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Abstract. CDuce is a functional programming language featuring overloaded functions
and a rich type system with recursive types, subtyping, union, negation and intersection
types. The boolean constructors have a set-theoretic behaviour defined via a semantic
interpretation of the types. TheCπ-calculus is an extension of theπ-calculus that en-
riches Pierce and Sangiorgiπ-calculus subtyping with union, intersection, and negation
types. It is based on the same set-theoretic interpretationasCDuce.
In this work we present a type faithful encoding of theCDuce into theCπ-calculus. This
encoding is a modification of the Milner-Turner encoding of theλ-calculus with subtyp-
ing into theπ-calculus with subtyping. The main difficulty to overcome was to find an
encoding of the types that respects the subtyping relation.Besides the technical chal-
lenge, this effort is interesting because it sheds new lighton the Milner-Turner encoding
and on the relations between sequential and remote execution of functions/services, in
particular in the presence of type-driven semantics. It also confirms the validity of the
equational laws for union and intersection types inπ-calculus.

1 Introduction and motivations
The languageCDuce [10, 9] is a functional programming language for XML manipu-
lation, with a very rich type system. Types and subtyping play a central role inCDuce:
for its design (patterns and pattern matching are built around types), for its execution
(functions can be overloaded with run-time code selection), and for its implementation
(pattern matching compilation and query computation use static type information to op-
timise execution). All these multifarious usages of types rely on a common foundational
core: thesemantic subtypingframework. An introduction to semantic subtyping can be
found in [7], while [5] discusses several aspects and perspectives; technical details are
given in [10, 9]. In a nutshell, given a typed language with some (possibly recursive)
type constructors (e.g.,→, ×, list(), . . . ), semantic subtyping is a technique to en-
rich the language withtype combinators, i.e. set-theoretic union, intersection, and nega-
tion types. The behaviour of combinators is specified via thesubtyping relation (rather
than via the typing of the terms). The subtyping relation is “semantic” since instead
of axiomatising it by a set of inference rules, one describesa set-theoretic interpreta-
tion of the typesJ K : Types→ P(D) (whereP denotes the powerset operator andD

some domain) and then defines the subtyping relation ass≤ t
def

⇐⇒ JsK ⊆ JtK. Such a
set-theoretic interpretation must satisfy at least three design goals.
1. It must ensure that typecombinatorshave a set-theoretic interpretation. This is done

by imposing that union, intersection, and negation types are respectively interpreted
as the set-theoretic union, intersection, and complement operations ofP(D).
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2. It must ensure that typeconstructorshave a “natural” interpretation (at least, for
what concerns subtyping), e.g., that product types are interpreted as set-theoretic
products, function types as sets of maps from domain to co-domain, and so on.

3. It must allow for an interpretation of types as sets of values. This means that if we
take asD the set of values of the language and as interpretation the function that
maps a type to the set of all values of that type, then this new interpretation must
induce the very same subtyping relation as the one used to type values.1

Finding a domainD and an interpretation functionJ−K that satisfy the last two points
is far from being trivial: a set-theoretic interpretation of functional and recursive types
or the circularity between the typing of values and definition of subtyping are difficult
constraints. As described in [7] and outlined later on, semantic subtyping provides a
technique to do so.

In [6] the Cπ-calculus is devised.Cπ is a type system for theπ-calculus which
exploits the same principles asCDuce to enrich Pierce and Sangiorgi’s types [15] with
(set-theoretic) unions, intersections, and negations. Inthe cited paper, a higher-order
extension of theCπ-calculus with functional values is discussed. However thequestion
arises whether the extension is necessary or whether it is possible to encode functions as
processes. It is well known that several such encodings are possible from theλ-calculus
into theπ-calculus [14, 16, 17]. In the Join-calculus language [8], the functional part is
simply syntactic sugar for its coding in the concurrent part.

Contributions. In this paper we describe an encoding ofCDuce into theCπ-calculus.
The encoding turned out not to be so straightforward as one may expect. The diffi-
culty arises in finding an encoding of the types that respectsthe subtyping relation. The
Milner-Turner translation of arrow types [16] respects thesubtyping relation in the con-
text of the simply typedλ-calculus, but it breaks down in the presence of intersection
types.

Strictly speaking the technical contribution of this paperis twofold: first it intro-
duces the localCπ-calculus, a variant of theCπ-calculus that admits unrestricted re-
cursion on types, a feature not allowed in the version of the calculus presented in [6];
secondly it defines an encoding ofCDuce (hence, of intersection, union, and negation
types) into localCπ that preserves the typing and subtyping relations as well asthe
reduction semantics.

But beyond these technicalities, or actually hidden right in the technical details,
there lies the main interest of this work. As we detail in Sections 4 and 5, the transla-
tion sheds new light on the Milner-Turner encoding as it shows the respective roles of
argument and return channel that are used to simulate functions in a concurrent world.
In particular, it shows that in the presence of type-case, the latter must be scrambled by
introducing some noise at the type level so that the receivercannot gain information by
testing the type of the return channel. The translation is a further confirmation of the
validity of the equational laws for union and intersection types in theπ-calculus, since
a different axiomatisation proposed in the literature is incompatible with the Milner-
Turner technique. This is not the only contribution to the type theory of theπ-calculus,

1 This point is important in practice: we cannot ask a programmer to understand subtyping via a set-theoretic
interpretation in the power-set of some twisted domainD . Thanks to this property we can more simply
explain subtyping in terms of inclusion of types as sets of values.
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since the encoding also outlines the different roles playedby the two contra-variant
constructors ofCπ, namely input channel and negation, and shows how they interplay
when considering them from a logical point of view. Finally,at term level the translation
formalises the nice correspondence between functional pattern matching andπ-calculus
guarded sums on a same input channel.

Structure. In Section 2 we present the local variant of theCπ-calculus. In Section 3 we
present the functional core ofCDuce. Section 4 is devoted to explaining the main diffi-
culties we encountered when encodingCDuce types intoCπ types. Section 5 contains
the formalisation of the encoding of the language, while Section 6 presents the correct-
ness results. In Section 7 we conclude by giving some insighton more general aspects
of this work and trying to convey the intuition of why we believe that the main contri-
bution lie well beyond the technical result we present. An appendix with an example,
auxiliary definitions, and the main proofs is also provided.

2 The Cπ-calculus

TheCπ-calculus is a variant of the asynchronousπ-calculus with pattern matching in
input and rich typing and subtyping systems [6]. We introduce here a further simpli-
fication of the calculus, following ideas of the Join calculus [8] and of the localπ-
calculus [13]. The key idea is that if a process is communicated a channel, then it cannot
use that channel in input. Only global channels already known to the process or newly
generated channels can be used in input. This policy is enforced syntactically, even be-
fore processes are typed. In the typing system, this impliesthat input channel types are
no longer necessary. The consequent subtyping relation is much easier to decide and,
unlike the system for fullCπ-calculus, can be also extended to recursive types.

2.1 Types and subtyping

A type is coinductively defined by applyingtype constructors, namely base type con-
structors (e.g. integers, strings, etc...), the channel orproduct type constructors, or by
applying aboolean combinator, i.e., union, intersection, and negation. More formally,
types are regular trees generated by the following grammar

Cπ Types t ::= b | ch–(t) | t××× t constructors
| 0 | 1 | ¬¬¬t | t∨∨∨ t | t∧∧∧ t combinators

and that are contractive, that is for which on every infinite branch of the tree there are
infinitely many occurrences of constructors. Combinators are self-explaining, with0 be-
ing the empty type and1 the type of all values. We useb to range over base types. The
channel type constructorch–(t) denotes the type of channels that can be used tooutput
values of typet. The set of all types (sometimes referred to as “type algebra”) will be
denoted byT . Contractivity ensures, as usual, the absence of meaningless recursively
defined types such ast =¬¬¬t.

The subtyping relation is defined semantically. This means that we first give a set-
theoretical interpretation of typesJ−K : T → P(D), for some domainD , and then
define subtyping as inclusion of the interpretations:s≤ t

def
⇐⇒ JsK ⊆ JtK. It is out of the

scope of this work to precisely defineD or the interpretationJ−K. For such definitions
and a discussion on the design decisions, we refer the readerto the appendix and to [6].
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All we need for this work is to precisely define the subtyping relation these defi-
nitions entail. This iscompletelycharacterised by the subtyping relation on the basic
types and by the following property:

JsK ⊆ JtK ⇐⇒ E(s) ⊆ E(t) (1)

whereE(−) is defined as follows

Definition 2.1 (Extensional interpretation). The extensional interpretationof the
types is the functionE(−) : T → P(D +D×D +P(D)), defined as follows:

a. E(1) = D +D×D +P(D), E(0) = ∅, E(b) = JbK;
b. E(t1∨∨∨ t2) = E(t1)∪E(t2), E(t1∧∧∧ t2) = E(t1)∩E(t2) , E(¬¬¬t) = E(1)\E(t);
c. E(t1××× t2) = Jt1K× Jt2K;
d. E(ch–(t)) = {JsK | JsK ⊇ JtK}.

The intuition underlying property (1) is that,for what concerns subtyping, we can con-
sider thatJtK, i.e. the semantics oft, is preciselyE(t). Thus in Definition 2.1, (b.) states
that the type combinators are interpreted as the corresponding set operations and (c.)
that the product type is interpreted as set-theoretic product. Point (d.) gives us the se-
mantics of channels. Intuitively, if a type denotes the set of all values with that type,
then the typech–(t) denotes the set of all channels in which one can safely put objects
of typet. Therefore it will denote all channels that can contain objects of types, for any
s≥ t. Let us writect for a channel namedc and transporting objects of typet. We have

Jch–(t)K =
{

cs | s≥ t
}

.

The derived subtyping relation is insensitive to the actualnumber of channels of a given
type or to their names. We can therefore assume that for everyequivalence class of
types, there is only one such channel, which may as well be identified with JtK, so that
the intended semantics of channel types would be

Jch–(t)K =
{

JsK | s≥ t
}

(2)
which by definition of subtyping gives point (d.) of the previous definition.

The following result is very important for practical applications:

Proposition 2.2. The subtyping relation of the localCπ-calculus is decidable.

The decision algorithm is similar to the decision algorithmfor CDuce subtyping, and it
is much simpler than the one for the fullCπ-calculus presented in [6].

In order to stress that property (1) and Definition 2.1 completely define the sub-
typing relation, let us show as an example how to deduce the contra-variance of the
output type channel constructor:ch–(s) ≤ ch–(t) ⇔ Jch–(s)K ⊆ Jch–(t)K ⇔ E(ch–(s)) ⊆
E(ch–(t)) ⇔{JuK | JuK ⊇ JsK} ⊆ {JuK | JuK ⊇ JtK}⇔ JtK ⊆ JsK ⇔ t ≤ s.

Similarly we can derive interesting equations and inequations between types. For
instance,ch–(t)≤ ch–(0) is a special case of the contra-variance we just derived. It states
that every channelc can be safely used in a process that does not write onc. If we define
s= t

def
⇐⇒ JsK = JtK, then we have

ch–(t1)∧∧∧ch–(t2) = ch–(t1∨∨∨ t2) (3)
which states that if on a channel we can write values of typet1 and values of typet2,
then we can also write values of typet1∨∨∨ t2, and vice versa. Union of channel types
behaves differently since the inequation below is strict (see [6] for a discussion on this)

ch–(t1)∨∨∨ch–(t2) � ch–(t1∧∧∧ t2) .
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2.2 Patterns

Both Cπ andCDuce feature powerful pattern matching. Patterns perform type-cases,
decompose values by capturing subcomponents in variables,and can be recursive.

