
Encoding CDuce in the Cπ-calculus

Giuseppe Castagna1 Mariangiola Dezani-Ciancaglini2 Daniele Varacca3

1École Normale Supérieure de Paris 2Università di Torino 3Imperial College London

Abstract. CDuce is a functional programming language featuring overloaded functions
and a rich type system with recursive types, subtyping, union, negation and intersection
types. The boolean constructors have a set-theoretic behaviour defined via a semantic
interpretation of the types. The Cπ-calculus is an extension of the π-calculus that en-
riches Pierce and Sangiorgi π-calculus subtyping with union, intersection, and negation
types. It is based on the same set-theoretic interpretation as CDuce.
In this work we present a type faithful encoding of the CDuce into the Cπ-calculus.
This encoding is a modification of the Milner-Turner encoding of the λ-calculus with
subtyping into the π-calculus with subtyping. The main difficulty to overcome was to
find an encoding of the types that respects the subtyping relation.
Besides the technical challenge, this effort is interesting because it sheds new light on the
Milner-Turner encoding and on the relations between sequential and remote execution
of functions/services, in particular in the presence of type-driven semantics. It also con-
firms the validity of the equational laws for union and intersection types in π-calculus.

1 Introduction and motivations
The language CDuce [FCB02,Fri04] is a functional programming language for XML
manipulation, with a very rich type system. Types and subtyping play a central role
in CDuce: for its design (patterns and pattern matching are built around types), for
its execution (functions can be overloaded with run-time code selection), and for its
implementation (pattern matching compilation and query computation use static type
information to optimise execution). All these multifarious usages of types rely on a
common foundational core: the semantic subtyping framework. An introduction to se-
mantic subtyping can be found in [CF05], while [Cas05] discusses several aspects and
perspectives; technical details are given in [FCB02,Fri04]. In a nutshell, given a typed
language with some (possibly recursive) type constructors (e.g., →, ×, list(), . . .),
semantic subtyping is a technique to enrich the language with type combinators, i.e.
set-theoretic union, intersection, and negation types. The behaviour of combinators is
specified via the subtyping relation (rather than via the typing of the terms). The sub-
typing relation is “semantic” since instead of axiomatising it by a set of inference rules,
one describes a set-theoretic interpretation of the types J K : Types→P(D) (where
P denotes the powerset operator and D some domain) and then defines the subtyping
relation as s≤ t def⇐⇒ JsK⊆ JtK. Such a set-theoretic interpretation must satisfy at least
three design goals.
1. It must ensure that type combinators have a set-theoretic interpretation. This is done

by imposing that union, intersection, and negation types are respectively interpreted
as the set-theoretic union, intersection, and complement operations of P(D).

2. It must ensure that type constructors have a “natural” interpretation (at least, for
what concerns subtyping), e.g., that product types are interpreted as set-theoretic
products, function types as sets of maps from domain to co-domain, and so on.

3. It must allow for an interpretation of types as sets of values. This means that if we
take as D the set of values of the language and as interpretation the function that
maps a type to the set of all values of that type, then this new interpretation must
induce the very same subtyping relation as the one used to type values.1

Finding a domain D and an interpretation function J−K that satisfy the last two points
is far from being trivial: a set-theoretic interpretation of functional and recursive types
or the circularity between the typing of values and definition of subtyping are difficult
constraints. As described in [CF05] and outlined later on, semantic subtyping provides
a technique to do so.

In [CNV05] theCπ-calculus is devised.Cπ is a type system for the π-calculus which
exploits the same principles as CDuce to enrich Pierce and Sangiorgi’s types [PS96]
with (set-theoretic) unions, intersections, and negations. In the cited paper, a higher-
order extension of the Cπ-calculus with functional values is discussed. However the
question arises whether the extension is necessary or whether it is possible to en-
code functions as processes. It is well known that several such encodings are possi-
ble from the λ-calculus into the π-calculus [Mil92,SW02,YBH04]. In the Join-calculus
language [F+96], the functional part is simply syntactic sugar for its coding in the con-
current part.

Contributions. In this paper we describe an encoding of CDuce into the Cπ-calculus.
The encoding turned out not to be so straightforward as one may expect. The diffi-
culty arises in finding an encoding of the types that respects the subtyping relation. The
Milner-Turner translation of arrow types [SW02] respects the subtyping relation in the
context of the simply typed λ-calculus, but it breaks down in the presence of intersection
types.

Strictly speaking the technical contribution of this paper is twofold: first it intro-
duces the local Cπ-calculus, a variant of the Cπ-calculus that admits unrestricted recur-
sion on types, a feature not allowed in the version of the calculus presented in [CNV05];
secondly it defines an encoding of CDuce (hence, of intersection, union, and negation
types) into local Cπ that preserves the typing and subtyping relations as well as the
reduction semantics.

But beyond these technicalities, or actually hidden right in the technical details,
there lies the main interest of this work. As we detail in Sections 4 and 5 and lengthily
discuss in Section 7, the translation sheds new light on the Milner-Turner encoding as
it shows the respective roles of argument and return channel that are used to simulate
functions in a concurrent world. In particular, it shows that in the presence of type-case,
the latter must be scrambled by introducing some noise at the type level so that the re-
ceiver cannot gain information by testing the type of the return channel. The translation
is a further confirmation of the validity of the equational laws for union and intersec-
tion types in the π-calculus, since a different axiomatisation proposed in the literature is
incompatible with the Milner-Turner technique. This is not the only contribution to the
type theory of the π-calculus, since the encoding also outlines the different roles played
by the two contra-variant constructors of Cπ, namely input channel and negation, and

1 This point is important in practice: we cannot ask a programmer to understand subtyping via a set-theoretic
interpretation in the power-set of some twisted domain D . Thanks to this property we can more simply
explain subtyping in terms of inclusion of types as sets of values.

2

shows how they interplay when considering them from a logical point of view. Finally,
at term level the translation formalises the nice correspondence between functional pat-
tern matching and π-calculus guarded sums on a same input channel.

Structure of the paper In Section 2 we present the local variant of the Cπ-calculus.
In Section 3 we present the functional core of CDuce. Section 4 is devoted to explain-
ing the main difficulties we encountered when encoding CDuce types into Cπ types.
Section 5 contains the formalisation of the encoding of the language, while Section 6
presents the correctness results. In Section 7 we conclude by giving some insight on
more general aspects of this work and trying to convoy the intuition of why we believe
that the main contribution lie well beyond the technical result we present. An appendix
with an example, auxiliary definitions, and the main proofs is also provided.

2 The Cπ-calculus
The Cπ-calculus is a variant of the asynchronous π-calculus with pattern matching in
input and a very rich typing and subtyping system [CNV05]. We introduce here a fur-
ther simplification of the calculus, following ideas of the Join calculus [F+96] and of
the local π-calculus [MS98]. The key idea is that if a process is communicated a chan-
nel, then it cannot use that channel in input. Only global channels already known to
the process or newly generated channels can be used in input. This policy is enforced
syntactically, even before processes are typed. In the typing system, this implies that
input channel types are no longer necessary. The consequent subtyping relation is much
easier to decide and, unlike the typing system for fullCπ-calculus, can be also extended
to recursive types.

2.1 Types and subtyping
A type is coinductively defined by applying type constructors, namely base type con-
structors (e.g. integers, strings, etc...), the channel or product type constructors, or by
applying a boolean combinator, i.e., union, intersection, and negation. More formally,
types are regular trees generated by the following grammar

Cπ Types t ::= b | ch–(t) | t××× t constructors
| 0 | 1 | ¬¬¬t | t∨∨∨ t | t∧∧∧ t combinators

and that are contractive, that is for which on every infinite branch of the tree there are
infinitely many occurrences of constructors. Combinators are self-explaining, with 0 be-
ing the empty type and 1 the type of all values. We use b to range over base types. The
channel type constructor ch–(t) denotes the type of channels that can be used to output
values of type t. The set of all types (sometimes referred to as “type algebra”) will be
denoted by T . Contractivity ensures, as usual, the absence of meaningless recursively
defined types such as t =¬¬¬t.

The subtyping relation is defined semantically. This means that we first give a set-
theoretical interpretation of types J−K : T →P(D), for some domain D , and then
define subtyping as inclusion of the interpretations: s≤ t def⇐⇒ JsK⊆ JtK. It is out of the
scope of this work to precisely define D or the interpretation J−K. For such definitions
and a discussion on the design decisions, we refer the reader to the appendix and to
[CNV05].

3

All we need for this work is to precisely define the subtyping relation these defi-
nitions entail. This is completely characterised by the subtyping relation on the basic
types and by the following property:

JsK⊆ JtK ⇐⇒ E(s)⊆ E(t) (1)

where E(−) is defined as follows

Definition 2.1 (Extensional interpretation). The extensional interpretation of the types
is the function E(−) : T →P(D +D×D +P(D)), defined as follows:

a. E(1) = D +D×D +P(D), E(0) =∅, E(b) = JbK;
b. E(t1∨∨∨ t2) = E(t1)∪E(t2), E(t1∧∧∧ t2) = E(t1)∩E(t2) , E(¬¬¬t) = E(1)\E(t);
c. E(t1××× t2) = Jt1K× Jt2K;
d. E(ch–(t)) = {JsK | JsK⊇ JtK}.

The intuition underlying property (1) is that, for what concerns subtyping, we can con-
sider that JtK, i.e. the semantics of t, is precisely E(t). Thus in Definition 2.1, (b.) states
that the type combinators are interpreted as the corresponding set operations and (c.)
that the product type is interpreted as set-theoretic product. Point (d.) gives us the se-
mantics of channels. Intuitively, if a type denotes the set of all values with that type,
then the type ch–(t) denotes the set of all channels in which one can safely put objects
of type t. Therefore it will denote all channels that can contain objects of type s, for any
s≥ t. Let us write ct for a channel named c and transporting objects of type t. We have

Jch–(t)K=
{

cs | s≥ t
}
.

The derived subtyping relation is insensitive to the actual number of channels of a given
type or to their names. We can therefore assume that for every equivalence class of
types, there is only one such channel, which may as well be identified with JtK, so that
the intended semantics of channel types would be

Jch–(t)K=
{
JsK | s≥ t

}
(2)

which by definition of subtyping gives point (d.) of the previous definition.
The following result is very important for practical applications:

Proposition 2.2. The subtyping relation of the local Cπ-calculus is decidable.

The decision algorithm uses the decision algorithm forCDuce subtyping, and it is much
simpler than the one for the full Cπ-calculus presented in [CNV05].

In order to stress that property (1) and Definition 2.1 completely define the sub-
typing relation, let us show as an example how to deduce the contra-variance of the
output type channel constructor: ch–(s) ≤ ch–(t)⇔ Jch–(s)K ⊆ Jch–(t)K⇔ E(ch–(s)) ⊆
E(ch–(t))⇔ {JuK | JuK⊇ JsK} ⊆ {JuK | JuK⊇ JtK}⇔ JtK⊆ JsK⇔ t ≤ s.

