
Probabilistic Event Structures and Domains

Daniele Varacca a,1 Hagen Völzer b Glynn Winskel c

aLIENS - École Normale Supérieure, Paris, France
bInstitut für Theoretische Informatik - Universität zu Lübeck, Germany

cComputer Laboratory - University of Cambridge, UK

Abstract

This paper studies how to adjoin probability to event structures, leading to the model of
probabilistic event structures. In their simplest form probabilistic choice is localised to
cells, where conflict arises; in which case probabilistic independence coincides with causal
independence. An event structure is associated with a domain—that of its configurations
ordered by inclusion. In domain theory probabilistic processes are denoted by continuous
valuations on a domain. A key result of this paper is a representation theorem showing how
continuous valuations on the domain of a confusion-free event structure correspond to the
probabilistic event structures it supports. We explore how to extend probability to event
structures which are not confusion-free via two notions of probabilistic runs of a general
event structure. Finally, we show how probabilistic correlation and probabilistic event struc-
tures with confusion can arise from event structures which are originally confusion-free by
using morphisms to rename and hide events.

Key words: Event structures, probability, domain theory, concurrency, causality

1 Introduction

There is a central divide in models for concurrent processes according to whether
they represent parallelism by nondeterministic interleaving of actions or directly as
causal independence. Where a model stands with respect to this divide affects how
probability is adjoined. Most work has been concerned with probabilistic interleav-
ing models [13,19,7]. In contrast, we propose a probabilistic causal model, a form
of probabilistic event structure.

An event structure consists of a set of events with relations of causal dependency
and conflict. A configuration (a state, or partial run of the event structure) consists

1 Corresponding author. Current affiliation: Department of Computing, Imperial College,
London SW7 2AZ, UK. Email:varacca@doc.ic.ac.uk

Preprint submitted to Elsevier Science 19 April 2005

of a subset of events which respects causal dependency and is conflict free. Ordered
by inclusion, configurations form a special kind of Scott domain [17].

The first model we investigate is based on the idea that all conflict is resolved
probabilistically and locally. This intuition leads us to a simple model based on
confusion-free event structures, a form of concrete data structures [11], but where
computation proceeds by making a probabilistic choice as to which event occurs
at each currently accessible cell. (The probabilistic event structures which arise are
a special case of those studied by Katoen [12]—though our concentration on the
purely probabilistic case and the use of cells makes the definition simpler.) Such
a probabilistic event structure immediately gives a “probability” weighting to each
configuration got as the product of the probabilities of its constituent events. We
characterise those weightings (called configuration valuations) which result in this
way. Understanding the weighting as a true probability will lead us later to the
important notion of probabilistic test.

Traditionally, in domain theory a probabilistic process is represented as a continu-
ous valuation on the open sets of a domain, i.e., as an element of the probabilistic
powerdomain of Jones and Plotkin [10]. We reconcile probabilistic event structures
with domain theory, lifting the work of Nielsen, Plotkin and Winskel [17] to the
probabilistic case, by showing how they determine continuous valuations on the
domain of configurations. In doing so, however, we do not obtain all continuous
valuations. We show that this is essentially for two reasons: in valuations proba-
bility can “leak” in the sense that the total probability can be strictly less than 1;
more significantly, in a valuation the probabilistic choices at different cells need not
be probabilistically independent. In the process we are led to a more general def-
inition of probabilistic event structure from which we obtain a key representation
theorem: continuous valuations on the domain of configurations correspond to the
more general probabilistic event structures.

How do we adjoin probabilities to event structures which are not necessarily confu-
sion-free? We argue that in general a probabilistic event structure can be identified
with a probabilistic run of the underlying event structure and that this corresponds
to a probability measure over the maximal configurations. This sweeping defini-
tion is backed up by a precise correspondence in the case of confusion-free event
structures. Exploring the operational content of this general definition leads us to
consider probabilistic tests comprising a set of finite configurations which are both
mutually exclusive and exhaustive. Tests do indeed carry a probability distribution,
and as such can be regarded as finite probabilistic partial runs of the event structure.

Finally we explore how phenomena such as probabilistic correlation between choi-
ces and confusion can arise through the hiding and relabeling of events. To this
end we present some preliminary results on “tight” morphisms of event structures,
showing how, while preserving continuous valuations, they can produce such phe-
nomena.

2

2 Probabilistic Event Structures

2.1 Event Structures

An event structure is a triple E = 〈E,≤,#〉 such that

• E is a countable set of events;
• 〈E,≤〉 is a partial order, called the causal order, such that for every e ∈ E, the

set of events ↓ e := {e′ | e′ ≤ e} is finite;
• # is an irreflexive and symmetric relation, called the conflict relation, satisfying

the following: for every e1, e2, e3 ∈ E if e1 ≤ e2 and e1 # e3 then e2 # e3.

We say that the conflict e2 # e3 is inherited from the conflict e1 # e3, when e1 <
e2. Causal dependence and conflict are mutually exclusive. If two events are not
causally dependent nor in conflict they are said to be concurrent.

A configuration x of an event structure E is a conflict-free downward closed subset
of E, i.e., a subset x of E satisfying:

(1) whenever e ∈ x and e′ ≤ e then e′ ∈ x;
(2) for every e, e′ ∈ x, it is not the case that e# e′.

Therefore, two events of a configuration are either causally dependent or concur-
rent, i.e., a configuration represents a run of an event structure where events are
partially ordered. The set of configurations of E , partially ordered by inclusion, is
denoted as L(E). The set of finite configurations is written by Lfin(E). We denote
the empty configuration by ⊥. If x is a configuration and e is an event such that
e 6∈ x and x∪{e} is a configuration, then we say that e is enabled at x. Two config-
urations x, x′ are said to be compatible if x ∪ x′ is a configuration. For every event
e of an event structure E , we define [e] := ↓ e, and [e) := [e] \ {e}. It is easy to
see that both [e] and [e) are configurations for every event e and that therefore any
event e is enabled at [e).

We say that events e1 and e2 are in immediate conflict, and write e1 #µ e2 when
e1 # e2 and both [e1) ∪ [e2] and [e1] ∪ [e2) are configurations. Note that the imme-
diate conflict relation is symmetric. It is also easy to see that a conflict e1 # e2 is
immediate if and only if there is a configuration where both e1 and e2 are enabled.
Every conflict is either immediate or inherited from an immediate conflict.

Lemma 2.1 In an event structure, e# e′ if and only if there exist e0, e
′
0 such that

e0 ≤ e, e′0 ≤ e′, e0 #µ e
′
0.

Proof: Consider the set ([e]× [e′])∩# consisting of the pairs of conflicting events,
and order it componentwise. Consider a minimal such pair (e0, e

′
0). By minimality,

3

any event in [e0) is not in conflict with any event in [e′0]. Since they are both lower
sets, we have that [e0) ∪ [e′0] is a configuration. Analogously for [e0] ∪ [e′0). By
definition of immediate conflict, we have e0 #µ e

′
0. The other direction follows from

the definition of #. 2

2.2 Confusion-free Event Structures

The most intuitive way to add probability to an event structure is to resolve the con-
flicts by flipping coins, or by rolling dice. Each coin flip, or die roll, can be thought
of as a “probabilistic event” where probability is associated locally. Formally, a
probabilistic event will be a probability distribution over a cell, a set of events (the
outcomes) that are pairwise in immediate conflict and that have the same set of
causal predecessors. The latter implies that all outcomes are enabled at the same
configurations, which allows us to say that the probabilistic event is either enabled
or not enabled at a configuration.

Definition 2.2 A partial cell is a non-empty set c of events such that e, e′ ∈ c implies
e#µ e

′ and [e) = [e′). A maximal partial cell is called a cell.

We will now restrict our attention to event structures where each immediate con-
flict is resolved through some probabilistic event. That is, we assume that cells are
closed under immediate conflict. This implies that cells are pairwise disjoint.

Definition 2.3 An event structure is confusion-free if its cells are closed under
immediate conflict.

Proposition 2.4 An event structure is confusion-free if and only if the reflexive
closure of immediate conflict is transitive and cellular, the latter meaning that
e#µ e

′ =⇒ [e) = [e′).

Proof: Take an event structure E . Suppose it is confusion-free. Consider three
events e, e′, e′′ such that e#µ e

′ and e′#µ e
′′. Consider a cell c containing e (there

exists one by Zorn’s lemma). Since c is closed under immediate conflict, it contains
e′. By definition of cell [e) = [e′). Also, since c contains e′, it must contain e′′. By
definition of cell, e#µ e

′′.

For the other direction we observe that if the immediate conflict is transitive, the
reflexive closure of immediate conflict is an equivalence. If immediate conflict is
cellular, the cells coincide with the equivalence classes. In particular they are closed
under immediate conflict. 2

The notion of confusion-freeness arose within the theory of Petri nets [18]. Confu-
sion-free event structures correspond to deterministic concrete data structures [11]
and to confusion-free occurrence nets [17].

4

In a confusion-free event structure, for any cell c, if an event e ∈ c is enabled at a
configuration x, all the events of c are enabled at x as well. In such a case we say
that the cell c is accessible at x. If a configuration x contains an event of a cell c,
we say that x fills c. We extend the partial order notation to cells by writing e < c′

if for some event e′ ∈ c′ (and therefore for all such) e < e′. We write c < c′ if for
some (unique) event e ∈ c, e < c′. By [c) we denote the set of events e such that
e < c.

We find it useful to define cells without directly referring to events. To this end we
introduce the notion of covering.

Definition 2.5 Given two configurations x, x′ ∈ L(E), we say that x′ covers x
(written x � x′) if there exists e 6∈ x such that x′ = x ∪ {e}. For every finite
configuration x of a confusion-free event structure, a partial covering at x is a non-
empty set of pairwise incompatible configurations that cover x. A covering at x is
a maximal partial covering at x.

Proposition 2.6 In a confusion-free event structure if C is a covering at x, then
c := {e |x ∪ {e} ∈ C} is a cell accessible at x. Conversely, if c is a cell accessible
at x, then C := {x ∪ {e} | e ∈ c} is a covering at x.

Proof: See Appendix B. 2

We give here some examples. Consider the following event structures E1, E2, E3,
defined on the same set of events E := {a, b, c, d, e}. In E1, we have a ≤ b, c, d, e
and b#µ c, c#µ d, b#µ d.

b /o/o/o/o/o/o/o/o/o/o

)i)i)i)i)i d
u5 u5 u5 u5 u5 e

c

a

;;;;;;;;;;;

�����������

qqqqqqqqqqqqqqqqqq

Above, curly lines represent immediate conflict, while the causal order proceeds
upwards along the straight lines. In E2, we do not have a ≤ d, while in E3, we do
not have b#µ d.

b /o/o/o/o/o/o/o/o/o/o

)i)i)i)i)i d
u5 u5 u5 u5 u5 e b

)i)i)i)i)i d
u5 u5 u5 u5 u5 e

c c

a

;;;;;;;;;;;

qqqqqqqqqqqqqqqqqq a

;;;;;;;;;;;

�����������

qqqqqqqqqqqqqqqqqq

The event structure E1 is confusion free, with three cells: {a}, {b, c, d}, {e}. There
is one covering at ⊥, which consists only of {a}, and two coverings at {a}, one
which consists of {a, b}, {a, c}, {a, d}, the other which consists of {a, e}.

