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Abstract. We propose how to present and compute a counterexample in probabilistic
LTL model checking for discrete-time Markov chains. In qualitative probabilistic model
checking, we present a counterexample as a pair(α,γ) whereα,γ are finite words such
that all paths that extendα and have infinitely many occurrences ofγ violate the speci-
fication. In quantitative probabilistic model checking, wepresent a counterexample as a
pair (W,R) whereW is a set of such finite wordsα andR is a set of such finite wordsγ.
Moreover, we suggest how the presented counterexample helps the user to identify the
underlying error in the system through an interactive game with the model checker.

1 Introduction

A counterexample in LTL model checking is an execution path that violates the LTL
specification. This counterexample path should help the user to identify and repair an
error in the system. However a counterexample path is in general infinite, and if we
want to show it to the user, we must find a finite representation. In the case of classical
LTL model checking, we can exploit the fact that aperiodic counterexample always
exists (see e.g. [18]), i.e., an execution path of the formαγω, whereα andγ are finite
words.

In the probabilistic LTL model checking problem that we consider here, we are
given an LTL formulaΦ and a discrete-time finite state Markov chain generating a
probability measureP, and we want to check whetherP [Φ] > t (or P [Φ] ≥ t). A coun-
terexample witnessing the violation of this assertion is therefore a setY of execution
paths violatingΦ such thatP [Y]≥ 1− t (resp.P [Y] > 1− t). In general such a set is not
only infinite, but almost all of its paths are aperiodic. How can such a counterexample
be presented to the user to provide useful debugging information?

In this paper, we show how a counterexample can be presented and computed, and
we suggest how the user should interact with the model checker to find the error.

We start by considering the special case of qualitative probabilistic model checking,
i.e., the question whetherP [Φ] = 1. We propose to represent a qualitative counterex-
ample as a pair(α,γ), where

– α is a finite path such thatalmost allpaths extendingα violate the specification and
hence the specification is violated with at least the probability of α. Therefore,α
shows where the probability is lost.
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– γ is a finite word in a bottom strongly connected component suchthatall paths that
extendα and that have infinitely many occurrences ofγ violate the specification.
The wordγ witnesses that almost all paths extendingα violate the specification.
The pair(α,γ) is presented to the user in an interactive game with the modelchecker.

The user tries to construct a path extendingα and satisfying the specification, while the
model checker ensures thatγ occurs infinitely often. By failing to construct such a path
the user finds an error in the system.

We then show that this approach can be extended to the quantitative case (t < 1),
where in general a setW of such finite pathsα and a setR of such finite wordsγ has to
be considered.

Finally we show how such a counterexample can be computed; webuild on a model
checking algorithm by Courcoubetis and Yannakakis [8], which however has to be sub-
stantially complemented for our purposes.

We discuss related work in Section 6.

2 Preliminaries

We assume that the reader is familiar with Kripke structures, discrete-time Markov
chains, linear temporal logic (LTL) andω-regular languages. We briefly recall the basic
definitions to introduce conventions and fix the notation. Weprovide references for
further reading.

2.1 Words

Let Q be a set ofstates. The set of infinite, finite, nonempty finite words overQ is
denotedQω,Q∗,Q+, respectively. Usuallyq, p denote elements ofQ, α,β,γ,δ elements
of Q∗, x an element ofQω, zan element ofQω ∪Q∗, andλ the empty word.

We writeα ⊑ z if α is a prefix ofz. If α ⊑ z, z is called anextensionof α. We define
α↑:= {x | α ⊑ x} andz↓:= {α | α ⊑ z}. Similarly, givenW ⊆ Q∗ andY ⊆ Qω ∪Q∗,
W↑:=

S

{α↑| α ∈W} (the set ofextensions of W) andY↓:=
S

{z↓| z∈Y}.

2.2 Probabilistic Systems

A system(Kripke structure)Σ = (Q,S,→,v) consists of a finite setQ of states, a
nonempty setS⊆Q of initial states, astate relation→⊆Q×Q and avaluation function
v : Q→ 2AP mapping each stateq to a setv(q)⊆ APof atomic propositions. We assume
here that for eachq∈Q there is ap∈ Q so thatq→ p. Thesizeof Σ is |Σ| := |Q|+ |→|.

A path fragment (ofΣ) is a wordq0q1 . . . ∈ Qω ∪Q∗ such thatqi−1 → qi , i > 0. A
path (ofΣ) is a path fragmentqzwith q∈ S. The empty word is also a path and a path
fragment ofΣ. The setpathfin(Σ) contains all finite, andpathω(Σ) all infinite paths ofΣ.

Often we viewΣ as the directed graph(Q,→). A setK ⊆ Q is astrongly connected
component (ofΣ) (scc for short) if it is a strongly connected component of(Q,→) (see
e.g. [7]). A bottom strongly connected component (ofΣ) (bscc) is an sccK with no
outgoing edges, i.e., ifq∈ K andq→ p, thenp∈ K.

A (labelled discrete-time) Markov chain(see e.g. [6, 16]) is a systemΣ = (Q,S,→,v)
equipped withtransition probabilitiesgiven by P : Q×Q → [0,1] and initial prob-
abilities given byPini : Q → [0,1], whereP(q, p) > 0 iff q → p, Pini(q) > 0 iff q ∈ S,
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∑p∈QP(q, p) = 1, and∑q∈QPini(q) = 1. It is well-known (see e.g. [6, 16]) that a Markov
chain induces a measureP on theσ-algebraB(Qω) induced by the basic cylinder sets
α↑, α ∈ Q∗ with the propertyP [q0 . . .qn↑] = Pini(q0)∏n

i=1P(qi−1,qi), q0 . . .qn ∈ Q+.
A measure induced by a Markov chain is calledMarkov measure. We later refer to a
Markov chain simply asΣ,P.

2.3 Temporal Properties

A (linear-time temporal) property, denotedY,Z, is a subset ofQω. We mainly consider
properties expressible in linear temporal logic (LTL) [17]; we use the notation intro-
duced in [11]. A formula in LTL is built from atomic propositions inAP, true, falseand
the boolean and temporal connectives∧,∨,¬,⇒,⇔ and X,U,G,F. Thesize|Φ| of a
formula is the number of its temporal and boolean connectives.

An LTL formula Φ is interpreted in the context of a systemΣ = (Q,S,→,v) over
wordsx∈Qω. For i ∈N, x, i � Φ means thatx satisfiesΦ at position i(in the usual sense
[11]). Moreover,x � Φ (“x satisfiesΦ” ) abbreviatesx,0 � Φ; Σ � Φ (“ Σ satisfiesΦ” )
meansx � Φ for all x∈ pathω(Σ). We writeSat(Σ,Φ) for the set of all infinite paths of
Σ satisfyingΦ. For convenience, we often writeSat(Φ) or Φ instead ofSat(Σ,Φ). In
particular,Sat(true) = pathω(Σ). A formula φ without temporal connectives is astate
formula. For q ∈ Q, q � φ (“q satisfiesφ” ) iff qx � φ for all (or equivalently some)
x∈ Qω.

To simplify the presentation, we suppose that for eachq ∈ Q there is an atomic
propositionaq that holds inq and only there. In our examples, we do not explicitly
mention such atomic propositionsaq. For better readability of formulas, we writeq
instead ofaq, q0q1 . . .qn instead ofq0 ∧X(q1 ∧ . . .X(qn) . . . ) and λ instead oftrue.
These assumptions do not have an impact on the results of the paper.

An ω-regular propertyis a property that is accepted by someBüchi automaton. Any
LTL formula expresses anω-regular property. Anyω-regular property ismeasurable,
i.e., a member ofB(Qω) (see [21]).

3 Qualitative Counterexamples
In this section, we consider the question whetherP [Φ] = 1, whereΦ is an LTL for-
mula andP a Markov measure. Probabilistic satisfaction can be seen asa special form
of quantification, but our traditional understanding of a counterexample is tightly con-
nected with universal quantification. Say, we want to understand why a CTL* formula
of the formA.Φ does not hold, whereΦ is an LTL formula. We display a classical linear
counterexample path in this case. The system has more behaviour than expected and the
model checker displays the path as an example of the additional behaviour. The user can
then replay the path to see where the actual behaviour deviates from her expectation,
which is where she should find the error in the system.

