
Computational Complexity
of Interactive Behaviors

Ugo Dal Lago1, Tobias Heindel2, Damiano Mazza3, and Daniele Varacca4

1 Dip. di Scienze dell’Informazione – Univ. di Bologna, Italy – dallago@cs.unibo.it
2 CEA – LIST, Gif-sur-Yvette, France – Tobias.Heindel@cea.fr

3 LIPN – CNRS and Université Paris 13, France – mazza@lipn.univ-paris13.fr
4 PPS – CNRS and Université Paris Diderot, France – varacca@pps.jussieu.fr

Abstract. The theory of computational complexity focuses on functions and,
hence, studies programs whose interactive behavior is reduced to a simple ques-
tion/answer pattern. We propose a broader theory whose ultimate goal is ex-
pressing and analyzing the intrinsic difficulty of fully general interactive behav-
iors. To this extent, we use standard tools from concurrency theory, including
labelled transition systems (formalizing behaviors) and their asynchronous ex-
tension (providing causality information). Behaviors are implemented by means
of a multiprocessor machine executing CCS-like processes. The resulting the-
ory is shown to be consistent with the classical definitions: when we restrict to
functional behaviors (i.e., question/answer patterns), we recover several standard
computational complexity classes.

Keywords: Computational complexity, Interactive computation, Process alge-
bras, Asynchronous transition systems.

1 Introduction

In the early days, computers were considered as oracles: one would have a question and
the computer would provide the answer. For instance, one day the American army had
just launched a rocket to the Moon, and the four star General typed in two questions
to the computer: (1) Will the rocket reach the Moon? (2) Will the rocket return to the
Earth? The computer did some calculations for some time and then ejected a card which
read: “Yes.” The General was furious; he didn’t know whether “Yes” was the answer to
the first question, the second or both. Therefore he angrily typed in “Yes, what?”. The
computer did some more calculations and then printed on a card: “Yes, Sir.”5

That every computation may eventually be reduced to the input/output pattern is an
assumption underlying most of classical computability theory. The theory of computa-
tional complexity is an excellent example: it studies the intrinsic difficulty of problems,
which are nothing but “yes or no” questions. Accordingly, the classical methods that
measure the complexity of a program ignore the possibility that it may interact with its
environment between the initial request and the final answer; even when a more com-
plex interaction pattern is considered (e.g., in interactive proofs [6]), it often is seen as
yet another way to solve problems (viz. the class IP, which is a class of problems).

5 Adapted from Raymond Smullyan: What is the name of this book?



Nowadays, we live in a world of ubiquitous computing systems that are highly in-
teractive and communicate with their environments, following possibly complicated
protocols. These computing systems are fundamentally different from those that just
provide answers to questions without any observable intermediate actions. To study
this phenomenon of interactive computation [4], theoretical computer scientists have
developed several formalisms and methodologies, such as process calculi and algebras.

However, little has been done so far to tackle the computational complexity of in-
teractive systems (one of the few examples being the competitive analysis of online
algorithms [3]). Note that, as mentioned above, this issue is beyond the classical theory
of computational complexity. Thus, we set out to provide grounds for a revised the-
ory of computational complexity that is capable of gauging the efficiency of genuinely
interactive behaviors.

The first conceptual step is the formalization of behaviors. Our approach follows
standard lore of concurrency theory: a behavior is an equivalence class of labelled tran-
sition systems (LTS), which in turn are usually specified using process calculi, such as
Milner’s CCS [10]. In this paper, we use a variation of bisimilarity as behavioral equiv-
alence; however, other equivalences that have been proposed in the literature, such as
coupled similarity and testing, work equally well, as long as certain minimal require-
ments are satisfied. Shifting the focus towards behaviors, the fundamental question of
classical computational complexity “What is the cost of solving a problem (or imple-
menting a function)?” becomes “What is the cost of implementing a behavior?”.

A suitable cost model is not as easily found as in the functional case where we just
measure the resources (time, space) required to compute the answer as a function of
the size of the question. Of course, the resources depend on the chosen computational
model (such as Turing machines), but the general scheme does not depend on the spe-
cific model. We propose a notion of cost for general interactive behaviors that abstracts
away from a specific model. Costs are attributed to events in weighted asynchronous
LTS (or WALTS): asynchrony is a standard feature that is added to transition systems to
represent causal dependencies [14], which we need to generalize the trivial dependency
between questions and answers; weights are used to specify additional quantitative in-
formation about space and time consumption.

Finally, we introduce a computational model, the process machine, which imple-
ments behaviors (just as Turing machines implement functions) by executing concur-
rent programs written in a CCS-based language. Such a machine has an unbounded
number of processors each equipped with a private memory and capable of performing
basic string manipulation and communicating asynchronously with other processors or
the external environment. The process machine admits a natural semantics in terms of
WALTSs and thus provides us with a non-trivial, paradigmatic instance of our abstract
framework for measuring the complexity of behaviors.

Complexity classes are then defined as sets of behaviors that can be implemented
by a process running within given time and space bounds on the process machine. We
conclude by showing that if we restrict to functional behaviors (i.e., trivial input/output
patterns) we obtain several standard complexity classes; thus, at least in many paradig-
matic cases, we have in fact a consistent extension of complexity theory into the realm
of interactive computation.



2 Behaviors

In this section we formally define behaviors as equivalence classes of labelled transition
systems. Such systems can receive messages on some input channels, send messages
on some output channels, and perform internal, invisible, computation. With the aim of
being as concrete as possible, we consider messages to be binary strings. We denote by
W = {0, 1}∗ the set of such strings, with ε denoting the empty string. We also fix two
disjoint sets I,O of input and output channel names.

Definition 1 (Labelled transition system). An input action (resp. output action) is an
element of I ×W (resp.O×W); together, they form the set of visible actions, denoted
by Av . The set of actions is A = Av ∪ {τ}, where τ is the internal action.

A labelled transition system (LTS for short) is a triple S = (|S|, s0, transS), where
|S| is a set, whose elements are called states, s0 ∈ |S| is the initial state, and transS ⊆
|S| × A × |S| is the transition relation.

