Encoding CDuce in the Crr-calculus

Giuseppe Castagha Mariangiola Dezani-Ciancaglifii ~ Daniele Varacch

1Ecole Normale Supérieure de Pari€Universita di Torino 3Imperial College London

Abstract. CDuce is a functional programming language featuring ot functions
and a rich type system with recursive types, subtyping, umegation and intersection
types. The boolean constructors have a set-theoretic lmhadefined via a semantic
interpretation of the types. Th€rrcalculus is an extension of thecalculus that en-
riches Pierce and Sangiorgicalculus subtyping with union, intersection, and negatio
types. It is based on the same set-theoretic interpretas@uce.

In this work we present a type faithful encoding of tBBuce into theCrr-calculus. This
encoding is a modification of the Milner-Turner encodingh@x-calculus with subtyp-
ing into therrcalculus with subtyping. The main difficulty to overcomesata find an
encoding of the types that respects the subtyping relaBesides the technical chal-
lenge, this effort is interesting because it sheds new bgithe Milner-Turner encoding
and on the relations between sequential and remote exeaftimnctions/services, in
particular in the presence of type-driven semantics. kb asnfirms the validity of the
equational laws for union and intersection typesticalculus.

1 Introduction and motivations

The languag€Duce [10, 9] is a functional programming language for XML rijpan
lation, with a very rich type system. Types and subtypiny pl@entral role inCDuce:

for its design (patterns and pattern matching are built mgdoypes), for its execution
(functions can be overloaded with run-time code selectiandl for its implementation
(pattern matching compilation and query computation uescstype information to op-
timise execution). All these multifarious usages of typdg on a common foundational
core: thesemantic subtypinffamework. An introduction to semantic subtyping can be
found in [7], while [5] discusses several aspects and pety@s; technical details are
given in [10,9]. In a nutshell, given a typed language witmeo(possibly recursive)
type constructors (e.g->, %, list(), ...), semantic subtyping is a technique to en-
rich the language wittype combinatord.e. set-theoretic union, intersection, and nega-
tion types. The behaviour of combinators is specified viastitgtyping relation (rather
than via the typing of the terms). The subtyping relationserfiantic” since instead
of axiomatising it by a set of inference rules, one descrisest-theoretic interpreta-
tion of the typeq] : Types— () (whereZ” denotes the powerset operator and

def

some domain) and then defines the subtyping relatisas <= [s] C [t]. Such a
set-theoretic interpretation must satisfy at least thessigh goals.
1. Itmustensure that tymmmbinatordave a set-theoretic interpretation. This is done
by imposing that union, intersection, and negation typesespectively interpreted
as the set-theoretic union, intersection, and complemesriations of”(2).

Work partially supported by FP6-2004-510996 Coordinatietion TYPES, Cofin’04 project McTafi,
Tralala ACI project, EPSRC grant GR/T04724/01 “Program lfsia and the Typed Pi-Calculus”, and by
an ENS visiting professorship grant for Mariangiola Dezani

2. It must ensure that typeonstructorshave a “natural” interpretation (at least, for
what concerns subtyping), e.g., that product types areprated as set-theoretic
products, function types as sets of maps from domain to ¢oadlo, and so on.

3. It must allow for an interpretation of types as sets of galurhis means that if we
take asZ the set of values of the language and as interpretation thaifun that
maps a type to the set of all values of that type, then this mégvpretation must
induce the very same subtyping relation as the one used ¢ovglpes.

Finding a domair? and an interpretation functiop-] that satisfy the last two points
is far from being trivial: a set-theoretic interpretatiohfonctional and recursive types
or the circularity between the typing of values and defimitad subtyping are difficult
constraints. As described in [7] and outlined later on, seinasubtyping provides a
technique to do so.

In [6] the Crrcalculus is devisedCrtis a type system for the-calculus which
exploits the same principles @&Duce to enrich Pierce and Sangiorgi’s types [15] with
(set-theoretic) unions, intersections, and negationshéncited paper, a higher-order
extension of th&t-calculus with functional values is discussed. Howevelghestion
arises whether the extension is necessary or whether isshge to encode functions as
processes. It is well known that several such encodingsas®ifgle from theé\-calculus
into thetr-calculus [14, 16, 17]. In the Join-calculus language [8, functional part is
simply syntactic sugar for its coding in the concurrent part

Contributions. In this paper we describe an encoding@duce into theCr-calculus.
The encoding turned out not to be so straightforward as ong erpect. The diffi-
culty arises in finding an encoding of the types that respgbetsubtyping relation. The
Milner-Turner translation of arrow types [16] respects shibtyping relation in the con-
text of the simply typed-calculus, but it breaks down in the presence of intersactio
types.

Strictly speaking the technical contribution of this paetwofold: first it intro-
duces the locaCrr-calculus, a variant of th€Te-calculus that admits unrestricted re-
cursion on types, a feature not allowed in the version of #deuwus presented in [6];
secondly it defines an encoding@Duce (hence, of intersection, union, and negation
types) into localCtt that preserves the typing and subtyping relations as wethas
reduction semantics.

But beyond these technicalities, or actually hidden righthie technical details,
there lies the main interest of this work. As we detail in 88wt 4 and 5, the transla-
tion sheds new light on the Milner-Turner encoding as it shtie respective roles of
argument and return channel that are used to simulate @urgciin a concurrent world.
In particular, it shows that in the presence of type-caseldtter must be scrambled by
introducing some noise at the type level so that the receaenot gain information by
testing the type of the return channel. The translation igrth&r confirmation of the
validity of the equational laws for union and intersectigpés in therecalculus, since
a different axiomatisation proposed in the literature isoimpatible with the Milner-
Turner technique. This is not the only contribution to theeyheory of thetcalculus,

1 This point is important in practice: we cannot ask a programto understand subtyping via a set-theoretic
interpretation in the power-set of some twisted dom@inThanks to this property we can more simply
explain subtyping in terms of inclusion of types as sets dies

since the encoding also outlines the different roles playedhe two contra-variant
constructors ofCtt, namely input channel and negation, and shows how theypilater
when considering them from a logical point of view. Finallyterm level the translation
formalises the nice correspondence between function@panhatching and-calculus
guarded sums on a same input channel.

Structure. In Section 2 we present the local variant of (fm-calculus. In Section 3 we
present the functional core @Duce. Section 4 is devoted to explaining the main diffi-
culties we encountered when encodifiDuce types intdCtttypes. Section 5 contains
the formalisation of the encoding of the language, whileti®a® presents the correct-
ness results. In Section 7 we conclude by giving some ingighhore general aspects
of this work and trying to convey the intuition of why we belegethat the main contri-
bution lie well beyond the technical result we present. Apeaplix with an example,
auxiliary definitions, and the main proofs is also provided.

2 TheCrcalculus

The Crecalculus is a variant of the asynchronaesalculus with pattern matching in
input and rich typing and subtyping systems [6]. We intrcglbere a further simpli-
fication of the calculus, following ideas of the Join calau[8] and of the local®
calculus [13]. The key ideais that if a process is commueitatchannel, then it cannot
use that channel in input. Only global channels already kntmithe process or newly
generated channels can be used in input. This policy is eeflosyntactically, even be-
fore processes are typed. In the typing system, this imghi@sinput channel types are
no longer necessary. The consequent subtyping relatioruchreasier to decide and,
unlike the system for fulCtecalculus, can be also extended to recursive types.

2.1 Types and subtyping

A type is coinductively defined by applyingpe constructorsnamely base type con-
structors (e.g. integers, strings, etc...), the channegroduct type constructors, or by
applying aboolean combinatqii.e., union, intersection, and negation. More formally,
types are regular trees generated by the following grammar

CniTypes ti= b | chit) | txt constructors
| O]1]|-t]tvt|tAt combinators

and that are contractive, that is for which on every infinitarich of the tree there are
infinitely many occurrences of constructors. Combinatoeself-explaining, witld be-
ing the empty type antl the type of all values. We udeto range over base types. The
channel type constructeii(t) denotes the type of channels that can be useditput
values of typd. The set of all types (sometimes referred to as “type algghwitl be
denoted byZ . Contractivity ensures, as usual, the absence of measmgteursively
defined types such as= t.

The subtyping relation is defined semantically. This mebhaswe first give a set-
theoretical interpretation of typds-] : .7 — 2(2), for some domair, and then
define subtyping as inclusion of the interpretatias:t <= [s] C [t]. Itis out of the
scope of this work to precisely defirie or the interpretatiorf—]. For such definitions
and a discussion on the design decisions, we refer the reatter appendix and to [6].

