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Abstra
t. two-player games are used to model open systems. One player
models the system, trying to respe
t some spe
i�
ation, while the other
player models the environment. In 
lassi
al model 
he
king, the obje
tive
is to verify that the system 
an respe
t its spe
i�
ation, whatever the
environment does.
In this arti
le, we 
onsider a more realisti
 s
enario when the environment
is supposed to be fair. We de�ne a notion of fair player in two-player
games. Our solution is inspired by Bana
h-Mazur games, and leads to a
de�nition of a novel 
lass of 3-player games 
alled ABM-games. For ω-
regular spe
i�
ations on �nite arenas, we explore the properties of ABM-
games and devise an algorithm for solving them. As the main result, we
show that winning in an ABM-game (i.e. winning against a fair player)
is equivalent to winning with probability one against the randomized
adversary.
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1 Introdu
tion

Two-player games are used to model open systems. One player (sometimes 
alled

Adam) models the system, trying to a
hieve some goal, while the other player

(sometimes 
alled Eve) models the environment. In 
lassi
al model 
he
king, one

wants to verify that the system 
an a
hieve the goal in any kind of environment.

Therefore, one 
an assume a very evil Eve, able to exploit the smallest weakness

of Adam. In many situations, the environment is not that evil. It 
an make


hoi
es against the system, but sometimes it 
an play in its favour. There are

di�erent ways to model su
h an environment. One possible way is to suppose

that the environment makes random 
hoi
es. This leads to the notion of 1 1/2-
player games, or Markov de
ision pro
esses (MDP). In su
h models, one wishes

to verify whether the system 
an rea
h its goal with probability 1.

Another point of view is to suppose that the environment is fair. Fairness

assumptions are well known in the 
ontext of 
losed systems. In most 
ases [2,

14℄, fairness assumptions are of the form �if an a
tion is allowed in�nitely often

during a run, then it is done in�nitely often�. But what does it mean for a player
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to be fair? A general de�nition of fairness for 
losed systems has been proposed

in [15℄. It is based on a di�erent notion of game: the Bana
h-Mazur game. A

property is de�ned to be a fairness property if the good player has a winning

strategy in the game. This de�nition has a topologi
al 
hara
terisation in terms

of 
omeager sets. In [14℄, a 
omparison between the general notion of fairness

and Markov 
hains is performed. It is shown that for ω-regular spe
i�
ations, a
�nite Markov 
hain satis�es the spe
i�
ation with probability 1, if and only if

the spe
i�
ation is a fairness property in the sense of [15℄.

In this work, we propose a similar de�nition of fair player. The idea is to

split Eve into two �sub-players�, Bana
h (good) and Mazur (evil), playing the

Bana
h-Mazur game between themselves. Eve is thus not always playing against

Adam, but sometimes she shares his goals. However Adam does not know when

this is the 
ase, he only knows that Eve is split. To show that our notion of

2-player game with fair Eve is 
orre
t, we 
ompare it with Markov De
ision

Pro
esses. Similarly to the result of [14℄, we show that for games with ω-regular

onditions, Adam 
an rea
h his goal with probability 1 in an MDP if and only

if he 
an win the game against fair Eve.

The 
hara
terisation in terms of Bana
h-Mazur games gives a di�erent point

of view of qualitative probabilisti
 model 
he
king. In [13℄, this point of view

is used to simplify and modify the 
lassi
 algorithm by Cour
oubetis and Yan-

nakakis [7℄. Also it helps providing a notion of 
ounterexample for probabilisti


model 
he
king [12℄. We hope that our proposal 
an be the starting point for

similar results in the model 
he
king of MDPs.

Stru
ture of the paper: In Se
tion 2, we introdu
e the known notions of two-

player game, Markov de
ision pro
ess, Bana
h-Mazur game, et
. We present

the theorem that links Bana
h-Mazur games on graphs with Markov 
hains.

In Se
tion 3, we introdu
e our new game, the ABM game. We show that for

parity winning 
ondition, if player Adam wins, then he has a memoryless winning

strategy, and for ω-regular 
ondition, he has a �nite memory strategy. This is the

main te
hni
al result of the paper, and we present the 
omplete proof. This proof

is indeed 
onstru
tive and it generates an algorithm to de
ide whether Adam

has a winning strategy, and to produ
e the winning strategy when it exists. We

also show that, 
ontrary to two-player games, the ABM game is not determined,

by showing a game where no player has a winning strategy. Finally, in Se
tion

4, we show that, for parity and ω-regular goals, Adam wins the ABM game, if

and only if he almost surely wins in the 
orresponding Markov de
ision pro
ess.

This result uses the existen
e of memoryless and �nite memory strategies.