5

In E2, there are four cells: {a}, {b, c}, {d}, {e}. E2 is not confusion free, because
immediate conflict is not cellular. This is an example of asymmetric confusion [18].
In E3 there are four cells: {a}, {b, c}, {c, d}, {e}. E3 is not confusion free, because
immediate conflict is not transitive. This is an example of symmetric confusion.

2.3 Probabilistic Event Structures with Independence

Once an event structure is confusion-free, we can associate a probability distribu-
tion with each cell. Intuitively it is as if we have a die local to each cell, determining
the probability with which the events at that cell occur. In this way we obtain our
first definition of a probabilistic event structure, a definition in which dice at differ-
ent cells are assumed probabilistically independent.

Definition 2.7 When f : X → [0,+∞] is a function, for every Y ⊆ X , we define
f [Y] :=

∑
x∈Y f(x). A cell valuation on a confusion-free event structure 〈E,≤,#〉

is a function p : E → [0, 1] such that for every cell c, we have p[c] = 1.

Assuming probabilistic independence of all probabilistic events, every finite con-
figuration can be given a “probability”, which is obtained as the product of prob-
abilities of its constituent events. This gives us a function Lfin(E) → [0, 1] which
we can characterise in terms of the order-theoretic structure of Lfin(E) by using
coverings.

Proposition 2.8 Let p be a cell valuation and let v : Lfin(E)→ [0, 1] be defined by
v(x) = Πe∈xp(e). Then we have

(a) (Normality) v(⊥) = 1;
(b) (Conservation) if C is a covering at x, then v[C] = v(x);
(c) (Independence) if x, y are compatible, then v(x) · v(y) = v(x ∪ y) · v(x ∩ y).

Proof: Straightforward. 2

Definition 2.9 A configuration valuation with independence on a confusion-free
event structure E is a function v : Lfin(E) → [0, 1] that satisfies normality, con-
servation and independence. The configuration valuation associated with a cell
valuation p as in Proposition 2.8 is denoted by vp.

Lemma 2.10 If v : Lfin(E)→ [0, 1] satisfies conservation, then it is contravariant,
i.e.:

x ⊆ x′ =⇒ v(x) ≥ v(x′) .

Proof: By induction on the cardinality of x′ \ x. If x = x′ then v(x) = v(x′). Take
x ⊆ x′ and consider a maximal event e in x′ \ x. Let x′′ := x′ \ {e}. By induction
hypothesis v(x) ≥ v(x′′). Let c be the cell of e and C be the c-covering of x′′. By

6

conservation,
∑
y∈C v(y) = v(x′′). Since for every y ∈ C we have that v(y) ≥ 0,

then it must also be that v(y) ≤ v(x′′). But x′ ∈ C so that v(x′) ≤ v(x′′) ≤ v(x).
2

Proposition 2.11 If v is a configuration valuation with independence, then there
exists a cell valuation p such that vp = v.

Proof: See Appendix B. 2

Independence is essential to prove Proposition 2.11. We will show later (Theo-
rem 4.3) the sense in which this condition amounts to probabilistic independence.

We give an example. Take the following confusion-free event structure E4: E4 =
{a, b, c, d} with the trivial causal ordering and with a#µ b and c#µ d.

a /o/o/o b c /o/o/o d

We define a cell valuation on E4 by p(a) = 1/3, p(b) = 2/3, p(c) = 1/4, p(d) =
3/4. The corresponding configuration valuation is defined as

• vp(⊥) = 1;
• vp({a}) = 1/3, vp({b}) = 2/3, vp({c}) = 1/4, vp({d}) = 3/4;
• vp({a, c}) = 1/12, vp({b, c}) = 1/6, vp({a, d}) = 1/4, vp({b, d}) = 1/2.

In the event structure above, one covering at ⊥ consists of {a}, {b}, while one
covering at {a} consists of {a, c}, {a, d}.

We conclude this section with a definition of a probabilistic event structure. Though,
as the definition indicates, we will consider a more general definition later, one in
which there can be probabilistic correlations between the choices at different cells.

Definition 2.12 A probabilistic event structure with independence consists of a
confusion-free event structure together with a configuration valuation with inde-
pendence.

3 Probabilistic Event Structures and Domains

The configurations 〈L(E),⊆〉 of a confusion-free event structure E , ordered by in-
clusion, form a domain, specifically a distributive concrete domain (cf. [17,11]). In
traditional domain theory, a probabilistic process is denoted by a continuous val-
uation. Here we show that, as one would hope, every probabilistic event structure
with independence corresponds to a unique continuous valuation. However not all
continuous valuations arise in this way. Exploring why leads us to a more liberal
notion of a configuration valuation, in which there may be probabilistic correlation

7

between cells. This provides a representation of the normalised continuous valu-
ations on distributive concrete domains in terms of probabilistic event structures.
Appendix A includes a brief survey of the domain theory we require, while Ap-
pendix C contains some of the rather involved proofs. All proofs of this section can
be found in [20].

3.1 Domains

The configurations of an event structure form a coherent ω-algebraic domain, whose
compact elements are the finite configurations [17]. The domain of configurations
of a confusion-free event structure has an independent equivalent characterisa-
tion as distributive concrete domain (for a formal definition of what this means,
see [11]).

The probabilistic powerdomain of Jones and Plotkin [10] consists of continuous
valuations, to be thought of as denotations of probabilistic processes. A continuous
valuation on a DCPO D is a function ν defined on the Scott open subsets of D,
taking values on [0,+∞], and satisfying:

• (Strictness) ν(∅) = 0;
• (Monotonicity) U ⊆ V =⇒ ν(U) ≤ ν(V);
• (Modularity) ν(U) + ν(V) = ν(U ∪ V) + ν(U ∩ V);
• (Continuity) if J is a directed family of open sets, ν

(⋃J
)

= supU∈J ν(U).

A continuous valuation ν is normalised if ν(D) = 1. Let V1(D) denote the set of
normalised continuous valuations on D equipped with the pointwise order: ν ≤ ξ
if for all open sets U , ν(U) ≤ ξ(U). V1(D) is a DCPO [10,8].

An open set in the Scott topology can be interpreted as representing an observation.
IfD is an algebraic domain and x ∈ D is compact, the principal set ↑x := {x′ | x ≤
x′} is open. Principal open sets can be thought of as basic observations. Indeed they
form a basis of the Scott topology. Intuitively a normalised continuous valuation ν
assigns probabilities to observations. In particular, we could think of the probability
of a principal open set ↑ x as representing the probability of observing x.

3.2 Continuous and Configuration Valuations

As can be hoped, a configuration valuation with independence on a confusion-free
event structure E corresponds to a normalised continuous valuation on the domain
〈L(E),⊆〉, in the following sense.

Proposition 3.1 For every configuration valuation with independence v on E , there

8

is a unique normalised continuous valuation ν on L(E) such that for every finite
configuration x, ν(↑x) = v(x).

Proof: The claim is a special case of the subsequent Theorem 3.4. 2

While a configuration valuation with independence gives rise to a continuous val-
uation, not every continuous valuation arises in this way. As an example, consider
the event structure E4 as defined in Section 2.3. Define

• ν(↑{a}) = ν(↑{b}) = ν(↑{c}) = ν(↑{d}) = 1/2;
• ν(↑{a, d}) = ν(↑{b, c}) = 1/2;
• ν(↑{a, c}) = ν(↑{b, d}) = 0;

and extend it to all open sets by modularity. It is easy to verify that it is indeed a
continuous valuation on L(E4). Define a function v : Lfin(E4) → [0, 1] by v(x) :=
ν(↑x). This is not a configuration valuation with independence; it does not satisfy
condition (c) of Proposition 2.8. If we consider the compatible configurations x :=
{a}, y := {c} then v(x ∪ y) · v(x ∩ y) = 0 < 1/4 = v(x) · v(y).

Also continuous valuations “leaking” probability do not arise from probabilistic
event structures with independence.

Definition 3.2 Denote the set of maximal elements of a DCPO D by Ω(D). A nor-
malised continuous valuation ν on D is non-leaking if for every open set O ⊇
Ω(D), we have ν(O) = 1.

This definition is new, although inspired by a similar concept by Edalat [8]. For
the simplest example of a leaking continuous valuation, consider the event struc-
ture E5 consisting of one event e only, and the valuation defined as ν(∅) = 0,
ν(↑⊥) = 1, ν(↑{e}) = 1/2. The corresponding function v : Lfin(E5) → [0, 1],
defined as v(⊥) = 1, v({e}) = 1/2, violates condition (b) of Proposition 2.8. The
probabilities in the cell {e} do not sum up to 1.

We analyse how valuations without independence and leaking valuations can arise
in the next two sections.

3.3 Valuations Without Independence

Definition 2.12 of probabilistic event structures assumes the probabilistic indepen-
dence of choice at different cells. This is reflected by condition (c) in Proposi-
tion 2.8 on which it depends. In the first example above, the probabilistic choices
in the two cells are not independent: once we know the outcome of one of them,
we also know the outcome of the other. This observation leads us to a more general
definition of a configuration valuation and probabilistic event structure.

9

Definition 3.3 A configuration valuation on a confusion-free event structure E is a
function v : Lfin(E)→ [0, 1] such that:

(a) v(⊥) = 1;
(b) if C is a covering at x, then v[C] = v(x).

A probabilistic event structure consists of a confusion-free event structure together
with a configuration valuation.

Now we can generalise Proposition 3.1, and show a converse:

Theorem 3.4 For every configuration valuation v on E , there is a unique nor-
malised continuous valuation ν on L(E) such that for every finite configuration
x, ν(↑x) = v(x). Moreover ν is non-leaking.

Proof: See Appendix C. 2

Theorem 3.5 Let ν be a non-leaking continuous valuation on L(E). The function
v : Lfin(E)→ [0, 1] defined by v(x) = ν(↑x) is a configuration valuation.

Proof: See Appendix C. 2

Using this representation result, we are also able to characterise the maximal ele-
ments in V1(L(E)) as precisely the non-leaking valuations.

Theorem 3.6 Let E be a confusion-free event structure and let ν ∈ V 1(L(E)).
Then ν is non-leaking if and only if it is maximal.

Proof: See [20], Prop. 7.6.3 and Thm. 7.6.4. 2

An alternative proof of Theorem 3.6, which applies to a wider class of domains,
can be found in [15], Thm. 8.6.

3.4 Leaking Valuations

There remain leaking continuous valuations, as yet unrepresented by any proba-
bilistic event structures. At first sight it might seem that to account for leaking
valuations it would be enough to relax condition (b) of Definition 3.3 to the follow-
ing

(b’) if C is a covering at x, then v[C] ≤ v(x).

However, it turns out that this is not the right generalisation, as the following ex-
ample shows. Consider the event structure E6 where E6 = {a, b} with the trivial
causal ordering and no conflict. Define a “leaking configuration valuation” on E6 by

10

v(⊥) = v({a}) = v({b}) = 1, v({a, b}) = 0. The function v satisfies conditions
(a) and (b’), but it cannot be extended to a continuous valuation on the domain of
configurations.

In fact, the leaking of probability is attributable to an “invisible” event, as we are
now going to show.