All we need for this work is to precisely define the subtypietation these defi-
nitions entail. This icompletelycharacterised by the subtyping relation on the basic
types and by the following property:

[s] € [t] < E(s) CE) 1)
whereE(—) is defined as follows

Definition 2.1 (Extensional interpretation). The extensional interpretatiolnf the
types is the functiofi(—) : 7 — P (2 + I x 2+ F(2)), defined as follows:

a. E1)=924+9x92+ Z(2), E(0) =2, E(b) =[b];
b. EaVt) =E(t)) UE(t2), E(tiAtz) =E(t1)NE(tz), E(-t)=E(1)\E(t);
c. Et1xt)= [[tlﬂ X [[tz]]

d. E(chtt)) = {[s] | [s] = [t]}-
The intuition underlying property (1) is thetr what concerns subtypinge can con-
sider thaft], i.e. the semantics af is preciselyE(t). Thus in Definition 2.1, (b.) states
that the type combinators are interpreted as the correspgseét operations and (c.)
that the product type is interpreted as set-theoretic prbdRoint (d.) gives us the se-
mantics of channels. Intuitively, if a type denotes the $atlbvalues with that type,
then the typech(t) denotes the set of all channels in which one can safely pettbj
of typet. Therefore it will denote all channels that can contain otgef types, for any
s>t. Let us writec' for a channel namedand transporting objects of typeWe have

[ehtt)] = {cs | s> t} :

The derived subtyping relation is insensitive to the actwahber of channels of a given
type or to their names. We can therefore assume that for exguivalence class of
types, there is only one such channel, which may as well bgifig with [t], so that
the intended semantics of channel types would be
[ch(t)] = {[[s]] s> t})
which by definition of subtyping gives point (d.) of the preus definition.
The following result is very important for practical apgions:

Proposition 2.2. The subtyping relation of the loc&lr-calculus is decidable.

The decision algorithm is similar to the decision algoritttmCDuce subtyping, and it
is much simpler than the one for the fl@itcalculus presented in [6].

In order to stress that property (1) and Definition 2.1 corgdjedefine the sub-
typing relation, let us show as an example how to deduce th&aariance of the
output type channel constructati(s) < chit) < [ch(s)] C [ch(t)] < E(ch(s)) C
E(ch(t)) < {[ul [[ul 2 [s]} SATul vl 2]} = [t S [s] =t <s.

Similarly we can derive interesting equations and inequmstibetween types. For
instancech(t) < chy0) is a special case of the contra-variance we just derivethtts
that every channa&l can be safely used in a process that does not write hrve define

def

s=t <= [g] = [t], then we have
chity) Ach(ty) = Ch_(t]_ Vi) 3)
which states that if on a channel we can write values of tymnd values of typ#,

then we can also write values of typeV tp, and vice versa. Union of channel types
behaves differently since the inequation below is striee(g5] for a discussion on this)

chity) vehity) < chitiAty) .

2.2 Patterns

Both Crtand CDuce feature powerful pattern matching. Patterns perfgqme-{cases,
decompose values by capturing subcomponents in variabids;an be recursive.

Definition 2.3. Given atype algebr&”, and a set of variable¥, apatternp on(V,)

is a regular tree generated by the following grammar
pri=x[t]pAp]|plp]|(pp)

such that(i) on every infinite branch of p there are infinitely many occoces of the

pair pattern, (ii) for every subterm A p, of p we have Vdip1) N Var(pz) = &, and

(iii) for every subterm {)p, of p we have V&ip;) = Var(pz) (where xe V,t € .7, and

Var(p) is the set of variables occurring in p).

The semantics of patterns is given in terms of a matchingadjmer that returns
either a substitution for the variables of the pattern orilafa denoted by. Matching
can be defined independently from the language, via the dofnaif a model of types.
We used/p to denote the matching of the elemehagainst the patterp. Intuitively,

x is the pattern that always succeeds and captures the matdrednt inx (i.e.,d/x
returns the substitutiofix — d}); t succeeds if the element is in the interpretation, of
in which case it returns the empty substitution; the intetise succeeds only if both
patterns succeed and it returns the union of the substitsitithe alternation follows

a first-match policy by applying the pattern on the right oiflyhe one on the left
failed; the pair decomposes the element and applies therpatio the respective sub-
components. See the appendix for the formal definitiocan be shown that the set of
all elements for which a patteqmdoes not fail is the denotation of a type. We denote
this type by] pf, that is by definitior] pf] = {d | d/p # Q}. Matching can be extended
to types as stated by the following theorem:

Theorem 2.4 ([10]). There is an algorithm mapping every pdir, p), where p is a
pattern and t a type such thatt] p§, to a type environmerit/p) € .7V2(P) such that

[(t/P)()] ={(d/p)(¥) [d € [t]}.

2.3 The language

The syntax ofCrt is similar to that of the asynchronouscalculus [3, 12], extended
with call-by-value pattern matching (obtained by pattgtrarded sums of inputs on the
same channel) and an extra condition which guaranteeslitigdd 3].

Processes P.= oM output Channelsa ::= x variables
| Sici¢(p).P patterned input | d constant
| P|P parallel
| (ve)P restriction Messages M:= n constants
| P replication | a channel

| (M,M) pair

wherel is a possibly empty finite set of indexdstanges over the types defined in
Section 2.1 angy; are patterns as defined in Section 2.2. As customary, empty su
corresponds to the inert process, denoted.tyhevaluesof the language are the closed
messages::=n|c' | (v,v). We use? to denote the set of all values.

Messages
—— (const) S £ (chan)
I=n:bp M c:chit) A—=ch(s)) A... A=chi(sy)
s< FEMpit, TEMy it)
- (Var) M (SUbS) 1-*1 2-%2 (pa"*)
MEx:T(x) FrEM:t M (M1,M2) ity Xt
Processes
r-pPp F+=P
7FI—F: (new) rep (repl) : 2 (para)
It (vchHP =P PPy
t<Vialp§ T, (tAlp; i EB MrM=M:t rta:chit
Vialpi§ (tlpID/pl | (input) ! ht) (output)
M Sie ¢(pi)-R r-am

Fig. 1. Crttyping rules

Observe that we force input to happen on channel constanitsefsures that chan-
nels sent by other processes cannot be used in input. Ougtetd can be performed
on non-constant channels, too.

Since pattern matching performs type-case, we must defentyffing of messages
before the reduction semantics, see Figure 1. We suppose\vbey basic constant
n is associated to an atomic basic tyipe The rules, and in particular rule (chan),
are designed so that we can interpret a type as the set oflaés/af that type. The
interpretation| [, : .7 — 22(7') defined as

[tl, ={v | @kv:t} 4)
satisfies property (1) and, furthermore, it generates theessubtyping relation as.?
Then, the definition for pattern matching given in Sectiod &plies forv being a
value and we can use it to define the reduction semanti€swf
cv | th(pi)ﬂ — PFjlv/pj]

IS
whereP[g denotes the application of substitutisrio processP. The asynchronous

output of avalueon the boxc! synchronises with a summand in a sum guarded by the
same box, only if the pattern of the summand matches the cancated value (the type
system ensures the existence of such a pattern). If moreoti@pattern matches, then
one of them is non-deterministically chosen and the cooedimg process executed,
but before its execution the pattern variables are replégethe captured values. As
usual, the notion of reduction must be completed with reduastin evaluation contexts
and up to structural congruence, whose definitions are atdrahd can be found in [6].
We use—* to denote the reflexive and transitive closure-ef.

The typing of processes is defined in the lower half of Figur&latice that the
rule for restrictions (new) does not rely on the type envinemtl", since channels are

2 Without the intersection of the negated channel types imr(shwe could not prove that, sag," :
—ch(bool). More generally, the property v:t < I#v: -t would not hold, and this is necessary[te] ,,
to satisfy (1): cf. Definition 2.1(b). For a broader discasson such inference rules with negated types see
Section 4.6 of [5].

3 As a matter of facts we already used this property in the iinfeuf) to determine the typing environments
t/pi. There is no circularity since the typing of values is defimetpendently from the typing of precesses.

decorated by the type of their messages, and that in theingatf the conditiort <
Viai 1pi§ ensures that for every message that may arrive on the chahesd exists at
least one pattern that matches it. The system satisfiescsubghiction [6].

3 The functional languageCDuce

CDuce is a very efficient functional language for rapid desigd development of appli-
cations that manipulate XML data [2]. In this work we concat# on the foundational
aspects ofCDuce [10] a detailed survey of which can be found in [7]. Inttlespect,
CDuce features the same syntactic type€aswith just a single exception, namely,
the channel type constructor is replaced by the functioe tygnstructor:

CDuceTypes T:i=b |T—-T1T]| TXT constructors
| O]1|-t]|tvt| tAT combinators

where the same regularity and contractivity restrictiopgaSection 2.1 apply. We use
0,1 to range ovefCDuce types and to typographically distinguish them fr6mones,
these latter still ranged over lpandt.

Subtyping is characterised in the same way a<fayby defining an interpretation
from the above types into a domain (that we leave unspecified, see [10]) which satis-
fies property (1). Definition 2.1 is modified to account for thexw type constructor for
functions. We hav&(—): .7 — P(2+Ix 2+ P (D x%q)) (WhereZq = 7 +{Q},
the disjoint union of the domain and of a distinguished eetementQ) while point (d.)
of Definition 2.1 becomes:

d. Ec—1) =2 (W@xm>

whereX" denotes the complement ¥f with respect toy (i.e.,Y \ X). In words, the
extensional interpretation @f— 1 is the set of graphs such that if the first elementis in
[o], then the second element isffr] (otherwise the second element can be anything,
in particular the errof). Thereforefor what concerns subtypingie can consider that
arrow types are interpreted as follows:
[c—=1]={f C 2% %q | ¥Y(din,dowt) € f. din € [0] = dout € [T]}
As we did forCtt, we can use this characterisation to deduce several ititegegpe
equality and containment relatiof&or instance, we hav@V 02 — T1AT2) < (01 —
T1) A (02 — T12), where the strictness of containment indicates that we havetions
that can have different behaviours according to whetheathement is of type; or o2
(e.g., overloaded functions). For the goals of this work smastly interesting equation
is
(0=TA(0—=T)=0->1TAT (5)

whose validity can be easily checked by the reader, by apglyie definition oft(—).