2 In�nite games on �nite graphs

2.1 Preliminaries

A (dire
ted) graph is a pair G = (V, T ) where V is a set of verti
es (also 
alled

states) and T a set of edges (or transitions) su
h that T ⊆ V ×V . In this arti
le,

we assume that the graphs are �nite, i.e. V is always a �nite set. We also 
onsider



only graphs without dead-ends, i.e. for all v ∈ V there exists a vertex w ∈ V su
h

that (v, w) ∈ T . We assume the reader is familiar with the notion of strongly


onne
ted 
omponent. A bottom strongly 
onne
ted 
omponent U is a strongly


onne
ted 
omponent su
h that for all v ∈ U , (v, v′) ∈ T =⇒ v′ ∈ U . A path

of a graph is an in�nite sequen
e x = (v0, v1, . . . ) su
h that (vk, vk+1) ∈ T for

ea
h k ∈ N. A path fragment is a �nite pre�x α = (v0, v1, . . . , vn) of some path.

An initialized graph is a pair (G, v0), where v0 ∈ V . An arena is a 4-tuple

G = (G,VA, VE , v0) where (G, v0) is an initialized graph and {VA, VE} is a

partition of V . A vertex of VA is typi
ally represented by a square and a vertex

of VE by a 
ir
le. In 
ase that one of the two sets VA, VE is empty, we identify

the arena with the underlying initialized graph. A winning 
ondition Ω on G is

a subset of the set V ω of in�nite sequen
es on V . For x ∈ V ω, we denote by

inf(x) the set of elements of V whi
h appear in�nitely often in x.

2.2 Two-player games

We de�ne �rst 
lassi
al 2-player games on arenas [9℄. In this kind of games, ea
h

player plays su

essively on the arena and the game never stops.

De�nition 1. A 2-player game on an arena G is a pair G
2 = (G , Ω) where Ω

a winning 
ondition on G . A play on G is a path on G starting at v0.

We 
all the two players Adam and Eve. Intuitively, the players play the game

by moving on verti
es a token initially pla
ed in v0. In ea
h vertex vi, if vi ∈ VA

then Adam moves the token to some vertex vi+1 so that (vi, vi+1) ∈ T . If vi ∈ VE

then Eve 
hooses a su

essor. Adam wins a play x if x ∈ Ω, otherwise Eve wins.

De�nition 2. A strategy for Adam is a mapping φ : V ∗ → V whi
h, for ea
h

path fragment α ending in vi ∈ VA, returns a su

essor vertex φ(α) = vi+1 su
h

that (vi, vi+1) ∈ T . Adam follows a strategy φ during a play x = (v0, v1, . . . ) if

for all i ∈ N su
h that vi ∈ VA, φ(v0, . . . , vi) = vi+1. We say that φ is a winning

strategy for Adam in G
2, if Adam wins ea
h play beginning in v0 following the

strategy φ. We say also that Adam wins the game if he has a winning strategy.

The de�nition is analogous for Eve. To 
hoose the strategy, a player may just

need a memory of bounded size, or no memory at all.

De�nition 3. A �nite memory strategy for Adam is a mapping φ : V ×M → V
where M is a �nite set, together with an update fun
tion up : V ×M →M , and

an initial state memorym0 ∈M . Adam follows a �nite memory strategy φ during

a play x = (v0, v1, . . . ) if there is a sequen
e of memory states (m0,m1, . . . ) su
h

that for all i ∈ N, up(vi,mi) = mi+1 and whenever vi ∈ VA, then φ(vi,mi) =
vi+1. A memoryless (or positional) strategy for Adam is a mapping φ : V → V ,

whi
h for all verti
es vi ∈ VA gives a su

essor vertex φ(vi) = vi+1.

Positional strategies 
an be seen as �nite memory strategies where M is a sin-

gleton.



2.3 Winning 
onditions

We 
an 
onsider several 
lasses of winning 
onditions on arenas [9℄, su
h as

rea
hability 
onditions, Bü
hi 
onditions, Muller 
onditions or parity 
onditions.

De�nition 4. A parity game on an arena G is a 2-player game together with

a 
olouring fun
tion c : V → N, su
h that the winning 
ondition Ω is the set of

plays x su
h that the number min(c(inf(x))) is even.

A 
lassi
al theorem is the following:

Theorem 5 ([8, 16℄). If Adam has a winning strategy on a parity game, then

he has a positional winning strategy.

We 
an de�ne a more general 
lass of winning 
onditions, using parity au-

tomata. The de�nition of parity automata is standard, see for instan
e [9℄. A

winning 
ondition Ω is said to be ω-regular if it is a

epted by some parity

automaton. One 
an transform a game with ω-regular winning 
ondition into a

parity game by making the syn
hronised produ
t of the game with the automa-

ton. In this way, one 
an prove the following well known fa
t:

Theorem 6. If Adam has a winning strategy for an ω-regular winning 
ondi-

tion, then Adam has a �nite memory winning strategy.

The memory needed by Adam is essentially the automaton re
ognizing the win-

ning 
ondition.

2.4 Probabilisti
 models

In 
ertain 
ases, we want to model unpredi
table events in systems. Therefore,

we want to be able to take transitions in a probabilisti
 way.

