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Abstract
We show that propositional linear temporal logic with knowledge modalities but without common knowledge has an
undecidable satisfiability problem when interpreted in a ‘concrete’ semantics with perfect recall or with perfect recall and
synchrony. We then conclude that this concrete semantics is not axiomatizable in the semantics, based on local states.
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1 Introduction

Combinations of temporal and epistemic logics have been studied since the mid-80s, starting with
[9, 10], identifying 96 different logics, distinguished by semantics and/or the presence of common
knowledge operators, and presenting decidability and undecidability results for the satisfiability
problem in the presented logics. Such logics have recently proved useful in the formal verification
applied to various distributed systems in which the knowledge of the participants is essential for the
correctness of the system specification. Examples include the verification of confidentiality [27, 28],
authentication [3, 16, 19], mutual agreement [17], various types of anonymity [7, 11, 17, 26] or
privacy [1].

The semantics of temporal epistemic logics is based on an observability relation for each agent,
expressing the observation capabilities of the agents on which the agenst based their abilities to make
deductions on the global system state, and on the other agents’ knowledge of it. It is common to
consider that observability relations are given by so-called local states of each agent, which gives
what is called the interpreted systems semantics [5]. In this framework, a global state is a tuple of
local states, then two global states are identically observable for an agent if the local state of the
agent in both global states is the same. Also, in interpreted systems, system evolutions are presented
as runs in a transition system—that is, sequences of global states connected by system transitions.

In its most general presentation, e.g. [6, 9], this semantics does not impose any restriction on the
valuation of atomic propositions in states that are identically observable for some agent A. More
specifically, two global states s,s′ might be declared as identically observable for agent A, yet the
atomic propositions which hold in s could be disjoint from the atomic propositions which hold in s′.
However, in many of the above-mentioned applications of temporal epistemic logics, the observability
relations are intimately related with the truth values for atomic propositions. For instance, in [14, 16,
20, 26], the local states for each agent incorporate items describing what agents sent/received and
what they possess during the protocol behaviour, and there are atomic formulas encoding exactly the
possession, the reception or the issue of items during the protocol run. It is therefore quite natural to

© The Author, 2010. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/logcom/exq031

 Journal of Logic and Computation Advance Access published August 24, 2010
 by guest on S

eptem
ber 1, 2010

logcom
.oxfordjournals.org

D
ow

nloaded from
 

http://logcom.oxfordjournals.org/


[09:59 24/8/2010 exq031.tex] LogCom: Journal of Logic and Computation Page: 2 1–20

2 Non-axiomatizability for the linear temporal logic of knowledge

consider a ‘concrete’ observability relation, in which local states for an agent A are characterized by
truth values for some fixed subset of atomic propositions ΠA.

We present here such a ‘concrete’ semantics for temporal epistemic logics, and investigate its
relationship with the semantics based on interpreted systems. We focus here on the perfect recall
case and the perfect recall and synchronous; formally, two system runs are identically observable by
an agent A at some instant i (w.r.t. the synchronous and perfect recall semantics) if and only if the
sequence, upto instant i, of truth values for atoms inΠA (with or without stuttering) is the same in both
histories. Our logic contains only ‘individual knowledge’operators, and no common knowledge, and
corresponds to the logic KLn in [9, 10], also denoted PTL+S5(n) [6], interpreted over the classes of
models denoted Cnf , resp. Cnf ,sync, but with a concrete version of the observability relations.

Such a concrete observability relation could be related with the alternative semantics for logics
of knowledge and time, known as Kripke semantics. In this semantics, the observability relations
are not induced by local states, but are directly defined on global states in the transition system.
We may then associate with each equivalence class for the observability relation for some agent A
a new atomic proposition which holds exactly in the states of that equivalence class, and does not
hold anywhere else.

At a first sight, it may look that the semantics is just a particular case of the semantics based on
interpreted systems: on one hand, in the interpreted systems semantics, one may include the local
states in the set of atomic propositions and declare the set of atomic propositions corresponding
to the local states for agent A as the set of observable atoms for A. For the reverse, one might try
to axiomatize the correspondence between local states and validity of ΠA, by considering axioms
�p→KAp and �¬p→KA¬p for each atomic proposition p∈ΠA.

Unfortunately, this set of axioms does not completely characterize observability for agent A by
means of observability of truth values for ΠA. In fact, as we prove in this article, the concrete
semantics is not axiomatizable. We prove this result for both the perfect recall semantics, and for the
perfect recall and synchronous case. The reason for this result is that there is no possibility to impose,
axiomatically, the identical observability of two histories, on the basis of the observability of truth
values for some given subset of atomic propositions. To compare with the classical framework of
interpreted systems, note that [8] gives a complete axiom system for both cases, and their satisfiability
problem is shown decidable in [9].

There has been some interest in relating the interpreted systems semantics with general Kripke
semantics. In [15], for special types of interpreted systems, called hypercube systems, the two
semantics are shown to be equivalent, and the authors suggest that ‘further research could be
undertaken […] to have a general methodology for translating interesting classes of interpreted
systems into classes of Kripke models’.

These considerations give a first reason why semantics based on concrete observability is worth
studying. But there is also a second reason defending this research, related with the possibility to
compare the expressive power of temporal epistemic logics with the expressive power of fragments of
monadic logics over tree structures with some auxiliary interpreted predicates. As known, epistemic
temporal logics are interpreted over transition systems endowed with some additionnal relations. If
we have in mind that unfoldings of transition systems are infinite trees, and that MSO, the Monadic
Second-Order logic of trees [22], accounts as the reference logic for specifying system behaviours as
it is as expressive as the mu-calculus, tree automata or quantified propositional temporal logics, one
may ask the question how combinations of temporal and epistemic logics compare, in expressivity,
with MSO. The concrete observability semantics gives a natural setting for exploring this question,
because the propositional symbols can be interpreted as second-order monadic variables in MSO
(i.e. as sets of positions in a tree). Expressing synchrony and perfect recall would then be not very
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Non-axiomatizability for the linear temporal logic of knowledge 3

difficult with the aid of the equal-level predicate [21]. In the abstract semantics, translating formulas
with temporal and (individual) knowledge operators into MSO with equal-level predicate requires
one to encode the observability classes into new propositional variables—which, in fact, accounts
to using the concrete observability. The exploration of the the relationship between temporal logics
of knowledge and extensions of MSO is not the subject of this article, but it is the main reason for
studying this ‘concrete’ semantics and its relation with the interpreted systems semantics.