Definition 3.7 Consider a confusion-free event structure E = 〈E,≤,#〉. For every
cell c, we consider a new “invisible” event ∂c such that ∂c 6∈ E and if c 6= c′ then
∂c 6= ∂c′ . Let ∂ := {∂c | c is a cell}. We define E∂ to be 〈E∂,≤∂ ,#∂〉, where

• E∂ = E ∪ ∂;
• ≤∂ is ≤ extended by e ≤∂ ∂c if for all e′ ∈ c, e ≤ e′;
• #∂ is # extended by e#∂ ∂c if there exists e′ ∈ c, e′ ≤ e.

So E∂ is E extended by an extra invisible event at every cell. Invisible events can
absorb all leaking probability, as shown by Theorem 3.9 below.

Definition 3.8 Let E be a confusion-free event structure. A generalised configura-
tion valuation on E is a function v : Lfin(E) → [0, 1] that can be extended to a
configuration valuation on E∂ .

It is not difficult to prove that, when such an extension exists, it is unique.

Theorem 3.9 Let E be a confusion-free event structure. Let v : Lfin(E) → [0, 1].
There exists a unique normalised continuous valuation ν on L(E) with v(x) =
ν(↑x), if and only if v is a generalised configuration valuation.

Proof: See [20], Thm. 6.5.3. 2

The above theorem completely characterises the normalised continuous valuations
on distributive concrete domains in terms of probabilistic event structures.

4 Probabilistic Event Structures as Probabilistic Runs

In the rest of the paper we investigate how to adjoin probabilities to event structures
that are not confusion-free. In order to do so, we find it useful to introduce two
notions of probabilistic run.

Configurations represent runs (or computation paths) of an event structure. What is
a probabilistic run (or probabilistic computation path) of an event structure? One
would expect a probabilistic run to be a form of probabilistic configuration, so a
probability distribution over a suitably chosen subset of configurations. As a guide-
line we consider the traditional model of probabilistic automata [19], where proba-

11

bilistic runs are represented in essentially two ways: as a probability measure over
the set of maximal runs [19], and as a probability distribution over finite runs of the
same length [6].

The first approach is readily available to us, and where we begin. As we will see,
according to this view, probabilistic event structures over a common event structure
E correspond precisely to the probabilistic runs of E .

The proofs of the results in this section are to be found in Appendix C. Basic notions
of measure theory can be found in Appendix A.

4.1 Probabilistic Runs of an Event Structure

The first approach suggests that a probabilistic run of an event structure E be taken
to be a probability measure on the maximal configurations of L(E).

Let D be an algebraic domain. Recall that Ω(D) denotes the set of maximal ele-
ments ofD and that for every compact element x ∈ D, the principal set ↑x is Scott
open. The set K(x) := ↑x∩Ω(D) is called the shadow of x. We shall consider the
σ-algebra S on Ω(D) generated by the shadows of the compact elements.

Definition 4.1 A probabilistic run of an event structure E is a probability measure
on 〈Ω(L(E)),S〉, where S is the σ-algebra generated by the shadows of the com-
pact elements.

Probabilistic runs correspond to non-leaking valuations, in the following sense.

Theorem 4.2 Let ν be a non-leaking normalised continuous valuation on a coher-
ent ω-algebraic domain D. Then there is a unique probability measure µ on S such
that for every compact element x, µ(K(x)) = ν(↑x).
Let µ be a probability measure on S . Then the function ν defined on open sets by
ν(O) = µ(O ∩ Ω(D)) is a non-leaking normalised continuous valuation.

Proof: See Appendix C. 2

According to Theorem 4.2, Theorem 3.4, and Theorem 3.5, configuration valua-
tions over an event structure E correspond precisely to the probabilistic runs of E .
Using this correspondence, we can characterise probabilistic event structures with
independence in terms of the standard measure-theoretic notion of independence.
In fact, for such a probabilistic event structure, every two compatible configurations
are probabilistically independent, given the common past:

Proposition 4.3 Let v be a configuration valuation on a confusion-free event struc-
ture E . Let µv be the corresponding measure as of Theorem 3.4 and Theorem 4.2.

12

Then, v is a configuration valuation with independence if and only if for every two
finite compatible configurations x, y

µv

(
K(x) ∩K(y) |K(x ∩ y)

)
= µv

(
K(x) | K(x ∩ y)

)
· µv

(
K(y) | K(x ∩ y)

)
.

Proof: An easy application of the definitions. 2

Note that the definition of probabilistic run of an event structure does not require
that the event structure is confusion-free. It thus suggests a general definition of a
probabilistic event structure as an event structure with a probability measure µ on its
maximal configurations, even when the event structure is not confusion-free. This
definition, in itself, is however not very informative and we look to an explanation
in terms of finite probabilistic runs.

4.2 Finite Runs

What is a finite probabilistic run? Following the analogy heading this section, we
want it to be a probability distribution over finite configurations. But which sets are
suitable to be the support of such distribution? In interleaving models, the sets of
runs of the same length do the job. For event structures this won’t do.

To see why consider the event structure with only two concurrent events a, b. The
only maximal run assigns probability 1 to the maximal configuration {a, b}. This
corresponds to a configuration valuation which assigns 1 to both {a} and {b}. Now
these are two configurations of the same size, but their common “probability” is
equal to 2. The reason is that the two configurations are compatible: they do not
represent alternative choices. We therefore need to represent alternative choices,
and we need to represent them all. This leads us to the following definition.

Definition 4.4 Let E be an event structure. A partial test of E is a set C of pairwise
incompatible configurations of E . A test is a maximal partial test. A test is finitary
if all its elements are finite.

An alternative characterisation of tests is as follows.

Definition 4.5 A set C of configurations of an event structure is complete if for
every maximal configuration z, there exists x ∈ C such that x ⊆ z.

Proposition 4.6 A partial test C is a test if and only if it is complete.

Proof: If C is not complete, then it is not maximal. Let z be a maximal configu-
ration such that for no x ∈ C we have x ⊆ z. Then C ∪ {z} is still a partial test.
Conversely suppose C is complete. Take a configuration y and a maximal config-

13

uration z such that y ⊆ z. By completeness there exists x ∈ C such that x ⊆ z.
Therefore x and y are compatible. Since this is true for any y, C is maximal as
partial test. 2

The set of tests is naturally endowed with the Egli-Milner order: C ≤ C ′ if and
only if

• for every x ∈ C there exists x′ ∈ C ′ such that x ⊆ x′;
• for every x′ ∈ C ′ there exists x ∈ C such that x ⊆ x′.

It can be proved that, with this partial order, the set of all tests is a complete lattice,
while finitary tests form a lattice.

We present here some examples of tests. Consider the event structure E1 of Sec-
tion 2.2. The set C :=

{
{a, b}, {a, c}

}
is a partial test. It is not a test, as it is not

complete. It becomes a test by adding the configuration {a, d}. Another test is the
singleton

{
{a, e}

}
. The set

{
{a, b}, {a, c}, {a, d}, {a, e}

}
is complete, but it is not

a partial test, and therefore it is not a test.

Consider now the event structure E3. The set
{
{a, b}, {a, c}, {a, d}

}
is complete,

but it is not a partial test. A test is the set C :=
{
{a, b, d, e}, {a, c}

}
. Other tests

are the sets C ′ :=
{
{a, b}, {a, c, e}

}
, C ′′ :=

{
{a}

}
. Note that C ′′ ≤ C ′, C while

C,C ′ are incomparable. The test
{
{a, b}, {a, c}

}
is the meet of C,C ′, while the test{

{a, b, d, e}, {a, c, e}
}

is their join.

Above, all the tests showed are finite and finitary. When the event structure is infi-
nite, we can have tests that are either infinite, or that can contain infinite configura-
tions, or both. For instance, the set of maximal configurations is always a test, and
in general it is infinite and contains infinite configurations. For another example of
test, see also Appendix C.

Tests were designed to support probability distributions. So given a probabilistic
run we expect it to restrict to a probability distributions on finitary tests.

Definition 4.7 Let v be a functionLfin(E)→ [0, 1]. Then v is called a test valuation
if for all finitary tests C we have v[C] = 1.

Theorem 4.8 Let µ be a probabilistic run of E . Define v : Lfin(E) → [0, 1] by
v(x) = µ(K(x)). Then v is a test valuation.

Proof: See Appendix C. 2

Note that Theorem 4.8 is for general event structures. We unfortunately do not
have a converse in general. However, there is a converse when the event structure
is confusion-free:

14

Theorem 4.9 Let E be a confusion-free event structure, and let v be a function
Lfin(E) → [0, 1]. Then v is a configuration valuation if and only if it is a test
valuation.

Proof: See Appendix C. 2

The proof of this theorem hinges on a property of tests. The property is that of
whether partial tests can be completed. Clearly every partial test can be completed
to a test (by Zorn’s lemma), but there exist finitary partial tests that cannot be com-
pleted to finitary tests.

Definition 4.10 A finitary partial test is honest if it is part of a finitary test. A finite
configuration is honest if it is honest as partial test. An event structure is honest if
all its finite configurations are honest.

Proposition 4.11 Confusion-free event structures are honest.

Proof: See Appendix C. 2

For general event structures, the following is the best we can do at present:

Theorem 4.12 Let v be a test valuation on E . Let H be the σ-algebra on Ω(L(E))
generated by the shadows of honest finite configurations. Then there exists a unique
measure µ onH such that µ(K(x)) = v(x) for every honest finite configuration x.

Proof: See Appendix C. 2

Theorem 4.13 In an honest event structure, for every test valuation v there exists
a unique continuous valuation ν, such that ν(↑x) = v(x).

Proof: See Appendix C. 2

We do not know whether all event structures are honest, but we conjecture this to
be the case. If so this would entail the general converse to Theorem 4.8 and so
characterise probabilistic event structures, allowing confusion, in terms of finitary
tests.

5 Morphisms

It is relatively straightforward to understand probabilistic event structures with in-
dependence. But how can general test valuations on a confusion-free event struc-
tures arise? More generally how do we get runs of arbitrary event structures? We
explore one answer in this section. We show how to obtain test valuations as “pro-
jections” along a morphism from a configuration valuation with independence on

15

a confusion-free event structure. The use of morphisms shows how general valua-
tions are obtained through the hiding and renaming of events.

5.1 Definitions

Definition 5.1 ([23,24]) Given two event structures E , E ′, a morphism f : E → E ′
is a partial function f : E → E ′ such that

• whenever x ∈ L(E) then f(x) ∈ L(E ′);
• for every x ∈ L(E), for all e1, e2 ∈ x if f(e1), f(e2) are both defined and f(e1) =
f(e2), then e1 = e2.

Such morphisms define a category ES. The operator L extends to a functor ES→
DCPO by L(f)(x) = f(x), where DCPO is the category of DCPO’s and con-
tinuous functions.

A morphism f : E → E ′ expresses how the occurrence of an event in E induces a
synchronised occurrence of an event in E ′. Some events in E are hidden (if f is not
defined on them) and conflicting events in E may synchronise with the same event
in E ′ (if they are identified by f).

The second condition in the definition guarantees that morphisms of event struc-
tures “reflect” reflexive conflict, in the following sense. Let ? be the relation
(#∪ IdE), and let f : E → E ′. If f(e1) ? f(e2), then e1 ? e2. We now introduce
morphisms that reflect tests; such morphisms enable us to define a test valuation
on E ′ from a test valuation on E . To do so we need some preliminary definitions.
Given a morphism f : E → E ′, we say that an event of E is f -invisible, if it is not
in the domain of f . Given a configuration x of E we say that it is f -minimal if all
its maximal events are f -visible. That is x is f -minimal, when is minimal in the set
of configurations that are mapped to f(x). For any configuration x, define xf to be
the f -minimal configuration such that xf ⊆ x and f(x) = f(xf).