De�nition 7. A 1 1/2-player game is a triple G
11/2 = (G , p,Ω) where G =

(G,VA, VE , v0) is an arena, Ω a winning 
ondition like in 2-player games, while

p is a probabilisti
 transition fun
tion de�ned as p : VE × V → [0, 1] su
h that

p(ve, v) = 0 i� (ve, v) /∈ T and for all ve ∈ VE,
∑

v∈V p(ve, v) = 1. If the graph

G is bipartite then the game is also 
alled Markov De
ision Pro
ess (MDP). If

VA = ∅, then the game is a 1/2-player game G
1/2 and it is also known as Markov

Chain (MC).

In 1 1/2-player games, Eve is the 1/2 player be
ause she does not really make

any 
hoi
es. So we will not talk about strategies for Eve. However, strategies

for Adam are de�ned in the same way as in 2-player games. They 
an be �nite

memory or memoryless. In this arti
le, we will not need randomized strategies

that 
an be found in the literature [6℄.

Given a strategy for the full player Adam, one generates a (possibly in�nite

state) Markov 
hain by taking the �exe
ution tree� of the graph G and by pruning

out all the 
hoi
es Adam does not take. If the strategy is �nite memory the


orresponding Markov 
hain has �nitely many states. One 
an 
al
ulate with

standard te
hniques the probability of measurable sets of in�nite paths. See for

instan
e [6℄ for more details. Here we are interested in the following de�nition:



De�nition 8. We say that Adam has an almost sure winning strategy if in the

Markov 
hain generated by the strategy, the winning 
ondition has probability 1.

Adam wins almost surely if he has an almost sure winning strategy.

Note that ω-regular winning 
onditions are always measurable.

2.5 Bana
h-Mazur games

A di�erent kind of 2-player game is a game where players do not play only

one transition but a sequen
e of transitions su

essively, and the alternation is

not de
ided by the arena, but by the players themselves. This game is 
alled a

Bana
h-Mazur game or a path game. It is played on a graph.

De�nition 9. A Bana
h-Mazur game G
BM is given by an initialized graph

(G, v0), and a winning 
ondition Ω.

The two players are B (Bana
h) and M (Mazur). M begins in v0 and 
hooses

a path fragment (v0
0 , v

0
1 , . . . , v

0
n0

) of size n0 (also 
hosen). Then player B does

the same from the vertex v0
n0
. The game goes in�nitely alternating player B

and player M turns, so we get an in�nite sequen
e x. Bana
h wins if x ∈ Ω,

otherwise Mazur wins.

De�nition 10. A play z of a Bana
h-Mazur game G
BM is an in�nite sequen
e

of path fragments z = (β0β1 . . . ) where βk = (vk
0 , . . . , v

k
nk

). The �attening of a

play z is the 
orresponding in�nite path. Bana
h wins a play z, if its �attening

belongs to Ω, otherwise Mazur wins. A strategy for Bana
h is a mapping ψ :
(V ∗)∗ → V + whi
h for ea
h �nite sequen
e γ = (β0 . . . βi) of path fragments,

gives a feasible path fragment ψ(γ) = βi+1 = (vi+1

0 , . . . , vi+1
n(i+1)

). Bana
h follows

a strategy ψ during a play x = (β0β1 . . . ) if for all i ∈ N su
h that i is even,

ψ(β0 . . . βi) = βi+1. The strategy ψ for Bana
h is winning in G
BM from v0, if

Bana
h wins ea
h play starting in v0 following the strategy ψ. The strategy for

Mazur is de�ned analogously.

The Bana
h-Mazur game was proposed by Mazur (see [11℄, problem 43) as

a way of 
hara
terising the topologi
al notion of 
o-meagerness of subsets of the

unit interval. Mazur 
onje
tured that the se
ond player has a winning strategy if

and only if the winning 
ondition is 
o-meager in the standard topology. Bana
h

proved this (and he won, as prize, a bottle of wine). Bana
h-Mazur games

were adapted later on graphs (see [4℄). Völzer, Vara

a and Kindler [15℄ used

them to give a de�nition of fairness in Kripke stru
tures (equivalent to 
losed

systems). They argued that this game generalizes the known notions of fairness

in systems, and they proposed the following de�nition:

De�nition 11. Ω ⊆ V ω is a fairness property on (G, v0) if B has a winning

strategy in the Bana
h-Mazur game on (G, v0) with winning 
ondition Ω.

We will adapt the game in order to express fairness in open systems, i.e.


lassi
al 2-player games.

An important result is the link between the Bana
h-Mazur games and Markov


hains, shown by the following theorem.



Theorem 12 ([14℄). If (G, v0) is an initialized graph, Ω an ω-regular winning


ondition and p any probabilisti
 transition fun
tion on V , then Ω has probability

1 in the Markov 
hain generated on (G, v0) by p i� Bana
h wins the Bana
h-

Mazur game on (G, v0, Ω).

3 ABM games

3.1 De�nitions

After having re
alled the known notions of 2-player games and Bana
h-Mazur

games, we now propose a new kind of game that somehow 
ombines those two. In

this new game, Adam plays as usual, but Eve is split in two. The two halves are


alled Bana
h and Mazur. Intuitively Bana
h helps Adam (he is good or �Bon�

in Fren
h), while the real adversary is Mazur (evil, or �Mauvais� in Fren
h).

