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Abstrat. two-player games are used to model open systems. One player
models the system, trying to respet some spei�ation, while the other
player models the environment. In lassial model heking, the objetive
is to verify that the system an respet its spei�ation, whatever the
environment does.
In this artile, we onsider a more realisti senario when the environment
is supposed to be fair. We de�ne a notion of fair player in two-player
games. Our solution is inspired by Banah-Mazur games, and leads to a
de�nition of a novel lass of 3-player games alled ABM-games. For ω-
regular spei�ations on �nite arenas, we explore the properties of ABM-
games and devise an algorithm for solving them. As the main result, we
show that winning in an ABM-game (i.e. winning against a fair player)
is equivalent to winning with probability one against the randomized
adversary.
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1 Introdution

Two-player games are used to model open systems. One player (sometimes alled

Adam) models the system, trying to ahieve some goal, while the other player

(sometimes alled Eve) models the environment. In lassial model heking, one

wants to verify that the system an ahieve the goal in any kind of environment.

Therefore, one an assume a very evil Eve, able to exploit the smallest weakness

of Adam. In many situations, the environment is not that evil. It an make

hoies against the system, but sometimes it an play in its favour. There are

di�erent ways to model suh an environment. One possible way is to suppose

that the environment makes random hoies. This leads to the notion of 1 1/2-
player games, or Markov deision proesses (MDP). In suh models, one wishes

to verify whether the system an reah its goal with probability 1.

Another point of view is to suppose that the environment is fair. Fairness

assumptions are well known in the ontext of losed systems. In most ases [2,

14℄, fairness assumptions are of the form �if an ation is allowed in�nitely often

during a run, then it is done in�nitely often�. But what does it mean for a player

⋆ During this researh the seond author was with LIAFA and PPS.



to be fair? A general de�nition of fairness for losed systems has been proposed

in [15℄. It is based on a di�erent notion of game: the Banah-Mazur game. A

property is de�ned to be a fairness property if the good player has a winning

strategy in the game. This de�nition has a topologial haraterisation in terms

of omeager sets. In [14℄, a omparison between the general notion of fairness

and Markov hains is performed. It is shown that for ω-regular spei�ations, a
�nite Markov hain satis�es the spei�ation with probability 1, if and only if

the spei�ation is a fairness property in the sense of [15℄.

In this work, we propose a similar de�nition of fair player. The idea is to

split Eve into two �sub-players�, Banah (good) and Mazur (evil), playing the

Banah-Mazur game between themselves. Eve is thus not always playing against

Adam, but sometimes she shares his goals. However Adam does not know when

this is the ase, he only knows that Eve is split. To show that our notion of

2-player game with fair Eve is orret, we ompare it with Markov Deision

Proesses. Similarly to the result of [14℄, we show that for games with ω-regular
onditions, Adam an reah his goal with probability 1 in an MDP if and only

if he an win the game against fair Eve.

The haraterisation in terms of Banah-Mazur games gives a di�erent point

of view of qualitative probabilisti model heking. In [13℄, this point of view

is used to simplify and modify the lassi algorithm by Couroubetis and Yan-

nakakis [7℄. Also it helps providing a notion of ounterexample for probabilisti

model heking [12℄. We hope that our proposal an be the starting point for

similar results in the model heking of MDPs.

Struture of the paper: In Setion 2, we introdue the known notions of two-

player game, Markov deision proess, Banah-Mazur game, et. We present

the theorem that links Banah-Mazur games on graphs with Markov hains.

In Setion 3, we introdue our new game, the ABM game. We show that for

parity winning ondition, if player Adam wins, then he has a memoryless winning

strategy, and for ω-regular ondition, he has a �nite memory strategy. This is the

main tehnial result of the paper, and we present the omplete proof. This proof

is indeed onstrutive and it generates an algorithm to deide whether Adam

has a winning strategy, and to produe the winning strategy when it exists. We

also show that, ontrary to two-player games, the ABM game is not determined,

by showing a game where no player has a winning strategy. Finally, in Setion

4, we show that, for parity and ω-regular goals, Adam wins the ABM game, if

and only if he almost surely wins in the orresponding Markov deision proess.

This result uses the existene of memoryless and �nite memory strategies.