Definition 2.3. Given a type algebraT , and a set of variablesV, apatternp on(V,T )
is a regular tree generated by the following grammar

p : := x | t | p∧∧∧ p | p||| p | (((p,,,p)))
such that(i) on every infinite branch of p there are infinitely many occurrences of the
pair pattern,(ii) for every subterm p1∧∧∧ p2 of p we have Var(p1)∩Var(p2) = ∅, and
(iii ) for every subterm p1|||p2 of p we have Var(p1) = Var(p2) (where x∈ V, t ∈T , and
Var(p) is the set of variables occurring in p).

The semantics of patterns is given in terms of a matching operation that returns
either a substitution for the variables of the pattern or a failure denoted byΩ. Matching
can be defined independently from the language, via the domain D of a model of types.
We used/p to denote the matching of the elementd against the patternp. Intuitively,
x is the pattern that always succeeds and captures the matchedelement inx (i.e., d/x
returns the substitution{x 7→ d}); t succeeds if the element is in the interpretation oft,
in which case it returns the empty substitution; the intersection succeeds only if both
patterns succeed and it returns the union of the substitutions; the alternation follows
a first-match policy by applying the pattern on the right onlyif the one on the left
failed; the pair decomposes the element and applies the patterns to the respective sub-
components. See the appendix for the formal definition.It can be shown that the set of
all elements for which a patternp does not fail is the denotation of a type. We denote
this type by***p+++, that is by definitionJ***p+++K = {d | d/p 6= Ω}. Matching can be extended
to types as stated by the following theorem:

Theorem 2.4 ([10]).There is an algorithm mapping every pair(t, p), where p is a
pattern and t a type such that t≤ ***p+++, to a type environment(t/p) ∈ T Var(p) such that
J(t/p)(x)K = {(d/p)(x) | d ∈ JtK}.

2.3 The language

The syntax ofCπ is similar to that of the asynchronousπ-calculus [3, 12], extended
with call-by-value pattern matching (obtained by pattern-guarded sums of inputs on the
same channel) and an extra condition which guarantees “locality” [13].

Processes P::= αM output
| ∑i∈I ct(pi).Pi patterned input
| P ‖ P parallel
| (νct)P restriction
| !P replication

Channels α ::= x variables
| ct constant

Messages M::= n constants
| α channel
| (M,M) pair

where I is a possibly empty finite set of indexes,t ranges over the types defined in
Section 2.1 andpi are patterns as defined in Section 2.2. As customary, empty sum
corresponds to the inert process, denoted by0. Thevaluesof the language are the closed
messagesv ::= n | ct | (v,v). We useV to denote the set of all values.
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Messages

Γ ⊢ n : bn
(const)

si 6≤ t

Γ ⊢ ct : ch–(t)∧∧∧¬¬¬ch–(s1)∧∧∧ . . .∧∧∧¬¬¬ch–(sn)
(chan)

Γ ⊢ x : Γ(x)
(var)

Γ ⊢ M : s≤ t
Γ ⊢ M : t

(subs)
Γ ⊢ M1 : t1, Γ ⊢ M2 : t2
Γ ⊢ (M1,M2) : t1××× t2

(pair)

Processes

Γ ⊢ P
Γ ⊢ (νct)P

(new) Γ ⊢ P
Γ ⊢!P

(repl)
Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1‖P2
(para)

t≤
W
W
W

i∈I***pi+++ Γ,(t∧∧∧***pi+++)/pi ⊢ Pi

Γ ⊢ ∑i∈I ct(pi).Pi
(input)

Γ ⊢ M : t Γ ⊢ α : ch–(t)

Γ ⊢ αM
(output)

Fig. 1. Cπ typing rules

Observe that we force input to happen on channel constants. This ensures that chan-
nels sent by other processes cannot be used in input. Output instead can be performed
on non-constant channels, too.

Since pattern matching performs type-case, we must define the typing of messages
before the reduction semantics, see Figure 1. We suppose that every basic constant
n is associated to an atomic basic typebn. The rules, and in particular rule (chan),
are designed so that we can interpret a type as the set of all values of that type. The
interpretationJ K

V
: T → P(V ) defined as

JtK
V

= {v | ∅ ⊢ v : t} (4)

satisfies property (1) and, furthermore, it generates the same subtyping relation as≤.2

Then, the definition for pattern matching given in Section 2.2 applies forv being a
value and we can use it to define the reduction semantics ofCπ:3

ctv ‖ ∑
i∈I

ct(pi).Pi −→ Pj [v/p j ]

whereP[s] denotes the application of substitutions to processP. The asynchronous
output of avalueon the boxct synchronises with a summand in a sum guarded by the
same box, only if the pattern of the summand matches the communicated value (the type
system ensures the existence of such a pattern). If more thanone pattern matches, then
one of them is non-deterministically chosen and the corresponding process executed,
but before its execution the pattern variables are replacedby the captured values. As
usual, the notion of reduction must be completed with reductions in evaluation contexts
and up to structural congruence, whose definitions are standard and can be found in [6].
We use−→∗ to denote the reflexive and transitive closure of−→.

The typing of processes is defined in the lower half of Figure 1. Notice that the
rule for restrictions (new) does not rely on the type environmentΓ, since channels are

2 Without the intersection of the negated channel types in (chan), we could not prove that, say,cint :
¬¬¬ch–(bool). More generally, the property⊢ v : t ⇔ 6⊢ v :¬¬¬t would not hold, and this is necessary toJ−K

V

to satisfy (1): cf. Definition 2.1(b). For a broader discussion on such inference rules with negated types see
Section 4.6 of [5].

3 As a matter of facts we already used this property in the rule (input) to determine the typing environments
t/pi . There is no circularity since the typing of values is definedindependently from the typing of precesses.
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decorated by the type of their messages, and that in the rule (input) the conditiont ≤
W

W

W

i∈I ***pi+++ ensures that for every message that may arrive on the channel, there exists at
least one pattern that matches it. The system satisfies subject reduction [6].

3 The functional languageCDuce

CDuce is a very efficient functional language for rapid designand development of appli-
cations that manipulate XML data [2]. In this work we concentrate on the foundational
aspects ofCDuce [10] a detailed survey of which can be found in [7]. In that respect,
CDuce features the same syntactic types asCπ, with just a single exception, namely,
the channel type constructor is replaced by the function type constructor:

CDuce Types τ ::= b | τ→→→ τ | τ××× τ constructors
| 0 | 1 | ¬¬¬τ | τ∨∨∨ τ | τ∧∧∧ τ combinators

where the same regularity and contractivity restrictions as in Section 2.1 apply. We use
σ,τ to range overCDuce types and to typographically distinguish them fromCπ ones,
these latter still ranged over bysandt.

Subtyping is characterised in the same way as forCπ, by defining an interpretation
from the above types into a domainD (that we leave unspecified, see [10]) which satis-
fies property (1). Definition 2.1 is modified to account for thenew type constructor for
functions. We haveE(−) : T →P(D +D×D +P(D×DΩ)) (whereDΩ = D +{Ω},
the disjoint union of the domain and of a distinguished errorelementΩ) while point (d.)
of Definition 2.1 becomes:

d. E(σ→→→ τ) = P

(

JσK× JτK
DΩ

D×DΩ
)

whereX
Y

denotes the complement ofX with respect toY (i.e.,Y \X). In words, the
extensional interpretation ofσ→→→ τ is the set of graphs such that if the first element is in
JσK, then the second element is inJτK (otherwise the second element can be anything,
in particular the errorΩ). Therefore,for what concerns subtyping, we can consider that
arrow types are interpreted as follows:

Jσ →→→ τK = { f ⊆ D ×DΩ | ∀(din,dout) ∈ f . din ∈ JσK ⇒ dout ∈ JτK}
As we did forCπ, we can use this characterisation to deduce several interesting type
equality and containment relations.4 For instance, we have(σ1∨∨∨σ2→→→ τ1∧∧∧τ2) � (σ1→→→
τ1)∧∧∧ (σ2 →→→ τ2), where the strictness of containment indicates that we havefunctions
that can have different behaviours according to whether theargument is of typeσ1 or σ2

(e.g., overloaded functions). For the goals of this work an utmostly interesting equation
is

(σ→→→ τ)∧∧∧ (σ → τ′) = σ→→→ τ∧∧∧ τ′ (5)

whose validity can be easily checked by the reader, by applying the definition ofE(−).
CDuce is aλ-calculus with pairs, overloaded recursive functions, andpattern match-

ing. This is reflected by the following syntax:

4 The errorΩ is included in the codomain of the functions since without itevery function would have type
1→→→ 1, therefore every application would be well-typed (with type 1). The error elementΩ stands for the
result of ill-typed applications. Thanks to itσ → τ ≤ 1→→→ 1 does not hold in general, hence, it explicitly
avoids the problem above.
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∆;Γ ⊢ n : bn
(const)

∆;Γ ⊢ x : Γ(x)
(var)

∆;Γ ⊢ f : ∆( f )
(fvar)

∆;Γ ⊢ e : σ ≤ τ
∆;Γ ⊢ e : τ

(subs)

∆;Γ ⊢ e1 : τ1 ∆;Γ ⊢ e2 : τ2

∆;Γ ⊢ (e1,e2) : τ1××× τ2
(pair)

∆;Γ ⊢ e1 : σ→→→ τ ∆;Γ ⊢ e2 : σ
∆;Γ ⊢ e1e2 : τ

(appl)

(for σ1 ≡ σ∧∧∧***p1+++, σ2 ≡ σ∧∧∧¬¬¬*** p1+++)
∆;Γ ⊢ e : σ ≤ ***p1+++∨∨∨*** p2+++ ∆;Γ,(σi/pi) ⊢ ei : τi

∆;Γ ⊢ match ewith p1⇒e1|p2⇒e2 :
W

W

W

{i|σi 6≃0} τi
(match)

(for τ ≡
V

V

V

i∈I (σi →→→ τi)) (∀i∈ I ,h∈ I , j∈J)

σh∧∧∧σi = 0 τ 6≤ σ′
j →→→ τ′j ∆, f : τ;Γ,x : σi ⊢ e : τi

∆;Γ ⊢ µ fτ(x).e : τ∧∧∧
V

V

V

j∈J¬¬¬(σ′
j →→→ τ′j )

(abstr)

Fig. 2. CDuce typing rules

e ::= x | n | ee | (e,e) | µ f
V

V

V

i∈I (σi→→→τi)(x).e | match ewith p⇒e|p⇒e

where patternsp are those defined in Section 2.2(but useCDuce types). The type-
case expression(x = e∈∈∈ τ)???e1:e2 can be added as syntactic sugar for the matching
expressionmatch ewith x∧∧∧τ⇒e1|x∧∧∧¬¬¬τ⇒e2.

Function abstractions use aµ-abstracted name for recursion and specify at their
index several arrow types, indicating that the function hasall these types (i.e., their
intersection). This is formally stated by the rule (abstr) in Figure 2 which for eachi ∈ I
checks that the bodye has typeτi under the hypothesis thatx has typeσi . Note that the
types ofµ-abstracted variables are recorded in a distinct environment ∆. The distinction
here is totally useless (we could have used a uniqueΓ) but it will be handy when we
define the encoding (sinceµ-abstracted variables are translated into channel constants,
then the encoding will be parametric only inΓ).