The situation is different for existential quantification.Say we want to understand
why a CTL* formulaE.Φ is violated, againΦ being an LTL formula. For example,
E.Φ could express the property that there exists a run of the system such that ‘someone
wins the jackpot’. If the formula is false, the answer of the model checker is just ‘no’.
The information to be returned could be the entire system showing the absence of a
path satisfyingΦ. Of course, that is not very informative. To find the error, wesuggest
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that the proof burden should be reversed, i.e., the user should try to display a witness
for the formula. She should have an idea on what the path lookslike; in the example:
she knowshowsomeone could win the jackpot in the system. She can then try to replay
that path. Since the desired path does not exist in the system, the user will find in this
way a point where the behaviour of the system deviates from her expectations.

The interaction between user and model checker that we propose for the probabilis-
tic case will be a mixture of the universal and the existential case.

3.1 Examples of Counterexamples

To approach the problem for Markov chains, we consider now a few examples. By
default, the examples are based on the systemΣ = (Q,S,→,v) below. For the qualitative
case the particular transition probabilities of the Markovchain are not relevant (see e.g.
[20]); so we do not display them.
Each of the examples considers an LTL
formulaΦ for which P [Φ] < 1, and in
each case we will discuss what a coun-
terexample should look like.

++GFED@ABC //
$$

q1

GFED@ABCa //
q2

GFED@ABC **

TTq3

GFED@ABCbjj
q4

Example 3.1.Let Φ = G¬a. SinceΦ is a safety property, if it is violated, there is a
finite pathα such that each extension ofα violatesΦ. This is the case for the path
α = q1q2. Since,P [q1q2↑] > 0, we haveP [Φ] < 1. As in classical model checking, it is
sufficient to display the violating finite pathα to the user as a counterexample.

Example 3.2.Let Φ = Fa. There is a finite pathα := q1q3 in the system such that each
extension ofα into pathω(Σ)

1
violatesΦ, i.e., no extension ofα into pathω(Σ) contains1. [MS says: changed]

ana-state. This clearly proves thatP [Φ] < 1. In contrast to the previous example, not all
extensions ofα but only the extensions intopathω(Σ) violateΦ. Hence, the inspection
of α may not be sufficient to find the error; the user also has to takethe structure of
Σ into account. Similar to the CTL* case discussed above, the user who designed the
system should have an idea on how to reach ana-state, onceα was executed. Trying to
play such a path, which does not exist, she will eventually find the point in the system
where actual and expected behaviour deviate.

Example 3.3.Let Φ = F G¬b. We recall that, in any Markov chain, a path eventually
enters a bscc with probability one. For each (reachable) bscc K, a path eventually enters
K with nonzero probability, and then, with probability 1, it visits all states ofK infinitely
often. (These facts are well-known and also follow from Lemma 4.3.) Any run that
infinitely often visits ab-state violatesΦ. The system above has a (reachable) bscc that
contains ab-state, and therefore the specification is violated with nonzero probability.

To show that to the user, we propose that the model checker returns ab-state within
a bscc, namelyq4. The user then convinces herself that (i) theb-state indeed belongs to
a (reachable) bscc and (ii) repeatedly visiting theb-state violatesΦ. The latter point (ii)
is straightforward in this case. To convince herself of (i),the user plays the following
interactive game with the model checker: She tries to find a finite pathβ so thatq4 is
unreachable afterβ. If she believes thatΦ has probability 1, she has an idea of how
to do so. The model checker then goes back toq4. The system must deviate from the
expected behaviour in at least one of these two moves.
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Example 3.4.Let Φ = G Fb ⇒ Fa. Repeatedly visiting ab-state without visiting an
a-state violatesΦ. The specification does not have probability 1, since there is a bscc
containing ab-state but noa-state, and that bscc can be reached without passing through
ana-state. We propose that the model checker outputsq4 andα := q1q3. The user then
convinces herself that (i)q4 belongs to a bscc, and thatα leads to that bscc, and (ii) any
path starting withα, and visitingq4 infinitely often violatesΦ. To this end, she plays
the following game with the model checker: The model checkerplaysα. To convince
herself of (i) the user tries to extendα so thatq4 becomes unreachable; the model
checker then goes back toq4. If that does not help to discover the error, she tries to
refute (ii) by extendingα to αβ ∈ pathfin(Σ) so thatβ visits ana-state.

In Example 3.1 and 3.2, a counterexample is represented by a finite pathα such that
Σ � α⇒¬Φ. This representation is not sufficiently expressive for Examples 3.3 and 3.4.
Therefore we use the more general representation(α,q), α ∈ pathfin(Σ), q∈Q such that
Σ � α∧G Fq⇒¬Φ. Note that, in the above examples, the formulaΦ is violated afterα
with probability one, andq witnesses that. The stateq is in particular important, when
α leads to a large bscc.

There are however still situations, where counterexamplesof the form(α,q) cannot
be found, and instead of the single stateq we need a path fragment:

Example 3.5.ConsiderΦ = F G(a⇒ aU b) with the following system:
There are noα,q with Σ � (α∧G Fq) ⇒ ¬Φ. But any
path ofΣ that visitsγ := q1q2 infinitely often violatesΦ.

We therefore consider counterexamples of the formα∧
G Fγ, α ∈ pathfin(Σ), γ ∈ Q∗. Below we prove that such
a counterexample always exists whenΦ has probability
less than one.

//GFED@ABCa //

��

q1

GFED@ABCa
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GFED@ABC **
q2 GFED@ABCbjj
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3.2 Presenting a Qualitative Counterexample

According to the discussion in the previous section, we propose to represent a quali-
tative counterexample as a pair(α,γ) whereα is a finite path of the system andγ is a
finite path fragment within some bscc of the system.

Definition 3.6. A finite path fragment belonging to a bscc of a systemΣ is called a
recurrent word (ofΣ). Letα be a finite path andγ a recurrent word ofΣ. We say thatγ
refutesa property Yin the contextα just when:
1. if γ 6= λ, thenα leads to the bscc ofγ, that is, the bscc ofγ is the unique bscc

reachable afterα,
2. α↑ ∩Sat(G Fγ)∩Y = ∅, i.e., any path starting withα and repeatingγ infinitely

often violates Y .

If γ refutesY in the contextα, then the pair(α,γ) represents the set of paths
α↑∩Sat(G Fγ) violatingY; α describes how the violations begin andγ restricts their be-
haviour in the long run. The pair(α,γ) represents a qualitative counterexample because
α↑ ∩Sat(G Fγ) has nonzero probability, as we will see in Section 3.3. In particular,
almost all paths that extendα violateY. In this sense,α is a ‘bad’ prefix of the system.
The wordγ witnesses thatα is ‘bad’ in this sense.
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We propose to use this representation of a qualitative counterexample in an interac-
tion between the user and the model checker as follows. Firstthe model checker outputs
α andγ and claims thatγ is a recurrent word refutingΦ in the contextα. Then the user
can challenge that claim in the following ways:
1. If γ = λ, then the user tries to construct a path that extendsα and satisfiesΦ. In

failing to do so, she will find a point where actual and expected behaviour deviate.
2.1. She challenges thatγ 6= λ belongs to any bscc at all or that afterα only that bscc is

reachable by constructing a pathαβ after which, in her opinion,γ is unreachable.
The model checker refutes this challenge by returningδ such thatαβδγ∈pathfin(Σ).

2.2. She challengesα↑ ∩Sat(G Fγ)∩Sat(Φ) = ∅, whereγ 6= λ, by constructing a path
x= αβ1γβ2γ . . . , which she believes to satisfyΦ. In failing to construct such a path,
she will observe that expected and actual behaviour of the system differ.
The pathx can be constructed interactively: The model checker startswith α. The
user wants to extendα to a path that ultimately satisfiesΦ, but she may only append
a finite word at a time, allowing the model checker to appendγ in between. If
the user appends a word that allows the model checker to append γ directly, the
model checker does so. Otherwise the model checker suggestssome extension of
the current finite path that allows it to appendγ afterwards. This interaction goes
on until the user has found some unexpected behaviour of the system.
In practice, the user cannot play forever. But she can try to generate a periodic path,
i.e., of the formαβ1(γβ2)

ω. It is well-known that an LTL formula is violated only
if it has a periodic counterexample.

