
Dynamical properties of timed automata revisited

Cătălin Dima

LACL, Université Paris 12, 61 av. du Général de Gaulle, 94010 Créteil, France

Abstract. We give a generalization of a solution by Puri to the problem of checking emptiness
in timed automata with drifting clocks for the case of automata with non-closed guards. We show
that non-closed guards pose certain specific problems which cannot be handled by Puri’s algorithm,
and propose a new algorithm, based on the idea of “boundary clock regions” of Alur, LaTorre and
Pappas. We then give a symbolic algorithm for solving the reachability problem. Our algorithm is
based on a symbolic construction of the “neighborhood” of a zone, and on a procedure that, given
a set of zones Z, builds the forward propagation of the strongly connected components which can
be reached from Z. This improves a symbolic algorithm of Daws and Kordy, due to the ability to
handle sets of zones.

1 Introduction

Timed automata [AD94] are a widely accepted and powerful model of real time systems.
They are finite automata endowed with dense-time variables, called clocks, that are used to
measure time intervals separating actions. Dense time is utilized as an abstraction, in the
sense that the model is not sensitive w.r.t. the “clock tick” in the implementation. Efficient
algorithms and tools [LPY97,BDM+98,HHWT97] have been designed and applied with
succes for the verification of safety properties of systems modeled as timed automata.

Clocks in timed automata are synchronous: letting time pass t units increases all clocks
with t. This assumption is sometimes too strong in distributed systems, in which some
degree of non-synchronicity between the local clocks of each component may be present.
The rectangular automata of [HKPV98] utilize dense variables that increase at a rate in
some interval [�, �], and the subclass of initialized rectangular automata has a decidable
reachability problem. Initialized rectangular automata may give a model of “inexact” timed
automata with known clock drift �, if the rate binding interval is always [1−�, 1+�].
Hence, timed automata with a known clock drift have a decidable reachability problem.

In this paper, we are interested in solving the following safe implementation problem:
given a timed automaton A and some zone Z, does there exist � for which no trajectory
in which clocks drift with at most � units reaches Z? In [Pur98], A. Puri has shown how
to compute the set of states that are reachable for any clock drift �. [Pur98] showed that,
in the case of closed constraints, the region automaton does not provide the complete
answer, as one needs to consider cycles in the (closed) region graph that have a nonempty
intersection with regions that are already reachable. This result was further extended, in
[DK06], where a symbolic algorithm for constructing a “stable zone” in the region graph
is given. The stable zone is constructed for each cycle in the automaton graph that can
be reached. Both the work in [Pur98] and in [DK06] treat of automata with closed clock
constraints.

In this paper, we extend these results in two directions. First, we investigate the exten-
sion of the technique of Puri to automata with non-closed constraints. Secondly, we give
a symbolic algorithm that constructs “sets of stable zones” as (forward propagations of)
sets of zones which lie on some cycle in the region graph. Our technique can be applied to
data structures for representing sets of zones, like in [LPWY99].

Our extension of Puri’s technique to non-closed guards utilizes a variant of boundary
clock regions of [ATP01], to model the fact that trajectories that pass through some region
R can be arbitrarily close to some region R′ neighboring R. Note that, as in [Pur98],
we work with automata with bounded constraints; another assumption is that discrete
transitions in a run are separated by non-zero delays.

Recently, [DDR05b,AT05] addressed a similar class of problems: given a timed automa-
ton A, does there exist some � > 0 and a �-drift clock implementation of A, in which
“important” properties of A be preserved? [DDR05b,DDR05a] consider this problem in
the context of verifying whether a controller C specified as a timed-automaton can be
implemented by some drifting-clock automaton. Their approach is to model the system
composed of the controller and the environment it must control as a parametric rectangu-
lar automaton in which � is a parameter. The drawback of this approach is that parametric
model checking of timed automata with three clocks and only one parameter is known to
be undecidable [AHV93,WT97]. Hence, tools like Uppaal cannot be directly applied to
synthesize the value of �. The approach proposed in [DDR05a] is to guess an initial value
for � and check it with Uppaal; if this guess satisfies the desired properties, then, accord-
ing to the results of [DDR05b], any “faster” implementation (with �′ < �) is also correct.
This guess could be avoided by using the techniques from [DK06] and this paper.

The rest of the paper is divided as follows: in the next section we recall the definition
and basic facts about timed automata and their drifting semantics. Section 3 contains the
construction of the boundary region automaton and its correctness. Section 4 is devoted to
the presentation of the symbolic algorithm and to comments on the improvements of our
approach w.r.t. [DK06]. We end with a section with conclusions.

2 Timed automata

A timed automaton [AD94] is a tuple A = (Q,X , �, Q0, Qf) where Q is a finite set of
locations, X is a finite set of clocks, Q0, Qf ⊆ Q are sets of initial, resp. final locations, and
� is a finite set of tuples called transitions, (q, C,X, q′), where q, q′ ∈ Q, X ⊆ X , and C is a
finite conjunction of simple constraints utilizing clocks as variables – that is, constraints of
the form x ∈ I, where I is an interval with nonnegative integer bounds. We will consider
in this paper only bounded intervals, i.e. excluding intervals of the form [2,∞[. For each
(q, C,X, r) ∈ �, the component C is called the guard of the transition and X is its reset
component. We consider the set of clocks is ordered as X = {x1, . . . , xn}.

In the standard semantics A can make time-passage transitions, in which all clocks
advance with the same amount of time, and discrete transitions, in which location may
change. The last are enabled when the “current clock valuation” satisfies the guard C of a
transition (q, C,X, q′), and when they are executed, the clocks in the “reset component” X

2

are set to zero. The notations used henceforth are the following: for a given point v ∈ ℝn
≥0

and X ⊆ X , v[X := 0] is the point obtained by reseting all clocks in X , defined by
(v[X := 0])i = vi for xi ∕∈ X and (v[X := 0])i = 0 for xi ∈ X . We will also denote 0n the
origin point, i.e. (0n)i = 0 for all 1 ≤ i ≤ n.

In the drifting semantics [Pur98,DDR05b], when time advances by t, each clock ad-
vances with some t′ ∈ [t(1−�), t(1+�)], independently of the others, � > 0 denoting
the maximal clock drift. The �-drifting semantics of A is the timed transition system
T�(A) = (Q, ��,Q0,Qf) where Q = Q×ℝn

≥0, Q0 = Q0×{0n} (all clocks are set to zero
initially), Qf = Qf×ℝn

≥0 and

�� =
{

(q, v)
t−→� (q, v′) ∣ t > 0, v′i − vi ∈

[

t(1−�), t(1 +�)
]

∀1 ≤ i ≤ n
}

∪
{

(q, v)
↓−→� (q′, v[X := 0]) ∣ ∃(q, C,X, q′) ∈ � such that v ∣= C

}

Here ∣= denotes the usual satisfiaction relation for clock constraints. Elements of Q are
called states. When the automaton A is fixed, we use T� for T�(A).

A T�-trajectory is a sequence of transitions � =
(

(qi−1,vi−1)
�i−→�(qi,vi)

)

1≤i≤k
in ��,

with �i ∈ ℝ>0 ∪ {↓}. We denote this situation as (q0, v0)
�
⇝� (qk, vk). Also, we denote

(q, v)⇝� (q′, v′) when there exists a T�-trajectory � such that (q, v)
�
⇝� (q′, v′). Trajectory

� is accepting if it starts in Q0 and ends inQf . The set of T�-trajectories is denoted Traj�.
A run in A is a sequence � =

(

(qi−1, Ci, Xi, qi)
)

1≤i≤k
of transitions from �. A run

� =
(

(qi−1, Ci, Xi, qi)
)

1≤i≤k
is associated with a T�-trajectory � =

(

(qi−1, vi−1)
�i−→

(qi, vi)
)

1≤i≤l
if l = 2k or l = 2k + 1 and for each 1 ≤ i ≤ k, q2i = q2i+1 = qi, �2i−1 ∈ ℝ>0,

�2i =↓, v2i = v2i−1[Xi := 0], v2i−1 ∣= Ci, and also �2k+1 ∈ ℝ>0, q0 = q1 = q0.
For each � > 0 and state (q, v) ∈ Q, the set of T�-reachable states from (q, v) is:

Reach�(q, v) =
{

(q′, v′) ∈ Q ∣ (q, v)⇝T� (q′, v′)
}

The reachable states in the limit from (q, v) are:

Reach�→0(q, v) =
∩

�>0
Reach�(q, v)

By extension, for any S ⊆ ℝn
≥0, we denote

Reach�(q, S) =
∪

v∈S

Reach�(q, v) and Reach�→0(q, S) =
∪

v∈S

Reach�→0(q, v).

