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Abstract. two-player games are used to model open systems. One player
models the system, trying to respect some specification, while the other
player models the environment. In classical model checking, the objective
is to verify that the system can respect its specification, whatever the
environment does.

In this article, we consider a more realistic scenario when the environment
is supposed to be fair. We define a notion of fair player in two-player
games. Our solution is inspired by Banach-Mazur games, and leads to a
definition of a novel class of 3-player games called ABM-games. For w-
regular specifications on finite arenas, we explore the properties of ABM-
games and devise an algorithm for solving them. As the main result, we
show that winning in an ABM-game (i.e. winning against a fair player)
is equivalent to winning with probability one against the randomized
adversary.
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1 Introduction

Two-player games are used to model open systems. One player (sometimes called
Adam) models the system, trying to achieve some goal, while the other player
(sometimes called Eve) models the environment. In classical model checking, one
wants to verify that the system can achieve the goal in any kind of environment.
Therefore, one can assume a very evil Eve, able to exploit the smallest weakness
of Adam. In many situations, the environment is not that evil. It can make
choices against the system, but sometimes it can play in its favour. There are
different ways to model such an environment. One possible way is to suppose
that the environment makes random choices. This leads to the notion of 11/2-
player games, or Markov decision processes (MDP). In such models, one wishes
to verify whether the system can reach its goal with probability 1.

Another point of view is to suppose that the environment is fair. Fairness
assumptions are well known in the context of closed systems. In most cases |2,
14], fairness assumptions are of the form “if an action is allowed infinitely often
during a run, then it is done infinitely often”. But what does it mean for a player
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to be fair? A general definition of fairness for closed systems has been proposed
in [15]. It is based on a different notion of game: the Banach-Mazur game. A
property is defined to be a fairness property if the good player has a winning
strategy in the game. This definition has a topological characterisation in terms
of comeager sets. In [14], a comparison between the general notion of fairness
and Markov chains is performed. It is shown that for w-regular specifications, a
finite Markov chain satisfies the specification with probability 1, if and only if
the specification is a fairness property in the sense of [15].

In this work, we propose a similar definition of fair player. The idea is to
split Eve into two “sub-players”, Banach (good) and Mazur (evil), playing the
Banach-Mazur game between themselves. Eve is thus not always playing against
Adam, but sometimes she shares his goals. However Adam does not know when
this is the case, he only knows that Eve is split. To show that our notion of
2-player game with fair Eve is correct, we compare it with Markov Decision
Processes. Similarly to the result of [14], we show that for games with w-regular
conditions, Adam can reach his goal with probability 1 in an MDP if and only
if he can win the game against fair Eve.

The characterisation in terms of Banach-Mazur games gives a different point
of view of qualitative probabilistic model checking. In [13], this point of view
is used to simplify and modify the classic algorithm by Courcoubetis and Yan-
nakakis [7]. Also it helps providing a notion of counterexample for probabilistic
model checking [12]. We hope that our proposal can be the starting point for
similar results in the model checking of MDPs.

Structure of the paper: In Section 2, we introduce the known notions of two-
player game, Markov decision process, Banach-Mazur game, etc. We present
the theorem that links Banach-Mazur games on graphs with Markov chains.
In Section 3, we introduce our new game, the ABM game. We show that for
parity winning condition, if player Adam wins, then he has a memoryless winning
strategy, and for w-regular condition, he has a finite memory strategy. This is the
main technical result of the paper, and we present the complete proof. This proof
is indeed constructive and it generates an algorithm to decide whether Adam
has a winning strategy, and to produce the winning strategy when it exists. We
also show that, contrary to two-player games, the ABM game is not determined,
by showing a game where no player has a winning strategy. Finally, in Section
4, we show that, for parity and w-regular goals, Adam wins the ABM game, if
and only if he almost surely wins in the corresponding Markov decision process.
This result uses the existence of memoryless and finite memory strategies.

2 Infinite games on finite graphs

2.1 Preliminaries

A (directed) graph is a pair G = (V,T) where V is a set of vertices (also called
states) and T a set of edges (or transitions) such that T C V' x V. In this article,
we assume that the graphs are finite, i.e. V' is always a finite set. We also consider



only graphs without dead-ends, i.e. for all v € V there exists a vertex w € V such
that (v,w) € T. We assume the reader is familiar with the notion of strongly
connected component. A bottom strongly comnected component U is a strongly
connected component such that for all v € U, (v,0v') € T = o' € U. A path
of a graph is an infinite sequence x = (v, v1,...) such that (vg,vk41) € T for
each k € N. A path fragment is a finite prefix a = (vg,v1,...,v,) of some path.