2 In�nite games on �nite graphs

2.1 Preliminaries

A (direted) graph is a pair G = (V, T ) where V is a set of verties (also alled

states) and T a set of edges (or transitions) suh that T ⊆ V ×V . In this artile,

we assume that the graphs are �nite, i.e. V is always a �nite set. We also onsider



only graphs without dead-ends, i.e. for all v ∈ V there exists a vertex w ∈ V suh

that (v, w) ∈ T . We assume the reader is familiar with the notion of strongly

onneted omponent. A bottom strongly onneted omponent U is a strongly

onneted omponent suh that for all v ∈ U , (v, v′) ∈ T =⇒ v′ ∈ U . A path

of a graph is an in�nite sequene x = (v0, v1, . . . ) suh that (vk, vk+1) ∈ T for

eah k ∈ N. A path fragment is a �nite pre�x α = (v0, v1, . . . , vn) of some path.

An initialized graph is a pair (G, v0), where v0 ∈ V . An arena is a 4-tuple

G = (G,VA, VE , v0) where (G, v0) is an initialized graph and {VA, VE} is a

partition of V . A vertex of VA is typially represented by a square and a vertex

of VE by a irle. In ase that one of the two sets VA, VE is empty, we identify

the arena with the underlying initialized graph. A winning ondition Ω on G is

a subset of the set V ω of in�nite sequenes on V . For x ∈ V ω, we denote by

inf(x) the set of elements of V whih appear in�nitely often in x.

2.2 Two-player games

We de�ne �rst lassial 2-player games on arenas [9℄. In this kind of games, eah

player plays suessively on the arena and the game never stops.

De�nition 1. A 2-player game on an arena G is a pair G
2 = (G , Ω) where Ω

a winning ondition on G . A play on G is a path on G starting at v0.

We all the two players Adam and Eve. Intuitively, the players play the game

by moving on verties a token initially plaed in v0. In eah vertex vi, if vi ∈ VA

then Adam moves the token to some vertex vi+1 so that (vi, vi+1) ∈ T . If vi ∈ VE

then Eve hooses a suessor. Adam wins a play x if x ∈ Ω, otherwise Eve wins.

De�nition 2. A strategy for Adam is a mapping φ : V ∗ → V whih, for eah

path fragment α ending in vi ∈ VA, returns a suessor vertex φ(α) = vi+1 suh

that (vi, vi+1) ∈ T . Adam follows a strategy φ during a play x = (v0, v1, . . . ) if

for all i ∈ N suh that vi ∈ VA, φ(v0, . . . , vi) = vi+1. We say that φ is a winning

strategy for Adam in G
2, if Adam wins eah play beginning in v0 following the

strategy φ. We say also that Adam wins the game if he has a winning strategy.

The de�nition is analogous for Eve. To hoose the strategy, a player may just

need a memory of bounded size, or no memory at all.

De�nition 3. A �nite memory strategy for Adam is a mapping φ : V ×M → V
where M is a �nite set, together with an update funtion up : V ×M →M , and

an initial state memorym0 ∈M . Adam follows a �nite memory strategy φ during

a play x = (v0, v1, . . . ) if there is a sequene of memory states (m0,m1, . . . ) suh

that for all i ∈ N, up(vi,mi) = mi+1 and whenever vi ∈ VA, then φ(vi,mi) =
vi+1. A memoryless (or positional) strategy for Adam is a mapping φ : V → V ,

whih for all verties vi ∈ VA gives a suessor vertex φ(vi) = vi+1.

Positional strategies an be seen as �nite memory strategies where M is a sin-

gleton.



2.3 Winning onditions

We an onsider several lasses of winning onditions on arenas [9℄, suh as

reahability onditions, Bühi onditions, Muller onditions or parity onditions.

De�nition 4. A parity game on an arena G is a 2-player game together with

a olouring funtion c : V → N, suh that the winning ondition Ω is the set of

plays x suh that the number min(c(inf(x))) is even.

A lassial theorem is the following:

Theorem 5 ([8, 16℄). If Adam has a winning strategy on a parity game, then

he has a positional winning strategy.

We an de�ne a more general lass of winning onditions, using parity au-

tomata. The de�nition of parity automata is standard, see for instane [9℄. A

winning ondition Ω is said to be ω-regular if it is aepted by some parity

automaton. One an transform a game with ω-regular winning ondition into a

parity game by making the synhronised produt of the game with the automa-

ton. In this way, one an prove the following well known fat:

Theorem 6. If Adam has a winning strategy for an ω-regular winning ondi-

tion, then Adam has a �nite memory winning strategy.

The memory needed by Adam is essentially the automaton reognizing the win-

ning ondition.

2.4 Probabilisti models

In ertain ases, we want to model unpreditable events in systems. Therefore,

we want to be able to take transitions in a probabilisti way.