CDuce is a\-calculus with pairs, overloaded recursive functions, paitern match-
ing. This is reflected by the following syntax:

4 The errorQ is included in the codomain of the functions since withowviery function would have type
1— 1, therefore every application would be well-typed (witheyl). The error elemen® stands for the
result of ill-typed applications. Thanks toat— 1 < 1 — 1 does not hold in general, hence, it explicitly
avoids the problem above.

ATHe:o<T
— var fvar) ———————
AT ™ At Y arrroam vV TaFrer (Subs
ATHe 11 ATHFe: T2 . ATHFe:0—=1T ATFe: 0
: : (pair) = 2 (app)
AT H(e,e0):T1XT2 ATHee: T
(for o1 =0 Alp1f, 02 =0A-] pif)
ATHero<lpifvipf AT (oi/p)Fe:T mateh
A;T Fmatch ewith p1=e€1| po=€: V{”Gi;ﬁo}n
(fort=Aic(0i = T1i)) (Viel,hel,jed)
onAGi =0 rgo’j—ﬂ’j Afitlx: o Fe:T;
; ; (abstr)
AT ufi(x).e: TAAjeg (0] = 1))

Fig. 2. CDuce typing rules

ex=x | n | ee| (ee) | pfA=(@=Tt)(x) e | matchewith p=¢ p=e€

where patterng arethose defined in Section 2(®ut useCDuce types). The type-
case expressiofix = e € 1) ?e;: & can be added as syntactic sugar for the matching
expressiomatch ewith XA T=-€1| XA-T=€y.

Function abstractions useprabstracted name for recursion and specify at their
index several arrow types, indicating that the function athghese types (i.e., their
intersection). This is formally stated by the rubétr) in Figure 2 which for eache |
checks that the bodyhas typet; under the hypothesis thahas typeo;. Note that the
types ofu-abstracted variables are recorded in a distinct envirarithel he distinction
here is totally useless (we could have used a uniquieut it will be handy when we
define the encoding (singeabstracted variables are translated into channel catsstan
then the encoding will be parametric onlyfin.

The only difficult rule is (hatch. It first deduces the type of the matched expres-
sion and checks whether patterns cover all its possibldtse@ie.,o < 1p1 § V] p2f);
then it separately checks the first branch under the hypisthest p; is selected (i.ee
isin aAlp1f) and the second branch under the hypothesisphét selected (i.egin
o A-] p1f); finally it discards the return types of the brancliest cannot be selected
which is safely approximated by the fact that the correspund; is empty.®

The rules in Figure 2 are the same as those defined in [10] (tchvthe reader can
refer for more details) with just a single exception: in r{@bstn we require that the
arrows specified at the index of the function have disjoimhdms:vi,h <i.ohA0; =0.
This restriction is necessary (but not sufficient) in oraeavoid the problem of output-
driven overloading explained in Section 4.2. However, itses no loss of generality,
since everyCDuce functioru fAicl (%=Ti) (x) e can be put into this form by iterating on

5 The reader may wonder why the system does not return a typevenen one of the two branches cannot
be selected. As a matter of fact this is a key feature for tymwerloaded functions, where the body is
repeatedly checked under different hypothesis for somehi¢imtheco; of some typecase may be empty.
This simple function should clarify the point:pf(Int—Int;Bool—Bool) () (y — x € Int) 2(y+1): not(y)
when we type the body under the hypothesi$nt, then the second branch cannot be selected, while under
X : Bool is the first one that cannot be selected. Without the seteatiion in the typing rule the best type
we could have given to this function would have békmt Vv Bool) — (IntV Bool).

its index the rewriting that replacésy A ok — ThATk) A (OkA—0p — Tk) A (Oph A0k —
1) for every pair of arrowsy, — T, Ok — Tk such thaop A oy # 0. This rewriting is
sound and it is easy to show that the two functions are operalty indistinguishable
(e.g., by applicative bisimilarity).

As the intersection of negated channels in the rule (chasyres that values @it
yield a model that induces the same subtyping relation a#itial one, so does for
CDuce the intersection of negated arrows in the rales{r): the interpretation defined
by (4) where values are closed terms generated:by n | ufAic (9=T)(x).e | (v,v)
and types ar€Duce types, enjoys the same properfi@herefore, we can again use
the pattern semantics of Section 2.2 to define the call-thyev@perational semantics of
CDuce (we omit the straightforward context rules that candasl in [10]).

vivo — elvi/f;va/X] if vi =pfi(x).e
matchVwith p1=ei|l pp=e — ev/p1] if v/p1#Q
matchVwith pi1=e| pp=€ — &[v/py if v/pL=Q,v/p2#Q

The calculus satisfies the subject reduction property [2].

4 Roadmap to the encoding

In this section we discuss the main difficulties encounténetie definition of an en-
coding of CDuce intoCTu It lists some failed attempts which will clarify the reason
behind the successful attempt.

4.1 The Milner-Turner encoding

Since our encoding involves languages with subtyping, tisedipproach we tried was
to adapt the Milner-Turner (MT) encoding of the call-bywaltyped\-calculus with
subtyping into the typet-calculus with subtyping, as presented in [16]. The traita
of arrow types presented there is:

(o— 1) = chi(o) x chi(T))) -

The encoding oh-terms, decorated by their minimum types, is:

()™ =t(x)
(Ax°.€9)L <va@°DX°W><<>H'<< b).(€')5 ™))
(5T = (v alohxemtim) (v bleh) ((e2=T)L || a(w).((€2)] || b(h).w(h,c)))

The encodmg of an expressi@ns parametrised by a type environménsuch that
I+ e:1 and by a channeat™ on which the value of the expression is returned to
the environment. A function is represented by a channel‘ftaene” of the function)
which can be called by sending the input value and a channghah the output value
should be returned. These two parameters are used by aatepliprocess (the “body”
of the function) which returns the output value upon terrtiora In the encoding of the
application, the encoding of the function is called on theceling of the argument, and
the returned value is returned as the value of the whole sgf®e. This encoding bears
a strong resemblance with the continuation passing stglestorm. In this sense, the
return channel of an expression could be seen as the additeesaontinuation.

6 Contrary toCTt (see Footnote 3) we are here in presence of a circularity.r@ger can refer to [7] to see
how to avoid it.

Since we translate only well-typed terms, in the case of ff@ieation we must
havep < 0. The encoding of the application (in particular, tugh, c) subterm) is well-
typed only if this implieg|p) < (o]). This holds true in the simply typedcalculus with
subtyping, but fails as soon as we add intersection typebalircase, the translation of
the types does not preserve the identity of type€uce, we have seen that the iden-
tity (5) holds (i.e.,(c = T)A (0 = ') = 0 — TAT), while the same does not hold on
the encodings of the types at issue since, in general, ittisume that

ch(sx chit)) Ach{(sx ch(t’)) < ch{sx ch{tAt')) .
Using this observation we can indeed show that the MT engpatiaps a well-typed
CDuce expression into an ill-type@ process. Take = (int — int) A (int —
bool), 0 = int — 0, T = (0 — int) — p — int, ande = ATX.AP~***y.xy. The ex-
pressioreis well-typed with typet sincep < 0. The translation ok: ¢ — int,y:pF
Xy: int on channet’ is:

P’ = (v a/lolxetine)) (y yleh) (& (x) || a(w).(B(y) || b' (). (I, C)))
but the subterrm(h', ¢’) is not well-typed. This is because the variaflenust have type

(p) being received oby. However it cannot be sent @ as(p) £ (o). The translation
of - e: 1 contains a ill-typed term and, therefore, is ill-typed .

4.2 Output-driven overloading

In order to give an operational intuition of why the MT encaglidoes not work, recall
that intersections of arrow types are commonly assimilédetthe types of overloaded
functions. InCDuce, the identitfd — 1) A (0 = T') = 0 — TAT is justified because
overloaded functions can perform a type-case only on the ¢fphe input. Therefore,
if on the same input a function returns values of typand values of typet’ it must
return only values that have both types.

In Ctt, however, a process that encodes a function receives it aigaoi the return
channel. In principle such process could perform a type-aasthis extra piece of
information and then execute different computations agiogrto whether the expected
result is of typet or T. Such “output-driven” overloaded function can, on the same
input, return a value of type and adifferentvalue of typet’ (and not int). This is a
function that is in((c — 1) A (0 — T')) and not in(gd — TAT'), therefore we expect
that(o —» TAT) < ((0— 1) A (0 — T')) which is indeed the case.

4.3 The distributive law

At a first analysis, it may seem that the problem is the subtypelation ofCtt. We
may be tempted to change it by adding the following inequatio

chiti Aty) < chity)Vvehity) .

Since the converse inequality already holds (as seen inddez), we would obtain a
“contravariant” distributive law of the channel constrmicbver the intersection. A simi-
lar distributive law is used by Hennessy and Riely in [11fl&finethe intersection type.
As explained in [6], the above inequation is not justified taéculus endowed with dy-
namic type-case. It is also not clear at first sight whetheoducing the inequation is at
all possible using a semantic approach. In any case, thisabtyping relation would
not make the translation work either as it would introdtiwe manyequations in the

10

translation. For example, beirigit A bool = 0, we would get
ch(0 x ch{int Vbool)) < chiint x ch{bool))V ch{bool x ch{int)).

The type on the leftis the encoding®@f intVbool and the other type is the encoding
of (int — bool)V (bool — int). This subtyping gives a problem already for the iden-
tity function, which has typ® — int V bool but not(int — bool)V (bool — int).