An initialized graph is a pair (G,vg), where vy € V. An arena is a 4-tuple
¢ = (G,V4,Vg,v9) where (G,vg) is an initialized graph and {Va,Vg} is a
partition of V' . A vertex of V4 is typically represented by a square and a vertex
of Vg by a circle. In case that one of the two sets V4, Vg is empty, we identify
the arena with the underlying initialized graph. A winning condition {2 on ¢ is
a subset of the set V' of infinite sequences on V. For x € V¥, we denote by
inf(z) the set of elements of V' which appear infinitely often in x.

2.2 Two-player games

We define first classical 2-player games on arenas [9]. In this kind of games, each
player plays successively on the arena and the game never stops.

Definition 1. A 2-player game on an arena 4 is a pair G*> = (4, 2) where §2
a winning condition on 4. A play on ¥ is a path on G starting at vg.

We call the two players Adam and Eve. Intuitively, the players play the game
by moving on vertices a token initially placed in vg. In each vertex v;, if v; € Vy
then Adam moves the token to some vertex v;41 so that (v;,v;41) € T. Ifv; € Vg
then Eve chooses a successor. Adam wins a play x if z € {2, otherwise Eve wins.

Definition 2. A strategy for Adam is a mapping ¢ : V* — V which, for each
path fragment « ending in v; € Va, returns a successor vertex ¢(a) = vj41 such
that (vi,vi41) € T. Adam follows a strategy ¢ during a play x = (vo,v1,...) if
for all i € N such that v; € Va, ¢(vg,...,v;) = vip1. We say that ¢ is a winning
strategy for Adam in G2, if Adam wins each play beginning in vy following the
strategy ¢. We say also that Adam wins the game if he has a winning strategy.

The definition is analogous for Eve. To choose the strategy, a player may just
need a memory of bounded size, or no memory at all.

Definition 3. A finite memory strategy for Adam is a mapping ¢ : VXM —V
where M is a finite set, together with an update function up : V. x M — M, and
an initial state memory mg € M. Adam follows a finite memory strateqy ¢ during
a play x = (vo,v1,...) if there is a sequence of memory states (mo,mq,...) such
that for all i € N, up(v;,m;) = miy1 and whenever v; € Vy, then ¢(v;, m;) =
vi+1. A memoryless (or positional) strategy for Adam is a mapping ¢ : V — V,
which for all vertices v; € V4 gives a successor vertex ¢(v;) = viy1.

Positional strategies can be seen as finite memory strategies where M is a sin-
gleton.



2.3 Winning conditions

We can consider several classes of winning conditions on arenas [9], such as
reachability conditions, Biichi conditions, Muller conditions or parity conditions.

Definition 4. A parity game on an arena & is a 2-player game together with
a colouring function ¢ : V. — N, such that the winning condition {2 is the set of
plays x such that the number min(c(inf(x))) is even.

A classical theorem is the following:

Theorem 5 ([8,16]). If Adam has a winning strategy on a parity game, then
he has a positional winning strategy.

We can define a more general class of winning conditions, using parity au-
tomata. The definition of parity automata is standard, see for instance [9]. A
winning condition {2 is said to be w-regular if it is accepted by some parity
automaton. One can transform a game with w-regular winning condition into a
parity game by making the synchronised product of the game with the automa-
ton. In this way, one can prove the following well known fact:

Theorem 6. If Adam has a winning strategy for an w-regular winning condi-
tion, then Adam has a finite memory winning strategy.

The memory needed by Adam is essentially the automaton recognizing the win-
ning condition.

2.4 Probabilistic models

In certain cases, we want to model unpredictable events in systems. Therefore,
we want to be able to take transitions in a probabilistic way.

Definition 7. A 11/2-player game is a triple G/ = (4,p, 2) where 4 =
(G,Va,Vg,vg) is an arena, 2 a winning condition like in 2-player games, while
p is a probabilistic transition function defined as p : Vg x V. — [0,1] such that
P(ve,v) = 0 iff (ve,v) ¢ T and for all v € Vg, Y, oy p(ve,v) = 1. If the graph
G is bipartite then the game is also called Markov Decision Process (MDP). If
Va =0, then the game is a 1/2-player game G'? and it is also known as Markov
Chain (MC).