Given an LTS S, we write s α−→ s′ when (s, α, s′) ∈ transS . Since internal computa-
tion is invisible, it is standard practice to consider several internal steps as one single,
still invisible step. We denote by =⇒ the reflexive-transitive closure of τ−→ and, given
α ∈ Av , we write s α

=⇒ t just if there exist s′, t′ such that s =⇒ s′
α−→ t′ =⇒ t.

The standard notion of equivalence of transition systems is bisimilarity.

Definition 2 (Bisimilarity). Let S, T be LTSs, with initial states s0, t0, respectively. A
simulation from S to T is a relation R ⊆ |S| × |T | such that (s0, t0) ∈ R and, for all
(s, t) ∈ R, we have:

1. if s α−→ s′ with α ∈ Av , then there exists t′ such that t α
=⇒ t′ and (s′, t′) ∈ R;

2. if s τ−→ s′, then there exists t′ such that t =⇒ t′ and (s′, t′) ∈ R.

A simulationR from S to T is a bisimulation ifRop = {(t, s) ∈ |T |×|S| | (s, t) ∈ R}
is a simulation from T to S. We define S ≈ T iff there exists a bisimulation between S
and T . This relation is called bisimilarity.

Bisimilarity can be shown to be an equivalence relation.
For our purposes we furthermore require that the equivalence does not introduce

divergence. Given s ∈ |S|, we say that there is a divergence at s (denoted as s⇑) if
there exists an infinite sequence s τ−→ s1

τ−→ s2
τ−→ · · · .

Definition 3 (Divergence-sensitive bisimilarity). We say that a (bi)simulation R be-
tween S and T does not introduce divergence if, for all (s, t) ∈ R, t⇑ implies s⇑. We
define divergence-sensitive bisimilarity, denoted by ≈d, by requiring the existence of a
bisimulation not introducing divergence.

For our purposes, weaker equivalences (such as coupled simulation [11, 12]) suffice,
and might actually even be desirable. Whatever equivalence is chosen, the essential
point is that it does not introduce divergence.

Definition 4 (Behavior). A behavior is a ≈d-equivalence class.



In the sequel, it will be useful to have a compact notation for describing LTS’s. For
this, we shall use a notation similar to the syntax of Milner’s CCS [10]. For instance,
if f : W → W is a function, i(x).o〈f(x)〉 denotes the LTS whose states are {s0} ∪⋃
ξ∈W{sξ, tξ} and whose transitions are s0

i(ξ)−→ sξ and sξ
o〈f(ξ)〉−→ tξ, for all ξ ∈ W.

This kind of LTS is used to define the behaviors that correspond to classical input/output
computations.

Definition 5 (Functional behavior). In the following, we fix two channels i ∈ I and
o ∈ O. Let f : W → W be a function. The functional behavior induced by f , de-
noted by bf , is the equivalence class of i(x).o〈f(x)〉. We denote by FUN the set of all
functional behaviors.

Lemma 1. Let f, g : W→W. Then, f = g iff bf = bg .

Definition 6 (Language of a functional behavior). By Lemma 1, every functional be-
havior b ∈ FUN determines a unique function funb on W such that b = bfunb. This
induces a language (i.e., a subset of W) langb = {ξ ∈W | funb(ξ) = ε}.

3 Abstract Cost Models for Interactive Computation

In order to define the complexity of behaviors, we need to add concurrency and causality
information to keep track of the dependencies of outputs on relevant, “previous” inputs
and to identify independent “threads” of computation in a parallel algorithm. There are
several models of concurrency in the literature (see [14] for an overview of standard
approaches). Asynchronous transition systems [14], which are an extension of the well
known model of Mazurkiewicz traces [9], are sufficiently expressive for our purposes.
In order to speak about complexity, we shall add a notion of weight: on transitions,
for time complexity, and on states, for space complexity. This justifies our choice of
asynchronous transition systems, which have an explicit notion of state, over the a priori
simpler model of Mazurkiewicz traces.

Definition 7 (Asynchronous LTS [14]). An asynchronous LTS (ALTS) is a tuple S =
(|S|, s0, E(S), transS ,˝S) where |S| is a set of states, s0 ∈ |S| is the initial state,
E(S) is a set of event types, transS ⊆ |S| × E(S) × |S| is the transition relation and
˝S is an antireflexive, symmetric relation on E(S), called independence relation, such
that (using the notations of Definition 1):

1. a ∈ E(S) implies s a−→ t for some s, t ∈ |S|;
2. s a−→ s′ and s a−→ s′′ implies s′ = s′′;
3. a1 ˝ a2 and s a1−→ s1, s a2−→ s2 implies ∃t ∈ |S| s.t. s1

a2−→ t and s2
a1−→ t;

4. a1 ˝ a2 and s a1−→ s1
a2−→ t implies ∃s2 ∈ |S| s.t. s a2−→ s2

a1−→ t.

In complete analogy to the definitions for Mazurkiewicz traces, we have trace equiv-
alence classes of transition sequences in ALTSs and we define events with the expected
causality relation that relates them.



Definition 8 (Run, trace equivalence, event, causal order). A run in an ALTS S is
a finite, possibly empty sequence of consecutive transitions ϕ = s

a1−→ · · · an−→ t,
which we denote by s

ϕ−→ t. Concatenation of runs is denoted by juxtaposition. Trace
equivalence, denoted by ∼, is the smallest equivalence relation on runs such that, for

all a1 ˝ a2, if ϕ = s′
ϕ′

−→ s
a1−→ s1

a2−→ t
ϕ′′

−→ t′ and ψ = s′
ϕ′

−→ s
a2−→ s2

a1−→
t
ϕ′′

−→ t′ with s, s1, s2, t as in point 3 of Definition 7, then ϕ ∼ ψ. We define a preorder
between runs by ϕ . ψ iff ψ ∼ ϕϕ′ for some run ϕ′. A run ϕ is essential if it is of

the form s0
ϕ′

−→ s
a−→ t, with s0 the initial state of S, and for all ψ ∼ ϕ, we have

ψ = s0
ψ′

−→ s
a−→ t with ψ′ ∼ ϕ′.

An event is a ∼-equivalence class of essential runs. We denote by Ev(S) the set of
events of S; it is a poset under the quotient relation . /∼, which we denote by ≤ and
call causal order. Note that, if e ∈ Ev(S), all ϕ ∈ e “end” with the same transition; we
denote by evtype(e) the event type of this transition.