4.4 The negation translation

Intuitively, to find an encoding that respects type equahty need that, when encoding
the arrow type, the operator that encodes the output typgekdites over the inter-
section, while the operator that encodes the input typeldhoot distribute over the
intersection. One possible encoding that satisfies thigireapent is the following:
(c—1) = ch{(a) x (1)) .
Indeed the negation is a contravariant constructor thatilolises over the intersection.
However it was not clear to us what operational interpretative could attach to this
translation. Under this translation of the types, the Mh#lation of the\-terms would
not be well-typed.

This however was the sparkle that brought us to our solutigriVe want to pre-
serve the naturalness of the MT encoding, that is, to encadetibns calls by RPCs
that send along with the argument a channel on which the aadt meturn the result;
thus the type of the second argument of the call (i.e., thetloaeencodes the output
type 1) must allow for messages of tym1((t)). (ii) We also want the type of this
argument to distribute over intersections, in order to egsphe subtyping relation; the
use of negationy(t)), seems to help in this direction. Finallyii) we want this second
argument to be contravariant (since it is undetd), it will then respect the covari-
ance of the output type it is meant to encode); but the joistafstwo contravariant
constructorseh{) and—, would make it covariant, thus we may need to add a further
negation to make it contravariant. All this yields, for theceding ofo — T, a second
argument of type~(ch{—(t))), which isalmostwhat we are looking for. We say “al-
most” since it still does not satisffi) insofar as it is not a supertype ofi{((t))); as
we will explain in Section 5.2 one point is still missing fraitn ch{1) — to verify it,
simply compute the difference((t)) \ —ch{—(t))). So we add it, obtaining for the
second argument the following encodingh{—(t)) v ch{1). This idea is carried out
in details and generalised in the following section.

5 The Encoding

We propose a modification of the Milner-Turner encoding tiegpects type equality,
and it is very close to the original translation.
5.1 TheA-channel constructor

The encoding of the types we propose is parametric with #dpe constructor of 1t
types that we callX-channel” type. This notion is designed to make the traiusiaif
types to respect the type equality (unlike the Milner-Turaued distributive approach),
and to make the translation of terms to make sense (unlikeggation approach).

Definition 5.1. A A-channel(noted, cA(—)) is a unary constructor of Ttypes s.t.:

11

1. chit) < ch(t);
2. ch'\(sAt) =ch(s)veh(t);
3. s<t <= ch\(t) <ch\(s).

Observe that the three conditions of the definition corraesyo the requirement$-iii)

we outlined at the end of the previous section. Therefored@mn (1) is necessary
for a meaningful translation of terms, while Conditions &)d (3) are necessary for
respecting the identity of types. Usidgchannel types we can now define a mapping of
CDuce types tdCtr-calculus types that respects type equality.

Definition 5.2. The interpretation functiof{ —}} : cpuce — Zenis defined as follows
{{ol}=b {of =0 {i=1 {-th =~}
f{ovi}} ={{opv{t} {oath ={oha{{th
floxth = o x{{t} {o— 1} = ch{ol} xch*({{T}})).

Theorem 5.3. Leto andt beCDuce types. Thea <1 <— {{o}} < {{t}}.

5.2 Incarnations of A-channels and their intuition

Possible choices fah (t) are of the formcho(t) A ¢ where
—ch'o(t) = =ch(~t) v ch(1);
— ¢ is a constant type such thett(0) < ¢.

Proposition 5.4. The constructor ci?(t) A ¢ is aA-channel.

As the Condition (1) in Definition 5.1 clearly states, Phehannebrf\(t) essentially
is ch(t) plus some extra stuff, some “garbage”, that makes the othercbnditions
—hence type identity preservation— hold. The extra stuffttis added tachit) is
basically given bych(t). To understand the precise role played by this garbage, it is
interesting to consider the following properties:

a. cho(0) =1

b. ch’o(1) = =ch(0) v ch(1)

c. [(chto(t) A=chi(t)) Ach(0)] = {cS|t £ s& -t £ s} U{c}.
The first two properties say thatf\o(—) adds as garbags most(point (a.)) everything
andat least(point (b.)) all non-channel types plus the channel whictpots everything.
In order to exactly determine which channet°(t) adds to tocht) let us take out
all ch(t) and consider just the channels that remained: this is gxagtht (cho(t) A
—cht)) A ch(0) does. Point (c.) states that these are all channels thaecahvalues
both inside and outside That is, these are all the channels for which it is not pdssib
to predict the result of a test that checks whether the messagy transport are of type
t.

This last observation is the key to understand why the caragd definition of
ch'o(—) is necessary. We have observed that the MT translation doewark be-
cause it allows a “output-driven” overloading whereby adtion can have different
behaviours for different expected types of the result. Trwengeneral channel type
CH\O(—) allows (potentially, in the types) the caller to “confuseich output-driven
functions, by sending “garbage” reply channels. Althougbpiiactice, encodings don’t

12

do that, the possibility of a output-driven function is mleut also at the level of the
types. ltis like the presence of the Police in Utopia: evedybbehaves well in Utopia,
and the Police never works. But the presence of the Polideisisible representation
of the fact the everybody behaves well.

To put it otherwise, if we take a channel that has tgh¥(s) v ch(t), it is impos-
sible to deduce whether it is only of tymr\(s) or only of typecw\(t). Even if it can
transport all messages of type, siayt could be because the channel was in the garbage
generated byrf‘(s). SoA-channelsintroduce some latent noise that makes it imiplessi
to determine which output type they encode.

Although the constructor is parametric on a typeon-channel types play no active
role in the encoding. Therefore it is reasonable (and it make encoding more under-
standable) to minimisg (that is,¢ = ch(0)) so thatfch* (t)] only contains channels. In
particular, this choice implies thah" (0) = ch{0) (all channels)¢h® (1) = ch{1) (just
the channel which outputs everything). All the developménotvever, is independent
from this choice.

5.3 Encoding of the terms

We describe here the mapping@Duce terms tcCre-calculus terms. What we translate
are in fact typing derivations. To simplify the notation, wdte €' assuming that is the
type ofein the last step of the derivation. We use a similar converfoothe immediate
sub-expressions @& which are in the premises of the last applied rule. The teditsi

is parametrised by a “continuation channal’of type ch{{{1}}). For readability we
decorate the channels with their types only when we restrén and in rulefgar). We
also adopt th€Duce’s convention to writ&:T for the patterrx A t. The translation also
requires a straightforward translation of the patterngiét encodes the types occurring
in them) whose details are omitted.

Definition 5.5. The translation of the expressioh@n a channet: is defined by cases
on the last applied typing rule:

(cons) {{n° 15 =a(n)
(van) {XPe™" = aq(x)

(fvar) { f 1 =a(fVie ({{oi pp>eh ({{i 1) (wheret = Aici (01 = Ti))
(pair) {{(e".€32) i = (v altosh) (v bito2l) (el BE || a(w:{{oa}}).(H{e? B ||
b(h:{{o2}}).a(w;h))) (wheret = 01 x 07)

(app) {{(e77"e8) B = (vallo=h) (v bllol) ({{ef~ B} || a(w:f{lo—). (H{eg B |
b(h:{{o}}).w(h,a)))
(sub3 {{(e”) G = (v alloh)({e B || a(w:{{o}}).a(w)) (whereo <)

(match {{(match €® with p1=€}'| pp=€32) J}} =
(v allah) (v bl Vol <o)y (p, + o) || Q)

wherePy = b({{p1}}, d:ch({{ta }})). f{ef* B4 O'l/pl’

P2 = b({{pZA_'l pi§}},d: Ch’({{'[z}})) {{92 }}F crz/Pz7
= {{e° B4 | a(h:{{o}}).b(h,a)
01 = OAlPS, 02 = CA“lpﬂ T = Viijozo} Ti

(abstr) {{ (ufAiel (@~ (x))T BE = (v fVia ({oilxe ({uih)) (a() || body(f))

13

where body(f) = !(¥iei f(x{{oi }}, b:eh{{{Ti) {e"
-+ (xViel {{oi }}. b:Vier (ch (f{ti J}) At {{ti })).0)

T = Aici (0i = T) AAjey (05 — 1))

Inrule (fvar), we assume that evepyabstracted variablé has a corresponding channel
constantf! for every suitableCtttypet. This allows the encoding to be parametric only
in thel” environment, and not in th& one.

In a match the expressiors ande, play the role of two functions to be chosen
in alternative according to the type of the argumentherefore we encode the match
with a patterned sum of the encodingspfande, in parallel with the encoding .

The translation of a functional term is very similar to thegoral MT translation. To
deal with overloading, the body of the function features goaed choice. This choice
includes all different behaviours that the function canduee on different inputs, and
the special sub-teri(x:Vic {0i }}, b:Viel (ch* ({1}) A—~ch({{Ti}})).0, which we call
the functional garbageThe role of this sub-term is to obtain well-typed terms. How
ever we will see that, within the context of translation@uce terms, the functional
garbage choice is never taken. Indeed, carrying on with aatogy, this functional
garbage corresponds to the prison of Utopia: it is there piuza misbehaving terms,
even if we all know that there isn’t any.

6 Correctness of the encoding
We start by stating that the translation produces well-tiyjgems.

Theorem 6.1. If A;T - e: 1, then{T }} - {{e"} T and {{T}}, x: ch({{t}}) - {e' P,
where{{l'}} ={y: {o}} |y:0€eTl}.