Similarly we can derive interesting equations and inequations between types. For
instance, ch–(t)≤ ch–(0) is a special case of the contra-variance we just derived. It states
that every channel c can be safely used in a process that does not write on c. If we define
s = t def⇐⇒ JsK= JtK, then we have

ch–(t1)∧∧∧ ch–(t2) = ch–(t1∨∨∨ t2) (3)

4

which states that if on a channel we can write values of type t1 and values of type t2,
then we can also write values of type t1∨∨∨ t2, and viceversa. Union of channel types
behaves differently since the inequation below is strict (see [CNV05] for a discussion
on this)

ch–(t1)∨∨∨ ch–(t2) � ch–(t1∧∧∧ t2) .

2.2 Patterns
Both Cπ and CDuce feature powerful pattern matching. Patterns perform type-cases,
decompose values by capturing value subcomponents in variables, and can be recursive.

Definition 2.3. Given a type algebra T , and a set of variablesV, a pattern p on (V,T)
is a regular tree generated by the following grammar

p : := x | t | p ∧∧∧ p | p||| p | (((p,,,p)))

such that (i) on every infinite branch of p there are infinitely many occurrences of the
pair pattern, (ii) for every subterm p1∧∧∧ p2 of p we have Var(p1)∩Var(p2) = ∅, and
(iii) for every subterm p1|||p2 of p we have Var(p1) = Var(p2) (where x ∈V, t ∈T , and
Var(p) is the set of variables occurring in p).

The semantics of patterns is given in terms of a matching operations that returns either
a substitution for the variables of the pattern or a failure denoted by Ω. Matching can
be defined independently from the language, via the domain D of a model of types.
We use d/p to denote the matching of the element d against the pattern p. Intuitively,
x is the pattern that always succeeds and captures the matched element in x (i.e., d/x
returns the substitution {x 7→ d}); t succeeds if the element is in the interpretation of t,
in which case it returns the empty substitution; the intersection succeeds only if both
patterns succeed and it returns the union of the substitutions; the alternation follows
a first-match policy by applying the pattern on the right only if the one on the left
failed; the pair decomposes the element and applies the patterns to the respective sub-
components. See [CNV05] or the appendix for the formal definition. It can be shown
that the set of all elements for which a pattern p does not fail is the denotation of a type.
We denote this type by ***p+++, that is by definition J***p+++K= {d | d/p 6= Ω}. Matching can
be extended to types as stated by the following theorem:

Theorem 2.4 ([FCB02]). There is an algorithm mapping every pair (t, p), where p is
a pattern and t a type such that t ≤ ***p+++, to a type environment (t/p) ∈ T Var(p) such
that J(t/p)(x)K= {(d/p)(x) | d ∈ JtK}.

2.3 The language
The syntax of Cπ is similar to that of the asynchronous π-calculus [Bou92,HT91], ex-
tended with call-by-value pattern matching (obtained by pattern-guarded sums of inputs
on the same channel) and an extra condition which guarantees “locality” [MS98].

Processes P ::= αM output
| ∑i∈I ct(pi).Pi patterned input
| P ‖ P parallel
| (νct)P restriction
| !P replication

Channels α ::= x variables
| ct constant

Messages M ::= n constants
| α channel
| (M,M) pair

5

Messages

Γ ` n : bn
(const)

si 6≤ t
Γ ` ct : ch–(t)∧∧∧¬¬¬ch–(s1)∧∧∧ . . .∧∧∧¬¬¬ch–(sn)

(chan)

Γ ` x : Γ(x)
(var)

Γ `M : s≤ t
Γ `M : t

(subs)
Γ `M1 : t1, Γ `M2 : t2
Γ ` (M1,M2) : t1××× t2

(pair)

Processes

Γ ` P
Γ ` (νct)P

(new) Γ ` P
Γ `!P

(repl)
Γ ` P1 Γ ` P2

Γ ` P1‖P2
(para)

t≤WWWi∈I***pi+++ Γ,(t∧∧∧***pi+++)/pi ` Pi

Γ ` ∑i∈I ct(pi).Pi
(input)

Γ `M : t Γ ` α : ch–(t)
Γ ` αM

(output)

Fig. 1. Cπ typing rules

where I is a possibly empty finite set of indexes, t ranges over the types defined in
Section 2.1 and pi are patterns as defined in Section 2.2. As customary, empty sum cor-
responds to the inert process, denoted by 0. The values of the language are the closed
messages v ::= n | ct | (v,v). We use V to denote the set of all values.

Observe that we force input to happen on channel constants. This ensures that chan-
nels sent by other processes cannot be used in input. Output instead can be performed
on non-constant channels, too.

Since pattern matching performs type-case, we must define the typing of messages
before the reduction semantics, see Figure 1. We suppose that every basic constant
n is associated to an atomic basic type bn. The rules, and in particular rule (chan),
are designed so that we can interpret a type as the set of all values of that type. The
interpretation J KV : T →P(V) defined as

JtKV = {v | ∅ ` v : t} (4)

satisfies property (1) and, furthermore, it generates the same subtyping relation as ≤.2

Then, the definition for pattern matching given in Section 2.2 applies for v being a
value and we can use it to define the reduction semantics of Cπ:

ctv ‖ ∑
i∈I

ct(pi).Pi −→ Pj[v/p j]

where P[s] denotes the application of substitution s to process P. The asynchronous
output of a value on the box ct synchronises with a summand in a sum guarded by the
same box, only if the pattern of the summand matches the communicated value (the
type system ensures the existence of such a pattern). If more than one pattern matches,
then one of them is non-deterministically chosen and the corresponding process exe-
cuted, but before its execution the pattern variables are replaced by the captured values.
As usual, the notion of reduction must be completed with reductions in evaluation con-

2 Without the intersection of the negated channel types, we could not prove that, say, cint : ¬¬¬ch–(bool).
More generally, the property ` v : t ⇔ 6` v :¬¬¬t would not hold, and this is necessary to J−KV to satisfy (1):
cf. Definition 2.1(b). For a broader discussion on such inference rules with negated types see Section 4.6
of [Cas05].

6

texts and up to structural congruence, whose definitions are standard and can be found
in [CNV05]. We use −→∗ to denote the reflexive and transitive closure of −→.

The typing of processes is in the second half of Figure 1. Notice that the rule for
restrictions (new) does not rely on the type environment Γ, since channels are decorated
by the type of their messages, and that in the rule (input) the condition t ≤ WWWi∈I ***pi+++
ensures that for every message that may arrive on the channel, there exists at least one
pattern that matches it. The system satisfies subject reduction.

3 The functional language CDuce

CDuce is a very efficient functional language for rapid design and development of ap-
plications that manipulate XML data [BCF03]. In this work we concentrate on the foun-
dational aspects of CDuce [FCB02] a detailed survey of which can be found in [CF05].
In that respect,CDuce features the same syntactic types as Cπ, with just a single excep-
tion, namely, the channel type constructor is replaced by the function type constructor:

CDuce Types τ ::= b | τ→→→ τ | τ××× τ constructors
| 0 | 1 | ¬¬¬τ | τ∨∨∨ τ | τ∧∧∧ τ combinators

where the same regularity and contractivity restrictions as in Section 2.1 apply. We use
σ,τ to range over CDuce types and to typographically distinguish them from Cπ ones,
these latter still ranged over by s and t.

Subtyping is characterised in the same way as for Cπ, by defining an interpretation
from the above types into a domain D (that we leave unspecified, see [FCB02]) which
satisfies property (1). Definition 2.1 is modified to account for the new type constructor
for functions. We have E(−) : T →P(D +D×D +P(D×DΩ)) (where DΩ = D +
{Ω}, the disjoint union of the domain and of a distinguished error element Ω) while
point (d.) of Definition 2.1 becomes:

d. E(σ→→→ τ) = P

(
JσK× JτKDΩ

D×DΩ
)

where XY denotes the complement of X with respect to Y (i.e., Y \X). In words, the
extensional interpretation of σ→→→ τ is the set of graphs such that if the first element is in
JσK, then the second element is in JτK (otherwise the second element can be anything,
in particular the error Ω). Therefore, for what concerns subtyping, we can consider that
arrow types are interpreted as follows:

Jσ→→→ τK= { f ⊆D ×DΩ | ∀(din,dout) ∈ f . din ∈ JσK⇒ dout ∈ JτK}
As we did for Cπ, we can use this characterisation to deduce several interesting type
equality and containment relations.3 For the goals of this work an utmostly interesting
equation is

(σ→→→ τ)∧∧∧ (σ→ τ′) = σ→→→ τ∧∧∧ τ′ (5)

whose validity can be easily checked by the reader, by applying the definition of E(−).

3 The reader may wonder why the error Ω is included in the codomain of the functions: without it every
function would have type 1→→→ 1, therefore every application would be well-typed (with type 1). The error
element Ω stands for the result of ill-typed applications. Thanks to it σ→ τ ≤ 1→→→ 1 does not hold in
general, hence, it explicitly avoids the problem above.

7

∆;Γ ` n : bn
(const)

∆;Γ ` x : Γ(x)
(var)

∆;Γ ` f : ∆(f)
(fvar)

∆;Γ ` e : σ≤ τ
∆;Γ ` e : τ

(subs)

∆;Γ ` e1 : τ1 ∆;Γ ` e2 : τ2

∆;Γ ` (e1,e2) : τ1××× τ2
(pair)

∆;Γ ` e1 : σ→→→ τ ∆;Γ ` e2 : σ
∆;Γ ` e1e2 : τ

(appl)

(for σ1 ≡ σ∧∧∧***p1+++, σ2 ≡ σ∧∧∧¬¬¬*** p1+++)
∆;Γ ` e : σ≤ ***p1 +++∨∨∨*** p2 +++ ∆;Γ,(σi/pi) ` ei : τi

∆;Γ ` match e with p1⇒e1|p2⇒e2 :
WWW
{i|σi 6'0} τi

(match)

(for τ≡VVVi∈I(σi→→→ τi)) (∀i∈ I,h∈ I, j∈J)

σh∧∧∧σi = 0 τ 6≤ σ′j→→→ τ′j ∆, f : τ;Γ,x : σi ` e : τi

∆;Γ ` µ f τ(x).e : τ∧∧∧VVV j∈J¬¬¬(σ′j→→→ τ′j)
(abstr)

Fig. 2. CDuce typing rules

CDuce is a λ-calculus with pairs, overloaded recursive functions, and pattern match-
ing. This is reflected by the following syntax:

e ::= x | n | ee | (e,e) | µ f
VVV

i∈I(σi→→→τi)(x).e | match e with p⇒e|p⇒e

where patterns p are those defined in Section 2.2 (but use CDuce types). The type-
case expression (x = e ∈∈∈ τ)???e1:e2 can be added as syntactic sugar for the matching
expression match e with x∧∧∧ τ⇒e1|x∧∧∧¬¬¬τ⇒e2.

Function abstractions use a µ-abstracted name for recursion and specify at their
index several arrow types, indicating that the function has all these types (i.e., their
intersection). This is formally stated by the rule (abstr) in Figure 2 which for each i ∈ I
checks that the body e has type τi under the hypothesis that x has type σi. Note that the
types of µ-abstracted variables are recorded in a distinct environment ∆. The distinction
here is totally useless (we could have used a unique Γ) but it will be handy when we
define the encoding (since µ-abstracted variables are translated into channel constants,
then the encoding will be parametric only in Γ).