Finally we can add data for “time consumption” of event types and the “size” of
states, which allow to define the time and space cost of events.

Definition 9 (Weights). A weighted ALTS (WALTS) is a triple (S, wt, ws), where S is
an ALTS, wt : E(S)→ N is the time weight, and ws : |S| → N is the space weight.

Let ϕ = s0
a1−→ · · · an−→ sn be a run. Its space cost is space(ϕ) =

max0≤i≤n ws(si). The space cost of an event e ∈ Ev(S) is space(e) =
maxϕ∈e space(ϕ).

Let e ∈ Ev(S). We denote by tot(e) the set of chains of events, i.e., totally ordered
subsets of (Ev(S),≤), whose maximum is e. The time cost of e is

time(e) = max
X∈tot(e)

∑
d∈X

wt(evtype(d)).

Roughly speaking, the space cost of events is independent of their scheduling; how-
ever, for the time cost of an event we assume an “ideal” scheduler that fully exploits all
concurrency of the WALTS.

4 The Process Machine

We start by defining string expressions and Boolean expressions, which are generated
by the following grammar:

E,F ::= x
∣∣ ξ ∣∣ 0(E)

∣∣ 1(E)
∣∣ tail(E)

B ::= tt
∣∣ ff

∣∣ 0?(E)
∣∣ ε?(E),

where x ranges over a denumerably infinite set of variables, and ξ ranges over W.
Processes are defined by the following grammar:

P,Q ::= 0
∣∣ A〈E1, . . . , En〉

∣∣ O〈E〉.P ∣∣ I(x).P
∣∣ B.(P,Q)

∣∣ P | Q.



Nil : [(0,M)p, Γ ]Θ
τ−→ [Γ ]Θ

Rec : [(A〈E1, . . . En〉,M)p, Γ ]Θ
τ−→ [(P, {x1 7→ EM1 , . . . , xn 7→ EMn })p, Γ ]Θ

with A(x1, . . . , xn)
def
= P

Snd : [(E〈F 〉.P,M)p, Γ ]Θ
τ−→ [(P,M)p, Γ ]Θ

′

with Θ′(EM ) = Θ(EM ) · FM ,
and Θ′ = Θ everywhere else

Rcv : [(E(x).P,M)p, Γ ]Θ
τ−→ [(P,M ∪ {x 7→ ξ})p, Γ ]Θ′

only if Θ(EM ) = ξ · q. Then, Θ′(EM ) = q
and Θ′ = Θ everywhere else

Out : [(o〈E〉.P,M)p, Γ ]Θ
o〈EM 〉−→ [(P,M)p, Γ ]Θ

Inp : [(i(x).P,M)p, Γ ]Θ
i(ξ)−→ [(P,M ∪ {x 7→ ξ})p, Γ ]Θ

Cnd : [(B.(P,Q),M)p, Γ ]Θ
τ−→

{
[(P,M)p, Γ ]Θ if BM = tt ,
[(Q,M)p, Γ ]Θ if BM = ff

Spn : [(P | Q,M)p, Γ ]Θ
τ−→ [(P,M)p0, (Q,M)p1, Γ ]Θ

Table 1. The transitions of the process machine.

where O stands for either an output channel o ∈ O or a string expression, I stands for
either an input channel i ∈ I or a string expression, E,E1, . . . , En range over string
expressions, and A ranges over a denumerably infinite set of process identifiers, each
coming with an arity n ∈ N and a defining equation of the form

A(x1, . . . , xn)
def
= P

where P is a process whose free variables are included in x1, . . . , xn. As usual in pro-
cess calculi, the free variables of a process (denoted by FV(P )) are defined to be the
variables not in the scope of an input prefix I(x), which binds x. A process P is closed
if FV(P ) = ∅. In the following, all bound variables of a process are supposed to be
pairwise distinct.

To assign values to expressions, we use environments, i.e., finite partial functions
from variables to W. If E is a string expression whose variables are all in the domain
of an environment M , we define its value EM by induction: xM = M(x); ξM = ξ;
0(E)M = 0EM ; 1(E)M = 1EM ; and tail(E)M = ξ if EM = bξ, with b ∈ {0, 1}.
Similarly, we define the value of Boolean expressions: ttM = tt ; ff M = ff ; 0?(E)M =
tt if EM = 0ξ, otherwise it is ff ; and ε?(E)M = tt if EM = ε, otherwise it is ff .

Definition 10 (Machine configurations, transitions). A processor state is a triple
(P,M)p where P is a process, M is an environment whose domain includes FV(P ),
and p is a binary string, the processor tag.

A queue function is a function Θ from W to finite lists of W, which is almost every-
where equal to the empty list. In the following, lists of words are ranged over by q, and
we denote by · their concatenation.

A configuration C is a pair [Γ ]Θ, where Γ is a set of processor states whose pro-
cessor tags are pairwise incompatible in the prefix order (i.e., no processor tag is the
prefix of another), and Θ is a queue function.



Definition 11 (LTS of a process). Let P be a closed process. We define [P ] to be the
LTS generated by Table 1 with the initial state [(P, ∅)ε]ε (empty environment, tag and
queue function).

The reader acquainted with process algebras will note how, in spite of the presence
of output prefixes in the syntax of processes, the machine treats outputs asynchronously:
strings are sent (internally or externally) without waiting to synchronize with a receiver.

Given a deterministic Turing machine computing the function f : W → W, it is
possible to exhibit a closed process P such that [P ] ∈ bf ; moreover, the execution of
this process on the machine uses only one processor. Many more standard, “functional”
models of computation can be simulated by our process machine (see Appendix A).
However, the process machine is obviously richer, in the sense that it may implement
more complex, “non-functional” interactive behaviors.

As announced, each transition will be given a weight, and each configuration a size.
We fix a positive integer constant k and, for every string expression E and Boolean
expression B, given an environment M whose domain contains the variables of E and
B, we fix positive integers timeM (E) and timeM (B), representing the time it takes for
a processor with environment M to compute the string EM and the Boolean BM . In
the following we denote by |ξ| the length of ξ ∈W.

