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Abstract. We show that stopwatch automata are equivalent with timed shuffle expressions, an extension of
timed regular expressions with the shuffle operation. Sincethe emptiness problem is undecidable for stopwatch
automata, and hence also for timed shuffle expressions, we introduce a decidable subclass of stopwatch automata
called partitioned stopwatch automata. We give for this class an equivalent subclass of timed shuffle expres-
sions and investigate closure properties by showing that partitioned stopwatch automata are closed under union,
concatenation, star, shuffle and renaming, but not under intersection. We also show that partitioned stopwatch
automata are equivalent with distributed time-asynchronous automata, which are asynchronous compositions of
timed automata in which time may evolve independently.

1 Introduction

Timed automata [AD94] and their stopwatch extensions [HKPV98] are a widely accepted and
powerful model of real time systems. They are designed to model the interaction between con-
tinuous processes and discrete logic by means of continuoustime variables called clocks or
stopwatches. They were designed with the aim to translate tothe real-time setting as much as
possible from the classical automata/logic duality, whichis one of the central pillars in the model-
checking approach to formal verification [CGP99,BK08]. Forexample, logical characterizations
of timed languages are studied in [HRS98,Wil94], regular expressions in [ACM02,BP99] and
monoidal characterizations in [BPT03].

Timed automata models are applied in schedulability analysis [AM01,FMPY06,AAM06],
providing some interesting new results which improve classical worst-case analysis techniques.
It has first been observed in [AM02] that modeling preemptivescheduling may require the use
of stopwatches, and thus the algorithmic analysis of preemptive scheduling policies is somewhat
related with the construction of decidable subclasses of stopwatch automata. Preemptive schedul-
ing can also be expressed with regular expressions endowed with a shuffle operator, as suggested
in our previous paper [Dim05]. A third possibility consistsof networks of “time-asynchronous”
timed automata with independent time passage, first suggested in [Kri99]. Finally, a fourth ap-
proach is explored in [FKPY07], where the authors use timed automata with subtraction.

Our present study explores the connections between the firstthree above possibilities for
modeling preemption and/or time independence. We focus on the comparison between the ex-
pressive power of stopwatches, shuffle and independently evolving clocks. We also study closure
properties of the classes of languages constructed using the different formalisms.

We first show that timed regular expressions endowed with shuffle have the same expressive
power as stopwatch automata. The result presented here is given for automata working over timed
words. (The construction for automata over signals can be found in [Dim05].) We then restrict our

⊛ Preliminary results were presented in [Dim05,DL07].



attention to a subclass of stopwatch automata, the partitioned stopwatch automata, in which there
exist a partition of the set of stopwatches and in each location of the automaton, the set of active
stopwatches is an element of this partition. This subclass,which can also be seen as a subclass of
thecontrolled timed automataof [DZ98], has a decidable emptiness problem and is strictlymore
expressive than timed automata. We show that this subclass of stopwatch automata is language
equivalent with a subclass of timed shuffle expressions, called herefair shuffle expressions, in
which intersection can only be applied if one operand is an untimed regular expression – that is,
not containing the time binding operator. We also show that partitioned stopwatch automata are
not closed under intersection.

We then briefly investigate the power of diagonal constraints in partitioned stopwatch auto-
mata. Such constraints add no power when they are allowed to use only stopwatches belonging to
the same class. On the contrary, without this restriction, partitioned stopwatch automata become
equivalent with general stopwatch automata. We prove this result when both classes may contain
constraints with rational (not integer) constants. We givean example of a partitioned stopwatch
automaton with diagonal constraints using only integer constants for which we conjecture that its
language is not accepted by any general stopwatch automatonwhich uses only integer constants.

We then introducedistributed time-asynchronous automata, which are tuples of timed au-
tomata synchronized on input symbols and in which time passage is local to each automaton,
hence clocks in different components may be incremented with different values. Each automaton
owns a set of clocks which only the owner can reset, but everyone may check the value of ev-
eryone’s clocks. Discrete transitions serve for synchronization, and synchronizations take place
by jointly accepting an input symbol while testing global clock constraints1. A component of
a distributed time-asynchronous automaton may also execute internalε-transitions without syn-
chronization with transitions executed in other components. The distributed time-asynchronous
automata are inspired from [Kri99], being an intermediary step between the distributed timed
automata and the interleaved timed automata of the same cited paper [Kri99]. The class of dis-
tributed time-asynchronous automata presented here differs from the one in [DL07], in the sense
that we consider only clock resets to zero.

We then show that partitioned stopwatch automata are equivalent with distributed time-asyn-
chronous automata. The proof is done by distributing the centralized control of a partitioned stop-
watch automaton in the components of a distributed time-asynchronous automaton combined
with a communication mechanism between the components thatensures that each component
knows exactly what transition is currently simulated and which component simulates it. The
proof of this equivalence is more involved than in [DL07] where resetting a clock to1 could
be used for communication between components. The proof presented here requires a special
normal form for partitioned stopwatch automata (called herestate-region determinism), in which
special restrictions apply toε-transitions and to the relationship between the constraint and the
reset of a transition and the set of stopwatches owned by its source and target states.

The paper is divided as follows: in the second section we recall the notion of stopwatch au-
tomata and we introduce our class of partitioned stopwatch automata for which the reachability
problem is decidable. (This result is a corollary of resultson the decidability of the emptiness

1 Note that we do not consider here distributed alphabets, in the sense of [Zie87].
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problem for Controlled Timed Automata showed in [DZ98]; we include this subsection for self-
containedness concerns.) We also show that diagonal constraints added to partitioned stopwatch
automata make them equivalent with general stopwatch automata. We end this section by intro-
ducing the notion of state-region deterministic partitioned stopwatch automata and prove that
each partitioned stopwatch automaton can be brought to thisnormal form. In the third section
we recall the timed shuffle expressions and prove their equivalence with stopwatch automata for
timed words semantics. We then introduce the class of fair shuffle expressions and show their
equivalence with partitioned stopwatch automata. The fourth section serves us for the presen-
tation of the class of distributed time-asynchronous automata and for proving the equivalence
between distributed time-asynchronous automata and partitioned stopwatch automata. We also
show in this section the non closure under intersection of distributed time-asynchronous auto-
mata, which requires the introduction of the class of distributed time-asynchronous automata
with private clocksets, in which each component may only read its own clocks, and not the clocks
of the other components. In the fifth section we give an example of modeling, with distributed
time-asynchronous automata and fair regular expressions,of Round-Robin scheduling situations
and of timed processes sharing critical sections. We end with a section with conclusions.

Related Work.Timed regular expressions were first proposed in [ACM97] forregular languages
of signals, and the first Kleene theorem for timed automata was proved there (see also [ACM02]).
Also [BP99] and [BP01] proposed decomposition theorems fortimed automata, and [Dim99]
proposed regular expressions equivalent with event-clockautomata. Regular expressions for
stopwatch automata working on signals were first proposed in[Dim05].

Parallel compositions of timed automata were considered asearly as [AD94]. The paral-
lel composition assumes a common single time frame, and hence corresponds to intersection.
[Kri99] is the first to study an interleaved composition operator on timed automata.

Decidable classes of hybrid automata have been investigated in [HKPV98,DZ98], where it
has been observed that a clear partition between continuousvariables having different dynamics
is needed in order to have a decidable emptiness problem. Ourclass of partitioned stopwatch
automaton can be seen as a subclass of the Controlled Timed Automata of [DZ98]. However
our main concern here is not on decidability, but rather on the expressive power of this class.
Some newer developments are reported in [BH09], where the reachability and model-checking
problems are studied for a subclass of Controlled Timed Automata, which, when restricted to
automata utilizing only diagonal constraints, is a subclass of our partitioned stopwatch automa-
ta. We also mention [ABG+08], which investigates our class of distributed time-asynchronous
automaton for expressiveness over untimed languages.

2 Stopwatch automata and partitioned stopwatch automata

A timed word, also calledtimed event sequence, is a finite sequence of nonnegative numbers
and/or symbols fromΣ. For example, the sequence1.2 a 1.3 0.4 b denotes a behavior in which an
actiona occurs1.2 time units after the beginning of the observation, and afteranother1.3 + 0.4
time units actionb occurs. The lengthℓ(w) of a timed wordw is the sum of its subsequence of

3



reals, e.g.ℓ(1.2 a 1.3 0.4 b) = 1.2 + 1.3 + 0.4 = 2.9. Timed (event) languagesare then sets of
timed words.

Several operations on timed words will be used in this paper.The first is concatenation, which
extends the classic concatenation of untimed words by defining the concatenation of two reals
as their sum. For example,a 1.3 · 1.7 b c 0.4 = a(1.3 + 1.7)b c 0.4 = a 3 b c 0.4. Note that both
ε, the empty timed word, and the sequence consisting of the real 0 represent theidentityof this
concatenation.

The second operation on timed words isshuffle, which is formally defined as follows: for
each two timed wordsw1, w2, w1 w2 =

{

u1v1 . . . unvn | w1 = u1 . . . un, w2 = v1 . . . vn
}

. Both
concatenation and shuffle can be straightforwardly extended to languages, so, givenL1, L2 two
timed languages: we denoteL1 · L2 =

{

w1 · w2 | w1 ∈ L1, w2 ∈ L2

}

andL1 L2 =
{

w | w ∈
w1 w2, w1 ∈ L1, w2 ∈ L2

}

.
A third useful operation on timed languages isrenaming: it is the operation induced by a

function f : Σ → Σ ∪ {ǫ} which syntactically replaces symbols in a timed word with other
symbols, while leaving unchanged the reals composing the timed word. The renaming ofa ∈ Σ
with b ∈ Σ is denoted[a/b]. We also usedeletion, which removes a symbol from a timed word,
and consider it as a special case of renaming. The deletion ofa symbola ∈ Σ is denoted[a/ε].
Hence,[a/c, b/ε]

(

1.3 a 1.2 b 0.1 a
)

= 1.3 c 1.3 c.
The above presentation of timed words is very convenient forconstructing semantics to au-

tomata or regular expressions. However, for proofs of (in-)expressiveness, thetimed stamppre-
sentation is more convenient: given a timed wordw = t1a1 . . . tnantn+1, its timed stamp sequence
is the sequence of real numbers:

T (w) =
(

σ1(w), . . . , σn+1(w)
)

whereσj(w) =

j
∑

i=1

ti

All our automata use nonnegative real-valued variables that are calledclockswhen used in
timed automata, resp.stopwatcheswhen used in stopwatch automata. The values of such vari-
ables may inhibit or allow taking some transition.Clock or stopwatch constraintsare positive
boolean combinations of elementary constraints of the typex ∈ I, with x being a (clock, resp.
stopwatch) variable andI ⊆ R≥0 an interval with bounds inN ∪ {∞}. The set of constraints
with variables in a given setX (of clocksor stopwatches) is denotedConstr(X ).

Givenv : X → R≥0 andC ∈ Constr(X ), we denote as usualv |= C if C holds when all
occurrences of eachx ∈ X are replaced withv(x). We also denotev+ t (for t ≥ 0) the valuation
(v + t) : X → R≥0 defined by(v + t)(x) = v(x) + t for all x ∈ X . Clock, resp.stopwatch reset
is denoted as usual: given a valuationv : X → R≥0 and a subsetY ⊆ X , we denotev[Y := 0]
the clock valuation defined by

v[Y := 0](x) =

{

0 whenx ∈ Y

v(x) whenx 6∈ Y

Moreover, forY ⊆ X , we denotev
Y

the valuationv
Y
: Y → R≥0 defined byv

Y
(x) = v(x)

for all x ∈ Y . Finally, we denotev +Y t the valuation which increments all variables inY by t,
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and leaves all other variables unchanged:

(v +Y t)(x) =

{

v(x) + t whenx ∈ Y

v(x) otherwise

The set of valuations of stopwatches inX will be denoted in the sequel[X → R≥0]. Also the
identically zero clock valuation in[X → R≥0] is denoted0X .

Definition 1. A stopwatch automaton[HKPV98] is a tupleA = (Q,X , Σ, η, δ, Q0, Qf) where
Q is a finite set oflocations,X is a finite set ofstopwatches,Σ is a finite set of(action) symbols,
Q0, Qf ⊆ Q are sets ofinitial, resp.final locations,η : Q → P(X ) gives for each stateq a set
of stopwatches which areactivein q, andδ is a finite set of tuples (calledtransitions), of the form

q
C,a,X
−−−→ q′, whereq, q′ ∈ Q,X ⊆ X , a ∈ Σ∪{ε} andC is a stopwatch constraint inConstr(X ).

A timed automatonis a stopwatch automatonA = (Q,X , Σ, η, δ, Q0, Qf) such thatη(q) =
X , for anyq ∈ Q.

In the case of timed automata, the elements ofX will be referred to asclocksinstead of stop-
watches, and the componentη will be omitted in the tuple defining the automaton.

Informally, a stopwatch automaton can make time-passage transitions and discrete transi-
tions. In a time-passage transition with durationt, the location remains unchanged while all
stopwatchesthat are active in that locationadvance byt, and all the other stopwatches are kept
unchanged. In a discrete transitions location changes. Discrete transitions are enabled when the

current stopwatch valuationv satisfies the guardC of a certain transitionq
C,a,X
−−−→ q′ ∈ δ, and

when they are executed, the stopwatches in the reset componentX are set to zero.
Formally, thesemanticsof a stopwatch automatonA is a timed transition systemT (A) =

(Q, θ,Q0,Qf) whereQ = Q× [X → R≥0] represents the set of system states,Q0 = Q0×{0X}
is the set of initial states,Qf = Qf × [X → R≥0] is the set of final states, and

θ =
{

(q, v)
t
−→ (q, v′) | q ∈ Q, v′ = v +η(q) t with t ∈ R≥0

}

(1)

∪
{

(q, v)
a
−→ (q′, v′) | ∃q

C,a,X
−−−→ q′ ∈ δ with v |= C andv′ = v[X := 0]

}

(2)

Type 1 transitions are calledtime-passage transitions, whereas type 2 transitions are calleddis-

crete transitions. We also say that theA-transitionτA = q
C,a,X
−−−→ q′ ∈ δ generatestheT (A)-

transitionτT (A) = (q, v)
a
−→ (q′, v′) ∈ θ if the two transitions are related by the conditions on the

line 2 in the above definition ofθ.
The label of a discrete transition(q, v)

a
−→ (q′, v′) is a (a ∈ Σ ∪ {ε}). The label of a time-

passage transition(q, v)
t
−→ (q, v′) is t ∈ R≥0.

A trajectory in T (A) is a sequenceρ =
(

(qi−1, vi−1)
ξi
−→ (qi, vi)

)

1≤i≤2k
of transitions from

θ, alternating between time passage and discrete, that is,ξ2i−1 ∈ R≥0 andξ2i ∈ Σ ∪ {ε}. A run

in A is a chain of transitionsρ′ =
(

qi−1
Ci,ai,Xi−−−−→ qi

)

1≤i≤k
. The trajectoryρ is associated with

the runρ′ if the length ofρ is double the length ofρ′ and the2i-th discrete transitionin ρ is
generated by thei-th transition ofρ′.
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An accepting trajectory in T (A) is a trajectory which starts inQ0, ends inQf anddoes
not end with a time-passage transition. This is needed for synchronization purposes as it makes
visible the end of an accepted timed word.

Remark 1.Note that any stopwatch automaton can be transformed such that for each final state
q ∈ Qf there exists no outgoing transition leavingq. Unless stated differently, we will assume
this property for all stopwatch automata considered in thispaper.

An accepting trajectoryacceptsa timed wordw iff w is obtained by concatenating the la-
bels of the transitions in the trajectory. Thelanguage accepted byA is then the set of timed
words which are accepted by some accepting trajectory ofT (A). The language accepted byA
is denotedL(A). Two timed automata areequivalent iff they have the same language.

Definition 2. The class oftimed shuffle languagesis the class of timed languages which are
accepted by stopwatch automata.