In the following we convene that when we wrifge}} L, then there are andA such that
A;T Fe:tandch({{t}}) is the type ofc.

A first observation is that all reductions out of the encodifiga CDuce expres-
sion are deterministic (since patterns in sums are muteattjusive) and never use the
functional garbage in the body of functions.fénctional redexs a redex of the shape
body(f) || f(v,c). A reduction issafeif it is deterministic and each functional redex is
reduced by choosing an alternativedody(f) different from the functional garbage.
We denote safe reductions by-s: as usual— is the reflexive and transitive closure
of —s.

Lemma 6.2. All reductions starting fron{{e}}& where e is an arbitrar{CDuce expres-
sion are safe.

In order to state the correctness of the encoding, it is atteiunderstand hoWwDuce
values are mapped O processes. As it is clear from the encoding, a functionaleval
is mapped into the output of a private channel name in paxaile the encoding of the
function body. We can then say that thet value corresponding to a functional value
is a channel name. The encoding of a pai€&fuce values reduces to a process which
outputs the pair of the correspondifigt values in parallel with the function bodies of
all functions which occur in the two values.

14

To formalise the above we will assume tladitfunction namesn the current value
aredistinctandfixed so that we cannot rename them. We define two mappings, one
from CDuce values t&tvalues and one frorffDuce values to sets of channel names.

Definition 6.3.
1. The mappingpv(—) is defined by induction o&Duce values as follows:
e cpv(n)=n;

o cpv(ufAic (0T (x) @) = fVia (o Bxet ({{Til})

® cpv((vi,v2)) = (cpv(va),cpv(va)).
2. The mappindunc(—) is defined by induction oBDuce values as follows:

e func(n) = &;

° func(uf/\iel (Ui—’Ti)(X).e) — {fVieI({{Gi}}XCh)\({{Ti}}))}

o func((vy,V2)) = func(vy) Ufunc(va).

The above mappings can express the normal forms of processeding values:
Lemma 6.4. {v}}d —¢ (v func(v))(T(cpv(V))||etunc(v)body(F)).

More generallypne would like to have that #is a well-typedCDuce expression and
e—"v, then{{e}}§ —¢ (v func(v))(T(cpv(V)) | ferunc(v)body(f)). Unfortunately, the
corresponding result does not even hold for the MT encoding-ocalculus intoTe
calculus [14]a fortiori nor does for our encoding. A reason for this failure is thaewh
the wholeA-term is ap-redex its encoding reduces tawterm which differs from the
encoding of the correspondir@jcontractum in the positions of the restriction and of
the replicated input representing the redugeabstraction. Moreover whenfaredex

in argument position is contracted (following the call-gtue reduction strategy) the
encoding of the reducektterm needs in its turn to be evaluated in order to be related
with the encoding of the original-term.

Our encoding ofCDuce into Ctt being essentially an extension of the MT en-
coding has luckily no more problems than the original onewsocan show simi-
lar soundness results. To formulate these results we neddfitme forCrt processes
a standard notion of typed barbed congruence with respeeint@nvironment”

(M >P=Q), see [16].

The main theorem of this section states that ifRuce expression reduces to a
value, then its encoding reduces to the process which issbdatbngruent tdhe nor-
mal form of the encoding of that value, and vice versa if the evaluatioa @Duce
expression does not terminate, then the evaluation of teding does not terminate
either.

Theorem 6.5 (Correctness).
1. If e —* v, then {e}}¢ —% P for some P such thatg > P

(v func(v))(e(cpv(V))l| fetunc(vpody(f)).
2. If e diverges, thef{e}}& diverges too.

From this, and from compositionality, it is easy to obtainisdness. Given tw@Duce

termsA; T - e: 1 andA;T - € : T we denote by; I > e~ € the standard Morris-style
observational congruence (as defined, for instance, ingag] 478).

15

Corollary 6.6 (Soundness)If A;T Fe:tandA;T e :tand{T} > {epf = {eRL,
thenA;M>e~ €.

Notice that completeness fails for our encoding, for theesagason as it fails for the
original MT encoding.

7 Conclusion

In this paper we presented a localised version ofiiecalculus which allows for fully
recursive types, on top of the already rich type structur€af We then showed how
this can be used to type-faithfully enco@®uce.

If we merely stop at the technical result, then the interégtis work is quite lim-
ited: sure, it shows the correspondence between overlgaaid guarded choices; sure,
this can be seen as the work that paves the way toward a ceriengliementation of a
concurrent programming language basedtibuce, similarly to the way the JOCaml
language was derived from OCaml and Join. But again this evimak as some solid,
technically impeccable, and extremely boring achievement

However, we think that the added value of this work lies maor¢hie lessons we
learnt and the techniques we developed, than directly ire#slt.

Foremost, we learnt that the process that encodes a furf@®much more power
than the function it encodes. This is because it has moreegl=io work on, both
the argument and the return channel, and it is thus charseteby a wider spectrum
of possible choices. This looks bluntly obvious, worthy obiieur De La Palice’s
troops, but note that this aspect was totally hidden in avjmus encodings. Indeed
this is emphasised only by the presence of linguistic bremchonstructs for which
the type system must cover all alternatives. This is the opattern matching, where
the pattern exhaustiveness requirement forces types &itéft account all possible
combinations.

This situation requires the introduction of some noise atlével of the types in
order to compensate for the asymmetry between the calldreofunction (the service
client) and the executor of the function (the service sgrvehnis technique could be
seen as a security policy that the client implements at tgpel lto defend itself from
possible misbehaviour of the serv@he client performs a type obfuscation: in this
way it reserves for itself the possibility to send rogue angats and so it threatens the
server against misbehavioWkle hope that these techniques of type obfuscation could
be generalised to various security scenarios and we aimpioexthem in the future.

As noted, the Milner-Turner encoding bears strong resendgavith the continu-
ation passing style (CPS) techniques used in functionajraraming. All the above
observations can be indeed carried over to such framewaikd.these intuitions, we
plan to study CPS transforms f@Duce. This should have a very important practical
impact: CDuce (we mean, the implemented language) was recently dedeto deal
with Web-services and active Web pages, and we consider €Bt &ey technique to
implement stateless Web sessions on the top of them.

The other important aspect of this work is that it constiiae independent, though
indirect, confirmation thaC yields the right equational theory of union and inter-
section types for thercalculus.Pierce and Sangiorgi’s subtyping for tmecalculus,
though very elegant, is structurally very poor: it essdlytiamounts to compare the

16

levels of nesting of channel constructors with the samerjiplan order to obtain a
much richer and expressive subtyping relation, one carmrtressanion and intersection
types. However, the problem arises on which equationalryhieouse for these types.
Cmtgives a precise and semantically grounded answer for itf@ntegation types): its
semantic justification for the equational theory, and itsespondence with set-theory
constitute a first strong justification for it.

The equational theory oEttis partially justified in practice, since works such as

the PiDuce project carried out at the University of Bologdpdnd the language XPi
developed at the University of Marseille [1], feature rigsions of theCritype system
that fit XML data manipulation. The present work is anotheorentheoretical, confir-
mation of the validity of theCrttheory. If we admit that the Milner-Turner encoding is
very natural, then we see how perfectly the law<offit the MT encoding, stressing
the asymmetry of the roles of client and server, and puslhiagtnergence of the type
obfuscation technique. This is what we consider the mosbitapt achievement of this
work.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

L. Acciai and M. Boreale. XPi: A typed process calculusXdiL messaging. IFMOODS
volume 3535 oLNCS pages 47-66. Springer-Verlag, 2005.

V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XManttly general purpose lan-
guage. INCFP '03, pages 51-63. ACM Press, 2003.

G. Boudol. Asynchrony and thetcalculus. Research Report 1702, INRIA,
http://www.inria.fr/rrrt/rr-1702.html, 1992.

. A. L. Brown, C. Laneve, and L. G. Meredith. PiDuce: A prazealculus with native XML

datatypes. IiEPEW/WS-FMvolume 3670 oL NCS pages 18-34. Springer-Verlag, 2005.

. G. Castagna. Semantic subtyping: challenges, pergpsctind open problems. IEBTCS

2005 volume 3701 oL NCS pages 1-20. Springer-Verlag, 2005.

. G. Castagna, R. De Nicola, and D. Varacca. Semantic siatyfpr the t-calculus. In

LICS '05 pages 92-101. IEEE Computer Society Press, 2005.

. G. Castagna and A. Frisch. A gentle introduction to seioanbtyping. INPPDP '05, ACM

Press(full version) andiCALP '05, LNCSvolume 3580, Springer-Verlag (summary), 2005.
Joint ICALP-PPDP keynote talk.

. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and OmiRéA calculus of mobile agents.

In CONCUR '96 volume 1119 oL NCS pages 406—421. Springer-Verlag, 1996.

. A. Frisch. Théorie, conception et réalisation d’'un langage de prograation fonctionnel

adapté a XML PhD thesis, Université Paris 7, 2004.

A. Frisch, G. Castagna, and V. Benzaken. Semantic simigty[n LICS '02, pages 137-146.
IEEE Computer Society Press, 2002.

M. Hennessy and J. Riely. Resource access control ieragstf mobile agentdnformation
and Computation173:82-120, 2002.

K. Honda and M. Tokoro. An object calculus for asynchimoommunication. lECOOP
91, volume 512 olLNCS pages 133-147. Springer-Verlag, 1991.