In 11/2-player games, Eve is the 1/2 player because she does not really make
any choices. So we will not talk about strategies for Eve. However, strategies
for Adam are defined in the same way as in 2-player games. They can be finite
memory or memoryless. In this article, we will not need randomized strategies
that can be found in the literature [6].

Given a strategy for the full player Adam, one generates a (possibly infinite
state) Markov chain by taking the “execution tree” of the graph G and by pruning
out all the choices Adam does not take. If the strategy is finite memory the
corresponding Markov chain has finitely many states. One can calculate with
standard techniques the probability of measurable sets of infinite paths. See for
instance [6] for more details. Here we are interested in the following definition:



Definition 8. We say that Adam has an almost sure winning strategy if in the
Markov chain generated by the strategy, the winning condition has probability 1.
Adam wins almost surely if he has an almost sure winning strategy.

Note that w-regular winning conditions are always measurable.

2.5 Banach-Mazur games

A different kind of 2-player game is a game where players do not play only
one transition but a sequence of transitions successively, and the alternation is
not decided by the arena, but by the players themselves. This game is called a
Banach-Mazur game or a path game. It is played on a graph.

Definition 9. A Banach-Mazur game GZM

(G,v0), and a winning condition (2.

is given by an initialized graph

The two players are B (Banach) and M (Mazur). M begins in vy and chooses
a path fragment (vg,v?,...,v) ) of size ng (also chosen). Then player B does
the same from the vertex vgo. The game goes infinitely alternating player B
and player M turns, so we get an infinite sequence x. Banach wins if z € (2,

otherwise Mazur wins.

Definition 10. A play z of a Banach-Mazur game GBM s an infinite sequence
of path fragments z = (Bof31 ...) where B = (v, ... ,vﬁk). The flattening of a
play z is the corresponding infinite path. Banach wins a play z, if its flattening
belongs to §2, otherwise Mazur wins. A strategy for Banach is a mapping 1 :
(V¥)* — V' which for each finite sequence v = (Bo...3;) of path fragments,
gives a feasible path fragment ¥(y) = Biv1 = (v, ..., U%L))' Banach follows
a strategy ¢ during a play x = (Bof1...) if for all i € N such that i is even,
V(Bo-..Bi) = Bix1- The strategy ¢ for Banach is winning in GPM from vo, if
Banach wins each play starting in vy following the strategy . The strategy for

Mazur is defined analogously.

The Banach-Mazur game was proposed by Mazur (see [11], problem 43) as
a way of characterising the topological notion of co-meagerness of subsets of the
unit interval. Mazur conjectured that the second player has a winning strategy if
and only if the winning condition is co-meager in the standard topology. Banach
proved this (and he won, as prize, a bottle of wine). = Banach-Mazur games
were adapted later on graphs (see [4]). Vélzer, Varacca and Kindler [15] used
them to give a definition of fairness in Kripke structures (equivalent to closed
systems). They argued that this game generalizes the known notions of fairness
in systems, and they proposed the following definition:

Definition 11. 2 C V¥ is a fairness property on (G,vo) if B has a winning
strategy in the Banach-Mazur game on (G, vg) with winning condition 2.

We will adapt the game in order to express fairness in open systems, i.e.
classical 2-player games.

An important result is the link between the Banach-Mazur games and Markov
chains, shown by the following theorem.



Theorem 12 ([14]). If (G,vo) is an initialized graph, 2 an w-regular winning
condition and p any probabilistic transition function on V', then {2 has probability
1 in the Markov chain generated on (G,vo) by p iff Banach wins the Banach-
Mazur game on (G, v, §2).

3 ABM games

3.1 Definitions

After having recalled the known notions of 2-player games and Banach-Mazur
games, we now propose a new kind of game that somehow combines those two. In
this new game, Adam plays as usual, but Eve is split in two. The two halves are
called Banach and Mazur. Intuitively Banach helps Adam (he is good or “Bon”
in French), while the real adversary is Mazur (evil, or “Mauvais” in French).

Definition 13. An ABM game is given by an arena 9 = (G,Va, Vg, v), and
a winning condition {2.

