
The π-calculus without α-conversion

Daniele Varacca, Nobuko Yoshida
Imperial College London

Abstract

Dynamic creation of new names is one of the distinguishing features of the π-
calculus. The notion of α-conversion of bound names plays an important role in
formalising name creation. This paper shows a small but surprising fact on expres-
siveness of the π-calculus: for a powerful fragment of π-calculi where communica-
tion happens internally and linearly, α-conversion is not necessary. We show that
this linear π-calculus with internal mobility can be fully abstractly translated into a
CCS where names need not be generated dynamically during the computation (“at
run time”), but they can be instantiated during the typing (“at compile time”). This
opens a possibility that we can reuse many fruitful results established in CCS to
the π-calculus. In particular we could provide an Event Structure-based semantics
of the π-calculus, which is a difficult task in the presence of α-conversion.

1 Introduction and motivations
Dynamic creation of new names and name passing are the main features that distinguish
the π-calculus from CCS. Syntactically, the creation of new names is performed by a
combination of α-conversion and scope opening. Consider the following transition
rule, where ≡α denotes α-equivalence, while β is a label denoting the nature of the
transition:

P≡α P′ P
β−→Q

P′
β−→Q

This apparently innocent rule is often necessary for allowing processes to communi-
cate. When a process outputs a new name, the receiver and the sender agree on such a
name, which then becomes known only to them. In order to do this, an application of
the rule above may be necessary. Consider the process:

C def
= a(x).P |a(y).Q | (νz)a〈z〉.R

where | denotes parallel composition, a(x).P represents input, (νz) is name restriction
and a〈z〉.R represents an output. Note that the name output by the third subprocess
is bound, and can be instantiated by any fresh name. The process C can do a silent
transition to either of the two following processes:

(νw)(P[w/x] |R[w/z]) |a(y).Q

(νw)(Q[w/y] |R[w/z]) |a(x).P

where w is a fresh name. Dynamically, a new name is created which R shares either
with P or with Q. Note that at least one of the subprocesses involved must perform an
α-conversion on a bound name.

This paper shows a small but surprising fact: in some restricted but powerful frag-
ment of the π-calculus, dynamic α-conversion is no longer necessary. For example
consider the process:

(νa)(a(x).P | (νz)a〈z〉.R)

1

where a does not appear in P and R. Such name a is called linear in the literature [13,
1, 25, 20]. Since the there is only one possible communication on a, we could choose
the name the subprocesses agree upon before the communication actually happens, and
restrict it to make sure no one else knows such name:

(νa)(νw)(a〈w〉.P[w/x] |a〈w〉.R[w/z])

The input does not need to be binding, and instead of name passing, we could speak of
name sharing. This simplification is not possible on the process C above, as it is not
possible to decide statically which communication will actually happen. However the
subclass of processes we consider does not include process C.

The first restriction we impose is that we only study Sangiorgi’s πI-calculus [18,
19], a version of the π-calculus where only fresh names can be communicated. The
theory of the πI-calculus is considerably simpler than the one of the full calculus, and
it is closer to the theory of CCS. In the transition system for the π-calculus, three kinds
of actions are present: input, free output and bound output. In the πI-calculus only
input and bound output are present, allowing a complete symmetry between input and
output, analogous to the one featured by CCS. Also, there is only one natural notion
of congruent bisimulation for the πI-calculus, while this is not the case for the full
calculus [15]. Moreover, when using recursion instead of replication, the πI-calculus
is as expressive as the full calculus [18, 19].

The second restriction we impose is by means of a type system. Various typing
systems for the π-calculus have been studied in the literature. The typing system we
consider in this work restricts the universe of processes to the so-called linear ones [13,
20]. The expressive power of linearly typed π-calculus is strictly less that the one of the
full calculus. However linear processes have enough power to fully abstractly encode a
family of the functional calculi, such as PCF [1], a simply typed λ-calculus with sums
and products [25], the System F [2] and full control calculi [11]. In practice, the linear
type discipline is used for guaranteeing deadlock-freedom [25, 12], proving aggressive
optimisations of encodings [13, 20] and secure information flow analysis [9, 10, 26].

Even if we restrict our calculus to a linear πI-calculus, to erase dynamic α-conversion
is non-trivial due to possibly infinite computation which generates infinite many new
names. For example, consider the following πI-calculus term:

Pω = Fw〈ab〉 |Fw〈ba〉 | (νz)a〈z〉.z.c

where Fw〈ab〉 def
=!a(x).(νy)b〈y〉.y.x. The process Pω is perfectly typable by the lin-

ear typing system. Here !a(x).P represents an input receptor which creates a copy of
P when it is invoked by a message on a. Using the operational semantics of the π-
calculus, formally presented in the next section, the reader can easily check that, after
an initial interaction at a, Pω generates infinitely many different bound names because
of the name restriction under the prefix.

This paper shows that a family of linear πI-calculi, which includes the above Pω,
can be fully abstractly translated into a linearly typed CCS where names need not be
generated dynamically during the computation (“at run time”), but they can be instanti-
ated during the typing (“at compile time”). This opens a possibility to smoothly inherit
many accumulated theories studied in CCS to the π-calculus, in particular it allows to
provide an Event Structure semantics of π-calculus on the same lines as the semantics
of CCS [24]. This has been technically difficult to achieve before, and it is still difficult
for the full π-calculus, due to the α-conversion rule.