The class oftimed regular languagesis the class of timed languages which are accepted by
timed automata.

The Figure 1 gives an example of a stopwatch automaton whose language is

L(A) =
{

t1at2bt3c | t1 + t3 = 1
}

.

Note that, by definition of an accepting trajectory, the automaton in Figure 1 cannot spend any
time in the last stateq4 when accepting a timed word.

true, a, ∅ true, b, ∅ q3q1 x = 1, c, ∅
{x}

q2 q4
{x} ∅ ∅

Fig. 1. A stopwatch automaton.

Remark 2.Very frequently we will abuse notation and calltrajectoryalso sequences of the form

ρ =
(

(qi−1, vi−1)
ξi
−→ (qi, vi)

)

1≤i≤2k
in which the alternation between time-passage transitions

and discrete transitions is not satisfied. It is straightforward how to transform such a sequence
into a trajectory in the sense of the above definition, eitherby merging two consecutive time-
passage transitions inρ, or by inserting zero time-passage transitions between twoconsecutive
discrete transitions inρ.

2.1 Partitioned stopwatch automata

The following subclass of stopwatch automata restricts theusage of stopwatches in a sense that
makes the language emptiness problem decidable. Namely, the set of stopwatches is partitioned
into classes such that, for each stateq, the set of stopwatches that are active inq is a class in this
partition.
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Definition 3. A partitioned stopwatch automatonis a stopwatch automaton in which

∀q, q′ ∈ Q, η(q) 6= η(q′) ⇒ η(q) ∩ η(q′) = ∅

An example of a stopwatch automaton is given in Figure 2, and an example of a partitioned
stopwatch automaton is given in Figure 3 below.

A2 -��
��
x1, x3 -

x1 ∈ ]0, 1[
a, ∅ ��
��
x2 -

x2 ∈ ]0, 1[
a, ∅ ��
��
x1 -

x1 = 1, a, ∅

��
��
x2, x3 -

x2 = 1 ∧ x3 = 1
a, ∅ ��
��
��
��

Fig. 2. A stopwatch automaton acceptingL2 = {t1at2at3at4a | t1, t2, t3, t4 ∈ ]0, 1[ , t1 + t3 = t2 + t4 = t1 + t4 = 1}

A3 -��
��
x1 -

x1 ∈ ]0, 1[
a, ∅ ��
��
x2 -

x2 ∈ ]0, 1[
a, ∅ ��
��
x1 -

a, x1 = 1, ∅

��
��
x2 -

a, x2 = 1, ∅

��
��n

Fig. 3. A partitioned stopwatch automaton acceptingL3 = {t1at2at3at4a | t1, t2, t3, t4 ∈ ]0, 1[ , t1 + t3 = 1 ∧ t2 + t4 = 1}

2.2 Decidability of the reachability problem for partition ed stopwatch automata

In this section we give the generalization of the region construction from [AD94] for partitioned
stopwatch automata.

We start by recalling the following result:

Theorem 1 ([HKPV98]). The emptiness problem for stopwatch automata is undecidable.

Turning now to decidability, recall that azone(see [Yov98]) is a nonempty convex set of
points inR≥0

n which characterized by a constraint of the formCZ =
∧

0≤i,j≤nxi−xj ∈ Iij, where
x0 = 0 andIij are intervals with integer bounds. We say thatCZ is theconstraint characterizing
the zoneZ. In the sequel, we consider only zones whose characterizingconstraints use variables
from a set of stopwatches (or clocks)X .

An M-region [AD94], with M ∈ N, is a zoneR for which there exists a subset of variables
Y ⊆ X such that some constraint characterizingR can be put in the following format:

CR =
∧

x∈Y
(x ∈ Ix) ∧

∧

x,y∈Y,x 6=y

(

x− y ∈ Ixy
)

∧
∧

x∈X\Y

(

x ∈ ]M,∞[
)

with the following properties:

– For eachx ∈ Y , eitherIx={α} with α∈N, α≤M , or Ix=]α, α+1[ with α∈N, α≤M−1,
– For eachx, y ∈ Y with x 6= y, eitherIxy = {α} with α ∈ Z, −M ≤ α ≤ M , or Ixy =
]α, α+ 1[ with α ∈ Z, −M ≤ α ≤ M − 1,

We denoteRegA(X ) the set ofM-regions over the stopwatches inX for the automatonA, where
M is the greatest constant appearing in a constraint ofA.

The following theorem adapts the well-known region construction of [AD94] for partitioned
stopwatch automata:
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Theorem 2. The reachability problem for the class of partitioned stopwatch automata is decid-
able.

Proof. Consider a partitioned stopwatch automatonA = (Q,Σ,X , η, δ, Q0, Qf ), denoten =
card

{

η(q) | q ∈ Q
}

the number of partitions of the set of stopwatchesX , and denote these
partitions asX1, . . . ,Xn. Theregion automatoncorresponding withA is:

RA =
(

Q× RegA(X1)× . . .× RegA(Xn), δR,R0,Rf

)

whereR0 =
{

(q0, 0X1
, . . . , 0Xn

) | q0 ∈ Q0

}

, Rf =
{

(qf , R1, . . . , Rn) | qf ∈ Qf , Ri ∈
RegA(Xi)

}

and

δR =
{

(q, R1, . . . , Rn) −→ (q, R′
1, . . . , R

′
n) | ∃(q,v)

ξ
−→(q′,v′)∈θ, ξ∈R≥0 ∪Σ ∪ {ε}

such that for all1 ≤ i ≤ n, Ri, R
′
i ∈ RegA(Xi) andv

Xi
∈ Ri, v

′
Xi

∈ R′
i

}

Here,θ is the transition relation of the timed transition systemT (A) associated withA.
It is easy to see thatL(A) is not empty if and only ifRA has at least one reachable final

state. ⊓⊔

2.3 Diagonal constraints in partitioned stopwatch automata

In this section we study the expressiveness power of diagonal constraints in partitioned stopwatch
automata. Recall that diagonal constraints are elementaryconstraints of the typex− y ∈ I, with
x andy being a (clock or stopwatch) variable andI ⊆ R≥0 an interval with integer bounds.

It is known that timed automata have the same expressive power with or without diagonal
constraints [BDFP04]. More precisely, given a timed automaton whose constraints utilize di-
agonal constraints, one may algorithmically construct a timed automaton (i.e. without diagonal
constraints) accepting the same language.

The same construction can be straightforwardly adapted to partitioned stopwatch automata
when diagonal constraints are allowed only between stopwatches belonging to the same parti-
tion. Formally, given a partition(Xi)1≤i≤n of the set of stopwatchesX , a (Xi)1≤i≤n-compatible
diagonal constraintis a constraint of the formx − y ∈ I for which there exists an indexi with
x, y ∈ Xi.

Proposition 1. The class of timed languages accepted by partitioned stopwatch automata using
boolean combinations of simple constraints and(Xi)1≤i≤n-compatible diagonal constraints is
the same with the class of timed languages accepted by partitioned stopwatch automata without
diagonal constraints.

The proof of this proposition is an easy adaptation of results from [BDFP04].
The situation is completely different when diagonal constraints are allowed to refer to stop-

watches in different components ofX . We prove here that the class of partitioned stopwatch
automata with diagonal constraints and the class of stopwatch automata with diagonal constraints
have the same expressive power, ifrational numbersare allowed to be used in the constraints. As
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a consequence, the emptiness problem is undecidable for partitioned stopwatch automata with
(unrestricted) diagonal constraints.

Formally, defineQ-shuffle languages to be the set of timed languages which are the semantics
of a shuffle regular expression in which the time-binding operator is allowed to utilize intervals
with rational bounds also. We will show that anyQ-shuffle language can be accepted by a parti-
tioned stopwatch automaton with diagonal constraints thatmay employ rational constants on its
transitions.

The proof idea is presented in Figures 4 and 5 below:

-

C1, a1, X1

�
�
�
�q, {x, y} -

C2, a2, X2

Fig. 4. A state of a stopwatch automaton with diagonal constraints

-

C1, a1, X1 ∪ {x}

"!
# 
qx, {x, x} -

true, ǫ, {y}

"!
# 
qy , {y, y} -

x = y ∧ C2, a2, X2

Fig. 5.Splitting the stateq in two states, one which isx-active and the othery-active.

The stateq in Figure 4 is split, in Figure 5 in two states,qx andqy, with x being active only
in qx andy active only inqy. We append a new stopwatchx to η(qx) and another oney to η(qy),
storing the time elapsed inqx, resp.qy. Then, when exitingqy, it is sufficient to check thatx = y
to ensure that the same interval of time has elapsed in both statesqx andqy, which would mean
that bothx andy have been incremented with the same amount of time. On the other hand, the
delay of staying inqx is meant to be the same as the delay of staying inq, which means that the
cumulated delay which is required for going from the transition labeledC1, a1, X1 to C2, a2, X2

in Figure 5 is thedoubleof the delay of staying inq in Figure 4.
This replication technique can be generalized for states with more than two active stop-

watches, and, if we assume that each state has a fixed numberk of active stopwatches (this
is possible by adding dummy stopwatches), then each state inthe old automaton is split into
the same number of replicas in the new automaton. The aim is toconstruct a new partitioned
stopwatch automaton satisfying the property that the old automaton accepts a timed wordw if
and only if the new automaton accepts the timed wordk ⊗ w, where where⊗ is the “homotety”
applied tow by incrementing each time passage with a factor ofk. More formally,

Forw = t1 a1 t2 . . . tn an we definek ⊗ w ask ⊗ w = kt1 a1 kt2 . . . ktn an.

Therefore, to show the desired equivalence, it is sufficientto divide the constants appearing in
the constraints of the initial automaton byk, to get the same language.

Theorem 3. Partitioned stopwatch automata with diagonal constraintshave the same expressive
power as stopwatch automata with diagonal constraints overthe class ofQ-shuffle languages.
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Proof. Take a stopwatch automatonA = (Q,X , Σ, η, δ, Q0, Qf ) with diagonal constraints. Sup-
pose, without loss of generality, that, for anyq, q′ ∈ Q, card(η(q)) = card(η(q′)). This request
can be satisfied by adding dummy stopwatches. Hence, fixk = card(η(q)), for anyq ∈ Q. We
use the following notation:η(q) = {xq

1, . . . x
q
k}, for anyq ∈ Q.

We construct a partitioned stopwatch automaton with diagonal constraints recognizingk ⊗
L(A). The partitioned stopwatch automaton with diagonal constraints has, as its set of states,
pairs of the form(q, i) where1 ≤ i ≤ k andq is a state ofA. The setη(q) = {xq

1, . . . x
q
k} is

distributed in the sequence of states(q, 1), . . . , (q, k), by letting stopwatchxq
i be active only in

the state(q, i). Furthermore, for each state(q, i) we add a new stopwatchxq
i for storing the time

elapsed in(q, i). This will be used to check that, when exiting from the last state(q, k), the same
time was elapsed in each of the states(q, i) with 1 ≤ i ≤ k. When exiting from the state(q, k)
we enter in state(q′, 1) if there exists a transition fromq to q′ in A.

Formally, we defineA′ = (Q′,X ′, Σ, η′, δ′, Q′
0, Q

′
f) as follows:

– Q′ = Q× {1, . . . , k}, Q′
0 = Q′

0 × {1} andQ′
f = Q′

f × {1}.
– X ′ = X ∪ {x | x ∈ X} andη(q, i) = {xq

i , x
q
i};

– δ′ is constructed as follows:

δ′
{

(q, k)
C,a,X
−−−→ (q′, 1) | ∃q

C′,a,X′

−−−−→ q′ ∈ δ with C = C ′ ∧
k
∧

i=2

xq
1 = xq

i andX = X ′ ∪ {xq′

1 }
}

∪
{

(q, i)
true,ǫ,{xqi+1

}
−−−−−−−→ (q, i+ 1) | 1 ≤ i ≤ k − 1

}

It is not too difficult to see that for any timed wordw, w ∈ L(A) if and only if k ⊗ w ∈

L(A′). Hence, if we further construct the automatonA′
1/k with L(A′

1/k) =
1

k
⊗L(A′), then then

L(A′
1/k) = L(A). This concludes the proof of our theorem. ⊓⊔

Hence we have the following corollary:

Corollary 1. Partitioned stopwatch automata with diagonal constraintsare strictly more expres-
sive than both partitioned stopwatch automata and fair shuffle expressions.

The reachability problem for partitioned stopwatch automata with diagonal constraints is
undecidable.

As a consequence, we have the following chain of equalities and inclusions, where we de-
noteTA the class of (timed) languages accepted by timed automata (with rational constraints),
PSA the class of languages accepted by partitioned stopwatch automaton,PSAD the class of
languages accepted by partitioned stopwatch automaton with diagonal constraints,SW the class
of languages accepted by stopwatch automata, andSWD the class of languages accepted by
stopwatch automata with diagonal constraints:

TA
Prop.3

( PSA
Prop.9

( SW
Conjecture

( SWD
Th.3&Cor.1

= PSAD

All these identities hold for automata with rational constraints.

10



We conclude this section by giving an example of a stopwatch automaton with diagonal con-
straints for which we conjecture that there exists no stopwatch automaton without diagonal con-
straints which accepts the same language. The example is in Figure 6 and accepts the language
{t1 a t2 a | t1 = t2}.

-��
��
x1 -

true, a, ∅

��
��
x2 -

x1 = x2, a, ∅

��
�����

Fig. 6. A stopwatch automaton with diagonal constraints recognizing the language{t1 a t2 a | t1 = t2}

2.4 Some useful normal forms for partitioned stopwatch automata

Before ending this section we give a couple of normal forms for partitioned stopwatch automata.
The first normal form states that each constraint and each reset on a transition concerns only
stopwatches owned by the target state. The second normal form is defined by the following
properties:

– No ε-transition can be preceded or succeded in zero time by another discrete transition.
– All sequences of transitions with symbols inΣ that are taken in zero time must be taken in

the same component, which is the component containing the first state in the sequence.
– Discrete transitions aredeterministicin the following sense: no two discrete transitions may

lead to two distinct states inT (A), both owning the same class of stopwatches and such that
the stopwatch values right after the transition lie in the same regions.

We also need the following notion: given a stopwatch automatonA and a stopwatchx of A,
a locationq in A is calledx-active if x ∈ η(q); otherwise, we will sayq is x-inactive. A run
whose intermediate locations arex-inactive locations is called anx-inactive run.

We begin with the statement and proof of the first normal form:

Lemma 1. Given a partitioned stopwatch automatonB = (Q,X , Σ, η, δ, Q0, Qf ) there exists a
partitioned stopwatch automatonB′ = (Q′,X , Σ, η′, δ′, Q′

0, Q
′
f) which has the same language

asB and has the following properties:

– For each transitionq
C,a,X
−−−→ r ∈ δ′ with r 6∈ Q′

f , we have thatX ⊆ η′(r) andC does not
constrain the clocks which are inactive inq – that is,C ∧ (x = α) is satisfiable for each
x 6∈ η′(q) andα ∈ R≥0.

– B′ satisfies the condition in Remark 1, i.e. no outgoing transitions are leaving final states.
– η′(q) = ∅ for eachq ∈ Qf .

Proof. The technique used to construct the automatonB′ is to remove all the constraints of the

form (x ∈ I) from the label of transitionsq
C,a,X
−−−→ r for whichx is inactive inq, and shift them

to the transitions that leaver. Since the value ofx does not change along anx-inactive run, the
conjunction of all the constraints onx along such a run only needs to be checked at the end of
the run. Some particular care needs to be taken when the automaton has circuits in whichx is
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inactive. But, fortunately, we only need to remember whether a run passes at least once through
a transition, further passages through the same transitionremain irrelevant for the above idea of
x-constraint shifting.

Resets are also shifted similarly: each reset of a stopwatchx at the beginning of a run which
passes throughx-inactive states can be shifted from the first transition of this run to its last
transition.