The game GABM = (¢, 2)ABM g played by players A, Ep and Ej;. At the
beginning of the game, if vy € V4 then A chooses a transition (vg,v1) € T. If
vg € Vg then E)js chooses the transition. The game goes on in the same way as
in 2-player games. States that belong to V4 are controlled by player A and those
in Vg by player E);. After a while, player Ej; has to let the control of Vg states
to player Ep. Then, it is this one’s turn to play against player A before passing
the lead to Fjs again and so on. The following definition formalizes the rules of
play for Banach and Mazur:

Definition 14. A move tree A of player Ep (or Ep) from a state vy, € Vg,
is a finite, prefix closed set of path fragments starting at v, and verifying the
following conditions:

e for each path fragment o € V* and each vertex v € Vg, if av € X then there
is at most one vertex w such that (v,w) € T and cvw € A;

e for each path fragment o € V* and each vertex v € V4, avw € X if and only
if (v,w) eT.

In a state of V4, player A chooses a transition as in the classical 2-player
game. But in a state v; € Vg the token is moved according to the move tree A
given by Ey or Ep. In fact, if By (or Ep) gets the lead in vy, then (vg,...,v;)
is a prefix of a branch of \. If v; has a successor, then Ey; (Ep resp.) plays v;1,
which is the unique successor of v; in the tree. Else, Ey; (Ep resp.) passes the
lead.

Intuitively, in open systems, player A represents the system while players Ep
and Fj; the environment. When we want to verify a specification, we assume that
the system always makes the right choice but the environment is not necessarily
always against. Sometimes the environment helps A to satisfy the property,



sometimes the environment plays against. In this way, ABM games allow us to
model a fair environment.

Like in Banach-Mazur games, we can see an infinite play z as an infinite
sequence of tree branches = (Bof1...) where B, = (vf,... ,vﬁk) is a path
fragment where E'g is leading if k is odd and E); is leading if & is even. Players
A and Ep win the play x if the flattening of x € (2, else Fj; wins. In the

following sections we will sometimes identify a play with its flattening.

Definition 15. A strategy ¢ for player A is defined as in 2-player games. A
strategy for player Ep or Eyp is a mapping ¥ : V* — F where T is the set
of move trees. Player A follows a strategy ¢ during a play x = (Bof1 ...) with
flattening x = (vovy ... ) if for all i € N such that v; € Va, ¢(vo,...,0;) = Vit1.
Ep (Ej resp.) follows a strategy v during a play x = (Bof1...) if for alli € N
such that i is even (odd resp.), (8o -..03:) = A\i and Bix1 is a branch of \;.

A pair of strategies (¢,v) (for A and Ep respectively) is said to be winning
if A and Ep win the play following their respective strategies. We say that A has
a winning strategqy ¢ if there exists a winning pair of strategies (¢,) for A and
Ep. Player A wins the game if he has a winning strategy.

qo

q2 q1

x .
q0 qo
q2
q1 q2 q1
q3 g4 q4

Fig. 1. Example of an arena and a move tree in this arena

If F); plays the move tree on Fig. 1 at the beginning of the game, he will

reach g3 then g4 before passing the initiative or will pass his turn if player A
chooses the transition to ¢;.
Remark. In the definition of ABM games, it is important to notice that a
strategy for player A depends only on the sequence of the previously visited
vertices. Therefore, A never knows whether he is playing against Banach or
Mazur at any given time. That is why there are three players and not only two.
This is important for the main result (Theorem 32) to hold.

In the example of Fig. 2, consider the following winning condition: O<{gs A
O-qq4 (infinitely often g3 but never g4). Consider the ABM game with this win-



ning condition. If we suppose that player A always knows who is leading in states
of Vg, we can construct a winning strategy for players A and Ep.

While player E)y is leading, player A takes i
the transition going to ¢;. Then he takes
transition to go when Ep gets the lead. Player 90
FEp always takes transition to g3. Thus, state 92
q3 is visited infinitely often but state g4 never. 1 ¢
However, if Eve plays randomly (with any
Markovian distribution), the winning condi-
tion has probability 0 according to the the-
ory of MDPs because state ¢4 will be reached
almost surely. This contradicts Theorem 32. Fig. 2. A 11/2-player game

This is also the reason why we cannot

code our game in terms of classic 2-player games. A comparison with games
with imperfect information (see e.g. [5, 3]) remains to be explored.

g3 g4

3.2 Traps and attractors

Before presenting the main theorems, we need to study some properties of ABM
arenas. The following notions were often used in proofs in classical 2-player games
[9, 16].