The only difficult rule is (match). It first deduces the typeσ of the matched expres-
sion and checks whether patterns cover all its possible results (i.e.,σ ≤ ***p1+++∨∨∨*** p2+++);
then it separately checks the first branch under the hypothesis thatp1 is selected (i.e.e
is in σ∧∧∧***p1+++) and the second branch under the hypothesis thatp2 is selected (i.e.,e in
σ∧∧∧¬¬¬*** p1+++); finally it discards the return types of the branchesthat cannot be selected,
which is safely approximated by the fact that the corresponding σi is empty.5

The rules in Figure 2 are the same as those defined in [10] (to which the reader can
refer for more details) with just a single exception: in rule(abstr) we require that the
arrows specified at the index of the function have disjoint domains:∀i,h< i.σh∧∧∧σi = 0.
This restriction is necessary (but not sufficient) in order to avoid the problem of output-
driven overloading explained in Section 4.2. However, it causes no loss of generality,
since everyCDuce functionµ f

V
V
V

i∈I (σi→→→τi)(x).e can be put into this form by iterating on

5 The reader may wonder why the system does not return a type error when one of the two branches cannot
be selected. As a matter of fact this is a key feature for typing overloaded functions, where the body is
repeatedly checked under different hypothesis for some of which theσi of some typecase may be empty.
This simple function should clarify the point:µf(Int→→→Int;Bool→→→Bool)(x).(y = x∈∈∈ Int)???(y+1):not(y)
when we type the body under the hypothesisx : Int, then the second branch cannot be selected, while under
x : Bool is the first one that cannot be selected. Without the selective union in the typing rule the best type
we could have given to this function would have been(Int∨∨∨Bool)→→→ (Int∨∨∨Bool).

8



its index the rewriting that replaces(σh∧∧∧σk→→→ τh∧∧∧τk)∧∧∧(σk∧∧∧¬¬¬σh→→→ τk)∧∧∧(σh∧∧∧¬¬¬σk→→→
τh) for every pair of arrowsσh →→→ τh, σk →→→ τk such thatσh∧∧∧σk 6= 0. This rewriting is
sound and it is easy to show that the two functions are operationally indistinguishable
(e.g., by applicative bisimilarity).

As the intersection of negated channels in the rule (chan) ensures that values ofCπ
yield a model that induces the same subtyping relation as theinitial one, so does for
CDuce the intersection of negated arrows in the rule (abstr): the interpretation defined
by (4) where values are closed terms generated byv ::= n | µ f

V

V

V

i∈I (σi→→→τi)(x).e | (v,v)
and types areCDuce types, enjoys the same properties.6 Therefore, we can again use
the pattern semantics of Section 2.2 to define the call-by-value operational semantics of
CDuce (we omit the straightforward context rules that can be found in [10]).

v1v2 −→ e[v1/ f ;v2/x] if v1 = µ fτ(x).e
match v with p1⇒e1|p2⇒e2 −→ e1[v/p1] if v/p1 6= Ω
match v with p1⇒e1|p2⇒e2 −→ e2[v/p2] if v/p1 = Ω,v/p2 6= Ω

The calculus satisfies the subject reduction property [2].

4 Roadmap to the encoding

In this section we discuss the main difficulties encounteredin the definition of an en-
coding ofCDuce intoCπ. It lists some failed attempts which will clarify the reasons
behind the successful attempt.

4.1 The Milner-Turner encoding

Since our encoding involves languages with subtyping, the first approach we tried was
to adapt the Milner-Turner (MT) encoding of the call-by-value typedλ-calculus with
subtyping into the typedπ-calculus with subtyping, as presented in [16]. The translation
of arrow types presented there is:

(|σ→→→ τ|) = ch–((|σ|)×××ch–((|τ|))) .

The encoding ofλ-terms, decorated by their minimum types, is:

(|xτ|)Γ,x:τ
c = c(x)

(|λxσ.eτ|)Γ
c = (ν a(|σ|)×××ch–((|τ|)))(c(a) ‖ !(a(x,b).(|eτ|)Γ,x:σ

b ))

(|eσ→→→τ
1 eρ

2|)
Γ
c = (ν a(|σ|)×××ch–((|τ|)))(ν b(|ρ|))((|eσ→→→τ

1 |)Γ
a ‖ a(w).((|eρ

2|)
Γ
b ‖ b(h).w(h,c)))

The encoding of an expressione is parametrised by a type environmentΓ such that
Γ ⊢ e : τ and by a channelc(|τ|) on which the value of the expression is returned to
the environment. A function is represented by a channel (the“name” of the function)
which can be called by sending the input value and a channel onwhich the output value
should be returned. These two parameters are used by a replicated process (the “body”
of the function) which returns the output value upon termination. In the encoding of the
application, the encoding of the function is called on the encoding of the argument, and
the returned value is returned as the value of the whole expression. This encoding bears
a strong resemblance with the continuation passing style transform. In this sense, the
return channel of an expression could be seen as the address of the continuation.

6 Contrary toCπ (see Footnote 3) we are here in presence of a circularity. Thereader can refer to [7] to see
how to avoid it.
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Since we translate only well-typed terms, in the case of the application we must
haveρ ≤ σ. The encoding of the application (in particular, thew(h,c) subterm) is well-
typed only if this implies(|ρ|)≤ (|σ|). This holds true in the simply typedλ-calculus with
subtyping, but fails as soon as we add intersection types. Inthat case, the translation of
the types does not preserve the identity of types: inCDuce, we have seen that the iden-
tity (5) holds (i.e.,(σ →→→ τ)∧∧∧ (σ →→→ τ′) = σ →→→ τ∧∧∧ τ′), while the same does not hold on
the encodings of the types at issue since, in general, it is not true that

ch–(s×××ch–(t))∧∧∧ch–(s×××ch–(t ′)) ≤ ch–(s×××ch–(t∧∧∧ t ′)) .
Using this observation we can indeed show that the MT encoding maps a well-typed
CDuce expression into an ill-typedCπ process. Takeρ = (int →→→ int)∧∧∧ (int →→→
bool), σ = int→→→ 0, τ = (σ →→→ int) →→→ ρ →→→ int, ande = λτx.λρ→→→inty.xy. The ex-
pressione is well-typed with typeτ sinceρ ≤ σ. The translation ofx : σ→→→ int,y : ρ ⊢
xy : int on channelc′ is:

P′ = (ν a′(|σ|)×ch–(int))(ν b′(|ρ|))(a′(x) ‖ a′(w).(b
′
(y) ‖ b′(h′).w(h′,c′)))

but the subtermw(h′,c′) is not well-typed. This is because the variableh′ must have type
(|ρ|) being received onb′. However it cannot be sent ond′ as(|ρ|) 6≤ (|σ|). The translation
of ⊢ e : τ contains a ill-typed term and, therefore, is ill-typed .

4.2 Output-driven overloading

In order to give an operational intuition of why the MT encoding does not work, recall
that intersections of arrow types are commonly assimilatedto the types of overloaded
functions. InCDuce, the identity(σ →→→ τ)∧∧∧ (σ →→→ τ′) = σ →→→ τ∧∧∧ τ′ is justified because
overloaded functions can perform a type-case only on the type of the input. Therefore,
if on the same input a function returns values of typeτ and values of typeτ′ it must
return only values that have both types.

In Cπ, however, a process that encodes a function receives in input also the return
channel. In principle such process could perform a type-case on this extra piece of
information and then execute different computations according to whether the expected
result is of typeτ or τ′. Such “output-driven” overloaded function can, on the same
input, return a value of typeτ and adifferentvalue of typeτ′ (and not inτ). This is a
function that is in(|(σ →→→ τ)∧∧∧ (σ →→→ τ′)|) and not in(|σ →→→ τ∧∧∧ τ′|), therefore we expect
that(|σ→→→ τ∧∧∧ τ′|) � (|(σ→→→ τ)∧∧∧ (σ→→→ τ′)|) which is indeed the case.

4.3 The distributive law

At a first analysis, it may seem that the problem is the subtyping relation ofCπ. We
may be tempted to change it by adding the following inequation:

ch–(t1∧∧∧ t2) ≤ ch–(t1)∨∨∨ch–(t2) .

Since the converse inequality already holds (as seen in Section 2), we would obtain a
“contravariant” distributive law of the channel constructor over the intersection. A simi-
lar distributive law is used by Hennessy and Riely in [11] todefinethe intersection type.
As explained in [6], the above inequation is not justified in acalculus endowed with dy-
namic type-case. It is also not clear at first sight whether introducing the inequation is at
all possible using a semantic approach. In any case, this newsubtyping relation would
not make the translation work either as it would introducetoo manyequations in the
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translation. For example, beingint∧∧∧bool= 0, we would get

ch–(0×ch–(int∨∨∨bool)) ≤ ch–(int×ch–(bool))∨∨∨ch–(bool×ch–(int)).

The type on the left is the encoding of0→→→ int∨∨∨bool and the other type is the encoding
of (int→→→ bool)∨∨∨(bool→→→ int). This subtyping gives a problem already for the iden-
tity function, which has type0→→→ int∨∨∨bool but not(int→→→ bool)∨∨∨ (bool→→→ int).

4.4 The negation translation

Intuitively, to find an encoding that respects type equality, we need that, when encoding
the arrow type, the operator that encodes the output type distributes over the inter-
section, while the operator that encodes the input type should not distribute over the
intersection. One possible encoding that satisfies this requirement is the following:

(|σ→→→ τ|) = ch–((|σ|)×××¬¬¬(|τ|)) .

Indeed the negation is a contravariant constructor that distributes over the intersection.
However it was not clear to us what operational interpretation we could attach to this
translation. Under this translation of the types, the MT translation of theλ-terms would
not be well-typed.

This however was the sparkle that brought us to our solution:(i) We want to pre-
serve the naturalness of the MT encoding, that is, to encode functions calls by RPCs
that send along with the argument a channel on which the call must return the result;
thus the type of the second argument of the call (i.e., the onethat encodes the output
type τ) must allow for messages of typech–((|τ|)). (ii) We also want the type of this
argument to distribute over intersections, in order to respect the subtyping relation; the
use of negation,¬¬¬(|τ|), seems to help in this direction. Finally,(iii ) we want this second
argument to be contravariant (since it is under ach–(), it will then respect the covari-
ance of the output type it is meant to encode); but the joint use of two contravariant
constructors,ch–() and¬¬¬, would make it covariant, thus we may need to add a further
negation to make it contravariant. All this yields, for the encoding ofσ →→→ τ, a second
argument of type¬¬¬(ch–(¬¬¬(|τ|))), which isalmostwhat we are looking for. We say “al-
most” since it still does not satisfy(i) insofar as it is not a supertype ofch–((|τ|)); as
we will explain in Section 5.2 one point is still missing fromit: ch–(1) — to verify it,
simply compute the differencech–((|τ|)) \¬¬¬ch–(¬¬¬(|τ|)). So we add it, obtaining for the
second argument the following encoding¬¬¬ch–(¬¬¬(|τ|))∨∨∨ ch–(1). This idea is carried out
in details and generalised in the following section.

5 The Encoding

We propose a modification of the Milner-Turner encoding thatrespects type equality,
and it is very close to the original translation.