The only difficult rule is (match). It first deduces the type σ of the matched expres-
sion and checks whether patterns cover all its possible results (i.e., σ ≤ ***p1 +++∨∨∨*** p2+++);
then it separately checks the first branch under the hypothesis that p1 is selected (i.e. e
is in σ∧∧∧***p1+++) and the second branch under the hypothesis that p2 is selected (i.e., e in
σ∧∧∧¬¬¬*** p1+++); finally it discards the return types of the branches that cannot be selected,
which is safely approximated by the fact that the corresponding σi is empty. 4

The rules in Figure 2 are the same as those defined in [FCB02] (to which the reader
can refer for more details) with just a single exception: in rule (abstr) we require that the
arrows specified at the index of the function have disjoint domains: ∀i,h< i.σh∧∧∧σi = 0.

4 The reader may wonder why the system does not return a type error when one of the two branches cannot
be selected. As a matter of fact this is a key feature for typing overloaded functions, where the body is
repeatedly checked under different hypothesis for some of which the σi of some typecase may be empty.
This simple function should clarify the point: µf(Int→→→Int;Bool→→→Bool)(x).(y = x∈∈∈ Int)???(y + 1):not(y)
when we type the body under the hypothesis x : Int, then the second branch cannot be selected while under
x : Bool is the first one that cannot be selected. Without the selective union in the typing rule the best type
we could have given to this function would have been (Int∨∨∨Bool)→→→ (Int∨∨∨Bool).

8

This restriction is necessary (but not sufficient) in order to avoid the problem of output-
driven overloading explained in Section 4.2. However, it causes no loss of generality,
since every CDuce function µ f

VVV
i∈I(σi→→→τi)(x).e can be put into this form by iterating on

its index the rewriting that replaces (σh∧∧∧σk→→→ τh∧∧∧τk)∧∧∧(σk∧∧∧¬¬¬σh→→→ τk)∧∧∧(σh∧∧∧¬¬¬σk→→→
τh) for every pair of arrows σh→→→ τh, σk→→→ τk such that σh∧∧∧σk 6= 0. This rewriting is
sound and it is easy to show that the two functions are operationally indistinguishable
(e.g., by applicative bisimilarity).

As the intersection of negated channels in the rule (chan) ensures that values of Cπ
yield a model that induces the same subtyping relation as the initial one, so does for
CDuce the intersection of negated arrows in the rule (abstr): the interpretation defined
by (4) where values are closed terms generated by v ::= n | µ f

VVV
i∈I(σi→→→τi)(x).e | (v,v)

and types are CDuce types, enjoys the same properties.5 Therefore, we can again use
the pattern semantics of Section 2.2 to define the Call-by-Value operational semantics
of CDuce (we omit the straightforward context rules that can be found in [FCB02]).

v1v2 −→ e[v1/ f ;v2/x] if v1 = µ f τ(x).e
match v with p1⇒e1|p2⇒e2 −→ e1[v/p1] if v/p1 6= Ω
match v with p1⇒e1|p2⇒e2 −→ e2[v/p2] if v/p1 = Ω,v/p2 6= Ω

The calculus satisfies the subject reduction property.

4 Roadmap to the encoding
In this section we discuss the main difficulties encountered in the definition of an en-
coding of CDuce into Cπ. It lists some failed attempts which will clarify the reasons
behind the successful attempt.

4.1 The Milner-Turner encoding
Since our encoding involves languages with subtyping, the first approach we tried was
to adapt the Milner-Turner (MT) encoding of the typed λ-calculus with subtyping into
the typed π-calculus with subtyping, as presented in [SW02]. The translation of arrow
types presented there is:

(|σ→→→ τ|) = ch–((|σ|)×××ch–((|τ|))) .
The encoding of λ-terms, decorated by their minimum type, is:

(|xτ|)Γ,x:τ
c = c(x)

(|λxσ.eτ|)Γ
c = (ν a(|σ|)×××ch–((|τ|)))(c(a) ‖ !(a(x,b).(|eτ|)Γ,x:σ

b)

(|eσ→→→τ
1 eρ

2 |)Γ
c = (ν a(|σ|)×××ch–((|τ|)))(ν b(|ρ|))((|eσ→→→τ

1 |)Γ
a ‖ a(w).((|eρ

2|)Γ
b ‖ b(h).w(h,c)))

The encoding of an expression e is parametrised by a type environment Γ such that
Γ ` e : τ and by a channel c(|τ|) on which the value of the expression is returned to
the environment. A function is represented by a channel (the “name” of the function)
which can be called by sending the input value and a channel on which the output value
should be returned. These two parameters are used by a replicated process (the “body”
of the function) which returns the output value upon termination. In the encoding of the
application, the encoding of the function is called on the encoding of the argument, and
the returned value is returned as the value of the whole expression. This encoding bears

5 Contrary to Cπ we are here in presence of a circularity. See [CF05] on how to avoid it.

9

a strong resemblance with the continuation passing style transform. In this sense, the
return channel of an expression could be seen as the address of the continuation.

Since we translate only well-typed terms, in the case of the application we must have
ρ ≤ σ. The encoding of application (in particular, the w(h,c) subterm) is well-typed
only if this implies (|ρ|) ≤ (|σ|). This holds true in the simply typed λ-calculus with
subtyping, but fails as soon as we add intersection types. In that case, the translation
of the types does not preserve the identity of types: in CDuce, we have seen that the
identity (5) holds (i.e., (σ→→→ τ)∧∧∧ (σ→→→ τ′) = σ→→→ τ∧∧∧ τ′), while the same does not hold
on the encodings of the types at issue since, in general, it is not true that

ch–(s××× ch–(t))∧∧∧ch–(s××× ch–(t ′))≤ ch–(s××× ch–(t∧∧∧ t ′)) .

Using this observation we can indeed show that the MT encoding maps a well-typed
CDuce expression into an ill-typed Cπ process.

4.2 Output-driven overloading
In order to give an operational intuition of why MT encoding does not work, recall
that intersections of arrow types are commonly assimilated to the types of overloaded
functions. In CDuce, the identity (σ→→→ τ)∧∧∧ (σ→→→ τ′) = σ→→→ τ∧∧∧ τ′ is justified because
overloaded functions can perform a type-case only on the type of the input. Therefore,
if on the same input a function returns values of type τ and values of type τ′ it must
return only values that have both types.

In Cπ, however, a process that encodes a function receives in input also the return
channel. In principle such process could perform a type-case on this extra piece of in-
formation and perform different computations according to whether the expected result
is of type τ or τ′. Such “output-driven” overloaded function can, on the same input,
return a value of type τ and a different value of type τ′ (and not in τ). This is a func-
tion that is in (|(σ→→→ τ)∧∧∧ (σ→→→ τ′)|) and not in (|σ→→→ τ∧∧∧ τ′|), therefore we expect that
(|σ→→→ τ∧∧∧ τ′|)� (|(σ→→→ τ)∧∧∧ (σ→→→ τ′)|) which is indeed the case.

4.3 The distributive law
At a first analysis, it may seem that the problem is the subtyping relation of Cπ. We
may be tempted to change it by adding the following inequation:

ch–(t1∧∧∧ t2) ≤ ch–(t1)∨∨∨ ch–(t2) .

Since the converse inequality already holds (as seen in Section 2), we would obtain a
“contravariant” distributive law of the channel constructor over the intersection. A sim-
ilar distributive law is used by Hennessy and Riely in [HR02] to define the intersection
type. As explained in [CNV05], the above inequation is not justified in a calculus en-
dowed with dynamic type-case. It is also not clear at first sight whether introducing the
inequation is at all possible using a semantic approach. In any case, this new subtyp-
ing relation would not make the translation work either as it would introduce too many
equations in the translation. For example, we would get

ch–(0× ch–(int∨∨∨bool)) ≤ ch–(int× ch–(bool))∨∨∨ ch–(bool× ch–(int))

The type on the left is the encoding of 0→→→ int∨∨∨bool and the other type is the encoding
of (int→→→ bool)∨∨∨(bool→→→ int). This subtyping gives a problem already for the iden-
tity function, which has type 0→→→ int∨∨∨bool but not (int→→→ bool)∨∨∨ (bool→→→ int).

10

4.4 The negation translation

Intuitively, to find an encoding that respects type equality, we need that, when encoding
the arrow type, the operator that encodes the output type distributes over the inter-
section, while the operator that encodes the input type should not distribute over the
intersection. One possible encoding that satisfies this requirement is the following:

(|σ→→→ τ|) = ch–((|σ|)×××¬¬¬(|τ|)) .
Indeed the negation is a contravariant constructor that distributes over the intersection.
However it was not clear to us what operational interpretation we could attach to this
translation. Under this translation of the types, the MT translation of the λ-terms would
not be well-typed.

This however was the sparkle that brought us to our solution: (i) We want to pre-
serve the naturalness of the MT encoding, that is, to encode functions calls by RPCs
that send along with the argument a channel on which the call must return the result;
thus the type of the second argument of the call (i.e., the one that encodes the output
type τ) must allow for messages of type ch–((|τ|)). (ii) We also want the type of this
argument to distribute over intersections, in order to respect the subtyping relation; the
use of negation,¬¬¬(|τ|), seems to help in this direction. Finally, (iii) we want this second
argument to be contravariant (since it is under a ch–(), it will then respect the covari-
ance of the output type it is meant to encode); but the joint use of two contravariant
constructors, ch–() and ¬¬¬, would make it covariant, thus we may need to add a further
negation to make it contravariant. All this yields, for the encoding of σ→→→ τ, a second
argument of type ¬¬¬(ch–(¬¬¬(|τ|))), which is almost what we are looking for. We say “al-
most” since it still does not satisfy (i) insofar as it is not a supertype of ch–((|τ|)); as we
explain in Section 5.2 one point is still missing from it: ch–(1) — to verify it, simply
compute the difference ch–((|τ|)) \¬¬¬ch–(¬¬¬(|τ|)). So we add it, obtaining for the second
argument the following encoding¬¬¬ch–(¬¬¬(|τ|))∨∨∨ch–(1). This idea is carried out in details
and generalized in the following section.

5 The Encoding

We propose a modification of the Milner-Turner encoding that respects type equality,
and it is very close to the original translation.

5.1 The λ-channel constructor

The encoding of the types we propose is parametric with respect to a constructor of Cπ
types that we call “λ-channel” type. This notion is designed to make the translation of
types to respect the type equality (unlike the Milner-Turner and distributive approach),
and to make the translation of terms to make sense (unlike the negation approach).

Definition 5.1. A λ-channel (notation chλ(−)) is a unary constructor of Cπ types such
that:
1. ch–(t)≤ chλ(t);
2. chλ(s∧∧∧ t) = chλ(s)∨∨∨ chλ(t);
3. s≤ t ⇐⇒ chλ(t)≤ chλ(s).

11

Observe that the three conditions of the definition correspond to the requirements (i-iii)
we outlined at the end of the previous section. Therefore, Condition (1) is necessary
for a meaningful translation of terms, while Conditions (2) and (3) are necessary for
respecting the identity of types. Using λ-channel types we can now define a mapping of
CDuce types to Cπ-calculus types that respects type equality.

Definition 5.2. The interpretation function {{−}} : TCDuce→TCπ is defined as follows
{{b}} = b {{0}} = 0 {{1}} = 1 {{¬¬¬τ}} = ¬¬¬{{τ}}
{{σ∨∨∨ τ}} = {{σ}}∨∨∨{{τ}} {{σ∧∧∧ τ}} = {{σ}}∧∧∧{{τ}}
{{σ××× τ}} = {{σ}}×××{{τ}} {{σ→→→ τ}} = ch–({{σ}}×××chλ({{τ}})).