2 A linear version of the π calculus
This section briefly summarises a linear version of the π-calculus in [1]. Although
this summary is technically self-contained, the reader may refer to [1] for detailed
illustration and more examples.

2

2.1 Syntax and Reduction
The π-calculus used in this abstract is a subset of the standard π-calculus [16]. The
following gives the reduction rule of the π-calculus:

x(ỹ).P | x〈ṽ〉.Q −→ P{ṽ/ỹ} |Q
Here ỹ denotes a potentially empty vector y1...yn. Operationally, this reduction repre-
sents the consumption of a message by a receptor.

As anticipated, we consider a restricted version of the π-calculus, where only bound
names are passed in interaction. Besides producing a simpler and more elegant theory,
this restriction allows tighter control of sharing and aliasing without losing essential
expressiveness, making it easier to administer name usage in more stringent ways. The
resulting calculus is called the πI-calculus in the literature [19] and has the same ex-
pressive power as the version with free name passing (as proved Section 6 in [25]).
Syntactically we restrict an output to the form (ν ỹ)x〈ỹ〉.P (where names in ỹ are pair-
wise distinct), which we henceforth write x(ỹ).P. For dynamics, we have the following
forms of reduction by the restriction to the bound output. The reduction relation−→ is
generated from the following rules, closed under output prefix, restriction and parallel
composition (modulo ≡):

x(ỹ).P | x(ỹ).Q −→ (ν ỹ)(P |Q)

!x(ỹ).P | x(ỹ).Q −→ !x(ỹ).P | (ν ỹ)(P |Q)

After communication, ỹ are shared between P and Q. The formal grammar of the
calculus is defined below. Below and henceforth x,y, . . . range over a countable set of
names.

P ::= x(ỹ).P | x(ỹ).P | P |Q | (νx)P | 0 | !x(ỹ).P

x(ỹ).P (resp. x(ỹ)P) is an input (resp. output). P |Q is a parallel composition, (νx)P is
a restriction and !x(ỹ).P is a replicated input. We omit the empty vector: for example,
a stands for a(). The bound/free names are defined as usual. We assume that names in
a vector ỹ are pairwise distinct. We also use the standard convention that in any process
the set of bound names and the set of free names are disjoint. This is not restrictive as
processes are identified up to α-equivalence.

The definitions of structural equality ≡ is standard, and in particular it includes the
monoidal laws for | as well as α-equivalence ≡α [16, 1, 25, 9].

2.2 Types and Typings
This subsection reviews the basic idea of the linear type discipline in [1]. We can easily
extend the result in this paper to other family of the linear calculi studied in [1, 25, 9].

This type discipline allows a precise embedding of functional computation in the
π-calculus by restricting process behaviour to be a confluent one. To realise confluence,
we use:

(A) for each linear name there are a unique input and a unique output; or

(B) for each replicated name there is a unique stateless replicated input with zero or
more dual outputs.

Example. As an example for the first condition, let us consider:

Q1
def
= a.b |a.c |a Q2

def
= b.a | c.b |a.(c | e)

Then Q1 is not typable as a appears twice as output, while Q2 is typable since each
channel appears at most once as input and output. As an example of the second con-
straint, let us consider the following two processes:

Q3
def
= !b.a | !b.c Q4

def
= !b.a |b | !c.b

3

Q3 is untypable because b is associated with two replicators: but Q4 is typable since,
while output at b appears twice, a replicated input at b appears only once.

Types. Channel types are inductively made up from type variables and action modes.
The four action modes speak about the directional and quantitative channel usage:

↓ Linear input, ↑ Linear output,
! Server at replicated input, ? Client requests to !.

Input modes are ↓, !, while ↑,? are output modes. We let p, p′, . . . denote modes. We
define p, the dual of p, by: ↓=↑, ! = ? and p = p. Then the syntax of types are given
as follows:

σ ::= (σ̃)p

τ ::= σ | l
where σ̃ is a vector of types. The type l denotes a channel that cannot be used by other
processes running in parallel. It cannot be nested inside input/output types. We write
MD(τ) for the outermost mode of τ. The dual of τ, written τ, is the result of dualising
all action modes. Duality is not defined for l. A type environment Γ is a finite mapping
from channels to channel types. The domain of Γ is denoted as Dom(Γ). Sometimes
we will write x ∈ Γ to mean x ∈ Dom(Γ).

Types restrict the composability of processes: for example, for parallel composi-
tion, if P is typed under environment Γ1, Q is under Γ2 and Γ1�Γ2 is defined for a
partial operator � with the resulting Γ, then we assign Γ to P |Q. If Γ1�Γ2 is not de-
fined, the composition is not allowed. Formally,� is the partial commutative operation
on Γ1 and Γ2 where Γ1�Γ2

def
= Γ is defined as follows:

(1) • if Γ1(x) = (τ̃)↓ and Γ2(x) = (τ̃)↑ then Γ(x) =l, and symmetrically;
• if Γ1(x) = (τ̃)↓ and x 6∈ Dom(Γ2) then Γ(x) = (τ̃)↓, and symmetrically;
• if Γ1(x) = (τ̃)↑ and x 6∈ Dom(Γ2) then Γ(x) = (τ̃)↑, and symmetrically;

(2) • if Γ1(x) = (τ̃)! and Γ2(x) = (τ̃)? then Γ(x) = (τ̃)! , and symmetrically;
• if Γ1(x) = (τ̃)? and Γ2(x) = (τ̃)? then Γ(x) = (τ̃)? .