Another special care has to be taken with final states: constraints labeling transitions whose
target states are final should not be removed. But, by assuming that all final states have no out-
going transitions, we may gather all these states in a singlecomponent in which no stopwatch is
active, such that the first property be satisfied also for transitions entering final states.

In the sequel we construct the automatonB′ which satisfies the required properties for a
single stopwatchx. The whole construction can be iterated for the rest of stopwatches. We use
the following notations:

1. We denoteIB the set of intervals for whichx ∈ I occur on some transition inB.
2. Given a constraintC and a clockx, we denoteC \ x the constraint which is obtained fromC

by removing the atomic constraints referring tox.

Formally,B′ = (Q′ ∪Qf ,X , Σ, η′, δ′, Q′
0, Qf ) with:

– Q′ = Q× IB × {0, 1} andQf is a copy ofQf , Qf = {r | r ∈ Qf}.
In aB′-state(q, θ, i), the third component records the passage through a transition resetting
x during thex-inactive run which ends inq, that is,i = 1 if there exists such a resetting
transition andi = 0 otherwise. Wheni = 0, the second componentθ records the intervals
which constrained the clockx along thex-inactive run that ends inq. For i = 1, the same
component records the intervals which constrainedx before thex-reset. (The constraints that
occurafter anx-reset are not recorded, since the only relevant constraintonx after this reset
is x = 0.)

– η′(q, θ, i) = η(q) for (q, θ, i) ∈ Q′ andη′(q) = ∅ for q ∈ Qf .
– Q′

0 = Q0 × {∅} × {0}.
– The transition relation is composed of two types of transitions:

• (q, θ1, i1)
C,ξ,X
−−−→ (r, θ2, i2), if there existsq

C′,ξ,X′

−−−−→ r ∈ δ such that

i2 =











0 if r is x-active

1 if r is x-inactive andx ∈ X ′

i1 otherwise

C =

{

C ′ \ x if q is x-inactive

C ′ ∧
∧

I∈θ1
(x ∈ I) otherwise

θ2 =

{

∅ if q is x-active

θ1 ∪ {x ∈ I | x occurs inC ′ andi1 = 0} otherwise

• (q, θ, i)
C,ξ,X
−−−→ r for r ∈ Qf and there existsτ = q

C′,ξ,X′

−−−−→ r ∈ δ such thatC =
C ′ ∧

∧

I∈θ(x ∈ I) andX = X ′ ∪ {x} if i = 1, X = X ′ otherwise.
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The correctness of the construction relies on the fact that the occurrence of the same transition
along anx-inactive path does not need to be memorized more than once when computing the
second component of each state(q, θ, i) ∈ Q′. ⊓⊔

The second normal form is formalized in the following definition:

Definition 4. A state-region deterministic partitioned stopwatch automaton is a tupleA =
(Q,X , Σ, η, δ, Q0, Qf ), whose associated timed transition systemT (A) = (Q, θ,Q0,Qf) satis-
fies the following properties:

1. Final states have no outgoing transitions, i.e.,A satisfies the property in Remark 1.
2. Two transitions starting from the same state and labeled with the same region constraint must

lead to states associated with distinct classes of stopwatches – we call this propertylocation
determinism.
More formally, for any states(q, v), (q1, v′), (q2, v′) ∈ Q and eachξ ∈ Σ ∪ {ε}, if η(q1) =

η(q2), (q, v)
ξ
−→ (q1, v

′) and(q, v)
ξ
−→ (q2, v

′) thenq1 = q2.
3. There exists a unique initial stateq0 ∈ Q0 such that (a) all timed words that begin with a

sequence of discrete transitions separated by intervals oflength zero must be parsed starting
from q0, (b) all timed words that start with a non-zero time passage must be parsed starting
from initial states different fromq0, and (c) for each class of stopwatchesXi there exists
at most one initial state which is labeled withXi. We call this propertyinitial trajectory
determinism
More formally :

(a) For each trajectory(q0, 0X )
0
−→ (q, 0X )

ξ
−→ (q′, 0X ) with q0 ∈ Q0 we must haveq = q0.

(b) For each trajectory(q, 0X )
t
−→ (q, v)

ξ
−→ (q′, v′) with t > 0 and q ∈ Q0 we must have

q 6= q0.

(c) For each pair of trajectories(q1, 0X )
t
−→ (q1, v)

ξ
−→ (q′, v′) and (q2, 0X )

t
−→ (q2, v)

ξ
−→

(q′, v′), if η(q1) = η(q2) andq1, q2 ∈ Q0 thenq1 = q2.
4. If two consecutive discrete transitions are taken in zerotime, then none of them may be labeled

with ε, that is, for each trajectory inT (A), (q1, v1)
ξ1
−→ (q2, v2)

ξ2
−→ (q3, v3) with ξ1, ξ2 6∈ R≥0,

we have thatξ1, ξ2 ∈ Σ.
5. In any sequence of discrete transitions separated by zerotime, the source state of each tran-

sition owns the same set of stopwatches. Formally, for each trajectory inT (A), (q1, v1)
a1−→

(q2, v2)
a2−→ (q3, v3) with a1, a2 ∈ Σ, we have thatη(q1) = η(q2).

The second normal form is ensured by the following:

Lemma 2. Given a partitioned stopwatch automatonA we can effectively compute a state-
region deterministic partitioned stopwatch automatonB with L(A) = L(B).

Proof. We will start with a partitioned stopwatch automaton and modify it in four stages, each
stage adding one extra property between the five above. First, by means of Lemma 1, we assume

that each transitionq
C,ξ,X
−−−→ r has the property thatC andX refer only to the stopwatches that

are active inr.
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Secondly, we assume thatA is in fact transformed using the region construction for parti-

tioned stopwatch automata. More formally, we assume that, for any transitionq
C,ξ,X
−−−→ r ∈ δ

with η(r) = Xi, there exists a regionRi ∈ RegA(Xi) such thatC is a defining constraint forRi,
and also each transition inA is reachable, that is, there exists an accepting run that contains that
transition and which is associated with at least one accepting trajectory.

Thirdly, we will assume that each componentXi contains a distinguished stopwatchx0
i that

is reset before entering each stateq ∈ Q owningXi (i.e. η(q) = Xi). Hence, on each transition

q
C,ξ,X
−−−→ r ∈ δ, the (region) constraintC either impliesx0

i = 0 or is such thatC ∧ (x0
i = 0) is

unsatisfiable. For convenience, for any set of stopwatchesX, we denoteC
X

the subconstraint
of C involving only clocks inX; alsoC ⊆ (x ∈ I) denotes situations in which the constraint
C ∧ (x 6∈ I) is unsatisfiable.

The fourth property in the definition of state-region determinism can be obtained as follows:

we remove all transitionsq
C,ε,X
−−−→ r with C

x0
i

= (x0
i = 0) whereη(r) = Xi (which are exactly

the ε-transitions taken after a time lapse of0 in source stateq), by replacing them with other
constraints that simulate sequences ofε-transitions that are taken in zero time. Formally, the
construction is the following: denote first

δε = {q
C,ε,X
−−−→ r | ∃i such thatη(r) = Xi andC

x0
i

= (x0
i = 0)}

Then we replaceδ with the set of transitionsδ′′ defined as follows:

– q
C,ξ,X
−−−→ r ∈ δ′′ if either q

C,ξ,X
−−−→ r ∈ δ \ δε or there exists a run(qj−1

Cj ,ξj ,Xj

−−−−−→ qj)1≤j≤m

in A with ξj0 ∈ Σ for somej0 ≤ m andξj = ε for all j 6= j0, ξm = ξ, q0 = q, qm = r,
C =

∧

1≤j≤mCj and if we denoteij the index withη(qj) = Xij thenC1 x0
i1

⊆ (x0
i1
> 0) and

for all j ≥ 2, Cj x0
ij

= (x0
ij
= 0).

Also we replaceQ0 with a new set of initial statesQ′
0 defined as follows:

Q′
0 =

{

r ∈ Q | there exists a run
(

qj−1
Cj ,ξj ,Xj

−−−−−→ qj
)

1≤j≤m
in A with q0 ∈ Q0, qm = r,

and for allj, ξj = ε, Cj |= 0X
}

Note that the automaton obtained still satisfies the property in Remark 1.
The fifth property in Definition 4 is obtained by modifying theautomaton obtained above

along the following ideas: first, whenever a transitionq
C,a,X
−−−→ r with some constraintx0

i = 0 is
taken (which, by the above construction, means thata 6= ε), its target state will be redirected to
a copy ofr which will be associated with the same set of stopwatches asq. In order to keep the
properties from Lemma 1 satisfied after this, we need to record also in this state the constraintC
and the reset componentX, so as to postpone their satisfaction until the moment when the set of
stopwatchesη(r) will be encountered again, or until a final state is reached.

Formally, considering that we start with an automatonA satisfying property 4 in Defini-
tion 4 and the properties in Lemma 1, we build the partitionedstopwatch automatoñA =
(Q̃, Σ, X̃ , δ̃, η̃, Q̃0, Q̃f) with
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1. Q̃ =
{

(q, C,X, i) | q ∈ Q,C occurs on some transition ofδ,X ⊆ X , 0 ≤ i ≤ n
}

.
States of the type(q, C,X, 0) are transient (that is, control may stay only for 0 time units
in such states), and occur during sequences of transitions taken in zero time, starting from
componenti. States of the type(q, C,X, i) with 1 ≤ i ≤ n are persistent and have the
property that all transitions leaving such states must ensure thatx0

i > 0 whereη(q) = Xi.
2. Q̃0 = {(q, C,X, i) ∈ Q̃ | q ∈ Q0, 0 ≤ i ≤ n}.
3. Q̃f = {(q, C,X, i) ∈ Q̃ | q ∈ Qf , 0 ≤ i ≤ n}.
4. η̃(q, C,X, i) = Xi for 1 ≤ i ≤ n, andη̃(q, C,X, 0) = η(q).
5. The transition relation is composed of tuples of the following types:

(a) (q, C1, X1, i1)
C,a,X
−−−→ (r, C2, X2, i2) if i1 ≥ 1 and there existsq

C′,a,X′

−−−−→ r ∈ δ such that
C = C ′

Xi1

∧ (x0
i1
= 0), C2 = C1 ∧ C ′

X\Xi1

,

i2 =

{

i1, if η(q) 6= Xi1

random choice between0 andi1, otherwise

X =

{

(X ′ ∩ Xi1) ∪ {x0
i1
}, if i1 = i2

(X ′ ∩ η(r)) ∪ {x0
j}, if i2 = 0 andη(r) = Xj

X2 =

{

X1 ∪ (X \ Xi1) if i1 = i2

X1 ∪ (X \ η(r)) otherwise

(b) (q, C1, X1, 0)
C,a,X
−−−→ (r, C2, X2, i) if there existsq

C′,a,X′

−−−−→ r ∈ δ such that if we denote
j1, j2 the indices withη(q) = Xj1 andη(r) = Xj2 theni ∈ {0, j1, j2} is an arbitrary value,
C = C ′

η(q)
∧ C1 η(q)

∧ (x0
j1 > 0), C2 = C1 X\Xi

∧ C ′
X\Xj1

,

X =

{

(X1 ∪X ′ ∪ {x0
i }) ∩ Xi if i 6= 0

(X1 ∪X ′ ∪ {x0
j2
}) ∩ η(r) otherwise

X2 =

{

(X1 ∪X) \ Xi if i 6= 0

(X1 ∪X) \ η(r) otherwise

Remark 3.Note that the above construction has the property that the set of initial states is parti-

tioned,Q̃0 = Qt
0 ∪Qp

0 with Qt
0 ∩Qp

0 = ∅ and such that for eachq ∈ Q̃0, if (q, 0X )
t
−→ (q, v)

ξ
−→

(q′, v′) is a trajectory inT (Ã) with q ∈ Q̃0 thent = 0 if and only if q ∈ Q̃t
0.

Also, the property in Remark 1 is preserved by this construction, with the extra property that
there exists a unique stopwatch that is active only in the final states.

Finally, the properties 2 and 3 in Definition 4 can be obtainedby a subset construction:
starting with the automatoñA already satisfying properties 4 and 5, we build the automaton
Â = (Q̂, Σ, X̂ , δ̂, η̂, Q̂0, Q̂f) with

1. Q̂ = {S ⊆ Q̃ | there existsi with η(q) = Xi for all q ∈ S} ∪ {S | S ⊆ Q̃}.
The last type of macro-states is used at the beginning of trajectories which start with a se-
quence of discrete transitions taken in zero time, hence theset of stopwatches which is asso-
ciated with these macro-states is not essential.
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2. Q̂0 = {Qt
0} ∪ {S ⊆ Qp

0 | ∃i with η(q) = Xi for all q ∈ S}.
3. Q̂f = {S ∈ Q̂ | S ∩Qf 6= ∅}.
4. X̂ = X ∪ {x}, wherex is an extra stopwatch used only in the macro-states at the beginning

of trajectories which start with a sequence of discrete transitions taken in zero time.
We also partitionX̂ asX̂ =

⋃

1≤i≤n+1 X̂i with X̂i = Xi for i ≤ n andX̂n+1 = {x}.

5. For eachS ∈ Q̂, η(S) = η(q) for someq ∈ S, and for eachS ∈ Q̂, η(S) = Xn+1 = {x}
(note the comment on the first item above).

6. The transition relation is:

δ̂ =
{

S
C,a,X
−−−→ R | ∃i, 1 ≤ i ≤ n s.t.R = {r ∈ Q̃ | η(r) = Xi, ∃q ∈ S with q

C,a,X
−−−→ r}

}

∪
{

S
(x=0),a,X
−−−−−−→ R | R = {r ∈ Q | there existsq ∈ S with q

C,a,X
−−−→ r

andC ∧ (x = 0) is satisfiable for eachx ∈ X}
}

Note again that the resulting automaton satisfies the condition in Remark 1, since, due to Remark
3 above, final states can only be grouped with other final states in Q̂. This ends the proof of
Lemma 2. ⊓⊔

3 Regular expressions for stopwatches

In this section we present the class of timed shuffle expressions and their equivalence with stop-
watch automata. We also give a class of timed shuffle expressions which are equivalent with
partitioned stopwatch automata.

Definition 5. The class oftimed shuffle expressionsis the following:

E ::= a | t | E + E | E ·E | E ∧ E | E∗ | 〈E〉I | E E | [a/b]E

where ,a ∈ Σ, b ∈ Σ ∪ {ε} and I is an interval with a nonnegative integer bound and a
nonnegative integer or infinite upper bound.

A timed regular expressionis a timed shuffle expression constructed without the operator
. Anunconstrained expressionis a timed shuffle expression constructed without the operator

〈 〉I .

The〈 〉I operator reads as thetime binding operator.
Thesemanticsof a timed shuffle expression is given by the following rules:

‖a‖ =
{

a
}

‖t‖ =
{

t | t ∈ R≥0

}

‖E1 + E2‖ = ‖E1‖ ∪ ‖E2‖ ‖E∗‖ = ‖E‖∗

‖E1 ∧ E2‖ = ‖E1‖ ∩ ‖E2‖ ‖〈E〉I‖ =
{

w ∈ ‖E‖ | ℓ(w) ∈ I
}

‖E1 · E2‖ = ‖E1‖ · ‖E2‖ ‖E1 E2‖ = ‖E1‖ ‖E2‖

‖[a/b]E‖ =
{

[a/b](w) | w ∈ ‖E‖
}

wherea ∈ Σ andb ∈ Σ ∪ {ε}.
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Example 1.The expressionE1 = [z1/ε][z2/ε]
(

(〈z1taz1tc〉1 z2tb) ∧ z1taz2tbz1tc
)

represents
the language of the automatonA from Figure 1.