3.3 Soundness and Completeness

Let Σ = (Q,S,→,v),P be a Markov chain andY a property. In this section, we show
that our proposal to present qualitative counterexamples is sound and complete, i.e., the
existence of(α,γ) implies P [Y] < 1 and vice versa. In fact, using results from [20],
we can show that our proposal is sound for arbitrary properties and complete if the
specification isω-regular.

Theorem 3.7.
1. If γ is a recurrent word refuting Y in the contextα, thenP [Y | α↑] = 0 andP [Y] < 1.
2. Suppose Y isω-regular. If P [Y] < 1, then there is anα ∈ pathfin(Σ) such that

P [Y | α↑] = 0. Moreover, ifα ∈ pathfin(Σ) with P [Y | α↑] = 0 and afterα only one
bscc is reachable, there is a recurrent wordγ refuting Y in the contextα.

The assumption in 2 thatY is ω-regular cannot be dropped. Take the Markov chain
with two statesq, p both being initial states. From any state the next state isq with
probability 1/3 andp with probability 2/3. On one hand, it can be shown by the Borel-
Cantelli Lemma that the propertyY “at infinitely many positions, the number of pre-
vious p’s equals the number of previousq’s” has probability zero. On the other hand,
there is no recurrent wordγ refutingY in some contextα: a path inSat(G Fγ)∩α↑ ∩Y
can be constructed by extendingα, visiting γ infinitely often and, between theγ’s, mak-
ing the number of previousp’s equal the number of previousq’s.

2
A similar example2. [MS says: changed]

shows that the theorem rests on the assumption that the system is finite.
We conclude this section by comparing our notion of recurrent wordγ in a contextα

with the periodic paths̃α(γ̃)ω used as counterexamples in classical model checking. The
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pair (α,γ) describes the set of all infinite paths extendingα and executingγ infinitely
often, which has nonzero probability. The periodic pathα̃(γ̃)ω has in general probability
zero. (The probability is nonzero only ifγ̃ belongs to a “ring-like” bscc.)

3
Even the 3. [MS says: changed]

set of all periodic paths has in general probability zero, because it is a countable set.
In the probabilistic setting, counterexamples must have nonzero probability; therefore
periodic paths are unsuitable as counterexamples.

4 Quantitative Counterexamples

In this section, we discuss quantitative statements. In thefollowing, let Σ = (Q,S,→,v)
be a system,P a Markov measure,Φ an LTL formula andY a property. The corre-
sponding question for a counterexample (or a witness) can take one of the following
four shapes:
1. Why isP [Φ] ≤ t? (t < 1)
2. Why isP [Φ] ≥ t? (t > 0)

3. Why isP [Φ] < t? (t > 0)
4. Why isP [Φ] > t? (t < 1)

Questions 2 and 4 can be reduced to Questions 1 and 3, respectively, by negating the
specification. Usually, quantitative probabilistic modelcheckers compute the probabil-
ity of the specification.

4
Hence, we knowP [Φ] before computing a counterexample, and4. [MS says: changed]

can therefore reduce Question 3 to Question 1 by consideringa bound betweent and
P [Φ]. We therefore restrict our attention to Question 1.

4.1 Presenting a Quantitative Counterexample

In some cases, a qualitative counterexample can be used as a quantitative counterexam-
ple; that is, however, not always possible:

Example 4.1.Consider the Markov chainΣ,P below together withΦ = F Ga.
Note thatP [Φ] = 0. There is a re-
current wordγ = q2 refuting Φ
in the contextα = q1q2. What
does it tell us about the proba-
bility of Φ? SinceP [Φ | α↑] = 0,
we haveP [Φ]≤ 1−P [α↑] = 0.5.
However, this does not answer
the question of why isP [Φ] ≤ 0.

1

��
GFED@ABCa

0.5

TT

q3

0.5
44GFED@ABC

0.5

TT

q2
0.5tt GFED@ABCb

0.5oo 0.5 //

q1

GFED@ABC

0.5

TT

0.5 **
q4

GFED@ABCa

0.5

TT0.5
jj

q5

The problem is that the pair(α,γ) only gives information about one bscc, namely the
left one, but a proof forP [Φ] ≤ 0 must involve both bsccs. To overcome this problem,
we will consider counterexamples with several recurrent words, so that different bsccs
can be taken into account.

Definition 4.2. A recurrent set (ofΣ) is a set of recurrent words ofΣ. Given a recurrent
set R, a word x∈ Qω is R-fair (for Σ) iff x ∈ pathω(Σ) and for eachγ ∈ R either (i)
x � G Fγ or (ii) some prefix of x cannot be extended to a finite path ofΣ with suffixγ.
The set of R-fair paths is denoted as FairΣ(R).

Lemma 4.3. Let R be a recurrent set. ThenP [FairΣ(R)] = 1.

Proof. Let γ ∈ R. It can be checked thatFairΣ({γ}) is a fairness property according to
[20, 22]. Moreover,FairΣ({γ}) is ω-regular. Varacca and Völzer [20] have shown that
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anyω-regular fairness property has probability one. The assertion then follows from the
facts thatR is countable andFairΣ(R) =

T

γ∈RFairΣ({γ}). ⊓⊔

In the above example, considerα = q1 and the recurrent setR= {q2,q4}. Note that
everyR-fair runxviolates the specification. Because of Lemma 4.3,P [α↑ ∩FairΣ(R)] =
P [α↑] = 1, and thus we haveP [Φ] ≤ 1−P [α↑] = 0. Together,α andRdescribe a set of
paths violatingΦ having probability 1. The prefixα describes how the violations begin.
The recurrent setR describes what happens infinitely often in a violating path.

In the preceding example,R contains exactly one recurrent word for each bscc of
the system, but in general it is possible thatR contains no recurrent word or several
recurrent words for some bscc. Consider for instance the specificationΦ = G Fb; again
P [Φ] = 0. A counterexample would beα = λ andR= {q2}. In this case there are two
kinds ofR-fair paths: (i) paths going to the left bscc and visitingq2 infinitely often; (ii)
paths going to the right bscc, whereq2 can no longer be reached. Since allR-fair paths
violateΦ andP [FairΣ(R)] = 1, we haveP [Φ] = 0.

We now formalise this intuition.

Definition 4.4. A recurrent set Rrefutes Y in the context α ∈ pathfin(Σ) iff
α↑ ∩FairΣ(R)∩Y = ∅.

Equivalently,R refutesY in the contextα if every path of the system that extendsα
and isR-fair violatesY. In that case,Y is violated with at least the probability ofα↑.

Corollary 4.5. If there exists a recurrent set refutingY in the contextα, thenP [Y | α↑]=
0, and thereforeP [Y] ≤ 1−P [α↑].

It may also be necessary to consider several contexts:

Example 4.6.Consider the Markov chainΣ,P below andΦ = q3 U q2.
To show thatP [Φ] ≤ 0.7, one context wordα is not
enough. For instance, any recurrent set refutesΦ in the
context ofq3q1, butP [q3q1↑] = 0.2. This counterexam-
ple only shows thatP [Φ] ≤ 0.8.
In order to gather enough weight, we need to use several
contexts. For instance letα1 = q3q1, α2 = q3q3q1 α3 =
q3q3q3q1. Clearly∅ refutesΦ in the contextαi . Then
P [Φ] ≤ 1−P [∪iαi↑]. Since the three sets are disjoint
P [∪iαi↑] = 0.2+0.08+0.032> 0.3.