5.1 Theλ-channel constructor

The encoding of the types we propose is parametric with respect to a constructor ofCπ
types that we call “λ-channel” type. This notion is designed to make the translation of
types to respect the type equality (unlike the Milner-Turner and distributive approach),
and to make the translation of terms to make sense (unlike thenegation approach).

Definition 5.1. A λ-channel(noted, chλ(−)) is a unary constructor ofCπ types s.t.:
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1. ch–(t) ≤ chλ(t);
2. chλ(s∧∧∧ t) = chλ(s)∨∨∨chλ(t);
3. s≤ t ⇐⇒ chλ(t) ≤ chλ(s).

Observe that the three conditions of the definition correspond to the requirements(i-iii )
we outlined at the end of the previous section. Therefore, Condition (1) is necessary
for a meaningful translation of terms, while Conditions (2)and (3) are necessary for
respecting the identity of types. Usingλ-channel types we can now define a mapping of
CDuce types toCπ-calculus types that respects type equality.

Definition 5.2. The interpretation function{{−}} : TCDuce→TCπ is defined as follows
{{b}} = b {{0}} = 0 {{1}} = 1 {{¬¬¬τ}} = ¬¬¬{{τ}}
{{σ∨∨∨τ}} = {{σ}}∨∨∨{{τ}} {{σ∧∧∧τ}} = {{σ}}∧∧∧{{τ}}
{{σ×××τ}} = {{σ}}×××{{τ}} {{σ→→→ τ}} = ch–({{σ}}×××chλ({{τ}})).

Theorem 5.3. Let σ andτ beCDuce types. Thenσ ≤ τ ⇐⇒ {{σ}}≤ {{τ}}.

5.2 Incarnations ofλ-channels and their intuition

Possible choices forchλ(t) are of the formchλ0(t)∧∧∧ϕ where
– chλ0(t) =¬¬¬ch–(¬¬¬t)∨∨∨ch–(1);
– ϕ is a constant type such thatch–(0) ≤ ϕ.

Proposition 5.4. The constructor chλ0(t)∧∧∧ϕ is a λ-channel.

As the Condition (1) in Definition 5.1 clearly states, theλ-channelchλ(t) essentially
is ch–(t) plus some extra stuff, some “garbage”, that makes the other two conditions
—hence type identity preservation— hold. The extra stuff that is added toch–(t) is
basically given bychλ0(t). To understand the precise role played by this garbage, it is
interesting to consider the following properties:

a. chλ0(0) = 1
b. chλ0(1) =¬¬¬ch–(0)∨∨∨ch–(1)

c. J(chλ0(t)∧∧∧¬¬¬ch–(t))∧∧∧ch–(0)K = {cs | t 6≤ s& ¬¬¬t 6≤ s}∪{c1}.

The first two properties say thatchλ0(−) adds as garbageat most(point (a.)) everything
andat least(point (b.)) all non-channel types plus the channel which outputs everything.
In order to exactly determine which channelschλ0(t) adds to toch–(t) let us take out
all ch–(t) and consider just the channels that remained: this is exactly what (chλ0(t)∧∧∧
¬¬¬ch–(t))∧∧∧ ch–(0) does. Point (c.) states that these are all channels that can send values
both inside and outsidet. That is, these are all the channels for which it is not possible
to predict the result of a test that checks whether the messages they transport are of type
t.

This last observation is the key to understand why the complicated definition of
chλ0(−) is necessary. We have observed that the MT translation does not work be-
cause it allows a “output-driven” overloading whereby a function can have different
behaviours for different expected types of the result. The more general channel type
chλ0(−) allows (potentially, in the types) the caller to “confuse” such output-driven
functions, by sending “garbage” reply channels. Although in practice, encodings don’t
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do that, the possibility of a output-driven function is ruled out also at the level of the
types. It is like the presence of the Police in Utopia: everybody behaves well in Utopia,
and the Police never works. But the presence of the Police is the visible representation
of the fact the everybody behaves well.

To put it otherwise, if we take a channel that has typechλ(s)∨∨∨ chλ(t), it is impos-
sible to deduce whether it is only of typechλ(s) or only of typechλ(t). Even if it can
transport all messages of type, say,t, it could be because the channel was in the garbage
generated bychλ(s). Soλ-channels introduce some latent noise that makes it impossible
to determine which output type they encode.

Although the constructor is parametric on a typeϕ, non-channel types play no active
role in the encoding. Therefore it is reasonable (and it makes the encoding more under-
standable) to minimiseϕ (that is,ϕ = ch–(0)) so thatJchλ(t)K only contains channels. In
particular, this choice implies thatchλ(0) = ch–(0) (all channels),chλ(1) = ch–(1) (just
the channel which outputs everything). All the development, however, is independent
from this choice.

5.3 Encoding of the terms

We describe here the mapping ofCDuce terms toCπ-calculus terms. What we translate
are in fact typing derivations. To simplify the notation, wewrite eτ assuming thatτ is the
type ofe in the last step of the derivation. We use a similar convention for the immediate
sub-expressions ofe which are in the premises of the last applied rule. The translation
is parametrised by a “continuation channel”α of type ch–({{τ}}). For readability we
decorate the channels with their types only when we restrictthem and in rule (fvar). We
also adopt theCDuce’s convention to writex:τ for the patternx∧∧∧τ. The translation also
requires a straightforward translation of the patterns (itjust encodes the types occurring
in them) whose details are omitted.

Definition 5.5. The translation of the expression eτ on a channelα is defined by cases
on the last applied typing rule:
(const) {{nbn}}Γ

α = α(n)

(var) {{xτ}}Γ,x:τ
α = α(x)

(fvar) {{ f τ}}Γ
α = α( f

W
W
W

i∈I ({{σi}}×××chλ({{τi}}))) (whereτ =
V

V

V

i∈I (σi →→→ τi))

(pair) {{(eσ1
1 ,eσ2

2 )τ}}Γ
α = (ν a{{σ1}})(ν b{{σ2}})({{eσ1

1 }}Γ
a ‖ a(w:{{σ1}}).({{eσ2

2 }}Γ
b ‖

b(h:{{σ2}}).α(w,h))) (whereτ = σ1×××σ2)

(appl) {{(eσ→→→τ
1 eσ

2)τ}}Γ
α =(ν a{{σ→→→τ}})(ν b{{σ}})({{eσ→→→τ

1 }}Γ
a ‖ a(w:{{σ→→→ τ}}).({{eσ

2}}
Γ
b ‖

b(h:{{σ}}).w(h,α)))

(subs) {{(eσ)τ}}Γ
α = (ν a{{σ}})({{eσ}}Γ

a ‖ a(w:{{σ}}).α(w)) (whereσ ≤ τ)

(match) {{(match eσ with p1⇒eτ1
1 |p2⇒eτ2

2 )τ}}Γ
α =

(ν a{{σ}})(ν b({{σ1}}×××ch–({{τ1}}))∨∨∨({{σ2}}×××ch–({{τ2}})))((P1 +P2) ‖ Q)
whereP1 = b({{p1}},d:ch–({{τ1}})).{{eτ1

1 }}
Γ,σ1/p1

d ,

P2 = b({{p2∧∧∧¬¬¬*** p1+++}},d:ch–({{τ2}})).{{eτ2
2 }}

Γ,σ2/p2

d ,

Q = {{eσ}}Γ
a ‖ a(h:{{σ}}).b(h,α)

σ1 = σ∧∧∧***p1+++, σ2 = σ∧∧∧¬¬¬*** p1+++, τ =
W

W

W

{i|σi 6≃0} τi

(abstr) {{(µ f
V
V
V

i∈I (σi→→→τi)(x).e)τ}}Γ
α = (ν f

W
W
W

i∈I ({{σi}}×××chλ({{τi}})))(α( f ) ‖ body( f ))
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where body( f ) = !(∑i∈I f (x:{{σi}},b:ch–({{τi}})).{{eτi }}Γ,x:σi
b

+ f (x:
W

W

W

i∈I{{σi}},b:
W

W

W

i∈I (chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0)
τ =

V

V

V

i∈I (σi →→→ τi)∧∧∧
V

V

V

j∈J¬¬¬(σ′
j →→→ τ′j).

In rule (fvar), we assume that everyµ-abstracted variablef has a corresponding channel
constantf t for every suitableCπ typet. This allows the encoding to be parametric only
in theΓ environment, and not in the∆ one.

In a match the expressionse1 ande2 play the role of two functions to be chosen
in alternative according to the type of the argumente. Therefore we encode the match
with a patterned sum of the encodings ofe1 ande2 in parallel with the encoding ofe.

The translation of a functional term is very similar to the original MT translation. To
deal with overloading, the body of the function features a patterned choice. This choice
includes all different behaviours that the function can produce on different inputs, and
the special sub-termf (x:

W

W

W

i∈I{{σi}},b:
W

W

W

i∈I (chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0, which we call
the functional garbage. The role of this sub-term is to obtain well-typed terms. How-
ever we will see that, within the context of translation ofCDuce terms, the functional
garbage choice is never taken. Indeed, carrying on with our analogy, this functional
garbage corresponds to the prison of Utopia: it is there to capture misbehaving terms,
even if we all know that there isn’t any.

6 Correctness of the encoding

We start by stating that the translation produces well-typed terms.

Theorem 6.1. If ∆;Γ ⊢ e : τ, then{{Γ}} ⊢ {{eτ}}Γ
c{{τ}} and{{Γ}},x : ch–({{τ}})⊢ {{eτ}}Γ

x ,
where{{Γ}}= {y : {{σ}} | y : σ ∈ Γ}.

In the following we convene that when we write{{e}}Γ
c , then there areτ and∆ such that

∆;Γ ⊢ e : τ andch–({{τ}}) is the type ofc.
A first observation is that all reductions out of the encodingof a CDuce expres-

sion are deterministic (since patterns in sums are mutuallyexclusive) and never use the
functional garbage in the body of functions. Afunctional redexis a redex of the shape
body( f ) ‖ f (v,c). A reduction issafeif it is deterministic and each functional redex is
reduced by choosing an alternative inbody( f ) different from the functional garbage.
We denote safe reductions by−→s: as usual−→∗

s is the reflexive and transitive closure
of −→s.

Lemma 6.2. All reductions starting from{{e}}∅
c where e is an arbitraryCDuce expres-

sion are safe.

In order to state the correctness of the encoding, it is crucial to understand howCDuce
values are mapped toCπ processes. As it is clear from the encoding, a functional value
is mapped into the output of a private channel name in parallel with the encoding of the
function body. We can then say that theCπ value corresponding to a functional value
is a channel name. The encoding of a pair ofCDuce values reduces to a process which
outputs the pair of the correspondingCπ values in parallel with the function bodies of
all functions which occur in the two values.
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To formalise the above we will assume thatall function namesin the current value
aredistinct andfixed, so that we cannot rename them. We define two mappings, one
from CDuce values toCπ values and one fromCDuce values to sets of channel names.

Definition 6.3.
1. The mappingcpv(−) is defined by induction onCDuce values as follows:

• cpv(n) = n;
• cpv(µ f

V

V

V

i∈I (σi→→→τi)(x).e) = f
W

W

W

i∈I ({{σi}}×××chλ({{τi}}));
• cpv((v1,v2)) = (cpv(v1),cpv(v2)).

2. The mappingfunc(−) is defined by induction onCDuce values as follows:
• func(n) = ∅;
• func(µ f

V

V

V

i∈I (σi→→→τi)(x).e) = { f
W

W

W

i∈I ({{σi}}×××chλ({{τi}}))};
• func((v1,v2)) = func(v1)∪ func(v2).