(3) undefined in any other cases (if any of the other cases arises, then the whole
Γ1�Γ2 is not defined).

Intuitively, the rules in (2) say that a server should be unique, but an arbitrary number
of clients can request interactions. The rules in (1) say that once we compose input-
output linear channels, the channel becomes uncomposable. Note that (3) says other
compositions are undefined. (1) and (2) ensures the two constraints (A) and (B) in
§ 2.2.

Typing System Typing rules are defined in Figure 1. The (Zero) rule types 0. As 0
has no free names, it is not being given any channel types. In (Par), Γ1�Γ2 guarantees
the consistent channel usage like linear inputs being only composed with linear outputs,
etc. In (Res), we do not allow ↑, ? or ↓-channels to be restricted since they carry
actions which expect their dual actions to exist in the environment. (WeakOut) and
(WeakCl) weaken with ?-names or l-names, respectively, since these modes do not
require further interaction. (LIn) ensures that x occurs precisely once. (LOut) is dual.
(RIn) is the same as (LIn) except that no free linear channels are suppressed. This is
because a linear channel under replication could be used more than once. (ROut) is
similar with (LOut). Note we need to apply (WeakOut) before the first application of
(ROut).

4

0. /0 Zero
Pi .Γi (i = 1,2)

P1 |P2 .Γ1�Γ2
Par

a 6∈ Γ MD(τ) = !,l
P.Γ,a : τ

(νa)P.Γ Res

P.Γ x 6∈ Γ

P.Γ,x : (τ̃)? WeakOut
P.Γ x 6∈ Γ

P.Γ,x :l WeakCl
P.Γ, ỹ : τ̃ a 6∈ Γ

a(ỹ).P.Γ,a : (τ̃)↓
LIn

P.Γ, ỹ : τ̃ a 6∈ Γ

a(ỹ).P.Γ,a : (τ̃)↑
LOut

P.Γ, ỹ : τ̃ a 6∈ Γ
∀(x : τ) ∈ Γ. MD(τ) =?

!a(ỹ).P.Γ,a : (τ̃)! RIn
P.Γ,a : (τ̃)? , ỹ : τ̃

a(ỹ).P.Γ,a : (τ̃)? ROut

Figure 1: Linear Typing Rules

2.3 A Typed Labelled Transition Relation
Typed transitions describe the observations a typed observer can make of a typed pro-
cess. The typed transition relation is a proper subset of the untyped transition relation,
while not restricting τι-actions: hence typed transitions restrict observability, not com-
putation. Let the set of labels α,β, . . . be given by the following grammar:

α,β, ... ::= τι | x(ỹ) | x(ỹ)

x(ỹ) (resp. x(ỹ)) stands for a bound input (resp. output).
The standard untyped transition relation is defined in Figure 2. We need to define

in which way an environment restricts observability. In order to do this we define the
relation Γ allows α as follows:

for all Γ, Γ allows τι;
if MD(Γ(x)) =↓, !, then Γ allows x(ỹ);
if MD(Γ(x)) =↑,?, then Γ allows x(ỹ).

Intuitively, labels only allowed when the type environment is coherent with them.
Whenever Γ allows α, we define Γ\α as follows:

for all Γ, Γ\ τι = Γ;
if Γ = ∆,x : (τ̃)↓, then Γ\ x(ỹ) = ∆, ỹ : τ̃;
if Γ = ∆,x : (τ̃)↑, then Γ\ x(ỹ) = ∆, ỹ : τ̃;
if Γ = ∆,x : (τ̃)! , then Γ\ x(ỹ) = Γ, ỹ : τ̃;
if Γ = ∆,x : (τ̃)? , then Γ\ x(ỹ) = Γ, ỹ : τ̃.

The environment Γ \α is what remains after the transition labelled by α has hap-
pened. Linear channels are consumed, while replicated channels are not consumed.
The new previously bound channels are released.

Then the typed transition, written P .Γ α−→ Q .Γ′ is defined by adding the con-
straint:

P α−→Q

P.Γ α−→Q.Γ\α
Note in particular that the rule applies only when Γ allows α. The above rule does

not allow a linear input action and an output action when there is a complementary
channel in the process. For example, if a process has x : (τ̃)! in its action type, then
output at x is excluded since such actions can never be observed in a typed context
(cf. Section 4.2 and Appendix E of [1]). For a concrete example, consider the process
a.b | b.a which is typed in the environment a :l,b :l. Although the process has some
untyped transition, none of them is allowed by the environment.

The above rule is well defined in the following sense.