Definition 12 (Weight of transitions and size of configurations). The weight of a
machine transition t, denoted by $t, is defined as follows, with reference to Table 1:

Nil : $t = k Out : $t = k(1 + timeM (E))
Rec : $t = k(1 +

∑n
i=1 timeM (Ei)) Inp : $t = k(1 + |ξ|)

Snd : $t = k(1 + timeM (E) + timeM (F )) Cnd : $t = k(1 + timeM (B))
Rcv : $t = k(1 + timeM (E) + |ξ|) Spn : $t = k(1 + |M |)
The size of an environmentM is |M | =

∑
x∈dom(M) |M(x)|. If q is a list of strings,

its size |q| is the sum of the lengths of the strings appearing in q; then, the size of
a queue function Θ is |Θ| =

∑
ξ∈dom(Θ) |Θ(ξ)|. Finally, the size of a configuration

C = [(P1,M1), . . . , (Pn,Mn)]Θ is |C| = |Θ|+
∑n
i=1 |Mi|.

Definition 13 (WALTS of a process). We define the set of operations as Op = {Nil,
Rec, Snd, Rcv, Out, Inp, Cnd, Spn}. Let P be a closed process. We define a
WALTS JP K as follows:
• |JP K| = |[P ]|;
• the initial state is [(P, ∅)ε]ε;
• E(JP K) is the set of all (p, l, n) ∈ W × Op × N s.t. in [P ] there is a transition t of

type l performed by a processor whose tag is p and s.t. $t = n;
• the independence relation is the smallest symmetric relation s.t. (p, l, n) ˝ (p′, l′, n′)

holds as soon as p 6= p′ and one of the following conditions is met:
• l 6∈ {Snd, Rcv, Out, Inp};
• l ∈ {Snd, Rcv} and l′ ∈ {Out, Inp};
• l, l′ ∈ {Snd, Rcv} and the transitions concern different queues;
• l, l′ ∈ {Out, Inp} and either l 6= l′ or the transitions concern different external

channels.
• transJP K = {(C, (p, l, n), C ′) | ∀(C,α,C ′) ∈ trans[P ] performed by processor p

of type l and weight n};



• the time weight is wt((p, l, n)) = n, and the space weight is ws(C) = |C|.

Note that two Snd/Rcv transitions on the same queue are never independent. This
amounts to forbidding concurrent access to a queue, even when this could be safe. We
could consider queues with concurrent access at the price of some technical complica-
tions. In this extended abstract, we prefer not to address such an arguably minor detail.

5 Complexity Classes

We now propose our definition of complexity classes of behaviors. We essentially mea-
sure the cost of producing an output as a function of all the inputs that are below it in
the causal order.

Definition 14 (Input and output events, input size). Let P be a closed process. An
input event (resp. output event) of JP K is an event d ∈ Ev(JP K) s.t. evtype(d) is an
input (resp. output) on an external channel. In the input case, if the string read is ξ, we
set |d| = |ξ|. Let e be an output event, and let Inp(e) be the set of input events below e
(w.r.t. the causal order). We define the input size of e as ‖e‖ =

∑
d∈Inp(e) |d|.

Definition 15 (Cost of a process). Let f, g : N → N. We say that P works in time
f and space g if for every output event e of JP K, time(e) ≤ f(‖e‖) and space(e) ≤
g(‖e‖).

Definition 16 (Complexity class). Let f, g : N → N. We define BTS(f, g) to be the
set of behaviors b such that there exists a process P such that [P ] ∈ b and P works in
time f and space g.

As sanity check we show that, in the case of functional behaviors, we essentially
recover the standard complexity classes

Definition 17 (Functional complexity). Let f, g : N → N. We define the set of lan-
guages FUNTS(f, g) = lang(BTS(f, g) ∩ FUN ).

In the following, TIME(f) and ATIME(f) denote the standard time complexity
classes (languages decidable by a deterministic and alternating Turing machine in at
most f(n) steps, respectively).

Theorem 1. Let f, g be functions from N to N.

1. TIME(f(n)) ⊆ FUNTS(f(n), f(n));
2. FUNTS(f(n), g(n)) ⊆ TIME(O(f(n)g(n)h)) for a constant integer h > 0;
3. ATIME(f(n)) ⊆ FUNTS(f(n), 2O(f(n))).

Proof. Points (1) and (3) are proved by efficiently encoding Turing machines and alter-
nating Turing machines in the process machine (see Appendix A.1 and Appendix A.2).
For point (2), we simulate with a deterministic Turing machine the execution of a pro-
cess P implementing a functional behavior. This is possible because, by the properties



of ≈d, the non-determinism that may be present during the execution of P is actually
vacuous: when facing a configuration with more than one active processor, the Tur-
ing machine may simulate any one of them, without worrying about influencing the
outcome or falling into infinite computations. Simulating a single transition of the pro-
cess machine may be assumed to require at most c ·g(n)h

′
Turing machine steps, where

c, h′ are constant. Now, a simple combinatorial argument based on the maximum length
of runs (which is f(n)) and the maximum number of active processors (which is g(n))
gives that the Turing machine halts after simulating at most f(n)g(n) transitions, yield-
ing the desired bound. The details are given in Appendix B. ut

Corollary 1. Every standard polynomial or superpolynomial deterministic complexity
class may be reformulated in terms of FUNTS(f, g). For instance:

P =
⋃
k<ω

FUNTS(nk, nk), EXP =
⋃
k<ω

FUNTS(2n
k

, 2n
k

).

Thanks to the well know equality PSPACE = AP, Theorem 1 also immedi-
ately implies the inclusion PSPACE ⊆

⋃
k<ω FUNTS(nk, 2n

k

) which shows, for
instance, that NP-complete problems may be solved in polynomial time if we allow an
exponential number of processors working in parallel, as expected.

6 Discussion

The idea to revise and extend the theory of computability (and formal languages) by re-
placing functions with behaviors is not new [5, 8, 1, 2]. As an example, the latter works
introduce reactive Turing machines (RTMs), which are ordinary Turing machines with
an additional action (i.e., an element ofA as in Definition 1) for each transition between
configurations. Each such RTM induces an LTS, which then is executable by definition;
two RTMs execute the same behavior if their LTSs are related by a certain behavioral
equivalence. Finally, so-called effective LTSs, i.e. LTSs with recursively enumerable
transition relations, coincide with executable ones (up to behavioral equivalence). As
one might expect, it is easy to construct for each RTM (without final states) a corre-
sponding process such that their LTSs are weakly bisimilar (see Appendix C).