De�nition 7. A 1 1/2-player game is a triple G
11/2 = (G , p,Ω) where G =

(G,VA, VE , v0) is an arena, Ω a winning ondition like in 2-player games, while

p is a probabilisti transition funtion de�ned as p : VE × V → [0, 1] suh that

p(ve, v) = 0 i� (ve, v) /∈ T and for all ve ∈ VE,
∑

v∈V p(ve, v) = 1. If the graph

G is bipartite then the game is also alled Markov Deision Proess (MDP). If

VA = ∅, then the game is a 1/2-player game G
1/2 and it is also known as Markov

Chain (MC).

In 1 1/2-player games, Eve is the 1/2 player beause she does not really make

any hoies. So we will not talk about strategies for Eve. However, strategies

for Adam are de�ned in the same way as in 2-player games. They an be �nite

memory or memoryless. In this artile, we will not need randomized strategies

that an be found in the literature [6℄.

Given a strategy for the full player Adam, one generates a (possibly in�nite

state) Markov hain by taking the �exeution tree� of the graph G and by pruning

out all the hoies Adam does not take. If the strategy is �nite memory the

orresponding Markov hain has �nitely many states. One an alulate with

standard tehniques the probability of measurable sets of in�nite paths. See for

instane [6℄ for more details. Here we are interested in the following de�nition:



De�nition 8. We say that Adam has an almost sure winning strategy if in the

Markov hain generated by the strategy, the winning ondition has probability 1.

Adam wins almost surely if he has an almost sure winning strategy.

Note that ω-regular winning onditions are always measurable.

2.5 Banah-Mazur games

A di�erent kind of 2-player game is a game where players do not play only

one transition but a sequene of transitions suessively, and the alternation is

not deided by the arena, but by the players themselves. This game is alled a

Banah-Mazur game or a path game. It is played on a graph.

De�nition 9. A Banah-Mazur game G
BM is given by an initialized graph

(G, v0), and a winning ondition Ω.

The two players are B (Banah) and M (Mazur). M begins in v0 and hooses

a path fragment (v0
0 , v

0
1 , . . . , v

0
n0

) of size n0 (also hosen). Then player B does

the same from the vertex v0
n0
. The game goes in�nitely alternating player B

and player M turns, so we get an in�nite sequene x. Banah wins if x ∈ Ω,

otherwise Mazur wins.

De�nition 10. A play z of a Banah-Mazur game G
BM is an in�nite sequene

of path fragments z = (β0β1 . . . ) where βk = (vk
0 , . . . , v

k
nk

). The �attening of a

play z is the orresponding in�nite path. Banah wins a play z, if its �attening

belongs to Ω, otherwise Mazur wins. A strategy for Banah is a mapping ψ :
(V ∗)∗ → V + whih for eah �nite sequene γ = (β0 . . . βi) of path fragments,

gives a feasible path fragment ψ(γ) = βi+1 = (vi+1

0 , . . . , vi+1
n(i+1)

). Banah follows

a strategy ψ during a play x = (β0β1 . . . ) if for all i ∈ N suh that i is even,

ψ(β0 . . . βi) = βi+1. The strategy ψ for Banah is winning in G
BM from v0, if

Banah wins eah play starting in v0 following the strategy ψ. The strategy for

Mazur is de�ned analogously.

The Banah-Mazur game was proposed by Mazur (see [11℄, problem 43) as

a way of haraterising the topologial notion of o-meagerness of subsets of the

unit interval. Mazur onjetured that the seond player has a winning strategy if

and only if the winning ondition is o-meager in the standard topology. Banah

proved this (and he won, as prize, a bottle of wine). Banah-Mazur games

were adapted later on graphs (see [4℄). Völzer, Varaa and Kindler [15℄ used

them to give a de�nition of fairness in Kripke strutures (equivalent to losed

systems). They argued that this game generalizes the known notions of fairness

in systems, and they proposed the following de�nition:

De�nition 11. Ω ⊆ V ω is a fairness property on (G, v0) if B has a winning

strategy in the Banah-Mazur game on (G, v0) with winning ondition Ω.

We will adapt the game in order to express fairness in open systems, i.e.

lassial 2-player games.

An important result is the link between the Banah-Mazur games and Markov

hains, shown by the following theorem.



Theorem 12 ([14℄). If (G, v0) is an initialized graph, Ω an ω-regular winning

ondition and p any probabilisti transition funtion on V , then Ω has probability

1 in the Markov hain generated on (G, v0) by p i� Banah wins the Banah-

Mazur game on (G, v0, Ω).

3 ABM games

3.1 De�nitions

After having realled the known notions of 2-player games and Banah-Mazur

games, we now propose a new kind of game that somehow ombines those two. In

this new game, Adam plays as usual, but Eve is split in two. The two halves are

alled Banah and Mazur. Intuitively Banah helps Adam (he is good or �Bon�

in Frenh), while the real adversary is Mazur (evil, or �Mauvais� in Frenh).