5

a(ỹ).P
ā(ỹ)−→P a(ỹ).P

a(ỹ)−→P !a(ỹ).P
a(ỹ)−→P | !a(ỹ).P

P
β−→P′ β 6= x(ỹ),x(ỹ)

(νx)P
β−→(νx)P′

P
β−→P′

P |Q β−→P′ |Q
Q

β−→Q′

P |Q β−→P |Q′
P

a(ỹ)−→P′ Q
a(ỹ)−→Q′

P |Q τ−→(ν ỹ)(P′ |Q′)

P≡α P′ P α−→Q

P′ α−→Q

Figure 2: Labelled Transition System for the πI-Calculus

Proposition 2.1 If P.Γ, P α−→Q and Γ allows α, then Q.Γ\α

PROOF: by induction on the rules in Figure 2.
Finally we define the notion of typed bisimulation. Let R be a symmetric relation

between judgments. We say that R is a bisimulation if the following is satisfied:

• if (P.Γ)R(P′ .Γ′), then Γ = Γ′;

• whenever (P.Γ)R(P′ .Γ), P.Γ β−→Q.Γ\β, then there exists Q′ such that P′ .

Γ β−→Q′ .Γ\β, and (Q.Γ\β)R(Q′ .Γ\β).

If there exists a bisimulation between two judgments, we say that they are bisimilar
(P.Γ)≈ (P′ .Γ).

3 Name Sharing CCS
In this section we argue that, in the presence of linear types, α-conversion is not neces-
sary, and channels need not be created dynamically at run time, but they can be decided
statically.

3.1 Syntax
We introduce a variant of CCS where synchronisation happens if processes share some
“confidential” names. Syntactically this looks like name passing, with the difference
that processes decide their confidential names before communicating, and there is not
α-conversion. If the chosen names do not coincide, the processes do not synchronise.

The other differences with standard CCS is that we allow infinite parallel compo-
sition and infinite restriction. The former is necessary in order to translate replicated
processes. The standard intuition in the π-calculus is that the process !P represents the
parallel composition of infinitely many copies of P. We need to represent this explic-
itly in order to be able to provide each copy with different confidential names. Infinite
restriction is also necessary, because we need to restrict all confidential names that are
shared between two processes in parallel, and these are in general infinitely many.

We call this language Name Sharing CCS, or NCCS.

P ::= a〈ỹ〉.P input
| a〈ỹ〉.P output
| ∏i∈I Pi infinite parallel composition
| P\S infinite restriction
| 0 zero

6

a〈ỹ〉.P a〈ỹ〉−→P a〈ỹ〉.P a〈ỹ〉−→P

P
β−→P′ sub j(β) 6∈ S

P\S
β−→P′ \S

Pn
α−→P′

∏i∈NPi
α−→(∏i∈N\{n}Pi) |P′

Pn
a〈ỹ〉−→P′ Pm

a〈ỹ〉−→P′′

∏i∈NPi
τι−→(∏i∈N\{n,m}Pi) |P′ |P′′

Figure 3: Labelled Transition System for Name Sharing CCS

We sometime denote parallel composition where the indexing set is {1,2}, by P1‖P2.
As before ỹ denotes a finite sequence of distinct names y1 . . .yn, whenever the length
of the sequence and the identity of the individual names do not matter. We will also
sometimes abuse the notation by using set theoretic notions applied to the sequences.
So, for instance, ỹ∩ ỹ′ = /0 means that for all i, j yi 6= y′j. S denotes a set of names.
Finally, processes are identified up to a straightforward structural congruence, which
includes the rule (P\S)\T ≡ P\ (S∪T), but no notion of α-equivalence.

Given an input β = a〈ỹ〉, we say that a is the subject of β, written a = sub j(β)
while ỹ are the confidential names, written ỹ = con f (β). Similarly for output. A name
is confidential in P if it appears in a confidential position inside P.

The operational semantics is the one of CCS, and it is shown in Figure 3. As in
CCS, prefixes generate inputs and outputs. Processes in parallel can proceed inde-
pendently or synchronise over complementary actions. Restriction inhibits input and
output over a particular set of names. The only difference with CCS is the presence
of “confidential names” that are used only for synchronisation. Note also that only the
subject of an action is taken into account for restriction.

Example. For instance the process

(a〈x〉.P |a〈y〉.R)\{a}

cannot perform any transition, because x and y do not match. The process

(a〈x〉.P |a〈x〉.Q |a〈x〉.R)\{a}

can perform two different initial τι transitions. Since the name x is not bound, it does
not become private to the subprocesses involved in the communication.

3.2 Types
Types are generated by the following grammar

σ ::= (ỹ : σ̃)↓ linear input
| (ỹ : σ̃)↑ linear output
| ({ỹh : σ̃h | h ∈ H})! replicated input
| ({ỹh : σ̃h | h ∈ H})? replicated output

τ ::= σ | l closed channel

Linear types specify the tuple of confidential names that are shared during the only
communication allowed. Replicated types specify a (possibly empty) set1 of tuples,
one for each communication. In the replicated type we assume that for distinct h,h′,

1Technically we need to use indexed families, up to the name of the indexing set. This is due to the
possibly of having many copies of the empty tuple.

7

ỹh∩ ỹh′ = /0. A type environment is a finite function from names to types. A “singleton”
environment has the form x : τ. We say a name is confidential for Γ if it appears inside
a type in the range of Γ. A name is public if it is in the domain of Γ.

A type environment Γ is well formed, if the following are satisfied:

• confidential names and public names are distinct;
• all confidential names appear exactly once.

In the following we consider only well formed environments. We can perform
injective renaming on environments: if σ is an injective endofunction on names which
leaves Dom(Γ) alone, then Γ[σ] is the the environment where every confidential name
x has been replaced with σ(x).