Throughout this paper we assume that there exists a clock x which is reset at each
transition and which is checked, on each transition, to be greater than zero. Note that this
assumption implies the fact that each cycle in the timed automaton contains a clock reset,
as in [Pur98]. We also consider that A has no self loops. Note also that the semantics of T�

(in which time steps have non-zero duration) also implies that time must strictly progress
within each cycle, as required in [DDMR04]. It is well-known that any timed automaton
can be transformed syntactically into an automaton satisfying these assumptions.

3

Regions and region reachability. A zone [Yov98] is an n-dimensional convex set of points
which can be uniquely represented by a diagonal constraint of the form CZ =

⋀

0≤i,j≤n(xi−
xj ∈ Iij), where x0 = 0 and Iij are intervals with integer bounds satisfying the following
triangle inequality : ∀1≤ i, j, k≤n, Iik ⊆ Iij+Ijk. The constraint CZ is called the normal
form representation of Z.

ForM ∈ ℕ, anM-region (or simply a region, whenM is understood from the context)
is a zone R for which the intervals in the normal form representation CR are either point
intervals Iij = {a} with −M ≤ a ≤ M , or open unit intervals Iij =]a, a + 1[with
−M ≤ a ≤ M − 1 (a ∈ ℕ).

Remark 1. Throughout this paper MA will denote the largest constant occurring in a
constraint in A. We denote RegA the set of MA-regions.

The region automaton is then ℛA =
(

Q × RegA, �ℛ,ℛ0,ℛf

)

where ℛ0 =
{

(q, 0n) ∣
q ∈ Q0

}

, ℛf =
{

(q, R) ∣ q ∈ QF

}

and

�ℛ =
{

(q, R)
t−→ (q, R′) ∣ R ∕= R′, ∃v ∈ R, v′ ∈ R′, t ∈ ℝ>0 s.t. (q, v)

t−→ (q, v′)

and ∀0 < t′ < t, ∀v′′ ∈ ℝn
≥0 if (q, v)

t′−→ (q, v′′), then v′′ ∈ R ∪R′
}

∪
{

(q, R)
↓−→ (q′, R′) ∣ ∃v ∈ R, v′ ∈ R′, s.t. (q, v)

↓−→ (q′, v′)
}

t−→ denotes here the immediate time successor relation, the time successor relation from

[AD94] is denoted
t−→∗. A run in ℛA is a sequence of transitions from �ℛ. Tuples (q, R) ∈

Q× RegA will be called state regions.

It is well-known [AD94] that the region automaton is a faithful representation of the
set of reachable states of T0(A): there exists a reachable final state (q, v) ∈ Qf iff there
exists a reachable state region (q, R) in Q× RegA with v ∈ R.

Figure 1 gives an example of a timed automaton and its associated region automaton.
The dashed line gives the only transition between a state region of the form (q0, R) to a
state region of the form (q1, R). Note that no final region is reachable from (q0, 02) in this
automaton.

q1q0

x = 1 ∧ y ∈]0, 1[?

x := 0

A1

y

q0

q0

q0

1

1

0

q0

q0 q0

q0

q0

q0 q0

q0

x
1

1

0

q1

q1

q1

q1

q1

q1

q1

q1

q1 q1

q1

x

y

Fig. 1. The timed automaton A1 and its associated region automaton.

4

For each state region R and location q∈Q we denote RegReach�(q,R) the set of state
regions (q′,R′) that can be touched by a trajectory of T� that starts in (q, R), with �>0
fixed; we also denote RegReach�→0(q,R) the set of state regions (q′,R′) for which, for each
�>0, there exists a trajectory in T� starting in (q, R) that touches (q′,R′); these notations
are also extended to zones Z:

RegReach�(q, R) =
{

(q′, R′) ∣ ∃(q′, v) ∈ Reach�(q, R), v ∈ R′
}

RegReach�→0(q, R) =
∩

�>0
RegReach�(q, R)

RegReach�(q, Z) =
∪

{

RegReach�(q, R) ∣ R ∈ RegA, R ⊆ Z
}

RegReach�→0(q, Z) =
∪

{

RegReach�→0(q, R) ∣ R ∈ RegA, R ⊆ Z
}

Example 1. Consider again the timed automaton in Figure 1 and the region R1 defined
by the constraint CR1

= 0 < x < y < 1. Then, for any � > 0,
{

(q1, v2) ∣ (q0, 02) ⇝�

(q1, v2)
}

∩
(

{q1} × R1

)

∕= ∅, and therefore (q1, R1) ∈ RegReach�(q0, 02). This implies that
(q1, R1) ∈ RegReach�→0(q0, 02).

Note also that, in the region automaton for A1, the state region (q1, R1) is unreachable
from (q0, 02), hence RegReach�→0(q0, 02) ⊋ RegReach0(q0, 02).

Consider now the following safe implementation problem:

Problem 1. Given a zone Z and a location q ∈ Q, does there exist a clock drift � for which
no trajectory in T� reaches a state (q, v) with v ∈ Z?

Note that the safe implementation problem is not equivalent with checking whether

Reach�→0(q0, 0n)∩(q, Z) ∕= ∅: inA1 from Figure 1, for any� > 0, if (q0, 02)
t−→� (q0, v1)

↓−→�

(q1, v2) for some clock valuations v1, v2 ∈ [0, 1]2 then v1(y) = v2(y) ∈ [1 − �, 1[and,
therefore, for the region R2 defined by CR2

= (x = 0 ∧ y = 1),

Reach�→0(q0, 02) ∩ (q1, R2) =
∩

�>0

{

(q1, v2) ∣ (q0, 02)⇝� (q1, v2), v2 ∈ R2

}

⊆
∩

�>0
{q1} ×

(

([0, 1]× [1−�, 1[) ∩ R2

)

= ∅

On the other hand, Example 1 above shows that (q1, R1) ∈ RegReach�→0(q0, 02) and hence
(q1, R2) ∈ RegReach�→0(q0, 02). We may further observe that

Reach�→0(q0, 02) ∩ (q1, [0, 1]
2)

⊆
∩

�>0
{q1} ×

(

(

{0} × [1−�, 1[
)

∪
(

]0,
�+�2

1−�
]× [1−�, 1]

)

)

= ∅

which actually means that no state in the state region (q1, R) can be �-reached for any
�. Hence the pure study of Reach�→0 is insufficient for solving the safe implementation
problem.

The example with region R2 also suggests that “closing the guards” in the given timed
automata would not work. By closing the guards, we mean here the transformation of each

5

automaton A into a timed automaton A in which each transition copies a transition of A,
but with all constraints transformed into non-strict. To see that this technique does not
work in general, note that, in A1, (q1, R2) ∈ Reach0(q0, 0n) ∖ RegReach�→0(q0, 0n).

Before ending this section, we give a useful technical property relating convexity with
runs in the region automaton. This property utilizes the following notion of association
between runs in the timed automaton and runs in the region automaton: a run � =

((qi−1, Ri−1)
�i−→ (qi, Ri))1≤i≤k in ℛA is associated with a run �′ =

(

(rj−1, Cj, Xj , rj)
)

1≤i≤m

in A if there are m indices j1, . . . , jm ≤ k such that �jl =↓, Rjl = Rjl−1[X := 0] and
Rjl−1 ⊆ ZCl

(1 ≤ l ≤ m), and also �i = t for all i ∕= j1, . . . , jm. In other words, � and �′

are associated iff all trajectories subsumed by � are associated with �′.