Note, in this example, the need to “duplicate” each symbol: if we did not use the additional
symbolsz1 andz2, we would not be able to correctly “insert” the first subexpression of the shuffle
“within” the second, i.e., the shuffle expressionE2 =

(

〈tatc〉1 tb
)

∧ tatbtc, is not equivalent
with the automaton in Figure 1. To see this, note that the shuffle expressionE2 is equivalent with
the timed regular expressionE3 = 〈tatb〈t〉[0,1]c〉[1,∞[, which is obviously not equivalent with
the stopwatch automaton in Figure 1. The problem lies in the fact that the duration beforeb in
the shuffled subexpressiontb must not “mix” with the other durations. The use of the additional
symbolsz1 andz2 in Example 1 is essential in forbidding this mixing.

Remark 4.Note that an unconstrained expression still has some timinginformation, because it
may contain two adjacent symbols fromΣ, which would mean that the two symbols have to be
separated by a zero time delay. For example, all the timed words that are in the semantics of the
expressiontabtc have the property thata andb occur “at the same time”, witha precedingb, in
the sense ofweakly monotonic timeof [PH98].

We recall first the following theorem from [ACM02]:

Theorem 4. Timed regular expressions have the same expressive power astimed automata.

We will use also the following result which relates unconstrained expressions with a spe-
cial type of timed automata, called herezero-constrained timed automata. These are timed
automata containing a single clock which is reset on every transition and whose constraints are
only true or x = 0.

Proposition 2 (Kleene theorem for zero-constrained timed automata). The class of uncon-
strained expressions is equivalent with the class of zero-constrained timed automata.

Proof. Let us first observe that zero-constrained timed automata are a strict subclass of the real-
time automata from [Dim01], which are timed automata with a single clock which is reset on
each transition. This means that one may actually constructa real-time regular expression in the
sense of [Dim01], which will only contain time binding operators of the type〈·〉0 or 〈·〉[0,∞[.

The last type of time binding operators can be removed from the expressions. On the other
hand, note that, for any timed regular expressionE, if we denoteu(E) the expression resulting
by removing allt atoms fromE, then:

‖〈E〉0‖ = ‖u(E)‖

This means that the operators〈·〉0 are also expressible without time binding operators, fact which
ends the proof of the inverse inclusion.

For the direct inclusion, it’s not hard to see then that for each timed regular expression not in-
volving the time-passage symbolt, we can construct a zero-constrained timed automaton which
tests, at each transition, that the clock is zero, and resetsit immediately.
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On the other hand, for the expressiont the construction of an equivalent timed automaton
actually builds a zero-constrained timed automaton which has atrue constraint when entering its
final states.

Then, the constructions for union, concatenation and star for real-time automata in [Dim01]
also apply for zero-constrained timed automata, and the results are still zero-constrained timed
automata. The construction for intersection is also easilyadaptable from the case of classical
finite automata, and still yields zero-constrained timed automata. It only remains to give a con-
struction proving that shuffle of zero-constrained timed automata yields zero-constrained timed
automata too.

To this end, consider two zero-constrained timed automataA1 =
(

Q1, Σ, {x1}, δ1, Q
1
0, Q

1
f

)

andA2 =
(

Q2, Σ, {x2}, δ2, Q
2
0, Q

2
f

)

. By state-splitting, we may ensure that each stateq1 ∈ Q1

is either transient, hence all its outgoing transitions arelabeled with(x1 = 0), or all its outgoing
transitions are labeled withtrue. The same can be ensured forA2.

The automaton recognizingL(A1) L(A2) is A =
(

Q1 ×Q2, Σ, {x}, δ, Q0, Qf

)

where:

– Q0 = Q1
0 ×Q2

0 andQf = Q1
f ×Q2

f .
– The transition relation is composed of the following tuples:

• (q1, q2)
x∈I,a,{x}
−−−−−→ (q′1, q2) if q1

x1∈I,a,{x1}
−−−−−−−→ q′1 ∈ δ1 andq2 is persistent.

• (q1, q2)
x∈I,a,{x}
−−−−−→ (q1, q

′
2) if q2

x2∈I,a,{x2}
−−−−−−−→ q′2 ∈ δ2 andq1 is persistent.

• (q1, q2)
(x=0),a,{x}
−−−−−−→ (q′1, q

′
2) if both q1 andq2 are transient.

Note that a tuple(q1, q2) formed of a transient state inA1 and a persistent state inA2 becomes
a persistent state inA.

This ends the proof of this proposition. ⊓⊔

The following theorem gives the generalization of Asarin, Caspi & Maler’s result [ACM02]
for the class of timed shuffle languages.

Theorem 5. Timed shuffle expressions have the same expressive power as stopwatch automata.

Proof. For the direct inclusion, the union, intersection, concatenation, star, time binding and
renaming constructions from [ACM97,ACM02] can be easily extended to stopwatch automata.
We will only give here the construction for the shuffle of two stopwatch automata, which is a
straightforward generalization of the construction at theend of Proposition 2.

So take two automataAi = (Qi,Xi, Σ, ηi, δi, Q
i
0, Q

i
f ) (i = 1, 2) with X1 ∩ X2 = ∅. The

automaton acceptingL(A1) L(A2) is thenA = (Q,X , Σ, η, δ, Q0, Qf) where

– Q = Q1 ×Q2 × {1, 2} andX = X1 ∪ X2.
– Q0 = Q1

0 ×Q2
0 × {1, 2} andQf = Q1

f ×Q2
f × {1, 2}.

– η : Q → P(X1 ∪ X2) is defined byη(q1, q2, i) = ηi(qi).
– The transition relation is defined as follows:

δ =
{

(q1, q2, 1)
C,a,X
−−−→ (q′1, q2, 1) | q1

C,a,X
−−−→ q′1 ∈ δ1, a ∈ Σ ∪ {ε}

}

∪
{

(q1, q2, 2)
C,a,X
−−−→ (q1, q

′
2, 2) | q2

C,a,X
−−−→ q′2 ∈ δ2, a ∈ Σ ∪ {ε}

}

∪
{

(q1, q2, 1)
true,ε,∅
−−−−→ (q1, q2, 2), (q1, q2, 2)

true,ε,∅
−−−−→ (q1, q2, 1) | q1 ∈ Q1, q2 ∈ Q2

}
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The proof of the reverse inclusion is a two-step proof: the first step involves the decompo-
sition of each stopwatch automaton withn stopwatches into an intersection ofn one-stopwatch
automata – similarly with the proof of the Kleene theorem fortimed automata [ACM02]. The
second step shows how to construct a timed shuffle expressionequivalent with an automaton
with one stopwatch.

The decomposition step requires a preliminary relabeling of the transitions ofA such that two
different transitions bear different labels. This relabeling is done in the classical way [ACM97]:
we useδ as the new set of transition labels, hence obtaining the stopwatch automatonÃ =
(Q,X , δ, η, δ̃, Q0, Qf ) in which

δ̃ =
{

q
C,q

C,a,X
−−−→r,X

−−−−−−−−→ r | q
C,a,X
−−−→ r ∈ δ

}

(3)

ThenL(A) = λ(L(Ã)) whereλ is the renaming defined byλ : δ → Σ ∪{ε}, λ(q
C,a,X
−−−→ r) = a.

We may then decomposẽA inton automataAi = (Q, {xi}, Q, ηi, δi, Q0, Qf ) having a single
stopwatch, withηi(q) = η(q) ∩ {xi} and δi is a copy ofδ̃ in which the guard and the reset
component of each tuple is a projection on{xi}. Hence

L(A) = λ
(

L(A1) ∩ . . . ∩ L(An)
)

The proof of this identity is similar to the case of timed automata [ACM02].
For the second step, suppose thatB = (Q, {x}, Σ, η, δ, Q0, Qf) is an automaton with a single

stopwatch in which all transitions have distinct labels.
Let us note first the following corollary of Lemma 1:

Corollary 2. Given a one-stopwatch automatonB = (Q, {x}, Σ, η, δ, Q0, Qf ) there exists a
one-stopwatch automatonB′ = (Q′, {x}, Σ, η′, δ′, Q′

0, Q
′
f) which has the same language asB

and in which for each pair of locationsq, r ∈ Q′ with x being inactive in bothq and r, if

q
C,a,X
−−−→ r ∈ δ′ andr 6∈ Qf thenC = true andX = ∅.

This result follows easily if we observe that a one-stopwatch automaton is in fact a partitioned
stopwatch automaton. We will use this result in our proof of the reverse inclusion as follows:

We wish to decomposeB into three automata such that:

L(B) =
(

L(B1) L(B2)
)

∩ L(B3) (4)

In this decomposition,B2 is an untimed automaton,B3 is a zero-constrained timed automaton,
andB1 is a “one-and-a-half-clock” timed automaton, that is, a timed automaton with two clocks
in which one of the clocks can only be compared with zero, and,in this sense, serves only for
checking that some states are transient.B1 will carry the duration constraints ofx (the stopwatch
of B), whileB2 will carry the sequential properties within the states in which x is inactive.

The task ofB3 is to correctly connect the sequences of states in whichx is active with those
in whichx is inactive.B3 removes, similarly with Example 1, any shuffling of a run inB1 with
a run inB2 in which some time passage in a state ofB1 mixes with some time passage in a state
of B2. To this end, we will first duplicate all transitions inB, such that each symbola ∈ Σ is
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preceded by a duplicate symbola in a copy ofΣ. This is done by introducing, for each transition,
a new state in which the control stays for 0 time units. The useof the new symbolsa is the same
as the extra symbolsz1, z2 in Example 1. This process requires the introduction of a newclock
y, which tests that eacha is preceded in zero time by the correspondinga.

Formally, we replaceB with B = (Q ∪ δ, {x, y}, Σ ∪Σ, η, δ, Q0, Qf ) where

– For eachq ∈ Q, η(q) = {y}, and for eachq
C,a,X
−−−→ r ∈ δ, η(q

C,a,X
−−−→ r) = η(q).

– The transition relation is

δ =
{

q
C,a,X∪{y}
−−−−−−→ τ, τ

(y=0),a,∅
−−−−−→ r | τ = q

C,a,X
−−−→ r ∈ δ

}

We straightforwardly have:

L(B) =
{

t1 a1 a1 t2 a2 a2 . . . tn an an | t1 a1 t2 a2 . . . tn an ∈ L(B)
}

Note also thatL(B) = λ′(L(B)) whereλ′ : Σ ∪ Σ → Σ ∪ {ε} is the renaming defined by
λ′(a) = a, λ′(a) = ε for all a ∈ Σ. Therefore our goal changes to finding automataB1,B2 and
B3 such thatL(B) =

(

L(B1) L(B2)
)

∩ L(B3).
The first timed automaton isB1 =

(

Q,Σ, {x, x′}, δ1, Q0, Qf

)

whereδ1 consists of the fol-
lowing tuples:

– q
C,a,X
−−−→ r, if both q andr arex-active or bothx-inactive andq

C,a,X
−−−→ r ∈ δ.

– q
C,a,X∪{x′}
−−−−−−→ r, if q is x-active andr is x-inactive andq

C,a,X
−−−→ r ∈ δ.

– q
C∧(x′=0),a,X
−−−−−−−−→ r, if q is x-inactive andr is x-active andq

C,a,X
−−−→ r ∈ δ.

We may characterize the language ofB1 as follows:L(B1) contains a timed wordw iff there

exists a trajectory inB, θ =
(

(qj−1, vj−1)
ζj
−→ (qj, vj)

)

1≤j≤k
and a decomposition ofw asw =

ζ ′1ζ
′
2 . . . ζ

′
k such that

ζ ′j =

{

ζj if ζj ∈ Σ or
(

ζj ∈ R andqj−1 is x-active,
)

0 otherwise

The second timed automaton isB2 =
(

δ ∪ Qf , Σ, {y}, δ2, Q
2
0, Qf

)

whereQ2
0 =

{

q
C,a,X
−−−→

r ∈ δ | q ∈ Q0

}

and the transition relationδ2 is composed of the following tuples:

– τ
true,a,{y}
−−−−−→ τ ′ whereτ = q

C,a,X
−−−→ r, τ ′ = r

C′,a′,X′

−−−−→ s andq is x-inactive.

– τ
(y=0),a,∅
−−−−−→ τ ′ whereτ = q

C,a,X
−−−→ r, τ ′ = r

C′,a′,X′

−−−−→ s andq is x-active.

– τ
true,a,∅
−−−−→ r whereτ = q

C,a,X
−−−→ r with r ∈ Qf andq is x-inactive.

– τ
(y=0),a,∅
−−−−−→ r whereτ = q

C,a,X
−−−→ r with r ∈ Qf andq is x-active.
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Similarly to the case ofB1, we may characterize the language ofB2 as follows:L(B2) con-

tains a timed wordw iff there exists a trajectory inB, θ =
(

(qj−1, vj−1)
ζj
−→ (qj, vj)

)

1≤j≤k
and a

decomposition of asw = ζ ′1ζ
′
2 . . . ζ

′
k such that

ζ ′j =

{

ζj if ζj ∈ Σ or
(

ζj ∈ R andqj−1 is x-inactive
)

0 otherwise

The third automaton isB3 = (Q∪ δ, {y′}, Σ ∪Σ, δ3, Q0, Qf) where the transition relation is

δ3 =
{

q
true,a,{y′}
−−−−−−→ τ, τ

(y′=0),a,{y′}
−−−−−−−→ r | τ = q

C,a,X
−−−→ r ∈ δ

}

The characterization ofL(B3) is the following: a wordw belongs toL(B3) iff there exists

in B a trajectoryθ =
(

(qj−1, vj−1)
ζj
−→ (qj , vj)

)

1≤j≤2k
such thatw = ζ ′1ζ

′
2 . . . ζ

′
4k where for all

1 ≤ i ≤ k,

ζ ′4i−3 ∈ R≥0 ζ ′4i−2 = ζ2i

ζ ′4i−1 = 0 ζ ′4i = ζ2i

It is then easy to note that

L(B) =
(

L(B1) L(B2)
)

∩ L(B3)

The Kleene theorem for timed automata [ACM97] ensures the existence of timed regular
expressions equivalent with each of the three automata (B1. B2 andB3), fact which ends our
proof. ⊓⊔

Since the equivalence between stopwatch automata and timedshuffle expressions is effective,
we also get the following result:

Theorem 6. The problem of checking for emptiness the semantics of a given timed shuffle ex-
pression is undecidable.

The following result, which can be found in [Dim05], strengthens the undecidability theorem:

Theorem 7. The emptiness problem for timed shuffle expressions withoutrenaming is undecid-
able.

The proof of this theorem is based on the fact that, similar tostopwatch automata, timed
shuffle expressions without renaming may induce more general linear constraints than those
induced by timed regular expressions. As an example, consider the following expression

E1/2 = 〈atâ btb̂〉1ctĉ dtd̂ etê ∧
(

atâ〈btb̂ ctĉ etê〉1 dtd̂
)

∧

atâ btb̂〈ctĉ dtd̂〉1etê ∧ atâ btb̂ ctĉ〈dtd̂ etê〉1 (5)
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Note that

‖E1/2‖ =
{

at1â bt2b̂ ct3ĉ dt4d̂ et5ê | t1 = 2t3, t1 + t2 = 1 = t3 + t4, t3 = t5
}

As this example suggests, time shuffle expressions without renaming are able to express divi-
sion by 2, fact which is instrumental in proving the undecidability of the emptiness problem for
stopwatch automata in [HKPV98].

We end this section with the following property:

Proposition 3. Timed shuffle expressions without renaming are more expressive than timed reg-
ular expressions.

Proof. We will prove that the semantics of the following expressioncannot be accepted by a
timed automaton:

E0 = 〈atâbtb̂〉1ctĉ ∧
(

〈atâctĉ〉1 btb̂
)

We rely on the following Proposition (that is proved e.g. in [OW03,Dim03]) saying roughly
that timed words having the same untiming and which satisfy the same timing constraints can-
not be distinguished by timed automata. Here,⌊α⌋ denotes the integral part andfrac(α) is the
fractional part of the real numberα ∈ R. Also, for a timed wordw = t1a1 . . . tnan, we denote
wij = tiai . . . tjaj, and recall the notationℓ(w) =

∑

1≤i≤n ti.