Before introducing the typing rules, we have to define the multiple substitution
of names in a replicated output type. For any set K, let FK : Names→P(Names)
be a function such that, for every name x, there is a bijection between K and FK(x).
Concretely we can represent FK(x) = {xk | k ∈ K}. In the following we assume that
each set K is associated to a unique FK , and that for distinct x,y, FK(x)∩FK(y) = /0.

Given a type τ, and an index k, define τk as follows:

• ({ỹh : τ̃h | h∈H})! ,k = ({ỹk
h : τ̃k

h | h∈H})? , where ỹh = (yi,h)i∈I and ỹk
h = (yk

i,h)i∈I ;
• and similarly for all other types.

Given a set K and a replicated output type τ = ({ỹh : τ̃h | h ∈ H})? , the type τ[K]
is defined as ({ỹk

h : τ̃k
h | h ∈ H,k ∈ K})? . The expression τ[K] is undefined in all other

cases, that is when τ is the uncomposable type, an input or a linear output.
This definition is extended to environments by Γ[K](x) = Γ(x)[K], which is thus

defined only when for every x ∈ Dom(Γ), MD(Γ(x)) = ?. We will also assume that all
names in the range of the substitution are fresh, in the sense that no name in the range
of FK appears in the domain of Γ. Under this assumption we easily have that if Γ is
well formed and if Γ[K] is defined, then Γ[K] is also well formed.

3.3 Matching Confidential Names
We have to define when two types match each other. In the π-calculus two types match
each other if they are dual. In the types of NCCS, also confidential names have to
match. The matching of two types will also produce a set of names that are to be
considered as “closed”, as they are used both for input and for output. Finally, after
two types have matched, they produce a “residual” type.

We define the relation match[τ,σ]→ S, symmetric in the first two arguments, and
the partial function res[τ,σ] as follows:

• let τ = ((xi)i∈I : (τi)i∈I)
↑ and σ = ((y j) j∈J : (τ j) j∈J)↓. Then match[τ,σ]→ S if

I = J, for all i ∈ I, xi = yi and match[τi,σi]→ Si, and S =
S

I(Si∪{xi}). In such
a case res[τ,σ] =l ;

• let τ = ({(xk
i)i∈I : (τk

i)i∈I | k ∈ K})? and σ = ({(yh
j) j∈J : (τh

j) j∈J | h ∈H})! . Then
match[τ,σ]→ S if I = J, K ⊆H, for all i ∈ I,k ∈ K, xk

i = yk
i and match[τk

i ,σk
i]→

Sk
i , and S =

S
I,K(Sk

i ∪ {xk
i }). In such a case res[τ,σ] = ({(yh

j)J : (τh
j)J | h ∈

H \K})! .

When two linear types match, the residual type is uncomposable. In the case of
the replicated types, the residual type is a replicated input that contains the confidential
names not involved in the matching.

8

0. /0 Zero
P.Γ x 6∈ Γ

P.Γ,x : (/0)? WeakOut
P.Γ x 6∈ Γ
P.Γ,x :l WeakCl

P.Γ,a : τ MD(τ) = !,l
P\a.Γ Res

P.Γ, ỹ : τ̃ a 6∈ Γ w̃ fresh

a〈w̃〉.P[w̃/ỹ].Γ,a : (w̃ : τ̃)↑
LOut

P.Γ, ỹ : τ̃ a 6∈ Γ w̃ fresh

a〈w̃〉.P[w̃/ỹ].Γ,a : (w̃ : τ̃)↓
LIn

P.Γ, ỹ : τ̃,a : ({w̃h : τ̃h | h ∈ H})? w̃∗ fresh

a〈w̃∗〉.P[w̃∗/ỹ].Γ,a : ({w̃h : τ̃h | h ∈ H]{∗}})? ROut

P.Γ, ỹ : τ̃ a 6∈ Γ Y = ỹ∪ con f (Γ)

∏k∈K a〈ỹk〉.P[Y k/Y].Γ[K],a : ({ỹk : τ̃k | k ∈ K})! RIn

Pi .Γi (i = 1,2) S = cl(Γ1,Γ2)

(P1‖P2)\S.Γ1�Γ2
Par

Figure 4: Typing Rules for NCCS

3.4 Typing Rules
We are now ready to write the rules. The main feature of these rules is that, roughly
speaking, α-conversion is performed during the typing (at compile time) rather that
at run time. The formulation of the rules in this way makes it easier to define the
correspondence with the π calculus. Also, parallel composition is well typed only if
the names used for communication have matching types, and if the matched names are
restricted. This makes sure that communication can happen, and that the shared names
are indeed private to the processes involved.

The rules are shown in Figure 4. The environment Γ1�Γ2
def
= Γ and the set of names

cl(Γ1,Γ2) are jointly defined as follows:

• if x 6∈ Dom(Γ1), then Γ(x) = Γ2(x), Sx = /0 and symmetrically;
• if Γ1(x) = τ,Γ2(x) = σ and match[τ,σ]→ S, then Γ(x) = res[τ,σ] and Sx = S;
• if Γ1(x) = ({ỹk : τ̃k | k ∈ K})? and Γ2(x) = ({ỹh : τ̃h | h ∈ H})? and for every

h∈H,k ∈K we have ỹk∩ ỹh = /0 and con f (τ̃k)∩con f (τ̃h) = /0 then Γ(x) = ({ỹh :
τ̃h | h ∈ H ∪K})? and Sx = /0;

• if any of the other cases arises, then Γ is not defined;
• cl(Γ1,Γ2) =

S
x∈Dom(Γ1,Γ2) Sx.