Not much has been said about interactive complexity, however. A notable exception
is Japaridze’s system of Clarithmetic [7], whose focus however is on logic rather than
complexity theory. Another example are lineage of automata [13], whose nature is very
finitistic contrarily to the one of our model.

Concerning our own work, in this extended abstract we described merely the first
steps of a proposal which, at least in the case of polynomial and superpolynomial de-
terministic time complexity classes, has the good taste of not being inconsistent with
the standard definitions. Starting from here, we have of course a great number of open
questions and directions for further investigation.

First of all, in light of Theorem 1, we may ask how standard space complexity
classes (e.g. PSPACE) may be recovered from our definitions. In this respect, we
already know that, in perfect analogy with one-tape Turing machines, the sequential
treatment of input strings in the current definition of the process machine prevents us



from capturing “low” complexity classes, such as L and NC. To deal with these, ran-
dom access to the bits of an input string must be allowed (see Appendix A.4 and A.5).

And then, of course, there is a plethora of questions regarding non-functional be-
haviors, the main motivation behind our work. We did not speak of this here, because
we are more concerned with establishing the main definitions and their consistency (at
least in some remarkable cases), but we do have several examples of non-functional
behaviors to which our definitions may be applied, including server-like behaviors and
behaviors corresponding to functions on streams (such as those implemented by online
algorithms). This preliminary investigation reveals that, in general, the causal depen-
dency of WALTSs may not be enough. Instead, the behavior itself must contain addi-
tional dependency information which, for each output, specifies which inputs its cost is
to be considered a function of. This is not needed in functional behaviors, because there
is no choice: each output depends on the only input preceding it. For more complex
behaviors, Definition 14 (the input size) is too naive and the dependency information
seems to be required for interesting non-functional complexity classes to exist.

References

1. Baeten, J.C.M., Luttik, B., van Tilburg, P.: Computations and interaction. In: Natarajan, R.,
Ojo, A.K. (eds.) ICDCIT. LNCS, vol. 6536, pp. 35–54. Springer (2011)

2. Baeten, J.C.M., Luttik, B., van Tilburg, P.: Reactive Turing machines. In: Owe, O., Steffen,
M., Telle, J.A. (eds.) Proceedings of FCT 2011. LNCS, vol. 6914, pp. 348–359. Springer-
Verlag (2011)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge Uni-
versity Press (1998)

4. Goldin, D., Smolka, S., Wegner, P.: Interactive Computation: The New Paradigm. Springer-
Verlag (2006)

5. Goldin, D.Q., Smolka, S.A., Wegner, P.: Turing machines, transition systems, and interac-
tion. Electr. Notes Theor. Comput. Sci. 52(1), 120–136 (2001)

6. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-
systems. In: Proceedings of STOC. pp. 291–304 (1985)

7. Japaridze, G.: Introduction to clarithmetic I. Inf. Comput. 209(10), 1312–1354 (2011)
8. van Leeuwen, J., Wiedermann, J.: On algorithms and interaction. In: MFCS. pp. 99–113

(2000)
9. Mazurkiewicz, A.: Trace theory. In: Petri Nets: Applications and Relationships to Other

Models of Concurrency, LNCS, vol. 255, pp. 279–324. Springer (1986)
10. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge University

Press (1999)
11. Parrow, J., Sjodin, P.: Multiway synchrinizaton verified with coupled simulation. In: Cleave-

land, R. (ed.) Proceedings of CONCUR ’92. LNCS, vol. 630, pp. 518–533. Springer-Verlag
(1992)

12. van Glabbeek, R.J.: The linear time - branching time spectrum II: The semantics of sequential
systems with silent moves. In: Best, E. (ed.) Proceedings of CONCUR ’93. LNCS, vol. 715,
pp. 66–81. Springer-Verlag (1993)

13. Verbaan, P., van Leeuwen, J., Wiedermann, J.: Complexity of evolving interactive systems.
In: Theory Is Forever. pp. 268–281 (2004)

14. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of logic in Computer Sci-
ence, vol. 4. Clarendon Press (1995)



A Encoding standard computational models

A.1 Turing machines

We show how the process machine can simulate a deterministic Turing machine with a
constant slowdown.

Let δ be a function from W to processes with free variables among −→x , whose do-
main is finite. Such function may be represented by a process (identifier) Fδ(s,−→x )
which progressively “explores” s and returns the appropriate process, returning some
default process (for instance 0) in case s does not belong to the domain of δ. For exam-
ple, if δ is defined only on ε, 0 and 1, and is a closed process in all cases, we have

Fδ(s)
def
= ε?(s).(δ(ε), 0?(s).(ε?(tail(s)).(δ(0),0), ε?(tail(s)).(δ(1),0))).

Let now M be a deterministic Turing machine with alphabet {0, 1} and one semi-
infinite tape (i.e., it is finite to the “left” and extends indefinitely to the “right”). We
assume that the input string is written in the leftmost cells of the tape, the rest of the
tape being covered by blank symbols. We also assume that the machine halts with a
failure if it attempts to read to the left of the leftmost cell.

The configurations of the machine may be represented by three binary strings s, l, r,
representing the current state, the contents to the left of the head, in reverse order and
the contents of the tape to the right of the head (including the head as the first symbol
of r). Then, the transition function of M induces three functions of s, depending on
whether r is empty (the head “wandered off” to the right), starts with a 0, or starts with
a 1. These, in turn, induce three functions δε, δ0, δ1, from binary strings to processes,
all of finite domain, which we describe as follows: let T be a process identifier of arity
3. Suppose the state of M is s, and that the current symbol is b (which may be blank).
Suppose that, from this information, the transition function of M goes to state q, writes
c, and moves to the right. Then, we have

δb(s) = T 〈q, c(l), tail(r)〉.

Had the transition function ofM decreed a movement to the left instead, we would have

δb(s) = ε?(l).(0, 0?(l).(T 〈q, tail(l), 0(c(tail(r)))〉, T 〈q, tail(l), 1(c(tail(r)))〉)).

Finally, if s is a halting state, the machine may output the result, which we stipulate to be
written to the right of the head (including the current position), so we have δb(s) = o〈r〉.

But we still have to define the behavior of the process identifier T : the defining
equation for it is

T (s, r, l)
def
= ε?(r).(Fδε〈s, l, r〉, 0?(r).(Fδ0〈s, l, r〉, Fδ1〈s, l, r〉)).