De�nition 13. An ABM game is given by an arena G = (G,VA, VE , v0), and
a winning 
ondition Ω.

The game G
ABM = (G , Ω)ABM is played by players A, EB and EM . At the

beginning of the game, if v0 ∈ VA then A 
hooses a transition (v0, v1) ∈ T . If
v0 ∈ VE then EM 
hooses the transition. The game goes on in the same way as

in 2-player games. States that belong to VA are 
ontrolled by player A and those

in VE by player EM . After a while, player EM has to let the 
ontrol of VE states

to player EB . Then, it is this one's turn to play against player A before passing

the lead to EM again and so on. The following de�nition formalizes the rules of

play for Bana
h and Mazur:

De�nition 14. A move tree λ of player EB (or EM ) from a state vk ∈ VE,

is a �nite, pre�x 
losed set of path fragments starting at vk, and verifying the

following 
onditions:

• for ea
h path fragment α ∈ V ∗ and ea
h vertex v ∈ VE, if αv ∈ λ then there

is at most one vertex w su
h that (v, w) ∈ T and αvw ∈ λ;
• for ea
h path fragment α ∈ V ∗ and ea
h vertex v ∈ VA, αvw ∈ λ if and only

if (v, w) ∈ T .

In a state of VA, player A 
hooses a transition as in the 
lassi
al 2-player

game. But in a state vi ∈ VE the token is moved a

ording to the move tree λ
given by EM or EB . In fa
t, if EM (or EB) gets the lead in vk then (vk, . . . , vi)
is a pre�x of a bran
h of λ. If vi has a su

essor, then EM (EB resp.) plays vi+1,

whi
h is the unique su

essor of vi in the tree. Else, EM (EB resp.) passes the

lead.

Intuitively, in open systems, player A represents the system while players EB

and EM the environment. When we want to verify a spe
i�
ation, we assume that

the system always makes the right 
hoi
e but the environment is not ne
essarily

always against. Sometimes the environment helps A to satisfy the property,



sometimes the environment plays against. In this way, ABM games allow us to

model a fair environment.

Like in Bana
h-Mazur games, we 
an see an in�nite play x as an in�nite

sequen
e of tree bran
hes x = (β0β1 . . . ) where βk = (vk
0 , . . . , v

k
nk

) is a path

fragment where EB is leading if k is odd and EM is leading if k is even. Players

A and EB win the play x if the �attening of x ∈ Ω, else EM wins. In the

following se
tions we will sometimes identify a play with its �attening.

De�nition 15. A strategy φ for player A is de�ned as in 2-player games. A

strategy for player EB or EM is a mapping ψ : V ∗ → T where T is the set

of move trees. Player A follows a strategy φ during a play x = (β0β1 . . . ) with

�attening x = (v0v1 . . . ) if for all i ∈ N su
h that vi ∈ VA, φ(v0, . . . , vi) = vi+1.

EB (EM resp.) follows a strategy ψ during a play x = (β0β1 . . . ) if for all i ∈ N

su
h that i is even (odd resp.), φ(β0 . . . βi) = λi and βi+1 is a bran
h of λi.

A pair of strategies (φ, ψ) (for A and EB respe
tively) is said to be winning

if A and EB win the play following their respe
tive strategies. We say that A has

a winning strategy φ if there exists a winning pair of strategies (φ, ψ) for A and

EB. Player A wins the game if he has a winning strategy.

q0

q1

q2

q3 q4

q0

q1q2

q3

q0

q1q2

q4

Fig. 1. Example of an arena and a move tree in this arena

If EM plays the move tree on Fig. 1 at the beginning of the game, he will

rea
h q3 then q4 before passing the initiative or will pass his turn if player A

hooses the transition to q1.
Remark. In the de�nition of ABM games, it is important to noti
e that a

strategy for player A depends only on the sequen
e of the previously visited

verti
es. Therefore, A never knows whether he is playing against Bana
h or

Mazur at any given time. That is why there are three players and not only two.

This is important for the main result (Theorem 32) to hold.

In the example of Fig. 2, 
onsider the following winning 
ondition: 23q3 ∧
2¬q4 (in�nitely often q3 but never q4). Consider the ABM game with this win-



ning 
ondition. If we suppose that player A always knows who is leading in states

of VE , we 
an 
onstru
t a winning strategy for players A and EB .

While player EM is leading, player A takes

q0

q1

q2

q3 q4

1

Fig. 2. A 1 1/2-player game

the transition going to q1. Then he takes

transition to q2 when EB gets the lead. Player

EB always takes transition to q3. Thus, state
q3 is visited in�nitely often but state q4 never.
However, if Eve plays randomly (with any

Markovian distribution), the winning 
ondi-

tion has probability 0 a

ording to the the-

ory of MDPs be
ause state q4 will be rea
hed
almost surely. This 
ontradi
ts Theorem 32.