Shilov and Garanina [18] have shown how to encode a particular case of the model-checking
problem for an epistemic variant of computational tree logic (CTL) into the Chain Logic with equal-
level predicate (Chain Logic is a proper subset of MSO, see [21]). Their results do not apply to the
full class of model-checking problems, as their translation is dependent on the length of the runs
at which the epistemic CTL formulas are to be interpreted. And hence, their technique does not
provide a model-independent translation of epistemic CTL formulas into formulas of chain logic
with equal-level predicate.

Note also that some of the undecidability results for temporal epistemic logics have been related
with undecidability results for temporal logics on bidimensional structures, observing that especially
the presence of the common knowledge operator makes it possible to encode grid-like structures
[23]. But the connection with MSO logics and the reasons for undecidability that could stem from
these connections has never been discussed.

Our non-axiomatizability result is based on a proof of the undecidability of the satisfiability problem
for the linear temporal logic of knowledge with both the perfect recall semantics and the perfect recall
and synchronous semantics. We actually prove that we may associate to each deterministic Turing
machine T which starts with a blank tape, a formula φT , such that φT is satisfiable if and only if T
has a configuration which is visited infinitely often. The possibility to associate formulas φT also
for Turing machines T which visit all cell tapes gives us the means to show that there exists no
recursively enumerable axiomatization for our concrete versions of the semantics of KLn.

The proof of the undecidability of KLn satisfiability works by coding the configurations and
transitions in the computation of a deterministic Turing machine as runs in a multi-agent system. This
proof idea was utilized many times in the literature for proving undecidability of various epistemic
temporal logics, starting from [9] where it is proved that CKLn, which is linear temporal logic (LTL)
with common knowledge operators, has an undecidable satisfiability problem. But recall that KLn
interpreted over Cnf , resp. Cnf ,sync, is proved to have a decidable satisfiability problem in [9]. We
also cite the undecidability result of [24] for LTL with common knowledge too, which utilizes the
same type of argument. Another paper which utilizes this argument is [23], in which it is shown that
several variants of branching-time logics with common knowledge operators have an undecidable
satisfiability problem. Contrary to these results, our undecidability result holds without a common
knowledge operator. To complete the figure, recall that the only undecidable cases of temporal logics
without common knowledge studied in [9] concern only non-learning variants of observability, based
on previous results from [13]. But the technique used in this only case without common knowledge
heavily relies on asynchrony, and on the non-learning character of the semantics. Our proof uses a
different technique, which relies on synchrony and the possibility to manipulate, in the logic, formulas
which exactly identify observations (by means of the atomic propositions which are observable for
each agent).

One of the sources of inspiration for the concrete semantics is the logic of local propositions from
[4]. The atomic propositions in the sets ΠA are interpreted as local propositions for agent A, in the
sense of [4]. But, contrary to [4], we do not have quantifications over atomic propositions, and, as
such, our logic is strictly less expressive on its pure epistemic part.
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Let us finally mention that the undecidability and non-axiomatizability results for the perfect
recall (non-synchronous) case reduces to the synchronous case. This holds because, with concrete
observability, one may always turn a non-synchronous model into a synchronous one by inserting
a ‘clock’ atom which is observable by everybody. This does not reduce the expressivity of the non-
synchronous perfect recall semantics: the model-checking problem for the non-synchronous perfect
recall semantics does not reduce to the same problem for the synchronous case.

The article is organized as follows: the next section gives the syntax and semantics of KLn. We also
show how to model the dining cryptographers protocol in our concrete semantics, arguing for the
naturality of this type of semantics. We then present the undecidability and the non-axiomatizability
result in the third section. We end with a section of conclusions and comments.

2 Syntax and semantics of KLn

In this section, we recall the syntax and the semantics of KLn [6, 9] based on interpreted systems. Then,
we introduce the ‘concrete’ semantics, and show that the semantics based on interpreted systems can
be expressed in the concrete semantics. We start by giving some of the basic notions and notations
used in this article.

2.1 Preliminaries

A transition system is a tuple T = (S,→,S0), where S is a set of states, S0 ⊆S a set of initial states
and →⊆S×S is a set of transitions. We denote, as usually, s→s′ instead of (s,s′)∈→.

Runs of a transition system T are finite or infinite sequences of states in S, starting with an initial
state and connected by the transition relation:

Runs(T )={
(si)0≤i<η |η∈N∪{∞},∀i<η,si−1 →si and s0 ∈S0

}
.

The item η is called the length of the run. Note that this defines both finite runs (when η∈N) and
infinite runs (when η=∞). The set of finite runs is denoted FinRuns(T ), and the set of infinite runs
is denoted ωRuns(T ). The i-th state in the run ρ is denoted ρ[i]. Also, given a run ρ= (si)0≤i<k of
length k, and some k′ ≤k, the prefix of length k′ of ρ is the run denoted ρ[0..k′]= (si)0≤i<k′ .

Given a transition system T = (S,→,S0) and a surjective mapping f :S →S′, the set S′ can be
endowed with a transition system structure as usual, T ′ = (S′,→f ,S′

0) with S′
0 = f (S0) and u→f

u′ if there exists s,s′ ∈S with f (s)=u,f (s′)=u and s→s′. We then say that T ′ is the projection of T
by f . In the same setting, given a run ρ=(

si
)

1≤i<η∈Runs(T ), the projection of ρ is the following

run of T ′: f (ρ)=(
f (si)

)
1≤i<η.

In this article, we also have situations in which T and T ′ are such that S =2A and U =2B for some
set A and B⊆A, and the projection is defined by f (X)=X ∩B. In these situations, the projection f is
also denoted ·

B
, notation which is also employed for the projection of a run ρ by f : we denote ρ

B
instead of f (ρ).

Given a run ρ=(
si

)
1≤i<η⊆Runs(T ), the removal of stuttering steps from ρ, denoted stut(ρ),

is the sequence of states sij resulting by removing any successive states that are identical in ρ. For
example, for ρ= (s1s2s2s2s3s2s3s1s1s1), then stut(ρ)= (s1s2s3s2s3s1). Note that stut(ρ) is also a run
of T .
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2.2 KLn syntax

The syntax of KLn is given by the following grammar:

φ ::=p |φ∧φ |¬φ |©φ |φUφ |KAφ,

where p∈Π, withΠ denoting the set of atomic propositions, while A∈Ag, with Ag denoting a (finite)
set of agents. The formula KAφ reads ‘Agent A knows φ’. The set of KLn formulas overΠ is denoted
Form(Π).