Definition 16. Let ¢ = ((V,T),Va,VEg,v9) be an arena. A trap for Eve (or
E-trap) in 9 is a subset of vertices U C'V such that:

— forallveUNVg, (v,v))eT = v €U,
— for allv € UNVy, there exists v/ € U such that (v,v'") € T.

Trap for Adam can be defined in the same way.

The idea of the E-trap is to consider the set of vertices in which Adam can
keep the token no matter what does Eve. The following easy proposition was
expressed in [16] for 2-player games. It depends only on Adam, and thus it holds
also for ABM games.

Proposition 17. In an ABM game, player A has a memoryless strategy to keep
the play in an E-trap.

Definition 18. Let Y = ((V,T),Va, Vg, vg) be an arena. The attractor of U C
V' for Eve (or E-attractor) written Attrg(U), is the limit of the sequence defined
as:

— Attr(U) =U,
— Vi > 0,Attr'SNU) = Attr,(U) U {v € Vg | ' € Attriy,(U) such that
(v,v)eTU{veVa|(v,v)eT = v € Attriy,(U)}.

Attractor for Adam can be defined in the same way.



In 2-player games, an E-attractor of a set U induces a strategy for Eve to
reach U. In ABM games, vertices of Vg are alternately controlled by Ep and
FE) and thus there is no strategy for any of these 2 players to reach U. However,
we have the following property on the complement anyway.

Proposition 19 ([16]). The complement of an E-attractor in an arena is an
E-trap.

3.3 Positional strategies

In the rest of this section, we will show that in the case of ABM games with
parity winning conditions, winning strategies for Adam can be memoryless. A
classical method to prove such a result is to compute the set of winning positions
and show that from these states there exists a positional winning strategy. This
technique was used for the 2-player games [16]. In doing so, the set of states
is partitioned into winning and losing states. Later, we will observe that ABM
games are not determined. However, we still can compute winning and non-
winning positions. In the following, G denotes a graph, ¥4 = (G, V4, Vg, vp) an
arena and ¢ : V — N a colouring mapping defining a parity winning condition
as in 2-player games.

Theorem 20. If player A wins the parity game (4, c)*BM then A has a mem-
oryless winning strategy.

To start proving this result, let €2 = {C3,...,CM ... ,CM} be the set
of bottom strongly connected components of graph G that have the following
property: for all i < n, for all U € CM | if U is an E-trap and U is strongly
connected then min(c(U)) is odd. We write 65 = {C,...,CB ..., CB} the set
of bottom strongly connected components of G that do not have that property.

This construction draws its inspiration from the proof [6] of the existence
of memoryless strategies in MDP with parity winning condition. In fact, the
sets €A1 and €F are inspired from the concept of controllably win recurrent
vertices 7, 6].

Lemma 21. For all strategies ¢ for A and o for Eg, there exists a play x
following ¢ and 1 such that inf(x) is an E-trap.

Proof. Fix a pair of strategies (¢,) for A and Ep. We will show that Ej; can
play in order to make x an E-trap. Therefore, we suppose that Fj; knows players
A and Eg’s strategies and chooses his moves according to these. Anytime during
the play where E}; has the initiative, we will say that a vertex ¢ € Vg is explored
if F)s has already taken all outgoing edges from ¢ since the beginning of his turn.
We will say that ¢ is ezhausted if there is no play that follows ¢ and reaches q.
Player Ej; will play in this way: when he gets the lead, if there exists a vertex
q € Vg not explored and not erhausted then F); tries to reach it. This is possible
because ¢ is not exhausted. There exists a play following ¢ that allows this. So in
this visited state ¢, he chooses a transition that has not yet been taken since he



is leading. F); repeats this process until all vertices of Vg are marked explored
or exhausted, and then passes the initiative. We notice that an erhausted vertex
will stay forever exhausted. Formally, a move tree \ of Ej; is a tree that owns
at most one branch Ag such that each node n € Vg of the branch is not a leaf.
Indeed, that branch represents the revealed strategy of player A. To agree with
the definition of a move tree, E; passes the lead if A does not follow his strategy
¢. The branch Aq is finite. Suppose that A is infinite, then there always exists
a vertex that is not explored and not exhausted. That contradicts the finiteness
of the graph. Each vertex is eventually either explored or exhausted. So the tree
A is finite and it is a proper move tree.