1
��

GFED@ABC

q1

1
44GFED@ABC

q2
1tt GFED@ABC

q3

0.4
oo

0.2

��

0.4

TT

In this simple example, the recurrent sets do not matter. In general, different contexts
in principle require different recurrent sets:

Example 4.7.Consider the Markov chainΣ,P below andΦ = G¬c∧ (G Fb⇒ X a).
Let α1 = q3q4, α2 = q3q1 andR1 =
{q5}, R2 = {q1}. Note thatRi re-
futes Φ in the contextαi . First,
anyR1-fair path extendingq3q4 vi-
olatesΦ, since it visitsq5. Second,
anyR2-fair path extendingq3q1 vi-
olatesΦ, since it visitsq1 infinitely

1
��

GFED@ABCb

q1

1
44GFED@ABCa

q2
0.5tt

0.5

TT
GFED@ABC

q3

0.3
oo

0.3

��

0.4
//GFED@ABCa

q4

0.5

TT

0.5 **GFED@ABCc

q5

1
jj

often, but its second state does not satisfya. Hence,P [Φ] ≤ 1−P [α1↑ ∪α2↑] = 0.3.
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This example also shows that whether a path almost certainlysatisfiesΦ depends
not only on which bscc it visits; here, satisfaction also depends on the second state of
the path. Therefore, in the case of general LTL properties, the bsccs cannot simply be
partitioned into “accepting” and “rejecting”.

If
5

a recurrent set refutes a property in a context, a larger recurrent set does so, too.5. [MS says: changed]

We can therefore suppose without loss of generality that alltheRi are the same. In the
above example we can chooseR= R1∪R2; thenR refutesΦ in the contextαi , i = 1,2.

Taking
6

only one recurrent set is a design decision simplifying the theory. In prac- 6. [MS says: new]

tice, it might be desirable to have several recurrent sets.

Definition 4.8. Let W be a set of finite paths ofΣ. A recurrent set R refutes Y in the
context W iff W↑ ∩FairΣ(R)∩Y = ∅.

Corollary 4.9. If there exists a recurrent set refuting Y in the context W, then
P [Y |W↑] = 0, and thereforeP [Y] ≤ 1−P [W↑].

Thus, we present a quantitative counterexample explainingwhyP [Φ]≤ t by the sets
W andRsuch thatR is a recurrent set refutingΦ in the contextW andP [W↑] ≥ 1− t.

4.2 Completeness

Corollary 4.9 is a soundness result: if there is a recurrent set refutingY in the contextW,
then the property is violated with probability at leastP [W↑]. It turns out that Definition
4.8 also gives us a complete representation of a counterexample: if a property is violated
with some probability, there is a pair(W,R) witnessing it. In fact there is a canonical
set that can always be used as the contextW.

Definition 4.10. Let I(Σ,Y) be the set of allα ∈ pathfin(Σ) such that there is a recurrent
set refuting Y in the contextα. We call I(Σ,Y) the initial language (ofΣ w.r.t.Y).

Note thatI(Σ,Y) by itself is a context, i.e., there is a recurrent set refuting Y in the
contextI(Σ,Y). To see that letRα be the recurrent set refutingY in the contextα, where
α ∈ I(Σ,Y). ThenR :=

S

α∈I(Σ,Y) Rα refutesY in the contextI(Σ,Y).

Theorem 4.11. For any LTL formulaΦ, I(Σ,Φ) is regular.

In Section 5.2, we will explain how to compute a finite automaton acceptingI(Σ,Φ).
The next proposition states important properties of the initial language. Firstly, al-

most all elements ofI(Σ,Y)↑ are violations ofY. Moreover, if the property is given by an
LTL formula Φ, almost all violations ofΦ belong toI(Σ,Φ)↑. Hence, the probabilities
of ¬Φ andI(Σ,Φ)↑ coincide.

Proposition 4.12.
1. P [I(Σ,Y)↑ ∩Y] = 0.
2. For any LTL formulaΦ, P [I(Σ,Φ)↑ ∪Sat(Φ)] = 1.
3. For any LTL formulaΦ, P [I(Σ,Φ)↑] = P [¬Φ].

We can now give some equivalent characterisations of the initial language.

Proposition 4.13.
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1. The initial language I(Σ,Y) is the largest set W⊆ pathfin(Σ) such that there is a
recurrent set refuting Y in the context W.

2. For any LTL formulaΦ, I(Σ,Φ) is the set of allα∈ pathfin(Σ) so thatP [Φ | α↑] = 0.

The first statement asserts that the initial language is the largest context in which a
recurrent set refutingY exists. The second statement provides an alternative definition
of the initial language in terms ofP.

Finally we prove completeness.

Theorem 4.14. Let Φ be an LTL formula,0 ≤ t < 1 and P [Φ] ≤ t. Then there is a
nonempty set W⊆ pathfin(Σ) such thatP [Φ |W↑] = 0 andP [W↑] ≥ 1− t. Moreover,
for any W⊆ pathfin(Σ), W 6= ∅ with P [Φ |W↑] = 0 there is a recurrent set R refuting
Φ in the context W.

We will see in Section 5.3 that the setR can be chosen to contain exactly one re-
current word per bscc. If the boundt is tight, i.e.,t = P [Φ], the contextW is in general
infinite. If t > P [Φ], one can show – using standard results of measure theory – that it
is always possible to chooseW as a finite subset ofI(Σ,Φ).

4.3 Interaction with the Model Checker

In this section, we discuss the interaction between user andmodel checker for quanti-
tative counterexamples. The model checker computesP [Φ] and presentsW ⊆ I(Σ,Φ)
such thatP [W↑] ≥ t, wheret is given by the user. The user then inspectsW, and may
identify someα ∈W for which she does not believe thatP [Φ | α↑] = 0. To convince the
user, the model checker computes a recurrent setR refutingΦ in the contextW, which
contains at most one element for each bscc of the system (see Section 5.3). The interac-
tion between user and model checker that follows is similar to the qualitative case. The
user can challenge:
1. R is a recurrent set: each elementγ ∈ Rcan be checked as in the qualitative case.
2. R refutesΦ in the contextα: similar as in the qualitative case, the user interactively

tries to construct a path inα↑ ∩FairΣ(R)∩Φ and fails. Note that the model checker
can assure fairness while the user can concentrate on constructing a path that ulti-
mately satisfiesΦ. Once a bscc is reached, the model checker can also output the
γ ∈ R that is associated with that bscc.
The setW may be too large or even infinite so that inspecting each element indi-

vidually is not feasible (see [5, 9]). This raises the question of how the user can under-
stand what words are contained inW. Also, the reader may want evidence that indeed
P [W↑] ≥ t. Similar questions arise in the study of counterexamples for probabilistic
CTL ([14]) model checking, and we refer to the literature forpossible approaches [4, 5,
9]. We also discuss these issues further in Section 6.

5 Computing Counterexamples
In this section, we explain how the counterexamples defined above can be computed.
Our algorithm is based on, but substantially complements analgorithm of Courcoubetis
and Yannakakis [8]1. We follow [19] in our presentation. In Section 5.1 we recallthe

1 We refer to the optimal algorithm in Section 3.1 of [8] and notto the automata based algorithm
in Section 4.1, which is non-optimal for LTL.
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underlying model checking algorithm. In Sections 5.2 and 5.3 we address the computa-
tion of an automaton accepting the initial language and the computation of a recurrent
set, respectively.

Throughout the entire section,Σ = (Q,S,→,v),P is a Markov chain andΦ an LTL
formula. Without loss of generality, we assume thatΦ only contains the temporal con-
nectives X and U. It is well-known that whetherP [Φ] = 1 is independent of the underly-
ing Markov measureP (see e.g. [20]). (It depends only on which transition probabilities
are nonzero, which is uniquely determined by→.)

7
We therefore say that a formulaΦ 7. [MS says: changed]

is large (in Σ) iff P [Φ] = 1.

5.1 Recalling Courcoubetis and Yannakakis

The algorithm presented in [8] works in steps. At each step iteliminates one temporal
operator from the specification and at the same time refines the system so that the large-
ness of the specification is preserved. After eliminating all operators the specification
becomes a state formulaφ, for which largeness can be easily checked:φ is large iff all
initial states satisfyφ. We now briefly recall how the transformation takes place.

If Φ is not a state formula, then it has a subformula of the formΘ = ψUξ or Θ = X ξ,
whereψ,ξ are state formulas. The algorithm chooses such a formulaΘ and replaces it
by a fresh atomic propositiond. We call the resulting formulaΦ′.

The algorithm then partitions the set of statesQ into three blocksQL
Θ,QS

Θ,QM
Θ . If

the initial states ofΣ are replaced by a state inQL
Θ, thenΘ becomes large. If the initial

states ofΣ are replaced by a state inQS
Θ, then¬Θ becomes large (Θ becomes “small”).