For each bounded region R ∈ RegA, we denote by V (R) the set of vertices, or cor-
nerpoints that bound R. For example, for the 2-dimensional region 0 < x < y < 1,
V (R) = {(0, 0), (0, 1), (1, 1)}. V (R) can be formally defined using the “fractional part”
[AD94] representation of regions.

Remark 2. Note that if V (R) ⊆ V (R′) then R ⊆ R
′
, where R

′
is the topological closure of

R′.

Proposition 1. Suppose �1 and �2 are two runs in ℛA, with �i starting in (q, R′
i) and

ending in (q′, R′′
i) (i = 1, 2). Suppose that both runs are associated with the same run � in

A and that there exist R,R′ such that V (R) = V (R1) ∪ V (R2), V (R′) = V (R′
1) ∪ V (R′

2).
Then there is a run �′ in ℛA that starts in (q, R1), ends in (q′, R2) and is associated with
�.

The proof of this property is based on zone convexity and runs by induction on the length
of the run �.

3 The extended boundary region automaton

First, let us recall here briefly Puri’s technique for constructing the set of reachable re-
gions in a closed timed automaton: the �→0-reachable regions are obtained by applying,
alternatively, the following two procedures until a fixpoint is reached:

1. Forward closure of a given set of regions.
2. Add cycles in the “closed region automaton”, that have a nonempty intersection with

an already reachable region,

In the previous section, we have seen that this technique cannot be applied as is to
the closure A of the given automaton A, due to inherent peculiarities of working with
non-closed guards.

In this section, we refine Puri’s technique of searching for cycles in the region graph,
by carefully defining when to consider that a (possibly open) region “touches” a reachable
region. The right notion of “touching” is given in the following definition:

6

Definition 1. A region R is t-aligned if its normal form representation CR =
⋀

0≤i,j≤nxi−
xj ∈ Iij has the property that Ii0 is not a point interval for all i. Equivalently, for any q ∈ Q,

there exist v, v′ ∈ R with (q, v)
t−→0 (q, v

′) for some t > 0.
Two regions R,R′ are neighbors if V (R) ∩ V (R′) ∕= ∅. R,R′ are t-neighbors if both

are t-aligned and either V (R′) ⊆ V (R) or V (R) ⊆ V (R′).

Example 2. For any timed automaton, the region R1 with CR1
: 0<x<y<1 is a t-neighbor

for R2, with CR2
: 0<x=y<1, while 02 is not a t-neighbor of R2.

The idea behind the computation of RegReach�→0 is to utilize, instead of regions, pairs
of regions (R,R′) with V (R) ⊇ V (R′). Such pairs are similar to the boundary regions of
[ATP01]: they model sets of trajectories that pass through R and are “arbitrarily close” to
R′. Formally we construct the boundary regions automaton ℰ(A) =

{

Qℰ(A), �ℰ(A),Qb
0,Qb

f

}

where �ℰ(A) ⊆ Qℰ(A) ×Qℰ(A) and

Qℰ(A) =
{

(q, R,R′) ∣ q ∈ Q,R,R′ ∈ Reg, V (R) ⊇ V (R′)
}

Qb
0 =

{

(q, 0n, 0n)∈Qℰ(A) ∣ q∈Q0

}

and Qb
f =

{

(q, R,R′)∈Qℰ(A) ∣ q∈Qf

}

�ℰ(A) =
{

(q, R1, R)
n−→ℰ(A) (q, R2, R) ∣ R1, R2 are t-neighbors

}

∪
{

(q, R1, R)
t1−→ℰ(A) (q, R2, R) ∣ (q, R1)

t−→ (q, R2) ∈ �ℛ
}

∪
{

(q, R,R1)
r−→ℰ(A) (q, R,R2) ∣ V (R1) ⊇ V (R2) and R1, R2 are t-neighbors

}

∪
{

(q, R,R1)
t2−→ℰ(A) (q, R,R2) ∣ (q, R1)

t−→ (q, R2) ∈ �ℛ
}

∪
{

(q1, R1, R
′
1)

↓−→ℰ(A) (q2, R2, R
′
2) ∣ (q1, R1)

↓−→ (q2, R2) ∈ �ℛ and

if R2 = R1[X := 0] for some X ⊆ X , then R′
2 = R′

1[X := 0]
}

∪
{

(q,R1,R
′
1)
↻−→ℰ(A) (q,R2,R

′
2) ∣ R′

1,R
′
2 are t-neighbors,((q,R′

2), (q,R
′
2))∈�+ℛ

}

(�+ℛ is the transitive closure of the transition relation in the region automaton.)
Elements of Qℰ(A) will be called boundary regions. Each type of transition in ℰ(A) is la-

beled differently, due to its particular significance: transitions
n−→ are between t-neighboring

boundary regions,
t1−→ and

t2−→ are the two types of time-passage transitions, while
r−→ rep-

resent reductions to a smaller boundary region. The reflexive-transitive closure of �ℰ(A) will
be denoted →ℰ(A), while subsets of it involving only certain types of transitions are identi-

fied by their respective symbols. For example,
t1,t2,n−−−−→ℰ(A)=

(

t1−→ℰ(A) ∪ t2−→ℰ(A) ∪ n−→ℰ(A)

)∗

.

We will say that the transition (q1, R1, R
′
1)

↓−→ℰ(A) (q2, R2, R
′
2) is associated with a tran-

sition � = (q1, C,X, q2) ∈ � if R1 ⊆ ZC and R2 = R1[X := 0].
An example is provided in Figure 2 for ℰ(A1), where A1 is the automaton from Figure

1. (Some of the transitions are labeled only with one of the types they may carry.) Note
that, starting from (q0, 02, 02), the only reachable boundary regions in ℰ(A1) in which
location q1 occurs are of the type (q1, R, R′) in which CR′ : (x = 0 ∧ y = 1) and R ∕= R′.
As we will see, this is consistent with the fact that RegReach�→0(q0, 02) ∕∋ (q1, R

′′) where
CR′′ : (x = 0 ∧ y = 1).

7

q0

0

q0

q0q0

q0

q0

q0

y

1

1

q0

q0

0

y

x1

1

x

q0

q1

q1

q1
q1

q1

q1

q1

q1 q1

q1

q1q0

t1

t1

t1

t1

t1t1
t1 t1

r

n

n

nt2

t2
t2

t2

t2

t2

t1

t1

t2

t1

t1 r

t1

t2

t2
r

t1

t1

t1

t1

t2

r

t2

t1 t1

n

n
n

n

t2

t2

r

t2

t2

t1

t1

t2

t2

t1 t1 t1
t1

t2

t1

t1

↓

↓

↓

n

t2

t2

Fig. 2. ℰ(A1) for the automaton in Figure 1.

The following property says that the third components in boundary regions always
follow the transitions of the closure A of the given timed automaton A:

Lemma 1. If (q1,R1,R
′
1)

n,t1,t2,↓−−−−−→ℰ(A) (q2,R2,R
′
2) then ((q1,R

′
1), (q2,R

′
2))∈�∗

A
.

