set of all
a € pathy,(Z) such thalP[® | al] = 0. O
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Theorem 4.14 Let ® be an LTL formulal <t < 1 andP[®] <t. Then there is a
nonempty set W= path;,(2) such thatP [® |W1] = 0 andP[W1] > 1—t. Moreover,
for any WC pathy, (), W # @ with P[® | W1] = 0 there is a recurrent set R refuting
® in the context W.

Proof. First takewW :=1(Z, ®). Because of Proposition 4.12[® | W1] = 0. Moreover,
sinceP [-®] =PW1],PW1]=1-P[®] > 1-t.

Second suppod¥ C path;,(Z), W # @ with P[® | W{] = 0. Because of Assertion
2 in Proposition 4.13W C |(Z,®). Therefore the recurrent s&refuting @ in the
contextl (%, @) also refutesp in the contexiV. O

Proofs in Section 5.3

Lemma A.3. Suppose x path,(Z) and X € path,(Z') with i(X') = x. If xe | (Z, D)7,
thenx e (¥, 9)71.

Proof. Let x € path,(Z), X € path,(Z') with T(xX') = x andx € | (£,®)1. Choosex €
I(Z,®) so thata C x. Leta’ be the prefix oi’ of the same length as. We will show
thata’ € 1 (¥, @').

Note thata = —® is large inZ. Hence,a = —~@' is large inY'. As¥' F o’ = q,
o’ = —®' is large inZ’. Thereforep’ € I (Z',d’). 0

Lemma 5.3 The function computeRecurrentWord terminates and estadsiits post-
conditions.

Proof. First note thatomputeRecurrentWotdrminates; a termination argumentis the
number of temporal connectivesdn

We prove the postconditions by induction ovlr Supposed is a state formula.
Postcondition (1) obviously holds. We know there is someimamnt setR such that
I(Z,®)T NFairs(R)NSa{®) = @. Sinced is a state formuld,(Z, P)T NSa(P) = @.
Hencel (Z,®)1 NSa{G Fy)NSa(®d) = @.

Now suppos@p is not a state formula, and the recursive call in Line 8 eihbs its
postconditions. We prove thasatisfies the postconditions. Postcondition (1) obviously
holds. For Postcondition (2), Igte | (£, ®)T NSalG Fy). With Lemma A.1 choos¥ €
path,(Z') such that(x') = x. By Line 10,X F G FY, and, by LemmaA.3 €| (Z',d’).

By the induction hypothesig, ¥ @'. By Line 11,X F G(®© < d), and therefore/ ¥ @.
Sinced does not appear i, X ©. O

Lemma A.4. Supposed® = PUE. Lety be a nonempty finite path fragment Bf
Choose&d minimal w.r.t.C such that the following conditions hold:

1. y&' is a finite path fragment of'.

2. T(y'®') does not end in .

3. Ifm(y'd') visits a state satisfying d, ther{y' ') visits a state satisfying.
Sety:=m(Y?d').

Then the conditions in Lines 10 and 11 of computeRecurredtsiplied toZ, @, q

hold.
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Proof. We first address the condition in Line 10. Choose a path fragfef ' such
thatm(¥) = y. We have to show that C ¥. Sincey does not end iQ¥, the last states
of Y andy & coincide. By Lemma A.1y'd =¥, and therefor¢’ C V.

For the condition in Line 11, it can be observed that any pathpath,(2’) violat-
ing G(© < d) satisfies F & A &), i.e., from some position ox satisfiesd and does
not satisfyé. Now suppose that F G Fy. Because of Condition 3 in the definition of
y, X satisfies GO < d). 0

Lemma A.5. Suppos® = X &. Lety be a finite path fragment &'. If (y') does not
endin @, we set/:=m(y). Otherwise, we extend by one state’do yq € pathy, (')
and sety:= (Y q).

Then the conditions in Lines 10 and 11 of computeRecurredtsiplied toZ, @, q
hold.

Proof. We first consider the condition in Line 10. Suppag¥ ) does not end i@g.
Takey with i({) = y. Thenm(y) = (Y) andy, ¥ end in the same state. Hence, by
Lemma A.1y = ¥. Now supposet(y) ends inQY. Letq be a state of’ such that
y=m(yYd) andyq is a path fragment af’. TakeY § with (Y §') = y. We have to show
thaty C Y §. The stateg andd’ are not necessarily the same, but there projections are.
By the construction of’, the last states of andy coincide. Therefore, by Lemma
Aly=YLCV{q.

The condition in Line 11 holds, because ahy path, (') satisfies GO<-d). O

The functioncomputeContextan adopted version afomputeRecurrentWorithat
computes a single element g, ®), is outlined in Figure 2. The statement in Line 9
can be implemented as aomputeRecurrentWord

Fig. 2. Function: a = computeContexE, ®)
Precondition: Z is a system¢ a formula.
Postcondition:a € 1 (Z, ).
begin
if @ is a state formulghen
choosen as an initial state of violating ®;
else
o’ := computeContex®’, @’);
choosea finite patha of X such that
for eachx’ € path,(¥'), if o C m(X), thena’ C X’;

© 0 N O U~ WN P

10 end
11 end

Lemma A.6. The function computeContext terminates and establisegsostcondi-
tion.

June 9, 2009
21



Proof. Note thatcomputeContextrminates because the number of temporal connec-
tives in the formula decreases with each recursive call.

If @ is a state formula, the postcondition is obviously estaklis Suppose that is
no state formula and’ € | (¥, @'). Leta € path;,(Z) such that Line 9 holds. We show
thata € 1(Z,®).

Let R be the recurrent set computed by helpcoimputeRecurrentWonkfuting
® in the contextl (Z,®). Let x be anR-fair path of £ extendinga. Since for each
bsccR contains a recurrent word refutiriggbelonging to that bscc, there is a recurrent
wordy refuting ® such thaix = G Fy. Choosex' € path,(Z') with Ti(X') = x. Because
of Line 9, o’ C X' and thereforeX € I(¥/,@')1. Lety be the recurrent word af’
from whichy has been computed; in particulbfZ’, @)1 NSa{G Fy)NSa(®d') = .
Because of Line 10 afomputeRecurrentWord = G Fy. Hence X ¥ @'. Because of
Line 11 ofcomputeRecurrentWordl F G(© < d) and therefored  @. Sinced does
not appear ind, x ¥ ®. As x is an arbitraryR-fair path of> extendinga, we conclude
thata 1 NFairs(R) NSa(®) = &. Hencea € | (Z,®). 0
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