The usual derived operators are listed in the sequel:

�φ= trueUφ �φ=¬�¬φ PAφ=¬KA¬φ.

2.3 Interpreted systems semantics for KLn

The semantics based on interpreted systems for KLn is based on an ‘abstract’ notion of state. Several
variants of this semantics can be given, based on the possibility of the agents to recall the history
of their observations and/or their access to a global clock. We present here only the perfect recall
semantics, on one side, and the synchronous and perfect recall semantics, on the other side.

An Ag-agent transition system (or a multi-agent system, when Ag is understood from the context)
is a tuple M=(

S,(LA)A∈Ag,→,S0,(∼A)A∈Ag,Π,ν
)

whose components satisfy the following
properties:

• Ag is a finite set of agents.
• LA is the local state, the component of the global state that agent A can observe.
• S is the set of global states, defined as the cartesian product of local states, S =×A∈AgLA. For

a global state s= (lA)A∈Ag, we denote s
A
= lA, the element indexed A from the tuple s.

• The tuple (S,→,S0) is the underlying transition system for M, and hence →⊆S×S and S0 ⊆S.
• ∼A is the observability relation for agent A, and is defined on the set of finite runs of M,

∼A⊆FinRuns(M)×FinRuns(M).
• ν is the interpretation of atomic propositions, ν :S →2Π.

We will be interested here in multi-agent systems in which the observability relation for each agent
satisfies some particular properties. The first property is perfect recall, and models the situation in
which an agent is able to memorize changes in local states upto the current moment, and to tell apart
two runs which do not have the same history of changes in the local state. The second property is
synchrony and perfect recall, and models the situation in which an agent is able to tell apart two runs
which do not have the same history of local states.

Formally, these two properties are the following

Definition 1
(1) The perfect recall observability (pr-observability) relation for agent A∈Ag is the relation

defined as following:

∼pr
A ⊆FinRuns(M)×FinRuns(M), ρ∼pr

A ρ
′ if stut(ρ

LA
)=stut(ρ′

LA
).

(2) The perfect recall and synchronous observability (prs-observability) relation for agent A∈Ag
is the relation defined as following:

∼prs
A ⊆FinRuns(M)×FinRuns(M), ρ∼prs

A ρ′ if ρLA
=ρ′

LA
.
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6 Non-axiomatizability for the linear temporal logic of knowledge

Note that agents that have prs-observability can always distinguish two finite runs having different
lengths.

The semantics of KLn , parameterized by the type of observability relation rel∈{pr,prs} is given
by the following rules, in which ρ∈ωRuns and i∈N:

(M,ρ,i) |=rel p if p∈ρ[i]
(M,ρ,i) |=rel φ1 ∧φ2 if (M,ρ,i) |=rel φ1 and (M,ρ,i) |=rel φ2

(M,ρ,i) |=rel ¬φ if (M,ρ,i) �|=rel φ

(M,ρ,i) |=rel ©φ if (M,ρ,i+1) |=rel φ

(M,ρ,i) |=rel φ1Uφ2 if ∃j≥ i with (M,ρ,j) |=rel φ2 and ∀i≤k< j,(M,ρ,i) |=rel φ1

(M,ρ,i) |=rel KAφ if ∀ρ′ ∈ωRuns(M) and ∀j∈N with ρ[0..i]∼rel
A ρ′[0..j]

we have (M,ρ′,j) |=rel φ

Given a formula φ∈Form(Π) and a multi-agent system M, we say that φ is satisfied in M w.r.t.
pr-observability (resp. w.r.t. prs-observability) if there exists a run ρ and a position i in the run such
that (M,ρ,i) |=pr φ – respectively (M,ρ,i) |=prsφ. A formula is satisfiable if there exists a model in
which it is satisfiable. A formula φ is valid if it is satisfied in any system M.

2.4 A concrete semantics for KLn

The classical semantics presented in the previous subsection does not impose any restriction on the
interpretation of atomic propositions in two global states s,s′ ∈S that may occur on distinct runs
ρ,ρ′, that are identically observable for agent A. For instance, it is perfectly possible to have two
runs ρ= (si)0≤i<k and ρ′ = (s′

i)0≤i<k with ρ∼prs
A ρ′, (hence si A

=s′
i A

for all 0≤ i<k) and such that
ν(sk)∩ν(s′

k)=∅, that is, no atomic proposition that holds at sk also holds at s′
k .

However, it is natural to consider that the truth value of some subset of atomic propositions is
observable by an agent A, that is, to have a fixed set of atomic propositions ΠA that have the same
truth value at both sk and s′

k above. It is also natural to consider that the set of atomic propositions
that are observable by agent A characterizes uniquely agent A’s observability relation. This can be
formalized as follows:

Definition 2
A multi-agent system M has concrete observability for agent A∈Ag if there exists a subset of
atomic propositionsΠA ⊆Π such that for each s,s′ ∈S, sA =s′

A if and only if ν(s)∩ΠA =ν(s′)∩ΠA.

The set ΠA is the set of atomic propositions whose truth values can be observed by the agent A
in any state of the system. It is essential to note the equivalence, required by this definition, between
the state-based observability and the observability of a specific set of atomic propositions, ΠA.

In such contexts, we may redefine the two special observability relations discussed in the previous
section as follows:

Definition 3
A multi-agent system in which all agents have concrete perfect recall observability (cpr-
observability) is a system M=(

S,→,S0,(∼cpr
A ),Π,(ΠA)A∈Ag,ν

)
in which ΠA ⊆Π for all agents

A∈Ag and

ρ∼cpr
A ρ′ if and only if stut(ν(ρ)ΠA

)=stut(ν(ρ′)ΠA
). (1)
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Amulti-agent system in which all agens have concrete perfect recall and synchronous observability
(cprs-observability) is a system M=(

S,→,S0,(∼cprs
A ),Π,(ΠA)A∈Ag,ν

)
with

ρ∼cprs
A ρ′ if and only if ν(ρ)ΠA

=ν(ρ′)ΠA
. (2)

In other words, a multi-agent system with concrete observability is just a multi-agent system
in which the observability relation on states is the equivalence relation defined by the mapping
νA :S →2ΠA ,νA(q)=ν(q)∩ΠA, in the sense that two runs ρ and ρ′ are identically observable by an
agent which has an observability relation which is concrete, synchronous and has perfect recall, if
the set of atoms from ΠA have the same truth values along both runs.