Proof. The proof follows by straightforward induction on the length of the ℰ(A)-run. For

the base cases, observe first that each of the transition relations
n−→ℰ(A) and

t1−→ℰ(A) satisfy
this property, as the third component of the source and destination boundary regions is

the same, while the case of
t2−→ℰ(A) holds by definition. And for the case (q1,R1,R

′
1)

↓−→ℰ(A)

(q2,R2,R
′
2) we only have to note that, as (q1, R1)

↓−→ (q2, R2) ∈ �ℛ, this transition must

be associated with some transition q1
C,X−−→ q2 in A. But the fact that V (R′

1) ⊆ V (R1)
implies that R′

1 ⊆ R1, and, therefore, R
′
1 satisfies the closed constraint C, which implies

that (q1, R2)
↓−→ (q2, R

′
2) ∈ �ℛ. ⊓⊔

Denote Reachℰ(A)(q0, 0n, 0n) the set of boundary regions that can be reached from
(q0, 0n, 0n) in ℰ(A). The first main result of this paper is the following:

Theorem 1. Let A be a bounded timed automaton with no self loops and in which there
exists a clock x such that for all transitions (q, C,X, q′), we have x ∈ X and C ∧ (x = 0)
is not satisfiable. Then:

RegReach�→0(q0, 0n) =
{

(q, R) ∣ ∃R′ ∈ RegA, (q, R,R′) ∈ Reachℰ(A)(q0, 0n, 0n)
}

The inverse inclusion is a corollary of the following technical property:

Proposition 2. Suppose (q1, R1, R
′
1) →ℰ(A) (q2, R2, R

′
2) and denote d(v, v′) = max ∣vi−v′i∣

(i.e. the max-distance), and also d(v, R) = min{d(v, v′) ∣ v′ ∈ R}.

8

Then for all �>0 and 0 < � < � there exists �≤� such that for all v2 ∈ R2 for which

d(v2, R
′
2) < � there exists v1 ∈ R1 for which d(v1, R

′
1) < � and with (q1, v1)

t−→� (q2, v2) for
some t ∈ ℝ>0.

Proof. The proof is by induction on the number of transitions in ℰ(A). There are 6 base
cases, according to the types of ℰ(A)-transition. The most interesting is the case of

n−→ℰ(A),

which means that we are given the following transition (q, R1, R)
n−→ℰ(A) (q, R2, R). Note

that, in this case, for each v′ ∈ R2 the following real number is well-defined: t0 = max{t ∣
∃v0 ∈ R2, (q, v0)

t−→ (q, v′)}. because R2 is t-aligned.

Fix some t, � ∈ ℝ≥0 small enough and put � =
t�√
2
. Take then any point v′ ∈ R2 such

that d(v, R) ≤ �. Then it’s not difficult to see that there exists v ∈ R1 with (q, v)
t′−→� (q, v′)

for some t′ ≤ t and d(v, R) = �. The most defavorable situation that might occur is depicted
in two dimensions in Figure 3, and is when R is a line and R1, R2 are diametrically opposed
w.r.t. R.

t�t

v

v′

x

y

R2

R1 R

� = t�√
2

Fig. 3.

For the case of (q, R1, R)
t1−→ℰ(A) (q, R2, R) the property follows easier: if we take v′ ∈ R

with d(v′, R) = � then for any t for which there exists v ∈ R1 with (q, v)
t−→ (q, v′) we have

that d(v, R) ≤ � + t.
For the case (q, R,R1)

r−→ℰ(A) (q, R,R2) v can be chosen equal to v′, by observing that
having d(v, R2) = � and R1 and R2 t-neighbors implies that d(v, R1) ≤ 2�.

Similarly, for the case (q, R,R1)
t2−→ℰ(A) (q, R,R2) we can take v = v′ and observe that,

if (q, R1)
t−→ (q, R2) ∈ �ℛ and d(v, R2) = � then d(v, R1) ≤ 2�

√
n.

The case when (q1, R1, R
′
1)

↓−→ℰ(A) (q2, R2, R
′
2) follows by observing that, if we take

v′ ∈ R2 and put d(v′, R′
2), and if we consider any v ∈ R1 with (q1, v)

↓−→ (q2, v
′), then

d(v, R′
1) ≤ �

√
n.

The case (q, R1, R
′
1)
↻−→ℰ(A) (q, R2, R

′
2) relies on the following non-closed variant of the

Theorem 7.3 of [Pur98]:

9

Theorem 2. Given R ∈ RegA and q ∈ Q with ((q, R), (q, R)) ∈ �+ℛ, then for any v, v′ ∈ R
and for any � > 0, (q, v′) ∈ Reach�(q, v).

The following straightforward corollary of Theorem 2 will be essential in the construc-
tion of our symbolic algorithm:

Corollary 1. Suppose that the state regions (q1,R1) ∕=(q2,R2) belong to the same strongly
connected component in the region automaton, and ((q2,R2), (q3,R3)) ∈ �∗ℛ. Then for any
v1 ∈ R1, v3 ∈ R3 and for any � > 0, (q3, v3) ∈ Reach�(q1, v1).

Note that the validity of this corollary relies on the fact that we only consider bounded
regions.

The proof of the direct inclusion in Theorem 1 relies on a “continuous” presentation of
trajectories. In the sequel, for a mapping f : A → B × C, f

2
: A → C denotes the second

projection. For a real function f : I → A with I ⊆ ℝ≥0 and J ⊆ I, f
J
denotes the usual

restriction of f to J . Also Bn
1 denotes the unit ball in ℝ≥0, w.r.t the distance d.

Definition 2. A continuous �-trajectory (� ∈ ℝ≥0) is a mapping � : [0, �[→ Q×ℝn
≥0

satisfying the following properties:

1. For each q ∈ Q, �−1(q × ℝn
≥0) is a finite union of left-closed, right-open intervals

(

I i�,q
)

1≤i≤n�,q
, with I i�,q = [�i

q, �
i+1
q [, for some �1

q , . . . , �
n�,q ∈ ℝ≥0 with �i

q < �i+1
q .

2. For any two distinct states q, r ∈ Q, q ∕= r, and any two adjacent intervals I i�,q, I
j
�,r (i.e.,

�i+1
q = �j

r), there exists a transition (q, C,X, r) ∈ � which creates the “jump” from I i�,q
to Ij�,r in the following sense: if we denote v = lim

x↗�i+1
q

�
2
(x) and v′ = �

2
(�j

r), then

v ∣= C and v′ = v[X := 0].
3. For each q ∈Q for which n�,q > 0, for each 1≤ i≤ n�,q and each t, t′ ∈ I i�,q with t < t′,

there exists u ∈Bn
1 such that �

2
(t′) = �

2
(t) + (t′ − t)(1 + �u).. Here, 1 denotes the

vector 1 = (1, 1, . . . , 1) ∈ ℝ≥0.

The continuous �-trajectory � is canonical if the following property holds:

4. For each t, t′ ∈ [0, �[, if there exists R ∈ RegA and q ∈ Q such that �(t), �(t′) ∈ {q}×R
and for all t′′ with t ≤ t′′ ≤ t′, �(t′′) ∈ {q}×ℝn

≥0, then for all t ≤ t′′ ≤ t′, �(t′′) ∈ {q}×R.

The second property holds due to the assumption which forbids taking two discrete tran-
sitions without letting time pass. The fourth also is consistent since we only consider
automata without self loops.

Canonical continuous trajectories avoid “volutes” between t-neighbors. The following
property shows that each �-trajectory, which gives only “essential points” through the
behavior of a system, can be associated with a canonical continuous trajectory, which in
fact completes the �-trajectory with all the intermediary points:

Proposition 3. For each �-trajectory � =
(

(qi−1,vi−1)
�i−→ (qi,vi)

)

1≤i≤k
(� ≥ 0) there

exists a canonical continuous �-trajectory � : [0, �[→ Q× ℝn
≥0 for which �(0) = (q0, v0),

limt↗� �(t) = (qk, vk), and for each 1 ≤ i < k there exists �i with �i−1 < �i such that
�(�i) = (qi, vi).

10

The proof follows by easy induction on the the length k of � .
The following property states that, if we “simulate” the behavior of a �-trajectory �

with a “pseudo”-0-trajectory �′ (to be defined in the statement of the following proposi-
tion), then the final points in the two trajectories cannot be “too far” one from the other.
In some sense, the simulating pseudo-0-trajectory models what would happen in A, if we
were to “follow” the same run that is associated with �, take the transitions at the same
time points but without any clock drift and without checking any guard on the transitions
(i.e. just resetting clocks).