De�nition 13. An ABM game is given by an arena G = (G,VA, VE , v0), and
a winning ondition Ω.

The game G
ABM = (G , Ω)ABM is played by players A, EB and EM . At the

beginning of the game, if v0 ∈ VA then A hooses a transition (v0, v1) ∈ T . If
v0 ∈ VE then EM hooses the transition. The game goes on in the same way as

in 2-player games. States that belong to VA are ontrolled by player A and those

in VE by player EM . After a while, player EM has to let the ontrol of VE states

to player EB . Then, it is this one's turn to play against player A before passing

the lead to EM again and so on. The following de�nition formalizes the rules of

play for Banah and Mazur:

De�nition 14. A move tree λ of player EB (or EM ) from a state vk ∈ VE,

is a �nite, pre�x losed set of path fragments starting at vk, and verifying the

following onditions:

• for eah path fragment α ∈ V ∗ and eah vertex v ∈ VE, if αv ∈ λ then there

is at most one vertex w suh that (v, w) ∈ T and αvw ∈ λ;
• for eah path fragment α ∈ V ∗ and eah vertex v ∈ VA, αvw ∈ λ if and only

if (v, w) ∈ T .

In a state of VA, player A hooses a transition as in the lassial 2-player

game. But in a state vi ∈ VE the token is moved aording to the move tree λ
given by EM or EB . In fat, if EM (or EB) gets the lead in vk then (vk, . . . , vi)
is a pre�x of a branh of λ. If vi has a suessor, then EM (EB resp.) plays vi+1,

whih is the unique suessor of vi in the tree. Else, EM (EB resp.) passes the

lead.

Intuitively, in open systems, player A represents the system while players EB

and EM the environment. When we want to verify a spei�ation, we assume that

the system always makes the right hoie but the environment is not neessarily

always against. Sometimes the environment helps A to satisfy the property,



sometimes the environment plays against. In this way, ABM games allow us to

model a fair environment.

Like in Banah-Mazur games, we an see an in�nite play x as an in�nite

sequene of tree branhes x = (β0β1 . . . ) where βk = (vk
0 , . . . , v

k
nk

) is a path

fragment where EB is leading if k is odd and EM is leading if k is even. Players

A and EB win the play x if the �attening of x ∈ Ω, else EM wins. In the

following setions we will sometimes identify a play with its �attening.

De�nition 15. A strategy φ for player A is de�ned as in 2-player games. A

strategy for player EB or EM is a mapping ψ : V ∗ → T where T is the set

of move trees. Player A follows a strategy φ during a play x = (β0β1 . . . ) with

�attening x = (v0v1 . . . ) if for all i ∈ N suh that vi ∈ VA, φ(v0, . . . , vi) = vi+1.

EB (EM resp.) follows a strategy ψ during a play x = (β0β1 . . . ) if for all i ∈ N

suh that i is even (odd resp.), φ(β0 . . . βi) = λi and βi+1 is a branh of λi.

A pair of strategies (φ, ψ) (for A and EB respetively) is said to be winning

if A and EB win the play following their respetive strategies. We say that A has

a winning strategy φ if there exists a winning pair of strategies (φ, ψ) for A and

EB. Player A wins the game if he has a winning strategy.

q0

q1

q2

q3 q4

q0

q1q2

q3

q0

q1q2

q4

Fig. 1. Example of an arena and a move tree in this arena

If EM plays the move tree on Fig. 1 at the beginning of the game, he will

reah q3 then q4 before passing the initiative or will pass his turn if player A
hooses the transition to q1.
Remark. In the de�nition of ABM games, it is important to notie that a

strategy for player A depends only on the sequene of the previously visited

verties. Therefore, A never knows whether he is playing against Banah or

Mazur at any given time. That is why there are three players and not only two.

This is important for the main result (Theorem 32) to hold.

In the example of Fig. 2, onsider the following winning ondition: 23q3 ∧
2¬q4 (in�nitely often q3 but never q4). Consider the ABM game with this win-



ning ondition. If we suppose that player A always knows who is leading in states

of VE , we an onstrut a winning strategy for players A and EB .

While player EM is leading, player A takes

q0

q1

q2

q3 q4

1

Fig. 2. A 1 1/2-player game

the transition going to q1. Then he takes

transition to q2 when EB gets the lead. Player

EB always takes transition to q3. Thus, state
q3 is visited in�nitely often but state q4 never.
However, if Eve plays randomly (with any

Markovian distribution), the winning ondi-

tion has probability 0 aording to the the-

ory of MDPs beause state q4 will be reahed
almost surely. This ontradits Theorem 32.