M. Merro and D. Sangiorgi. On asynchrony in name-passaiguli. InICALP’98, volume
1443 of LNCS pages 856—-867. Springer-Verlag, 1998.

R. Milner. Functions as process#&$athematical Structures in Computer Scien2@):119—
141, 1992.

B. Pierce and D. Sangiorgi. Typing and subtyping for neprocesses.Mathematical
Structures in Computer Sciend5), 1996.

17

16. D. Sangiorgi and D. Walkemhertcalculus Cambridge University Press, 2002.
17. N. Yoshida, M. Berger, and K. Honda. Strong Normaligatiothet=Calculus.Information
and Computation191(2):145-202, 2004.

18

A Pattern Matching

A pattern is matched against an element of the dongaiof a model of the types. A
matching returns either a substitution for the free vagahif the pattern, or a failure,
denoted byQ:

Definition A.1. Given a mode[] : 7 — 2, an element &= 2 and a pattern pc P
the matching ofd with p, denoted by fip, is the element a?Va"(P) U {Q} defined by
induction on structure of p as follows:

d/t ={} ifd e [t]
d/t =0 ifd e []
d/x = {x—d}

d/p1A p2 =d/p1od/p

d/p1|p2 =d/p1 ifd/pL#Q
d/p1lp2 =d/p ifd/p1=Q

(d1,d2)/(p1,p2) = d1/p1®d2/ P2
d/(x:=n) = {x—n}

wherey; ® v is Q wheny; = Q or y, = Q and otherwise is theniqueelementy €
gPomiyy)ubomlyz) gych that:

Y(X) = y1(x) if x € Dom(y1)\Dom(y,),

Y(X) = y2(x) if x € Dom(y)\Dom(y1).

Y(X) = (Y1(X),Y2(x)) if x € Dom(y1) N Dom(yz)

Note that we defined matching also for the pattéxn= n) which, as stated in the
above definition, is the pattern that always succeeds riefyithe constant substitution
{x— n}. Although this pattern is in the definition @Duce, we omitted it here since its
interest is just a practical one: it is used to define the besse of recursively defined
patterns, as we shown by a couple of examples in the nexbgecti

19

B Example

We show with an example the practical applications of theodimgy. Once we have
shown thatCDuce functions can be encodeddm, we can us€Duce notation directly
inside Ctt processes, as syntactic sugar of their encoding. Whemgréifunctionf
of type T, we mean a fresh channéfl™, and the processody(f) is supposed to be
running in parallel. (This is formalised later in the Subgion Lemma E.5.)

First we can use recursive and product types to define thedfypssociative lists,
which associate a string key with a channel and where weniis¢o denote both the
empty list and its singleton type (we uses_serif for recursion type variables):

a_list = ((string x ch{int)) x a_list) Vnil
Associative lists can be searched with recursive pattérasinstance if we match an
associative list with the following recursive pattgrn

p=(("key1",x),p)|(1,p)|(x:=nil)
thenx is bound to the list of all the channels that are associatdfiddey ‘key1”
(strictly speaking, that have the singleton tygsr1), while the following one

p=(("key1",x),1)|(L,p)|(x:=nil)
captures just the first channel associated to the key.

Thus, we can use patterns to “calculate” channels. But wheh a calculation is
more complex (e.g. parametric in the key string), then itestdr to delegate such a
calculation to a function such as:

fun asso¢s: string, | : a_list) : ch{int) =
match| withnil — fail
| ((k,c),t) — if k= sthen Celse asso¢s,t)

which can then be communicated by a process as a message @ratireelannounce
below to dispatch all the notes of an examination:

announcB-listxa_listx (stringxa_list—ch{int)) (marks mails getch.
(ve™-ist) t(marks ||
I c(((n,m),resd). (getcHn, mails)(m) || c(rest))
+¢(nil).0)

wherem_list = ((string x int) x m_list) Vnil. The channeinnouncewaits for an
associative list of marks, an associative list of chanresisl a dispatch function that
calculates a channel. The process creates a private chamméterate on the list of
marks (since it must communicate on channels, then in thenalesof aspawn we
cannot use a function to perform such an iteration) and usduhction received on
announcebound togetch) to calculate the channgetchn, mails) on which to write
the mark, and iterating the process with the rest of the idten the list of marks is
empty (the patternil matches it), the process becomes inert.

For instance if the following process synchronises

announceé (("Alice",6),(("Bob",8),nil)),
(("Bob",cg),(("Alice",ca),nil)),
assoc)

it will produce the proces&a(6) || Ts(8).

20

C Properties of types

C.1 Properties of Critypes

Proposition C.1. 1. The following equalities hold for all t :
ch(t) Ach(=t) = ch(1)

—ch(=t)Ach(1)=0

2. We have that
Ch_(t) < Vi€| Ch_(ti)

if and only if there exists€ | such thati <t.

Proof. The proof done in [6] fofCTttypes with positive channels and without recursive
types holds.

Lemma C.2. sxt < Ve (s xt)iff VI’ Cl.s< Vjers ort < Vieniti-

Proof. The proof of Lemma 4.6 in [9] fo€Duce types is valid without changes.
Lemma C.3. Lets=sVvr,t=t'vVr,§Ar=t'Ar =0, thens<tiff s <t

Proof. Easy from the definition of extensional interpretation.

C.2 Properties of CDuce types
Lemma C.4. [10] Aici(0i — Ti) < Vjei(oj — 1)) iff Jjo € IVI' C l.0}, < Vier0i
orl"#1 & Ajenrti < Tj,.

Lemma C.5. Suppose\ici(0i — 1j)) <0 — 1, and(Vi,j) oyAgj;=0. Forany i, if
oiA0 #0thent; <T.

Proof. Beingoj Ao # Othereisv e [o; A 0]. ForallV € [ti] the valueg(v,V)} belong
to [o; — Ti]. Since(Vi, j) oiAcj =0the valueq(v,V)} belong also tdAici (i — Ti)].
So from Ajei(0i — 1) < 0 — T we get{(v,V)} € [o— 1] for all V' € [1;], so we
concluder; <T.

Lemma C.6. If Aici (0 — 1i) <o —T1,and(Vi,) ojAcj =0, and ve [o] then there
is a unique i€ | such that ve [oi] and ¢ € [ch{(T;)].

Proof. By Lemma C.40 < Vici0i and then beingi Acj =0 (Vi, j) thereis a unique
i €1 such thav € [gi]. By Lemma C.5;; < 1, which implies[ch{1)] < [ch{T;)]. Thus
we conclude' € [ch{(T)].

21

D Existence of aCrtmodel and decidability of sub-typing in Crt

It is possible to directly build a model for the types, follong the guidelines of the
construction in [9]. Here we show that a model@uce can be also used as a model of
theCrttypes that satisfies Definition 2.1. To this aim it is enougtidfine a translation
from Crttypes toCDuce types which “preserves” the sub-typing.

Let [—]cpuce: Jcpuce— Z, be a model of the types @Duce [9, 2].
Definition D.1. Let unit be a singleton type. The translation functi¢r) : Jcn —
Tcpuce IS defined as follows

(b)=b (0)=0 (@)=1 (=t)=~(1)

(svt) = (Vv () (sAt) =(shA(L)

(sxt) = (s)x () (cht)) = (t) — unit.

Define the interpretatiof-] : Jern — 2, by [t] = [(t)] cpuce
Theorem D.2. LetE(t) be as defined in Definition 2.1. Th&iit) = & < [t] = @.

Proof. It is easy to check that eadtrttypet is equivalent (modulo associativity, com-
mutativity and distributivity ofA andV) to a type of the shaptg, Vv tx V tg where:

o tch = Viel (Anen; (C(sh)) A Akek—~(ch(s)));
oty = VIEL(/\meM| (Sm X rm) /\/\neN|_'(5n X rn));
o (g = VreR(/\seS bs/\/\teT,_'bt)-

Therefora is empty if and only if all sets in the union are empty. Sincertapping
[—] behaves likéE(—) on all type constructor but the arrow, is it enough to shovt tha

(E(ch(s)) N[)E(nch(s))) =2 < ([ch(s)[N[) [-chis)] = 2.

i€l jed i€l jed

This amounts to prove that

NE(s)) € JEChTs) <= NIets)] < | [ehts)]-

il jed iel jed

Nier [eh(8)] € Ujes [ehTs))] <= Nici [(s) = unit]cpyce € Ujea [(Sj) = unit] opyee
by definition
= 3jo € L[(Sio)] cpuce € Uier () Icpuce
by Lemma C.4
<= djo € .[sjo] € Uici [s] = [Vieis]
by definition
<= djo € JE(ch(Vias)) CE(chsj,))
by contra-variance dE(cht))
< Jjo€J.Nicr E(ch(s)) € E(chtsj,))
by equality (3) at page 4
= Niel E(ch(s)) € Ujes E(chTs)))
by Proposition C.1(2)
The above encoding also shows that one can use the decigoritlain for the
subtyping relation of£Duce to decide subtyping of the lodatrcalculus, thus proving
Proposition 2.2.

22

E Properties of the encoding
E.1 Proof of Theorem 5.3
Theorem 5.3 Leto andt beCDuce types. Thea <1 <— {{o}} < {{1}}.