Proposition 4. Given a canonical continuous �-trajectory � : [0, �[→ Q×ℝn
≥0, consider

a mapping �′ : [0, �[→ Q× ℝn
≥0 with �′(0) = �(0) and satisfying the following properties:

1. For all q ∈ Q, 1≤ i≤n�,q, t, t
′∈I i�,q with t<t′, �′(t′) = �′(t) + t′ − t.

2. For any two states q, r∈Q, q ∕=r and any two adjacent intervals I i�,q, I
j
�,r (with �

i+1
q =�j

r),
if (q, C,X, r) is the transition for which condition 2 in Definition 2 is met for �, and
we denote v = lim

x↗�i+1
q

�′
2
(x) and v′ = �′

2
(�j

r), then v′ = v[X := 0].

Then for each t ∈ [0, �[, d(�
2
(t), �′

2
(t)) ≤ t�.

Recall that d denotes the max-distance. The proof can be again given by induction on the
number of regions through which � passes.

Note that, by the construction in Proposition 4, there exists a unique mapping �′

associated to � – we will call it the 0-approximation of �. �′ is not really a 0-trajectory
since in condition 2 above we may have v ∕∣= C.

The following technical lemma is needed in the proof of Theorem 1:

Lemma 2. Given k points y1, . . . , yk ∈ ℝn
≥0 such that d(yi, yj) < 1

2n
, and denoting Ri

the region to which yi belongs, then there exists a nonempty region R such that V (R) =
∩

1≤i≤n V (Ri) (that is, all Ri are neighbors).

Proof. This result follows by observing that, in the given situation, any n-dimensional ball
B centered in any of the points must have a nonempty intersection with all the regions.

On the other hand, it is not difficult to see that any regions whose closures have an
empty intersection are at distance greater than

√
2/2 from each other. It then follows

that all pairs of regions have a nonempty intersection. Then, a similar argument for the
intersections of their intersections leads us to conclude that these too have a nonempty
intersection, etc. ⊓⊔

For the following lemma, we denote
t,0−→ the union of the identity relation with the im-

mediate successor relation in ℛA. The result here is needed when showing that regions that
are “arbitrarily close” are forward-propagated through the same types of region transitions,
then we obtain also regions that are “arbitrarily close”:

Lemma 3. Consider two tuples of regions R1, . . . , Rn, R
′
1, . . . R

′
n and two extra regions

R,R′ such that V (R) =
∩

1≤i≤n V (Ri) and V (R′) =
∩

1≤i≤n V (R′
i).

11

1. Suppose that (q, Ri)
t,0−→ (q, R′

i) for all 1 ≤ i ≤ n and some q ∈ Q. Then (q, R)
t,0−→

(q, R′).

2. If (q, Ri)
↓−→ (q′, R′

i) for all 1≤ i≤n and some q, q′∈Q, then (q, R)
↓−→(q′, R′).

The first result follows by observing how linear combinations of vertices of a region evolve
during time steps, whereas the second is straightforward.

The following technical property is needed when proving a somewhat reverse of the
previous lemma: if two regions can be reached from one another via some (sufficiently small)
time-passage transition with some drift � > 0, and they are neighbors of some regions that
can be reached from one another in the 0-drift region automaton, then, altogether, the four
regions form a transition in ℰ(A):

Proposition 5. Given � > 0, two regions R1 ∕= R2, and a (canonical) continuous �-
trajectory � : [0, �[→ Q × ℝn

≥0, suppose that �(t) ∈ {q} × (R1 ∪ R2) for some q ∈ Q and
all t ∈ [0, �[, and also that �(0) ∈ (q, R1), limt↗� �(t) ∈ (q, R2). Then there exist R′

1, R
′
2

such that V (R′
1) ⊆ V (R1) and V (R′

2) ⊆ V (R2) such that (q, R′
1)

t−→ (q, R′
2). Moreover,

(q, R1, R
′
1) →ℰ(A) (q, R2, R

′
2).

Together, Lemma 3 and Proposition 5 show how the neighborhoodness relation between
regions is related with the transition relation in the region automaton.

The final step in the proof of the direct inclusion in Theorem 1 is the following propo-
sition. Here, we denote T = card(�ℰ(A)) and K=23n+1. Also AK+2

T+2 =
(T+2)!
(T−K)!

is the number

of ordered tuples of 23n+1 + 2 elements from a set of card(�ℰ(A))+2 elements. Note that
K<T for any automaton A.

Proposition 6. Take � : [0, �[→ Q×ℝn
≥0 a canonical continuous �-trajectory, with

�< 1

2(AK+2

T+2
)2+2

⋅ 1
2n
. Denote

(

qi, Ri

)

0≤i≤m�
the sequence of state regions to which the points

in � belong, that is, if �(t)∈ (qi, Ri), �(t
′)∈ (qi+1, Ri+1) then ∀t′′ ∈]t, t′[, �(t′′) ∈ (qi, Ri) ∪

(qi+1, Ri+1). Then there exist regions (R̃i)0≤i≤m�
such that (qi−1, Ri−1, R̃i−1) →ℰ(A) (qi, Ri, R̃i)

for all 1 ≤ i ≤ m�.

The proof works in two steps: first, for � < 2(AK+2
T+2)

2+2, we may show that there exist

regions (R̃i)0≤i≤m�
such that (qi−1, Ri−1, R̃i−1)

t1,t2,n,r,↓−−−−−−→ℰ(A) (qi, Ri, R̃i) for all 1 ≤ i ≤ m�.

Then, for the case of � ≥ 2(AK+2
T+2)

2 + 2, we may show that, after most 2(AK+2
T+2)

2 + 2
transitions, the trajectory must pass through the same state region (q, R), which implies

that, after the correspoding sequence of
t1,t2,n,r,↓−−−−−−→ℰ(A)-transitions (as constructed in the

first part), we may insert a ↻ transition. The whole argument is based on Lemmas 1, 3
(and some extra technical lemmas) and Propositions 1 and 5.

Proof. Consider first that � < 2(AK+2
T+2)

2 + 2. For each 0 ≤ i ≤ m�, pick a point vi ∈ Ri

and construct a 0-approximation �′
i : [�i, �[→ Q × ℝn

≥0 of the sub-trajectory �
[vi,�[

that

starts in vi, i.e. � [vi,�[
(�i) = (qi, vi). Then, for each 0 ≤ i < j ≤ m, define wij = �i(�j).

Proposition 4 implies that d(wi1j, wi2j) < (�i2 − �i1)� ≤ �� < 1
2n

for all 0 ≤ i1 < i2 <
j ≤ m. If we also denote Rij the region to which wij belongs, and observe that Rjj = Rj ,

12

we may then apply Lemma 2 to deduce that, for each 0 ≤ j ≤ m, there exists a region R′
j

such that V (R′
j) =

∩

0≤i≤j V (Rij).

We will then show that (qj−1, Rj−1, R
′
j−1) →ℰ(A) (qj , Rj, R

′
j) by induction on j, 0 ≤

j ≤ m�. Two cases occur, according to whether qi−1 = qi or not. For the case when
qi−1 ∕= qi, we have that there exists some X ⊆ {1, . . . , n} such that Rj+1 = Rj[X := 0] and
R′

j+1 = R′
j [X := 0] which proves the claim.

When qj−1 = qj , denote R′′
j the region for which V (R′′

j) =
∩

0≤i<j V (Rij). Note first

that R′
ij were constructed such that (qj , R

′
i,j−1)

t,0−→ (qj , R
′
ij), Lemma 3 implies then that

(qj , R
′
j−1)

t,0−→ (qj , R
′′
j). This means that the trajectory �

[�j−1,�j [
satisfies the requirements

in Proposition 5, therefore we have that (qj , Rj−1, R
′
j−1) →ℰ(A) (qj , Rj, R

′′
j). But then

(qj , Rj, R
′′
j)

r−→ℰ(A) (qj, Rj , R
′
j), hence the induction step is proved.