This is also the reason why we annot

ode our game in terms of lassi 2-player games. A omparison with games

with imperfet information (see e.g. [5, 3℄) remains to be explored.

3.2 Traps and attrators

Before presenting the main theorems, we need to study some properties of ABM

arenas. The following notions were often used in proofs in lassial 2-player games

[9, 16℄.

De�nition 16. Let G = ((V, T ), VA, VE , v0) be an arena. A trap for Eve (or

E-trap) in G is a subset of verties U ⊆ V suh that:

� for all v ∈ U ∩ VE, (v, v′) ∈ T =⇒ v′ ∈ U ,

� for all v ∈ U ∩ VA, there exists v′ ∈ U suh that (v, v′) ∈ T .

Trap for Adam an be de�ned in the same way.

The idea of the E-trap is to onsider the set of verties in whih Adam an

keep the token no matter what does Eve. The following easy proposition was

expressed in [16℄ for 2-player games. It depends only on Adam, and thus it holds

also for ABM games.

Proposition 17. In an ABM game, player A has a memoryless strategy to keep

the play in an E-trap.

De�nition 18. Let G = ((V, T ), VA, VE , v0) be an arena. The attrator of U ⊆
V for Eve (or E-attrator) written AttrE(U), is the limit of the sequene de�ned

as:

� Attr0E(U) = U ,

� ∀i ≥ 0, Attri+1

E (U) = Attri
E(U) ∪ {v ∈ VE | ∃v′ ∈ Attri

E(U) suh that

(v, v′) ∈ T} ∪ {v ∈ VA | (v, v′) ∈ T =⇒ v′ ∈ Attri
E(U)}.

Attrator for Adam an be de�ned in the same way.



In 2-player games, an E-attrator of a set U indues a strategy for Eve to

reah U . In ABM games, verties of VE are alternately ontrolled by EB and

EM and thus there is no strategy for any of these 2 players to reah U . However,
we have the following property on the omplement anyway.

Proposition 19 ([16℄). The omplement of an E-attrator in an arena is an

E-trap.

3.3 Positional strategies

In the rest of this setion, we will show that in the ase of ABM games with

parity winning onditions, winning strategies for Adam an be memoryless. A

lassial method to prove suh a result is to ompute the set of winning positions

and show that from these states there exists a positional winning strategy. This

tehnique was used for the 2-player games [16℄. In doing so, the set of states

is partitioned into winning and losing states. Later, we will observe that ABM

games are not determined. However, we still an ompute winning and non-

winning positions. In the following, G denotes a graph, G = (G,VA, VE , v0) an

arena and c : V → N a olouring mapping de�ning a parity winning ondition

as in 2-player games.

Theorem 20. If player A wins the parity game (G , c)ABM then A has a mem-

oryless winning strategy.

To start proving this result, let C M
G = {CM

0 , . . . , CM
i . . . , CM

n } be the set

of bottom strongly onneted omponents of graph G that have the following

property: for all i < n, for all U ⊆ CM
i , if U is an E-trap and U is strongly

onneted then min(c(U)) is odd. We write C B
G = {CB

0 , . . . , C
B
i . . . , CB

m} the set

of bottom strongly onneted omponents of G that do not have that property.

This onstrution draws its inspiration from the proof [6℄ of the existene

of memoryless strategies in MDP with parity winning ondition. In fat, the

sets C M
G and C B

G are inspired from the onept of ontrollably win reurrent

verties [7, 6℄.

Lemma 21. For all strategies φ for A and ψ for EB, there exists a play x
following φ and ψ suh that inf(x) is an E-trap.

Proof. Fix a pair of strategies (φ, ψ) for A and EB . We will show that EM an

play in order to make x an E-trap. Therefore, we suppose that EM knows players

A and EB 's strategies and hooses his moves aording to these. Anytime during

the play where EM has the initiative, we will say that a vertex q ∈ VE is explored

if EM has already taken all outgoing edges from q sine the beginning of his turn.
We will say that q is exhausted if there is no play that follows φ and reahes q.
Player EM will play in this way: when he gets the lead, if there exists a vertex

q ∈ VE not explored and not exhausted then EM tries to reah it. This is possible

beause q is not exhausted. There exists a play following φ that allows this. So in

this visited state q, he hooses a transition that has not yet been taken sine he



is leading. EM repeats this proess until all verties of VE are marked explored

or exhausted, and then passes the initiative. We notie that an exhausted vertex

will stay forever exhausted. Formally, a move tree λ of EM is a tree that owns

at most one branh λ0 suh that eah node n ∈ VE of the branh is not a leaf.