Proposition 4. Considerw = t1a1 . . . an−1tnan and w′ = t′1a1 . . . an−1t
′
nant

′
n+1, two timed

words. Suppose further that for all1 ≤ i ≤ j ≤ n,
⌊

ℓ(wij)
⌋

=
⌊

ℓ(w′
ij)
⌋

and frac
(

ℓ(wij)
)

6= 0 if and only if frac
(

ℓ(w′
ij)
)

6= 0 (6)

Then, for any timed automatonA, w ∈ L(A) if and only ifw′ ∈ L(A). Moreover, the two
timed words are accepted along the same run inA.

We may then apply this remark to the two timed wordsw = a 0.5 â b 0.5 b̂ c 0.5 ĉ ∈ ‖E0‖ and
w′ = a 0.3 â b 0.7 b̂ c 0.3 ĉ 6∈ ‖E0‖. Clearly,w andw′ meet the condition (6). By contradiction,
this implies that no timed automaton (and hence no timed regular expression) can be equivalent
toE0. ⊓⊔

Along the lines of Proposition 3, we may also prove that the timed language in Figure 3 is not
timed regular: takew1 = 0.5a0.5a0.5a0.5a andw2 = 0.2a0.6a0.8a0.4a, and observe that they
both satisfy the conditions in Proposition 4, butw1 ∈ L(A3) andw2 6∈ L(A3). Hence,L(A3) is
not timed regular.

As a corollary, partitioned stopwatch automata are strictly more expressive than timed au-
tomata.

3.1 Fair shuffle expressions

Definition 6. The set offair shuffle expressionsis the subset of timed shuffle expressions defined
recursively as follows:

F ::= T | [a/b]F | F1 + F2 | F ∧ U | (F )∗ | F1 F2

whereT is a timed regular expression,U is an unconstrained expression anda ∈ Σ, b ∈ Σ∪{ε}.
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The following expression is a fair shuffle expression which is equivalent with the partitioned
stopwatch automaton in Figure 3:

[z1/ε, z2/ε]
(

(z1taz2taz1taz2ta) ∧ (〈z1〈t〉]0,1[az1ta〉1) (〈z2〈t〉]0,1[z2ta〉1)
)

Theorem 8. Partitioned stopwatch automata are equivalent with fair shuffle expressions, and
the equivalence is effective.

Proof. For the left-to-right inclusion, takeA = (Q,Σ,X , η, δ, Q0, Qf) some partitioned stop-
watch automaton. We partition the set of statesQ into subsetsS1, . . . , Sn such thatη(q) = η(q′)

iff q, q′ ∈ Si, for somei. We also putXi = η(Si). By Lemma 1, we can assume that ifq
C,a,Y
−−−→

q′ ∈ δ, thenY ⊆ η(q′) andC ∈ Constr(η(q′)), and that the final states have no outgoing
transitions.

The idea is to constructn timed automataA1, . . . ,An such that eachAi copies all the states
and performs all the actions ofA, but lets time pass only in states fromSi, and allows only zero
time passage in the other states. The languages of allAi will be shuffled, and intersected with
the language of a zero-constrained timed automaton that will ensure proper interleaving. That is,
the connecting property between these automata is the following:

L(A) = f
(

(

L(A1) . . . L(An)
)

∩ L(A′)
)

As in the proof of Theorem 5, we will assume that all transitions inδ are labeled with distinct

symbols, i.e., ifq
C,a,X
−−−→ r, q′

C′,a′,X′

−−−−→ r′ ∈ δ anda = a′ thenq = q′, r = r′, C = C ′, X = X ′.
Each timed automaton will also reference a new clockxi which is needed for ensuring that time
passage is0 in each automatonAi while passing through a stateq with q 6∈ Si.

Since each action inΣ is to be executed in each automaton, the renamingf is meant to delete
n − 1 copies of each action and keep only then-th. This can be done by modifying the set of
symbols utilized by eachAi to a distinct copyΣi = Σ×{i} of the intial set of symbols, and, for
eacha ∈ Σ, puttingf(a, 1) = a andf(a, i) = ε, for all 2 ≤ i ≤ n. The set of symbols used by
A′ will be the union of all these copies ofΣ.

Formally,Ai = (Q,Σi,Xi, δi, Q0, Qf ) with

– Σi = Σ × {i}.
– Xi = η(Si) ∪ {xi}, wherexi 6∈ X is a new distinct clock.
– δ is composed of the following tuples:

• q
C

Xi
,a,X∩Xi

−−−−−−−→ r for eachq
C,a,X
−−−→ r ∈ δ with q ∈ Si andr 6∈ Qf .

• q
C

Xi
∧(xi=0),a,(X∩Xi)∪{xi}

−−−−−−−−−−−−−−−−→ r for eachq
C,a,X
−−−→ r ∈ δ with q 6∈ Si andr 6∈ Qf .

• q
C

Xi
,a,∅

−−−−→ r for eachq
C,a,X
−−−→ r ∈ δ with q ∈ Si andr ∈ Qf .

• q
C

Xi
∧(xi=0),a,∅

−−−−−−−−−→ r for eachq
C,a,X
−−−→ r ∈ δ with q 6∈ Si andr ∈ Qf .

The intersection automaton is the following:A′ = (Q′, Σ ′, {x′}, δ′, Q′
0, Q

′
f) in which
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– Q′ = δ × 2{1,...,n}.

– Q′
0 =

{

(q
C,a,X
−−−→ r, ∅) | q

C,a,X
−−−→ r ∈ δ withq ∈ Q0

}

.

– Q′
f =

{

q
C,a,X
−−−→ r, {1, . . . , n} | q

C,a,X
−−−→ r ∈ δ, r ∈ Qf

}

.
– Σ ′ =

⋃

1≤i≤nΣi.
– δ′ is composed of the following transitions:

δ′ =
{

(q
C,a,X
−−−→, A)

x′=0,(a,i),{x′}
−−−−−−−−→ (q

C,a,X
−−−→ r, B)) | q

C,a,X
−−−→ r ∈ δ, i 6∈ A,A′ = A ∪ {i}

}

∪
{

q
C,a,X
−−−→, {1, . . . , n})

true,ε,{x′}
−−−−−−→ (r

C′,b,X′

−−−−→ s, ∅)) | q
C,a,X
−−−→ r, r

C′,b,X′

−−−−→ s ∈ δ
}

As a consequence of Theorem 5, we can construct timed regularexpressionsT1, . . . , Tn such
that‖Ti‖ = L(Ai) for all 1 ≤ i ≤ n. Furthermore, sinceA′ is a zero-constrained timed automa-
ton, we can construct an unconstrained expressionT0 such that‖T0‖ = L(A′). We then have
that

L(A) = f(T1 . . . Tn) ∧ T0)

which ends the proof of the left-to-right inclusion.

For the right-to-left inclusion, we proceed by structural induction on the given regular ex-
pressionT . The case whenT is a timed regular expression is already covered by Theorem 5
while the cases of union, concatenation, star, shuffle and renaming can be treated exactly as in
the proof of the Theorem 5, by observing that the resulting stopwatch automata are partitioned.

For the intersection case, supposeT = T ′ ∧ U , with T ′ a fair shuffle expression andU
an unconstrained expression. Then, by induction, there exist A1 a partitioned stopwatch auto-
maton for whichL(A1) = ‖T ′‖. On the other hand, by Proposition 2, there exists a zero-
constrained timed automatonA2 such that andL(A2) = ‖U‖. Denote both automata asA1 =
(Q1, Σ,X1, η1, δ1, Q

1
0, Q

f
1), resp.A2 = (Q2, Σ, {x}, δ2, Q

2
0, Q

f
2).

The intersection construction betweenA1 andA2 will then work on pairs of states inQ1 ×
Q2. The clockx of A2 cannot be transformed into a stopwatch active in every state, since in
the resulting stopwatch automaton would not be partitioned. Therefore, for eachq ∈ Q1 we
add a new stopwatchxq (as a copy ofx) which will be reset when entering in any state in the
intersection automaton which is of the form(q, q′) for someq′ ∈ Q2. All these stopwatches will
then be grouped, according to the partition ofQ1 inherited fromA1, into classes of states that
have the same set of active stopwatches.

Formally, we construct the automatonA = (Q1 ×Q2, Σ,X1 ∪ X2, η, δ, Q
1
0 ×Q2

0, Q
1
f ×Q2

f )
in whichX2 = {xq | q ∈ Q1}, η(q, q′) = η1(q) ∪ {xr | η(q) = η(r)} and

δ =
{

(q1, q2)
C∧(xq1

∈I),a,X∪{xq1
}

−−−−−−−−−−−−−→ (q′1, q
′
2) | q1

C,a,X
−−−→ q′1 ∈ δ1, q2

x∈I,a,{x}
−−−−−→ q′2 ∈ δ2

}

∪
{

(q1, q2)
C,ε,X}
−−−−→ (q′1, q

′
2) | q1

C,ε,X
−−−→ q′1 ∈ δ1, q2 ∈ Q2

}

∪
{

(q1, q2)
xq1

∈I,ε,X
−−−−−−→ (q′1, q

′
2) | q1 ∈ Q1, q2

x∈I,ε,{x}
−−−−−→ q′2 ∈ δ2

}

The last two types of transitions are needed sinceε-transitions can be executed in one of the
automata asynchronously fromε-transitions in the second automaton.

24



We may then prove that
(

(qi−1, q
′
i−1), vi−1)

ξi−→ ((qi, q
′
i), vi)

)

1≤i≤k
is a trajectory ofA iff

(

(qi−1, (vi−1 χ1
))

ξi−→ (qi, (vi χ1
))
)

1≤i≤k
is a trajectory ofA1 and

(

(q′i−1, ui−1)
ξi−→ (q′i, ui)

)

1≤i≤k

is a trajectory ofA1, whereui(x) = vi(xqi). Obviously this implies thatL(A) = L(A1)∩L(A2).
This ends the proof of the reverse inclusion. ⊓⊔

Corollary 3. The class of partitioned stopwatch automata is closed underunion, renaming, shuf-
fle, Kleene star.

In the next section we will prove that partitioned stopwatchautomata are not closed under
intersection.

4 Distributed time-asynchronous automata

We present here the class of distributed time-asynchronousautomata, which are synchronous
compositions of timed automata in which local times may passindependently in different com-
ponents. The class presented here differs from the class in [DL07] by the fact that the components
do not utilized generalized resets.

Definition 7. A distributed time-asynchronous automatonis a tuple

A = (Q1, . . . , Qn, Σ,X1, . . . ,Xn, δ1, . . . , δn, Q
1
0, . . . , Q

n
0 , Q

1
f , . . .Q

n
f )

where

– Σ is a finite set ofsymbols.
– X1, . . . ,Xn are n finite, pairwise-disjoint sets ofclocks. We denote in the sequelX =
⋃

1≤i≤n Xi and callXi the set of clocksowned bycomponenti.
– Q1, . . . , Qn aren finite sets oflocations. Qi is the set of locations of componenti.
– Qi

0 ⊆ Qi is the set ofinitial locationsin componenti, andQi
f ⊆ Qi is its set offinal locations

(1 ≤ i ≤ n).

– Andδ1, . . . , δn are transition relations, with δi ⊆
{

q
C,ξ,X
−−−→ r | q, r ∈ Qi, ξ ∈ Σ ∪ {ε}, C ∈

Constr
(
⋃

1≤i≤nXi

)

, X ⊆ Xi

}

.

Note that a timed automaton is a distributed time-asynchronous automaton with only one com-
ponent.

Intuitively, a distributed time-asynchronous automaton can make time-passage transitions in
which clocks in different components evolve independently, discrete transitions in which compo-
nents may synchronize, and internal, silent transitions executed in one component independently
of the other components.

In discrete, synchronizing transitions, each component checks the validity of a clock con-
straint (that may refer to any clocks inX ) and, upon validity, all agree on the same symbol
a ∈ Σ and reset some clocks while changing location. Any component may reset only the clocks
that it owns, but any component may read clocks not owned by it.
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In silent transitions, a specified component checks for the validity of a clock constraint, then
resets some clocks it owns and changes location “silently”,i.e. on anε-transition. Such a transi-
tion might be executed by a component without requiring any synchronization with other com-
ponents; hence, only the control location of the component that executed the silent transition
changes, the other components might keep their control location unchanged.

Formally, the semantics of a distributed time-asynchronous automaton is atimed transition
systemT (A) = (Q, θ,Q0,Qf ) where:

Q =Q1 × . . .×Qn × [X → R≥0] (7)

Q0 =Q1
0 × . . .×Qn

0 × {0X} (8)

Qf =Q1
f × . . .×Qn

f × [X → R≥0] (9)

θ =
{

(q1, . . . , qn, v)
t
−→ (q1, . . . , qn, v

′) | for all 1 ≤ i ≤ n, qi ∈ Qi and

there existsti ∈ R≥0 with v′
Xi

= v
Xi

+ ti andt = t1 + . . .+ tn
}

(10)

∪
{

(q1, . . . , qn, v)
a
−→ (q′1, . . . , q

′
n, v

′) | a ∈ Σ and for alli ≤ n there existsCi ∈ Constr(X )

andXi ⊆ Xi with qi
Ci,a,Xi−−−−→ q′i ∈ δi, v |= Ci andv′ = v[X1 ∪ . . . ∪Xn := 0]

}

(11)

∪
{

(q1, . . . , qn, v)
ε
−→ (q′1, . . . , q

′
n, v

′) | there exist1 ≤ i ≤ n, Ci ∈ Constr(X ), andXi ⊆ Xi

with v |= Ci, qi
Ci,ε,Xi−−−−→ q′i ∈ δi, v

′ = v[Xi := 0] andq′j = qj for all j 6= i
}

(12)

A trajectory in A is a sequence of transitions inθ, alternating between time-passage transi-
tions and discrete transitions:

trj =
(

(qj−1
1 , . . . , qj−1

n , vj−1)
ξj
−→ (qj1, . . . , q

j
n, vj)

)

1≤j≤2m

that starts in the initial states ofT (A), with ξ2j−1 ∈ R≥0 andξ2j ∈ Σ ∪ {ε} for all 1 ≤ j ≤ m.
The trajectorytrj is acceptingif it ends inQf andends with a synchronization transitionof
the type 11 above. Thetimed word accepted bytrj is acc(trj) = ξ1 . . . ξm. Thetimed language
accepted byA is L(A) = {acc(trj) | trj is accepted byA}.

Remark 5.Note that we request that all components execute a synchronization transition when
accepting a timed word, hence the final symbol in each accepted word must be a symbol inΣ.

An example of a distributed time-asynchronous automaton isgiven in Figure 7 below. The
language accepted by this automaton is the same as the language accepted by the partitioned
stopwatch automaton in Figure 3.

Before going to the proof of the equivalence of distributed time-asynchronous automata with
partitioned stopwatch automata, let us also adapt the notion of run to the case of distributed
time-asynchronous automata. First, arun in componenti of a distributed time-asynchronous

automatonA is a sequenceρi = (qij−1

Ci
j ,ξj ,X

i
j

−−−−−→ qij)1≤j≤m consisting of transitions inδi or tuples

of the formqi−1
true,ε,∅
−−−−→ qi, which we callidle transitions– their utility will be apparent in the
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-

y1 = 0, a, ∅
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-

y2 ∈ ]0, 1[
a, {y1 := 0}��
��

-

y1 = 0, a, ∅

��
��

-

y2 = 1, a, ∅

��
��n

-��
��

-

x2 ∈ ]0, 1[
a, {x1 := 0}��
��

-

x1 = 0, a, ∅

��
��

-

x2 = 1, a
{x1 := 0} ��
��

-

x1 = 0, a, ∅

��
��n

Fig. 7. The two components of a distributed time-asynchronous automaton recognizing the language{t1 a t2 a t3 a t4 a |
t1, t2, t3, t4 ∈ ]0, 1[ , t1 + t3 = 1 ∧ t2 + t4 = 1}

sequel. Arun in the distributed time-asynchronous automatonA is then a tupleρ = (ρi)1≤i≤n

such thatρi = (qij−1

Ci
j ,ξj ,X

i
j

−−−−−→ qij)1≤i≤m, is a run in componenti and the sequence of symbols
(ξ1, ξ2, . . . , ξm) is the same in all runs.