We then have two new semantics, |=cpr and |=cprs, introduced by these two observability relations
along the rules listed at the end of the previous subsection.

We may show that the two (sets of) concrete observability relations ∼cpr
A and ∼cprs

A are at least as
expressive as their classical variants. The idea for proving this expressivity result is to add

⋃
A∈AgLA

to the set of propositional symbols, and put ΠA =LA for all agents A∈Ag. Formally, given a multi-
agent system M=(

S,(LA)A∈Ag,→,S0,(∼pr
A )A∈Ag,Π,ν

)
with pr-observability relations for each

agent, we build the following multi-agent system with cpr-observability :

M′ =(
S,→,S0,(�cpr

A )A∈Ag,Π
′,(Π′

A)A∈Ag,ν
′),

where Π′ =Π∪⋃
A∈AgLA, Π′

A =LA and ν′(s)=ν(s)∪{s
A
}.

Then it is easy to observe that for any formula φ∈Form(Π), any run ρ∈ωRuns(M) and any time
point i∈N,

(M,ρ,i) |=pr φ iff (M′,ρ,i) |=cpr φ.

The main problem that we address in the rest of this article is the following:

Problem 1
Are the two concrete observability relations, the cpr-observability and the cprs-observability,
axiomatizable into the abstract semantics?

It may look that the answer to this question is to consider the following set of axioms

�p→KAp �¬p→KA¬p

for each p∈ΠA, and each A∈Ag.
In a multi-agent system which satisfies this set of axioms, we do not necessary have that whenever

ν(s)
A
=ν(s′)

A
for two states s,s′ ∈S, it also holds that s

A
=s′

A
. Had we have asked only the ‘only if’

part of the Definition 2, that is, ∀s,s′ ∈S,sA =s′
A ⇒ν(s)∩ΠA =ν(s′)∩ΠA, then this axiomatization

would be sufficient.
Section 3 is dedicated to proving that the expressivity Problem 1 has a negative answer.

 by guest on S
eptem

ber 1, 2010
logcom

.oxfordjournals.org
D

ow
nloaded from

 

http://logcom.oxfordjournals.org/


[09:59 24/8/2010 exq031.tex] LogCom: Journal of Logic and Computation Page: 8 1–20

8 Non-axiomatizability for the linear temporal logic of knowledge

2.5 An example

We show here how to model the Dining Cryptographers protocol in our concrete semantics. We first
recall the protocol:

Example 1
Three cryptographers are having dinner together, and the dinner is to be paid anonymously, by either
one of them or by the National Security Agency (NSA). The cryptographers would like to know if it
is NSA that paid for the dinner or not.

Each cryptographer flips an unbiased coin, so that only him and his neighbor at the right can see
the outcome. The cryptographers that did not pay tell whether the two coins they see both fell on the
same side. The cryptographer that pays (if any) tells the opposite (that is ‘both heads’ if he sees a
head and a tail).

Show that each cryptographer is able to tell whether it’s the NSA or one of them who paid the
dinner.

The 3-agent model with concrete observability for this protocol is built as follows: consider first
the three sets

Paid ={p0,p1,p2,pNSA},Coin={h0,h1,h2},Says={s0,s1,s2}
with pi ∈{0,1} being an atomic proposition specifying whether it is the cryptographer i who paid the
dinner, pNSA whether its the NSA who paid, hi whether the coin thrown by cryptographer i shows a
head, and si whether the two coins that the cryptographer i sees show the same side. We will abuse
notation and identify each subset S ⊆Paid with its characteristic function, and hence if p2 ∈S we
denote S(p2)=1, otherwise S(p2)=0. Denote also ⊕k the summation modulo k, that is, 2⊕3 2=1.

The states of the multi-agent systems are then

Q={
P⊆Paid |card(S)≤1

}∪{
P∪C |P⊆Paid,card(P)≤1,C ⊆Coin

}
∪{

P∪C∪S |P⊆Paid,card(P)≤1,C ⊆Coin,S ⊆Says with

S(si)=C(hi)⊕2 C(hi⊕31)⊕P(pi)
}
. (3)

Note that the condition 3 above encorporates exactly the requirement that the cryptographers that
did not pay say the truth of what they see, and the one who paid says the opposite. Also, the set of
initial states is {P⊆Paid |card(P)≤1}.

The transition relation is then:

δ={
P→P∪C |P⊆Paid,card(P)≤1

}
∪{

P∪C →P∪C∪S |P⊆Paid,card(P)≤1,C ⊆Coin,S ⊆Says with

S(si)=C(hi)⊕2 C(hi⊕31)⊕P(pi).

The concrete observability sets of atomic propositions are then defined as follows:

Πi ={pi,hi,hi⊕31,s1,s2,s3}.

If we follow [12], the abstract observability relations would have to be defined as follows: first,
the system needs to be decomposed into ‘local transition systems’, which have to be composed (with
an asynchronous semantics of composition) to construct the whole system. This is needed for the
identification of local states for each agent, and requires the definition of 10 automata. We do not
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reproduce this process in detail here, pointing the interested reader to the paper [12]. Note that, though
the semantics from [12] is not a ‘history-based’ semantics, it incorporates naturally synchrony and
perfect recall in the case of the Dining Cryptographers.

Summarizing the process for constructing the abstract semantics, one defines the local state for
agent i, 0≤ i≤2, as the intersection of the global state with {pi,hi,hi⊕31,s1,s2,s3}.

We believe that this example provides the essence of our argument that this semantics is simpler
than the interpreted systems semantics. Note that we specify with an atomic proposition what is
seen by each agent (is he the one who paid? what coins he observes? what is he hearing when
everybody tell the others about the ‘parity’ they see?). Note also that there is no need to define, with a
new relation/formula, the observability relation. This also means that the concrete semantics is very
appropriate for symbolic verification.