Definition 5.2 A morphism of event structures f : E → E ′ is tight when

• if y = f(x) and if y′ ⊇ y, there exists x′ ⊇ xf such that y′ = f(x′);
• if y = f(x) and if y′ ⊆ y, there exists x′ ⊆ xf such that y′ = f(x′);
• all maximal configurations are f -minimal (no maximal event is f -invisible).

Tight morphisms have the following interesting properties:

Proposition 5.3 A tight morphism of event structures is surjective on configura-
tions. Given f : E → E ′ tight, if C ′ is a finitary test of E ′ then the set of f -minimal
inverse images of C ′ along f is a finitary test in E .

16

Proof: The f -minimal inverse images form always a partial test because morphisms
reflect conflict. Tightness is needed to show completeness. 2

We now study the relation between valuations and morphisms. Given a function
v : Lfin(E) → [0,+∞] and a morphism f : E → E ′ we define a function f(v) :
Lfin(E ′) → [0,+∞] by f(v)(y) =

∑{v(x) | f(x) = y and x is f -minimal}. We
have:

Proposition 5.4 Let E , E ′ be confusion-free event structures, v a generalised con-
figuration valuation on E and f : E → E ′ a morphism. Then f(v) is a generalised
configuration valuation on E ′.

Proof: See [20], p. 132. 2

Proposition 5.5 Let E , E ′ be event structures, v be a test valuation on E , and f :
E → E ′ a tight morphism. Then the function f(v) is a test valuation on E ′.

Proof: An easy consequence of Proposition 5.3. 2

Therefore we can obtain a run of a general event structure by projecting from a
run of a probabilistic event structure with independence. Presently we don’t know
whether every run can be generated in this way.

5.2 Morphisms at Work

The use of morphisms allows us to make interesting observations. Firstly we can
give an interpretation to probabilistic correlation. Consider the following event
structures E4 = 〈E4,≤,#〉, E7 = 〈E7,≤,#〉 where E7 is defined as follows:

• E7 = {a1, a2, b1, b2, c1, c2, d1, d2, e1, e2};
• e1 ≤ a1, b1, c1, d1 and e2 ≤ a2, b2, c2, d2;
• e1 #µ e2, ai #µ bi, ci #µ di for i = 1, 2.

a1 /o b1 c1 /o d1 a2 /o b2 c2 /o d2

e1

EEEEEEEEE

333333

������
/o/o/o/o/o/o/o e2

3333333

�������

yyyyyyyyy

The event structure E4 was defined in Section 2.3:E4 = {a, b, c, d}with the discrete
ordering and with a#µ b and c#µ d.

The map f : E7 → E4 defined as f(xi) = x for x = a, b, c, d and i = 1, 2 is a tight
morphism of event structures.

17

Now suppose we have a global valuation with independence v on E7. We can define
it as cell valuation p, by p(ei) = 1

2
, p(a1) = p(c1) = p(b2) = p(d2) = 1, p(a2) =

p(c2) = p(b1) = p(d1) = 0. It is easy to see that v′ := f(v), is the test valuation
defined in Section 3.2. For instance

v′({a}) = v({e1, a1}) + v({e2, a2}) =
1

2
;

v′({a, d}) = v({e1, a1, d1}) + v({e2, a2, d2}) = 0 .

Therefore v′ is not a global valuation with independence: the correlation between
the cell {a, b} and the cell {c, d} can be interpreted by saying that it is due to a
hidden choice between e1 and e2.

In the next example, a tight morphism takes us out of the class of confusion-free
event structures. Consider the event structures E8 = 〈E8,≤,#〉, E9 = 〈E9,≤,#〉
where E8 = {a1, a2, b, c, d}; a1 ≤ b, a2 ≤ c, d; a1 #µ a2;

b c d

a1 /o/o/o/o/o a2

111111

������

while E9 = {b, c, d}; b#µ c, d.

c /o/o/o b /o/o/o d

Note that E9 is not confusion-free. The map f : E8 → E9 defined as f(x) = x
for x = b, c, d is a tight morphism. A test valuation on an event structure with
confusion is obtained as a projection along a tight morphism from a probabilistic
event structure with independence. Again, this is obtained by hiding a choice.

In the next example, we again restrict our attention to confusion-free event struc-
tures, but we use a non-tight morphism. Such morphisms allow us to interpret con-
flict as probabilistic correlation. Consider the event structures: E10 = 〈E10,≤,#〉,
where E10 = {a, b}, with a#µ b; E6 = 〈E6,≤,#〉, where E6 = {a, b}, with trivial
ordering and no conflict. The map f : E10 → E6 defined as f(x) = x for x = a, b
is a morphism of event structures. It is not tight, because it is not surjective on
configurations: the configuration {a, b} is not in the image of f .

Consider the test valuation v on E10 defined as v({a}) = v({b}) = 1/2. The gener-
alised global valuation v′ = f(v) is then defined as follows: v′({a}) = v′({b}) =
1/2, v′({a, b}) = 0. It is not a test valuation, but by Theorem 3.9, we can extend it
to a test valuation on E6,∂ :

∂a /o/o/o a b /o/o/o ∂b

The (unique) extension is defined as follows:

18

• v′({∂a}) = v′({∂b}) = v′({a}) = v′({b}) = 1/2;
• v′({∂a, ∂b}) = v′({a, b}) = 0;
• v′({∂a, b}) = v′({a, ∂b}) = 1/2.

The conflict between a and b in E10 is seen in E6 as a correlation between their cells.
Either way, we cannot observe a and b together.

6 Related and Future Work

In his PhD thesis, Katoen [12] defines a notion of probabilistic event structure
which includes our probabilistic event structures with independence. But his con-
cerns are more directly tuned to a specific process algebra. So in one sense his
work is more general—his event structures also possess nondeterminism—while in
another it is much more specific in that it does not look beyond local probability
distributions at cells and it does not relate to domain theory. Völzer [22] introduces
similar concepts based on Petri nets and a special case of Theorem 4.12. Benveniste
et al. [5] have an alternative definition of probabilistic Petri nets, see also Abbes’
PhD thesis [1]. There is clearly an overlap of concerns though some significant
differences which require study.

We have explored how to add probability to the independence model of event struc-
tures. In the confusion-free case, this can be done in several equivalent ways: as
valuations on configurations; as continuous valuations on the domain of configu-
rations; as probabilistic runs (probability measures over maximal configurations);
and in the simplest case, with independence, as probability distributions existing
locally and independently at cells. We have also shown that the occurrence of sub-
probabilities can be accounted for by invisible events.

For event structures that are not confusion-free, the picture is not as clear. First of
all, the correspondence between test valuations and probabilistic runs requires the
conjecture on the honesty of all event structures to be proven true. Moreover we are
not able to account for subprobabilities.

Work remains to be done on a more operational understanding, in particular of
probabilistic event structures without independence, and of event structures that are
not confusion-free. This may involve relating probabilistic event structures to inter-
leaving models like Probabilistic Automata [19] or Labelled Markov Processes [7].

Another direction of research concerns continuous probabilities. In our probabilis-
tic event structures, cells are at most countable, and so discrete probabilities are
enough. What happens if we allow cells to have the cardinality of the continuum?

Finally it would interesting to use probabilistic event structures to model probabilis-

19

tic process languages, generalising the work of [23]. In particular which syntactic
restrictions allow us to stay within the class of confusion-free event structures? Fol-
lowing an idea of Milner, used in the context of confluent processes [16], one can
restrict parallel composition so that there is no ambiguity as to which two processes
can communicate at a channel. Following this intuition it should be possible to give
the semantics of a recursion-free probabilistic process language in terms of proba-
bilistic event structures. The conference version of this paper [21] presents a sketch
of such semantics, which, unfortunately, contains a mistake. Work is ongoing to
formalise properly the above intuition.

Acknowledgements

The first author wants to thank Mogens Nielsen, Philippe Darondeau, Samy Abbes
and an anonymous referee. He carried out this work partially as PhD student at
BRICS (Aarhus University) and partially supported by the European FET contract
MyThS, IST-2001-32617.

References

[1] Samy Abbes. Probabilistic Models for Distributed and Concurrent Systems. Limit
Theorems and Applications to Statistical Parameter Estimation. PhD thesis, IRISA,
University of Rennes, 2004.

[2] Samson Abramsky and Achim Jung. Domain theory. In Handbook of Logic in
Computer Science, volume 3. Clarendon Press, 1994.

[3] Mauricio Alvarez-Manilla. Measure Theoretic Results for Continuous Valuations on
Partially Ordered Spaces. PhD thesis, University of London - Imperial College of
Science, Technology and Medicine, 2000.

[4] Mauricio Alvarez-Manilla, Abbas Edalat, and Nasser Saheb-Djaromi. An extension
result for continuous valuations. Journal of the London Mathematical Society,
61(2):629–640, 2000.

[5] Albert Benveniste, Eric Fabre, and Stefan Haar. Markov nets: Probabilistic models
for distributed and concurrent systems. IEEE Transactions on Automatic Control,
48(11):1936–1950, 2003.

[6] Luca de Alfaro, Thomas A. Henzinger, and Ranjit Jhala. Compositional methods for
probabilistic systems. In Proceedings of 12th CONCUR, volume 2154 of LNCS, pages
351–365. Springer, 2001.

[7] Josée Desharnais, Abbas Edalat, and Prakash Panangaden. Bisimulation for labelled
markov processes. Information and Computation, 179(2):163–193, 2002.

20

[8] Abbas Edalat. Domain theory and integration. Theoretical Computer Science,
151(1):163–193, 1995.

[9] Paul Halmos. Measure Theory. van Nostrand, 1950. New edition by Springer in 1974.

[10] Claire Jones and Gordon D. Plotkin. A probabilistic powerdomain of evaluations. In
Proceedings of 4th LICS, pages 186–195, 1989.

[11] Gilles Kahn and Gordon D. Plotkin. Concrete domains. Theoretical Computer
Science, 121(1-2):187–277, 1993.

[12] Joost-Pieter Katoen. Quantitative and Qualitative Extensions of Event Structures. PhD
thesis, University of Twente, 1996.

[13] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, 1991.

[14] Jimmie D. Lawson. Spaces of maximal points. Mathematical Structures in Computer
Science, 7(5):543–555, 1997.

[15] Jimmie D. Lawson. Computation on metric spaces via domain theory. Topology and
its Applications, 85:247–263, 1998.

[16] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[17] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event structures
and domains, part I. Theoretical Computer Science, 13(1):85–108, 1981.

[18] Grzegorz Rozenberg and Joost Engelfriet. Elementary net systems. In Dagstuhl
Lecturs on Petri Nets, volume 1491 of LNCS, pages 12–121. Springer, 1996.

[19] Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, M.I.T., 1995.

[20] Daniele Varacca. Probability, Nondeterminism and Concurrency. Two Denotational
Models for Probabilistic Computation. PhD thesis, BRICS - Aarhus University, 2003.
Available at http://www.brics.dk/∼varacca.

[21] Daniele Varacca, Hagen Völzer, and Glynn Winskel. Probabilistic event structures and
domains. In Proceedings of 15th CONCUR, volume 3170 of LNCS, pages 481–496.
Springer, 2004.