Given a run inA, ρ = (ρi)1≤i≤n, with ρi = (qij−1

Ci
j ,ξj ,X

i
j

−−−−−→ qij)1≤i≤m, and a trajectorytrj =
(

(q1j−1, . . . , q
n
j−1, vj−1)

ξj
−→ (q1j , . . . , q

n
j , vj)

)

1≤j≤2m
, we say thattrj is associated withρ if the

following properties hold:

1. For each1 ≤ j ≤ m, ξ2j ∈ Σ ∪ {ε} andξ2j−1 ∈ R≥0.
2. The sequence of actions is the same in bothρ and trj, that is, for all i, ξ1ξ2 . . . ξm =

ξ2ξ4 . . . ξ2m.
3. For each1 ≤ j ≤ m and1 ≤ i ≤ n, v2j−1 |= C i

j andv2j = v2j−1[X
1
j ∪ . . . ∪Xn

j := 0].

Related with the above definition, note that, for each1 ≤ j ≤ m, ξ2j−1 can be decomposed
asξ2j−1 = t12j−1+ . . .+ tn2j−1 such that for alli, v2j−1 Xi

= v2j−2 Xi
+ ti2j−1. We then say that the

timed wordti1ξ2t
i
3ξ4 . . . t

i
2m−1ξ2m is associated withρi.

Remark 6.Some comments are in order here on the definition of runs in components and their
association with trajectories in distributed time-asynchronous automaton. The utilization of idle
transitions in the runsρi is just a technical trick that allows a simpler definition of runs in dis-
tributed time-asynchronous automaton and their association with trajectories. The fact that some
instant2j along a trajectorytrj is associated with oneε-transition in each component (signaled

by the transition(q2j−1, v2j−1)
ξ2j=ε
−−−→ (q2j , v2j)) does not mean that the components synchronize

at that moment by some “hidden” communication mechanism, since some of theseε-transitions

might simply be the idle transitionsq
true,ε,∅
−−−−→ q. This association just avoids heavy extra notations

for the positions where visible, synchronization-used symbols occur in eachρi.

Theorem 9. The classes of distributed time-asynchronous automata andpartitioned stopwatch
automata are equivalent over the class of timed languagesL with the following properties:

L ∈ L iff ∀w ∈ L,w = w′a with a ∈ Σ

Proof. For the left-to-right inclusion, we will simply gather together all the states of the compo-
nents of a distributed time-asynchronous automaton into a single centralized control, and trans-
form all clocks into stopwatches. Each stateq belonging to some componenti will continue to
own the stopwatches coming from that component, which will mean that only those stopwatches
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will be incremented during time passage inq. Hence, the clock partition coming from the orig-
inal distributed time-asynchronous automaton will give the stopwatch partition in the resulting
stopwatch automaton.

For ensuring that each accepting trajectory ends with a symbol in Σ, we assume w.l.o.g. that
final states in each of the components ofA cannot be reached throughε-transitions. This can be
easily achieved using state-splitting techniques.

Formally, starting with a given distributed time-asynchronous automaton

A = (Q1, . . . , Qn, Σ,X1, . . . ,Xn, δ1, . . . , δn, Q
1
0, . . . , Q

n
0 , Q

1
f , . . . Q

n
f ),

we construct the partitioned stopwatch automatonA′ = (Q,Σ,X , η, δ, Q0, Qf ) in which:

– Q = Q1 × . . .×Qn ×{1, . . . , n} where the last item of each tuple represents the component
for which the time is allowed to elapse.

– The set of clocks isX =
⋃

i∈[1,n]Xi andη is such thatη(q1, . . . , qn, j) = Xj .
– δ is the following set of transitions:

δ =
{

(q1, . . . , qn, j)
C,a,Y
−−−→ (q′1, . . . , q

′
n, j) | for all 1 ≤ i ≤ n there existsqi

Ci,a,Yi−−−−→ q′i ∈ δi

with a ∈ Σ, Y =
⋃

1≤i≤n
Yi andC =

∧

1≤i≤n
Ci

}

∪
{

(q1, . . . , qi, . . . , qn, i)
C,ε,Y
−−−→ (q′1, . . . , q

′
i, . . . , q

′
n, i) | qi

C,ε,Y
−−−→ q′i ∈ δi andqj = q′j∀j 6= i

}

∪
{

(q1, . . . , qn, j)
true,ǫ,∅
−−−−→ (q1, . . . , qn, j + 1)

)

| 1 ≤ j < n
}

∪
{

(q1, . . . , qn, n)
true,ǫ,∅
−−−−→ (q1, . . . , qn, 1)

}

– Q0 = Q1
0 × . . .×Qn

0 × {1, . . . , n} andQf = Q1
f × . . .×Qn

f × {1, . . . , n}.

It is then straightforward to prove thatL(A) = L(A′).

For the reverse inclusion, the main idea is to distribute thestate space ton components, where
n is the number of distinct classes of stopwatches. Note that we cannot use renaming here, as
we don’t want to prove that partitioned stopwatch automata and distributed time-asynchronous
automata are equivalentmodulo renaming.

The distribution will proceed as follows: first, each component will be in charge of exactly
one class of the stopwatches of the original automatonA – which will be referred to as (classes
of) clocks in the sequel. At each moment, only one component may increment its clocks – this
component is called theactive component– and all the other (inactive) components will have to
update their information about the state in which the activecomponent is before and after each
discrete transition, or to take into account the fact that the active component is different after the
transition. This information update has to be cross-checked for correctness by all components:
the distributed time-asynchronous automaton proceeds if and only if the active component before
a transition is ensured that the active component after thattransition will start its execution in the
appropriate state and all the other components remain inactive.

The cross-checks are implemented by means of a communication mechanism between com-
ponents that involves resetting some clock to zero in the active component, while the inactive
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components check that the respective clock is zero in order to ensure consistency. We explain
first the communication mechanism for the simulation of transitions inδ for which all associated
discrete transitions inT (A) that occur along an accepting trajectory are preceded and followed,
on that trajectory, by non-zero delay transitions.

In this case, communications are “handshakes”:

1. The mechanism is launched by the active component which decides to take a transition after a
non-zero time passage in the source location of that transition. The decision of the active com-
ponent consists of the duration of staying in the source location, the symbol to be executed
and the identity of the component that will be activated after the transition. The state-region
determinization construction from Subsection 2.4 ensuresthat these elements of the decision
uniquely identifythe transition to be taken inδ.
We will use the termsource componentto identify the component that owns the stopwatches
of the source state in this (unique) transition.

2. The source component “broadcasts” its decision by means of resetting some particular clock
between an extra set of clocks that is assigned to that component. This clock is the unique
clock that can be zero at the respective moment, between all the extra clocks assigned to
the active component. The transition that represents this broadcast is anε-transition that is
executed by the source component asynchronously from othercomponents.

3. With a zero delay after thisε-transition, the source component executes the simulated transi-
tion, which, when this simulated transition is labeled withsome symbola 6= ε, triggers the
execution of a transition labeled with the same symbol in allthe other components.

4. For the whole distributed time-asynchronous automaton to continue to work, the component
that corresponds to the target state of that transition (call it the target component) will have
to start working (orget awake) on the transition that is synchronized on symbola. To this
end, on this synchronizing transition, the target component detects the clock that was reset by
the source component, and checks that its local location is identical with the source location
of the transition desired by the source component. Then, it will let a short amount of time
to pass, and, after that, reset, on anε-transition, another specific clock to zero. Again, in the
target component, this specific clock will be the unique clock owned by the component which
has a zero value.

5. The source component gets the “acknowledgment” that the target component has started
working by checking that this second specific clock is zero while all the other clocks of
the target component are non-zero – again by employing an asynchronousε-transition. This
ε-transition will turn “asleep” the source component, resetting all its extra clocks and putting
it a transientlocation – that is, each transitions leaving that location would have to check that
the component spent zero time units in that location.

6. Finally, the target component will test (on anε-transition too) that the source component
has correctly reached its “sleeping” state, which ends the handshake and permits the target
component to continue its work.

7. Additionnaly, all the other inactive components will have to remain asleep (a fact which
is checked by both source and target component). They are also endowed with discretea-
transitions that allow them to consistently copy, in their location, the evolution of the simu-
lated location of the given partitioned stopwatch automaton.
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The above mechanism works almost identically for the simulation of ε-transitions, because,
by state-region determinism, anyε-transition that occurs in an accepting trajectory must be sep-
arated from the previous and the next discrete transition bya non-zero delay, property which
gives the possibility for both the source and the target components to achieve their communica-
tion via clock resets and small time passages. The difference is that all the components no longer
have the possibility to synchronize on the simulatedε-transition – which may be executed asyn-
chronously. But the “handshake” mechanism is designed suchthat the source component can
only go into the sleeping state only after the target component executed its asynchronous copy
of the simulatedε-transition.

The only problems that may occur in this case concern the other inactive components, since
neither the source nor the target component have the possibility to check that the other inactive
components have consistently simulated the currentε-transition of the given partitioned stop-
watch automaton. (The source and the target component can still check that the other components
are sleeping during the “handshake” process.) But this doesnot cause any simulation problems
since, as requested at point 4 above, when, in the rest of the computation, an inactive component
is to become active, it can only do so when being in the source state of the source component
– which means that, if it missed at a previous moment its possibility to consistently record the
simulated location, then the whole distributed time-asynchronous automaton will be blocked.

There is still a third situation that has to be simulated differently: it’s the possibility to have
sequences of discrete transitions all taken within an interval of length zero. This is where the
last property of state-region determinism plays its role: recall that, by condition 5 in Definition
4, such sequences of discrete transitions separated by zerodelays have the property that their
source locations are all labeled with the same set of stopwatches – that is, in our terms, their
source component is the same. Furthermore, by condition 4 inthe same definition, none of these
transitions are labeled withε – and hence they will force synchronizations with the inactive com-
ponents. And finally, by condition 2, the source component isdeterministicon such sequences
of transitions.

In this case, the handshake mechanism is the following:

1. The active component decides to take, after some non-zerotime passage in some location, a
sequence of discrete transitions in zero time. The decisionof the active component consists of
the duration of staying in the source location, the first symbol to be executed and the identity
of the component that will be activated after the transition. The state-region determinization
construction from Subsection 2.4 ensures that these elements of the decisionuniquely identify
the sequence of transitions to be taken inδ within an interval of zero length.

2. The source component “broadcasts” its decision by means of resetting, on anε-transition,
some particular clock between an extra set of clocks that is assigned to that component.

3. The source component executes all the simulated transitions, with a zero delay after thisε-
transition and with zero delays between each transition. This also triggers the execution of the
same sequence of transitions in all the other components – due to state-region determinism
and the necessity to execute synchronously each visible transition in all components.

4. The target component of the last transition in this sequence (which is the only transition in this
sequence that may change the active component) gets awake onthe first transition, detects
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the extra clock that was reset by the source component (and hence identifies which is the last
transition in the sequence) and checks that its local state is identical with the source state
of the transition desired by the source component. At the endof the sequence of transitions,
it will let a short amount of time to pass, and, after that, reset, on anε-transition, another
specific clock to zero.
Note that, if the target component misleadingly lets time pass on a symbol that is not the last
in this sequence of transitions, the whole partitioned stopwatch automaton will be blocked.

5. The source component gets the “acknowledgment” that the target component has started
working by checking that this second specific clock is zero while all the other clocks of
the target component are non-zero – again by employing an asynchronousε-transition. This
ε-transition puts the source component into a “sleeping” state.

6. Finally, the target component will test (on anε-transition too) that the source component
has correctly reached its “sleeping” state, which ends the handshake and permits the target
component to continue its work.

So suppose we start with a state-region deterministic partitioned stopwatch automatonA =
(Q,Σ,X , η, δ, Q0, Qf ), and(Xi)1≤i≤n denotes the partition of the set of stopwatches. The distri-
buted time-asynchronous automaton equivalent withA is:

B =
(

Q1, . . . , Qn, Σ, X̃1, . . . , X̃n, δ1, . . . , δn, Q
1
0, . . . Q

n
0 , Q

1
f , . . . , Q

n
f

)

where

1. The set of states of componenti is

Qi = (Q× {i}) ∪ (δ × {i}) ∪ (δ × δ × {i}) ∪ (Q× δ × {j | j ≤ n, j 6= i} × {i})

∪ (Q× δ × {i}) ∪ (Q×Q× δ × {i}) ∪ (Q× {0} × {i}).

Intuitively, a state(q, i) should allow nonzero time passage only ifη(q) = Xi – these are the
active states. A state(τ, i) with τ ∈ δ is a transient state which occurs both in source compo-
nent and in target component when the source component decides to take transitionτ . States

of the form(q
C,ξ,X
−−−→ r, j, i) with η(r) = Xi are states used by componenti to acknowledge

to componentj 6= i with η(q) = Xj that it is awake and takes over the simulation ofA. Such
states are persistent, and the only possibility to exit suchstates is for componentsi and j
to accomplish their “handshake” mechanism described above. States of the form(τ, τ , i) are
transient states in which the active component enters when deciding to take, in zero time, a
sequence of transitions that starts withτ and ends withτ . States of the form(q, τ, i) are used
either by the active component or by the inactive componentsduring sequences of transitions
taken in zero time. States of the form(q, r, τ, i) with η(q) = η(r) = Xi are used at the end of
a sequence of transitions taken in zero time by both the active component and the component
that will become active after this sequence of transitions.Finally, states of the form(q, 0, i)
are used in each component at the beginning of each trajectory that starts with a sequence of
transitions taken in zero time.

2. Qi
0 = (Q0 \ {q0} × {i}) ∪ {(q0, 0, i)} andQi

f = Qf × {i}.
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3. X̃i = Xi ∪ X i whereX i denotes the set of extra clocks needed by componenti,

X i = {yi} ∪
{

xτ,i | τ ∈ δ
}

The clocksyi are used for checking for non-zero time passage in componenti, hence being
reset after simulating each transition whose target state is componenti. Clocksxτ,i are used
for the communications betweeen components: they are resetby the source component of
transitionτ to signal to all the other components that it will take transition τ . They are also
reset by the target component inτ to signal to the source component that it got awake.
We also denoteX B =

⋃

1≤i≤n X i.
4. δi consists of the following transitions (we give the informaldescription of the transitions in

the parentheses):

(a) (q, i)
C′,ε,{xτ,i}
−−−−−−→ (τ, i) for τ = q

C,ξ,X
−−−→ r ∈ δ with η(q) = Xi and

C ′ = C ∧ (yi > 0) ∧
∧

l 6=i

∧

x∈Xl

(x = 0)

(active component broadcasts intention to take transitionτ ). After such a transition is
taken, between all clocks iñXi only clockxτ,i equals zero. Also note that all the extra
clocks inXB \ X̃i must be zero, which should signal the fact that componenti is the only
“active” component.

(b) (τ, i)
(xτ,i=0)∧(yi>0),a,X∪X i

−−−−−−−−−−−−−−→ (r, i) for τ = q
C,a,X
−−−→ r ∈ δ with η(q) = η(r) = Xi (transi-

tion τ is executed in componenti when target state is owned by the same component).

(c) (q, i)
C,a,X∪X i−−−−−−→ (τ, i) for τ = q

C′,a,X
−−−−→ r ∈ δ wherea ∈ Σ, η(q) = Xj, η(r) = Xi with

i 6= j, and

C = C ′ ∧ (xτ,j = 0) ∧
∧

x∈X j ,x 6=xτ,j

(x > 0) ∧
∧

l 6=j

∧

x∈X l

(x = 0)

(target component in transitionτ gets awaken, case of discrete visible transitions between
distinct components). Note that by Lemma 2, we have thatX ⊆ η(r).