For the second part of the proof, for the case of � ≥ 2(AK+2
T+2)

2+2, the idea is to apply the
same technique as in the first part, that is, consider 0-approximations �′

i : [�i, �[→ Q×ℝn
≥0,

define regions Rij to which wij belong etc. But, unlike the first part of the proof, since
� ≥ 2(AK+2

T+2)
2 + 2, there may exist 1 ≤ i1 < i2 ≤ m� such that d(wi1j, wi2,j) ≥ 1

2n
. If this

does not happen, then the proof is over.

If this happens, denote i1 the first index for which there exists some i with d(wi1j, wi,j) ≥
1
2n
, and denote i2 ≥ i1 the least index corresponding for which this this inequality is

satisfied. Hence, we have a sequence of ℰ(A)-transitions S1 =
(

(qi−1, Ri−1, R
2
i−1) →ℰ(A)

(qi, Ri, R
2
i)
)

1≤i≤i2
.

Note that the minimal number of regions through which a �-trajectory may pass is
2⌊�⌋; therefore, if we had i2 − i1 < (AK+2

T+2)
2 + 1, then �i2 − �i1 < 2(AK+2

T+2)
2 + 2, which

contradicts the hypothesis that d(wi1j, wi2,j) ≥ 1
2n
. Hence, between i1 and i2 there are at

least (AK+2
T+2)

2 + 1 transitions in each sequence.

Note then that, for any (q1, R1, R
′
1) ∈ Qℰ(A), a rough overestimate of the number of

regions (q2, R2, R
′
2) for which (q1, R1, R

′
1)

n,r−→ (q2, R2, R
′
2) is 2

3n. Therefore, in the sequence
of ℰ(A)-transitions corresponding to a canonical trajectory starting in (q1, R1, R

′
1), after

at most 23n transitions we must have one
t1,t2−−−→-transition.

We will therefore have at least two indices j1, j2 with i1 ≤ j1 < j2 ≤ i2 such that
the subsequence of 23n + 1 transitions starting at index j1 and the subsequence of 23n + 1
transitions starting at j2 are the same in both sequences S1 and S2, But, according to

the above remark, this means that in fact we have in both sequences a repeated
t1,t2−−−→

transition, in particular, qj1−1 = qj2−1, qj1 = qj2 , Rj1−1 = Rj2−1, Rj1 = Rj2, R
′
j1−1 = R′

j2−1,
R′

j1
= R′

j2
, R2

j1−1 = R2
j2−1, R

2
j1
= R2

j2
.

A first observation is that either R′
j1−1 or R′

j1
is t-aligned, and at the same time the

respective R2
j1−1 or R

2
j1
is t-aligned too – let’s suppose R′

j1
, R2

j1
are t-aligned. On the other

hand, by Lemma 1, ((qj1 , R
′
j1
), (qj1, R

′
j1
)) ∈ �∗

A
and ((qj1, R

2
j1
), (qj1, R

2
j1
)) ∈ �∗

A
. Note also

that both these reachability relations are in fact associated with the same A-run. Therefore
we may apply Proposition 1 and get that there exists R′′ such that V (R′′) = V (R′

j1
)∪V (R2

j1
)

and ((qj1, R
′′), (qj1, R

′′)) ∈ �∗
A
.

13

But this implies that we may switch from the sequence S1 to the sequence S2 by inserting

the transitions (qj1 , Rj1, R
′
j1
)
↻−→ℰ(A) (qj1, Rj1, R

′′)
r−→ℰ(A) (qj1, Rj1 , R

2
j1
).

We may therefore iterate the whole argument for the sub-trajectory �
[�i1+1,�[

, which

contains strictly less regions that �. ⊓⊔

4 Symbolic computation of RegReach�→0
(Q0, 0n)

The idea behind our symbolic algorithm is to alternate forward reachability, t-neighbor
construction and cycle construction, until a fixpoint is reached. The cycle construction
takes advantage of the special form of boundary regions in ℰ(A) that give the possibility
to obtain, symbolically, all regions that are neighbors of reachable regions. Our algorithm
uses triples of the form (q, Z, Z ′) where q ∈ Q and Z,Z ′ are zones with Z ′ = Z ′ ⊆ Z. The
algorithm generates triples (q, Z, Z ′) for which, for any regions R,R′, if R ⊆ Z, R′ ⊆ Z ′ and
V (R) ⊇ V (R′), then (q0, 0n, 0n) →ℰ(A) (q, R,R′). But let us introduce first some notations.

The term A-zones denotes zones Z ⊆ [0,MA]
n (recall MA is the maximal constant used

in A). The set of A-zones is denoted ZA. We also say that an A-zone Z is time passage

closed if for all v ∈ Z and q ∈ Q, if (q, v)
t−→ (q, v′) (with v′ ∈ [0,MA]

n) then v′ ∈ Z.
Recall that the time-passage closure of a zone Z (which we denote here as Tpass(Z)) is
the zone that can be computed symbolically as follows: if Z is defined by the constraint
CZ =

⋀

0≤j<i≤n xi − xj ∈ Iij, then

CTpass(Z) =
⋀

1≤j<i≤n

xi − xj ∈ Iij ∧
⋀

1≤i≤n

xi ∈↑ Ii0

where the operation ↑ replaces the upper limit of an interval with MA. E.g. ↑ [a, b[= [a,MA]
(recall that we only work with bounded regions here).

For any A-zone Z which is time-passage closed, we denote

t−Nghbr(Z) = Z ∪
∪

{R′ ∣ ∃R ⊆ Z,R ∈ RegA such that R,R′ are t-neighbors}

We also denote t−Nghbr(q, Z) = {q} × t−Nghbr(Z) for any q ∈ Q. For the sequel we will
abuse of notation and, for a set of pairs P ⊆ Q× ZA, we denote ∪P for the set

∪P =
{

(q, Zq) ∣ Zq =
∪

{Z ∣ (q, Z) ∈ P}
}

The following proposition gives a set of properties that characterize the t−Nghbr oper-
ator and relate it with the boudary regions in ℰ(A):

Proposition 7. 1. Suppose Z is a time-passage closed A-zone, with CZ =
⋀

0≤j<i≤n xi −
xj ∈ Iij. Then t−Nghbr(Z) is defined by the constraint in normal form

Ct−Nghbr(Z) :
⋀

1≤i≤n
(xi∈Ii0) ∧

⋀

1≤j<i≤n

(

xi−xj ∈
(

Iij+]−1, 1[
)

∩ [−MA,MA]
)

14

2. Moreover, if Z is time passage closed, then for all R1, R
′
1⊆Z with V (R1)⊇ V (R′

1), if

we have that (q, R1, R
′
1)

t1,t2,r,n−−−−−→ℰ(A) (q, R2, R
′
2) then there exists (q, Z ′) ⊆ t−Nghbr(Z)

for which R2, R
′
2 ⊆ Z ′ and V (R2) ⊇ V (R′

2).
3. Finally, suppose Z1, Z2 are two A-zones which are time passage closed. Then Z2 =

t−Nghbr(Z1) if and only if for any region R1 ⊆ Z1 that is t-aligned, and for any region
R2 which is a t-neighbor for R1, we have that R2 ⊆ Z2.

Given a transition �=(q,X, C, q′) and a zone Z, the forward propagation of (q, Z) along
� is:

Fwd(q, Z, �) =
∪

{

(q′, Z ′) ∣ ∃v ∈ Z, v′ ∈ Z ′, t ∈ ℝ≥0 s.t.

(q, v)
t−→0 (q, v

′′)
↓−→0 (q

′, v′′[X := 0]) and v′′ ∣= C
}

The forward propagation of (q, Z) is then

Fwd(q, Z) = �X.
(

(q, Z) ∪
∪

�∈�
Fwd(X, �)

)

It is well known [Yov98] that, for any zone Z, state q and transition � , Fwd(q, Z, �) and
Fwd(q, Z) are computable symbolically if there is no diagonal constraint in the given
automaton A (see [BLR05]) – which is the case here.