The above mappings can express the normal forms of processesencoding values:

Lemma 6.4. {{v}}∅
c −→∗

s (ν func(v))(c(cpv(v))‖ f∈func(v)body( f )).

More generally,one would like to have that ife is a well-typedCDuce expression and
e−→∗ v, then{{e}}∅

c −→∗
s (ν func(v))(c(cpv(v))‖ f∈func(v)body( f )). Unfortunately, the

corresponding result does not even hold for the MT encoding of λ-calculus intoπ-
calculus [14],a fortiori nor does for our encoding. A reason for this failure is that when
the wholeλ-term is aβ-redex its encoding reduces to aπ-term which differs from the
encoding of the correspondingβ-contractum in the positions of the restriction and of
the replicated input representing the reducedλ-abstraction. Moreover when aβ-redex
in argument position is contracted (following the call-by-value reduction strategy) the
encoding of the reducedλ-term needs in its turn to be evaluated in order to be related
with the encoding of the originalλ-term.

Our encoding ofCDuce intoCπ being essentially an extension of the MT en-
coding has luckily no more problems than the original one, sowe can show simi-
lar soundness results. To formulate these results we need todefine forCπ processes
a standard notion of typed barbed congruence with respect toan environmentΓ
(Γ�P∼= Q), see [16].

The main theorem of this section states that if aCDuce expression reduces to a
value, then its encoding reduces to the process which is barbed congruent tothe nor-
mal form of the encoding of that value, and vice versa if the evaluation of a CDuce
expression does not terminate, then the evaluation of its encoding does not terminate
either.

Theorem 6.5 (Correctness).
1. If e −→∗ v, then {{e}}∅

c −→∗
s P for some P such that∅ � P ∼=

(ν func(v))(c(cpv(v))‖ f∈func(v)body( f )).
2. If e diverges, then{{e}}∅

c diverges too.

From this, and from compositionality, it is easy to obtain soundness. Given twoCDuce
terms∆;Γ ⊢ e : τ and∆;Γ ⊢ e′ : τ we denote by∆;Γ�e≈ e′ the standard Morris-style
observational congruence (as defined, for instance, in [16]pag. 478).
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Corollary 6.6 (Soundness).If ∆;Γ⊢ e: τ and∆;Γ ⊢ e′ : τ and{{Γ}}�{{e}}Γ
c
∼= {{e′}}Γ

c ,
then∆;Γ�e≈ e′.

Notice that completeness fails for our encoding, for the same reason as it fails for the
original MT encoding.

7 Conclusion

In this paper we presented a localised version of theCπ-calculus which allows for fully
recursive types, on top of the already rich type structure ofCπ. We then showed how
this can be used to type-faithfully encodeCDuce.

If we merely stop at the technical result, then the interest of this work is quite lim-
ited: sure, it shows the correspondence between overloading and guarded choices; sure,
this can be seen as the work that paves the way toward a concrete implementation of a
concurrent programming language based onCDuce, similarly to the way the JOCaml
language was derived from OCaml and Join. But again this would look as some solid,
technically impeccable, and extremely boring achievement.

However, we think that the added value of this work lies more in the lessons we
learnt and the techniques we developed, than directly in itsresult.

Foremost, we learnt that the process that encodes a functionhas much more power
than the function it encodes. This is because it has more elements to work on, both
the argument and the return channel, and it is thus characterised by a wider spectrum
of possible choices. This looks bluntly obvious, worthy of Monsieur De La Palice’s
troops, but note that this aspect was totally hidden in all previous encodings. Indeed
this is emphasised only by the presence of linguistic branching constructs for which
the type system must cover all alternatives. This is the caseof pattern matching, where
the pattern exhaustiveness requirement forces types to take into account all possible
combinations.

This situation requires the introduction of some noise at the level of the types in
order to compensate for the asymmetry between the caller of the function (the service
client) and the executor of the function (the service server). This technique could be
seen as a security policy that the client implements at type level to defend itself from
possible misbehaviour of the server.The client performs a type obfuscation: in this
way it reserves for itself the possibility to send rogue arguments and so it threatens the
server against misbehaviour.We hope that these techniques of type obfuscation could
be generalised to various security scenarios and we aim to explore them in the future.

As noted, the Milner-Turner encoding bears strong resemblance with the continu-
ation passing style (CPS) techniques used in functional programming. All the above
observations can be indeed carried over to such framework. Using these intuitions, we
plan to study CPS transforms forCDuce. This should have a very important practical
impact:CDuce (we mean, the implemented language) was recently extended to deal
with Web-services and active Web pages, and we consider CPS as the key technique to
implement stateless Web sessions on the top of them.

The other important aspect of this work is that it constitutes an independent, though
indirect, confirmation thatCπ yields the right equational theory of union and inter-
section types for theπ-calculus.Pierce and Sangiorgi’s subtyping for theπ-calculus,
though very elegant, is structurally very poor: it essentially amounts to compare the
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levels of nesting of channel constructors with the same polarity. In order to obtain a
much richer and expressive subtyping relation, one can resort to union and intersection
types. However, the problem arises on which equational theory to use for these types.
Cπ gives a precise and semantically grounded answer for it (andfor negation types): its
semantic justification for the equational theory, and its correspondence with set-theory
constitute a first strong justification for it.

The equational theory ofCπ is partially justified in practice, since works such as
the PiDuce project carried out at the University of Bologna [4] and the language XPi
developed at the University of Marseille [1], feature restrictions of theCπ type system
that fit XML data manipulation. The present work is another, more theoretical, confir-
mation of the validity of theCπ theory. If we admit that the Milner-Turner encoding is
very natural, then we see how perfectly the laws ofCπ fit the MT encoding, stressing
the asymmetry of the roles of client and server, and pushing the emergence of the type
obfuscation technique. This is what we consider the most important achievement of this
work.
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A Pattern Matching

A pattern is matched against an element of the domainD of a model of the types. A
matching returns either a substitution for the free variables of the pattern, or a failure,
denoted byΩ:

Definition A.1. Given a modelJK : T → D , an element d∈ D and a pattern p∈ P

thematching ofd with p, denoted by d/p, is the element ofDVar(p) ∪{Ω} defined by
induction on structure of p as follows:

d/t = {} if d ∈ JtK
d/t = Ω if d ∈ J¬¬¬tK
d/x = {x 7→ d}
d/p1∧∧∧ p2 = d/p1⊗d/p2

d/p1|||p2 = d/p1 if d/p1 6= Ω
d/p1|||p2 = d/p2 if d/p1 = Ω
(d1,d2)/(((p1,,,p2))) = d1/p1⊗d2/p2

d/(((x :=:=:= n))) = {x 7→ n}

whereγ1 ⊗ γ2 is Ω whenγ1 = Ω or γ2 = Ω and otherwise is theuniqueelementγ ∈
DDom(γ1)∪Dom(γ2) such that:
γ(x) = γ1(x) if x ∈ Dom(γ1)\Dom(γ2),
γ(x) = γ2(x) if x ∈ Dom(γ2)\Dom(γ1).
γ(x) = (γ1(x),γ2(x)) if x ∈ Dom(γ1)∩Dom(γ2)

Note that we defined matching also for the pattern(((x :=:=:= n))) which, as stated in the
above definition, is the pattern that always succeeds returning the constant substitution
{x 7→ n}. Although this pattern is in the definition ofCDuce, we omitted it here since its
interest is just a practical one: it is used to define the basiccase of recursively defined
patterns, as we shown by a couple of examples in the next section.
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B Example
We show with an example the practical applications of the encoding. Once we have
shown thatCDuce functions can be encoded inCπ, we can useCDuce notation directly
insideCπ processes, as syntactic sugar of their encoding. When writing a functionf
of type τ, we mean a fresh channelf {{τ}}, and the processbody( f ) is supposed to be
running in parallel. (This is formalised later in the Substitution Lemma E.5.)

First we can use recursive and product types to define the typeof associative lists,
which associate a string key with a channel and where we usenil to denote both the
empty list and its singleton type (we usesans_serif for recursion type variables):

a_list = ((string×××ch–(int))×××a_list)∨∨∨nil

Associative lists can be searched with recursive patterns.For instance if we match an
associative list with the following recursive patternp:

p = (((((("key1",,,x))),,,p)))|||(((1,,,p)))|||(((x :=:=:= nil)))

then x is bound to the list of all the channels that are associated tothe key “key1”
(strictly speaking, that have the singleton typekey1), while the following one

p = (((((("key1",,,x))),,,1)))|||(((1,,,p)))|||(((x :=:=:= nil)))

captures just the first channel associated to the key.
Thus, we can use patterns to “calculate” channels. But when such a calculation is

more complex (e.g. parametric in the key string), then it is better to delegate such a
calculation to a function such as:

fun assoc(s : string , l : a_list) : ch–(int) =
match l with nil → fail

| ((((((k,,,c))),,,t))) → if k = sthen c else assoc(s,t)

which can then be communicated by a process as a message on thechannelannounce
below to dispatch all the notes of an examination:

announcem_list×××a_list×××(string×a_list→→→ch–(int))(marks,mails,getch).
(νcm_list) c(marks) ‖

!( c( ((((((n,,,m))),,,rest))) ) . ( getch(n,mails)(m) ‖ c(rest) )
+ c( nil).0 )

wherem_list = ((string××× int)×××m_list)∨∨∨nil. The channelannouncewaits for an
associative list of marks, an associative list of channels,and a dispatch function that
calculates a channel. The process creates a private channelc to iterate on the list of
marks (since it must communicate on channels, then in the absence of aspawn we
cannot use a function to perform such an iteration) and use the function received on
announce(bound togetch) to calculate the channelgetch(n,mails) on which to write
the mark, and iterating the process with the rest of the list.When the list of marks is
empty (the patternnil matches it), the process becomes inert.

For instance if the following process synchronises

announce( ( ("Alice",6),(("Bob",8),nil)) ,
( ("Bob",cB),(("Alice",cA),nil)) ,
assoc)

it will produce the process:cA(6) ‖ cB(8).
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C Properties of types

C.1 Properties ofCπ types

Proposition C.1. 1. The following equalities hold for all t :

ch–(t)∧∧∧ch–(¬¬¬t) = ch–(1)

¬¬¬ch–(¬¬¬t)∧∧∧ch–(1) = 0

2. We have that
ch–(t) ≤

_

_

_

i∈I ch–(ti)

if and only if there exists i∈ I such that ti ≤ t.

Proof. The proof done in [6] forCπ types with positive channels and without recursive
types holds.

Lemma C.2. s××× t ≤
W

W

W

i∈I (si ××× ti) iff ∀I ′ ⊆ I .s≤
W

W

W

i∈I ′si or t ≤
W

W

W

i∈I\I ′ ti .

Proof. The proof of Lemma 4.6 in [9] forCDuce types is valid without changes.

Lemma C.3. Let s= s′∨∨∨ r, t = t ′∨∨∨ r, s′∧∧∧ r = t ′∧∧∧ r = 0, then s≤ t iff s′ ≤ t ′.

Proof. Easy from the definition of extensional interpretation.

C.2 Properties ofCDuce types

Lemma C.4. [10]
V

V

V

i∈I (σi →→→ τi) ≤
W

W

W

j∈J(σ j →→→ τ j) iff ∃ j0 ∈ J.∀I ′ ⊆ I .σ j0 ≤
W

W

W

i∈I ′σi

or I ′ 6= I &
V

V

V

i∈I\I ′τi ≤ τ j0.