(d) (τ, i)
(xτ,i=0)∧

∧
x∈Xi,x 6=xτ,i

(x>0),a,X i

−−−−−−−−−−−−−−−−−−−→ (r, i) for τ = q
C,a,X
−−−→ r ∈ δ wherea ∈ Σ, η(q) = Xi,

η(r) = Xj with j 6= i (source component gets asleep, case of discrete visible transition
between distinct components).

(e) (q, i)
C,ε,X∪X i−−−−−→ (τ, j, i) for τ = q

C′,ε,X
−−−−→ r ∈ δ with η(q) = Xj, η(r) = Xi with i 6= j,

and
C = C ′ ∧ (xτ,j = 0) ∧

∧

x∈X j ,x 6=xτ,j

(x > 0) ∧
∧

l 6=j

∧

x∈X l

(x = 0)

(target component in transitionτ gets awaken, case ofε-transitions between distinct com-
ponents).

32



(f) (τ, j, i)
C,ε,{xτ,i}
−−−−−→ (τ, i) for τ = q

C′,ε,X
−−−−→ r ∈ δ with η(q) = Xj , η(r) = Xi with i 6= j,

and
C = (yi > 0) ∧ (xτ,j = 0) ∧

∧

x∈X j ,x 6=xτ,j

(x > 0) ∧
∧

l 6=i,j

∧

x∈X l

(x = 0)

(target components acknowledges source component inτ that it is awake, case ofε-
transitions between distinct components). After such a transition is taken, between all
clocks inX i andX j only xτ,i and xτ,j are zero, property which is “known” both by
componenti and componentj. This distinguishes the configuration reached after this
transition from configurations reached from all the other transitions.

(g) (τ, i)
C,ε,X i
−−−→ (r, i) for τ = q

C′,ε,X
−−−−→ r ∈ δ with η(q) = Xi, η(r) = Xj with i 6= j, and

C = (xτ,i = 0) ∧ (xτ,j = 0) ∧
∧

x∈X i∪X j ,x 6=xτ,i,x 6=xτ,j

(x > 0) ∧
∧

x∈XB\(X i∪X j)

(x = 0)

(source component receives acknowledgment from target component inτ about its wakeup,
then goes asleep, case ofε-transitions between distinct components).

(h) (τ, i)
C,ε,∅
−−−→ (r, i) for τ = q

C′,ε,X
−−−−→ r ∈ δ with η(q) = Xj, η(r) = Xi with i 6= j, and

C = (xτ,i = 0) ∧
∧

x∈X i,x 6=xτ,i

(x > 0) ∧
∧

l 6=i

∧

x∈X l

(x = 0)

(target component sees source component got asleep and hence may continue its execu-
tion, case ofε-transitions between distinct components).

(i) (q, i)
C,ξ,∅
−−−→ (r, i) if τ = q

C′,ξ,X
−−−−→ r ∈ δ, η(q) = Xj1, η(r) = Xj2, with j 6= i, j2 6= i and

C = C ′ ∧ (xτ,j1 = 0) ∧
∧

x∈X j1
,x 6=xτ,j1

(x > 0) ∧
∧

x∈XB\X j1

(x = 0) ∧
∧

x∈X

(x = 0)

(inactive components update their local state according totheir guess of the current tran-
sition, based on their observations on clocks that have justbeen reset).

(j) (q, i)
C,ε,{xτ,i,xτ,i}
−−−−−−−−→ (τ, τ , i) if τ = q

C′,a,X
−−−−→ r ∈ δ, τ = q

C,a,X
−−−→ r ∈ δ, a, a ∈ Σ,

η(q) = η(r) = η(q) = Xi, and

C = C ′ ∧ (yi > 0) ∧
∧

x∈XB\X i

(x = 0)

(source component broadcast its intention to executein zero timea sequence of discrete
visible transitions which starts withτ and ends withτ ′).

(k) (τ, τ , i)
C,a,X
−−−→ (r, τ , i) if τ = q

C′,a,X
−−−−→ r, τ = q

C,a,X
−−−→ r ∈ δ, a, a ∈ Σ, η(q) = η(r) =

η(q) = Xi and

C = C ′ ∧ (xτ,i = 0) ∧ (xτ ,i = 0) ∧
∧

x∈X i,x 6=xτ,i,x 6=xτ,i

(x > 0) ∧
∧

x∈XB\X i

(x = 0)

(source component executes the first transition in the sequence of discrete visible transi-
tions that it wants to execute in zero time).
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(l) (q1, τ , i)
C′

1
,a1,X1

−−−−−→ (r1, τ , i) if there existδ-transitionsτ = q
C,a,X
−−−→ r, τ = q

C,a,X
−−−→ r,

q1
C1,a1,X1

−−−−−→ r1, with a, a1, a ∈ Σ, η(q) = η(q1) = η(r) = η(r1) = η(q) = Xi and

C ′
1 = C1 ∧ (xτ,i = 0) ∧ (xτ ,i = 0) ∧

∧

x∈X i,x 6=xτ,i,x 6=xτ,i

(x > 0) ∧
∧

x∈XB\X i

(x = 0)

(source component continues to execute discrete visible transitions in zero time).

(m) (q, τ , i)
C,a,X∪X i
−−−−−−→ (r, τ , i) if there existδ-transitionsτ = q

C′,a,X
−−−−→ r, τ = q

C,a,X
−−−→ r with

a, a ∈ Σ, q′, r′ ∈ Q, η(q) = η(r) = η(q) = η(r) = Xi and

C = C ∧ (xτ,i = 0) ∧ (xτ ,i = 0) ∧
∧

x∈X i,x 6=xτ,i,x 6=xτ,i

(x > 0) ∧
∧

x∈XB\X i

(x = 0)

(source component ends its sequence of visible transitionstaken in zero time, target com-
ponent is the same as the source component).

(n) (q, τ , i)
C,a,∅
−−−→ (q, r, τ , i) if there existδ-transitionsτ = q

C′,a,X
−−−−→ r, τ = q

C,a,X
−−−→ r, with

a, a ∈ Σ, η(q) = η(r) = η(q) = Xi, η(r) = Xj with j 6= i and

C = C ∧ (xτ,i = 0) ∧ (xτ ,i = 0) ∧
∧

x∈X i,x 6=xτ,i,x 6=xτ,i

(x > 0) ∧
∧

x∈XB\X i

(x = 0)

(source component ends its sequence of visible transitionstaken in zero time, waits to be
informed that target componentj awoke itself).

(o) (q, i)
C,a,∅
−−−→ (r, τ , i) if there existδ-transitionsτ = q

C′,a,X
−−−−→ r, τ = q

C,a,X
−−−→ r, with

a, a ∈ Σ, η(q) = η(r) = η(q) = Xj, with j 6= i and

C = C ′ ∧ (xτ,j = 0) ∧ (xτ ,j = 0) ∧
∧

x∈X j ,x 6=xτ,j,x 6=xτ,j

(x > 0) ∧
∧

x∈XB\X j

(x = 0)

(inactive components get informed that the active component wants to do a sequence of
discrete visible transitions in zero time).

(p) (q1, τ , i)
C′

1,a1,∅−−−−→ (r1, τ , i) if there existδ-transitionsτ = q
C′,a,X
−−−−→ r, τ = q

C,a,X
−−−→ r, with

τ1 = q1
C′,a′,X′

−−−−→ r1 ∈ δ, a, a ∈ Σ, η(q) = η(q1) = η(r) = η(r1) = η(q) = Xj, with j 6= i
and

C ′
1 = C1 ∧ (xτ,j = 0) ∧ (xτ ,j = 0) ∧

∧

x∈X j ,x 6=xτ,j,x 6=xτ,j

(x > 0) ∧
∧

x∈XB\X j

(x = 0)

(inactive components guess the transition that the active component is executing in its
sequence of discrete visible transitions taken in zero time).
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(q) (q1, τ , i)
C′

1
,a1,∅

−−−−→ (r1, i) if there existδ-transitionsτ = q
C′,a,X
−−−−→ r, τ = q

C,a,X
−−−→ r, with

τ1 = q1
C′,a′,X′

−−−−→ r1 ∈ δ, a, a ∈ Σ, η(q) = η(q1) = η(r) = η(r1) = η(q) = Xj, with j 6= i
and

C ′
1 = C1 ∧ (xτ,j = 0) ∧ (xτ ,j = 0) ∧

∧

x∈X j ,x 6=xτ,j,x 6=xτ,j

(x > 0) ∧
∧

x∈XB\X j

(x = 0)

(inactive components guess that the active component ends its sequence of discrete visible
transitions taken in zero time).

(r) (q, τ , i)
C,a,X
−−−→ (q, r, τ , i) if there existδ-transitionsτ = q

C′,a,X
−−−−→ r, τ = q

C,a,X
−−−→ r, with

η(q) = η(r) = η(q) = Xj , η(r) = Xi with j 6= i and

C = C ∧ (xτ,j = 0) ∧ (xτ ,j = 0) ∧
∧

x∈X j ,x 6=xτ,j,x 6=xτ,j

(x > 0) ∧
∧

x∈XB\X i

(x = 0)

(target component in transitionτ awakes itself as it guesses that source component exe-
cutesτ and ends the sequence of visible transitions taken in zero time).

(s) (q, r, τ , i)
yi>0,ε,{xτ,i}
−−−−−−−→ (r, τ , i) if there existδ-transitionsτ = q

C′,a,X
−−−−→ r, τ = q

C,a,X
−−−→ r,

with η(q) = η(r) = η(q) = Xj , η(r) = Xi with j 6= i. and

C = (yi > 0) ∧ (xτ,j = 0) ∧ (xτ ,j = 0) ∧
∧

x∈X j ,x 6=yj,x 6=xτ,j

(x > 0) ∧
∧

x∈XB\(X i∪X j)

(x = 0)

(target component acknowledges source component that it itis awake after the end of the
sequence of discrete visible transitions taken in zero time).

(t) (q, r, τ , i)
C,a,X i
−−−−→ (r, i) if there existδ-transitionsτ = q

C′,a,X
−−−−→ r, τ = q

C,a,X
−−−→ r, with

η(q) = η(r) = η(q) = Xi, η(r) = Xj with j 6= i and

C = (yj > 0) ∧ (xτ ,j = 0) ∧ (xτ,i = 0) ∧ (xτ ,i = 0) ∧
∧

x∈X j ,x 6=yj ,x 6=xτ,j

(x > 0) ∧
∧

x∈XB\(X i∪X j)

(x = 0)

(source component gets informed that target component is awake at the end of the se-
quence of discrete visible transitions taken in zero time, hence it may go asleep).

(u) (r, τ , i)
C,a,∅
−−−→ (r, i) if there existδ-transitionsτ = q

C′,a,X
−−−−→ r, τ = q

C,a,X
−−−→ r, with

η(q) = η(r) = η(q) = Xj , η(r) = Xi with j 6= i and

C = (xτ ,i = 0) ∧
∧

x∈XB\X i

(x = 0)

(target component sees source component got asleep after a sequence of discrete visible
transitions executed in zero time and whose last transitionis τ , and hence target compo-
nent may continue its execution).
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(v) (q, 0, i)
C,a,X
−−−→ (r, 0, i) and(q, 0, i)

C,a,X
−−−→ (r, i) if q

C′,a,X
−−−−→ r ∈ δ with

C = C ′ ∧
∧

x∈XB

(x = 0)

These transitions can be taken at the beginning of each trajectory, if the trajectory starts
with a sequence of discrete transitions taken in zero time.

The inclusionL(A) ⊇ L(B) is straightforward as each trajectory inA can be simulated inB.

For the reverse inclusion, take a run inB, ρ = (ρi)1≤i≤n, with ρi = (qij−1

Ci
j ,ξj ,X

i
j

−−−−−→ qij)1≤i≤m,

and a trajectorytrj =
(

(q1j−1, . . . , q
n
j−1, vj−1)

ξj
−→ (q1j , . . . , q

n
j , vj)

)

1≤j≤2m
, with ρ associated with

trj.
We say that componenti is sleeping during time passage interval2j − 1 if ξ2j−1 > 0 and

v2j−2 X̃i
= v2j−1 X̃i

. We also say that some componenti is awake during time passage interval
2j − 1 if v2j−2 X̃i

6= v2j−1 X̃i
.

A third type of situations might occur in some time intervalsin trj: the time intervals for
which ξ2j−1 = 0. Within such intervals, we consider that the component thatis awake is the
last component that was awake during a previous non-zero time interval. Finally,trj might start
with a sequence of transitions taken in zero time, and therefore there is no component that is
awake before this sequence of transitions. We consider by convention that, during such sequences
of transitions, the only component that is active is the component whose set of stopwatches is
the same asη(q0), whereq0 is the distinguished initial state in the definition of state-region
determinism.

We denoteawake(2j − 1) = i if during time passage interval2j − 1 componenti is awake.
By extension, we also denoteawake(2j) = i in this case.

We may then prove, by induction on the indicesj of the transitions in the trajectorytrj, the
following properties

1. The definition ofawake(j) is correct, that is, for each1 ≤ j ≤ 2m there exists exactly one
componenti which is active during time passage intervalj, if j is odd, respj − 1 otherwise.

2. If, at time interval1, the active component isi and starts in state(q, i) with q ∈ Q0, q 6= q0,
then it must pass a non-zero amount of time in(q, i) and therefore when it decides to take
an action, by means of transitions of type (a), any componentthat has incorrectly guessed
the initial state will block the whole distributed time-asynchronous automaton. On the other
hand, if the active component starts in state(q0, i) (whereq0 ∈ Q0 is the distinguished state
corresponding to sequences of transitions taken in zero time), then all components must start
in q0, or otherwise again the whole trajectory will be blocked by those components which
made the incorrect guess of the initial state.

3. If componenti is active during time passage interval2j1−1 and during time passage interval
2j2−1 with j2 > j1, no component is active during any time passage intervals between2j1−1
and2j2 − 1, there exists a unique visible discrete transition intrj indexed between2j1 and
2j2 − 2 and no transition of type (e) or (j) is indexed between2j1 and2j2 − 2, then between
these two moments componenti executes a transition of type (a) followed by a transition
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of type (b), and all the other components execute a transition of type (i). Moreover, at the
end of these transitions, all components correctly guess the state of the active component, i.e.
qi2j2−1 = ql2j2−1 for all l.

4. If componenti1 is active during time passage interval2j1 − 1, componenti2 is active during
time passage interval2j2−1, with i1 6= i2 andj2 > j1, no component is active during any time
passage intervals between2j1−1 and2j2−1, there exists a unique visible discrete transition in
trj indexed between2j1−1 and2j2−1 and no transition of type (e) or (j) is indexed between
2j1 and2j2 − 2, then between these two moments componenti1 executes a transition of type
(a) followed by a transition of type (d), while componenti2 executes a transition of type (c).
and all the other components execute a transition of type (i). Moreover, at the end of these
transitions, all components agree on the current state, i.e. qi12j2−1 = qi22j2−1 = ql2j2−1 for all l.

5. If componenti1 is active during time passage interval2j1 − 1, componenti2 is active during
time passage interval2j2 − 2, with i1 6= i2 andj2 > j1, no component is active during any
time passage intervals between2j1 − 1 and2j2 − 2, and there exists no discrete transition
indexed between2j1 and2j2 − 2 which is of type (b), (c), (d) or (j), then between these two
moments componenti1 executes a transition of type (a) followed by a transition oftype (g),
while componenti2 executes a transition of type (e) followed by a transition oftype (f) and
by a third transition of type (h). Moreover, at the end of these transitions, componentsi1 and
i2 agree on the current state, i.e.qi12j2−1 = qi22j2−1.
Note that, in this case, it might happen that not all the othercomponents execute a transition
of type (i).

6. If componenti is active during time passage interval2j1−1 and during time passage interval
2j2 − 1, with j2 > j1, no component is active during any time passage intervals between2j1
and2j2 − 1, and all the discrete and visible transitions2j with j1 ≤ j < j2 are separated
by zero delays, i.e.ξ2j+1 = 0, then between these two moments componenti executes a
transition of type (j) followed by transition of type (k) anda succession of transitions of type
(l) and finished by a transition of type (m), and all the other components execute transitions
of type (o), (p), resp. (q). Moreover, at the end of these transitions, all components agree on
the current state, i.e.qi2j2−1 = ql2j2−1 for all l.