Theorem 5.3. Let σ and τ be CDuce types. Then σ≤ τ ⇐⇒ {{σ}} ≤ {{τ}}.

5.2 Incarnations of λ-channels and their intuition

Possible choices for chλ(t) are of the form chλ0(t)∧∧∧ϕ where
– chλ0(t) =¬¬¬ch–(¬¬¬t)∨∨∨ ch–(1);
– ϕ is a constant type such that ch–(0)≤ ϕ.

Proposition 5.4. The constructor chλ0(t)∧∧∧ϕ is a λ-channel.

As the Condition (1) in Definition 5.1 clearly states, the λ-channel chλ(t) essentially
is ch–(t) plus some extra stuff, some “garbage”, that makes the other two conditions
—hence type identity preservation— hold. The extra stuff that is added to ch–(t) is
basically given by chλ0(t). To understand the precise role played by this garbage, it is
interesting to consider the following properties:

a. chλ0(0) = 1
b. chλ0(1) =¬¬¬ch–(0)∨∨∨ ch–(1)

c. J(chλ0(t)∧∧∧¬¬¬ch–(t))∧∧∧ ch–(0)K= {cs | t 6≤ s & ¬¬¬t 6≤ s}∪{c1}.
The first two properties say that chλ0(−) adds as garbage at most (point (a.)) everything
and at least (point (b.)) all non-channel types plus the channel which outputs everything.
Non-channel types do not play any active role in the encoding, thus let us get rid of them
by taking as ϕ the type of all channels, that is ch–(0). In order to exactly determine which
channels chλ0(t) adds to to ch–(t) let us take out all ch–(t) and consider just the channels
that remained: this is exactly what (chλ0(t)∧∧∧¬¬¬ch–(t))∧∧∧ch–(0) does. Point (c.) states that
these are all channels that can send values both inside and outside t. That is, these are
all the channels for which it is not possible to predict the result of a test that checks
whether the messages they transport are of type t.

This last observation is the key to understand why the complicated definition of
chλ0(−) is necessary. We have observed that the MT translation does not work be-
cause it allows a “output-driven” overloading whereby a function can have different
behaviours for different expected types of the result. The more general channel type
chλ0(−) allows (potentially, in the types) the caller to “confuse” such output-driven
functions, by sending “garbage” reply channels. Although in practice, encodings don’t
do that, the possibility of a output-driven function is ruled out also at the level of the
types. It is like the presence of the Police in Utopia: everybody behaves well in Utopia,

12

and the Police never works. But the presence of the Police is the visible representation
of the fact the everybody behaves well.

To put it otherwise, if we take a channel that has type chλ(s)∨∨∨ chλ(t), it is impos-
sible to deduce whether it is only of type chλ(s) or only of type chλ(t). Even if it can
transport all messages of type, say, t, it could be because the channel was in the garbage
generated by chλ(s). So λ-channels introduce some latent noise that makes it impossible
to determine which output type they encode.

Although the constructor is parametric on a type ϕ, we said that non-channel types
do not play any active role in the encoding. Therefore it is reasonable (and it makes
the encoding more understandable) to minimize ϕ (that is, ϕ = ch–(0)) so that Jchλ(t)K
only contains channels. In particular, this choice implies that chλ(0) = ch–(0) (all chan-
nels), chλ(1) = ch–(1) (just the channel which outputs everything). All the development,
however, is independent from this choice.

5.3 Encoding of the terms
We describe here the mapping of CDuce terms to Cπ-calculus terms. What we translate
are in fact typing derivations. To simplify the notation, we write eτ assuming that τ is the
type of e in the last step of the derivation. We use a similar convention for the immediate
sub-expressions of e which are in the premises of the last applied rule. The translation
is parametrised by a “continuation channel” α of type ch–({{τ}}). For readability we
decorate the channels with their types only when we restrict them and in rule (fvar). We
also adopt the CDuce’s convention to write x:τ for the pattern x∧∧∧τ. The translation also
requires a straightforward translation of the patterns (it just encodes the types occuring
in them) whose details are omitted.

Definition 5.5. The translation of the expression eτ on a channel α is defined by cases
on the last applied typing rule:
(const) {{nbn}}Γ

α = α(n)

(var) {{xτ}}Γ,x:τ
α = α(x)

(fvar) {{ f τ}}Γ
α = α(f

WWW
i∈I({{σi}}×××chλ({{τi}}))) (where τ =

VVV
i∈I(σi→→→ τi))

(pair) {{(eσ1
1 ,e

σ2
2)τ}}Γ

α = (ν a{{σ1}})(ν b{{σ2}})({{eσ1
1 }}Γ

a ‖ a(w:{{σ1}}).({{eσ2
2 }}Γ

b ‖
b(h:{{σ2}}).α(w,h))) (where τ = σ1×××σ2)

(appl) {{(eσ→→→τ
1 eσ

2)τ}}Γ
α = (ν a{{σ→→→τ}})(ν b{{σ}})({{eσ→→→τ

1 }}Γ
a ‖ a(w:{{σ→→→ τ}}).({{eσ

2}}Γ
b ‖

b(h:{{σ}}).w(h,α)))

(subs) {{(eσ)τ}}Γ
α = (ν a{{σ}})({{eσ}}Γ

a ‖ a(w:{{σ}}).α(w)) (where σ≤ τ)

(match) {{(match eσ with p1⇒eτ1
1 |p2⇒eτ2

2)τ}}Γ
α =

(ν a{{σ}})(ν b({{σ1}}×××ch–({{τ1}}))∨∨∨({{σ2}}×××ch–({{τ2}})))((P1 + P2) ‖ Q)
where P1 = b({{p1}},d:ch–({{τ1}})).{{eτ1

1 }}
Γ,σ1/p1
d ,

P2 = b({{p2∧∧∧¬¬¬*** p1+++}},d:ch–({{τ2}})).{{eτ2
2 }}

Γ,σ2/p2
d ,

Q = {{eσ}}Γ
a ‖ a(h:{{σ}}).b(h,α)

σ1 = σ∧∧∧***p1+++, σ2 = σ∧∧∧¬¬¬*** p1+++, τ =
WWW
{i|σi 6'0} τi

(abstr) {{(µ f
VVV

i∈I(σi→→→τi)(x).e)τ}}Γ
α = (ν f

WWW
i∈I({{σi}}×××chλ({{τi}})))(α(f) ‖ body(f))

where body(f) = !(∑i∈I f (x:{{σi}},b:ch–({{τi}})).{{eτi}}Γ,x:σi
b

+ f (x:
WWW

i∈I{{σi}},b:
WWW

i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}}))).0)
τ =

VVV
i∈I(σi→→→ τi)∧∧∧

VVV
j∈J¬¬¬(σ′j→→→ τ′j).

13

In rule (fvar), we assume that every µ-abstracted variable f has a corresponding
channel constant f t for every suitable Cπ type t. This allows the encoding to be para-
metric only in the Γ environment, and not in the ∆ one.

In a match the expressions e1 and e2 play the role of two functions to be chosen
in alternative according to the type of the argument e. Therefore we encode the match
with a patterned sum of the encodings of e1 and e2 in parallel with the encoding of e.

The translation of a functional term is very similar to the original MT transla-
tion. To deal with overloading, the body of the function features a patterned choice.
This choice includes all different behaviours that the function can produce on different
inputs, and the special sub-term f (x:

WWW
i∈I{{σi}},b:

WWW
i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}}))).0,

which we call the functional garbage. The role of this sub-term is to obtain well-typed
terms. However we will see that, within the context of translation of CDuce terms, the
functional garbage choice is never taken. Indeed, carrying on with our analogy, this
functional garbage corresponds to the prison of Utopia: it is there to capture misbehav-
ing terms, even if we all know that there isn’t any.

6 Correctness of the encoding

We start by observing that the translation produces well-typed terms.

Theorem 6.1. If ∆;Γ ` e : τ, then {{Γ}} ` {{eτ}}Γ
c{{τ}}

and {{Γ}},x : ch–({{τ}}) ` {{eτ}}Γ
x ,

where {{Γ}}= {y : {{σ}} | y : σ ∈ Γ}.

In the following we convene that when we write {{e}}Γ
c , then there are τ and ∆ such that

∆;Γ ` e : τ and ch–({{τ}}) is the type of c.
A first observation is that all reductions out of the encoding of a CDuce expres-

sion are deterministic (since patterns in sums are mutually exclusive) and never use the
functional garbage in the body of functions. A functional redex is a redex of the shape
body(f) ‖ f (v,c). A reduction is safe if it is deterministic and each functional redex is
reduced by choosing an alternative in body(f) different from the functional garbage.
We denote safe reductions by −→s: as usual −→∗s is the reflexive and transitive closure
of −→s.

Lemma 6.2. All reductions starting from {{e}}∅c where e is an arbitraryCDuce expres-
sion are safe.

In order to state the correctness of the encoding, it is crucial to understand how
CDuce values are mapped toCπ processes. As it is clear from the encoding, a functional
value is mapped into the output of a private channel name in parallel with the encoding
of the function body. We can then say that the Cπ value corresponding to a functional
value is a channel name. The encoding of a pair of CDuce values reduces to a process
which outputs the pair of the corresponding Cπ values in parallel with the function
bodies of all functions which occur in the two values.

To formalise the above we will assume that all function names in the current value
are distinct and fixed, so that we cannot rename them. We define two mappings, one
from CDuce values to Cπ values and one from CDuce values to sets of channel names.

14

Definition 6.3.
1. The mapping cpv(−) is defined by induction on CDuce values as follows:
• cpv(n) = n;
• cpv(µ f

VVV
i∈I(σi→→→τi)(x).e) = f

WWW
i∈I({{σi}}×××chλ({{τi}}));

• cpv((v1,v2)) = (cpv(v1),cpv(v2)).
2. The mapping func(−) is defined by induction on CDuce values as follows:
• func(n) =∅;
• func(µ f

VVV
i∈I(σi→→→τi)(x).e) = { f

WWW
i∈I({{σi}}×××chλ({{τi}}))};

• func((v1,v2)) = func(v1)∪ func(v2).

The normal forms of processes encoding values can be expressed using the above map-
pings:

Lemma 6.4. {{v}}∅c −→∗s (ν func(v))(c(cpv(v))‖ f∈func(v)body(f)).

More generally, one would like to have that if e is a well-typed CDuce expression and
e −→∗ v, then {{e}}∅c −→∗s (ν func(v))(c(cpv(v))‖ f∈func(v)body(f)). Unfortunately the
corresponding result does not even hold for the Milner encoding of λ-calculus into π-
calculus [Mil92], a fortiori nor does for our encoding. A reason for this failure is that
when the whole λ-term is a β-redex its encoding reduces to a π-term which differs from
the encoding of the corresponding β-contractum in the positions of the restriction and of
the replicated input representing the reduced λ-abstraction. Moreover when a β-redex
in argument position is contracted (following the call-by-value reduction strategy) the
encoding of the reduced λ-term needs in its turn to be evaluated in order to be related
with the encoding of the original λ-term.

Our encoding of CDuce into Cπ being essentially an extension of the Milner-
Turner encoding has luckily no more problems than the original one, so we can show
similar soundness results. To formulate these results we need to define for Cπ pro-
cesses a standard notion of typed barbed congruence with respect to an environment Γ
(Γ�P∼= Q), see [SW02].