[22] Hagen Völzer. Randomized non-sequential processes. In Proceedings of 12th
CONCUR, volume 2154 of LNCS, pages 184–201, 2001. Extended version as
Technical Report 02-28 - SVRC - University of Queensland.

[23] Glynn Winskel. Event structure semantics for CCS and related languages. In
Proceedings of 9th ICALP, volume 140 of LNCS, pages 561–576. Springer, 1982.

[24] Glynn Winskel and Mogens Nielsen. Models for concurrency. In Handbook of logic
in Computer Science, volume 4. Clarendon Press, 1995.

21

A Domain Theory and Measure Theory—Basic Notions

A.1 Domain Theory

We briefly recall some basic notions of domain theory (see e.g. [2]). A directed
complete partial order (DCPO) is a partial order where every directed set Y has
a least upper bound

⊔
Y . An element x of a DCPO D is compact (or finite) if for

every directed Y and every x ≤ ⊔
Y there exists y ∈ Y such that x ≤ y. The set

of compact elements is denoted by Cp(D). A DCPO is an algebraic domain if or
every x ∈ D, x is the directed least upper bound of ↓x ∩ Cp(D). It is ω-algebraic
if Cp(D) is countable.

In a partial order, two elements are said to be compatible if they have a common
upper bound. A subset of a partial order is consistent if every two of its elements
are compatible. A partial order is coherent if every consistent set has a least upper
bound.

A subset X of a DCPO is Scott open if it is upward closed and if for every directed
set Y whose least upper bound is in X , then Y ∩X 6= ∅. Scott open sets form the
Scott topology.

A.2 Measure Theory

A σ-algebra on a set Ω is a family of subsets of Ω that is closed under countable
union and complementation and that contains ∅. The intersection of an arbitrary
family of σ-algebras is again a σ-algebra. In particular if S ⊆ P(Ω), and Ξ :=
{F | F is a σ-algebra and S ⊆ F}, then

⋂
Ξ is again a σ-algebra and it belongs

to Ξ. We call
⋂

Ξ the σ-algebra generated by S . If S is a topology, the σ-algebra
generated by S is called the Borel σ-algebra of the topology. Note that, although a
topology is closed under arbitrary union, its Borel σ-algebra need not be.

A measure space is a triple (Ω,F , ν) where F is a σ-algebra on Ω and ν is a
measure on F , that is, a function ν : F → [0,+∞] satisfying:

• (Strictness) ν(∅) = 0;
• (Countable additivity) if (An)n∈N is a countable family of pairwise disjoint sets

of F , then ν(
⋃
n∈NAn) =

∑
n∈N ν(An) .

If ν(Ω) = 1, ν is a probability measure.

Among the various results of measure theory we state two that we will need later.

22

Theorem A.1 ([9] Theorem 9.E) Let ν be a measure on a σ-algebraF , and letAn

be a decreasing sequence of sets in F , that is An+1 ⊆ An, such that ν(A0) < ∞.
Then

ν

⋂

n∈N
An

 = lim

n→∞ ν(An) .

One may ask when it is possible to extend a valuation on a topology to a measure on
the Borel σ-algebra. This problem is discussed in Mauricio Alvarez-Manilla’s the-
sis [3]. The result we need is the following. It can also be found in [4], as Corollary
4.3.

Theorem A.2 Any normalised continuous valuation on a continuous DCPO ex-
tends uniquely to a probability measure on the Borel σ-algebra.

B Proofs from Section 2

Proposition 2.6 In a confusion-free event structure, if C is a covering at x, then
c := {e |x ∪ {e} ∈ C} is a cell accessible at x. Conversely, if c is a cell accessible
at x, then C := {x ∪ {e} | e ∈ c} is a covering at x.

Proof: Let C be a covering at x, and let c be defined as above. Then for every dis-
tinct e, e′ ∈ c, we have e# e′, otherwise x∪{e} and x∪{e′} would be compatible.
Moreover as [e), [e′) ⊆ x, we have that [e] ∪ [e′) ⊆ x ∪ {e} so that [e] ∪ [e′) is
a configuration. Analogously [e) ∪ [e′] is a configuration so that e#µ e

′. Now take
e ∈ c and suppose there is e′ 6∈ c such that e#µ e

′. Since #µ is transitive, then for
every e′′ ∈ c, e′#µ e

′′. Therefore x∪ {e′} is incompatible with every configuration
in C, and x� x ∪ {e′}. Contradiction.

Conversely, take a cell c accessible at x, and define C as above. Then clearly for
every x′ ∈ C, x � x′ and also every distinct x′, x′′ ∈ C are incompatible. Now
consider a configuration y, such that x � y. This means y = x ∪ {e} for some e.
If e ∈ c then y ∈ C and y is compatible with itself. If e 6∈ c then for every e′ ∈ c,
e, e′ are not in immediate conflict. Suppose e# e′, then, by Lemma 2.1 there are
d ≤ e, d′ ≤ e′ such that d#µ d

′. Suppose d < e then [e)∪ [e′] would not be conflict
free. But that is not possible as [e)∪ [e′] ⊆ x∪{e′} and the latter is a configuration.
Analogously it is not the case that d′ < e′. This implies that e#µ e

′, a contradiction.
Therefore for every x′ ∈ C, y and x′ are compatible. 2

Proposition 2.11 If v is a configuration valuation with independence, then there
exists a cell valuation p such that vp = v.

Proof: Consider a cell c. Then the set C := {[c) ∪ {e} | e ∈ c} is a covering at
[c). Remember that if e ∈ c, then [e) = [c). If v([c)) 6= 0. we define p(e) :=

23

v([e])/v([e)). Because of conservation we have
∑

e∈c
p(e) =

∑

e∈c
v([e])/v([e)) =

∑

x∈C
v(x)/v([c)) = v[C]/v([c)) = 1 .

If v([c)) = 0, for every e ∈ c we define p(e) as we want, as long as p[c] = 1. In
order to show that vp = v we proceed by induction on the size of the configurations.
Because of normality, we have that

vpv(⊥) =
∏

e∈⊥
pv(e) = 1 = v(⊥) .

Now assume that for every configuration y of size n, vp(y) = v(y), take a config-
uration x of size n + 1. Take a maximal event e ∈ x so that y := x \ {e} is still a
configuration. Since x is a configuration, it must be that [e] ⊆ x and thus [e) ⊆ y.
Therefore [e) = y ∩ [e]. First suppose v([e)) 6= 0

vp(x) =
∏

e′∈x
p(e′) = p(e) ·

∏

e′∈y
p(e′) = p(e) · vp(y)

By induction hypothesis this is equal to

= p(e) · v(y) =
(
v([e])/v([e))

)
· v(y)

= v([e]) · v(y)/v([e)) = v([e]) · v(y)/v(y ∩ [e])

And because of independence this is equal to

= v(y ∪ [e]) = v(x) .

If v([e)) = 0, by contravariance we have v(x) = v(y) = 0. Now,

vp(x) =
∏

e′∈x
p(e′) = p(e) ·

∏

e′∈y
p(e′) = p(e) · vp(y)

By induction hypothesis this is equal to

= p(e) · v(y) = 0 = v(x) .

Note that when vp([e)) = 0, vp(x) does not depend on the values p assumes on the
events in c. 2

C Proofs of the Main Results

We provide here the proofs of Sections 3 and 4. Due to their length, in some cases
we only provide the general outline: the missing details can be found in [20]. The
order in which these proofs are presented does not follow the order in which they
are introduced in the main body of the paper.

24

C.1 Configuration and Continuous Valuations

Theorem 3.4 For every configuration valuation v on E , there is a unique nor-
malised continuous valuation ν on L(E) such that for every finite configuration x,
ν(↑x) = v(x). Moreover ν is non-leaking.

The proof of Theorem 3.4 will require various intermediate results. In the following
proofs, we will write x̂ for ↑ x. We will use lattice notation for configurations. That
is, we will write x ≤ y for x ⊆ y, x ∨ y for x ∪ y, and ⊥ for the empty config-
uration. To avoid complex case distinctions we also introduce a special element >
representing an impossible configuration. If x, y are incompatible, the expression
x∨y will denote>. For every configuration valuation v, we put v(>) = 0, and also
>̂ = ∅. The finite configurations together with > form a ∨-semilattice. Finally, the
symbol In will denote the set {1, . . . , n}.

The outline of the proof is as follows. We have to define a function from the Scott
open sets of L(E) to the unit interval. The value of ν on the principal open sets is
determined by ν(x̂) = v(x). Then the value of ν on finite unions of principal open
sets is determined by modularity. Since L(E) is algebraic, such sets form a directed
basis of the Scott topology of L(E). We will then be able to define ν on all open
sets by continuity.

Let Pn be the set of principal open subsets of L(E). That is

Pn = {x̂ | x ∈ Lfin(E)} ∪ {∅} .

Notice that Pn is closed under finite intersection because x̂ ∩ ŷ = x̂ ∨ y. (If x, y
are not compatible then x̂∩ ŷ = ∅ = >̂ = x̂ ∨ y.) The family Pn is, in general, not
closed under finite union.

Let Bs be the set of finite unions of elements of Pn. That is

Bs = {x̂1 ∪ . . . ∪ x̂n | x̂i ∈ Pn, 1 ≤ i ≤ n} .

Using distributivity of intersection over union it is easy to prove that the structure
〈Bs,∪,∩〉 is a distributive lattice with top and bottom.

Since ν has to be modular, it will also satisfy the inclusion-exclusion principle. We
exploit this to define ν0 : Bs→ R as follows

ν0 (x̂1 ∪ . . . ∪ x̂n) =
∑

∅6=I⊆In
(−1)|I|−1v

(∨

i∈I
xi

)
.

We have first to make sure that ν0 is well defined: If two expressions x̂1 ∪ . . . ∪ x̂n

25

and ŷ1 ∪ . . . ∪ ŷm represent the same set, then

∑

∅6=I⊆In
(−1)|I|−1v

(∨

i∈I
xi

)
=

∑

∅6=J⊆Im
(−1)|J |−1v

∨

j∈J
yj

 .

First observe that in the definition of ν0, the order of the xi does not matter. Next we
show that we can remove “redundant” components of a union, that is configurations
x such that x̂ ⊆ x̂1 ∪ . . . ∪ x̂n.

Lemma C.1 We have x̂ ⊆ x̂1∪. . .∪x̂n if and only if there exists i such that xi ≤ x.

Proof: Straightforward. 2

Lemma C.2 If xn ≤ xn+1 then

∑

∅6=I⊆In
(−1)|I|−1v

(∨

i∈I
xi

)
=

∑

∅6=I⊆In+1

(−1)|I|−1v

(∨

i∈I
xi

)
.

Proof: When xn ≤ xn+1 we have that xn ∨ xn+1 = xn+1. Now

∑

∅6=I⊆In+1

(−1)|I|−1v

(∨

i∈I
xi

)

=
∑

∅6=I⊆In
(−1)|I|−1v

(∨

i∈I
xi

)

+
∑

I⊆In+1
n,n+1∈I

(−1)|I|−1v

(∨

i∈I
xi

)
+

∑

I⊆In+1
n6∈I,n+1∈I

(−1)|I|−1v

(∨

i∈I
xi

)
.