This is also the reason why we 
annot


ode our game in terms of 
lassi
 2-player games. A 
omparison with games

with imperfe
t information (see e.g. [5, 3℄) remains to be explored.

3.2 Traps and attra
tors

Before presenting the main theorems, we need to study some properties of ABM

arenas. The following notions were often used in proofs in 
lassi
al 2-player games

[9, 16℄.

De�nition 16. Let G = ((V, T ), VA, VE , v0) be an arena. A trap for Eve (or

E-trap) in G is a subset of verti
es U ⊆ V su
h that:

� for all v ∈ U ∩ VE, (v, v′) ∈ T =⇒ v′ ∈ U ,

� for all v ∈ U ∩ VA, there exists v′ ∈ U su
h that (v, v′) ∈ T .

Trap for Adam 
an be de�ned in the same way.

The idea of the E-trap is to 
onsider the set of verti
es in whi
h Adam 
an

keep the token no matter what does Eve. The following easy proposition was

expressed in [16℄ for 2-player games. It depends only on Adam, and thus it holds

also for ABM games.

Proposition 17. In an ABM game, player A has a memoryless strategy to keep

the play in an E-trap.

De�nition 18. Let G = ((V, T ), VA, VE , v0) be an arena. The attra
tor of U ⊆
V for Eve (or E-attra
tor) written AttrE(U), is the limit of the sequen
e de�ned

as:

� Attr0E(U) = U ,

� ∀i ≥ 0, Attri+1

E (U) = Attri
E(U) ∪ {v ∈ VE | ∃v′ ∈ Attri

E(U) su
h that

(v, v′) ∈ T} ∪ {v ∈ VA | (v, v′) ∈ T =⇒ v′ ∈ Attri
E(U)}.

Attra
tor for Adam 
an be de�ned in the same way.



In 2-player games, an E-attra
tor of a set U indu
es a strategy for Eve to

rea
h U . In ABM games, verti
es of VE are alternately 
ontrolled by EB and

EM and thus there is no strategy for any of these 2 players to rea
h U . However,
we have the following property on the 
omplement anyway.

Proposition 19 ([16℄). The 
omplement of an E-attra
tor in an arena is an

E-trap.

3.3 Positional strategies

In the rest of this se
tion, we will show that in the 
ase of ABM games with

parity winning 
onditions, winning strategies for Adam 
an be memoryless. A


lassi
al method to prove su
h a result is to 
ompute the set of winning positions

and show that from these states there exists a positional winning strategy. This

te
hnique was used for the 2-player games [16℄. In doing so, the set of states

is partitioned into winning and losing states. Later, we will observe that ABM

games are not determined. However, we still 
an 
ompute winning and non-

winning positions. In the following, G denotes a graph, G = (G,VA, VE , v0) an

arena and c : V → N a 
olouring mapping de�ning a parity winning 
ondition

as in 2-player games.

Theorem 20. If player A wins the parity game (G , c)ABM then A has a mem-

oryless winning strategy.

To start proving this result, let C M
G = {CM

0 , . . . , CM
i . . . , CM

n } be the set

of bottom strongly 
onne
ted 
omponents of graph G that have the following

property: for all i < n, for all U ⊆ CM
i , if U is an E-trap and U is strongly


onne
ted then min(c(U)) is odd. We write C B
G = {CB

0 , . . . , C
B
i . . . , CB

m} the set

of bottom strongly 
onne
ted 
omponents of G that do not have that property.

This 
onstru
tion draws its inspiration from the proof [6℄ of the existen
e

of memoryless strategies in MDP with parity winning 
ondition. In fa
t, the

sets C M
G and C B

G are inspired from the 
on
ept of 
ontrollably win re
urrent

verti
es [7, 6℄.

Lemma 21. For all strategies φ for A and ψ for EB, there exists a play x
following φ and ψ su
h that inf(x) is an E-trap.

Proof. Fix a pair of strategies (φ, ψ) for A and EB . We will show that EM 
an

play in order to make x an E-trap. Therefore, we suppose that EM knows players

A and EB 's strategies and 
hooses his moves a

ording to these. Anytime during

the play where EM has the initiative, we will say that a vertex q ∈ VE is explored

if EM has already taken all outgoing edges from q sin
e the beginning of his turn.
We will say that q is exhausted if there is no play that follows φ and rea
hes q.
Player EM will play in this way: when he gets the lead, if there exists a vertex

q ∈ VE not explored and not exhausted then EM tries to rea
h it. This is possible

be
ause q is not exhausted. There exists a play following φ that allows this. So in

this visited state q, he 
hooses a transition that has not yet been taken sin
e he



is leading. EM repeats this pro
ess until all verti
es of VE are marked explored

or exhausted, and then passes the initiative. We noti
e that an exhausted vertex

will stay forever exhausted. Formally, a move tree λ of EM is a tree that owns

at most one bran
h λ0 su
h that ea
h node n ∈ VE of the bran
h is not a leaf.