The main theorem of this section states that if a CDuce expression reduces to a
value, then its encoding reduces to the process which is barbed congruent to the nor-
mal form of the encoding of that value, and vice versa if the evaluation of a CDuce
expression does not terminate, then the evaluation of its encoding does not terminate
either.

Theorem 6.5 (Correctness).
1. If e−→∗ v, then {{e}}∅c −→∗s P for some P such that
∅�P∼= (ν func(v))(c(cpv(v))‖ f∈func(v)body(f)).

2. If e diverges, then {{e}}∅c diverges too.

From this, and from compositionality, it is easy to obtain the following soundness result.
Given two CDuce terms ∆;Γ ` e : τ and ∆;Γ ` e′ : τ we denote by ∆;Γ � e ≈ e′ the
standard Morris-style observational congruence (as defined, for instance, in [SW02]
pag. 478).

Corollary 6.6 (Soundness). If ∆;Γ ` e : τ and ∆;Γ ` e′ : τ and {{Γ}}�{{e}}Γ
c
∼= {{e′}}Γ

c ,
then ∆;Γ� e≈ e′.

15

7 Conclusion

In this paper we presented a localised version of the Cπ-calculus which allows for fully
recursive types, on top of the already rich type structure of Cπ. We then showed how
this can be used to type-faithfully encode CDuce.

If we merely stop at the technical result, then the interest of this work is quite lim-
ited: sure, it shows the correspondence between overloading and guarded choices; sure,
this can be seen as the work that paves the way toward a concrete implementation of a
concurrent programming language based on CDuce, similarly to the way the JOCaml
language was derived from OCaml and Join. But again this would look as some solid,
technically impeccable, and extremely boring achievement.

However, we think that the added value of this work lies more in the lessons we
learnt and the techniques we developed, than directly in its result.

Foremost, we learnt that the process that encodes a function has much more power
than the function it encodes. This is because it has more elements to work on, both
the argument and the return channel, and it is thus characterised by a wider spectrum
of possible choices. This looks bluntly obvious, worthy of Monsieur De La Palice’s
troops, but note that this aspect was totally hidden in all previous encodings. Indeed
this is emphasised only by the presence of linguistic branching constructs for which
the type system must cover all alternatives. This is the case of pattern matching, where
the pattern exhaustiveness requirement forces types to take into account all possible
combinations.

This situation requires the introduction of some noise at the level of the types in
order to compensate for the asymmetry between the caller of the function (the service
client) and the executor of the function (the service server). This technique could be
seen as a security policy that the client implements at type level to defend itself from
possible misbehaviour of the server. The client performs a type obfuscation: in this
way it reserves for itself the possibility to send rogue arguments and so it threatens the
server against misbehaviour. We hope that these techniques of type obfuscation could
be generalised to various security scenarios and we aim to explore them in the future.

As noted, the Milner-Turner encoding bears strong resemblance with the continu-
ation passing sytle (CPS) techniques used in functional programming. All the above
observations can be indeed carried over to such framework. Using these intuitions, we
plan to study CPS transforms for CDuce. This should have a very important practical
impact: CDuce (we mean, the implemented language) was recently extended to deal
with Web-services and active Web pages, and we consider CPS as the key technique to
implement stateless Web sessions on the top of them.

The other important aspect of this work is that it constitutes an independent, though
indirect, confirmation that Cπ yields the right equational theory of union and inter-
section types for the π-calculus. Pierce and Sangiorgi’s subtyping for the π-calculus,
though very elegant, is structurally very poor: it essentially amounts to compare the
levels of nesting of channel constructors with the same polarity. In order to obtain a
much richer and expressive subtyping relation, one can resort to union and intersec-
tion types. However, the problem arises on which equational theory to use for these
types. Cπ gives a precise and semantically grounded answer for it (and for negation
types): its semantic justification for the equational theory, and its correspondence with

16

set-theory constitute a first strong justification for it. The Cπ equational theory is also
partially justified in practice, since works such as the PiDuce project carried out at the
University of Bologna [BLM05] and the language XPi developed at the University of
Marseille [AB05], feature restrictions of the Cπ type system that fit XML data manip-
ulation. This work is yet another different confirmation of the validity of the Cπ theory.
If we admit that the Milner-Turner encoding is very natural, then we see how perfectly
the laws of Cπ fit the MT encoding, stressing the asymmetry of the roles of client and
server, and pushing the emergence of the type obfuscation technique. This is what we
consider the most important achievement of this work.

References
[AB05] Lucia Acciai and Michele Boreale. XPi: A typed process calculus for XML messag-

ing. In FMOODS, volume 3535 of LNCS, pages 47–66. Springer-Verlag, 2005.
[BCF03] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: an XML-

friendly general purpose language. In ICFP ’03, pages 51–63. ACM Press, 2003.
[BLM05] Allen L. Brown, Cosimo Laneve, and L. Gregory Meredith. PiDuce: A process cal-

culus with native XML datatypes. In EPEW/WS-FM, volume 3670 of LNCS, pages
18–34. Springer-Verlag, 2005.

[Bou92] Gérard Boudol. Asynchrony and the π-calculus. Research Report 1702, INRIA,
http://www.inria.fr/rrrt/rr-1702.html., 1992.

[Cas05] Giuseppe Castagna. Semantic subtyping: challenges, perspectives, and open prob-
lems. In ICTCS 2005, volume 3701 of LNCS, pages 1–20. Springer-Verlag, 2005.

[CF05] Giuseppe Castagna and Alain Frisch. A gentle introduction to semantic subtyping. In
PPDP ’05, ACM Press (full version) and ICALP ’05, LNCS volume 3580, Springer-
Verlag (summary), 2005. Joint ICALP-PPDP keynote talk.

[CNV05] Giuseppe Castagna, Rocco De Nicola, and Daniele Varacca. Semantic subtyping for
the π-calculus. In LICS ’05, pages 92–101. IEEE Computer Society Press, 2005.

[FCB02] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping. In
LICS ’02, pages 137–146. IEEE Computer Society Press, 2002.

[F+96] Cédric Fournet, Gouthier Gonthier, Jean-Jaques Lévy, Luc Maranget, and Didier
Rémy. A calculus of mobile agents. In CONCUR ’96, volume 1119 of LNCS, pages
406–421. Springer-Verlag, 1996.

[Fri04] Alain Frisch. Théorie, conception et réalisation d’un langage de programmation
fonctionnel adapté à XML. PhD thesis, Université Paris 7, 2004.

[HR02] Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents. Information and Computation, 173:82–120, 2002.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communica-
tion. In ECOOP 91, volume 512 of LNCS, pages 133–147. Springer-Verlag, 1991.

[Mil92] Robin Milner. Functions as processes. Mathematical Structures in Computer Science,
2(2):119–141, 1992.

[MS98] Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi. In
ICALP’98, volume 1443 of LNCS, pages 856–867. Springer-Verlag, 1998.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile pro-
cesses. Mathematical Structures in Computer Science, 6(5):409–453, 1996.

[SW02] Davide Sangiorgi and David Walker. The π-calculus. Cambridge University Press,
2002.

[YBH04] Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong normalisation in the π-
calculus. Information and Computation, 191(2):145–202, 2004.

17

A Pattern Matching
A pattern is matched against an element of the domain D of a model of the types. A
matching returns either a substitution for the free variables of the pattern, or a failure,
denoted by Ω:

Definition A.1. Given a model JK : T → D , an element d ∈ D and a pattern p ∈ P
the matching of d with p, denoted by d/p, is the element of D Var(p) ∪{Ω} defined by
induction on structure of p as follows:

d/t = {} if d ∈ JtK
d/t = Ω if d ∈ J¬¬¬tK
d/x = {x 7→ d}
d/p1∧∧∧ p2 = d/p1⊗d/p2
d/p1|||p2 = d/p1 if d/p1 6= Ω
d/p1|||p2 = d/p2 if d/p1 = Ω
(d1,d2)/(((p1,,,p2))) = d1/p1⊗d2/p2
d/(((x :=:=:= n))) = {x 7→ n}

where γ1⊗ γ2 is Ω when γ1 = Ω or γ2 = Ω and otherwise is the unique element γ ∈
DDom(γ1)∪Dom(γ2) such that:
γ(x) = γ1(x) if x ∈ Dom(γ1)\Dom(γ2),
γ(x) = γ2(x) if x ∈ Dom(γ2)\Dom(γ1).
γ(x) = (γ1(x),γ2(x)) if x ∈ Dom(γ1)∩Dom(γ2)

Note that we defined matching also for the pattern (((x :=:=:= n))) which, as stated in the
above definition, is the pattern that always succeeds returning the constant substitution
{x 7→ n}. Although this pattern is in the definition ofCDuce, we omitted it here since its
interest is just a practical one: it is used to define the basic case of recursively defined
patterns, as we shown by a couple of examples in the next section.

18

B Example
We show with an example the practical applications of the encoding. Once we have
shown thatCDuce functions can be encoded inCπ, we can use CDuce notation directly
inside Cπ processes, as syntactic sugar of their encoding. When writing a function f
of type τ, we mean a fresh channel f {{τ}}, and the process body(f) is supposed to be
running in parallel. (This is formalised later in the Substitution Lemma E.5.)

First we can use recursive and product types to define the type of associative lists,
which associate a string key with a channel and where we use nil to denote both the
empty list and its singleton type (we use sans_serif for recursion type variables):

a_list = ((string××× ch–(int))×××a_list)∨∨∨nil
Associative lists can be searched with recursive patterns. For instance if we match an
associative list with the following recursive pattern p:

p = (((((("key1",,,x))),,,p)))|||(((1,,,p)))|||(((x :=:=:= nil)))

then x is bound to the list of all the channels that are associated to the key “key1”
(strictly speaking, that have the singleton type key1), while the following one

p = (((((("key1",,,x))),,,1)))|||(((1,,,p)))|||(((x :=:=:= nil)))

captures just the first channel associated to the key.
Thus, we can use patterns to “calculate” channels. But when such a calculation is

more complex (e.g. parametric in the key string), then it is better to delegate such a
calculation to a function such as:

fun assoc(s : string , l : a_list) : ch–(int) =
match l with nil → fail

| ((((((k,,,c))),,,t))) → if k = s then c else assoc(s, t)

which can then be communicated by a process as a message on the channel announce
below to dispatch all the notes of an examination:

announcem_list×××a_list×××(string×a_list→→→ch–(int))(marks,mails,getch).
(νcm_list) c(marks) ‖

!(c(((((((n,,,m))),,,rest)))) . (getch(n,mails)(m) ‖ c(rest))
+ c(nil).0)

where m_list = ((string××× int)×××m_list)∨∨∨ nil. The channel announce waits for an
associative list of marks, an associative list of channels, and a dispatch function that
calculates a channel. The process creates a private channel c to iterate on the list of
marks (since it must communicate on channels, then in the absence of a spawn we
cannot use a function to perform such an iteration) and use the function received on
announce (bound to getch) to calculate the channel getch(n,mails) on which to write
the mark, and iterating the process with the rest of the list. When the list of marks is
empty (the pattern nil matches it), the process becomes inert.