If the initial states ofΣ are replaced by a state inQM
Θ , then neitherΘ nor¬Θ becomes

large (Θ becomes “medium-sized”).
The new systemΣ′ = (Q′,S′,→′,v′) has the set of states

Q′ := QL
Θ ×{Θ} ∪ QS

Θ ×{¬Θ} ∪ QM
Θ ×{Θ,¬Θ},

that is, the states inQL
Θ are annotated withΘ, the states inQS

Θ with ¬Θ, and the states
in QM

Θ are split into a copy withΘ and a copy with¬Θ. We denote the first projection
asπ so that, for instance,π(q,Θ) = q. We extendπ to words in the natural way. The
initial states of the new system are the states that are projected to an initial state of the
original system. The new valuation functionv′ is just like v, whereasd holds in the
states annotated withΘ and only there. Finally, the transition relation ofΣ′ is defined
so thatΦ′ is large inΣ′ iff Φ is large inΣ (see [8, 19]).

A single transformation step takes timeO(|Σ||Φ|). Moreover, the size ofΣ′ is at
most the double of the size ofΣ; hence, it can be shown that the overall complexity of
the algorithm isO(|Σ|2|Φ|).

5.2 Computing the Initial Language

In this section we explain how to compute a deterministic finite automaton (DFA) ac-
ceptingI(Σ,Φ). The algorithm from 5.1 terminates aftern transformation steps onΣ
andΦ resulting in the systemΣn and state formulaΦn. Then-fold projection on states
and paths ofΣn is denotedπn, that is,πn maps a state (path) ofΣn to the correspond-
ing state (path) ofΣ. The following lemma shows howI(Σ,Φ) can be expressed by
Sat(Σn,Φn):
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Lemma 5.1. We have I(Σ,Φ) = pathfin(Σ)\πn(Sat(Σn,Φn))↓.

The elements ofπn(Sat(Σn,Φn))↓ are (moduloπn) the finite paths ofΣn starting
in a state satisfyingΦn. It is therefore straightforward to compute a non-deterministic
finite automaton (NFA) acceptingπn(Sat(Σn,Φn))↓. It is also straightforward to com-
pute a deterministic finite automaton (DFA) acceptingpathfin(Σ). By applying standard
automata constructions, we obtain a DFA forI(Σ,Φ).

In Theorem 5.2 we give the keypoints of our complexity analysis.

Theorem 5.2.
1. An NFA acceptingπn(Sat(Σn,Φn))↓ can be computed in time linear in|Σ| and

exponential in|Φ|.
2. A DFA acceptingπn(Sat(Σn,Φn))↓ can be computed in time linear in|Σ| and doubly

exponential in|Φ|.
3. A DFA accepting I(Σ,Φ) can be computed in time linear in|Σ| and doubly expo-

nential in|Φ|.

The overall running time is linear in|Σ| and doubly exponential in|Φ|, and we do
not know whether an exponential algorithm can be found. In Section 5.3 we explain
how to compute a single element ofI(Σ,Φ) without computing the whole DFA; the
running time of the latter approach is linear in|Σ| and exponential in|Φ|.

5.3 Computing a Recurrent Set

In this subsectionΣ′ andΦ′ denote the system and formula after one transformation
step applied toΣ andΦ. Moreover,Θ is the subformula ofΦ that has been replaced by
the new atomic propositiond during the transformation.

We explain how to compute a recurrent setR refutingΦ in the contextI(Σ,Φ) and
therefore in any contextW⊆ I(Σ,Φ). For each bsccK of Σ, our algorithm calls the func-
tion computeRecurrentWordto compute a path fragmentγK ∈ K+ such thatI(Σ,Φ)↑
∩Sat(G FγK)∩Sat(Φ) = ∅. The resultR is then defined asR := {γK | K bscc ofΣ}.
Note thatFairΣ(R) =

S

K Sat(G FγK). Hence,I(Σ,Φ)↑ ∩FairΣ(R)∩Sat(Φ) = ∅, i.e.,
R refutesΦ in the contextI(Σ,Φ).

The functioncomputeRecurrentWordis outlined in Figure 1. Correctness can be
shown by induction overΦ.

Lemma 5.3. The function computeRecurrentWord terminates and establishes its post-
conditions.

We now explain how Lines 9-11 can be implemented. SupposeΘ = ψ U ξ. Givenγ′
from Line 8, chooseδ′ minimal w.r.t.⊑ such that the following conditions hold:
1. γ′δ′ is a finite path fragment ofΣ′.
2. π(γ′δ′) does not end inQM

Θ .
3. If π(γ′δ′) visits a state satisfyingd, thenπ(γ′δ′) visits a state satisfyingξ.

Setγ := π(γ′δ′).
It can be shown that from each state inQM

Θ both a state inQL
Θ satisfyingξ and a

state inQS
Θ is reachable. An examination of the state relation ofΣ′ then yields that aδ′
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Fig. 1. Function: γ = computeRecurrentWord(Σ,Φ,q)
Precondition: Σ is a system,Φ a formula,q a state ofΣ.1

Postcondition:2

(1) γ is a finite path fragment ofΣ with first stateq.
(In particular, ifq belongs to the bsccK, thenγ ∈ K+.)

(2) I(Σ,Φ)↑ ∩Sat(G Fγ)∩Sat(Φ) = ∅.
begin3

if Φ is a state formulathen4

γ := q;5

else6

choosea stateq′ of Σ′ with π(q′) = q;7

γ′ := computeRecurrentWord(Σ′,Φ′,q′);8

choosea finite path fragmentγ of Σ such that9

(1) for each path fragmentγ̃′ of Σ′, if γ = π(γ̃′), thenγ′ ⊑ γ̃′,10

(2) for eachx′ ∈ pathω(Σ′), if π(x′) � G Fγ, thenx′ � G(Θ⇔d).11

end12

end13

satisfying the above conditions exists and can therefore becomputed by a breadth-first
search.

Now supposeΘ = X ξ. Given γ′ from Line 8, we constructγ as follows. If π(γ′)
does not end inQM

Θ , we setγ := π(γ′). Otherwise, we extendγ′ by one stateq′ to γ′q′ ∈
pathfin(Σ′) and setγ := π(γ′q′).

We prove in the appendix thatγ satisfies the conditions in Lines 9-11. The running
time ofcomputeRecurrentWordis as follows:

Theorem 5.4. Executing computeRecurrentWord(Σ,Φ,q) takes timeO(|Σ||Φ|2|Φ|).

Proof. Let n be the number of transformation steps andΣi , 1≤ i ≤ n, the system af-
ter the ith transformation step. The length ofγ = computeRecurrentWord(Σ,Φ,q) is
bounded byO(∑n

i=1 |Σi |), since theith incarnation ofcomputeRecurrentWordincreases
γ by at most|Σi |, 1≤ i ≤ n. As |Σi | ≤ |Σ|2i , the length ofγ is inO(|Σ|2|Φ|).

Computingγ from γ′ includes readingγ′ and computing some extension; both can
be accomplished in timeO(|Σ|2|Φ|). This has to be repeatedn times; hence the overall
running time isO(|Σ||Φ|2|Φ|). ⊓⊔

The functioncomputeRecurrentWordhas to be executed once for each bscc ofΣ; hence
the overall running time is linear in the number of bsccs and|Σ|, and exponential in|Φ|.

Note that the user does not need to compute the entire recurrent set at once. Instead,
after computing one recurrent word, she can already inspectthe bscc of the recurrent
word. If she then wants to find an error in a different bscc, shecan compute a recurrent
word of that bscc. Hence, although the worst case running time is quadratic in the size
of the system, the user already obtains the first diagnostic feedback afterO(|Σ||Φ|2|Φ|)
steps.
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The functioncomputeRecurrentWordcan be adopted to compute a single element
α of I(Σ,Φ), whereas the complexity remains the same. The details can befound in the
appendix.

Theorem 5.5.
If I (Σ,Φ) 6= ∅, a single element of I(Σ,Φ) can be computed inO(|Σ||Φ|2|Φ|) steps.