Lemma C.5. Suppose
V

V

V

i∈I (σi →→→ τi) ≤ σ →→→ τ, and (∀i, j) σi ∧∧∧σ j = 0. For any i, if
σi ∧∧∧σ 6= 0 thenτi ≤ τ.

Proof. Beingσi∧∧∧σ 6= 0 there isv∈ Jσi ∧∧∧σK. For allv′ ∈ JτiK the values{(v,v′)} belong
to Jσi →→→ τiK. Since(∀i, j) σi∧∧∧σ j = 0 the values{(v,v′)} belong also toJ

V

V

V

i∈I (σi →→→ τi)K.
So from

V

V

V

i∈I (σi →→→ τi) ≤ σ →→→ τ we get{(v,v′)} ∈ Jσ →→→ τK for all v′ ∈ JτiK, so we
concludeτi ≤ τ.

Lemma C.6. If
V

V

V

i∈I (σi →→→ τi) ≤ σ→→→ τ, and(∀i, j) σi∧∧∧σ j = 0, and v∈ JσK then there
is a unique i∈ I such that v∈ JσiK and cτ ∈ Jch–(τi)K.

Proof. By Lemma C.4σ ≤
W

W

W

i∈I σi and then beingσi ∧∧∧σ j = 0 (∀i, j) there is a unique
i ∈ I such thatv∈ JσiK. By Lemma C.5τi ≤ τ, which impliesJch–(τ)K ≤ Jch–(τi)K. Thus
we concludecτ ∈ Jch–(τi)K.
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D Existence of aCπ model and decidability of sub-typing inCπ
It is possible to directly build a model for the types, following the guidelines of the
construction in [9]. Here we show that a model ofCDuce can be also used as a model of
theCπ types that satisfies Definition 2.1. To this aim it is enough todefine a translation
from Cπ types toCDuce types which “preserves” the sub-typing.

Let J−K
CDuce : TCDuce→ D , be a model of the types ofCDuce [9, 2].

Definition D.1. Let unit be a singleton type. The translation function((−)) : TCπ →
TCDuce is defined as follows

((b)) = b ((0)) = 0 ((1)) = 1 ((¬¬¬t)) = ¬¬¬((t))
((s∨∨∨ t)) = ((s))∨∨∨ ((t)) ((s∧∧∧ t)) = ((s))∧∧∧ ((t))
((s××× t)) = ((s))××× ((t)) ((ch–(t))) = ((t))→→→ unit.

Define the interpretationJ−K : TCπ → D , by JtK = J((t))K
CDuce.

Theorem D.2. LetE(t) be as defined in Definition 2.1. ThenE(t) = ∅ ⇐⇒ JtK = ∅.

Proof. It is easy to check that eachCπ typet is equivalent (modulo associativity, com-
mutativity and distributivity of∧∧∧ and∨∨∨) to a type of the shapetch∨∨∨ t×××∨∨∨ tB where:

• tch =
W

W

W

i∈I (
V

V

V

h∈Hi (ch–(sh))∧∧∧
V

V

V

k∈Ki¬¬¬(ch–(sk)));
• t××× =

W

W

W

l∈L(
V

V

V

m∈Ml (sm××× rm)∧∧∧
V

V

V

n∈Nl¬¬¬(sn××× rn));
• tB =

W

W

W

r∈R(
V

V

V

s∈Sr bs∧∧∧
V

V

V

t∈Tr¬¬¬bt).

Thereforet is empty if and only if all sets in the union are empty. Since the mapping
J−K behaves likeE(−) on all type constructor but the arrow, is it enough to show that

\

i∈I

E(ch–(si))∩
\

j∈J

E(¬¬¬ch–(sj )) = ∅ ⇐⇒
\

i∈I

Jch–(si)K∩
\

j∈J

J¬¬¬ch–(sj)K = ∅.

This amounts to prove that

\

i∈I

E(ch–(si)) ⊆
[

j∈J

E(ch–(sj )) ⇐⇒
\

i∈I

Jch–(si)K ⊆
[

j∈J

Jch–(sj)K.

T

i∈I Jch–(si)K ⊆
S

j∈J Jch–(sj )K ⇐⇒
T

i∈I J((si))→→→ unitK
CDuce⊆

S

j∈J J((sj ))→→→ unitK
CDuce

by definition
⇐⇒ ∃ j0 ∈ J.J((sj0))KCDuce⊆

S

i∈I J((si))KCDuce
by Lemma C.4

⇐⇒ ∃ j0 ∈ J.Jsj0K ⊆
S

i∈I JsiK = J
W

W

W

i∈IsiK
by definition

⇐⇒ ∃ j0 ∈ J.E(ch–(
W

W

W

i∈I si)) ⊆ E(ch–(sj0))
by contra-variance ofE(ch–( ))

⇐⇒ ∃ j0 ∈ J.
T

i∈I E(ch–(si)) ⊆ E(ch–(sj0))
by equality (3) at page 4

⇐⇒
T

i∈I E(ch–(si)) ⊆
S

j∈J E(ch–(sj ))
by Proposition C.1(2).

The above encoding also shows that one can use the decision algorithm for the
subtyping relation ofCDuce to decide subtyping of the localCπ-calculus, thus proving
Proposition 2.2.
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E Properties of the encoding
E.1 Proof of Theorem 5.3

Theorem 5.3 Let σ andτ beCDuce types. Thenσ ≤ τ ⇐⇒ {{σ}} ≤ {{τ}}.

Proof. It is enough to show thatρ = 0 iff {{ρ}}= 0 for an arbitraryCDuce typeρ.
It is easy to check that eachCDuce typeρ is equivalent (modulo associativity, com-

mutativity and distributivity of∧∧∧ and∨∨∨) to a type of the shapeρ→→→∨∨∨ρ×××∨∨∨ρB where:

• ρ→→→ =
W

W

W

i∈I (
V

V

V

h∈Hi (σh →→→ τh)∧∧∧
V

V

V

k∈Ki¬¬¬(σk →→→ τk));
• ρ××× =

W

W

W

l∈L(
V

V

V

m∈Ml (σm××× τm)∧∧∧
V

V

V

n∈Nl¬¬¬(σn××× τn));
• ρB =

W

W

W

r∈R(
V

V

V

s∈Sr bs∧∧∧
V

V

V

t∈Tr¬¬¬bt).

Thereforeρ is 0 if and only if all sets in the union are0. Since the mapping{{ }} is
the identity on all type constructor but the arrow, is it enough to show that
^

^

^

i∈I (σi →→→ τi)∧∧∧
^

^

^

j∈J¬¬¬(σ j →→→ τ j) = 0 ⇐⇒
^

^

^

i∈I{{σi →→→ τi}}∧∧∧
^

^

^

j∈J¬¬¬{{σ j →→→ τ j}}= 0.

This amounts to prove that
^

^

^

i∈I (σi →→→ τi) ≤
_

_

_

j∈J(σ j →→→ τ j) ⇐⇒
^

^

^

i∈I{{σi →→→ τi}} ≤
_

_

_

j∈J{{σ j →→→ τ j}}

which is done in Figure 3.

V

V

V

i∈I{{σi →→→ τi}} ≤
W

W

W

j∈J{{σ j →→→ τ j}}
⇐⇒ by definition

V

V

V

i∈I ch–({{σi}}××× chλ({{τi}})) ≤
W

W

W

j∈Jch–({{σ j}}××× chλ({{τ j}}))
⇐⇒ by equality (3) at page 4
ch–(

W

W

W

i∈I ({{σi}}××× chλ({{τi}}))) ≤
W

W

W

j∈Jch–({{σ j}}××× chλ({{τ j}}))
⇐⇒ by Proposition C.1(2)
∃ j0 ∈ J.ch–(

W

W

W

i∈I ({{σi}}××× chλ({{τi}}))) ≤ ch–({{σ j0}}××× chλ({{τ j0}}))
⇐⇒ by contra-variance ofch–( )

∃ j0 ∈ J.{{σ j0}}××× chλ({{τ j0}}) ≤
W

W

W

i∈I ({{σi}}××× chλ({{τi}}))
⇐⇒ by Lemma C.2
∃ j0 ∈ J.∀I ′ ⊆ I .{{σ j0}} ≤

W

W

W

i∈I ′{{σi}} or chλ({{τ j0}}) ≤
W

W

W

i∈I\I ′chλ({{τi}})

⇐⇒ since forI = I ′ the second condition is never satisfied,
being by Definition 5.1(1)chλ(t) never0

∃ j0 ∈ J.∀I ′ ⊆ I .{{σ j0}} ≤
W

W

W

i∈I ′{{σi}} or I ′ 6= I & chλ({{τ j0}}) ≤
W

W

W

i∈I\I ′chλ({{τi}})

⇐⇒ by condition 2 of Definition 5.1
∃ j0 ∈ J.∀I ′ ⊆ I .{{σ j0}} ≤

W

W

W

i∈I ′{{σi}} or I ′ 6= I & chλ({{τ j0}}) ≤ chλ(
V

V

V

i∈I\I ′{{τi}})

⇐⇒ by condition 3 of Definition 5.1
∃ j0 ∈ J.∀I ′ ⊆ I .{{σ j0}} ≤

W

W

W

i∈I ′{{σi}} or I ′ 6= I &
V

V

V

i∈I\I ′{{τi}} ≤ {{τ j0}}

⇐⇒ by induction
∃ j0 ∈ J.∀I ′ ⊆ I .σ j0 ≤

W

W

W

i∈I ′σi or I ′ 6= I &
V

V

V

i∈I\I ′τi ≤ τ j0
⇐⇒ by Lemma C.4

V

V

V

i∈I (σi →→→ τi) ≤
W

W

W

j∈J(σ j →→→ τ j)

Fig. 3. Proof of Theorem 5.3
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E.2 Proof of Theorem 6.1

Theorem 6.1 If ∆;Γ ⊢ e: τ, then{{Γ}} ⊢ {{eτ}}Γ
c{{τ}} and{{Γ}},x : {{τ}}⊢ {{eτ}}Γ

x , where
{{Γ}}= {y : {{σ}} | y : σ ∈ Γ}.

Proof. By induction on the definition of{{}}. We only consider three interesting cases.

(subs) {{(eσ)τ}}Γ
c = (ν a{{σ}})({{eσ}}Γ

a ‖ a(w : {{σ}}).c(w))
By induction we have{{Γ}} ⊢ {{eσ}}Γ

a. Sinceσ ≤ τ implies {{σ}} ≤ {{τ}} by
Theorem 5.3 we get{{Γ}},w : {{σ}} ⊢ c : ch–({{σ}}) by rules (chan) and (subs).
We derive{{Γ}},w : {{σ}} ⊢ c(w) by rules (var) and (output), and{{Γ}} ⊢ a(w :
{{σ}}).c(w) by rule (input). We conclude using rules (para) and (new).

(abstr) {{(µ f
V

V

V

i∈I (σi→→→τi)(x).e)τ}}Γ
c = (ν f

W

W

W

i∈I ({{σi}}×××chλ({{τi}})))(c( f ) ‖ body( f ))
wherebody( f ) = !(∑i∈I f (x : {{σi}},b : ch–({{τi}})).{{eτi}}Γ,x:σi

b
+ f (x :

W

W

W

i∈I{{σi}},b :
W

W

W

i∈I (chλ({{τi}})∧∧∧¬¬¬ch–({{τi}}))).0)

τ =
V

V

V

i∈I (σi →→→ τi)∧∧∧
V

V

V

j∈J¬¬¬(σ′
j →→→ τ′j).