Let us denote the resulting model M. It is then easy to observe that

(M,ρ,0) |=©©
3∧

i=1

(
Ki

( 3∨
j=1

pj
)∨KipNSA

)
∧

(
¬pNSA →©©

3∧
j=1

Pipj ∧Pi¬pj

)
,

which ensures both the anonymity (by the right subformula involving the Pi operators) and the
knowledge whether it is the NSA who paid or not.

3 Undecidability of the satisfiability problem and non-axiomatizability for
the concrete semantics

In this section, we give first an undecidability result for the satisfiability problem in KLn with respect
to cpr-observability and cprs-observability, and then, as a corollary, we show that the concrete
semantics is not axiomatizable in the abstract semantics.

Theorem 1
Satisfiability of KLn formulas w.r.t. the cprs-observability semantics is undecidable.

Proof. The main idea is to simulate an undecidable problem for Turing machines with the
satisfiability problem of a recursive set of formulas. The undecidable problem that will be simulated
is the following:

Problem 2 (Looping Problem)
Given a deterministic Turing machine T , decide whether T , once it starts with a blank tape, has a
reachable configuration which is reached infinitely often.

Hence, we simulate the Looping Problem 2 by the satisfiability of a KLn formula φT . Similarly
to [24], in each model MT in which φT would be satisfied we code each of the configurations and
transitions of the looping computation of T as a particular run in MT , and use three agents 1,2,3
and their observability relations ∼cprs

i (1≤ i≤3) to connect configurations. The third agent 3 will
be used for encoding the initial configuration of T , (q0,ε,0). The synchronous and perfect recall
characteristics of the semantics are needed for specifying that all configurations are simulated on a
finite amount of space, which is ‘copied’, by synchrony and perfect recall, from one run encoding
a configuration to the next. In the rest of the proof, we will utilize the notation ∼i instead of ∼cprs

i
(1≤ i≤3).

So take a deterministic Turing machine T = (Q,Σ,δ,q0) with δ :Q×Σ→ Q×Σ×{L,R}. We will
speak of elements of Q as locations, to avoid confusion with the states of MT , the models in whichφT
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10 Non-axiomatizability for the linear temporal logic of knowledge

is satisfied. Assume, without loss of generality, that the transitions in δ always changes location and
tape cell, that is, if δ(q,a)= (r,b,dir) then q �=r and dir ∈{L,R}. Assume also that δ is total—hence T
may only visit all its tape cells, or cycle through some configuration, or halt because trying to move
the head to the left when it points on the first tape cell.

The formula φT will be constructed over the set of atomic propositions consisting of:

(1) Four copies of Q, denoted Q, Q′, Q and Q
′
.

(2) Two copies of Σ, denoted Σ and Σ′.
(3) Two extra symbols init and ⊥.

The meaning of the atomic proposition init is that it holds only in ‘initial’ states, that is, states
which lie at the beginning of the runs that encode the looping computation of the Turing machine.
The symbol ⊥ will be used as a marker of the right end of the available space on the input tape on
which T will be simulated, and its position will be ‘guessed’ at the beginning of the simulation. The
utility of the copies of Q andΣ is explained in the following, along with the way the computation of
T is simulated.

The computation steps of T are simulated by runs in the system MT satisfying φT , runs which
can be of two types:

(1) Type 1 runs, representing instantaneous configurations.
(2) Type 2 runs, representing transitions between configurations.

In a type 1 run ρ representing an instantaneous configuration (q,w,i)—where w is the contents of
the tape and i is the head position—the configuration is coded using atomic propositions from Q and
Σ in the following way:

• The contents of tape cell j, i.e., symbol wj =a∈Σ, is an atomic proposition that holds in the jth
state of ρ, and no other symbol holds in that state. That is, satisfiability of symbols from Σ is
mutually exclusive.

• i is the unique state on the run in which the atomic proposition q holds, and no other symbol
from Q holds along the whole run ρ.

• At each state on the run ρ where a symbol in Q∪Σ holds, the corresponding primed symbol in
Q′ ∪Σ′ holds too.

• The run ρ contains a state at which ⊥ holds and from there on it holds forever. Also, no symbol
from Q∪Σ holds when ⊥ holds. This codes the finite amount of cell tapes used during simulation.

• At the state where ⊥ holds, the symbols q and q′ also hold on the run encoding (q,w,i). This is
needed for coding the connection between type 1 runs and type 2 runs.

• The symbol init holds at a position on the tape before ⊥, and marks the left bound of the tape.
the ‘tape left marker’.

In a type 2 run representing a transition between two configurations, say, (q,w,i)� (r,z,j), the
unprimed symbols (from Q∪Σ) along the run represent the configuration before the transition, while
the primed symbols (from Q′ ∪Σ′) represent the configuration after the transition, in a way completely
similar to the above description. Hence, we will have some state on the run where location symbol
q holds, and another state (immediately before or after) where symbol r′ holds. Also, init marks the
left bound of the tape and ⊥ the limit of the available tape space, and q and r′ hold wherever ⊥ holds.

It then remains to connect type 1 runs (representing instantaneous configurations) with type 2
runs (representing transitions), by means of the observability relations. This connection will be
implemented using three agents and their cprs-observability relations, defined by the following
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Non-axiomatizability for the linear temporal logic of knowledge 11

subsets of atomic propositions:

Π1 =Q∪Q∪Σ∪{init,⊥}
Π2 =Q′ ∪Q

′ ∪Σ′ ∪{init,⊥}
Π3 ={init,⊥}
Π=Π1 ∪Π2 ∪Π3.

Remark 1
Note that for any two runs, ρ∼1ρ

′ implies ρ∼3ρ
′, and ρ∼2ρ

′ implies ρ∼3ρ
′.

We will connect, by means of ∼1, each type 1 run ρ representing some configuration (q,w,i) with a
type 2 run ρ′ representing a transition (q,w,i)� (r,z,j). Then, by means of ∼2, we code the connection
between ρ′ and another type 1 run ρ′′, which represents the configuration (r,z,j). The first type of
connection is imposed by means of the operator P1, whereas the second type of connection is ensured
by the employment of P2. Finally, the operators K3 will be used to impose the same constraints to
all the runs that pass through a state labelled with init.

We give in Figure 1, an example of the association between a part of the computation of a Turing
machine and a set of runs. The set of runs presented in Figure 1 is associated with the following
computation of the Turing machine:

(q0,ab,1)�δ1 (q1,cb,2)�δ2 (q2,cBB,3)�δ3 (q3,cBa,2), (4)

where the transitions applied at each step are the following:

δ1(q0,a)= (q1,c,R), δ2(q1,b)= (q2,B,R), δ1(q2,B)= (q3,a,L).