For instance if the following process synchronises

announce((("Alice",6),(("Bob",8),nil)) ,
(("Bob",cB),(("Alice",cA),nil)) ,
assoc)

it will produce the process: cA(6) ‖ cB(8).

19

C Properties of types
C.1 Properties of Cπ types
Proposition C.1. 1. The following equalities hold for all t :

ch–(t)∧∧∧ ch–(¬¬¬t) = ch–(1)

¬¬¬ch–(¬¬¬t)∧∧∧ ch–(1) = 0

2. We have that
ch–(t)≤

i∈Ich–(ti)

if and only if there exists i ∈ I such that ti ≤ t.

Proof. The proof done in [CNV05] for Cπ types with positive channels and without
recursive types holds.

Lemma C.2. s××× t ≤WWWi∈I(si××× ti) iff ∀I′ ⊆ I.s≤WWWi∈I′si or t ≤WWWi∈I\I′ti.

Proof. The proof of Lemma 4.6 in [Fri04] for CDuce types is valid without changes.

Lemma C.3. Let s = s′∨∨∨ r, t = t ′∨∨∨ r, s′∧∧∧ r = t ′∧∧∧ r = 0, then s≤ t iff s′ ≤ t ′.

Proof. Easy from the definition of extensional interpretation.

C.2 Properties of CDuce types
Lemma C.4. [FCB02]

VVV
i∈I(σi→→→ τi)≤

WWW
j∈J(σ j→→→ τ j) iff ∃ j0 ∈ J.∀I′⊆ I.σ j0 ≤

WWW
i∈I′σi

or I′ 6= I &
VVV

i∈I\I′τi ≤ τ j0 .

Lemma C.5. Suppose
VVV

i∈I(σi→→→ τi) ≤ σ→→→ τ, and (∀i, j) σi∧∧∧σ j = 0. For any i, if
σi∧∧∧σ 6= 0 then τi ≤ τ.

Proof. Being σi∧∧∧σ 6= 0 there is v∈ Jσi∧∧∧σK. For all v′ ∈ JτiK the values {(v,v′)} belong
to Jσi→→→ τiK. Since (∀i, j) σi∧∧∧σ j = 0 the values {(v,v′)} belong also to JVVVi∈I(σi→→→ τi)K.
So from

VVV
i∈I(σi →→→ τi) ≤ σ→→→ τ we get {(v,v′)} ∈ Jσ→→→ τK for all v′ ∈ JτiK, so we

conclude τi ≤ τ.

Lemma C.6. If
VVV

i∈I(σi→→→ τi)≤ σ→→→ τ, and (∀i, j) σi∧∧∧σ j = 0, and v ∈ JσK then there
is a unique i ∈ I such that v ∈ JσiK and cτ ∈ Jch–(τi)K.

Proof. By Lemma C.4 σ≤WWWi∈Iσi and then being σi∧∧∧σ j = 0 (∀i, j) there is a unique
i ∈ I such that v ∈ JσiK. By Lemma C.5 τi ≤ τ, which implies Jch–(τ)K≤ Jch–(τi)K. Thus
we conclude cτ ∈ Jch–(τi)K.

20

D Existence of a Cπ model and decidability of sub-typing in Cπ
It is possible to directly build a model for the types, following the guidelines of the
construction in [Fri04]. Here we show that a model of CDuce can be also used as a
model of the Cπ types that satisfies Definition 2.1. To this aim it is enough to define a
translation from Cπ types to CDuce types which “preserves” the sub-typing.

Let J−KCDuce : TCDuce→D , be a model of the types of CDuce [Fri04,BCF03].

Definition D.1. Let unit be a singleton type. The translation function ((−)) : TCπ →
TCDuce is defined as follows

((b)) = b ((0)) = 0 ((1)) = 1 ((¬¬¬t)) = ¬¬¬((t))
((s∨∨∨ t)) = ((s))∨∨∨ ((t)) ((s∧∧∧ t)) = ((s))∧∧∧ ((t))
((s××× t)) = ((s))××× ((t)) ((ch–(t))) = ((t))→→→ unit.

Define the interpretation J−K : TCπ→D , by JtK= J((t))KCDuce.

Theorem D.2. Let E(t) be as defined in Definition 2.1. Then E(t) =∅⇐⇒ JtK=∅.

Proof. It is easy to check that each Cπ type t is equivalent (modulo associativity, com-
mutativity and distributivity of ∧∧∧ and ∨∨∨) to a type of the shape tch∨∨∨ t×××∨∨∨ tB where:

• tch =
WWW

i∈I(
VVV

h∈Hi(ch–(sh))∧∧∧VVVk∈Ki¬¬¬(ch–(sk)));
• t××× =

WWW
l∈L(

VVV
m∈Ml (sm××× rm)∧∧∧VVVn∈Nl¬¬¬(sn××× rn));

• tB =
WWW

r∈R(
VVV

s∈Sr bs∧∧∧
VVV

t∈Tr¬¬¬bt).

Therefore t is empty if and only if all sets in the union are empty. Since the mapping
J−K behaves like E(−) on all type constructor but the arrow, is it enough to show that

\

i∈I

E(ch–(si))∩
\

j∈J

E(¬¬¬ch–(s j)) =∅ ⇐⇒
\

i∈I

Jch–(si)K∩
\

j∈J

J¬¬¬ch–(s j)K=∅.

This amounts to prove that

\

i∈I

E(ch–(si))⊆
[

j∈J

E(ch–(s j)) ⇐⇒
\

i∈I

Jch–(si)K⊆
[

j∈J

Jch–(s j)K.

T
i∈I Jch–(si)K⊆

S
j∈J Jch–(s j)K ⇐⇒

T
i∈I J((si))→→→ unitKCDuce ⊆

S
j∈J J((s j))→→→ unitKCDuce

by definition
⇐⇒ ∃ j0 ∈ J.J((s j0))KCDuce ⊆

S
i∈I J((si))KCDuce

by Lemma C.4
⇐⇒ ∃ j0 ∈ J.Js j0K⊆

S
i∈I JsiK= JWWWi∈IsiK

by definition
⇐⇒ ∃ j0 ∈ J.E(ch–(

WWW
i∈Isi))⊆ E(ch–(s j0))

by contra-variance of E(ch–())
⇐⇒ ∃ j0 ∈ J.

T
i∈I E(ch–(si))⊆ E(ch–(s j0))

by equality (3) at page 4
⇐⇒ T

i∈I E(ch–(si))⊆
S

j∈JE(ch–(s j))
by Proposition C.1(2).

The above encoding also shows that one can use the decision algorithm for the
subtyping relation of CDuce to decide subtyping of the local Cπ-calculus, thus proving
Proposition 2.2.

21

E Properties of the encoding
E.1 Proof of Theorem 5.3
Theorem 5.3 Let σ and τ be CDuce types. Then σ≤ τ ⇐⇒ {{σ}} ≤ {{τ}}.

Proof. It is enough to show that ρ = 0 iff {{ρ}}= 0 for an arbitrary CDuce type ρ.
It is easy to check that each CDuce type ρ is equivalent (modulo associativity, com-

mutativity and distributivity of ∧∧∧ and ∨∨∨) to a type of the shape ρ→→→∨∨∨ρ×××∨∨∨ρB where:

• ρ→→→ =
WWW

i∈I(
VVV

h∈Hi(σh→→→ τh)∧∧∧VVVk∈Ki¬¬¬(σk→→→ τk));
• ρ××× =

WWW
l∈L(

VVV
m∈Ml (σm××× τm)∧∧∧VVVn∈Nl¬¬¬(σn××× τn));

• ρB =
WWW

r∈R(
VVV

s∈Sr bs∧∧∧
VVV

t∈Tr¬¬¬bt).

Therefore ρ is 0 if and only if all sets in the union are 0. Since the mapping {{ }} is
the identity on all type constructor but the arrow, is it enough to show that
^̂̂

i∈I(σi→→→ τi)∧∧∧
^̂̂

j∈J¬¬¬(σ j→→→ τ j) = 0 ⇐⇒
^̂̂

i∈I{{σi→→→ τi}}∧∧∧
^̂̂

j∈J¬¬¬{{σ j→→→ τ j}}= 0.

This amounts to prove that
^̂̂

i∈I(σi→→→ τi)≤

j∈J(σ j→→→ τ j) ⇐⇒
^̂̂

i∈I{{σi→→→ τi}} ≤

j∈J{{σ j→→→ τ j}}

which is done in Figure 3.

VVV
i∈I{{σi→→→ τi}} ≤

WWW
j∈J{{σ j→→→ τ j}}

⇐⇒ by definitionVVV
i∈Ich–({{σi}}××× chλ({{τi}}))≤

WWW
j∈Jch–({{σ j}}××× chλ({{τ j}}))

⇐⇒ by equality (3) at page 4
ch–(
WWW

i∈I({{σi}}××× chλ({{τi}})))≤
WWW

j∈Jch–({{σ j}}××× chλ({{τ j}}))
⇐⇒ by Proposition C.1(2)
∃ j0 ∈ J.ch–(

WWW
i∈I({{σi}}××× chλ({{τi}})))≤ ch–({{σ j0}}××× chλ({{τ j0}}))

⇐⇒ by contra-variance of ch–()

∃ j0 ∈ J.{{σ j0}}××× chλ({{τ j0}})≤
WWW

i∈I({{σi}}××× chλ({{τi}}))
⇐⇒ by Lemma C.2
∃ j0 ∈ J.∀I′ ⊆ I.{{σ j0}} ≤

WWW
i∈I′{{σi}} or chλ({{τ j0}})≤

WWW
i∈I\I′chλ({{τi}})

⇐⇒ since for I = I′ the second condition is never satisfied,
being by Definition 5.1(1) chλ(t) never 0

∃ j0 ∈ J.∀I′ ⊆ I.{{σ j0}} ≤
WWW

i∈I′{{σi}} or I′ 6= I & chλ({{τ j0}})≤
WWW

i∈I\I′chλ({{τi}})
⇐⇒ by condition 2 of Definition 5.1
∃ j0 ∈ J.∀I′ ⊆ I.{{σ j0}} ≤

WWW
i∈I′{{σi}} or I′ 6= I & chλ({{τ j0}})≤ chλ(

VVV
i∈I\I′{{τi}})

⇐⇒ by condition 3 of Definition 5.1
∃ j0 ∈ J.∀I′ ⊆ I.{{σ j0}} ≤

WWW
i∈I′{{σi}} or I′ 6= I &

VVV
i∈I\I′{{τi}} ≤ {{τ j0}}

⇐⇒ by induction
∃ j0 ∈ J.∀I′ ⊆ I.σ j0 ≤

WWW
i∈I′σi or I′ 6= I &

VVV
i∈I\I′τi ≤ τ j0

⇐⇒ by Lemma C.4VVV
i∈I(σi→→→ τi)≤

WWW
j∈J(σ j→→→ τ j)

Fig. 3. Proof of Theorem 5.3

22

E.2 Proof of Theorem 6.1

Theorem 6.1 If ∆;Γ ` e : τ, then {{Γ}} ` {{eτ}}Γ
c{{τ}}

and {{Γ}},x : {{τ}} ` {{eτ}}Γ
x , where

{{Γ}}= {y : {{σ}} | y : σ ∈ Γ}.