The Turing machine M may be represented by the process

i(x).T 〈ξ0, ε, x〉,

where ξ0 is the initial state of M .



Note how the parallel operator is never used by processes representing Turing ma-
chines. This implies that, when such processes are executed on the process machine,
only one processor is used, and the causal structure of events is purely sequential. Note
also that we may encode in the same way any computational model based on states
whose transitions are described by a function of finite domain.

A.2 Alternating Turing machines

It is immediate to define processes corresponding to binary logical operators:

And(a, b, c) = a(x).b(y).0?(x).(c〈0〉, 0?(y).(c〈0〉, c〈1〉));
Or(a, b, c) = a(x).b(y).0?(x).(0?(y).(c〈0〉, c〈1〉), c〈1〉).

Consider now an alternating Turing machineM . We suppose that at every step,M non-
deterministically branches in two computations; some states will be existential (i.e.,
will accept if the result of one of the two branches is accepting), while others will
be universal (i.e., will accept if the result of both of the two branches is accepting).
Then, the transition function of M induces 6 functions of finite domain from strings
to processes, which we call δib(s), with b ∈ {0, 1, ε} and i ∈ {0, 1}. Intuitively, δib(s)
corresponds to the behavior of M when, given that the current state and symbol are s
and b, the branch i is chosen.

The functions δib(s) are defined much like in the case of deterministic Turing ma-
chines, except that now we use another process identifier N , of arity 4. For instance, if
state s, symbol b, and branch i give new state q, new symbol c, and movement to the
right, we have

δib(s) = N〈q, c(l), tail(r), d〉,

and so on. An important difference with deterministic Turing machines is that, in case
s is an accepting state, we set δib(s) = d〈1〉, and in case it is a rejecting state, we set
δib(s) = d〈0〉, that is, the final decision (accept/reject) is output on an internal channel
d, which is a parameter of N , instead of the external output channel o.

Then, we introduce two further process identifiers T0, T1, both of arity 4, and define
them mutually recursively with N :

Ti(s, l, r, d)
def
= ε?(r).(Fδiε〈s, l, r, d〉, 0?(r).(Fδi0〈s, l, r, d〉, Fδi1〈s, l, r, d〉));

N(s, r, l, d)
def
= T0〈s, l, r, 0(d)〉 | T1〈s, l, r, 1(d)〉 | (0(d))(y).(1(d))(z).FOp〈s, y, z, d〉.

where i ∈ {0, 1} and Op(s) is the finite-domain function yielding Or(y, z, d) or
And(y, z, d) according to whether s is an existential or universal state, respectively.

At this point, the alternating Turing machine M may be represented by the process

i(x).(N〈ξ0, x, ε, ε〉 | ξ(y).o〈y〉),

where ξ0 is the initial state.
The reader may check that, upon reception of a string x on the external input

channel i, the above process starts unfolding a parallel computation whose structure



is a binary tree of depth proportional to the depth of the computation of M . Each
branch in the tree executes independently from the others; once a leaf is reached, the
result (acceptance/rejection) is communicated to the parent, which computes a disjunc-
tion/conjunction of the two data received from its siblings, depending on its existen-
tial/universal nature, and passes the result to its parent, and so on. The last Boolean
computed, which is the final answer of M for accepting or rejecting x, is sent on chan-
nel ξ, and is forwarded to the external world through the output channel o.

A.3 Random Access Machines

A memory cell may be represented by a process which waits on a channel ξ for a string
υ which is interpreted as follows:
• if υ = ε, no action is taken;
• the string υ = 0υ′ is interpreted as a read request, and the value stored in the cell is

sent using channel υ′;
• the string υ = 1υ′ is interpreted as a write request, so the value υ′ replaces the

current value.
The above process is realized by the following recursive definition:

C(x, v)
def
= x(y).ε?(y).(C〈x, v〉, 0?(y).(tail(y)〈v〉.C〈x, v〉, C〈x, tail(y)〉)).

In RAMs, memory cells contain integers, and instructions too refer to integers. Here,
we use a unary representation: n is represented by the string 0n.

A random access memory made of infinitely many cells initially containing zero, lo-
cated at addresses of the form 0n, with n > 0, is generated by the process M〈0〉, where
the unary process identifier M has the following defining equation M(c)

def
= C〈c, ε〉 |

M〈0(c)〉. However, such a process is divergent, so we cannot use it for implementing
functional behaviors according to Definition 5. Then, we must define a process that only
creates a finite number of memory cells at a time, as needed. We first give a couple of
auxiliary definitions:

D[P,Q](m,n)
def
= ε?(m).(P, ε?(n).(Q,D[P,Q]〈tail(m), tail(n)〉))

E[P,Q](m,n)
def
= ε?(m).(ε?(n).(P,Q), ε?(n).(Q,E[P,Q]〈tail(m), tail(n)〉))

These definitions are parametric in two arbitrary processes P,Q. Given two integers
m,n represented as lists of zeros, the process D[P,Q]〈m,n〉 (resp. E[P,Q]〈m,n〉)
evaluates to P if m ≤ n (resp. m = n) and to Q otherwise. Then, the memory process
M may be defined as follows:

M ′(m,n)
def
= C〈m, ε〉 | E[0,M ′〈0(m), n〉]〈m,n〉

M(c)
def
= 1(x).D[M〈c〉,M ′〈0(c), x〉 |M〈x〉]〈x, c〉.

In other words, M〈c〉 waits on channel 1 for an integer x, which corresponds to the
address of a memory cell. If x ≤ c, the process returns to its initial state M〈c〉. If



x > c, the process goes to state M〈x〉 and, in parallel, creates x− c memory cells, each
initialized to zero, at the addresses going from c+ 1 to x.

A RAM program is a finite sequence of instructions, which may be represented
by mutually recursively defined process identifiers I1, . . . , In, Ij standing for the jth
instruction. These processes access the memory M with the instructions allowed by
the RAM (load/store operations, possibly with indirection), and do simple arithmetic
operations (increment/decrement) on the contents of a special memory cell located at
the channel ε, and called the accumulator. Of course, before accessing the memory cell
at address c, each instruction must take care of sending c on channel 1, which has the
effect of creating the cell if it does not exist (and has no effect otherwise). The HALT
instruction corresponds to the process

ε〈0ξ〉 | ξ(v).o〈v〉,

which reads the value stored in the accumulator and forwards it to the external world
through the output channel o (the string ξ is arbitrary, as long as it is of length at least 2
and starts with 1 to avoid unwanted interferences).