We claim that

∑

I⊆In+1
n,n+1∈I

(−1)|I|−1v

(∨

i∈I
xi

)
+

∑

I⊆In+1
n6∈I,n+1∈I

(−1)|I|−1v

(∨

i∈I
xi

)
= 0

and this would prove our lemma. To prove the claim

26

∑

I⊆In+1
n,n+1∈I

(−1)|I|−1v

(∨

i∈I
xi

)

=
∑

I⊆In−1

(−1)|I|−1v

(∨

i∈I
xi ∨ xn ∨ xn+1

)
=

∑

I⊆In−1

(−1)|I|−1v

(∨

i∈I
xi ∨ xn+1

)

=−
∑

I⊆In−1

(−1)|I|v

(∨

i∈I
xi ∨ xn+1

)
= −

∑

I⊆In+1
n6∈I,n+1∈I

(−1)|I|−1v

(∨

i∈I
xi

)

2

Therefore we can safely remove “redundant” components from a finite union until
we are left with a minimal expression. The next lemma says that such minimal
expression is unique, up to the order of the components.

Lemma C.3 Let x̂1∪ . . .∪ x̂n = ŷ1∪ . . .∪ ŷm, and let such expressions be minimal.
Then n = m and there exists a permutation σ of In such that xi = yσ(i).

Proof: By Lemma C.1, for every i ∈ In there exist some j ∈ Im such that yj ≤ xi.
Let σ : In → Im be a function choosing one such j. Symmetrically let τ : Im →
In be such that xτ(j) ≤ yj . Now we claim that for every i, τ(σ(i)) = i. In fact
xτ(σ(i)) ≤ yσ(i) ≤ xi. The minimality of the xi’s implies the claim. Symmetrically
σ(τ(j)) = j, so that σ is indeed a bijection. 2

Recalling that in the definition of ν0, the order of the xi does not matter, this con-
cludes the proof of the well-definedness of ν0.

Next we state a lemma saying that ν0 : Bs → R is a valuation on the lattice
〈Bs,∪,∩〉. This is the crux of the proof of Theorem 3.4.

Lemma C.4 The function ν0 : Bs→ R satisfies the following properties:

• (Strictness) ν0(∅) = 0;
• (Monotonicity) U ⊆ V =⇒ ν0(U) ≤ ν0(V);
• (Modularity) ν0(U) + ν0(V) = ν0(U ∪ V) + ν0(U ∩ V).

In particular, since ⊥̂ = L(E), for every U ∈ Bs, we have 0 = ν0(∅) ≤ ν0(U) ≤
ν0(L(E)) = ν0(⊥̂) = v(⊥) = 1. So in fact ν0 : Bs→ [0, 1].

Proof: Strictness is obvious.

We prove monotonicity in steps. First we prove a special case, that is for every n-
tuple of finite configurations (xi) and for every finite configuration y, if x̂1 ∪ . . . ∪
x̂n ⊆ ŷ, then ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0(ŷ). We will do it by induction on n.

The basis requires that 0 = ν0(∅) ≤ ν0(ŷ) = v(y) which is true. Suppose now that
x̂1∪. . .∪x̂n+1 ⊆ ŷ. Fix y and consider all n+1-tuples (zi) such that ẑ1∪. . .∪ẑn+1 ⊆

27

ŷ and order them componentwise. That is (zi) ≤ (z′i) if for every i, zi ≤ z′i. Note
that if (zi) > (z′i) then some of the (z′i) must be strictly smaller than some of the zi.
As every zi is finite this order, is well founded. Suppose by contradiction that there
exist n+ 1-tuples for which

ν0 (ẑ1 ∪ . . . ∪ ẑn+1) > ν0(ŷ)

and take a minimal such. If this is the case, then all zi must be strictly greater than
y. We will argue that there is a cell c, such that y does not fill c, some of the zi’s
fill c and for all zi that do, the event e ∈ c ∩ zi is maximal in zi. Therefore we can
remove the events in c from the zi, and obtain smaller configurations wi with the
properties that ŵ1 ∪ . . . ∪ ŵn+1 ⊆ ŷ. We will then show that

ν0

(
ŵ1 ∪ . . . ∪ ŵn+1

)
> ν0(ŷ)

which contradicts minimality.

To find c consider a maximal event e1 ∈ z1 \ y. If the cell c1 of e1 is maximal in all
zj that fill c1, then we are done. Otherwise consider the first zj that fills c1 but for
which c1 is not maximal. Consider a maximal event in zj lying above c1. Consider
its cell c2. Since c2 is above c1, clearly c2 cannot be filled by any of the zi for i < j
because, either they do not fill c1, or if they do, then c1 is maximal. Continue this
process until reaching zn+1 at which point we will have found a cell c with the
properties above.

Consider all the events e1, . . . , eh, . . . ∈ c. 2 For every h ≥ 1 let Ih = {i ∈
In+1 | eh ∈ zi}. Since c is maximal and it is not filled by y, then we have that for
every i ∈ Ih, z′i := zi \ {eh} is still a configuration and it is still above y. For every
i ∈ In+1, let wi be z′i if i belongs to some Ih, and otherwise let wi be zi. For what
we have said, all wi are greater than y so that ŵ1 ∪ . . . ∪ ŵn+1 ⊆ ŷ. Also the tuple
(wi) is strictly below (zi) in the well order defined above. To show that

ν0

(
ŵ1 ∪ . . . ∪ ŵn+1

)
> ν0(ŷ)

we show that
ν0

(
ŵ1 ∪ . . . ∪ ŵn+1

)
≥ ν0 (ẑ1 ∪ . . . ∪ ẑn+1) .

That is

∑

∅6=I⊆In+1

(−1)|I|−1v

(∨

i∈I
wi

)
≥

∑

∅6=I⊆In+1

(−1)|I|−1v

(∨

i∈I
zi

)
.

We can start erasing summands that do not change. Let Ĩ = In+1 \
⋃
h≥1 I

h. For

2 Cells can be finite or countable. We do the proof for the countable case, the finite case
being analogous and, in fact, simpler.

28

every i ∈ Ĩ , wi = zi, thus if I ⊆ Ĩ then
∨
i∈I wi =

∨
i∈I zi. So that

v

(∨

i∈I
wi

)
= v

(∨

i∈I
zi

)
.

Removing the summands of the above shape, it is enough to prove that

∑

∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨

i∈I
wi

)
≥

∑

∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨

i∈I
zi

)
.

Also note that if for two different h, h′ ≥ 1 we have that, if I ∩ Ih 6= ∅ and
I ∩ Ih′ 6= ∅ then

∨
i∈I zi = >, that is v (

∨
i∈I zi) = 0, because it is the join of

incompatible configurations. Therefore we can rewrite the right-hand member of
the inequation above as

∑

h≥1

∑

∅6=I\Ĩ⊆Ih
(−1)|I|−1v

(∨

i∈I
zi

)
.

For every i 6∈ Ĩ we can define zhi to be wi ∪{eh}. All such zhi are indeed configura-
tions because if i 6∈ Ĩ then c is accessible at wi. For every I such that ∅ 6= I \ Ĩ we
have that

∨
i∈I z

h
i = > if and only if

∨
i∈I wi = > as eh is the only event in its cell

appearing in any configuration, so its introduction cannot cause an incompatibil-
ity that was not already there. Now condition (b) in the definition of configuration
valuation says exactly that

v

(∨

i∈I
wi

)
=
∑

h≥1

v

(∨

i∈I
zhi

)
.

(Where both members may be 0 if
∨
i∈I wi is already >.) Therefore

∑

∅6=I⊆In+1

I\Ĩ 6=∅

∑

h≥1

(−1)|I|−1v

(∨

i∈I
zhi

)
=

∑

∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨

i∈I
wi

)
.

Now, the left hand member is absolutely convergent, because v is a nonnegative
function and

∑

∅6=I⊆In+1

I\Ĩ 6=∅

∑

h≥1

v

(∨

i∈I
zhi

)
=

∑

∅6=I⊆In+1

I\Ĩ 6=∅

v

(∨

i∈I
wi

)
< +∞ .

Therefore we can rearrange the terms as we like, in particular we can swap the two
summations symbols. Thus

∑

h≥1

∑

∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨

i∈I
zhi

)
=

∑

∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨

i∈I
wi

)
.

29

So to prove our claim it is enough to show that

∑

h≥1

∑

∅6=I\Ĩ⊆Ih
(−1)|I|−1v

(∨

i∈I
zi

)
≤
∑

h≥1

∑

∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨

i∈I
zhi

)
.

Note that if I \ Ĩ ⊆ Ih then
∨
i∈I zi =

∨
i∈I z

h
i . Therefore we can rewrite the

inequation as:

∑

h≥1

∑

∅6=I\Ĩ⊆Ih
(−1)|I|−1v

(∨

i∈I
zhi

)
≤
∑

h≥1

∑

∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨

i∈I
zhi

)
.

To prove the inequation holds, it is then enough to show that for any h ≥ 1.

∑

∅6=I\Ĩ⊆Ih
(−1)|I|−1v

(∨

i∈I
zhi

)
≤

∑

∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨

i∈I
zhi

)
.

Subtracting the same quantity from both members we get equivalently

0 ≤
∑

∅6=I⊆In+1

I\(Ĩ∪Ih)6=∅

(−1)|I|−1v

(∨

i∈I
zhi

)
.

Let Ĩh :=
⋃
l 6=h I

l. We can rewrite the sum above as

∑

∅6=J⊆Ĩh

∑

H⊆Ĩ∪Ih
(−1)|H|+|J |−1v

(∨

i∈H∪J
zhi

)

=
∑

∅6=J⊆Ĩh
(−1)|J |−1

∑

H⊆Ĩ∪Ih
(−1)|H|v

(∨

i∈H∪J
zhi

)
.

Using a purely combinatorial argument (Lemma C.20) we can rewrite this as

∑

∅6=K⊆Ĩh

∑

K⊆J⊆Ĩh
(−1)|J |+|K|

∑

H⊆Ĩ∪Ih
(−1)|H|v

(∨

i∈H∪J
zhi

)

=
∑

∅6=K⊆Ĩh

∑

K⊆J⊆Ĩh

∑

H⊆Ĩ∪Ih
(−1)|K|+|J∪H|v

(∨

i∈H∪J
zhi

)

Fix K. Consider a set I such that K ⊆ I ⊆ In+1. Since Ĩh, Ĩ ∪ Ih are a partition of
In+1, we have that H := I ∩ (Ĩ ∪ Ih) and J := I ∩ Ĩh are a partition of I . We use
this to rewrite the term above.

=
∑

∅6=K⊆Ĩh

∑

K⊆I⊆In+1

(−1)|I|+|K|v

(∨

i∈I
zhi

)
.

30

For every K, and defining L := I \K, we have that

∑

K⊆I⊆In+1

(−1)|I|+|K|v

(∨

i∈I
zhi

)

=
∑

L⊆In+1\K
(−1)|L|+2|K|v

∨

i∈K
zhi ∨

∨

j∈L
zhj

= (−1)0+2|K|v

(∨

i∈K
zhi

)
+

∑

∅6=L⊆In+1\K
(−1)|L|+2|K|v

∨

j∈L
(zhj ∨

∨

i∈K
zhi)

= v

(∨

i∈K
zhi

)
+

∑

∅6=L⊆In+1\K
(−1)|L|v

∨

j∈L
(zhj ∨

∨

i∈K
zhi)

= v

(∨

i∈K
zhi

)
−

∑

∅6=L⊆In+1\K
(−1)|L|−1v

∨

j∈L
(zhj ∨

∨

i∈K
zhi)

 .