3.5 Typed Semantics
The relation Γ allows α is defined similarly to the π-calculus, while the definition of
the environment Γ\α requires an adaptation to the new types.

• Γ\ τι = Γ;

• if Γ = ∆,x : (ỹ : τ̃)↓, then Γ\ x(ỹ) = ∆, ỹ : τ̃;

• if Γ = ∆,x : (ỹ : τ̃)↑, then Γ\ x(ỹ) = ∆, ỹ : τ̃;

• if Γ = ∆,x : ({ỹh : τ̃h | h ∈ H]{∗}})! ,
then Γ\ x(ỹ∗) = ∆, ỹ∗ : τ̃∗,({ỹh : τ̃h | h ∈ H})! ;

9

• if Γ = ∆,x : ({ỹh : τ̃h | h ∈ H]{∗}})? ,
then Γ\ x(ỹ) = ∆, ỹ∗ : τ̃∗,({ỹh : τ̃h | h ∈ H})! .

Again the typed transition, written P.Γ α−→Q.Γ′ is defined by adding the constraint:

P α−→Q

P.Γ α−→Q.Γ\α

Proposition 3.1 If P.Γ, P α−→Q and Γ allows α, then Q.Γ\α

The definition of bisimulation and bisimilarity between typed processes is com-
pletely analogous to the one of the π-calculus. Bisimilarity is denoted as P.Γ≈Q.Γ.

4 Correspondence between the calculi

4.1 Translation
We are now ready to translate the π-calculus into Name Sharing CCS. The translation
is parametrised over a fixed choice for the confidential names. This parametrisation
is necessary because π-calculus terms are identified up to α-conversion, and so the
identity of bound names is irrelevant, while in Name Sharing CCS, the identity of
confidential names is important.

The translation is a family of partial functions pc[[−]]∆, indexed by a NCCS type
environment ∆, that take a judgment of the π-calculus and return a judgment of NCCS.
The functions are only partial because for some choice of names, the parallel compo-
sition in NCCS will not be typed.

We define the translation by induction on the derivation of the typing judgment.
Without loss of generality, we will assume that all the weakenings are applied to the
empty process.

The translation is defined in Figure 5. There, we assume that pc[[P .Γ]]∆ = P̂ .∆,
and that y ∈Dom(Γ) =⇒ y ∈Dom(∆). In particular, in the translation of the replicated
output, we assume pc[[P .Γ,a : (τ̃)? , ỹ : τ̃]]∆,ỹ:ˆ̃τ∗,a:({w̃i:ˆ̃τi | i∈I})?

= P̂ .∆, ỹ : ˆ̃τ∗,a : ({w̃i :
ˆ̃τi | i ∈ I})? . When the assumptions are not satisfied, the translation is not defined. We
also put Y = con f (P̂), and S = cl(∆1�∆2). Note the way bound variables become
confidential information.

We said that the translation is only a partial function. In particular, for the wrong
choice of ∆1,∆2, the translation of the parallel composition could be undefined, because
∆1�∆2 may be undefined. However it is always possible to find suitable ∆1,∆2. This is
the core Lemma of our paper: it is the formalisation of the intuition that “α-conversion
can be done at compile time”.

Lemma 4.1 For every judgment P .Γ in the π-calculus, there exists an environment
∆ such that pc[[P .Γ]]∆ is defined. Moreover, for every injective fresh renaming σ, if
pc[[P.Γ]]∆ is defined then pc[[P.Γ]]∆[σ] is defined.

Example. As an example, consider the process Pω defined in the introduction

Pω = Fw〈ab〉 |Fw〈ba〉 | (νz)a〈z〉.z.c .

We have Fw〈ab〉 . a : (()↑)! ,b : (()↓)? , so that Pω . a,b : (()↑)! ,c : ()↑. One possible
translation for Fw〈ab〉.a : (()↑)! ,b : (()↓)? is

P1 = ∏
k∈K

a〈xk〉.b〈yk〉.yk.xk .a : ({xk : ()↑| k ∈ K})! ,b : ({yk : ()↓| k ∈ K})?

10

pc[[0. xi : (τi)
? ,y j :l]]xi:(/0)? ,y j :l = 0. xi : (/0)? ,y j :l

pc[[(νa)P.Γ]]∆ = P̂\a.∆

pc[[a(ỹ).P.Γ,a : (τ̃)↑]]∆,a:(z̃:ˆ̃τ)↑ = a〈z̃〉.P̂[z̃/ỹ].∆,a : (z̃ : ˆ̃τ)↑

pc[[a(ỹ).P.Γ,a : (τ̃)↓]]∆,a:(z̃:ˆ̃τ)↓ = a〈z̃〉.P̂[z̃/ỹ].∆,a : (z̃ : ˆ̃τ)↓

pc[[!a(ỹ).P.Γ,a : (τ̃)!]]∆[K],a:({ỹk :ˆ̃τk | k∈K})!
=

∏k∈K a〈ỹk〉.P̂[ỹk/ỹ][Y k/Y].∆[K],a : ({ỹk : ˆ̃τk | k ∈ K})!