Theorem 5.5 and 5.4 mean that a representation of a qualitative counterexample
can be computed in time linear in the system and exponential in the specification. This
running time is optimal, since it is also the running time of the optimal probabilistic
model checking algorithm in [8].

6 Conclusion
We have proposed a way of presenting and computing counterexamples in probabilis-
tic LTL model checking for Markov chains. Our notion is soundand complete, which
means that a counterexample in our sense can be computed if and only if the speci-
fication is not met with the desired probability. We have alsopointed out how such a
counterexample can be utilised to find an error in the system.

Aljazzar and Leue [2] propose solutions for counterexamples in probabilistic model
checking with respect to timed probabilistic reachabilityproperties in Markov chains.
Han and Katoen [12] and Wimmeret al. [23] present algorithms computing counterex-
amples for model checking PCTL (probabilistic CTL [14]) formulas in Markov chains.
There are also suggestions of how to present such counterexamples to the user [4, 9]. In
[1, 13] the problem has been tackled for continuous time Markov chains. In [3] Aljaz-
zar and Leue generalise their proposal in [2] for (unnested,upwards-bounded) PCTL
formulas and Markov decision processes.

Recently, Andréset al.[5] propose an approach for LTL formulas on Markov chains
(and also Markov decision processes). They refer to the factthat probabilistic model
checking of an LTL formula in a Markov chainM1 can be reduced to probabilistic
model checking of an upwards-bounded reachability property in a generated Markov
chainM2, which is doubly exponentially larger thanM1 in the size of the LTL formula
[10]. Then they develop a counterexample representation inthe style of Han and Katoen
[12], which can be mapped to a subset of the initial language in M1.

8
The authors pro-8. [MS says: inserted]

pose an interesting way of convincing the user that the upwards-bounded reachability
property is indeed violated in the generated Markov chainM2. However, in contrast to
our approach, they do not address how to convince the user of the probability of the
original LTL formula in the original systemM1.

The above approaches [2, 4, 5, 9, 12, 23] have in common that a counterexample is
finitary, i.e., a set of finite pathsW so that any path of the system extendingW violates
the specification. In our terminology,W is a subset of the initial language. We have
pointed out in Section 3.1 that sets of finite paths are not sufficient to refute general
LTL properties – in particular liveness properties. Even so, the techniques of presenting
finitary counterexamples to the user can be applied to what wehave called a contextW
in our counterexample presentation. In future work, it would be interesting to combine
these techniques with our approach. Another important direction is to carry out some
case studies to evaluate the interaction between user and model checker.
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A Proofs

We have reordered the sections so that all proofs only rely onstatements that have been
previously proved.

Proofs in Section 3.3

Theorem 3.7
1. If γ is a recurrent word refuting Y in the contextα, thenP [Y | α↑] = 0 and therefore

P [Y] < 1.
2. Suppose Y isω-regular. If P [Y] < 1, then there is anα ∈ pathfin(Σ) such that

P [Y | α↑] = 0. Moreover, ifα ∈ pathfin(Σ) with P [Y | α↑] = 0 and afterα only one
bscc is reachable, there is a recurrent wordγ refuting Y in the contextα.

Proof. We prove 1. As a special case of Lemma 4.3, we haveP [G Fγ | α↑] = 1. Hence,
P [Y | α↑] = P [Y | α∧G Fγ] = 0 and thereforeP [Y] ≤ P [α↑c] < 1.

We prove 2. Using the results from [20] it can be shown that, ifP [Y] < 1, then
there is a recurrent wordγ refutingY in some contextα. According to 1,P [Y | α↑] = 0.
Moreover by [20], ifP [Y | α↑] = 0 for someα ∈ pathfin(Σ) after which only one bscc
is reachable, then there is a recurrent wordγ refutingY in the contextα. ⊓⊔

A More Detailed Description of Courcoubetis and Yannakakis

Let Σ = (Q,S,→,v) be a system andΦ a formula. In this section we consider the case
thatΦ is not a state formula. In that caseΦ has a subformula of the formΘ = ψ U ξ or
Θ = X ξ, whereψ,ξ are state formulas. The algorithm chooses such a formulaΘ and
replaces it by a fresh atomic propositiond. We call the resulting formulaΦ′.

The algorithm then partitions the set of statesQ into three blocksQL
Θ,QS

Θ,QM
Θ . If

the initial states ofΣ are replaced by a state inQL
Θ, thenΘ becomes large. If the initial

states ofΣ are replaced by a state inQS
Θ, then¬Θ becomes large (Θ becomes “small”).

If the initial states ofΣ are replaced by a state inQM
Θ , then neitherΘ nor¬Θ becomes

large (Θ becomes “medium-sized”).
The new systemΣ′ = (Q′,S′,→′,v′) has the set of states

Q′ := QL
Θ ×{Θ} ∪ QS

Θ ×{¬Θ} ∪ QM
Θ ×{Θ,¬Θ},

that is, the states inQL
Θ are annotated withΘ, the states inQS

Θ with ¬Θ, and the states
in QM

Θ are split into a copy withΘ and a copy with¬Θ. We denote the first projection
asπ so that, for instance,π(q,Θ) = q. We extendπ to words in the natural way. The
initial states of the new system are the states that project to an initial state of the original
system. The new valuation functionv′ is just like v, whereasd holds precisely in the
states annotated withΘ. Formally,v′(q,Θ) := v(q)∪{d,a(q,Θ)}, andv′(q,¬Θ) := v(q)∪
{a(q,¬Θ)}. The atomic propositionsaq′ , q′ ∈ Q′ are fresh and pairwise different (cf.
Section 2.3). In the implementation, the atomic propositionsaq′ can also be dropped.

If Θ = ψ U ξ, then→′ is the smallest relation satisfying conditions 1 and 2 below.
Let q′, p′ ∈ Q′ with π(q′) = q, π(p′) = p andp′ = (p,Ξ).
1. If q→ p andq /∈ QM

Θ , thenq′ →′ p′.
2. If q→ p andq∈ QM

Θ , then(q,Ξ) →′ (p,Ξ).
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If Θ = X ξ, then→′ is the smallest relation satisfying conditions 1 and 2 below. Let
q∈ Q andp′ ∈ Q′ with π(p′) = p.
1. If q→ p andp � ξ, then(q,Θ) →′ p′.
2. If q→ p andp 2 ξ, then(q,¬Θ) →′ p′.

Courcoubetis and Yannakakis have proved thatΦ′ is large inΣ′ iff Φ is large inΣ.
For an alternative correctness proof see [19].

A single transformation step takes timeO(|Σ||Φ|). Since the size ofΣ′ is at most the
double of the size ofΣ, it can be shown that the overall complexity of the algorithmis
O(|Σ|2|Φ|). (As usual, this complexity analysis is under the uniform cost criterion.)

The following lemma, already observed by Courcoubetis and Yannakakis, illustrates
the relation between the path fragments ofΣ andΣ′.

Lemma A.1. For the systemsΣ, Σ′ as defined above, the following statements hold:
1. If z′ is a path (fragment) ofΣ′, thenπ(z′) is a path (fragment) ofΣ.
2. For each path (fragment) z ofΣ, there is a path (fragment) z′ of Σ′ such thatπ(z′) =

z.
3. If the last states of the nonempty finite path fragmentsα′

1,α′
2 of Σ coincide and

π(α′
1) = π(α′

2), thenα′
1 = α′

2.

Proof. Statement 1 is an immediate consequence of the definition of→′ andS′. State-
ment 2 and 3 of the assertion follow from these facts: Ifs ∈ S, then there exists a
Ξ1 ∈ {Θ,¬Θ} such that(s,Ξ1) ∈ S′. For eachq∈ Q and each(p,Ξ2) ∈ Q′ with q→ p,
there is a uniqueΞ1 ∈ {Θ,¬Θ} such that(q,Ξ1) →

′ (p,Ξ2).

Proofs in Section 5.2

Lemma A.2. Let Σ,P be a Markov chain, Y anω-regular property andα ∈ pathfin(Σ).
If P [Y | α↑] = 0, then there is a recurrent set R refuting Y in the contextα.