If
∨
i∈K z

h
i = > then the whole sum is equal to 0. Otherwise it is equal to

ν0

(∨̂

i∈K
zhi

)
− ν0

 ⋃

j∈In+1\K

̂zhj ∨
∨

i∈K
zhi

 .

Note that for every j is
̂zhj ∨
∨

i∈K
zhi ⊆

∨̂

i∈K
zhi

so that ⋃

j∈In+1\K
(̂zhj ∨

∨

i∈K
zhi) ⊆

∨̂

i∈K
zhi .

Moreover observe that |In+1 \K| < n+ 1. By induction hypothesis

ν0

(∨̂

i∈K
zhi

)
− ν0

 ⋃

j∈In+1\K

̂zhj ∨
∨

i∈K
zhi

 ≥ 0 .

Thus we have proved that for every n-tuple of finite configurations (xi) and for
every finite configuration y, if x̂1 ∪ . . . ∪ x̂n ⊆ ŷ, then ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0(ŷ).

Using this fact we can now easily prove that if x1, . . . , xn+1 are finite configura-
tions,

ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0 (x̂1 ∪ . . . ∪ x̂n ∪ x̂n+1) .

The proof of this is left to the reader, but can also be found in [20], pp. 124–125.

Therefore, by induction on m,

ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0 (x̂1 ∪ . . . ∪ x̂n ∪ ŷ1 ∪ . . . ∪ ŷm) .

31

To conclude the proof of monotonicity of ν0, suppose that x̂1∪ . . .∪ x̂n ⊆ ŷ1∪ . . .∪
ŷm . Then ŷ1 ∪ . . .∪ ŷm = x̂1 ∪ . . .∪ x̂n ∪ ŷ1 ∪ . . .∪ ŷm. By the above observation
we have

ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0 (x̂1 ∪ . . . ∪ x̂n ∪ ŷ1 ∪ . . . ∪ ŷm)

= ν0 (ŷ1 ∪ . . . ∪ ŷm) .

To prove modularity take x̂1 ∪ . . . ∪ x̂n and ŷ1 ∪ . . . ∪ ŷm, we want to prove that

ν0 (x̂1 ∪ . . . ∪ x̂n) + ν0 (ŷ1 ∪ . . . ∪ x̂m)

= ν0 (x̂1 ∪ . . . ∪ x̂n ∪ ŷ1 ∪ . . . ∪ x̂m) + ν0 ((x̂1 ∪ . . . ∪ x̂n) ∩ (ŷ1 ∪ . . . ∪ x̂m)) .

By distributivity we have that

(x̂1 ∪ . . . ∪ x̂n) ∩ (ŷ1 ∪ . . . ∪ x̂m)

= (x̂1 ∩ ŷ1) ∪ (x̂1 ∩ ŷ2) ∪ . . . ∪ (x̂n ∩ ŷm) .

Using the definitions, we have to prove that

∑

∅6=I⊆In
(−1)|I|−1v

(∨

i∈I
xi

)
+

∑

∅6=J⊆Im
(−1)|I|−1v

(∨

i∈I
yj

)

is equal to

∑

∅6=I]J
I⊆In,J⊆Im

(−1)|I]J |−1v

∨

i∈I
xi ∨

∨

j∈J
yj

+
∑

∅6=K⊆In×Im
(−1)|K|−1v

 ∨

(i,j)∈K
(xi ∨ yj)

 .

The proof is this fact is purely combinatorial. It does not use any special property
of v, besides the fact that the range of v is [0,+∞]. It can be found in [20], pp.
134–136. 2

Now we are ready to define ν on all Scott open sets.

Lemma C.5 For every Scott open O ⊆ L(E), we have that the set {U ∈ Bs | U ⊆
O} is directed and

O =
⋃

U⊆O
U∈Bs

U .

Proof: Directedness is straightforward. Moreover, since L(E) is algebraic, Pn is a
basis for the Scott topology (and so is, a fortiori, Bs). 2

32

Now, for every Scott open set O, define

ν(O) = sup
U⊆O
U∈Bs

ν0(U) .

We then have the following, which concludes the proof of Theorem 3.4.

Lemma C.6 The function ν is a continuous valuation on the Scott-topology of
L(E) such that for every finite configuration x, ν(↑x) = v(x).

Continuity follows from an exchange of suprema, strictness and monotonicity are
obvious. Modularity follows from the modularity of ν0 and continuity of the addi-
tion. Finally, because of the monotonicity of ν0, we have that ν(↑x) = ν0(↑x) =
v(x). 2

It remains to show that ν is non-leaking. We do this in the next section.

C.2 Inductive Tests

In order to show that ν is non-leaking, we will introduce a restricted notion of test.
First we look at tests in the context of the domain of configurations. These results
are valid in any event structure.

Definition C.7 Let C be a set of finite configurations of an event structure E . We
define ↑C as the set

⋃
x∈C ↑x.

Clearly ↑C is Scott open. All the following properties are straightforward.

Proposition C.8 Let C be a finitary partial test of E , then the Scott open subsets of
L(E) of the form ↑x, for x ∈ C are pairwise disjoint. If C,C ′ are two sets of finite
configurations of E and C ≤ C ′ then ↑C ⊇ ↑C ′. If C is a complete set of finite
configurations of E , then for every maximal configuration y ∈ L(E), we have that
y ∈ ↑C.

Proposition C.9 Let C,C ′ be finitary tests. Then C ≤ C ′ if and only if ↑C ⊇ ↑C ′.

Proof: of the non-trivial direction. Suppose ↑C ⊇ ↑C ′. If y ∈ C ′ then y ∈ ↑C
which means that there exists x ∈ C such that x ≤ y. Vice versa if x ∈ C then by
completeness there exists y ∈ C ′ such that x, y are compatible. We have just argued
that there exists x′ ∈ C such that x′ ≤ y, which implies that x, x′ are compatible.
Since C is a test, we have that x = x′ and x ≤ y. 2

Corollary C.10 Let ν be a continuous valuation on L(E). If C is a finitary partial
test, then ν(↑C) =

∑
x∈C ν(↑x). If C,C ′ are finitary sets of configurations and

C ≤ C ′ then ν(↑C) ≥ ν(↑C ′).

33

As a corollary we have:

Theorem C.11 Let ν be a non-leaking valuation on L(E). Define v : Lfin(E) →
[0, 1] by v(x) = ν(↑x). Then v is a test valuation.

Proof: Take a finitary test C. By Proposition C.8 we have that ↑C ⊇ Ω(L(E)).
Therefore, since ν is non-leaking:

1 ≥ ν(↑C) = ν̄(↑C) ≥ ν̄(Ω(L(E))) = 1

which implies ν(↑C) = 1. Since the sets of the form ↑ x, for x ∈ C are pairwise
disjoint, we have

∑
x∈C ν(↑x) = 1, which finally implies that

∑
x∈C v(x) = 1. 2

We now define a special notion of test, only for confusion-free event structure.

Definition C.12 Let E be a confusion-free event structure. If x is a configuration
of E , and c is a cell accessible at x we define x + c to be the set {x ∪ {e} |e ∈ c}.
Let Y, Y ′ be two sets of configurations of a confusion-free event structure. We write

Y
X,(cx) //Y ′

when X ⊆ Y , (cx)x∈X is a family of cells such that each cx is accessible at x, and

Y ′ = Y \X ∪
⋃

x∈X
x+ cx .

We write Y → Y ′ if there are X, (cx) such that Y X,(cx) //Y ′ . As usual →∗
denotes the reflexive and transitive closure of→.

Definition C.13 An inductive test of a confusion-free event structure is a set C of
configurations such that

{⊥} →∗ C .

The idea is that we start the computation with the empty configuration, and, at
every step, we choose accessible cells to “activate” and we collect all the resulting
configurations. The next proposition is a sanity check for our definitions

Proposition C.14 If C,C ′ are inductive tests, then C ≤ C ′ ⇔ C →∗ C ′.

The direction (⇐) is proved by induction on the derivation C →∗ C ′. The direction
(⇒) is by induction on the derivation {⊥} →∗ C. See [20].

As the choice of the name suggests, we have the following result.

Proposition C.15 Every inductive test is a finitary test.

34

Proof: By induction on the derivations. The singleton of the empty configuration
is a test. Take an inductive test C, a set X ⊆ C and for every x ∈ X a cell (cx)

accessible at x. Let C X,(cx) //C ′ . We want to show that C ′ is a test.

First consider two distinct configurations x′, y′ ∈ C ′. If x′, y′ ∈ C then they are
incompatible by induction hypothesis. If x′ ∈ C, and y′ = y ∪ e for some y ∈ C,
then x′ 6= y, so that x′, y are incompatible. Thus x′, y′ are incompatible. If x′ =
x ∪ ex and y′ = y ∪ ey for x, y ∈ C there are two possibilities. If x 6= y, then they
are incompatible and so are x′, y′. If x = y, then ex 6= ey, but they both belong to
they same cell, therefore they are in conflict, and x′, y′ are incompatible.

Now take any configuration z. By induction hypothesis there exists x ∈ C such
that x, z are compatible. If x ∈ C ′ we are done. If x 6∈ C ′ then there are two possi-
bilities. Either z does not fill cx, but then for every e ∈ cx, z, x ∪ e are compatible.
Or z fills cx with and event ē which implies that z, x ∪ ē are compatible. 2

As a corollary we have:

Proposition 4.11 If E is a confusion-free event structure and if x is a finite config-
uration of E , then x is honest in L(E).

Proof: Given a finite configuration x, we obtain an inductive test containing x by
“activating” all the cells of the events of x. 2

Not all test are inductive as the following example shows. Consider the event struc-
ture E = 〈E,≤,#〉 where E = {a1, a2, b1, b2, c1, c2}, the order is trivial and
a1 # a2, b1 # b2, c1 # c2. Consider the following set C of configurations

{
{a1, b2}, {b1, c2}, {a2, c1}, {a1, b1, c1}, {a2, b2, c2}

}
.

The reader can easily verify thatC is a test. If it were an inductive test, we should be
able to identify a cell that was chosen at the first step along the derivation. Because
of the symmetry of the situation, we can check whether it is {a1, a2}. If this were
the first cell chosen, every configuration in C would contain either a1 or a2. But
this is not the case 3 .

It is now easy to show the following:

Proposition C.16 If v is a configuration valuation, and if C is an inductive test,
then, v[C] = 1.

3 This example bears a striking resemblance to Berry’s Gustave function.

35

Proof: By induction on the derivation. Suppose C X,(cx) //C ′ and
∑
x∈C v(x) =

1. Consider
∑
x′∈C′ v(x′). We can split this in

∑

x∈C\X
v(x) +

∑

x∈X

∑

e∈cx
v(x ∪ {e}) .

Since v is a configuration valuation, property (b) of definition 3.3 tells us that for
every x ∈ X ,

∑
e∈cx v(x ∪ {e}) = v(x). Therefore

∑

x∈C\X
v(x) +

∑

x∈X

∑

e∈cx
v(x ∪ {e}) =

∑

x∈C\X
v(x) +

∑

x∈X
v(x) =

∑

x∈C
v(x) = 1 .

2

The following theorem concludes the proof of Theorem 3.4.