pc[[a(ỹ).P.Γ,a : (τ̃)?]]∆,a:({w̃i:τ̃i | i∈I]{∗}})?
=

a〈w̃∗〉.P̂[w̃∗/ỹ]. Γ̂,a : ({w̃i : τ̃i | i ∈ I]{∗}})?

pc[[P1‖P2 .Γ1�Γ2]]∆1�∆2 = (P̂1‖P̂2)\S.∆1�∆2

Figure 5: Translation from π to NCCS

while for Fw〈ba〉.b : (()↑)! ,a : (()↓)? is

P2 = ∏
h∈H

b〈zh〉.a〈wh〉.wh.zh .b : ({zh : ()↑| h ∈ H})! ,a : ({wh : ()↓| h ∈ H})?

Assuming there are two “synchronising” injective functions f : K → H,g : H → K,
such that yk = z f (k),wh = xg(h) (if not, we can independently perform a fresh injective
renaming on both environments), we obtain that the corresponding types for a,b match,
so that we can compose the two environments. Finally pick one k̂ ∈ K \ g(H). We
obtain the following translation of Pω:

((P1 |P2)\S |a〈xk̂〉.xk̂.c)\{xk̂}
where S = {yk |k ∈ K}∪ {wh |h ∈ H}. The above process is typed in the following
environment

a : ({xk : ()↓| k ∈ K \ (g(H)∪{k̂})})! ,b : ({zh : ()↓| h ∈ H \ f (K)})! ,c : ()↑ .

The reader can check that any transition of Pω is matched by a corresponding transition
of its translation. This is what we formally show next.

4.2 Adequacy
To show the correctness of the translation, we first prove the correspondence between
the labelled transition semantics.

Theorem 4.2 Suppose P.Γ β−→P′.Γ′ in the π-calculus, and that pc[[P.Γ]]∆ is defined.

Then for every injective fresh renaming σ pc[[P.Γ]]∆[σ] β[σ]−→pc[[P′ .Γ′]]∆[σ]\β[σ].

Conversely, suppose pc[[P .Γ]]∆
β−→Q .∆ \ β. Then there exists P′ such that P .

Γ β−→P′ .Γ\β and pc[[P′ .Γ\β]]∆\β = Q.∆\β.

Moreover we have that bisimilar terms are mapped into bisimilar terms.

Theorem 4.3 (Full Abstraction) Suppose P.Γ≈ P′ .Γ holds in the π-calculus. Then
for any ∆ such that pc[[P .Γ]]∆, and pc[[P′ .Γ]]∆ are defined we have pc[[P .Γ]]∆ ≈
pc[[P′ .Γ]]∆.

Conversely, suppose that for some ∆, pc[[P.Γ]]∆≈ pc[[P′.Γ]]∆. Then P.Γ≈P′.Γ.

11

5 Conclusion
Extensions The above analysis considers a simple but expressive fragment of the π-
calculus. The linear typing system can be applied to more general frameworks. For
example we could allow the existence of a nondeterministic internal sum P⊕Q such
that

P⊕Q τι−→P or P⊕Q τι−→Q

This process is well has type Γ only when both P and Q have the same type Γ. The
translation into the corresponding extension of NCCS makes sure that on both sides of
the choice, corresponding channels are assigned the same confidential names.

Another addition consists in an operator of external choice, or branching [23, 8,
1, 25, 9, 26]. The input prefix provides different continuations, a(ỹ) ∑i∈I ini.Pi, while
the output is selecting one of the branches a(ỹ)in j.P. The reduction semantics of the
branching is defined by the following rule:

a(ỹ)∑
i∈I

ini.Pi |a(ỹ)in j.Q
τι−→ (ν ỹ)(Pj |Q)

The type system is extended in a straightforward way, in order to make sure that we
only compose a selection with the proper branching. Similarly to the internal choice,
the branching input is typed only when all its continuations have the same type. Again
the translation into NCCS makes sure that on all branches, corresponding channels are
assigned the same confidential names.

Related and Future work This work arises in the context of a wider program aiming
at applying causal model of concurrency, such as Event Structures [24], or Petri nets
to the π-calculus. In causal models, behavioural properties such as confluence and
sequentiality have an intuitive and simple definition. For instance, in Event Structures,
confluence amounts to conflict freeness.

Event structures were tailored around early models for concurrency, where dynamic
creation of new names was not an issue. By reducing the linear π-calculus to a variant
of CCS, we have made the first step towards an Even Structure model of the linear
π-calculus. In turn, since we can encode functional programming languages into the
linear π-calculus, this will allow us to give a causal (or “true concurrent”) interpretation
of the λ-calculus. This line of research is already being pursued, from a completely dif-
ferent starting point by Melliès [14], and it would interesting to compare the resulting
theory with the one in [14].

Another direction of research aims at extending the linear π-calculus with some
form of probabilistic choice. The starting point of this research is the notion of prob-
abilistic Event Structures, by Varacca,Völzer and Winskel [22]. The study carried out
in [22] suggests that in the probabilistic framework, the proper notion of confluence is
the notion of confusion freeness (well known in the Petri net community [17, 3]). It
seems difficult to express probabilistic confluence within interleaving models for prob-
ability, such as Segala’s automata [21], used by Herescu and Palamidessi in their work
on the probabilistic π-calculus [7]. A proper notion of probabilistic linear π-calculus
could provide insight on the different possible ways of adding probabilistic choice to
functional paradigms, such as, for instance, the probabilistic λ-calculus proposed by
Di Pierro, Hankin and Wiklicky [4].