The set of runs simulates a ‘guess’ that the Turing machine will utilize strictly less than 5 tape cells:
on each run there are at most 4 tape cells simulated before the ⊥ symbol. B denotes the blank tape
symbol, whereas R, resp. L denote the commands ‘move head to the right’, respectively, ‘to the left’.
The run which ends with a state labelled with ⊥,q0,q

′
0 is ∼1-similar with the run ending with a state

labelled ⊥,q0,q
′
1, which is ∼2-similar with a run ending in a state labelled ⊥,q1,q

′
1. This encodes

the first step in the computation in Identity 4 above.
Formally, φT is

φT =
10∧

i=0

φi,

where φ0,...,φ10 are the following formulas:

(0) φ0, essential for imposing that φT must be satisfied on all the runs of type 1 or of type 2 which
are built during the simulation, and specifying also that φT must be satisfied in a state modeling
the left bound of the tape:

φ0 = init∧K3©�¬init∧
∧

z∈Σ∪Q

(¬z∧¬z′)
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12 Non-axiomatizability for the linear temporal logic of knowledge

Figure 1. Simulating a sequence of transitions of a Turing machine within a set of runs. Here,
Π1 ={a,b,c,B,q0,q1,q2,q3,⊥,init} and Π2 ={a′,b′,c.B′,q′

0,q
′
1,q

′
2,q

′
3,⊥,init}. Note that all finite

runs of length k are in relation ∼3 with prefixes of length k of the first run on the left.

(1) φ1, specifying that symbols in the same unprimed/primed/overlined set are mutually exclusive:

φ1 :K3�
∧

q,r∈Q,q �=r

(
¬(q∧r)∧¬(q′∧r′)∧¬(q∧r)∧¬(q′∧r′)

)

∧K3�
∧

a,b∈Σ,a �=b

(
¬(a∧b)∧¬(a′∧b′)

)

(2) φ2, specifying that on each run there exists a single occurrence of a location symbol, which
marks the position of the R/W head.

φ2 :K3

((
�

∨
q∈Q

q
)∧(

�
∨
q∈Q

q′))∧K3�

(
(q→©�¬q)∧(q′ →©�¬q′)

)

(3) φ3, which, in combination with φ7 and φ9 below, is used to encode the fact that the simulation
of T is done on a finite tape, whose end is marked with ⊥:

φ3 :K3�⊥∧K3�

(
⊥→�

(⊥∧
∧

z∈Σ∪Q

(¬z∧¬z′)
))

(4) φ4 which copies both q and q′ into the state of the run where the end marker ⊥ occurs – here
q is the location of the simulated configuration (q,w,i); the two copies are q, q′. This formula
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is useful for connecting configurations with the aid of ∼1 and ∼2:

φ4 :K3�
∧
q∈Q

((
q→�(⊥→q)

)∧(
q′ →�(⊥→q′)

))

(5) φ5, specifying that on a run of type 1 the primed and unprimed symbols are the same:

φ5 :K3�
∧
q∈Q

(
q∧q′ →�

∧

a∈Σ
a↔a′)∧K3�

∧
q∈Q

(
�(q∧q′)→

∧

a∈Σ
a↔a′)

(6) φ6, specifying that on a run of type 2, the primed and unprimed symbols are almost everywhere
the same, excepting the current position of the R/W head:

φ6 :K3�
∧
q∈Q

(
q∧¬q′ →�©

∧

c∈Σ
c↔c′)∧

K3�
∧
q∈Q

(
�©(q∧¬q′)→

∧

c∈Σ
c↔c′)∧

(7) φ7, specifying that if a run ρ is of type 1 and encodes a configuration in which a certain transition
can be applied, then there exists a run ρ′ of type 2 which encodes the respective transition. (The
format of the unique transition which will be applied is the subject of φ8.) φ7 also specifies that
ρ′ carries the end marker at the same position as ρ:

φ7 :K3�
∧

(q,a)∈supp(δ)

(
q∧a∧q′ →�

(⊥→P1¬q′))

(8) φ8, specifying that each transition which can be applied in a certain configuration must be
applied in that configuration:

φ8 :K3�
∧

q∈Q,a∈Σ,δ(q,a)=(r,b,L)

(
©(q∧a∧¬q′)→ (r′∧©b′)

)
∧

K3�
∧

q∈Q,a∈Σ,δ(q,a)=(r,b,R)

(
q∧a∧¬q′ → (©r′∧b′)

)

Recall that T is deterministic, and hence in each configuration at most one transition can be
applied. Note also that the © operator is needed on the first line above, in order to code the
situations when the head is on the first tape cell and tries to move left—in such situations the
machine halts, no next configuration exists, and therefore our formula φT is unsatisfiable.

(9) φ9, specifying that the outcome of a transition, as coded in a type 2 run ρ, is copied, via ∼2,
into a type 1 run ρ′. φ9 also specifies that ρ′ carries the end marker ⊥ at the same position as ρ:

φ9 :K3

∧
q∈Q

�

(
q′∧¬q→�

(⊥→P2q
))

(10) φ10, encoding the initial configuration of T – here q0 is the initial location of T :

φ10 :©(q0 ∧q′
0)∧©(B∧B′)U⊥)

.

Here, B represents the blank symbol from Σ.
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Hence the satisfiability of the conjunct φ10 of formula φT in a model MT ensures the existence of
a run coding the initial configuration of T , together with a guess of the amount of tape space needed
for simulating the whole behaviour of T . Then, by means of φ7,φ8 and φ9, we have that once a type 1
run ρ encoding a configuration (q,w,i) exists in ωRuns(MT ), and some transition (q,w,i)� (r,z,j)
may be fired, then a type 2 run ρ′ encoding this transition exists, and the resulting configuration
(r,z,j) is also encoded in another type 1 run ρ′. It then follows that MT |=φT if and only if there
exists a finite subset Z ⊆ωRuns(M) representing the evolution of the Turing machine T , starting
with a blank tape. Note that T cannot then halt by trying move its head past the left end of the tape.
Also note that there is an inital guess of a finite amount of tape that T uses during its computation,
and all runs in Z simulate configurations that do not use more than this guessed amount of space.