Then, such a RAM program may be represented by the process

i(x).(I1 | C〈ε, x〉) |M〈0〉.

Note that this encoding is not quite economic in terms of parallelism: a RAM is a
sequential machine, whereas executing its encoding given above on the process machine
will use several processors. However, it has the advantage of being easily generalized
to PRAMs (see Sect. A.5).

A.4 Boolean Circuits

The definitions of And and Or given above may be easily adapted to encode gates, from
which a Boolean circuit is implemented immediately. For what concerns the interface,
a circuit with m inputs and n outputs will be represented by a process reading bits from
the external input channels i1, . . . , im and sending bits to the external output channels
o1, . . . , on.

Note that the behavior of a process representing a Boolean circuit as above is not
functional (Definition 5). Therefore, although this encoding shows how circuits may be
simulated on the process machine, it does not help extending Theorem 1 to sublinear
classes such as NC.

A.5 Parallel Random Access Machines

A PRAM is composed of several RAM programs running in parallel, each with its own
accumulator. They access the same memory, including the accumulators of all other
programs. At each step, the current instruction of every program is executed, and the
machine proceeds to the next step only when the execution of all instructions is com-
plete; in other words, the parallel components share a clock. Concurrent access to mem-
ory is resolved on a first-come-first-served basis; it is the programmer’s responsibility
to ensure that the cooperation between the PRAM programs is consistent.



A PRAM program with n parallel components is implemented by a process of the
following form:

i1(x1).(J1
1 | C〈0, x1〉) | · · · | in(xn).(Jn1 | C〈0n, xn〉) |M〈0n+1〉 | Kn.

The idea is that we put the encodings of the n RAM programs in parallel, plus a clock
process Kn. The ith program has an associated internal channel, say 1i, with which it
communicates with the clock.

If Ij is the process encoding the jth instruction of a RAM program, the same in-
struction in the ith component of the PRAM is encoded by a process J ij of the form

1i.I ′,

where the input prefix 1i bounds a variable which does not appear in I ′, and where I ′ is
I in which a bogus string is sent on channel 1i upon completion of the instruction. The
encoding of the HALT instruction is defined so that the ith program sends the contents
of its accumulator through the external output channel oi.

The clock may then be represented by the process defined as follows:

Kn
def
= 1. . . . .1n.1. . . . .1n.Kn,

where an output action of the form 1i means that the data sent is irrelevant.
In contrast with the representation of Boolean circuits (Sect. A.4), the above encod-

ing of PRAMs does yield functional behaviors. However, since the initial input instruc-
tion has a linear cost in the length of the input string, no process representing a PRAM
runs in sublinear time. With the present definition of functional behavior, sublinear time
classes (such as NC) may be captured only if we modify the process machine, for ex-
ample allowing random access to the bits of the input string.

B Proof of Theorem 1

Points (1) and (3) are consequences of the encoding of Appendix A.1 and Ap-
pendix A.2.

For what concerns point (2), suppose there is a process P deciding a language in
time f(n) and space g(n) on the process machine. First of all, observe that, since [P ] is
functional, the non-determinism that may be present in P is vacuous. Indeed, all choices
made during the execution of P with a given input yield the same output; moreover,
since ≈d does not introduce divergence, the execution of P terminates no matter what
choice is made. Therefore, a deterministic Turing machine may simulate the process
machine executing P by simulating the transitions in any order (for instance, since the
coding of a configuration [Γ ]Θ will actually represent the set Γ as a list, we may choose
to always execute the transition given by the first processor of the list).

We proceed to define the Turing machine simulating the execution of P . We start by
fixing an encoding (·)• of configurations of the process machine as strings of a suitable
(finite) alphabet. This may safely be supposed to satisfy, for every configuration C,
|C•| = k|C|, where k is a positive constant. Moreover, we suppose that C• has a



distinguished processor among the ones active in C. The Turing machine is initialized
with a binary string ξ on its input tape, and the string ([(P, ∅)ε]ε)• on its work tape,
with the distinguished processor being the only active one.

Now, at each step, the Turing machine looks at the state (Q,M)p of the distin-
guished processor. Depending on the shape of Q, the Turing machine simulates the
appropriate transition. If Q = i(x).R (by bisimulation, the channel must be i), the
Turing machine assigns to x the string placed on its input tape. If Q = o〈E〉.R (by
bisimulation, the channel must be o) the Turing machine halts; it accepts iff EM = ε
(remember the convention used in Definition 6). In all other cases, the Turing machine
simulates the necessary operations and updates the encoding of the configuration ac-
cordingly. There are only two cases worth of attention. The first one is that in which
Q = E(x).R and the queue EM is empty. Then, the Turing machine simply selects
a new distinguished processor (taking care of finding one which is not blocked), and
simulate the next step from it. The second one is that in which Q = R | S. In that
case, after the spawning is simulated, the distinguished processor is chosen to be the
one executing R.

Thanks to the properties of ≈d (in particular the fact that it does not introduce
divergence), the above Turing machine is guaranteed to terminate with the correct state
of acceptance/rejection w.r.t. the input string, which we suppose to be of length n. Note
that, globally, the Turing machine actually simulates a run C0

τ−→ C1
τ−→ · · · τ−→ Ct.

Consider now the tree defined as follows: the nodes at level 0 ≤ i ≤ t represent the
active processors in Ci; the root represents the only active processor in C0 and, at each
level, the siblings of a node are either one node (the processor did not spawn) or two
nodes (the processor spawned), or none at all (the processor went idle). Now, obviously
each transition in the run requires an active processor; therefore, t is bounded by the
size of the above tree. But such a tree has height bounded by f(n) and width bounded
by g(n), so t ≤ f(n)g(n). The simulation of a single transition Ci

τ−→ Ci+1 of the
run may be assumed to require at most something like c · max(|Ci|, |Ci+1|)h Turing
machine steps, where c, h are positive constants, which is bounded by ck ·g(n)h. Hence,
the runtime of the Turing machine is bounded by ck · f(n)g(n)h+1.