By induction we have{{Γ,x : σi}},b : ch–({{τi}}) ⊢ {{eτ
i }}

Γ
b for i ∈ I . By rule

(input) we derive{{Γ}} ⊢ body( f ). A premise of rule(abstr) is
V

V

V

i∈I (σi →→→

τi) 6≤ σ′
j →→→ τ′j for all j ∈ J, which impliesch–(

W

W

W

i∈I ({{σi}}××× chλ({{τi}}))) 6≤

ch–({{σ′
j}}×××chλ({{τ′j}})) and also

{{σ′
j}}×××chλ({{τ′j}}) 6≤

_

_

_

i∈I ({{σi}}×××chλ({{τi}}))

for all j ∈ J by the contra-variance ofch–(). Therefore using rule (chan) we can
derive

{{Γ}} ⊢ f
W
W
W

i∈I ({{σi}}×××chλ({{τi}})) : {{τ}}

since{{τ}}= ch–(
W

W

W

i∈I ({{σi}}×××chλ({{τi}})))∧∧∧
V

V

V

j∈J¬¬¬ch–({{σ′
j}}×××chλ({{τ′j}})).

Then rule (output) allows us to typec( f ). So we conclude using rules (para) and
(new).

(match) {{(match eσ with p1⇒eτ1
1 |p2⇒eτ2

2 )τ}}Γ
c =

(ν a{{σ}})(ν b({{σ1}}×××ch–({{τ1}}))∨∨∨({{σ2}}×××ch–({{τ2}})))((P1 +P2) ‖ Q)
whereP1 = b({{p1}},d:ch–({{τ1}})).{{eτ1

1 }}
Γ,σ1/p1

d ,

P2 = b({{p2∧∧∧¬¬¬*** p1+++}},d:ch–({{τ2}})).{{eτ2
2 }}

Γ,σ2/p2
d ,

Q = {{eσ}}Γ
a ‖ a(h:{{σ}}).b(h,c)

σ1 = σ∧∧∧***p1+++, σ2 = σ∧∧∧¬¬¬*** p1+++, τ =
W

W

W

{i|σi 6≃0} τi

We assumeσi 6≃ 0 for i = 1,2, the other cases being simpler. This impliesτ =
τ1∨∨∨ τ2. By induction we have{{Γ}} ⊢ {{eσ}}Γ

a and

{{Γ,σi/pi}},d : ch–({{τi}}) ⊢ {{eτi
i }}

Γ,σi/pi
d (6)

for i = 1,2. If we definet = {{σ1}}××× ch–({{τ1}}))∨∨∨ ({{σ2}}××× ch–({{τ2}}) and
p̂1 = ({{p1}},d : ch–({{τ1}})) and p̂2 = ({{p2∧∧∧¬¬¬*** p1+++}},d : ch–({{τ2}})) we can
verify that for i = 1,2

{{σi/pi}},d : ch–({{τi}}) = (t∧∧∧***p̂i+++)/p̂i . (7)
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Equality (7) allows us to rewrite (6) as

{{Γ}},(t∧∧∧***p̂i+++)/p̂i ⊢ {{eτi
i }}

Γ,σi/pi
d

so by applying rule (input) we get{{Γ}} ⊢ P1 +P2.

Sinceσ = σ1∨∨∨σ2 we get{{σ}}×××ch–({{τ1∨∨∨τ2}})≤ t, which allows us to derive
{{Γ}},h : {{σ}}⊢ b(h,c) by rules (chan), (subs), (var) and (output). We conclude
using rules (input), (para) and (new).

E.3 Proof of Proposition 5.4

Proposition 5.4 The constructor chλ0(t)∧∧∧ϕ is a λ-channel.

Proof. The conditionch–(0) ≤ ϕ immediately follows from condition (1) of Defini-
tion 5.1. Moreover it is easy to verify thatch–(t) ≤ chλ0(t) using the first equality in
Proposition C.1(1). Condition (3) of Definition 5.1 holds since

• it is easy to check thats≤ t iff ¬¬¬ch–(¬¬¬t) ≤¬¬¬ch–(¬¬¬s);

• Lemma C.3 and the second equality in Proposition C.1(1) imply chλ0(s) ≤ chλ0(t)
iff ¬¬¬ch–(¬¬¬s) ≤¬¬¬ch–(¬¬¬t);

• observing thatchλ0(t) = (chλ0(t)∧∧∧ϕ)∨∨∨ (chλ0(t)∧∧∧¬¬¬ϕ) and thatchλ0(t)∧∧∧¬¬¬ϕ does
not depend ont sincech–(0)≤ϕ, Lemma C.3 implieschλ0(s)≤ chλ0(t) iff chλ0(s)∧∧∧
ϕ ≤ chλ0(t)∧∧∧ϕ.

Condition (2) of Definition 5.1 follows from¬¬¬ch–(¬¬¬(s∧∧∧ t)) =¬¬¬ch–(¬¬¬s)∨∨∨¬¬¬ch–(¬¬¬t).

E.4 Proof of Lemma 6.2

Lemma 6.2 All reductions starting from{{e}}∅
c where e is an arbitraryCDuce expres-

sion are safe.

Proof. Let body( f ) =!(∑i∈I f (x : {{σi}},b : ch–({{τi}})).{{eτi}}Γ,x:σi
b +

f (x :
W

W

W

i∈I{{σi}},b :
W

W

W

i∈I (chλ({{τi}})∧∧∧¬¬¬ch–({{τi}}))).0) and v ∈ JσK and c ∈ JτK for
someσ,τ. By the typing rules we get

V

V

V

i∈I (σi →→→ τi) ≤ σ →→→ τ, and(∀i, j) σi ∧∧∧σ j = 0.
So we conclude by Lemma C.6.

E.5 Proof of Lemma 6.4

Lemma 6.4

{{v}}∅

c −→∗
s (ν func(v))(c(cpv(v))‖ f∈func(v)body( f )) .
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Proof. The proof is by structural induction on values. The only interesting case is a pair
of values. If f̃1 = func(v1) and f̃2 = func(v2) we have:

{{(vσ1
1 ,vσ2

2 )}}∅
c = (ν a{{σ1}})(ν b{{σ2}})({{vσ1

1 }}∅
a ‖ a(w : {{σ1}}).({{vσ2

2 }}∅

b ‖
b(h : {{σ2}}).c(w,h)))

−→∗
s (ν a{{σ1}})(ν b{{σ2}})((ν f̃1)(a(cpv(v1))‖ f∈ f̃1

body( f )) ‖
a(w : {{σ1}}).({{vσ2

2 }}∅

b ‖ b(h : {{σ2}}).c(w,h)))
by induction

−→s (ν b{{σ2}})(ν f̃1)(‖ f∈ f̃1
body( f ) ‖ {{vσ2

2 }}∅
c ‖

b(h : {{σ2}}).c(cpv(v1),h))

−→∗
s (ν b{{σ2}})(ν f̃1)(‖ f∈ f̃1

body( f ) ‖
(ν f̃2)(b(cpv(v2))‖ f∈ f̃2

body( f )) ‖ b(h : {{σ2}}).c(cpv(v1),h)))

by induction
−→s (ν f̃1)(‖ f∈ f̃1

body( f ) ‖ (ν f̃2)(‖ f∈ f̃2
body( f )) ‖

c(cpv(v1),cpv(v2))))

E.6 Proof of Theorem 6.5

For each channel namec theobservability predicates P↓c andP ↓c are defined by:

• P ↓c iff P can perform an input on channelc;
• P ↓c iff P can perform an output on channelc.

Let η ranges overc andc. We useP⇓η as short forP−→∗
s P′ andP′ ↓η for someP′.

Definition E.1. Barbed bisimilarityis the largest symmetric relation,
·
≈, such that

whenever P
·
≈ Q:

• P ↓η implies Q⇓η;

• P−→s P′ implies Q−→∗
s Q′ for some Q′

·
≈ P′.

{{eτs}}Γ
c = (ν a{{σ→→→τ}})(ν b{{σ}})({{eσ→→→τ

1 s}}Γ
a ‖ a(w : {{σ →→→ τ}}).({{eσ

2 s}}Γ
b ‖

b(h : {{σ}}).w(h,c)))
∼= (ν a{{σ→→→τ}})(ν b{{σ}})((ν f̃ )({{eσ→→→τ

1 }}Γ
acpv(s)‖ f∈ f̃ body( f )) ‖

a(w : {{σ→→→ τ}}).((ν f̃ )({{eσ
2}}

Γ
bcpv(s)‖ f∈ f̃ body( f )) ‖ b(h : {{σ}}).w(h,c)))

by induction
∼= (ν a{{σ→→→τ}})(ν b{{σ}})((ν f̃ )({{eσ→→→τ

1 }}Γ
acpv(s)‖ f∈ f̃ body( f )) ‖

(ν f̃ )(a(w : {{σ→→→ τ}}).({{eσ
2}}

Γ
bcpv(s) ‖ b(h : {{σ}}).w(h,c))‖ f∈ f̃ body( f )))))

by Lemma E.4(1)
∼= (ν a{{σ→→→τ}})(ν b{{σ}})(ν f̃ )({{eσ→→→τ

1 }}Γ
acpv(s) ‖

a(w : {{σ→→→ τ}}).({{eσ
2}}

Γ
bcpv(s) ‖ b(h : {{σ}}).w(h,c))‖ f∈ f̃ body( f )))

by Lemma E.4(3)
≡ (ν f̃ )(ν a{{σ→→→τ}})(ν b{{σ}})(({{eσ→→→τ

1 }}Γ
a ‖

a(w : {{σ→→→ τ}}).({{eσ
2}}

Γ
b ‖ b(h : {{σ}}).w(h,c)))cpv(s)‖ f∈ f̃ body( f ))

Fig. 4. Substitution Lemma: Caseeτ = eσ→→→τ
1 eσ

2

26



A type environmentΓ refines an environmentΓ′ (notationΓ . Γ′), if x : t ∈Γ′ implies
Γ ⊢ x : t.

A contextC[ ] is aΘ/Γ-contextif Θ ⊢C[ ] can be derived using the following typing
rule for the hole:

Γ . Γ′

Γ′ ⊢ [ ]

Definition E.2. Two processes P,Q arebarbed congruent atΓ (Γ � P∼= Q) if for each
type environmentΘ and eachΘ/Γ-context C[ ] we have C[P]

·
≈C[Q].

Lemma E.3. cpv(v/p) = cpv(v)/p.

Proof. The proof is by structural induction on values and by cases.
Let v/p(x) = m for some constantm which does not dependent fromv. In this case

cpv(v/p)(x) = cpv(v/p(x))= cpv(m)= mandcpv(v)/p(x) = m, where the last equality
holds beingv andcpv(v) of the same type.

Letv/p(x)= v. In this casecpv(v/p)(x)= cpv(v/p(x))= cpv(v) andcpv(v)/p(x)=
cpv(v), where the last equality holds beingv andcpv(v) of the same type.

Let v = (v1,v2) and p = (p1,p2). It is easy to check thatcpv(v1/p1 ⊗ v2/p2) =
cpv(v1)/p1⊗ cpv(v2)/p2, so we conclude by induction.