There are other works specifically addressing α-conversion in the literature. Fer-
rari, Montanari and Quaglia [6] study a version of the π-calculus with explicit substi-
tutions. Their system allows them to produce a semantics using SOS rules only (the
standard α-conversion rule is not SOS). Fernandez, Gabbay and Mackie [5] address
the α-conversion rule in the context of nominal rewriting. In both cases, α-conversion
is still performed dynamically during the computation, and not statically by a typing
system.

12

References
[1] Martin Berger, Kohei Honda, and Nobuko Yoshida. Sequentiality and the π-calculus. In

Proc. TLCA’01, volume 2044 of LNCS, pages 29–45, 2001.

[2] Martin Berger, Kohei Honda, and Nobuko Yoshida. Genericity and the π-Calculus. In
Proc. FOSSACS’03, number 2620 in LNCS, pages 103–119. Springer, 2003. The full
version is to appear in Journal of ACM Acta Informatica, 2005.

[3] Jörg Desel and Javier Esparza. Free Choice Petri Nets. Cambridge University Press, 1995.

[4] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Probabilistic lambda calculus
and quantitative program analysis. Journal of Logic and Computation, 2005. To appear.

[5] Maribel Fernandez, Murdoch J. Gabbay, and Ian Mackie. Nominal rewriting systems. In
PPDP04. ACM Press, 2004.

[6] Gian Luigi Ferrari, Ugo Montanari, and Paola Quaglia. A pi-calculus with explicit substi-
tutions. Theoretical Computer Science, 168(1):53–103, 1996.

[7] Mihaela Herescu and Catuscia Palamidessi. Probabilistic asynchronous π-calculus. In
Proceedings of 3rd FoSSaCS, volume 1784 of LNCS, pages 146–160. Springer, 2000.

[8] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type
disciplines for structured communication-based programming. In ESOP’98, volume 1381
of LNCS, pages 22–138. Springer, 1998.

[9] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure informa-
tion flow. In POPL’02, pages 81–92. ACM Press, 2002. Full version available at
www.doc.ic.ac.uk/˜yoshida.

[10] Kohei Honda and Nobuko Yoshida. Noninterference Through Flow Analysis. Journal of
Functional Programming, 15(2):293–349, 2005.

[11] Kohei Honda, Nobuko Yoshida, and Martin Berger. Control in the π-calculus. In
Proc. CW’04. ACM Press, 2004.

[12] Naoki Kobayashi. A type system for lock-free processes. Information and Computation,
177(2):122–159, 2002.

[13] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the Pi-Calculus.
ACM Transactions on Programming Languages and Systems, 21(5):914–947, 1999.

[14] Paul-André Melliès. Asynchronous games 2: The true concurrency of innocence. In
Philippa Gardner and Nobuko Yoshida, editors, CONCUR, volume 3170 of LNCS, pages
448–465. Springer, 2004.

[15] Massimo Merro. Locality in the pi-calculus and applications to distributed objects. PhD
thesis, INRIA Sophia-Antipolis and EU Marie Curie TMR, 2004.

[16] Robin Milner. Communicating and Mobile Systems: The Pi Calculus. Cambrige University
Press, 1999.

[17] Grzegorz Rozenberg and P.S. Thiagarajan. Petri nets: Basic notions, structure, behaviour.
In Current Trends in Concurrency, volume 224 of LNCS, pages 585–668. Springer, 1986.

[18] Davide Sangiorgi. Internal mobility and agent passing calculi. In Proc. ICALP‘95, volume
944 of LNCS, pages 672–683. Springer, 1995.

[19] Davide Sangiorgi. πI: A symmetric calculus based on internal mobility. In Proc. TAP-
SOFT’95, volume 915 of LNCS, pages 172–186. Springer, 1995.

[20] Davide Sangiorgi. The name discipline of uniform receptiveness. In ICALP’97, volume
1256 of LNCS, pages 303–313. Springer, 1997.

[21] Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, M.I.T., 1995.

[22] Daniele Varacca, Hagen Völzer, and Glynn Winskel. Probabilistic event structures and do-
mains. In Proceedings of 15th CONCUR, volume 3170 of LNCS, pages 481–496. Springer,
2004.

[23] Vasco Vasconcelos. Typed concurrent objects. In Proc. ECOOP’94, volume 821 of LNCS,
pages 100–117. Springer, 1994.

13

[24] Glynn Winskel and Mogens Nielsen. Models for concurrency. In Handbook of logic in
Computer Science, volume 4. Clarendon Press, 1995.

[25] Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong Normalisation in the π-
Calculus. In LICS’01, pages 311–322. IEEE, 2001. The full version in Information and
Computation., 191 (2004) 145–202, Elsevier.

[26] Nobuko Yoshida, Kohei Honda, and Martin Berger. Linearity and bisimulation. In FoS-
SaCs02, volume 2303 of LNCS, pages 417–433. Springer, 2002.

14