Indeed, that branh represents the revealed strategy of player A. To agree with

the de�nition of a move tree, EM passes the lead if A does not follow his strategy

φ. The branh λ0 is �nite. Suppose that λ0 is in�nite, then there always exists

a vertex that is not explored and not exhausted. That ontradits the �niteness

of the graph. Eah vertex is eventually either explored or exhausted. So the tree

λ is �nite and it is a proper move tree.

Suppose now that for a play x obtained in that way, inf(x) is not an E-trap.
Then there exist verties s ∈ VE and t ∈ V suh that (s, t) ∈ T , s ∈ inf(x) and
t /∈ inf(x). s ∈ inf(x) then s will never be exhausted and eah time EM gets the

initiative, he will be able to visit its suessor t. So we visit t in�nitely often.

But t /∈ inf(x), ontradition. We an onlude that inf(x) is an E-trap. ⊓⊔

Lemma 22. Player A has no winning strategy in the parity game on C M
G .

Proof. Let CM
i ∈ C M

G . Assume that A and EB have a winning pair of strategies

(φ, ψ) on CM
i . Then for eah play x following the strategies (φ, ψ), U = inf(x)

is a strongly onneted set suh that min(c(U)) is even. Thus, by de�nition of

C M
G , U is not an E-trap. That is a ontradition regarding to previous lemma.

As a onsequene, A and EB do not have winning strategies on CM
i . So A has

no winning strategy on C M
G . ⊓⊔

Lemma 23. Player A has a memoryless winning strategy in the parity game on

C B
G .

Proof. Let CB
i ∈ C B

G . By de�nition of C B
G , we know that there exists an E-trap:

U ⊆ CB
i suh that min(c(U)) is even. We write m a vertex, whih has minimal

olour in U . The strategy φ of player A is the following: for all u ∈ U suh

that u ∈ VA, A hooses a suessor v ∈ U suh that for all others suessors w
of u, the distane between v and m is shorter than the one between w and m.

And for all u /∈ U suh that u ∈ VA, A will hoose similarly the suessor with

shortest distane to reah the set U . The strategy ψ for player EB onsists in

using a similar strategy of shortest distane when it is his turn and passing the

lead to player EM eah time the vertex m is reahed. (In the same way that

in Lemma 21, we do not onsider the ase where player A does not follow his

strategy. So the move tree is �nite.) Remark that distanes to the vertex m and

to the set U are well-de�ned for eah vertex of the omponent CB
i beause of its

strong onnetion. Let x be a play following strategies φ and ψ. Then inf(x) ⊆ U
beause the strategies allow to reah the set U and to stay in it forever. Thus the

minimal vertex in�nitely often reahed is min(c(inf(x))) = m. We an onlude

that the pair of strategies (φ, ψ) is winning. Moreover, φ is learly memoryless.

So A has a memoryless winning strategy on C B
G . ⊓⊔

Now we will show that we an partition the set of verties V of the graph

into a winning region for A written W and a non-winning region for A written

L. We onstrut L by indution:



� G0 = G,
� L0 = AttrE(C M

G0
),

� Gi+1 = Gi restrited to V \ Li,

� Li+1 = Li ∪AttrE(C M
Gi+1

).

G is a �nite graph so the sequenes (Gi)i and (Li)i onverge. We write GW the

limit of the sequene (Gi)i, L the limit of (Li)i and W = V \ L.

Lemma 24. For all i ∈ N, player A has no winning strategy on Li if EM is

leading the states of VE.

Proof. Player A has no winning strategy on C M
G so he does not have one on L0

either. Indeed, player EM an play the strategy indued by the E-attrator to
reah C M

G where A has no winning strategy. Let n ∈ N, suppose that A has no

winning strategy on Ln if EM is leading. Aording to Lemma 22, we know that

A has no winning strategy on C M
Gn+1

if the play is restrited to the graph Gn+1.

The only way for A to win would be to always reah Ln when player EB has

the initiative in Ln. By indution hypothesis, if EM leads in Ln then A has no

winning strategy. But for eah play where we an reah Ln with EB , there exists

a play where we an reah LN with EM . Player EM only needs to simulate the

moves of EB until he arrives at LN . So A has no winning strategy on C M
Gn+1

. As

shown previously, player A does not have a strategy in its E-attrator either.

Thus A has no winning strategy in Ln+1 = Ln ∪ AttrE(C M
Gn+1

) if EM has the

initiative. ⊓⊔

Lemma 25. W is an E-trap.

Proof. For all i ∈ N, V \ Li is an E-trap beause it is the omplement of an

E-attrator. So W is an E-trap. ⊓⊔

Lemma 26. Player A has a memoryless winning strategy on W .