Indeed, that bran
h represents the revealed strategy of player A. To agree with

the de�nition of a move tree, EM passes the lead if A does not follow his strategy

φ. The bran
h λ0 is �nite. Suppose that λ0 is in�nite, then there always exists

a vertex that is not explored and not exhausted. That 
ontradi
ts the �niteness

of the graph. Ea
h vertex is eventually either explored or exhausted. So the tree

λ is �nite and it is a proper move tree.

Suppose now that for a play x obtained in that way, inf(x) is not an E-trap.
Then there exist verti
es s ∈ VE and t ∈ V su
h that (s, t) ∈ T , s ∈ inf(x) and
t /∈ inf(x). s ∈ inf(x) then s will never be exhausted and ea
h time EM gets the

initiative, he will be able to visit its su

essor t. So we visit t in�nitely often.

But t /∈ inf(x), 
ontradi
tion. We 
an 
on
lude that inf(x) is an E-trap. ⊓⊔

Lemma 22. Player A has no winning strategy in the parity game on C M
G .

Proof. Let CM
i ∈ C M

G . Assume that A and EB have a winning pair of strategies

(φ, ψ) on CM
i . Then for ea
h play x following the strategies (φ, ψ), U = inf(x)

is a strongly 
onne
ted set su
h that min(c(U)) is even. Thus, by de�nition of

C M
G , U is not an E-trap. That is a 
ontradi
tion regarding to previous lemma.

As a 
onsequen
e, A and EB do not have winning strategies on CM
i . So A has

no winning strategy on C M
G . ⊓⊔

Lemma 23. Player A has a memoryless winning strategy in the parity game on

C B
G .

Proof. Let CB
i ∈ C B

G . By de�nition of C B
G , we know that there exists an E-trap:

U ⊆ CB
i su
h that min(c(U)) is even. We write m a vertex, whi
h has minimal


olour in U . The strategy φ of player A is the following: for all u ∈ U su
h

that u ∈ VA, A 
hooses a su

essor v ∈ U su
h that for all others su

essors w
of u, the distan
e between v and m is shorter than the one between w and m.

And for all u /∈ U su
h that u ∈ VA, A will 
hoose similarly the su

essor with

shortest distan
e to rea
h the set U . The strategy ψ for player EB 
onsists in

using a similar strategy of shortest distan
e when it is his turn and passing the

lead to player EM ea
h time the vertex m is rea
hed. (In the same way that

in Lemma 21, we do not 
onsider the 
ase where player A does not follow his

strategy. So the move tree is �nite.) Remark that distan
es to the vertex m and

to the set U are well-de�ned for ea
h vertex of the 
omponent CB
i be
ause of its

strong 
onne
tion. Let x be a play following strategies φ and ψ. Then inf(x) ⊆ U
be
ause the strategies allow to rea
h the set U and to stay in it forever. Thus the

minimal vertex in�nitely often rea
hed is min(c(inf(x))) = m. We 
an 
on
lude

that the pair of strategies (φ, ψ) is winning. Moreover, φ is 
learly memoryless.

So A has a memoryless winning strategy on C B
G . ⊓⊔

Now we will show that we 
an partition the set of verti
es V of the graph

into a winning region for A written W and a non-winning region for A written

L. We 
onstru
t L by indu
tion:



� G0 = G,
� L0 = AttrE(C M

G0
),

� Gi+1 = Gi restri
ted to V \ Li,

� Li+1 = Li ∪AttrE(C M
Gi+1

).

G is a �nite graph so the sequen
es (Gi)i and (Li)i 
onverge. We write GW the

limit of the sequen
e (Gi)i, L the limit of (Li)i and W = V \ L.

Lemma 24. For all i ∈ N, player A has no winning strategy on Li if EM is

leading the states of VE.

Proof. Player A has no winning strategy on C M
G so he does not have one on L0

either. Indeed, player EM 
an play the strategy indu
ed by the E-attra
tor to
rea
h C M

G where A has no winning strategy. Let n ∈ N, suppose that A has no

winning strategy on Ln if EM is leading. A

ording to Lemma 22, we know that

A has no winning strategy on C M
Gn+1

if the play is restri
ted to the graph Gn+1.

The only way for A to win would be to always rea
h Ln when player EB has

the initiative in Ln. By indu
tion hypothesis, if EM leads in Ln then A has no

winning strategy. But for ea
h play where we 
an rea
h Ln with EB , there exists

a play where we 
an rea
h LN with EM . Player EM only needs to simulate the

moves of EB until he arrives at LN . So A has no winning strategy on C M
Gn+1

. As

shown previously, player A does not have a strategy in its E-attra
tor either.

Thus A has no winning strategy in Ln+1 = Ln ∪ AttrE(C M
Gn+1

) if EM has the

initiative. ⊓⊔

Lemma 25. W is an E-trap.

Proof. For all i ∈ N, V \ Li is an E-trap be
ause it is the 
omplement of an

E-attra
tor. So W is an E-trap. ⊓⊔

Lemma 26. Player A has a memoryless winning strategy on W .