We may then see that forward reachability and t-neighborhoodness are related by the
following property:

t−Nghbr(q, Z) =
∪

{

(q, R) ∣ ∃(q, R1)
t−→∗(q, R2) in ℛA,

∃R3 ∈ RegA s.t. R3 ⊆ t−Nghbr(R1) ∩ Z,R ⊆ t−Nghbr(R2)
}

The Fwd application can be extended to triples (q, Z, Z ′) as follows: first, the time-
passage of a triple is defined as:

Tpass(q, Z1, Z
′
1) =

{

(q, Z2, Z
′
2) ∣ Z ′

2 = Tpass(Z1), Z2 ∈ t−Nghbr(Z ′
2)
}

The effect of a transition � = (q1, C,X, q2) ∈ � on a triple (q, Z, Z ′) is defined as follows:
first, we denote � = (q1, C,X, q2) the closure of � , with C being the closure of C (in the
sense that all inequalities in C are transformed into nonstrict). Then we put:

Trans(q1, Z1, Z
′
1, �) :=

{

(q2, Z2, Z
′
2) ∣ Z2 = (Z1∩ZC)[X := 0] and Z ′

2 = Z ′
1∩ZC [X := 0]

}

We may then combine the two definitions to get the forward propagation of a triple
(q, Z, Z ′) along the transition � as:

FwBnR(q1, Z1, Z
′
1, �) = Trans(Tpass(q1, Z1, Z

′
1), �)

The following proposition shows that the forward propagations of boundary regions can
be computed symbolically, using the FwBnR operator:

15

Proposition 8. Given q1 ∈ Q and Z1, Z
′
1 two A-zones which are time passage closed and

with Z1 = t−Nghbr(Z ′
1). Then (q2, R2, R

′
2) ∈ FwBnR(q1, Z1, Z

′
1, �) if and only if there

exist (q1, R1, R
′
1) ∈ Qℰ(A) with R1 ⊆ Z1 R′

1 ⊆ Z ′
1, and (q3, R3, R

′
3), (q4, R4, R

′
4) ∈ Qℰ(A)

such that
(q1, R1, R

′
1)

t1,t2,n,r−−−−−→ℰ(A) (q3, R3, R
′
3)

↓−→ℰ(A) (q2, R2, R
′
2)

where the last transition is associated with � .

In the sequel, we will consider each set of tuples Z ⊆ Q×ZA as the set of state regions
belonging to Z. Hence, we abuse notation and denote Z1 = Z2 if {(q, R) ∣ ∃(q, Z) ∈
Z1, R ⊆ Z} = {(q, R) ∣ ∃(q, Z) ∈ Z2, R ⊆ Z}.

For each set of triples � ⊆ Q × ZA × ZA, we define FwBnR(�) as the set of triples
(q, Z, Z ′) which can be reached from � by repeatedly applying forward propagation steps,

FwBnR(�) = �X.
(

� ∪
∪

�∈�

∪

(q,Z,Z′)∈X
FwBnR(q, Z, Z ′, �)

)

This set can be computed as a fixpoint: FwBnR(�) =
∪

n∈ℕ Fn where F0 = � and
Fn+1 =

∪

�∈�

∪

(q,Z,Z′)∈Fn
FwBnR(q, Z, Z ′, �).

On the other hand, for each set Z ⊆ Q × ZA, we define Cyc(Z) as the subset of Z
that contains only regions which lie on a cycle in RegA,

Cyc(Z) =
∪

{

(q, Z) ⊆ Z ∣ ∀R ⊆ Z,R ∈ ℛA, ((q, R), (q, R)) ∈ �+ℛ
}

Proposition 9. Fwd(Cyc(Z)) = Fwd
(

�X.
(

Z ∩ Fwd(X)
)

)

.

This result is a corollary of a property related to strongly connected components (s.c.c.)
in general graphs, that we give in the following:

Lemma 4. Consider a finite graph G = (V,E) (E ⊆ V × V , card(V) < ∞) in which
E = E1 ∪E2 with E1 ∩E2 = ∅ and such that E does not contain self loops. Denote E∗, E∗

1

and E∗
2 the reflexive-transitive closure of E, resp. E1, E2, and for any U ⊆ V , define as

usual E(U) =
{

v ∈ V ∣ ∃u ∈ U, (u, v) ∈ E
}

and E∗(U) = �X.(U ∪ E(X)). Also denote:

Fwd(U) =
{

v ∈ V ∣ ∃u ∈ U, v1, v2 ∈ V, (u, v1), (v2, v) ∈ E∗
2 , (v1, v2) ∈ E1

}

SCC≥2(U) =
∪

{

W ⊆ U ∣ W is a s.c.c. with card(W) ≥ 2
}

Suppose that U = E∗(U) and there are no nontrivial cycles containing only edges from E2.
Then

E∗(SCC≥2(U)) = E∗
(

�X.(U ∩ Fwd(X)
)

Proof. For the left-to-right inclusion, take v ∈ SCC≥2(U), which means that there exists
a s.c.c. W ⊆ U with card(W) ≥ 2 and v ∈ W . Note first that U = E∗(U) implies
Fwd(E∗(W)) ⊆ U . On the other hand, due to the fact that E2 contains no nontrivial
cycles, we must have that Fwd(E∗(W)) = E∗(W). This means that E∗(W) is a fixpoint

16

for the mapping X 7→ U ∩ Fwd(X), and hence v ∈ W ⊆ �X.(U ∩ Fwd(X)) which is the
greatest fixpoint.

For the reverse proof, take W with W = U ∩ Fwd(W) and pick some v ∈ W . The
fixpoint equation implies that for any k there exists a sequence of vertices v1, . . . , vk ∈ W
such that (vi, vi+1) ∈ E (1 ≤ i ≤ k) with vk+1 = v. Also vi ∕= vi+1, since E contains no
self loops. By finiteness of V , there exist 1 ≤ j1 < j2 − 1 ≤ k with vj1 = vj2. It follows
that there exists a s.c.c. W ′ ⊆ W with vj1, . . . , vj2−1 ∈ W ′ and also card(W ′) ≥ 2. But this
implies that v ∈ E∗(W ′) ⊆ E∗(SCC≥2(U)). ⊓⊔

Remark 3. Note that, in general, SCC≥2(U) ∕= �X.
(

U ∩ Fwd(X)
)

.

Proposition 9 is then an easy corollary of this lemma, if we take G as the region graph,

with E1 =
t−→ and E2 =

↓−→. Note that our assumption on the given timed automaton ensure
the hypotheses in the lemma. More specifically, the existence of the extra clock which
is reset and is checked to be > 0 on each transition implies the hypothesis on E2. not
containing nontrivial cycles.

The construction of Fwd(Cyc(Z)) involves the fixpoint computation of the inner great-
est fixpoint, as the “limit” of the the sequence C0 = Z and Cn+1 = Cn ∩Fwd(Cn). Then,
when this sequence stabilizes, we apply forward closure.

Our symbolic algorithm for computing RegReach�→0(q0, 0n) is the following:

Algorithm 1 Construction of Reachℰ(A)(q0, 0n, 0n)

1 BReacℎ :=
{

(q0,0n,0n)
}

; PrevBReacℎ := ∅;
2 while BReacℎ ∕= PrevBReacℎ

3 PrevBReacℎ := BReacℎ;
4 BReacℎ := FwBnR(BReacℎ);
5 Z :=

{

(q, Z′) ∣ ∃Z, (q, Z, Z′) ∈ BReacℎ
}

;
6 BReacℎ :=BReacℎ∪

{

(q, Z, Z′) ∣ (q, Z′)∈Fwd(Cyc(Z)), Z=t−Nghbr(Z′)
}

;
7 end while ;
8 return BReacℎ;

Theorem 3. Let A be a bounded timed automaton with no self loops and in which there
exists a clock x such that all transitions (q, C,X, q′) have x ∈ X and C ∧ (x = 0) not
satisfiable. Then (q, R) ∈ RegReach�→0(q0, 0n) if and only if, at the end of the above
algorithm, there exists (q, Z, Z ′) ∈ BReacℎ such that R ⊆ Z.