Proof. When the token is in W \C B
GW

, strategies for A and EB onsist in strate-

gies of shortest paths to the set C B
GW

inW similar to previously desribed strate-

gies. Aording to Lemma 25, W is an E-trap, so A has a strategy to prevent

EM from reahing L. The shortest distane strategy also allows to stay in W .

Furthermore, we an always reah C B
GW

. Indeed, the only bottom strongly on-

neted omponents reahable from a state of W belong to C B
GW

by onstrution

of L andW . The strategy of distane is then a winning and memoryless strategy.

When C B
GW

is reahed, we an use the strategy desribed in Lemma 23, whih

is also winning and memoryless. ⊓⊔

Proof of Theorem 20. At the beginning of the game, EM leads, so A has no

winning strategy on L aording to Lemma 24. Lemma 26 says that A has a

memoryless winning strategy on W = V \L. In onsequene, if A has a winning

strategy in the initial state then he has a memoryless winning strategy. ⊓⊔

We observe that the proof of Theorem 20 is onstrutive. It provides expliitly

the winning region of Adam. Also, for eah state of this region, the winning

strategy is expliitly given by Lemma 23 and Lemma 26.



3.4 ABM games are not determined

Lemma 22 says that players A and EB have no winning strategy in the parity

game on C M
G . In general, player EM has no winning strategy either on C M

G . We

an infer that the game is not determined.

Consider the parity game represented on

q0

q1

q2

q3 q4

4

34

2 1

Fig. 3. Example of parity game

Fig. 3. Lemma 22 says that players A and

EB do not have any strategies to win the

game. However, we an observe here that

player EM does not have a strategy either. If

he wants to win, EM has either to reah in-

�nitely often state q4 or reah in�nitely often

q1 and a �nite number times q3. But EM does

not know player A's strategy. If A were to

take the transition going to q2 a �nite num-

ber of times, then EM ould just pass to EB

without making any moves. But sine he does not know atually if player A
intends to take this transition in�nitely often or not, there are two ases.

� If player EM supposes that player A will reah q2 in�nitely often, then his

strategy has to wait for this move and reah state q4 before passing the lead

to player EB . However, if eventually A never reahes q2, then EM would

never pass his turn. As a onsequene, this is not a strategy beause the

move tree hosen by EM must be �nite.

� If EM supposes that A will never reah q2 again at a ertain point, then he

will pass his turn in q1. But we an imagine a senario where eah time EM

passes the initiative, A take the transition to q2 and let EB reah q3.

In any ase, we annot de�ne any winning strategy for player EM in this game.

3.5 Finite memory

We onlude the setion by extending Theorem 20 to ω-regular winning ondi-

tions, similarly to Theorem 6.

Theorem 27. Let G be an arena and Ω ⊆ V ω an ω-regular ondition. If player

A has a winning strategy in the game (G , Ω)ABM then he has a �nite-memory

winning strategy.

The proof tehnique is similar to the one used for Theorem 6. One makes the

produt with a deterministi parity automaton reognising the winning ondi-

tion. The automaton is essentially the memory needed by Adam.

4 Fairness as randomization

In this setion, we intend to demonstrate a theorem similar to Theorem 12 in

the ontext of open systems. That is we want to build a onnetion between



ABM games and 1 1/2-player games. We �rst do this for the parity ase, and

then extend to all ω-regular onditions.
We start by noting that the existene of memoryless strategies for ABM

games is mirrored in MDP.

Theorem 28 ([7, 6℄). Let G = (G,VA, VE , v0) be an arena, p : VE × V → [0, 1]
a probabilisti transition funtion on VE suh that p(ve, v) = 0 i� (ve, v) /∈ T
and for all ve ∈ VE,

∑
v∈V p(ve, v) = 1, and c : V → N a olouring mapping. If

Adam wins almost surely the parity 1 1/2-player game (G , p, c) then Adam has a

memoryless almost sure winning strategy.

4.1 The parity ase

Theorem 29. Let G = (G,VA, VE , v0) be an arena, c a olouring, p a prob-

abilisti transition funtion on VE and Ω ⊆ V ω the parity winning ondition

de�ned by c. If A has a winning strategy in the game (G , Ω)ABM then Adam has

an almost-sure winning strategy in the 1 1/2-player game (G , p,Ω).

Proof. Assume that player A has a winning strategy in the game (G , Ω)ABM .

Then aording to Theorem 20, A has a memoryless winning strategy φ. For eah
state of VA, we keep only the outgoing edge provided by φ. Let K = ((V, TK), v0)
be the initialized graph where TK = T \ {(va, v) ∈ T | va ∈ VA and φ(va) 6= v}.
We an easily see that, if player A wins in (G , Ω′)ABM then Banah wins in

(K , Ω′)BM . Indeed, eah play that is winning for A on G an be simulated on

K . It does not matter if Banah or Mazur has the initiative in a state of VA

beause there is only one outgoing edge.