Proof. When the token is in W \C B
GW

, strategies for A and EB 
onsist in strate-

gies of shortest paths to the set C B
GW

inW similar to previously des
ribed strate-

gies. A

ording to Lemma 25, W is an E-trap, so A has a strategy to prevent

EM from rea
hing L. The shortest distan
e strategy also allows to stay in W .

Furthermore, we 
an always rea
h C B
GW

. Indeed, the only bottom strongly 
on-

ne
ted 
omponents rea
hable from a state of W belong to C B
GW

by 
onstru
tion

of L andW . The strategy of distan
e is then a winning and memoryless strategy.

When C B
GW

is rea
hed, we 
an use the strategy des
ribed in Lemma 23, whi
h

is also winning and memoryless. ⊓⊔

Proof of Theorem 20. At the beginning of the game, EM leads, so A has no

winning strategy on L a

ording to Lemma 24. Lemma 26 says that A has a

memoryless winning strategy on W = V \L. In 
onsequen
e, if A has a winning

strategy in the initial state then he has a memoryless winning strategy. ⊓⊔

We observe that the proof of Theorem 20 is 
onstru
tive. It provides expli
itly

the winning region of Adam. Also, for ea
h state of this region, the winning

strategy is expli
itly given by Lemma 23 and Lemma 26.



3.4 ABM games are not determined

Lemma 22 says that players A and EB have no winning strategy in the parity

game on C M
G . In general, player EM has no winning strategy either on C M

G . We


an infer that the game is not determined.

Consider the parity game represented on

q0

q1

q2

q3 q4

4

34

2 1

Fig. 3. Example of parity game

Fig. 3. Lemma 22 says that players A and

EB do not have any strategies to win the

game. However, we 
an observe here that

player EM does not have a strategy either. If

he wants to win, EM has either to rea
h in-

�nitely often state q4 or rea
h in�nitely often

q1 and a �nite number times q3. But EM does

not know player A's strategy. If A were to

take the transition going to q2 a �nite num-

ber of times, then EM 
ould just pass to EB

without making any moves. But sin
e he does not know a
tually if player A
intends to take this transition in�nitely often or not, there are two 
ases.

� If player EM supposes that player A will rea
h q2 in�nitely often, then his

strategy has to wait for this move and rea
h state q4 before passing the lead

to player EB . However, if eventually A never rea
hes q2, then EM would

never pass his turn. As a 
onsequen
e, this is not a strategy be
ause the

move tree 
hosen by EM must be �nite.

� If EM supposes that A will never rea
h q2 again at a 
ertain point, then he

will pass his turn in q1. But we 
an imagine a s
enario where ea
h time EM

passes the initiative, A take the transition to q2 and let EB rea
h q3.

In any 
ase, we 
annot de�ne any winning strategy for player EM in this game.

3.5 Finite memory

We 
on
lude the se
tion by extending Theorem 20 to ω-regular winning 
ondi-

tions, similarly to Theorem 6.

Theorem 27. Let G be an arena and Ω ⊆ V ω an ω-regular 
ondition. If player

A has a winning strategy in the game (G , Ω)ABM then he has a �nite-memory

winning strategy.

The proof te
hnique is similar to the one used for Theorem 6. One makes the

produ
t with a deterministi
 parity automaton re
ognising the winning 
ondi-

tion. The automaton is essentially the memory needed by Adam.

4 Fairness as randomization

In this se
tion, we intend to demonstrate a theorem similar to Theorem 12 in

the 
ontext of open systems. That is we want to build a 
onne
tion between



ABM games and 1 1/2-player games. We �rst do this for the parity 
ase, and

then extend to all ω-regular 
onditions.
We start by noting that the existen
e of memoryless strategies for ABM

games is mirrored in MDP.

Theorem 28 ([7, 6℄). Let G = (G,VA, VE , v0) be an arena, p : VE × V → [0, 1]
a probabilisti
 transition fun
tion on VE su
h that p(ve, v) = 0 i� (ve, v) /∈ T
and for all ve ∈ VE,

∑
v∈V p(ve, v) = 1, and c : V → N a 
olouring mapping. If

Adam wins almost surely the parity 1 1/2-player game (G , p, c) then Adam has a

memoryless almost sure winning strategy.

4.1 The parity 
ase

Theorem 29. Let G = (G,VA, VE , v0) be an arena, c a 
olouring, p a prob-

abilisti
 transition fun
tion on VE and Ω ⊆ V ω the parity winning 
ondition

de�ned by c. If A has a winning strategy in the game (G , Ω)ABM then Adam has

an almost-sure winning strategy in the 1 1/2-player game (G , p,Ω).

Proof. Assume that player A has a winning strategy in the game (G , Ω)ABM .