Theorem C.17 Let ν be a continuous valuation corresponding to a configuration
valuation v. Then ν is non-leaking.

Proof: We only sketch the proof of this theorem. All the details are in [20]. We
claim that there exists an enumeration of the cells (cn)n∈N, such that if cm < cn,
then m < n. With this enumeration at hand, consider the following chain of in-
ductive tests: C0 = {⊥}, Cn X,cn //Cn+1 , where X is the set of configurations
x ∈ Cn such that cn is accessible at x. We have the following property:

⋂

n∈N
↑Cn = Ω(L(E)) .

By Theorem A.2, the valuation ν can be extended to a Borel measure ν̄. We have
that ν̄(Ω(L(E))) = limn→∞ ν̄(↑Cn). But ν̄(↑Cn) = ν(↑Cn) = 1 because Cn is an
inductive test. By Theorem A.1 we have ν̄(Ω(L(E))) = 1. Thus for every open set
O ⊇ Ω(L(E)) we have 1 ≥ ν(0) = ν̄(0) ≥ ν̄(Ω(L(E))) = 1. 2

As a corollary, using Theorem C.11 we get:

Theorem C.18 If v is a configuration valuation, then v is a test valuation.

The other direction is also true.

Theorem C.19 If v is a test valuation, then v is a configuration valuation.

Proof: First of all v(⊥) = 1, because {⊥} is a finitary test. Next we want to show
that for every finite configuration x and every covering Dc at x, v[Dc] = v(x).
Take a test C containing x, which exists because x is honest. Consider the test

C ′ = C \{x}∪Dc. Notice that C {x},c //C ′ . Therefore C ′ is a test. So that v[C ′] = 1.
But v[C ′] = v[C]− v(x) + v[Dc]. 2

We have thus proved:

36

Theorem 4.9 Let E be a confusion-free event structure and let v be a function
Lfin(E) → [0, 1]. Then v is a configuration valuation if and only if it is a test
valuation.

Note also that combining Theorems C.11 and C.19 we obtain:

Theorem 3.5 Let ν be a non-leaking continuous valuation on L(E). The function
v : Lfin(E)→ [0, 1] defined by v(x) = ν(↑x) is a configuration valuation.

C.3 Continuous Valuations and Runs

Theorem 4.2 Let ν be a non-leaking normalised continuous valuation on a coher-
ent ω-algebraic domain D. Then there is a unique probability measure µ on S such
that for every compact element x, µ(K(x)) = ν(↑x).
Let µ be a probability measure on S . Then the function ν defined on open sets by
ν(O) = µ(O ∩ Ω(D)) is a non-leaking normalised continuous valuation.

Proof: Let µ be a probability measure on 〈Ω(D),S〉. The sets of the form ↑ x for
compact x are a basis of the Scott topology. Since the set of compact elements is
countable, every open set O is the countable union of basic open sets. Therefore
every set of the form O ∩ Ω(D) is the countable union of shadows of compact ele-
ments, and it belongs to S . Thus ν is well defined. It is obviously strict, monotone
and modular. By ω-algebraicity, to prove continuity it is enough to prove continuity
for ω-chains ([3], Lemma 2.10). Take a countable increasing chain Ok with limit
O. Since µ is a measure

µ(O ∩ Ω(D)) = sup
k∈N

µ(Ok ∩ Ω(D)) .

Thus
ν(O) = µ(O ∩ Ω(D)) = sup

k∈N
µ(Ok ∩ Ω(D)) = sup

k∈N
ν(Ok)

and we are done. The fact that ν is non-leaking follows from the definition.

Conversely, take a non-leaking valuation ν. By the extension theorem for contin-
uous valuations of [4], there is a unique measure ν̂ on the Scott-Borel sets of D
which extends ν. By Corollary 3.4 and 3.5 of [14], recalling that a coherent do-
main is Lawson compact, there exists a decreasing countable chain of open sets
converging to Ω(D), which is thus a Gδ set and therefore is measurable. Since ν is
non-leaking, ν̂(Ω(D)) = 1. Define µ to be the restriction of ν̂ to Ω(D). It is indeed
a probability measure. Every set of the form O ∩ Ω(D) is measurable, and

µ(O ∩ Ω(D)) = ν̂(O ∩ Ω(D)) = ν̂(O) + ν̂(Ω(D))− ν̂(O ∪ Ω(D)) .

Since Ω(D) ⊆ O∪Ω(D) ⊆ D and ν̂(D) = ν̂(Ω(D)) = 1, then also ν̂(O∪Ω(D)) =
1, so that µ(O ∩ Ω(D)) = ν̂(O) = ν(O) and we are done. 2

37

As an easy corollary of Theorem 4.2 and of Theorem C.11 we have

Theorem 4.8 Let µ be a probabilistic run of E . Define v : Lfin(E) → [0, 1] by
v(x) = µ(K(x)). Then v is a test valuation.

In the following we prove a generalisation of Theorem 4.12. We generalise the
notions of test and finitary test to any coherent ω-algebraic domain. A partial test
of a domain D is a set C of pairwise incompatible elements of D. A test is a
maximal partial test. A test is finitary if all its elements are compact. Let v be a
function Cp(D) → [0, 1]. Then v is called a test valuation if for all finitary test C
we have v[C] = 1. A finitary partial test is honest if it is part of a finitary test. A
compact element is honest if it is honest as partial test.

Theorem 4.12 Let D be a coherent ω-algebraic domain. Let v be a test valuation
onD. LetH be the σ-algebra on Ω(D) generated by the shadows of honest compact
elements. Then there exists a unique measure µ on H such that µ(K(x)) = v(x)
for every honest compact element x.

Proof: Consider the following set T of subsets of Ω(D):

T := {K(C) | C is a honest finitary partial test} .

We claim that T is a field of sets, i.e., that it is closed under binary union and
complementation. Since C is honest, it can be extended to a finitary test A. Let’s
call C ′ := A \ C. Clearly C ′ is a honest finitary partial test. And K(C ′) = K(C).
On the one hand K(C ′) ∪ K(C) = Ω(D), because of completeness of A. On the
other hand K(C ′)∩K(C) = ∅ as otherwise some element of C will be compatible
with some elements of C ′. For the closure under union, consider two honest finitary
partial testsC1, C2. Consider their completionsA1, A2 and putC ′1 := A1\C1, C

′
2 :=

A2\C2. Since finitary tests form a lattice,A1, A2 have a common upper bound. Let’s
call A such an upper bound. Consider the subset C of A defined as

C := {x ∈ A | ∃x1 ∈ C1 : x1 ≤ x or ∃x2 ∈ C2 : x2 ≤ x} .

Clearly C is a honest finitary partial test. We claim that K(C) = K(C1) ∪K(C2).
Take z ∈ K(C). This means that there exists x ∈ C such that x ≤ z. Then either
there exists x1 ∈ C1, with x1 ≤ x ≤ z, or there exists x2 ∈ C2, with x2 ≤ x ≤ z.
Either case z ∈ K(C1) ∪ K(C2). Conversely assume z ∈ K(C1) ∪ K(C2), say
z ∈ K(C1). There is x1 ∈ C1 such that x1 ≤ z. Since A is complete, there must
exist x ∈ A such that x ≤ z. Since A1 ≤ A, there exists x′1 ∈ A1 such that
x′1 ≤ x ≤ z. This implies that x′1, x1 are compatible. Since A1 is a test, x′1 = x1.
Therefore x ∈ C, and z ∈ K(C).

We define a function m : T → [0, 1] by m(K(C)) = v[C]. We have to argue that
m is well defined, i.e. if C1, C2 are such that K(C1) = K(C2), then v[C1] = v[C2].
Suppose A1 is a test completing C1 and put C ′1 = A1 \ C1. Then C2 ∪ C ′1 is a

38

finitary test too. It is clearly complete, and if an element of C ′1 were compatible
with an element of C2 then it would also be compatible with some element of C1

contradicting that A1 is a test. Thus v[C1] = 1− v[C ′1] = v[C2].

Now we argue that m is σ-additive on T . Take a sequence Cn of honest partial tests
such that K(Cn) ∩ K(Cm) = ∅ and such that

⋃
nK(Cn) = K(C) for some C.

Then we have to prove that

∑

n

m(K(Cn)) = m(K(C)) .

Consider C ′ such that C ∩ C ′ = ∅ and C ∪ C ′ is a finitary test. Then, by the
same argument used above,

⋃
nCn ∪ C ′ is a finitary test. Note the condition on

disjointness of the K(Cn). Therefore

v

[⋃

n

Cn

]
= 1− v[C ′] = v[C] = m(K(C)) .

On the other hand, rearranging the terms (and again by disjointness) we get

v

[⋃

n

Cn

]
=
∑

n

v[Cn] =
∑

n

m(K(Cn)) .

Thus m is a σ-additive function defined on the field of sets T . By Caratheodory
extension theorem we can extend m to a measure µ on the σ-algebra generated by
T , which contains H. Thus for all honest finite elements, K(x) is measurable and
µ(K(x)) = m(K(x)) = v(x). 2

Theorem 4.13 If all compact elements are honest, then for every test valuation v
there exists a unique continuous valuation ν, such that ν(↑x) = v(x).

Proof: Once we have the measure µ of Theorem 4.12, we define ν(↑x) = µ(K(x)).
It is well defined as x is honest and therefore K(x) is measurable. Then ω-alge-
braicity of D ensures that ν is a continuous valuation. 2

C.4 A Combinatorial Lemma

In the proof of Theorem 3.4, we make use of the following combinatorial lemma.

Lemma C.20 ([20], p. 136) Let X be a finite set and let f : P (X)→ R. Then

∑

∅6=J⊆X
(−1)|J |−1f(J) =

∑

∅6=K⊆X

∑

K⊆J⊆X
(−1)|J |+|K|f(J) .

39

Proof: Sketch. By induction on |X|. The base is obvious. Let X ′ = X ∪ {∗}, with
∗ 6∈ X . Consider ∑

∅6=K⊆X′

∑

K⊆J⊆X′
(−1)|J |+|K|f(J)

We split the sum in various parts, according to whether the sets over which we
sum contain or do not contain ∗. We reach a point where two big terms cancel out
because they differ only in the parity of the exponent of (−1). We are left with

∑

∅6=K⊆X

∑

K⊆J⊆X
(−1)|J |+|K|f(J) +

∑

∗∈J⊆X′
(−1)|J |−1f(J)

We now use the induction hypothesis on the first member

=
∑

∅6=J⊆X
(−1)|J |−1f(J) +

∑

∗∈J⊆X′
(−1)|J |−1f(J) =

∑

∅6=J⊆X′
(−1)|J |−1f(J) .

2

C.5 An Alternative

We had hoped for an alternative way to prove the results via a direct proof of The-
orem C.18, and thus of Theorem 4.9. Then via Theorems 4.12 and 4.2 we would
prove Theorem 3.4, avoiding the combinatorial technicalities of its direct proof. In
the extended version of [22], a special case of Theorem C.18 is proven (Lemma 7),
for confusion-free event structures arising as unfoldings of Petri nets where mark-
ings and conflicts are finite. That proof cannot be generalised to our setting, due to
a combination of two factors: the possibility of having infinite cells, and the possi-
bility of having infinite sets of mutually concurrent events. Whether another direct
proof of Theorem C.18 is possible we don’t know at present.

40