Proof. By induction on the definition of {{}}. We only consider three interesting cases.
(subs) {{(eσ)τ}}Γ

c = (ν a{{σ}})({{eσ}}Γ
a ‖ a(w : {{σ}}).c(w))

By induction we have {{Γ}} ` {{eσ}}Γ
a . Since σ ≤ τ implies {{σ}} ≤ {{τ}} by

Theorem 5.3 we get {{Γ}},w : {{σ}} ` c : ch–({{σ}}) by rules (chan) and (subs).
We derive {{Γ}},w : {{σ}} ` c(w) by rules (var) and (output), and {{Γ}} ` a(w :
{{σ}}).c(w) by rule (input). We conclude using rules (para) and (new).

(abstr) {{(µ f
VVV

i∈I(σi→→→τi)(x).e)τ}}Γ
c = (ν f

WWW
i∈I({{σi}}×××chλ({{τi}})))(c(f) ‖ body(f))

where body(f) = !(∑i∈I f (x : {{σi}},b : ch–({{τi}})).{{eτi}}Γ,x:σi
b

+ f (x :
WWW

i∈I{{σi}},b :
WWW

i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}}))).0)

τ =
VVV

i∈I(σi→→→ τi)∧∧∧
VVV

j∈J¬¬¬(σ′j→→→ τ′j).
By induction we have {{Γ,x : σi}},b : ch–({{τi}}) ` {{eτ

i }}Γ
b for i ∈ I. By rule

(input) we derive {{Γ}} ` body(f). A premise of rule (abstr) is
VVV

i∈I(σi →→→
τi) 6≤ σ′j →→→ τ′j for all j ∈ J, which implies ch–(

WWW
i∈I({{σi}}××× chλ({{τi}}))) 6≤

ch–({{σ′j}}××× chλ({{τ′j}})) and also

{{σ′j}}××× chλ({{τ′j}}) 6≤

i∈I({{σi}}××× chλ({{τi}}))

for all j ∈ J by the contra-variance of ch–(). Therefore using rule (chan) we can
derive

{{Γ}} ` f
WWW

i∈I({{σi}}×××chλ({{τi}})) : {{τ}}
since {{τ}}= ch–(

WWW
i∈I({{σi}}×××chλ({{τi}})))∧∧∧

VVV
j∈J¬¬¬ch–({{σ′j}}×××chλ({{τ′j}})).

Then rule (output) allows us to type c(f). So we conclude using rules (para) and
(new).

(match) {{(match eσ with p1⇒eτ1
1 |p2⇒eτ2

2)τ}}Γ
c =

(ν a{{σ}})(ν b({{σ1}}×××ch–({{τ1}}))∨∨∨({{σ2}}×××ch–({{τ2}})))((P1 + P2) ‖ Q)
where P1 = b({{p1}},d:ch–({{τ1}})).{{eτ1

1 }}
Γ,σ1/p1
d ,

P2 = b({{p2∧∧∧¬¬¬*** p1+++}},d:ch–({{τ2}})).{{eτ2
2 }}

Γ,σ2/p2
d ,

Q = {{eσ}}Γ
a ‖ a(h:{{σ}}).b(h,c)

σ1 = σ∧∧∧***p1+++, σ2 = σ∧∧∧¬¬¬*** p1+++, τ =
WWW
{i|σi 6'0} τi

We assume σi 6' 0 for i = 1,2, the other cases being simpler. This implies τ =
τ1∨∨∨ τ2. By induction we have {{Γ}} ` {{eσ}}Γ

a and

{{Γ,σi/pi}},d : ch–({{τi}}) ` {{eτi
i }}

Γ,σi/pi
d (6)

for i = 1,2. If we define t = {{σ1}}××× ch–({{τ1}}))∨∨∨ ({{σ2}}××× ch–({{τ2}}) and
p̂1 = ({{p1}},d : ch–({{τ1}})) and p̂2 = ({{p2∧∧∧¬¬¬*** p1+++}},d : ch–({{τ2}})) we can
verify that for i = 1,2

{{σi/pi}},d : ch–({{τi}}) = (t∧∧∧***p̂i+++)/p̂i. (7)

23

Equality (7) allows us to rewrite (6) as

{{Γ}},(t∧∧∧*** p̂i+++)/p̂i ` {{eτi
i }}

Γ,σi/pi
d

so by applying rule (input) we get {{Γ}} ` P1 + P2.
Since σ = σ1∨∨∨σ2 we get {{σ}}×××ch–({{τ1∨∨∨τ2}})≤ t, which allows us to derive
{{Γ}},h : {{σ}} ` b(h,c) by rules (chan), (subs), (var) and (output). We conclude
using rules (input), (para) and (new).

E.3 Proof of Proposition 5.4

Proposition 5.4 The constructor chλ0(t)∧∧∧ϕ is a λ-channel.

Proof. The condition ch–(0) ≤ ϕ immediately follows from condition (1) of Defini-
tion 5.1. Moreover it is easy to verify that ch–(t) ≤ chλ0(t) using the first equality in
Proposition C.1(1). Condition (3) of Definition 5.1 holds since

• it is easy to check that s≤ t iff ¬¬¬ch–(¬¬¬t)≤¬¬¬ch–(¬¬¬s);
• Lemma C.3 and the second equality in Proposition C.1(1) imply chλ0(s)≤ chλ0(t)

iff ¬¬¬ch–(¬¬¬s)≤¬¬¬ch–(¬¬¬t);
• observing that chλ0(t) = (chλ0(t)∧∧∧ϕ)∨∨∨ (chλ0(t)∧∧∧¬¬¬ϕ) and that chλ0(t)∧∧∧¬¬¬ϕ does

not depend on t since ch–(0)≤ϕ, Lemma C.3 implies chλ0(s)≤ chλ0(t) iff chλ0(s)∧∧∧
ϕ≤ chλ0(t)∧∧∧ϕ.

Condition (2) of Definition 5.1 follows from ¬¬¬ch–(¬¬¬(s∧∧∧ t)) =¬¬¬ch–(¬¬¬s)∨∨∨¬¬¬ch–(¬¬¬t).

E.4 Proof of Lemma 6.2

Lemma 6.2 All reductions starting from {{e}}∅c where e is an arbitrary CDuce expres-
sion are safe.

Proof. Let body(f) =!(∑i∈I f (x : {{σi}},b : ch–({{τi}})).{{eτi}}Γ,x:σi
b +

f (x :
WWW

i∈I{{σi}},b :
WWW

i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}}))).0) and v ∈ JσK and c ∈ JτK for
some σ,τ. By the typing rules we get

VVV
i∈I(σi→→→ τi) ≤ σ→→→ τ, and (∀i, j) σi∧∧∧σ j = 0.

So we conclude by Lemma C.6.

E.5 Proof of Lemma 6.4

Lemma 6.4

{{v}}∅c −→∗s (ν func(v))(c(cpv(v))‖ f∈func(v)body(f)) .

24

Proof. The proof is by structural induction on values. The only interesting case is a pair
of values. If f̃1 = func(v1) and f̃2 = func(v2) we have:

{{(vσ1
1 ,v

σ2
2)}}∅c = (ν a{{σ1}})(ν b{{σ2}})({{vσ1

1 }}∅a ‖ a(w : {{σ1}}).({{vσ2
2 }}∅b ‖

b(h : {{σ2}}).c(w,h)))

−→∗s (ν a{{σ1}})(ν b{{σ2}})((ν f̃1)(a(cpv(v1))‖ f∈ f̃1body(f)) ‖
a(w : {{σ1}}).({{vσ2

2 }}∅b ‖ b(h : {{σ2}}).c(w,h)))
by induction

−→s (ν b{{σ2}})(ν f̃1)(‖ f∈ f̃1body(f) ‖ {{vσ2
2 }}∅c ‖

b(h : {{σ2}}).c(cpv(v1),h))

−→∗s (ν b{{σ2}})(ν f̃1)(‖ f∈ f̃1body(f) ‖
(ν f̃2)(b(cpv(v2))‖ f∈ f̃2body(f)) ‖ b(h : {{σ2}}).c(cpv(v1),h)))

by induction
−→s (ν f̃1)(‖ f∈ f̃1body(f) ‖ (ν f̃2)(‖ f∈ f̃2 body(f)) ‖

c(cpv(v1),cpv(v2))))

E.6 Proof of Theorem 6.5

For each channel name c the observability predicates P ↓c and P ↓c are defined by:

• P ↓c iff P can perform an input on channel c;
• P ↓c iff P can perform an output on channel c.

Let η ranges over c and c. We use P ⇓η as short for P−→∗s P′ and P′ ↓η for some P′.

Definition E.1. Barbed bisimilarity is the largest symmetric relation,
·≈, such that when-

ever P
·≈ Q:

• P ↓η implies Q ⇓η;
• P−→s P′ implies Q−→∗s Q′ for some Q′

·≈ P′.

{{eτs}}Γ
c = (ν a{{σ→→→τ}})(ν b{{σ}})({{eσ→→→τ

1 s}}Γ
a ‖ a(w : {{σ→→→ τ}}).({{eσ

2 s}}Γ
b ‖

b(h : {{σ}}).w(h,c)))
∼= (ν a{{σ→→→τ}})(ν b{{σ}})((ν f̃)({{eσ→→→τ

1 }}Γ
a cpv(s)‖ f∈ f̃ body(f)) ‖

a(w : {{σ→→→ τ}}).((ν f̃)({{eσ
2}}Γ

b cpv(s)‖ f∈ f̃ body(f)) ‖ b(h : {{σ}}).w(h,c)))

by induction
∼= (ν a{{σ→→→τ}})(ν b{{σ}})((ν f̃)({{eσ→→→τ

1 }}Γ
a cpv(s)‖ f∈ f̃ body(f)) ‖

(ν f̃)(a(w : {{σ→→→ τ}}).({{eσ
2}}Γ

b cpv(s) ‖ b(h : {{σ}}).w(h,c))‖ f∈ f̃ body(f)))))

by Lemma E.4(1)
∼= (ν a{{σ→→→τ}})(ν b{{σ}})(ν f̃)({{eσ→→→τ

1 }}Γ
a cpv(s) ‖

a(w : {{σ→→→ τ}}).({{eσ
2}}Γ

b cpv(s) ‖ b(h : {{σ}}).w(h,c))‖ f∈ f̃ body(f)))

by Lemma E.4(3)
≡ (ν f̃)(ν a{{σ→→→τ}})(ν b{{σ}})(({{eσ→→→τ

1 }}Γ
a ‖

a(w : {{σ→→→ τ}}).({{eσ
2}}Γ

b ‖ b(h : {{σ}}).w(h,c)))cpv(s)‖ f∈ f̃ body(f))

Fig. 4. Substitution Lemma: Case eτ = eσ→→→τ
1 eσ

2

25

A type environment Γ refines an environment Γ′ (notation Γ.Γ′), if x : t ∈Γ′ implies
Γ ` x : t.

A context C[] is a Θ/Γ-context if Θ `C[] can be derived using the following typing
rule for the hole:

Γ. Γ′

Γ′ ` []

Definition E.2. Two processes P,Q are barbed congruent at Γ (Γ � P ∼= Q) if for each
type environment Θ and each Θ/Γ-context C[] we have C[P]

·≈C[Q].

Lemma E.3. cpv(v/p) = cpv(v)/p.