C Reactive Turing machines

We base our discussion of reactive Turing machines [2] on the following two definitions
from [1] because the latter work mentions explicitly the alphabets (while the former
work leaves this information implicit).

Definition 18 (Reactive Turing machine). A Reactive Turing machine is a six-tuple
M = (S,A,D,−→, ↑, ↓) where:

1. S is a finite set of states,
2. A is a finite action alphabet, Aτ also includes the silent step τ ,
3. D is a finite data alphabet, we add a special symbol� standing for a blank and put
D� = D ∪ {�},

4. −→ ⊆ S ×Aτ ×D� ×D� × {L,R} × S is a finite set of transitions or steps,
5. ↑ ∈ S is the initial state,



6. ↓ ⊆ S is the set of final states.

Intuitively, the machine starts at the initial state ↑with an empty tape; as usual a con-
figuration consists of the state and the tape contents (an element of D∗�) and a position
of the read-write head with a single symbol. The possible transitions of a configura-
tion depend on the state and the symbol under the head. Each transition comes with a
(possibly observable) action and a change on the tape as usual.

Definition 19 (LTS of an RTM). Let M = (S,A,D,−→, ↑, ↓) be an RTM. The labeled
transition system of M , denoted by T (M), is defined as follows.

1. The set of states is the set of configurations {(s, δ) | s ∈ S, δ a tape instance}.
2. The transition relation −→ is the least relation that satisfies the following two prop-

erties for all a ∈ Aτ , d, e ∈ D�, and δ, ζ ∈ D∗�.

– (s, δd̄ζ)
a−→ (t, (δ̄ )eζ) iff s

a[d/e]L−−−−−→ t,

– (s, δd̄ζ)
a−→ (t, δe(̄ ζ)) iff s

a[d/e]R−−−−−→ t.
3. The initial state is (↑, �̄).
4. (s, δ) ↓ iff s ↓.

We have not introduced all notation as we have the usual use of a “marker” on tape
symbols, i.e., the marked symbol d̄ for each d ∈ D.

For the encoding of RTMs into processes, we assume that the action alphabet A has
a suitable coding into words, i.e., that each a ∈ A has a binary code a ∈W \ {ε} such
that a is a palindrome6. Now, we shall code each action a ∈ A by the prefix o〈a〉. First,
we ignore termination, which is a minor point as discussed in Remark 1. Similarly,
states and data symbols are assumed to have binary codes.

The encoding will use of the following auxiliary definition of internal choice.

Definition 20 (Choice at a channel). Let ξ ∈ W be a word, let n ≥ 0 be a natural
number, and let P1, . . . , Pn be a finite family of processes. Now, we define the process∑ξ

1≤i≤n Pi inductively as follows.

ξ∑
1≤i≤0

Pi = 0

ξ∑
1≤i≤m+1

Pi = ξ〈0〉.0 | ξ〈1〉.0 | ξ(x).ξ(y).[0?(y)].

 ξ∑
1≤i≤m

Pi, Pm+1


If ξ is omitted, it is automatically ε, i.e.,

∑
1≤i≤m Pi stands for

∑ε
1≤i≤m Pi. We write

P1 +ξ P2 for
∑ξ

1≤i≤2 Pi and P1 + P2 for
∑

1≤i≤2 Pi.
The encoding of an RTM will be a recursive process with six string parameters:

besides the state s, the symbol on the tape under the head d, and the left and right
tape contents φ and ψ, we will use two auxiliary strings σ, ρ ∈ W, which “divide”
φ and ψ into cells of suitable length. We shall also have an auxiliary processes for the

6 This makes the encoding simpler and causes only a constant factor in size and time.



manipulation of pairs of these strings, each of which is used to represent a stack: the first
string of a pair contains the actual stack content and the other string is the 0-separated
list of the unary encodings of the lengths of the elements in the stack. For example the
pair 〈01100000, 1111011110〉 is a stack with element 0110 on top of element 0000.
The complete encoding of RTMs is now as follows.

Definition 21 (Encoding RTMs without termination). Given a reactive Turing ma-
chine M = (S,A,D,−→, ↑, ↓) with ↓ = ∅, its encoding is the process T 〈s, ε, ε,�, ε, ε〉,
with the following definitions.

T (s, φ, σ, d, ψ, ρ) =∑
s

a[d/e]R−−−−−→t

o〈a〉.(Pop〈ψ, ρ, ε〉 | 0(d′).0(ψ′).0(ρ′).T 〈t, eφ, 1|e|0σ, d′, ψ′, ρ′〉) +

∑
s

a[d/e]L−−−−−→t

o〈a〉.(Pop〈φ, σ, ε〉 | 0(d′).0(φ′).0(σ′).T 〈t, φ′, σ′, d′, eψ, 1|e|0ρ〉)

Pop(ξ, θ, υ) = [ε?(θ)].
(
0〈�〉.0〈ε〉.0〈ε〉.0, [0?(θ)].

(
0〈υ〉.0〈ξ〉.0〈tail(θ)〉.0, P

))
where P is

P = [0?(θ)]. (Pop〈tail(ξ), tail(θ), 0υ〉,Pop〈tail(ξ), tail(θ), 1υ〉) .

The Pop-process takes a pair of words – representing a stack – and an “accumulator”
for the bit-wise compilation of the top element; it “returns” the top symbol and the
updated “stack” via consecutive outputs on channel 0.

Proposition 1 (Simulation of RTMs). Every RTM with the empty set of final states can
be simulated by a process.

Proof (idea). All non-determinism of the RTM is captured at the root of the definition
of the process identifier T of Definition 21. Now, it remains only to verify that the rest
of the process actually encodes the reactive Turing machine as expected. Note that there
will never be any “garbage” sending actions on the “channels” 0 and ε.

Remark 1 (Termination). As for termination, without changing much, we could add a
new process constant 1 to our process syntax; it would essentially behave as 0 with the
sole difference that if all processes in a configuration have reduced to 1 (in an arbitrary
environment and with arbitrary queues), then the configuration is a final configuration.

Effective transition systems An LTS is effective, according to [2, Definition 5], if the
transition relation is recursively enumerable. Note that we again ignore termination for
the sake of simplicity (cf. Remark 1). Clearly, the LTSs of processes are recursively
enumerable.