This result is a corollary of Proposition 8 and of Theorem 1. Note also that Corollary 1
is essential in the proof of this theorem, as it allows considering forward propagations of
strongly connected components, instead of just cycles in the region graph.

Comparison with [DK06] The symbolic construction in the last algorithm is different from
the one of [DK06]: in that paper, a stable zone W� is constructed, symbolically, for each
cycle � in the timed automaton. The fixpoint definition for W� is W� = �X.(Fwd(X) ∩
Bck(X)). Hence, a preliminary analysis of the graph of the timed automaton is needed, in
which all the cycles of the graph have to be constructed. It is well-known that the number

17

of cycles in a graph is superexponential in the size of the graph, hence, at least in theory,
the approach of [DK06] may lead to a superexponential time complexity.

One might also ask whether the approach from [DK06] may apply to a strongly con-
nected component rather than to only one cycle at a time. The answer is negative in general,
for the following reasons: first, as already [DK06] note, W� is in general larger than the set
of regions which lie on a cycle in the region graph that is “induced” by �. However, any
region in W� is �-reachable (for any �) from any other region due to a convexity argu-
ment regulating the �-trajectories through the cycle �. This argument no longer applies
for strongly connected components with more than one cycle. As a counterexample, in the
timed automaton in Figure 4, if we put Z =

{

(q2, R) ∣ R ∈ ℛA

}

, then

W = Z ∩ �X.(Fwd(X) ∩Bck(X)) =
{(

q2, (x ∈ [0, 3]) ∨ (x ∈ [4, 6])
)}

which is not convex (here Bck is the backward propagation of a set of zones). And it
should be clear that, from the state region (q2, x ∈ [4, 5]), no region within the A-zone
(q2, x ∈ [0, 3]) can be �-reached for all � > 0. More generally, reaching some region within
W does not give guarantee that all W is �-reachable.

x ∈ [4, 5]?

q1 q2 q3

x ∈ [5, 6]? x := 0

x := 0x ∈ [2, 3]?

Fig. 4. An example of a non-convex generalization of “stable sets” of [DK06].

5 Conclusions

We have presented a construction for solving the following safe implementation problem:
given a timed automaton A and some n-dimensional zone Z, does there exist a clock drift
� for which no trajectory in A in which clocks drifts with at most � units reaches Z? The
construction generalizes [Pur98], by allowing also the handling of non-closed constraints.
We also give a symbolic algorithm that builds the set of zones that are reachable with
arbitrarily small clock drifts.

Our algorithm works by constructing, symbolically, forward propagations of strongly
connected components in the region graph. Most of the constructions in our algorithm work
also with representations of sets of zones, like the clock decision diagrams of [LPWY99].
The only construction that could raise problems is t−Nghbr, which, as defined, can only be
applied to one DBM at a time. We are interested in finding ways to bypass this problem
for constructing an algorithm which is fully compatible with CDDs.

On the other hand, our technique of considering strongly connected components instead
of just cycles in the region graph can be easily applied to automata containing only closed

18

constraints, as in [Pur98,DK06]. It is possible that, in that setting, the above compatibil-
ity problem between t−Nghbr and CDDs be solvable in a easier way, since in the closed
constraints case, region neighborhoodness means regions with nonempty intersection.

Up to the author’s knowledge, there exist no algorithms allowing the symbolic com-
putation of the non-trivial strongly connected components in a graph, employing only the
set-based constructions that are used in reachability algorithms for timed systems – that
is, union, intersection, forward or backward propagation. Symbolic algorithms with good
complexity like [GPP03,BGS00] use a “pick” function which returns a single node in the
graph, and employ set difference. First, picking a region in a zone, though not an ex-
pensive operation, might prove to be a harmful operation w.r.t. set-based structures like
clock-difference diagrams. Secondly, set difference, in our setting, amounts to DBM sub-
traction, which is known not to be a “nice” operation on DBMs. Some heuristics for DBM
subtraction have been investigated in [DHLP06].

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994.
[AHV93] R. Alur, T. A. Henzinger, and M. Vardi. Parametric real-time reasoning. In Proceedings of STOC’93,

pages 592–601. ACM, 1993.
[AT05] K. Altisen and S. Tripakis. Implementation of timed automata: An issue of semantics or modeling? In

Proceedings of FORMATS’05, volume 3829 of LNCS, pages 273–288. Springer Verlag, 2005.
[ATP01] R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata. In Proceedings of

HSCC’01, volume 2034 of LNCS, pages 49–62. Springer Verlag, 2001.
[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, , and S. Yovine. Kronos: a model-checking tool

for real-time systems. In Proceedings of CAV’98, volume 1427 of LNCS, pages 546–550, 1998.
[BGS00] R. Bloem, H.N. Gabow, and F. Somenzi. An algorithm for strongly connected component analysis in

n log n symbolic steps. In Proceedings of FMCAD’00, volume 1954 of LNCS, pages 37–54, 2000.
[BLR05] P. Bouyer, Fr. Laroussinie, and P.-A. Reynier. Diagonal constraints in timed automata: Forward analysis

of timed systems. In Proceedings of FORMATS’07, volume 3829 of LNCS, pages 112–126. Springer
Verlag, 2005.

[DDMR04] M. DeWulf, L. Doyen, N. Markey, and J.F. Raskin. Robustness and implementability of timed au-
tomata. In Proceedings of FORMATS/FTRTFT’04, volume 3253 of LNCS, pages 118–133. Springer
Verlag, 2004.

[DDR05a] M. DeWulf, L. Doyen, and J.-F. Raskin. Systematic implementation of real-time models. In Proceedings
of FM’05, volume 3582 of LNCS, pages 139–156. Springer Verlag, 2005.

[DDR05b] M. DeWulf, L. Doyen, and J.F. Raskin. Almost asap semantics: from timed models to timed imple-
mentations. Formal Aspects of Computing, 17(3):319–341, 2005.

[DHLP06] A. David, J. Hakanson, K.G. Larsen, and P. Petersson. Model checking timed automata with priorities
with DBM subtraction. In Proceedings of FORMATS’06, volume 4202 of LNCS, pages 128–142, 2006.

[Dim06] C. Dima. Dynamical properties of timed automata revisited. Technical Report TR-2006-03, LACL,
Université Paris 12, 2006.

[DK06] C. Daws and P. Kordy. Symbolic robustness analysis of timed automata. In Proceedings of Formats’06,
volume 4202 of LNCS, pages 143–155, 2006.

[GPP03] R. Gentilini, C. Piazza, and A. Policriti. Computing strongly connected components in a linear number
of symbolic steps. In Proceedings of SODA’03, pages 573–582. ACM/SIAM, 2003.

[HHWT97] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for hybrid systems. Software
Tools for Technol. Transfer, 1:110–122, 1997.

[HKPV98] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid automata. J.
Comput. Syst. Sci, 57:94–124, 1998.

[LPWY99] K.G. Larsen, J. Pearson, C. Weise, and Wang Yi. Clock difference diagrams. Nord. J. Comput.,
6:271–298, 1999.

19

[LPY97] K. G. Larsen, Paul Petterson, and Wang Yi. Uppaal: Status & developments. In Proceedings of CAV’97,
LNCS, pages 456–459, 1997.

[Pur98] A. Puri. Dynamical properties of timed automata. In Proceedings of FTRTFT’98, volume 1486 of
LNCS, pages 210–227. Springer Verlag, 1998.

[WT97] H. Wong-Toi. Analysis of slope-parametric rectangular automata. In Hybrid Systems, volume 1567 of
LNCS, pages 390–413. Springer Verlag, 1997.

[Yov98] S. Yovine. Model-checking timed automata. In Lectures on Embedded Systems, volume 1494 of LNCS,
pages 114–152, 1998.

20