Proof. The proof is by structural induction on values and by cases.
Let v/p(x) = m for some constant m which does not dependent from v. In this case

cpv(v/p)(x) = cpv(v/p(x)) = cpv(m) = m and cpv(v)/p(x) = m, where the last equality
holds being v and cpv(v) of the same type.

Let v/p(x) = v. In this case cpv(v/p)(x) = cpv(v/p(x)) = cpv(v) and cpv(v)/p(x) =
cpv(v), where the last equality holds being v and cpv(v) of the same type.

Let v = (v1,v2) and p = (p1,p2). It is easy to check that cpv(v1/p1 ⊗ v2/p2) =
cpv(v1)/p1⊗ cpv(v2)/p2, so we conclude by induction.

{{eτs}}Γ
c = (ν g

WWW
i∈I({{σi}}×××chλ({{τi}})))(c(g) ‖ !(∑i∈I g(y : {{σi}},b : ch–({{τi}})).{{eτi

0 s}}Γ,y:σi
b

+g(y :
WWW

i∈I{{σi}},b :
WWW

i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}}))).0)
∼= (ν g

WWW
i∈I({{σi}}×××chλ({{τi}})))(c(g) ‖ !(∑i∈I g(y : {{σi}},b : ch–({{τi}})).

(ν f̃)({{eτi
0 }}

Γ,y:σi
b cpv(s)‖ f∈ f̃ body(f))

+g(y :
WWW

i∈I{{σi}},b :
WWW

i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0)
by induction

∼= (ν g
WWW

i∈I({{σi}}×××chλ({{τi}})))(c(g) ‖ !(∑i∈I g(y : {{σi}},b : ch–({{τi}})).
(ν f̃)({{eτi

0 }}
Γ,y:σi
b cpv(s)‖ f∈ f̃ body(f))

+g(y :
WWW

i∈I{{σi}},b :
WWW

i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).(ν f̃)(‖ f∈ f̃ body(f)))

since (ν f̃)(‖ f∈ f̃ body(f))∼= 0
∼= (ν g

WWW
i∈I({{σi}}×××chλ({{τi}})))(c(g) ‖

!((ν f̃)(∑i∈I g(y : {{σi}},b : ch–({{τi}})).{{eτi
0 }}

Γ,y:σi
b cpv(s))

+g(y :
WWW

i∈I{{σi}},b :
WWW

i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0)‖ f∈ f̃ body(f))))

by Lemma E.4(2)
∼= (ν g

WWW
i∈I({{σi}}×××chλ({{τi}})))(c(g) ‖

(ν f̃)(!(∑i∈I g(y : {{σi}},b : ch–({{τi}})).{{eτi
0 }}

Γ,y:σi
b cpv(s)

+g(y :
WWW

i∈I{{σi}},b :
WWW

i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0‖ f∈ f̃ body(f)))))

by Lemma E.4(4)
≡ (ν f̃)(ν g

WWW
i∈I({{σi}}×××chλ({{τi}})))(c(g) ‖

(!(∑i∈I g(y : {{σi}},b : ch–({{τi}})).{{eτi
0 }}

Γ,y:σi
b

+g(y :
WWW

i∈I{{σi}},b :
WWW

i∈I(chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0)cpv(s)‖ f∈ f̃ body(f))))

Fig. 5. Substitution Lemma: Case eτ = µg
VVV

i∈I(σi→→→τi)(y).e0

26

Lemma E.4. Let all considered processes of Cπ be obtained by reducing encodings of
CDuce expressions in the environment Γ.

1. If f does not occur in π then Γ� (ν f)(π.P ‖ body(f)) ∼= π.(ν f)(P ‖ body(f)).
2. If f does not occur in π1,π2 then Γ� (ν f)(π1.P + π2.Q) ‖ body(f))∼=

π1.(ν f)(P ‖ body(f)) + π2.(ν f)(Q ‖ body(f)).
3. Γ� (ν f)(P ‖ Q ‖ body(f))∼= (ν f)(P ‖ body(f)) ‖ (ν f)(Q ‖ body(f)).
4. Γ� (ν f)(!P ‖ body(f))∼=!(ν f)(P ‖ body(f)).

Proof. The equations (1) and (2) are easily proved directly. The sketch of the proof
of the other two is as follows. It is possible to prove a context lemma for barbed con-
gruence, analogous to Lemma 2.1.19, page 60 of [SW02]. Little changes in the proof,
except that we need to keep the distinction between open terms (which cannot reduce)
and closed terms, and that we have a slightly more general notion of interaction. Using
locality and the context lemma, it is easy to prove a result similar to Lemma 10.7.3,
page 344 of [SW02]. This allows us to conclude the proof, as done for Lemma 10.5.1,
page 346 of [SW02].

Lemma E.5 (Substitution Lemma).

Γ�{{eτs}}Γ
c
∼= (ν func(s))({{eτ}}Γ

c cpv(s)‖ f∈func(s)body(f)) .

{{eτs}}Γ
c = (ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))

((b(p1,d : ch–({{τ1}})).{{eτ1
1 s}}Γ,σ1/p1

d +

b(p2∧∧∧¬¬¬*** p1+++,d : ch–({{τ2}})).{{eτ2
2 s}}Γ,σ2/p2

d) ‖ {{eσ
0 s}}Γ

a ‖ a(h).b(h,c))
∼= (ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))

((b(p1,d : ch–({{τ1}})).(ν f̃)({{eτ1
1 }}

Γ,σ1/p1
d cpv(s)‖ f∈ f̃ body(f))+

b(p2∧∧∧¬¬¬*** p1+++,d : ch–({{τ2}})).(ν f̃)({{eτ2
2 }}

Γ,σ2/p2
d cpv(s)

‖ f∈ f̃ body(f))) ‖ (ν f̃)({{eσ
0}}Γ

a cpv(s)‖ f∈ f̃ body(f)) ‖ a(h).b(h,c))

by induction
∼= (ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))

((ν f̃)((b(p1,d : ch–({{τ1}})).{{eτ1
1 }}

Γ,σ1/p1
d cpv(s)+

b(p2∧∧∧¬¬¬*** p1+++,d : ch–({{τ2}})).{{eτ2
2 }}

Γ,σ/p2
d cpv(s))‖ f∈ f̃ body(f)) ‖

(ν f̃)({{eσ
0}}Γ

a cpv(s)‖ f∈ f̃ body(f)) ‖ a(h).b(h,c)))

by Lemma E.4(2)
∼= (ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))

((ν f̃)((b(p1,d : ch–({{τ1}})).{{eτ1
1 }}

Γ,σ1/p1
d cpv(s)+

b(p2∧∧∧¬¬¬*** p1+++,d : ch–({{τ2}})).{{eτ2
2 }}

Γ,σ/p2
d cpv(s)) ‖

{{eσ
0}}Γ

a cpv(s)‖ f∈ f̃ body(f)) ‖ a(h).b(h,c)))

by Lemma E.4(3)
≡ (ν f̃)(ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))

((b(p1,d : ch–({{τ1}})).{{eτ1
1 }}

Γ,σ1/p1
d +

b(p2∧∧∧¬¬¬*** p1+++,d : ch–({{τ2}})).{{eτ2
2 }}

Γ,σ/p2
d) ‖

{{eσ
0}}Γ

a ‖ a(h).b(h,c))cpv(s)‖ f∈ f̃ body(f))

Fig. 6. Substitution Lemma: Case eτ = match eσ
0 with p1⇒eτ1

1 |p2⇒eτ2
2

27

Proof. By induction on the definition of {{}}. We omit the empty environment in writing
∼=. Figures 4, 5 and 6 show the interesting cases.

Theorem 6.5 is a corollary of Lemma 6.4 and of the following result

Theorem E.6. (Correctness)

1. {{(µ f
VVV

i∈I(σi→→→τi)(x).e)v}}∅c −→∗s P for some P such that
∅�P∼= {{e[v/x][µ f

VVV
i∈I(σi→→→τi)(x).e/ f]}}∅c .

2. {{match v with p1⇒e1|p2⇒e2}}∅c −→∗s P for some P such that
∅�P∼= {{ei[vσ/pi]}}∅c where i = 1 if v/p1 6= Ω and i = 2 otherwise.

3. If e −→ e′ then there are P,Q such that {{e}}∅c −→∗s P and {{e′}}∅c −→∗s Q and
∅�P∼= Q.

Proof. (1). Let e0 = (µ f
VVV

i∈I(σi→→→τi)(x).e)σ→→→τvσ. The proof is given in Figure 7.
(2). Let vσ/p1 6= Ω and e = match vσ with p1⇒eτ1

1 |p2⇒eτ2
2 . The proof is given in

Figure 8.
(3). The proof by induction on the definition of −→ is similar to that one of Lemma

15.3.22 in [SW02].

{{e0}}∅c = (ν a{{σ→→→τ}})(ν b{{σ}})({{µ f
VVV

i∈I(σi→→→τi)(x).e}}∅a ‖ a(w).({{vσ}}∅b ‖ b(h).w(h,c)))

= (ν a{{σ→→→τ}})(ν b{{σ}})((ν f {{
VVV

i∈I(σi→→→τi)}})
(a(f) ‖ body(f)) ‖ a(w).({{vσ}}∅c ‖ b(h).w(h,c)))

−→s (ν b{{σ}})((ν f {{
VVV

i∈I(σi→→→τi)}})(body(f)) ‖ {{vσ}}∅c ‖ b(h). f (h,c))

−→s (ν b{{σ}})((ν f {{
VVV

i∈I(σi→→→τi)}})(body(f)) ‖
(ν g̃)(b(cpv(v))‖g∈g̃body(g)) ‖ b(h). f (h,c))
where g̃ = func(v) by Lemma 6.4

−→s (ν f {{
VVV

i∈I(σi→→→τi)}})(body(f) ‖ (ν g̃)(‖g∈g̃body(g)) ‖ f (cpv(v),c)))

−→s (ν g̃)(ν f {{
VVV

i∈I(σi→→→τi)}}){{eτi}}∅c [cpv(v)/x] ‖ (‖g∈g̃body(g)) ‖ body(f))
by Lemma 6.2

∼= {{e[vσ/x][µ f
VVV

i∈I(σi→→→τi)(x).e/ f]}}∅c by Lemma E.5

Fig. 7. Proof of Theorem E.6(1)

{{e}}∅c = (ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))
((b(p1,d : ch–({{τ1}})).{{eτ1

1 }}
σ1/p1
d +

b(p2∧∧∧¬¬¬p1,d : ch–({{τ2}})).{{eτ2
2 }}

σ2/p2
d) ‖ {{vσ}}∅a ‖ a(h).b(h,c))

−→s (ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))
((b(p1,d : ch–({{τ1}})).{{eτ1

1 }}
σ1/p1
d + b(p2∧∧∧¬¬¬p1,d : ch–({{τ2}})).{{eτ2

2 }}
σ2/p2
d)

‖ (ν f̃)(a(cpv(v))‖ f∈ f̃ body(f)) ‖ a(h).b(h,c))

where f̃ = func(v) by Lemma 6.4
−→s (ν f̃)({{eτ1

1 }}∅c [cpv(vσ)/p1]‖ f∈ f̃ body(f))

= (ν f̃)({{eτ1
1 }}∅c [cpv(vσ/p1)]‖ f∈ f̃ body(f)) by Lemma E.3

∼= {{e1[vσ/p1]}}∅c by Lemma E.5

Fig. 8. Proof of Theorem E.6(2)

28