Proof. It is enough to show that = 0iff {p}} = Ofor an arbitraryCDuce typep.
Itis easy to check that eadtDuce typep is equivalent (modulo associativity, com-
mutativity and distributivity ofA andV) to a type of the shape., V px V pg where:

e P, = Viel (Aner; (Oh = Th) A Akek;~(Ok = Tk));
® Py = VIEL(/\meM| (OmX Tm) /\/\neN|_‘(Un X Tn));
® P = VreR(/\seS bsA /\teTr_‘bt)-

Thereforep is 0 if and only if all sets in the union af@ Since the mapping }} is
the identity on all type constructor but the arrow, is it egbuo show that

Niei (@i =) AAjesm(0j = 1) =0 = Aic{{oi =t AAje{{oj =1} =0.

This amounts to prove that

Niei(0i = 1) <Vja(oj = 1) <= Aiaf{oi-»tu} <Vijalo -4yl

which is done in Figure 3.

Aicrf{oi = ti}} <Vjef{o; - 13}

<= by definition

Niercti({{oi B x ch* (T })) < Vjeach({{oj B} x ch* ({1 }))

<= by equality (3) at page 4

ch(Vier (f{oi B x ch (T }))) < Vjeach{{oj B x et ({1 1))
<= by Proposition C.1(2)

Jjo € J.efViel ({{oi } x e ({{Ti}})) < e {f{ojo }} x e ({{Tjo}})

<= by contra-variance ofh{)
Jjo € IHojo X e ({Tjo) < Vier (o} x e (T }})
<= by Lemma C.2
o € IV’ C 1Yo}, } < Vier{oi}} or ch ({Tjo}) < Vieneh (fui})
<= since forl =1’ the second condition is never satisfied,
being by Definition 5.1(1h" (t) never0
3o € IV C1{oj} < Vierfloil} orl’ #1 & eh ({1, }}) < Vien e ({{u)
<= by condition 2 of Definition 5.1
Jjo € IV C1{oj 1 < Vierfoil} o’ £1 & ch ({1j,}}) < e (Aien - f{ui })
<= by condition 3 of Definition 5.1
o €IV C1Hojo} < Vier{{oi} orl' #1 & Ajery it} < 1o}
<= by induction
Jio€IVI' Cl.oj, <Viergiorl’ #1 & Aiep\Ti < T,
<= by LemmaC.4
Aiel (i = Ti) < Vjei(oj = 1))

Fig. 3. Proof of Theorem 5.3

23

E.2 Proofof Theorem 6.1

Theorem 6.1 If A;T e: T, then{{T }} - {{e"]} and {T)}, x: {{t}} - {{e"}§, where
{r={y:{{of ly:oer}.

Proof. By induction on the definition of{ }} . We only consider three interesting cases.
(sub3 {{(e°)"}j = (valoh)({e’}5 | a(w: {{o}}).c(w))
By induction we have{l'}} - {e°}}L. Sinceo < 1 implies {o}} < {t}} by
Theorem 5.3 we gef{I" }},w: {{o}} F c: ch({{o}}) by rules (chan) and (subs).
We derive{{T" }},w: {{o}} F T(w) by rules (var) and (output), anilr }} - a(w:
{o}}).c(w) by rule (input). We conclude using rules (para) and (new).
(absty) {{(quiel(oi_’Tl (x).€)T}E = (v fVial {{GI}}XCH\({{TI}})))(c(f)IJ‘ body(f))
wherebody(f) = !(Zie f(x: {{oi}}. b e {{u}})-{e"), ™"
+1(x: Vier{{oi}},b: Vien (eh ({{Ti}}) A=ch{{Ti}})).0)
T=Aici(0i — Ti)/\/\jeJ_‘(G/j - Tl])
By induction we have{I',x: ai}},b: ch{{{ti}}) - {e B}, for i € I. By rule
(input) we derive{{I'}} - body(f). A premise of rule(abstr) is Aic (i —
Ti) £ 0j — 1] for all j € J, which impliesch(Vie ({oi}} x ch ({{ti}}))) £
({0} }} x ch ({1} }})) and also

flofp < e (1) £ Vier (Hoi}} x e (i)

forall j € J by the contra-variance @fi(). Therefore using rule (chan) we can
derive

{rir fViel((Hoi e ({ul) SR
sincef{T}} = c(Viel ({{oi}} x ch ({Ti}}) AAjea—~chT {0} } x ch' ({1} })).

Then rule (output) allows us to ty@éf). So we conclude using rules (para) and
(new).
(match {{(match €® with py=ejl| po=€3)' L =

(v allolh) (v p(oulxemtin) V(o xci{ta}}))((F'?l P) || Q)
whereP; = b({{py}. dietT({{Tu). {ef g ™™

F’z = b({{pz/\ﬂl paf . cie{{T2)}). fes g %P2,
= {{e° B4 | a(h:{{a}}).b(h,c)
01 =0oAlpS, 02 = 0/\"1915 T = V{ijoiz0) Ti
We assume; % 0for i = 1,2, the other cases being simpler. This implies
11V T2. By induction we have{l I} - {{e°}}} and

{roi/pid: chlfu) b el g™ (6)

for i = 1,2. If we definet = {o1}} x ch{{{ta}})) Vv ({{o2}} x ch({{t2}}) and

pr= ({pu}}.d:chit{{ta}})) andpz = ({{ p2A 1 paf}}.d - chi({{T2}})) we can
verify that fori = 1,2

{{oi/pi}},d:ch({{t}}) = tATHIS)/ B (7)

24

Equality (7) allows us to rewrite (6) as

(Y, (EALES)/ B el iy o/P

so by applying rule (input) we géfr' }} - Py + Po.

Sinced = 01V gz we getf{a}} x ch{{t1V12}}) <t, which allows us to derive
{3, h: {o}} - b(h,c) by rules (chan), (subs), (var) and (output). We conclude
using rules (input), (para) and (new).

E.3 Proof of Proposition 5.4

Proposition 5.4 The constructor ci¥(t) A ¢ is aA-channel.

Proof. The conditionch(0) < ¢ immediately follows from condition (1) of Defini-
tion 5.1. Moreover it is easy to verify thati(t) < cw\o(t) using the first equality in
Proposition C.1(1). Condition (3) of Definition 5.1 holdase

e itis easy to check tha <t iff ~ch{-t) < -ch{-s);

e Lemma C.3 and the second equality in Proposition C.1(1)ymtﬂ°(s) < chto (t)
iff ~ch{—s) < —ch(-t);

e observing thatho(t) = (ch*o(t) A)V (ch*(t) A=) and thatch’o(t) A—¢ does
not depend ohsincech(0) < ¢, Lemma C.3 impliesho(s) < ch'o(t) iff chfo(s)A
b <cho(t)Ad.

Condition (2) of Definition 5.1 follows fromhch{—(sAt)) = =ch(—s) V —ch(t).

E.4 Proof of Lemma 6.2

Lemma 6.2 All reductions starting fron{{e}} ¢ where e is an arbitraryfCDuce expres-
sion are safe.

Proof. Letbody(f) =!(Sie; f(x: {{oi}}.b: ch({{Ti}}))-{{e")}, +
f(x: Via{{oi}.b : Viel (e ({ti}h) A =~ch({}))).0) andv € [o] andc € [t] for

someo, T. By the typing rules we geAic (0i — 1)) <0 — T, and(Vi,j) oiAcj=0.
So we conclude by Lemma C.6.

E.5 Proofof Lemma6.4

Lemma 6.4
{ve —¢ (v func(v))(©(cpv(V)) |l teruncvybody(f)) -

25

Proof. The proofis by structural induction on values. The only iaging case is a pair
of values. Iff; = func(vq1) and fz = func(v2) we have:

{0V)ne = (valodh)bloah (Vi) 7 || aw: {ou}}).(1v22 1)y |
b(h: {oz}}).c(wh)))
—z valloh)(v bl (v) (@tepv(va) | tef,pody(f)) ||

a(w: o). ({{(v2*Bg [b(h: {o2}).c(w.h)))

by induction~
—s (Vb2 (v f1)(|| 7, body(f) || {32 |l

b(h: {{02}}) T(cpv(va).h)
—¢ (Vb2 (v f1)(|| g, body(f) ||

(v f2)(B(cpv(v2)) [e 7,body()) || b(h: {{o2}}).E(cpy(va),h)))
by induction

—s (v f1) (|l s body(f) || (v f2) (Il eq,body()) |
C(cpv(va),cpv(v2))))

E.6 Proof of Theorem 6.5
For each channel nanedhe observability predicates P. andP | are defined by:

e P | iff P can perform an input on channel
e P |¢iff P can perform an output on chanreel

Letn ranges ovec andt. We useP |}, as short fol® —¢ P’ andP’ |, for someP’.