Suppose now that for a play = obtained in that way, inf(x) is not an E-trap.
Then there exist vertices s € Vi and t € V such that (s,t) € T, s € inf(z) and
t ¢ inf(x). s € inf(z) then s will never be ezhausted and each time E)y; gets the
initiative, he will be able to visit its successor t. So we visit ¢ infinitely often.
But ¢ ¢ inf(z), contradiction. We can conclude that inf(z) is an E-trap. O

Lemma 22. Player A has no winning strategy in the parity game on ‘fé\f

Proof. Let CM € €A!. Assume that A and Ep have a winning pair of strategies
(¢,1) on CM. Then for each play z following the strategies (¢,1), U = inf(z)
is a strongly connected set such that min(c(U)) is even. Thus, by definition of
(fé\f[ , U is not an E-trap. That is a contradiction regarding to previous lemma.
As a consequence, A and Ep do not have winning strategies on CM. So A has
no winning strategy on ¢A. ad

Lemma 23. Player A has a memoryless winning strategy in the parity game on
€5,

Proof. Let CP € €%. By definition of 4Z, we know that there exists an E-trap:
U C CB such that min(c(U)) is even. We write m a vertex, which has minimal
colour in U. The strategy ¢ of player A is the following: for all w € U such
that u € V4, A chooses a successor v € U such that for all others successors w
of u, the distance between v and m is shorter than the one between w and m.
And for all u ¢ U such that u € V4, A will choose similarly the successor with
shortest distance to reach the set U. The strategy 1 for player Ep consists in
using a similar strategy of shortest distance when it is his turn and passing the
lead to player Ej; each time the vertex m is reached. (In the same way that
in Lemma 21, we do not consider the case where player A does not follow his
strategy. So the move tree is finite.) Remark that distances to the vertex m and
to the set U are well-defined for each vertex of the component C'? because of its
strong connection. Let x be a play following strategies ¢ and . Then inf(z) C U
because the strategies allow to reach the set U and to stay in it forever. Thus the
minimal vertex infinitely often reached is min(c(inf(z))) = m. We can conclude
that the pair of strategies (¢,) is winning. Moreover, ¢ is clearly memoryless.
So A has a memoryless winning strategy on €. O

Now we will show that we can partition the set of vertices V' of the graph
into a winning region for A written W and a non-winning region for A written
L. We construct L by induction:



— Gy =G,

— Lo = Attrg(64),

— Giy1 = Gy restricted to V' \ Ly,
- Li—i—l = LZ U AttTE(CgCZ\;{JrI).

G is a finite graph so the sequences (G;); and (L;); converge. We write Gy the
limit of the sequence (G;);, L the limit of (L;); and W =V \ L.

Lemma 24. For all i € N, player A has no winning strategy on L; if Ep is
leading the states of V.

Proof. Player A has no winning strategy on Sa”é/[ so he does not have one on L
either. Indeed, player E); can play the strategy induced by the E-attractor to
reach €1 where A has no winning strategy. Let n € N, suppose that A has no
winning strategy on L,, if Fj; is leading. According to Lemma 22, we know that
A has no winning strategy on ‘gé‘fi " if the play is restricted to the graph G, ;1.
The only way for A to win would be to always reach L,, when player Eg has
the initiative in L,,. By induction hypothesis, if Ej; leads in L, then A has no
winning strategy. But for each play where we can reach L,, with Ep, there exists
a play where we can reach Ly with Fj;. Player E); only needs to simulate the
moves of E'p until he arrives at Ly. So A has no winning strategy on (fé\éﬂ. As
shown previously, player A does not have a strategy in its F-attractor either.
Thus A has no winning strategy in L,41 = L, U AttTE(‘ggiﬂ) if Ey; has the
initiative. a
Lemma 25. W is an E-trap.

Proof. For all i € N, V' \ L; is an E-trap because it is the complement of an
FE-attractor. So W is an E-trap. a

Lemma 26. Player A has a memoryless winning strategy on W.