Proof of the correctness of the construction: In the following, given a Turing machine T =
(Q,Σ,δ,q0), we write its configurations as words in the language Σ∗ ·Q ·Σ∗. Hence, the word
a1a2qBa3 denotes the configuration in which the tape contains symbols a1,a2,B,a3 (in this order),
and the head points to the 3rd cell. Note that the same configuration is represented by the word
a1a2qBa3BBBBB.

Suppose T has a looping computation, denote it
(

ci−1 �ci

)
1≤i≤n

, with cn =ck for some 1≤k ≤
n−1. Suppose that the maximal number of cell tapes that are used during this computation is m. The
word representing i-th configuration in this computation is denoted ci =ai

1ai
2 ...qiai

pi
...ai

m—hence
all words have the same length.

We construct a model for the formula φT by encoding the configurations c1,...,cn into n type 1
runs, and by creating also n−1 type 2 runs which encode each computation step ci−1 �ci. The model
is the following: M=(

S,→,S0,(∼cpr
A ),Π,(ΠA)A∈Ag,ν

)
, where

• S ={
(ci,j) |1≤ i≤n,0≤ j≤m+1

}∪{
(ci−1,ci,j) |2≤ i≤n,0≤ j≤m+1

}
.

• S0 ={
(ci,0) |1≤ i≤n

}∪{
(ci−1,ci,0) |2≤ i≤n

}
.

• The sets of atomic propositions Π,Π1,Π2,Π3 are as listed above.
• The state labelling function is defined as follows:

ν((ci,j))={ai
j,(a

i
j)

′}∪{qi,(qi)
′ | j=pi}

ν((ci−1,ci,j))={ai−1
j ,(ai

j)
′}∪{qi−1 | j=pi−1}∪{(qi)

′ | j=pi}
ν((ci,0))=ν((ci,0))={init}

ν((ci,m+1))={⊥}∪{qi,qi
′ | j=pi}

ν((ci−1,ci,m+1))={⊥}∪{qi−1 | j=pi−1}∪{qi
′ | j=pi}.

• The transition relation is the following (the domain for each index is omitted):

(ci,j)→ (ci,j+1) (ci,m+1)→ (ci,m+1)

(ci−1,ci,j)→ (ci−1,ci,j+1) (ci−1,ci,m+1)→ (ci−1,ci,m+1).

Clearly, (M,ρ,0) |=φT for each run which starts in (c1,0).
For the reverse implication, suppose that M is a system, ρ an infinite run in M and i is an index on

the run such that (M,ρ,i) |=φT . We will show that, for any integer k, we may construct a sequence
of runs, Rk = (ρi)1≤i≤k , all having the same length, such that ρ2i−1 encodes the configuration ci in
the unique computation of the deterministic Turing machine T , (which means that ρ2i−1 is a type 1
run) and ρ2i encodes the computation step ci �ci+1 (which means that ρ2i is a type 2 run). Since
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there can only be a finite number of distinct runs, two of them must be identical, which will imply
that the encoded configurations must be identical – that is, that T has a looping computation.

Before going to the proof of this claim, we formalize the encoding of a configuration by a run.
Consider the mapping µ :S →Σ∪Σ·Q (with Σ·Q denoting the formal concatenation of the two
sets), defined by

µ(s)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q ·a if q,a∈ν(s)

a if a∈ν(s) and ν(s)∩Q=∅.
⊥ if ⊥∈ν(s)

ε otherwise

Similarly, we define the mapping µ′ :S →Σ∪Σ·Q, with

µ′(s)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q ·a if q′,a′ ∈ν(s)

a if a′ ∈ν(s) and ν(s)∩Q′ =∅.
⊥ if ⊥∈ν(s)

ε otherwise

Given an infinite run ρ= (si−1 →si)i≥1 for which there exist i0,i1 ∈N with init ∈ν(si0 ) and ⊥∈
ν(si1 ), we say that:

• ρ encodes, between indices i0 and i1, the configuration µ(si0+1)...µ(si1−1) if there exist q∈
Q,a∈Q and a unique index i0< i2< i1 with µ(si2 )=qa=µ′(si2 ).

• ρ encodes, between indices i0 and i1, the computation step:

µ(si0 +1)...µ(si1 −1)�µ′(si0+1)...µ′(si1 −1)

if there exists i0< i2< i1 with µ(si2 )=qa, µ′(si2 )=b, and one of the following properties hold:
◦ Either µ′(si2+1)=rc, with δ(q,a)= (r,b,R).
◦ Or µ′(si2−1)=rc, with δ(q,a)= (r,b,L).
In both cases, we denote µ(ρ)=µ(si0+1)...µ(si1−1) and µ′(ρ)=µ′(si0+1)...µ′(si1−1).

The formalization of our claim is then the following:

Claim
For any k ∈N, there exists a sequence of infinite runs Rk = (ρi)1≤i≤k and two indices i0,i1 ∈N

satisfying the following properties:

(1) ρ2i−1 encodes the configuration ci between i0 and i1.
(2) ρ2i encodes the computation step ci �ci+1 also between i0 and i1.
(3) ρ2i−1[0..i1]∼1ρ2i[0..i1] and ρ2i[0..i1]∼2ρ2i+1[0..i1].
(4) (M,ρi,i0) |=φT .

We prove the claim by induction on k. The base step can be proved as follows: since (M,ρ,i) |=
φT , we must have (M,ρ,i) |=φ10, which means that q0,q′

0 ∈ν(ρ[i]) and there exists N ≥ i with
⊥∈ν(ρ[N]). Then clearly, the run ρ gives an encoding of the initial configuration of the Turing
machine, between indices i and N .

For the induction step, two cases may occur, depending on whether the last run in the constructed
sequence Rk is a type 1 run or a type 2 run.
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Suppose that k is odd, k =2l−1, hence ρ2l−1 is a type 1 run which encodes the configuration cl
between i0 and i1 and with (M,ρ2l−1,i0) |=φT . This means several things:

• ρ[i0] is labelled with init and ρ[i1] is labelled with ⊥.
• µ(ρ2l−1)=µ′(ρ2l−1), that is, the sequence of primed and unprimed symbols in ρ2l−1 is the

same.
• (M,ρ,i0) |=∧10

i=0φi.

Assume that the Turing state in configuration cl is q, and the machine head points to tape cell j
where we see a. Since (M,ρ2l−1,i0) |=φ4, we must have that ρ2l−1 is labelled with q and with q′.