Proof. We cannot apply Theorem 3.7 directly toα, since afterα several bsccs might
be reachable. But, for anyβ ∈ pathfin(Σ) extendingα such that afterβ only one bscc is
reachable, letγβ be a recurrent word refutingY in the contextβ. Let R be the set of all
suchγβ. ThenR refutesY in the contextα. ⊓⊔

Lemma 5.1 We have I(Σ,Φ) = pathfin(Σ)\πn(Sat(Σn,Φn))↓.

Proof. Let α be a finite path ofΣ. Then

α ∈ I(Σ,Φ)
iff there is a recurrent setRwith α↑ ∩FairΣ(R)∩Sat(Σ,Φ) = ∅

iff ¬α∨¬Φ is large inΣ
iff ¬α∨¬Φn is large inΣn

iff Σn � ¬α∨¬Φn

iff ∀x′ : x′ ∈ Sat(Σn,Φn)⇒x′ 2 α
iff ∀x,x′ : x′ ∈ Sat(Σn,Φn)∧x = πn(x′)⇒α 6⊑ x
iff ∀x : (∃x′ : x′ ∈ Sat(Σn,Φn)∧x = πn(x′))⇒α 6⊑ x
iff ¬∃x : x∈ πn(Sat(Σn,Φn))∧α ⊑ x
iff α /∈ πn(Sat(Σn,Φn))↓ .
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The second line follows with the definition ofI(Σ,Φ). The third line can be derived from
Lemma 4.3 and Lemma A.2. The fourth line holds because the transformations of Cour-
coubetis and Yannakakis preserve largeness. The fifth line follows becauseSat(Σn,¬α∨
¬Φn) is a safety property. The remaining lines are derived by set-theoretical and first
order reasoning. ⊓⊔

Finite Automata: before we prove Theorem 5.2, we fix the notation for finite automata.
A nondeterministic finite automaton (NFA) A(see e.g. [15]) is a tuple(Q,Γ,ρ,q0,F)
consisting of aset of states Q, aninput alphabetΓ, atransition functionρ : Q×Γ→ 2Q,
an initial state q0 and a setF ⊆ Q of accepting states. As usual,A acceptsa word
w1 . . .wn overΓ if there is a word of statesq0 . . .qn such thatqi ∈ ρ(qi−1,wi), 1≤ i ≤ n
andqn ∈ F . If |ρ(q,a)| ≤ 1 for eachq∈ Q anda∈ Γ, the automaton is adeterministic
finite automaton (DFA).

Theorem 5.2
1. An NFA acceptingπn(Sat(Σn,Φn))↓ can be computed in time linear in|Σ| and

exponential in|Φ|.
2. A DFA acceptingπn(Sat(Σn,Φn))↓ can be computed in time linear in|Σ| and doubly

exponential in|Φ|.
3. A DFA accepting I(Σ,Φ) can be computed in time linear in|Σ| and doubly expo-

nential in|Φ|.

Proof. We prove 1. Suppose thatΣn =: (Qn,Sn,→n,vn). We define
B := (Qn∪{q0},Q,ρ,q0,Qn∪{q0}) with

– q0 /∈ Qn,
– ρ(q0,q) = {q′ ∈ Sn | πn(q′) = q∧q′ � Φn}, (q∈ Q),
– ρ(p′,q) = {q′ ∈ Qn | πn(q′) = q∧ p′ →n q′}, (p′ ∈ Qn, q∈ Q).

It is straightforward to check thatB can be computed in time linear in|Σ| and exponen-
tial in |Φ|.

We prove 2. First observe the following properties ofB. Any state ofB different
from the initial state is of the form(q,ann), whereq is a state ofΣ andanna sequence
of n (possibly negated) subformulas ofΦ, which have been introduced by the transfor-
mations of Courcoubetis and Yannakakis. (For simplicity, we take the convention that
(a,(b,c)) = ((a,b),c)).) If B is in the stateq′ and reads the symbolp∈ Q, then all the
possible successor states are of the form(p,ann), i.e., they have the first componentp.

To obtain a DFABdet acceptingπn(Sat(Σn,Φn))↓, we apply the well-known subset
construction toB. Because of the special structure ofB, all reachable states ofBdet

(besides the initial state) are of the form{(q,ann1),(q,ann2),(q,ann2), . . .}, whereq
is a state ofΣ andanni is a sequence ofn (possibly negated) subformulas introduced
by the algorithm of Courcoubetis and Yannakakis. In other words, the elements of a
reachable state ofBdet (not being the initial state) coincide in their first component. If
the first component isq, we call such a state aq-state. The number of reachable states
of B is linear in|Q| and doubly exponential inn.

If Bdet is in aq-state and readsp, then the successor state is nonempty only ifΣ has
the transitionq→ p (cf. Lemma A.1). Hence, the number of transitions ofBdet is linear
in |Σ| and doubly exponential in|Φ|. The automatonBdet can therefore be computed by
a depth-first search in time linear in|Σ| and doubly exponential in|Φ|.
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We prove 3. We compute a DFABc acceptingQ∗ \ πn(Sat(Σn,Φn))↓ from Bdet

as usual by adding an error state and complementing the set ofaccepting states. It
is straightforward to determine an automatonAΣ acceptingpathfin(Σ). According to
Lemma 5.1, the product automatonA of Bc andAΣ acceptsI(Σ,Φ). It can be shown
with similar arguments as in the proof of 2 thatA can be computed in time linear in|Σ|
and doubly exponential in|Φ|. ⊓⊔

Proofs in Section 4.2

Proposition 4.12
1. P [I(Σ,Y)↑ ∩Y] = 0.
2. For any LTL formulaΦ, P [I(Σ,Φ)↑ ∪Sat(Φ)] = 1.
3. For any LTL formulaΦ, P [I(Σ,Φ)↑] = P [¬Φ].

Proof. Let R be a recurrent set refutingY in the contextI(Σ,Y). That means,I(Σ,Y)↑
∩FairΣ(R)∩Y = ∅. Assertion 1 follows with Lemma 4.3.

For a proof of 2, supposeP [I(Σ,Φ)↑ ∪Sat(Φ)] < 1. Note thatI(Σ,Φ)↑ ∪Sat(Φ)
is ω-regular (cf. Theorem 5.2). With Theorem 3.7 choose a recurrent wordγ refuting
I(Σ,Φ)↑ ∪Sat(Φ) in some contextα. Since afterα only the bscc ofγ is reachable,

α↑ ∩FairΣ({γ})∩ (I(Σ,Φ)↑ ∪Sat(Φ)) = ∅.

Hence,α ∈ I(Σ,Φ). Then∅ = α↑ ∩FairΣ({γ})∩ I(Σ,Φ)↑= α↑ ∩FairΣ({γ}) – a con-
tradiction.

Assertion 3 can be derived from 1 and 2:

P [I(Σ,Φ)↑] = P [I(Σ,Φ)↑ ∩Sat(Φ)]+

P [I(Σ,Φ)↑ ∩Sat(¬Φ)]+

P [I(Σ,Φ)↑c∩Sat(¬Φ)]

= P [Sat(¬Φ)] .

⊓⊔

Proposition 4.13
1. The initial language I(Σ,Y) is the largest set W⊆ pathfin(Σ) such that there is a

recurrent set refuting Y in the context W.
2. For any LTL formulaΦ, I(Σ,Φ) is the set of allα∈ pathfin(Σ) such thatP [Φ | α↑] =

0.

Proof. We prove 1. We have already seen that there is a recurrent set refuting Y in
the contextI(Σ,Y). Suppose some recurrent setRW refutesY in some contextW ⊆
pathfin(Σ). For anyα ∈W, RW refutesY in the contextα, and thereforeα ∈ I(Σ,Y). We
conclude thatW ⊆ I(Σ,Y).

We prove 2. Because of Corollary 4.5 and Lemma A.2,P [Φ | α↑] = 0 if and only
if there is a recurrent set refutingΦ in the contextα. ThereforeI(Σ,Φ) is the set of all
α ∈ pathfin(Σ) such thatP [Φ | α↑] = 0. ⊓⊔

June 9, 2009
19



Theorem 4.14 Let Φ be an LTL formula,0 ≤ t < 1 and P [Φ] ≤ t. Then there is a
nonempty set W⊆ pathfin(Σ) such thatP [Φ |W↑] = 0 andP [W↑] ≥ 1− t. Moreover,
for any W⊆ pathfin(Σ), W 6= ∅ with P [Φ |W↑] = 0 there is a recurrent set R refuting
Φ in the context W.