{{eτs}}Γ
c = (ν g

W
W
W

i∈I ({{σi}}×××chλ({{τi}})))(c(g) ‖ !(∑i∈I g(y : {{σi}},b : ch–({{τi}})).{{eτi
0 s}}Γ,y:σi

b
+g(y :

W

W

W

i∈I{{σi}},b :
W

W

W

i∈I (chλ({{τi}})∧∧∧¬¬¬ch–({{τi}}))).0)
∼= (ν g

W
W
W

i∈I ({{σi}}×××chλ({{τi}})))(c(g) ‖ !(∑i∈I g(y : {{σi}},b : ch–({{τi}})).

(ν f̃ )({{eτi
0 }}

Γ,y:σi
b cpv(s)‖ f∈ f̃ body( f ))

+g(y :
W

W

W

i∈I{{σi}},b :
W

W

W

i∈I (chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0)
by induction

∼= (ν g
W

W

W

i∈I ({{σi}}×××chλ({{τi}})))(c(g) ‖ !(∑i∈I g(y : {{σi}},b : ch–({{τi}})).

(ν f̃ )({{eτi
0 }}

Γ,y:σi
b cpv(s)‖ f∈ f̃ body( f ))

+g(y :
W

W

W

i∈I{{σi}},b :
W

W

W

i∈I (chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).(ν f̃ )(‖ f∈ f̃ body( f )))
since(ν f̃ )(‖ f∈ f̃ body( f )) ∼= 0

∼= (ν g
W

W

W

i∈I ({{σi}}×××chλ({{τi}})))(c(g) ‖

!((ν f̃ )(∑i∈I g(y : {{σi}},b : ch–({{τi}})).{{eτi
0 }}

Γ,y:σi
b cpv(s))

+g(y :
W

W

W

i∈I{{σi}},b :
W

W

W

i∈I (chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0)‖ f∈ f̃ body( f ))))
by Lemma E.4(2)

∼= (ν g
W
W
W

i∈I ({{σi}}×××chλ({{τi}})))(c(g) ‖

(ν f̃ )(!(∑i∈I g(y : {{σi}},b : ch–({{τi}})).{{eτi
0 }}

Γ,y:σi
b cpv(s)

+g(y :
W

W

W

i∈I{{σi}},b :
W

W

W

i∈I (chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0‖ f∈ f̃ body( f )))))
by Lemma E.4(4)

≡ (ν f̃ )(ν g
W

W

W

i∈I ({{σi}}×××chλ({{τi}})))(c(g) ‖

(!(∑i∈I g(y : {{σi}},b : ch–({{τi}})).{{eτi
0 }}

Γ,y:σi
b

+g(y :
W

W

W

i∈I{{σi}},b :
W

W

W

i∈I (chλ({{τi}})∧∧∧¬¬¬ch–({{τi}})).0)cpv(s)‖ f∈ f̃ body( f ))))

Fig. 5.Substitution Lemma: Caseeτ = µg
V

V

V

i∈I (σi→→→τi)(y).e0

27



Lemma E.4. Let all considered processes ofCπ be obtained by reducing encodings of
CDuce expressions in the environmentΓ.

1. If f does not occur inπ thenΓ� (ν f )(π.P ‖ body( f )) ∼= π.(ν f )(P ‖ body( f )).
2. If f does not occur inπ1,π2 thenΓ� (ν f )(π1.P+ π2.Q) ‖ body( f )) ∼=

π1.(ν f )(P ‖ body( f ))+ π2.(ν f )(Q ‖ body( f )).
3. Γ� (ν f )(P ‖ Q ‖ body( f )) ∼= (ν f )(P ‖ body( f )) ‖ (ν f )(Q ‖ body( f )).
4. Γ� (ν f )(!P ‖ body( f )) ∼=!(ν f )(P ‖ body( f )).

Proof. The equations (1) and (2) are easily proved directly. The sketch of the proof of
the other two is as follows. It is possible to prove a context lemma for barbed congru-
ence, analogous to Lemma 2.1.19, page 60 of [16]. Little changes in the proof, except
that we need to keep the distinction between open terms (which cannot reduce) and
closed terms, and that we have a slightly more general notionof interaction. Using lo-
cality and the context lemma, it is easy to prove a result similar to Lemma 10.7.3, page
344 of [16]. This allows us to conclude the proof, as done for Lemma 10.5.1, page 346
of [16].

Lemma E.5 (Substitution Lemma).

Γ�{{eτs}}Γ
c
∼= (ν func(s))({{eτ}}Γ

ccpv(s)‖ f∈func(s)body( f )) .

{{eτs}}Γ
c = (ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))

((b(p1,d : ch–({{τ1}})).{{eτ1
1 s}}Γ,σ1/p1

d +

b(p2∧∧∧¬¬¬*** p1+++,d : ch–({{τ2}})).{{eτ2
2 s}}Γ,σ2/p2

d ) ‖ {{eσ
0s}}Γ

a ‖ a(h).b(h,c))
∼= (ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))

((b(p1,d : ch–({{τ1}})).(ν f̃ )({{eτ1
1 }}

Γ,σ1/p1
d cpv(s)‖ f∈ f̃ body( f ))+

b(p2∧∧∧¬¬¬*** p1+++,d : ch–({{τ2}})).(ν f̃ )({{eτ2
2 }}

Γ,σ2/p2

d cpv(s)
‖ f∈ f̃ body( f ))) ‖ (ν f̃ )({{eσ

0}}
Γ
acpv(s)‖ f∈ f̃ body( f )) ‖ a(h).b(h,c))

by induction
∼= (ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))

((ν f̃ )((b(p1,d : ch–({{τ1}})).{{eτ1
1 }}

Γ,σ1/p1

d cpv(s)+

b(p2∧∧∧¬¬¬*** p1+++,d : ch–({{τ2}})).{{eτ2
2 }}

Γ,σ/p2
d cpv(s))‖ f∈ f̃ body( f )) ‖

(ν f̃ )({{eσ
0}}

Γ
acpv(s)‖ f∈ f̃ body( f )) ‖ a(h).b(h,c)))

by Lemma E.4(2)
∼= (ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))

((ν f̃ )((b(p1,d : ch–({{τ1}})).{{eτ1
1 }}

Γ,σ1/p1

d cpv(s)+

b(p2∧∧∧¬¬¬*** p1+++,d : ch–({{τ2}})).{{eτ2
2 }}

Γ,σ/p2
d cpv(s)) ‖

{{eσ
0}}

Γ
acpv(s)‖ f∈ f̃ body( f )) ‖ a(h).b(h,c)))

by Lemma E.4(3)
≡ (ν f̃ )(ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))

((b(p1,d : ch–({{τ1}})).{{eτ1
1 }}

Γ,σ1/p1

d +

b(p2∧∧∧¬¬¬*** p1+++,d : ch–({{τ2}})).{{eτ2
2 }}

Γ,σ/p2
d ) ‖

{{eσ
0}}

Γ
a ‖ a(h).b(h,c))cpv(s)‖ f∈ f̃ body( f ))

Fig. 6. Substitution Lemma: Caseeτ = match eσ
0 with p1⇒eτ1

1 |p2⇒eτ2
2
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Proof. By induction on the definition of{{}}. We omit the empty environment in writing
∼=. Figures 4, 5 and 6 show the interesting cases.

Theorem 6.5 is a corollary of Lemma 6.4 and of the following result

Theorem E.6. (Correctness)

1. {{(µ f
V

V

V

i∈I (σi→→→τi)(x).e)v}}∅
c −→∗

s P for some P such that
∅�P∼= {{e[v/x][µ f

V

V

V

i∈I (σi→→→τi)(x).e/ f ]}}∅
c .

2. {{match v with p1⇒e1|p2⇒e2}}
∅
c −→∗

s P for some P such that
∅�P∼= {{ei[vσ/pi ]}}

∅
c where i= 1 if v/p1 6= Ω and i= 2 otherwise.

3. If e−→ e′ then there are P,Q such that{{e}}∅
c −→∗

s P and{{e′}}∅
c −→∗

s Q and
∅�P∼= Q.

Proof. (1). Lete0 = (µ f
V

V

V

i∈I (σi→→→τi)(x).e)σ→→→τvσ. The proof is given in Figure 7.
(2). Letvσ/p1 6= Ω ande= match vσ with p1⇒eτ1

1 |p2⇒eτ2
2 . The proof is given in

Figure 8.
(3). The proof by induction on the definition of−→ is similar to that one of Lemma

15.3.22 in [16].

{{e0}}
∅
c = (ν a{{σ→→→τ}})(ν b{{σ}})({{µ f

V

V

V

i∈I (σi→→→τi)(x).e}}∅
a ‖ a(w).({{vσ}}∅

b ‖ b(h).w(h,c)))
= (ν a{{σ→→→τ}})(ν b{{σ}})((ν f {{

V

V

V

i∈I (σi→→→τi)}})
(a( f ) ‖ body( f )) ‖ a(w).({{vσ}}∅

c ‖ b(h).w(h,c)))
−→s (ν b{{σ}})((ν f {{

V
V
V

i∈I (σi→→→τi)}})(body( f )) ‖ {{vσ}}∅
c ‖ b(h). f (h,c))

−→s (ν b{{σ}})((ν f {{
V
V
V

i∈I (σi→→→τi)}})(body( f )) ‖
(ν g̃)(b(cpv(v))‖g∈g̃body(g)) ‖ b(h). f (h,c))
whereg̃ = func(v) by Lemma 6.4

−→s (ν f {{
V

V

V

i∈I (σi→→→τi)}})(body( f ) ‖ (ν g̃)(‖g∈g̃body(g)) ‖ f (cpv(v),c)))
−→s (ν g̃)(ν f {{

V

V

V

i∈I (σi→→→τi)}}){{eτi}}∅
c [cpv(v)/x] ‖ (‖g∈g̃body(g)) ‖ body( f ))

by Lemma 6.2
∼= {{e[vσ/x][µ f

V

V

V

i∈I (σi→→→τi)(x).e/ f ]}}∅
c by Lemma E.5

Fig. 7.Proof of Theorem E.6(1)

{{e}}∅
c = (ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))

((b(p1,d : ch–({{τ1}})).{{eτ1
1 }}

σ1/p1
d +

b(p2∧∧∧¬¬¬p1,d : ch–({{τ2}})).{{eτ2
2 }}

σ2/p2

d ) ‖ {{vσ}}∅
a ‖ a(h).b(h,c))

−→s (ν a{{σ}})(ν b(σ1×××ch–({{τ1}}))∨∨∨(σ2×××ch–({{τ2}})))

((b(p1,d : ch–({{τ1}})).{{eτ1
1 }}

σ1/p1
d +b(p2∧∧∧¬¬¬p1,d : ch–({{τ2}})).{{eτ2

2 }}
σ2/p2
d )

‖ (ν f̃ )(a(cpv(v))‖ f∈ f̃ body( f )) ‖ a(h).b(h,c))
where f̃ = func(v) by Lemma 6.4

−→s (ν f̃ )({{eτ1
1 }}∅

c [cpv(vσ)/p1]‖ f∈ f̃ body( f ))
= (ν f̃ )({{eτ1

1 }}∅
c [cpv(vσ/p1)]‖ f∈ f̃ body( f )) by Lemma E.3

∼= {{e1[vσ/p1]}}
∅
c by Lemma E.5

Fig. 8.Proof of Theorem E.6(2)
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