Definition E.1. Barbed bisimilarityis the largest symmetric relatiory, such that
whenever Px Q:

o P |, implies Qly;
e P—P implies Q—% Q for some Q~ P,

{{e'spe = (valto=mh) (v bl) ({{ef~TspL || aw: {{o— 1}}).({e5sh ||
b(h: {{o}}).w(h,c)))
= (vallo=th(v b{{"}})(f ({7~ B acpv(8) |4 fody(f)) ||
a(w: o= 1}).((v)({&GRhepv(9) refbody(f)) || b(h: {o}}).w(h,c)))
by induction 3
= (v alto=mh) (v bltoh) (v f)({{e"”T}}aCDV(S)|l ¢ foody(f)) ||
(v f)@w: fo—1h).({&GRhepv(s) || bh: {ol}).w(h,c))|| ¢ body(f)))))
by Lemma E.4(1)
= (vallo=th bl (v f)({{e""‘}}aCPV(s) |l
a(w: {{o—1}}).({egHpepv(s) || b(h: {{o}}).w(h,c))|| ¢ rbody(f)))
by Lemma E.4(3)
= (v f(valto=mh)vblloh)(({eg=Tpk |

a(w: {{o - tf).({eg}f, | bth: {{o}).w(h.c)))epv(s)|| s tbody(f))

Fig. 4. Substitution Lemma: Cas# = eJ~"¢J
26

Atype environmerit refines an environment (notation” <TI), if x:t € " implies
MNe=x:t.
A contextC|] is a®/I -contexif © - C[] can be derived using the following typing
rule for the hole:
r<r
Ml

Definition E.2. Two processes,B arebarbed congruent & (I > P = Q) if for each
type environmen® and each®/I-context ¢] we have (P ~ C[Q).

Lemma E.3. cpv(v/p) = cpv(V)/p.

Proof. The proofis by structural induction on values and by cases.

Letv/p(x) = mfor some constarm which does not dependent fromln this case
cpv(v/p)(X) = cpv(v/p(x)) = cpv(m) = mandcpv(v)/p(x) = m, where the last equality
holds beings andcpv(v) of the same type.

Letv/p(x) = v. In this casepv(v/p)(x) = cpv(v/p(X)) = cpv(v) andcpv(Vv)/p(x) =
cpv(v), where the last equality holds beirn@ndcpv(v) of the same type.

Let v = (vi,v2) and p = (p1,p2). It is easy to check thatpv(vi/p1 ® va/p2) =
cpv(v1)/p1® cpv(v2)/ p2, SO we conclude by induction.

W spE = (v gViaHolxel ({5lh)) (e(g) || H(Sic gly : foiJ}.b: T 1)) el ship Y
+9(y: Vie {1 }}.b: Vier (et ({1 }}) A=ch{{{ti }})))-0)
& (v gVier o xet ({5l (c(g) | H(Fier gy : i}, b (T).
(v) ({5 Y cpv(s)| ;< fbody(T))
+0(y: Vie {{oi}}.b: Vier (e (i }}) A=ch({{Ti }}).0)
by induction
& (v gVier (ol xe ({Tih))) e(g) | (Fier gy : foi), b T).
(v) ({5 Y cpv(s)|| s tbody(T))

+o(y: VLel{{Ul}}>b:Viel(Ch)\({{ri}})/\“‘Ch_({{Ti}}))~(V F) (Il body(1)))
since(v)(||¢cbody(f)) =0

& (v gVia (o xe ({13 (g(g) |

(v) (Tierg(y: {oi}.bret({{n}). {ef }}I'ya v(s))
""g(y:Viel{{oi}}>b5Viel(CM({{Ti}})/_‘Ch_({{TI}})) 0)|l e rbody(f))))
by Lemma E.4(2)

= (v gVie (ol xet ({nih)y (g) ||
v)((Tier g(y: {oi}. b eh(fn). {eh }}r Ycpy(s)
+9(y: Viel{{oi }},b: Viel (CM({{Ti}})/_'Ch_({{TI 1))-0l[¢ ¢body(f)))))
by Lemma E.4(4)
= (v f)(v gVia (ol ({uh)) e(g) |

((Siar 9y : {{oi b et))-ef By
+g<y:viel{{oi}},b:viel<cM<{{T.}}>Aﬂcm{{n}}>>.o>cpv<s>|\fefbodym)))

Fig. 5. Substitution Lemma: Cas& = pg\i< (9T (y) g
27

Lemma E.4. Let all considered processes@ftbe obtained by reducing encodings of
CDuce expressions in the environmént

1. If f does not occur imthenl > (v f)(TLP || body(f)) = 1t.(v f)(P || body(f)).
2. If f does not occur imy, T, thenl > (v f)(Tu.P+ m.Q) || body(f)) =
1.(v £)(P || body(f)) 4+ 1o.(v f)(Q || body(f)).
3. T (v H)(P || QJ body(f)) = (v f)(P[| body(f)) [| (v)(Q || body(f)).
4. T (v)P body(f))=I(v f)(P | body(f)).

Proof. The equations (1) and (2) are easily proved directly. Théctkef the proof of
the other two is as follows. It is possible to prove a contertina for barbed congru-
ence, analogous to Lemma 2.1.19, page 60 of [16]. Little ghain the proof, except
that we need to keep the distinction between open terms fwtaonot reduce) and
closed terms, and that we have a slightly more general nofiameraction. Using lo-
cality and the context lemma, it is easy to prove a resultlaind Lemma 10.7.3, page
344 of [16]. This allows us to conclude the proof, as done femima 10.5.1, page 346
of [16].

Lemma E.5 (Substitution Lemma).

Mo {{e's}c = (v func(s)) ({{€ Heepv(s) | rerncs body(F)) -

{e'sht = (v allolh)(v plovxem{Ti)v Oz:chT{{Tz}})

((b(py,d - ot {fra}))-felshry ™™

b(p2A=1paf.d: el {{r2}})) (& S}}rc’z”’2) || {{e§sha Il a(h).b(h,c))
(v aftol) (v plowxenti{t)v szcff({{Tz}}))

((b(py,d: T2 1)) (v) (e B ™ Popv(s) | ¢ body()+

b(p2A=1paf.d: ch{To}}).(v f)({{eg o % Pep(s)
e ¢body(F))) || (v F)({{e§Bacpv(s)]| ¢ fhody(f)) | a(h).B(h.c))
by induction

= (v allol) (v ploxer{Th)V(exetm{T}))
(v F)((b(pr,d: T }))- e By Pepu(s) +
b(p2 A= paf,d : ch{{T2}})) {65 }}r"/”cpv(snnfefbody()l
(v F)({{eg R hepv()|| ¢ tbody(T)) || a(h).B(h,c)))
by Lemma E.4(2)
& (v alloh) (v povxeh{T)vioaxe{f))
(v F)((b(pr,d : T }))- €} 1}}r O/Piepy(s)+
(2 A= paf.d T {{r21}) (€} i}“’/”cpv(s)) [
{5 Hhepv(s)| . hody(f)) || a(h)b(h,c)))
by Lemma E.4(3)
= (v f)(vallo)(v plorxem{{Tuf)Vv(ozxeh{{t}}))
((b(py,d : (T })). Hef By /P s

(pz/\ﬂlpﬂ d:chif{ta}})) & }}r0 Rl
{{e§ 4 Il ath).b(h,c))epv(s) s fbody(f))

o~

Fig. 6. Substitution Lemma: Cas® = match €J with p1=€j| pp=>€}?

28

Proof. By induction on the definition of }} . We omit the empty environmentin writing
2, Figures 4, 5 and 6 show the interesting cases.

Theorem 6.5 is a corollary of Lemma 6.4 and of the followinguié

Theorem E.6. (Correctness)

1.

2.

3.

{(ufNier (@=Ti) (x), e)v}}g —% P for some P such that

&5 P ffefy/x]u e (0 (x AN CE

{{matchvwith p1=e| po=e&}}¢ —¢ P for some P such that

o>P {e\V°/p}}¢ where i= 1if v/ p1 # Q and i= 2 otherwise.

If e — € then there are) such that{{e}}? —% P and {{¢'}}Z —% Q and
o>P~Q.

Proof. (1). Letey = (pufAic1 (9=Ti) (x).€)9=T\°, The proof is given in Figure 7.

(2). Letv®/p1 # Q ande = match V° with p1=-€;'| p;=-€%. The proof is given in

Figure 8.

(3). The proof by induction on the definition ef— is similar to that one of Lemma

15.3.22in [16].

fleo}@ = (valomth) (v bllol) (A (e=T)(x).ep 2 || a(w).({v" By || b(h).w(h,c)))
= (vafto=thy bl (v flAa (-t
@(f) || body(f)) || a()({{V"}}? || b(h).w(h.c)))
—s (Vb) ((v f A (@@=l (hody (1)) | {{V"}}? I b(h).f(h,c))
—s (vbll) (v A=)) (body(1)) |
(v §)(b(cpv(v))|lgegbody(g)) || b(h).f(h,c))

whereg= func(v) by Lemma 6.4
s (v HA =TI (body() || (v §)(llgegbody (@) || F(epv(v).c))
s (vE)(v FAC =TI (T 32 cpv(v) /X | (lgegbody(9)) || body(f))
by Lemma 6.2
> ffeVo/x|[ufNie(@=T) (x).e/f]}Z by Lemma E.5

Fig. 7. Proof of Theorem E.6(1)

fleffd =

altolh) (v plovxenti{tl))vioexeh({{T})))

\Y)
(b(py.d: cH{{Te}))-He g™+
(P2A=pr,d:ch{{T2}})). {&5 }}02”’2) | {v° 3¢ || a(h).b(h,c))
v allol)(v plorxefi{u}) VCEEAN))
(b(py,d o {{Ta}})-HE BT +b(p2 A=pr,d: cT{T2})). {2 BT/ ™)
| (v £)(@(epv(v)) | < body(f)) || a(h).b(h,c))
wheref = func(v) by Lemma 6.4
—s (v) (e BE [epv(v®)/pa] |1 sbody(f))
(v £)({{el* B [cpv(v/p1)]|| ¢ tbody(f)) by LemmaE.3
{{er°/p1] € by LemmaE.5

'l

Fig. 8. Proof of Theorem E.6(2)
29