Proof. When the token is in W\%C?W, strategies for A and E'g consist in strate-
gies of shortest paths to the set ‘ggw in W similar to previously described strate-
gies. According to Lemma 25, W is an E-trap, so A has a strategy to prevent
E)y from reaching L. The shortest distance strategy also allows to stay in W.
Furthermore, we can always reach ‘KC]?W. Indeed, the only bottom strongly con-
nected components reachable from a state of W belong to %C?w by construction
of L and W. The strategy of distance is then a winning and memoryless strategy.
When CKC’?W is reached, we can use the strategy described in Lemma 23, which
is also winning and memoryless. a

Proof of Theorem 20. At the beginning of the game, E); leads, so A has no
winning strategy on L according to Lemma 24. Lemma 26 says that A has a
memoryless winning strategy on W = V'\ L. In consequence, if A has a winning
strategy in the initial state then he has a memoryless winning strategy. O

We observe that the proof of Theorem 20 is constructive. It provides explicitly
the winning region of Adam. Also, for each state of this region, the winning
strategy is explicitly given by Lemma 23 and Lemma 26.



3.4 ABM games are not determined

Lemma 22 says that players A and E'g have no winning strategy in the parity
game on %GM . In general, player Fj; has no winning strategy either on ‘KGM . We
can infer that the game is not determined.

Consider the parity game represented on i
Fig. 3. Lemma 22 says that players A and
FEp do not have any strategies to win the 4 1 qo0
game. However, we can observe here that a2

player Ey; does not have a strategy either. If e ¢
he wants to win, Fj; has either to reach in-

finitely often state g4 or reach infinitely often

¢1 and a finite number times ¢g3. But Fj; does e e ‘ 9

not know player A’s strategy. If A were to

take the transition going to g2 a finite num-  Fig. 3. Example of parity game
ber of times, then E); could just pass to Ep

without making any moves. But since he does not know actually if player A
intends to take this transition infinitely often or not, there are two cases.

— If player Fj; supposes that player A will reach ¢o infinitely often, then his
strategy has to wait for this move and reach state g4 before passing the lead
to player E'g. However, if eventually A never reaches ¢o, then Ej; would
never pass his turn. As a consequence, this is not a strategy because the
move tree chosen by Ej; must be finite.

— If Ey; supposes that A will never reach ¢» again at a certain point, then he
will pass his turn in ¢;. But we can imagine a scenario where each time Es
passes the initiative, A take the transition to g and let Eg reach ¢s.

In any case, we cannot define any winning strategy for player E},; in this game.

3.5 Finite memory

We conclude the section by extending Theorem 20 to w-regular winning condi-
tions, similarly to Theorem 6.

Theorem 27. Let 9 be an arena and 2 C V¥ an w-regular condition. If player
A has a winning strategy in the game (4, 2)ABM then he has a finite-memory
winning strategy.

The proof technique is similar to the one used for Theorem 6. One makes the
product with a deterministic parity automaton recognising the winning condi-
tion. The automaton is essentially the memory needed by Adam.

4 Fairness as randomization

In this section, we intend to demonstrate a theorem similar to Theorem 12 in
the context of open systems. That is we want to build a connection between



ABM games and 11/2-player games. We first do this for the parity case, and
then extend to all w-regular conditions.

We start by noting that the existence of memoryless strategies for ABM
games is mirrored in MDP.

Theorem 28 ([7,6]). Let 4 = (G,Va, Vg, v9) be an arena, p: Vg xV — [0,1]
a probabilistic transition function on Vg such that p(ve,v) = 0 iff (ve,v) ¢ T
and for all ve € Vi, Y, ey P(ve,v) = 1, and ¢ : V — N a colouring mapping. If
Adam wins almost surely the parity 11/2-player game (¥, p,c) then Adam has a
memoryless almost sure winning strategy.

4.1 The parity case

Theorem 29. Let ¥ = (G,V4,Vg,vg) be an arena, ¢ a colouring, p a prob-
abilistic transition function on Vg and 2 C V¥ the parity winning condition
defined by c. If A has a winning strategy in the game (4, 2)ABM then Adam has
an almost-sure winning strategy in the 11/2-player game (4, p, (2).

Proof. Assume that player A has a winning strategy in the game (¥, 2)48M
Then according to Theorem 20, A has a memoryless winning strategy ¢. For each
state of V4, we keep only the outgoing edge provided by ¢. Let .# = ((V, T5),v)
be the initialized graph where T5 =T\ {(v,,v) € T | vq € Va and ¢(v,) # v}.
We can easily see that, if player A wins in (¢, 2)45M then Banach wins in
(A, 2")BM  Indeed, each play that is winning for A on ¢ can be simulated on
. It does not matter if Banach or Mazur has the initiative in a state of Vy
because there is only one outgoing edge.