Let p′ be the probabilisti transition funtion on V suh that for all ve ∈ VE ,

v ∈ V , p′(ve, v) = p(ve, v) and for all va ∈ VA, (va, v) ∈ T =⇒ p′(va, v) = 1.
This de�nes a Markov hain on ((V, TK), v0). Thanks to Theorem 12, we know

that the winning ondition Ω has probability 1 in this Markov hain. But this

shows that φ is an almost sure winning strategy for Adam in the 1 1/2-player
game (G , p,Ω). ⊓⊔

Theorem 30. Let G = (G,VA, VE , v0) be an arena, c a olouring, p a proba-

bilisti transition funtion on VE and Ω the parity winning ondition de�ned by

c. If Adam has an almost sure winning strategy in the 1 1/2-player game (G , p,Ω),
then A has a winning strategy in the game (G , Ω)ABM .

Proof. Suppose that Adam has an almost sure winning strategy in the game

(G , p,Ω). Then aording to Theorem 28, Adam has a memoryless almost sure

winning strategy. Let K = ((V, TK), v0) be the initialized graph where TK =
T \ {(va, v) ∈ T | va ∈ VA and φ(va) 6= v}. Let p′ be the probabilisti transition

funtion on V suh that for all ve ∈ VE , v ∈ V , p′(ve, v) = p(ve, v) and for all

va ∈ VA, (va, v) ∈ T =⇒ p′(va, v) = 1. This generates a Markov hain. As

Adam wins almost surely in (G , p,Ω) then Ω has probability 1 in the Markov

hain. By Theorem 12, Banah has a winning strategy in the game (K , Ω)BM .

This means that φ is a winning strategy for Adam in the game (G , Ω)ABM .



The winning strategy of player EB is to simulate Banah winning strategy in

(K , Ω)BM . Thus Adam and Banah have also a winning strategy in the game

(G , Ω)ABM . ⊓⊔

The following theorem results from Theorem 30 and Theorem 29.

Theorem 31. Let G = (G,VA, VE , v0) be an arena, c a olouring, p a proba-

bilisti transition funtion on VE and Ω the parity winning ondition de�ned by

c. Adam has an almost-sure winning strategy in the 1 1/2-player game (G , p,Ω)
if and only if A has a winning strategy in the game (G , Ω)ABM .

4.2 ω-regular onditions

The key fat in order to exploit Theorem 12 is that the graph obtained after

applying the memoryless strategy of Adam is �nite, as Theorem 12 applies only

to �nite graphs. We notie thus that Theorem 20 on the existene of memoryless

strategies is essential in the proof of Theorem 32. In the ase of ω-regular win-
ning onditions, the strategy of Adam is �nite memory. As in the memoryless

ase, the key observation is that the graph one gets by applying the strategy is

�nite (though larger than the original graph). Thus, it is still possible to apply

Theorem 12. We omit the straightforward details of the proof.

Theorem 32. Let G = (G,VA, VE , v0) be an arena, p a probabilisti transition

funtion on VE and Ω ⊆ V ω an ω-regular ondition. Adam has an almost-sure

winning strategy in the 1 1/2-player game (G , p,Ω) if and only if A has a winning

strategy in the game (G , Ω)ABM .

We an notie that if VA = ∅ then we have the speial ase of Theorem 12.

Thus, we showed that playing against a fair player is equivalent to playing

against a probabilisti player in the ase of ω-regular properties.

5 Related and Future Work

The Banah-Mazur game is one possible de�nition of fairness in losed systems.

An equivalent topologial de�nition an be given in terms of o-meagerness.

In [1℄, the topologial de�nition is used to prove the equivalene between prob-

abilisti and fair semantis of timed automata. Interestingly, this equivalene

holds only for one-lok automata, but it breaks down one we allow more than

one lok. Another equivalent de�nition is in terms of α-fairness [10℄. Of the three
de�nitions, this is the one that most resembles the intuitive notion of fairness �if

something is often possible, it will be often performed�. It would be interesting

to de�ne fair strategies for Eve in terms of α-fairness. We also expet that this

game-theoreti point of view an be applied to improve existing algorithms, or

to �nd new ones, in the qualitative model heking of MDPs.

In this paper, we have applied a de�nition of fairness to one of the players of

2-player games. In general, we ould study what happens to other players and

other games. For instane, a 1 1/2-player game where Adam plays fairly should

be equivalent to a Markov hain.
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