Then a

ording to Theorem 20, A has a memoryless winning strategy φ. For ea
h
state of VA, we keep only the outgoing edge provided by φ. Let K = ((V, TK), v0)
be the initialized graph where TK = T \ {(va, v) ∈ T | va ∈ VA and φ(va) 6= v}.
We 
an easily see that, if player A wins in (G , Ω′)ABM then Bana
h wins in

(K , Ω′)BM . Indeed, ea
h play that is winning for A on G 
an be simulated on

K . It does not matter if Bana
h or Mazur has the initiative in a state of VA

be
ause there is only one outgoing edge.

Let p′ be the probabilisti
 transition fun
tion on V su
h that for all ve ∈ VE ,

v ∈ V , p′(ve, v) = p(ve, v) and for all va ∈ VA, (va, v) ∈ T =⇒ p′(va, v) = 1.
This de�nes a Markov 
hain on ((V, TK), v0). Thanks to Theorem 12, we know

that the winning 
ondition Ω has probability 1 in this Markov 
hain. But this

shows that φ is an almost sure winning strategy for Adam in the 1 1/2-player
game (G , p,Ω). ⊓⊔

Theorem 30. Let G = (G,VA, VE , v0) be an arena, c a 
olouring, p a proba-

bilisti
 transition fun
tion on VE and Ω the parity winning 
ondition de�ned by

c. If Adam has an almost sure winning strategy in the 1 1/2-player game (G , p,Ω),
then A has a winning strategy in the game (G , Ω)ABM .

Proof. Suppose that Adam has an almost sure winning strategy in the game

(G , p,Ω). Then a

ording to Theorem 28, Adam has a memoryless almost sure

winning strategy. Let K = ((V, TK), v0) be the initialized graph where TK =
T \ {(va, v) ∈ T | va ∈ VA and φ(va) 6= v}. Let p′ be the probabilisti
 transition

fun
tion on V su
h that for all ve ∈ VE , v ∈ V , p′(ve, v) = p(ve, v) and for all

va ∈ VA, (va, v) ∈ T =⇒ p′(va, v) = 1. This generates a Markov 
hain. As

Adam wins almost surely in (G , p,Ω) then Ω has probability 1 in the Markov


hain. By Theorem 12, Bana
h has a winning strategy in the game (K , Ω)BM .

This means that φ is a winning strategy for Adam in the game (G , Ω)ABM .



The winning strategy of player EB is to simulate Bana
h winning strategy in

(K , Ω)BM . Thus Adam and Bana
h have also a winning strategy in the game

(G , Ω)ABM . ⊓⊔

The following theorem results from Theorem 30 and Theorem 29.

Theorem 31. Let G = (G,VA, VE , v0) be an arena, c a 
olouring, p a proba-

bilisti
 transition fun
tion on VE and Ω the parity winning 
ondition de�ned by

c. Adam has an almost-sure winning strategy in the 1 1/2-player game (G , p,Ω)
if and only if A has a winning strategy in the game (G , Ω)ABM .

4.2 ω-regular 
onditions

The key fa
t in order to exploit Theorem 12 is that the graph obtained after

applying the memoryless strategy of Adam is �nite, as Theorem 12 applies only

to �nite graphs. We noti
e thus that Theorem 20 on the existen
e of memoryless

strategies is essential in the proof of Theorem 32. In the 
ase of ω-regular win-
ning 
onditions, the strategy of Adam is �nite memory. As in the memoryless


ase, the key observation is that the graph one gets by applying the strategy is

�nite (though larger than the original graph). Thus, it is still possible to apply

Theorem 12. We omit the straightforward details of the proof.

Theorem 32. Let G = (G,VA, VE , v0) be an arena, p a probabilisti
 transition

fun
tion on VE and Ω ⊆ V ω an ω-regular 
ondition. Adam has an almost-sure

winning strategy in the 1 1/2-player game (G , p,Ω) if and only if A has a winning

strategy in the game (G , Ω)ABM .

We 
an noti
e that if VA = ∅ then we have the spe
ial 
ase of Theorem 12.

Thus, we showed that playing against a fair player is equivalent to playing

against a probabilisti
 player in the 
ase of ω-regular properties.

5 Related and Future Work

The Bana
h-Mazur game is one possible de�nition of fairness in 
losed systems.

An equivalent topologi
al de�nition 
an be given in terms of 
o-meagerness.

In [1℄, the topologi
al de�nition is used to prove the equivalen
e between prob-

abilisti
 and fair semanti
s of timed automata. Interestingly, this equivalen
e

holds only for one-
lo
k automata, but it breaks down on
e we allow more than

one 
lo
k. Another equivalent de�nition is in terms of α-fairness [10℄. Of the three
de�nitions, this is the one that most resembles the intuitive notion of fairness �if

something is often possible, it will be often performed�. It would be interesting

to de�ne fair strategies for Eve in terms of α-fairness. We also expe
t that this

game-theoreti
 point of view 
an be applied to improve existing algorithms, or

to �nd new ones, in the qualitative model 
he
king of MDPs.

In this paper, we have applied a de�nition of fairness to one of the players of

2-player games. In general, we 
ould study what happens to other players and

other games. For instan
e, a 1 1/2-player game where Adam plays fairly should

be equivalent to a Markov 
hain.
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