Let p’ be the probabilistic transition function on V such that for all v, € Vg,
v €V, p(ve,v) = p(ve,v) and for all v, € Va, (vg,v) € T = p'(vg,v) = 1.
This defines a Markov chain on ((V,T%),vg). Thanks to Theorem 12, we know
that the winning condition {2 has probability 1 in this Markov chain. But this
shows that ¢ is an almost sure winning strategy for Adam in the 11/2-player
game (¥,p, 2). O

Theorem 30. Let 4 = (G,Va,VE,vo) be an arena, ¢ a colouring, p a proba-
bilistic transition function on Vg and {2 the parity winning condition defined by
c. If Adam has an almost sure winning strategy in the 11/2-player game (¢, p, §2),
then A has a winning strategy in the game (¢, 2)4ABM

Proof. Suppose that Adam has an almost sure winning strategy in the game
(9,p,(2). Then according to Theorem 28, Adam has a memoryless almost sure
winning strategy. Let ¢ = ((V,TX),v) be the initialized graph where T =
T\ {(vg,v) €T | vg € Va and ¢(v,) # v}. Let p’ be the probabilistic transition
function on V such that for all v, € Vg, v € V, p'(ve,v) = p(ve,v) and for all
Vg € Va, (vg,v) € T = p'(vg,v) = 1. This generates a Markov chain. As
Adam wins almost surely in (¢, p, {2) then {2 has probability 1 in the Markov
chain. By Theorem 12, Banach has a winning strategy in the game (¢, 2)BM,
This means that ¢ is a winning strategy for Adam in the game (%, 2)4BM,



The winning strategy of player Eg is to simulate Banach winning strategy in
(o, 2)BM Thus Adam and Banach have also a winning strategy in the game

(4, 02)ABM, O
The following theorem results from Theorem 30 and Theorem 29.

Theorem 31. Let 4 = (G,Va,VE,v9) be an arena, ¢ a colouring, p a proba-
bilistic transition function on Vg and 2 the parity winning condition defined by
c. Adam has an almost-sure winning strategy in the 11/2-player game (¢,p, 2)
if and only if A has a winning strategy in the game (¢, 2)ABM

4.2 w-regular conditions

The key fact in order to exploit Theorem 12 is that the graph obtained after
applying the memoryless strategy of Adam is finite, as Theorem 12 applies only
to finite graphs. We notice thus that Theorem 20 on the existence of memoryless
strategies is essential in the proof of Theorem 32. In the case of w-regular win-
ning conditions, the strategy of Adam is finite memory. As in the memoryless
case, the key observation is that the graph one gets by applying the strategy is
finite (though larger than the original graph). Thus, it is still possible to apply
Theorem 12. We omit the straightforward details of the proof.

Theorem 32. Let ¥ = (G,Va,Vg,vo) be an arena, p a probabilistic transition
function on Vg and 2 C V¥ an w-regular condition. Adam has an almost-sure
winning strategy in the 11/2-player game (¢, p, 2) if and only if A has a winning
strategy in the game (¢, 2)4BM

We can notice that if V4 = @) then we have the special case of Theorem 12.
Thus, we showed that playing against a fair player is equivalent to playing
against a probabilistic player in the case of w-regular properties.

5 Related and Future Work

The Banach-Mazur game is one possible definition of fairness in closed systems.
An equivalent topological definition can be given in terms of co-meagerness.
In [1], the topological definition is used to prove the equivalence between prob-
abilistic and fair semantics of timed automata. Interestingly, this equivalence
holds only for one-clock automata, but it breaks down once we allow more than
one clock. Another equivalent definition is in terms of a-fairness [10]. Of the three
definitions, this is the one that most resembles the intuitive notion of fairness “if
something is often possible, it will be often performed”. It would be interesting
to define fair strategies for Eve in terms of a-fairness. We also expect that this
game-theoretic point of view can be applied to improve existing algorithms, or
to find new ones, in the qualitative model checking of MDPs.

In this paper, we have applied a definition of fairness to one of the players of
2-player games. In general, we could study what happens to other players and
other games. For instance, a 11/2-player game where Adam plays fairly should
be equivalent to a Markov chain.
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