Proof. First takeW := I(Σ,Φ). Because of Proposition 4.12,P [Φ |W↑] = 0. Moreover,
sinceP [¬Φ] = P [W↑], P [W↑] = 1−P [Φ] ≥ 1− t.

Second supposeW ⊆ pathfin(Σ), W 6= ∅ with P [Φ |W↑] = 0. Because of Assertion
2 in Proposition 4.13,W ⊆ I(Σ,Φ). Therefore the recurrent setR refuting Φ in the
contextI(Σ,Φ) also refutesΦ in the contextW. ⊓⊔

Proofs in Section 5.3

Lemma A.3. Suppose x∈ pathω(Σ) and x′ ∈ pathω(Σ′) with π(x′) = x. If x∈ I(Σ,Φ)↑,
then x′ ∈ I(Σ′,Φ′)↑.

Proof. Let x∈ pathω(Σ), x′ ∈ pathω(Σ′) with π(x′) = x andx∈ I(Σ,Φ)↑. Chooseα ∈
I(Σ,Φ) so thatα ⊑ x. Let α′ be the prefix ofx′ of the same length asα. We will show
thatα′ ∈ I(Σ′,Φ′).

Note thatα⇒¬Φ is large inΣ. Hence,α⇒¬Φ′ is large inΣ′. As Σ′
� α′ ⇒α,

α′⇒¬Φ′ is large inΣ′. Therefore,α′ ∈ I(Σ′,Φ′). ⊓⊔

Lemma 5.3 The function computeRecurrentWord terminates and establishes its post-
conditions.

Proof. First note thatcomputeRecurrentWordterminates; a termination argument is the
number of temporal connectives inΦ.

We prove the postconditions by induction overΦ. SupposeΦ is a state formula.
Postcondition (1) obviously holds. We know there is some recurrent setR such that
I(Σ,Φ)↑ ∩FairΣ(R)∩Sat(Φ) = ∅. SinceΦ is a state formula,I(Σ,Φ)↑ ∩Sat(Φ) = ∅.
Hence,I(Σ,Φ)↑ ∩Sat(G Fγ)∩Sat(Φ) = ∅.

Now supposeΦ is not a state formula, and the recursive call in Line 8 establishes its
postconditions. We prove thatγ satisfies the postconditions. Postcondition (1) obviously
holds. For Postcondition (2), letx∈ I(Σ,Φ)↑ ∩Sat(G Fγ). With Lemma A.1 choosex′ ∈
pathω(Σ′) such thatπ(x′)= x. By Line 10,x′ � G Fγ′, and, by Lemma A.3,x′ ∈ I(Σ′,Φ′).
By the induction hypothesis,x′ 2 Φ′. By Line 11,x′ � G(Θ⇔d), and thereforex′ 2 Φ.
Sinced does not appear inΦ, x 2 Φ. ⊓⊔

Lemma A.4. SupposeΘ = ψ U ξ. Let γ′ be a nonempty finite path fragment ofΣ′.
Chooseδ′ minimal w.r.t.⊑ such that the following conditions hold:
1. γ′δ′ is a finite path fragment ofΣ′.
2. π(γ′δ′) does not end in QMΘ .
3. If π(γ′δ′) visits a state satisfying d, thenπ(γ′δ′) visits a state satisfyingξ.

Setγ := π(γ′δ′).
Then the conditions in Lines 10 and 11 of computeRecurrentWord applied toΣ,Φ,q

hold.

June 9, 2009
20



Proof. We first address the condition in Line 10. Choose a path fragment γ̃′ of Σ′ such
thatπ(γ̃′) = γ. We have to show thatγ′ ⊑ γ̃′. Sinceγ does not end inQM

Θ , the last states
of γ̃′ andγ′δ′ coincide. By Lemma A.1,γ′δ′ = γ̃′, and thereforeγ′ ⊑ γ̃′.

For the condition in Line 11, it can be observed that any pathx′ ∈ pathω(Σ′) violat-
ing G(Θ⇔d) satisfies F G(d∧¬ξ), i.e., from some position onx′ satisfiesd and does
not satisfyξ. Now suppose thatx′ � G Fγ. Because of Condition 3 in the definition of
γ, x′ satisfies G(Θ⇔d). ⊓⊔

Lemma A.5. SupposeΘ = X ξ. Let γ′ be a finite path fragment ofΣ′. If π(γ′) does not
end in QM

Θ , we setγ := π(γ′). Otherwise, we extendγ′ by one state q′ to γ′q′ ∈ pathfin(Σ′)
and setγ := π(γ′q′).

Then the conditions in Lines 10 and 11 of computeRecurrentWord applied toΣ,Φ,q
hold.

Proof. We first consider the condition in Line 10. Supposeπ(γ′) does not end inQM
Θ .

Take γ̃′ with π(γ̃′) = γ. Thenπ(γ′) = π(γ̃′) andγ′, γ̃′ end in the same state. Hence, by
Lemma A.1,γ′ = γ̃′. Now supposeπ(γ′) ends inQM

Θ . Let q′ be a state ofΣ′ such that
γ = π(γ′q′) andγ′q′ is a path fragment ofΣ′. Takeγ̃′q̃′ with π(γ̃′q̃′) = γ. We have to show
thatγ′ ⊑ γ̃′q̃′. The statesq′ andq̃′ are not necessarily the same, but there projections are.
By the construction ofΣ′, the last states ofγ′ and γ̃′ coincide. Therefore, by Lemma
A.1, γ′ = γ̃′ ⊑ γ̃′q̃′.

The condition in Line 11 holds, because anyx′ ∈ pathω(Σ′) satisfies G(Θ⇔d). ⊓⊔

The functioncomputeContext, an adopted version ofcomputeRecurrentWordthat
computes a single element ofI(Σ,Φ), is outlined in Figure 2. The statement in Line 9
can be implemented as incomputeRecurrentWord.

Fig. 2. Function: α = computeContext(Σ,Φ)
Precondition: Σ is a system,Φ a formula.1

Postcondition:α ∈ I(Σ,Φ).2

begin3

if Φ is a state formulathen4

chooseα as an initial state ofΣ violating Φ;5

else6

α′ := computeContext(Σ′,Φ′);7

choosea finite pathα of Σ such that8

for eachx′ ∈ pathω(Σ′), if α ⊑ π(x′), thenα′ ⊑ x′;9

end10

end11

Lemma A.6. The function computeContext terminates and establishes its postcondi-
tion.
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Proof. Note thatcomputeContextterminates because the number of temporal connec-
tives in the formula decreases with each recursive call.

If Φ is a state formula, the postcondition is obviously established. Suppose thatΦ is
no state formula andα′ ∈ I(Σ′,Φ′). Let α ∈ pathfin(Σ) such that Line 9 holds. We show
thatα ∈ I(Σ,Φ).

Let R be the recurrent set computed by help ofcomputeRecurrentWordrefuting
Φ in the contextI(Σ,Φ). Let x be anR-fair path of Σ extendingα. Since for each
bsccR contains a recurrent word refutingΦ belonging to that bscc, there is a recurrent
word γ refutingΦ such thatx � G Fγ. Choosex′ ∈ pathω(Σ′) with π(x′) = x. Because
of Line 9, α′ ⊑ x′ and thereforex′ ∈ I(Σ′,Φ′)↑. Let γ′ be the recurrent word ofΣ′

from whichγ has been computed; in particular,I(Σ′,Φ′)↑ ∩Sat(G Fγ′)∩Sat(Φ′) = ∅.
Because of Line 10 ofcomputeRecurrentWord, x′ � G Fγ′. Hence,x′ 2 Φ′. Because of
Line 11 ofcomputeRecurrentWord, x′ � G(Θ⇔d) and thereforex′ 2 Φ. Sinced does
not appear inΦ, x 2 Φ. As x is an arbitraryR-fair path ofΣ extendingα, we conclude
thatα↑ ∩FairΣ(R)∩Sat(Φ) = ∅. Hence,α ∈ I(Σ,Φ). ⊓⊔
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