On the other hand, (M,ρ2l−1,i0) |=φ7 implies that (M,ρ2l−1,i1) |=q∧P1¬q′. Since ρ2l−1 does
not satisfy q∧¬q′, there must exist another run ρ′ with (M,ρ′,i1) |=¬q′, and with ρ′[0..i1]∼1
ρ2l−1[0..i1].

Two essential facts can be deduced:

• The relation betweenρ′ andρ2l−1 also implies thatρ′[0..i0]∼3ρ2l−1[0..i0]∼3ρ1[0..i0], as noted
in Remark 1. This means that we also have that

(M,ρ′,i0) |=
10∧

i=0

φi.

• µ(ρ′)=µ(ρ2l−1), that is, ρ′ encodes, on the unprimed symbols, the configuration cl.

Three situations have to be studied:

(1) The position of the tape cell j satisfies i1 +1< j< i2 −1.
(2) j= i0 +1 and the transition is δ(q,a)= (r,b,L).
(3) j= i1 −1 and the transition is δ(q,a)= (r,b,R).

In the first case, ρ′ must encode the unique computation step cl �cl+1 in the (deterministic!) Turing
machine, by virtue of the combined constraints imposed by the subformulas φ1,...,φ9. Hence ρ′ can
be appended to Rk such that the resulting sequence of runs satisfies the conclusion of our claim.

We will prove that the second and the third case cannot occur if φT is satisfied in M. To this end,
we have to observe that, since (M,ρ′,i0) |=φ8, we should also have that (M,ρ′,i0) |=r′. But this is
in contradiction with φ0, which says that at position i0 no atom from Q′ must hold true. That is, the
Turing machine does not halt in the configuration cl. A similar proof can be given for the thid case
above, which ends the proof when k is odd.

The situation where k is even can be treated along the same ideas. This ends our proof of Theorem 1.
�

We may accomodate the same proof for the case of cpr-observability semantics with the following
trick: we insert an atomic proposition tick that is supposed to be observed by all agents, and its
value is supposed to flip, at each state, from true to false, or vice-versa. Basically, this means that,
synchrony can always be obtained by the observability of a ‘clock’ variable like tick.

Formally, and consider the formula

Ticks := init →KI �(tick →©¬tick)∧KI �(¬tick →©tick),

where I plays the role of the agent 3 in the above proof, agent which is only able to see the atomic
proposition init. This formula encodes the fact that tick must hold on each second position of a run
that starts in an initial state, and must be false in between.
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Take a multi-agent system with cprs-observability, M=(
S,→,S0,(∼cprs

A )A∈Ag,Π,(ΠA)A∈Ag,ν
)

and put Π′
A =ΠA ∪{tick,init} – hence each agent can observe tick and init.

We may associate with M the following multi-agent system with cpr-observability: Mtick =(
S,→

,S0,(∼cpr
A )A∈Ag′ ,Π′,(ΠA)A∈Ag′ ,ν

)
, in which Ag′ =Ag∪{I} andΠI ={init}. It is then easy to observe

the following property:

Proposition 1
For any formula ψ of the form ψ= init∧KI ©�¬init∧KIφ, and for any infinite run ρ and position
i in ρ, (M,ρ,i) |=cprsψ if and only if (Mtick,ρ,i) |=cprψ∧Ticks.

As a consequence, the formula φT associated with some Turing machine T (with the restrictions
from Theorem 1) is satisfiable in some model M with cprs-observability if and only if φT ∧tick is
satisfiable in Mtick which has cpr-observability.

3.1 Non-axiomatizability of the cprs-observability and the cpr-observability
semantics

We start this subsection with the following restatement of the conclusion of Theorem 1:

Remark 2
Theorem 1 provides us with a non-recursively enumerable set of formulas in KLn: it is the set of
formulas corresponding to Turing machines that start with a blank tape and do not have a repeating
configuration, denote it

InfVisit ={
φT |T visits all the cells of its tape or has a blocking computation

}
.

We may use this to prove the main result1 of this article:

Theorem 2
The semantics of KLn based on cprs-observability or on cpr-observability do not have a recursively
enumerable axiomatization.

Proof. Suppose that such a r.e. axiomatization existed. Then the set ValidKLn of all formulas which
are valid w.r.t. to cprs-observability or cpr-observability would also be r.e.

On the other hand, the set of formulas of the form ¬φT produced in the proof of Theorem 1, is
a recursive set—denote this set TurForm. Since r.e. sets are closed under intersection, ValidKLn ∩
TurForm= InfVisit would have to be r.e. too. But this contradicts the conclusion of Remark 2, which
ends the proof of our result. �

4 Conclusions

We have presented a ‘concrete’ semantics for KLn , with two variants, a perfect recall variant and a
variant with perfect recall and synchrony in observations. We have shown that the classical semantics
can be encoded in this semantics, but the reverse does not hold, in the sense that the concrete semantics
is not axiomatizable in the classical semantics.

1Which is a remark due to Dimitar Guelev, see the acknowledgements section.
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To summarize, we have a temporal epistemic logic, the KLn or (PTL+S5(n)) with two
semantics:

(1) The interpreted systems semantics from [9] for which the logic is finitely axiomatizable and
has a decidable satisfiability problem.

(2) The concrete semantics presented here, which is a variant of the Kripke semantics, for which
the logic has no r.e. axiomatization and an undecidable satisfiability problem.

We believe that, in spite of these problems, the concrete semantics is more natural for expressing
system models, as it does not require explicitely presenting, with the aid of some extra relation
or formula, the observability relation. The appropriate approach would then be the model-checking
approach. We have already shown that, for the case of CTL with individual knowledge operators
(that is, for KBn) with the concrete semantics, the model-checking problem is decidable [2]. The
same result could be proved for KLn with the concrete semantics, and the complexity would be the
same as in the case of the interpreted systems semantics [25].

One of the aims of introducing this concrete semantics is to relate epistemic logics with logics over
linear or branching orders. In [18], they have shown that the model-checking problem for a variant
of KLn can be solved using chain logic with equal-level predicate. We conjecture that both KLn and
KBn (the branching-time temporal epistemic logic from [9]) with the concrete pr. or prs. semantics
are expressively equivalent with fragments of the chain logic with equal-level predicate [21].
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