7. If componenti1 is active during time passage interval2j1 − 1, componenti2 is active during
time passage interval2j2 − 1, with i1 6= i2 andj2 > j1, no component is active during any
time passage intervals between2j1 and2j2 − 2, and all the discrete and visible transitions
2j with j1 ≤ j < j2 are separated by zero delays, i.e.ξ2j+1 = 0, then between these two
moments componenti1 executes a transition of type (j) followed by transition of type (k)
and a succession of transitions of type (l) and finished by a transition of type (n) and then a
transition of type (t), componenti2 executes a succession of transitions of type (o) followed by
a sequence of transitions of alternating types (p) and (q) and finished by a transition of type (r),
then a transition of type (s) and a transition of type (u), andall the other components execute
transitions of type (o), (p), resp. (q). Moreover, at the endof these transitions, componentsi1
andi2 agree on the current state, i.e.qi12j2−1 = qi22j2−1.

8. Any sequence of discrete transitions that are taken in zero time are executed by a unique
component, which is the component corresponding to the unique initial stateq0 in Definition
4, the only initial state from where such sequences of discrete transitions can be started inA.
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9. The following sequence

trj′ =
(

(q
awake(j−1)
j−1 , vj−1 X

)
ξj
−→ (q

awake(j)
j , vj X

)
)

1≤j≤2m

is a trajectory inA, and if trj is accepting thentrj′ is accepting too.

This ends the proof of Theorem 9. ⊓⊔

4.1 Non-closure of partitioned stopwatch automata under intersection

This section contains the proof of the non-closure result from Proposition 3:

Proposition 5. The class of languages accepted by distributed time-asynchronous automata –
and hence the class of partitioned stopwatch automata – are not closed under intersection.

Let us first give the counterexample that will be used in the sequel for proving the non-closure
property:

L =
{

t1at2at3at4a | t1, t2, t3, t4 ∈ ]0, 1[ , t1 + t3 = t2 + t4 = t1 + t4 = 1
}

L is the intersection of the language of the distributed time-asynchronous automaton in Figure
7 with the language of the distributed time-asynchronous automaton in Figure 8, and is the lan-
guage accepted by the stopwatch automaton of Figure 2.

-��
��

-

y1 = 0, a, ∅

��
��

-

y1 ∈ ]0, 1[
a, {y1} ��
��

-

y1 ∈ ]0, 1[
a, {y1} ��
��

-

y1 = 0, a, ∅

��
��n

-��
��

-

x2 ∈ ]0, 1[
a, {x1} ��
��

-

x1 = 0, a, {x1}

��
��

-

x1 = 0, a, ∅

��
��

-

x2 = 1, a, ∅

��
��n

Fig. 8. The two components of a distributed time-asynchronous automaton recognizing the language{t1 a t2 a t3 a t4 a |
t1, t2, t3, t4 ∈ ]0, 1[ , t1 + t4 = 1}

Intuitively, the constraint definingL cannot be simulated by an asynchronous composition of
timed automata, as it needs some stopwatch automaton in which the distribution of stopwatches
is not a partition. In particular, the stopwatch that checksthe constraintt1 + t3 = 1 and the
stopwatch that checks the constraintt1 + t4 must be simultaneously active in the location where
the time passage oft1 happens, and exactly one of them must be active in the locations where the
time passage oft2 or t3 happen.

The balance of this section gives the formalization of the above intuitions. We will start by
introducing a subclass of distributed time-asynchronous automata in which components can only
read their own clocks, and not the clocks owned by other components, and then proving a series
of useful technical properties.

Formally, adistributed time-asynchronous automaton with private clocksetsis a distri-
buted time-asynchronous automaton in which each componenti can only test clocks inXi, i.e.,

for all 1≤ i≤n, if q
C,a,X
−−−→ q′∈δi thenC∈Constr(Xi).
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The following property shows the connection between distributed time-asynchronous auto-
maton and distributed time-asynchronous automaton with private clocksets:

Proposition 6. For each distributed time-asynchronous automatonAwith set of symbolsΣ there
exists a distributed time-asynchronous automaton with private clocksets and with some set of
symbolsΣ and a renamingf : Σ → Σ ∪ {ε} such thatL(A) = f

(

L(B)
)

.
Moreover, ifA contains noε-transition, thenf contains no symbol deletion.

Proof. The proof idea is the same as in the proof of the Kleene Theorem5: we use a new set
of symbols that will be used to label distinct transitions with distinct symbols. The new symbols
will represent tuples of transitions, one in each component.

So start withA = (Q1, . . . , Qn, Σ,X1, . . . ,Xn, δ1, . . . , δn, Q
1
0, . . . , Q

n
0 , Q

1
f , . . . Q

n
f ) andB =

(Q1, . . . , Qn, Σ,X1, . . . ,Xn, δ1, . . . , δn, Q
1

0, . . . , Q
n

0 , Q
1

f , . . . Q
n

f ). If we recall thatQ = Q1 ×
. . .×Qn, Qf = Q1

f × . . .× Qn
f andQ0 = Q1

0 × . . .× Qn
0 , then, formally, the components ofB

are:

– The set of locations isQi = Q× {i}, with Q
i

0 = Q0 × {i} andQi
f = Qf × {i}.

– The set of input symbols is

Σ =
{

(tr1, . . . , trn) | for all 1 ≤ i ≤ n, tri = q
C,ξ,Y
−−−→ r ∈ δi

}

– Thei-th transition relation is:

δi =
{

(q, i)
Ci,ξ,Yi
−−−−→ (r, i) | q = (q1, . . . , qn), r = (r1, . . . , rn),

for all j ≤ n there existstrj = qj
Cj ,b,Yj

−−−−→ rj ∈ δj with ξ = (tr1, . . . , trn), Ci = Ci Xi

}}

An easy but tedious double inclusion proves thatL(A) = f(L(B)). ⊓⊔

In the sequel, for each1 ≤ i ≤ n, denoteAi the timed automaton corresponding to thei-th
component ofA:

Ai = (Qi, Σ,Xi, δi, Q
i
0, Q

i
f)

We will now show that the language of a distributed time-asynchronous automaton with
private clocksets is, in some sense, a “synchronized product” of the languages ofAi. The exact
meaning of the term “synchronization” is the following:

Definition 8. Givenn timed wordswi = ti1a1 . . . t
i
kakt

i
k+1 (1 ≤ i ≤ n), all having the same

untiming sequencea1, . . . , ak, thesynchronizationof (wi)1≤i≤n, denotedw1 ⊙ . . . ⊙ wn, is the
timed word:

w =
(

n
∑

i=1

ti1

)

a1 . . .
(

n
∑

i=1

tik

)

ak

(

n
∑

i=1

tik+1

)

Given a distributed time-asynchronous automatonA, a runρ = (qj−1

Cj ,ξj ,Xj

−−−−−→ qj)1≤j≤k in

A and, for each1 ≤ i ≤ n, a runρi = (qij−1

Ci
j ,ξ

i
j ,X

i
j

−−−−−→ qij)1≤j≤k in the componentAi, we say that
ρ is anA-synchronizationof (ρi)1≤i≤n if
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For each1 ≤ j ≤ k, ξj = ξij,
∧

1≤i≤nC
i
j → Cj is a valid constraint and

⋃

1≤i≤n X
i
j = Xj .

Proposition 7. 1. In the setting of the above definition, anyA-synchronization of runs(ρj)1≤j≤k

is a run inA, and if eachρj is accepting inAj thenρ is accepting inA.
2. For any tuple of timed wordswj (1 ≤ j ≤ n), if eachwj is associated with the runρj , then

their synchronizationw1 ⊙ . . .⊙ wj is associated with anyA-synchronization of(ρj)1≤j≤k.
3. L(A) = L(A1)⊙ . . .⊙ L(An).

The proofs of these results are straightforward from the definitions.
The following technical property states that, if a run of a distributed time-asynchronous auto-

maton with private clockset in which the time passage between two symbols must be in the
interval]0, 1[, then exactly one component may be “active” in between the two symbols (meaning
that all the other may only allow a zero time passage). The intuition comes from the fact that the
constraints use integers, and we cannot decompose the interval ]0, 1[ as the sum of two non-
zero intervals with integer bounds. (Here, summation is considered in the sense of the following
example:[0, 1[+]1, 2] =]1, 3[.)

Proposition 8. Consider a distributed time-asynchronous automaton with private clocksetsA

withn components and noε-transitions, and a runρ in A, ρ =
(

qi−1

Ci,ai,Xi−−−−→ qi
)

1≤i≤k
, withqi =

(q1i , . . . q
n
i ). Denoteρj the projection ofρ in componentj, that is,ρj =

(

qji−1

Ci∩Constr(Xj),ai,Xi∩Xj

−−−−−−−−−−−−−−→

qji
)

1≤i≤k
.

1. Suppose that there exists somei0 (1 ≤ i0 ≤ k) such that for any timed wordw = t1a1 . . . tkak
associated withρ, we haveti0 ∈ ]0, 1[ . Then there exists a uniquej0 such that for any
synchronizationw1 ⊙ . . . ⊙ wn = w in whichwj = tj1a1 . . . t

j
kak is associated withρj , we

have thattj0i0 ∈ ]0, 1[ and for all j 6= j0, t
j
i0
= 0.

2. More generally, if there exist two integersi1 < i2 such that for any timed wordw =
t1a1 . . . tkak associated withρ, we have that

∑

i1≤i≤i2
ti ∈ ]0, 1[ , then there exists a uniquej0

such that for any synchronizationw1⊙. . .⊙wn = w in whichwj = tj1a1 . . . t
j
kak is associated

with ρj , we have that
∑

i1≤i≤i2
tj0i ∈ ]0, 1[ and for all j 6= j0,

∑

i1≤i≤i2
tji = 0.

In other words, the first property states that, ifA accepts only timed wordsw = t1a1 . . . tkak
with ti ∈ ]0, 1[ for some fixedi, then in the run associated withw, only one component may
have non-zero time passage betweenai−1 andai, all the other components must have zero time
passage. The second property is a generalization of this.

Proof (of Proposition 8).The proof follows from a combination of Remark 4, applied to the runs
ρj , and of Proposition 7 on synchronization of timed words associated toρj . We will prove only
the first property, the second being provable similarly.

So assume, for the sake of contradiction, that there exist two distinct componentsj1, j2 such
that ρj1 is associated withwj1 = tj11 a1 . . . t

j1
k ak with, tj1i0 ∈ ]0, 1[ , andρj2 is associated with

wj2 = tj21 a1 . . . t
j2
k ak with, tj2i0 ∈ ]0, 1[ , where1 ≤ i0 ≤ k.

But then, by means of Remark 4, we may take any positive realα ∈ ]0, 1[ and construct a
new timed wordw′

j1 = uj1
1 a1 . . . u

j1
k ak which is associated withρj1 and withuj1

i0
= α. The same

will hold for ρj2 .
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This gives us the possibility to choosew′
j1

such thatuj1
i0

= 0.9 andw′
j2

such thatuj2
i0

= 0.9.
Following Proposition 7, the synchronizationw1 ⊙ . . .⊙w′

j1
⊙ . . .⊙w′

j2
⊙ . . .⊙ wn would still

be associated withρ.
But this synchronization would have as itsi0 time interval a value larger thantj1i0 + tj2i0 = 1.8,

which is in contradiction with the hypothesis, which says that this time interval should always be
less than1. ⊓⊔

Proposition 9 (Nonclosure under intersection for distributed time-asynchronous automata).
The following language does not belong to the class of timed languages accepted by distributed
time-asynchronous automata:

L =
{

t1at2at3at4a | t1, t2, t3, t4 ∈ ]0, 1[ , t1 + t3 = t2 + t4 = t1 + t4 = 1
}

Proof. Suppose, for the sake of contradiction, that the language isaccepted by a distributed time-
asynchronous automatonA. Following Proposition 6, it would then be in the renaming ofthe
language of a distributed time-asynchronous automaton with private clocksetsB. Denote further
Bj thej-th component of the automatonB, which is itself a timed automaton (as already noted
in the statement of Proposition 7).

So take the timed word0.3a0.3a0.7a0.7a ∈ L(A). It would be the renaming of a timed word
w = u1a1 . . . ukak accepted byB, and for which, for some1 ≤ i1 < i2 < i3 ≤ k,

i1
∑

i=1

ui =

i2
∑

i=i1+1

ui = 0.3 and
i3
∑

i=i2+1

ui =

k
∑

i=i3+1

ui = 0.7

Take further a runρ that is associated withw, and denoteρj (1 ≤ j ≤ n) the projection ofρ
in Bj .

Note that we are in the setting of the Proposition 8, since anytimed word accepted byρ would
have to have

∑i1
i=1 ui ∈ ]0, 1[ ,

∑i2
i=i1+1 ui ∈ ]0, 1[ ,

∑i3
i=i2+1 ui ∈ ]0, 1[ , resp.

∑i4
i=i3+1 ui ∈ ]0, 1[ .

Therefore, for any synchronizationw1 ⊙ . . .⊙ wn = w with wj = uj
1a1 . . . u

j
kak associated with

ρj , we must have some unique componentj1 for which
∑i1

i=0 u
j1
i ∈ ]0, 1[ . The same must hold

for i2, i3 andi4 too, so there must exist a uniquej2 with
∑i2

i=i1+1 u
j2
i ∈ ]0, 1[ , a uniquej3 with

∑i3
i=i2+1 u

j3
i ∈ ]0, 1[ and a uniquej4 with

∑k
i=i3+1 u

j4
i ∈ ]0, 1[ .

Our first task is to provej1 = j2 = j3 = j4. We prove this by contradiction: assumej1 6= j3.
By Remark 4, we may construct a timed word withw′

j1
= vj11 a1 . . . v

j1
k ak associated withρj1 ,

in which
∑i1

i=0 v
j1
i = 0.9. Similarly, we may construct a timed word withw′

j3
= vj31 a1 . . . v

j3
k ak

associated withρj3 , in which
∑i3

i=i2+1 v
j3
i = 0.9.

But then clearly the renaming byf of any synchronization comprisingw′
j1 andw′

j3, which
has to be associated withρ by Proposition 7, would no longer satisfy the constraintt1 + t3 = 1,
since time interval which separates the actionaj1 from the actionaj3 would have to be at least
∑i1

i=0 v
j1
i +

∑i3
i=i2+1 u

j3
i = 1.8.

Similarly we may prove thatj1 = j4 andj2 = j4. But this implies that, in fact, the given
distributed time-asynchronous automaton is a timed automaton: by Proposition 8, all the other
runsρj would have to be associated to timed words in which all the time intervals are zero.
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It is then an easy exercise to repeat the proof of the Proposition 3 to show that our given
languageL cannot be accepted by a timed automaton. ⊓⊔

5 Modeling timed systems with distributed time-asynchronous automata

In this section we discuss the use of fair shuffle expressions(and hence partitioned stopwatch
automata and distributed time-asynchronous automata) to model timed systems.

In particular we consider two examples:

– We show how, given a set of (timed) processes, the behavior ofthese processes running in
a uniprocessor system adopting the Round Robin policy can bemodeled with distributed
time-asynchronous automata;

– We also show how, given a set of (timed) processes sharing a critical session, the behavior
of these processes interacting with a semaphore can be modeled with distributed time-asyn-
chronous automata.

A Round-Robin scheduling model.For the first example, considerA1, . . . ,An timed automata
expressingn time–dependent processes. We show how to construct a distributed time-asynchro-
nous automaton (equivalently, a fair shuffle expression) expressing the behavior of the processes
A1, . . . ,An running in a uniprocessor system adopting the Round Robin policy. We suppose
that when a processAi terminates its computation, it emits a special symbolendi. Let k be the
quantum of time that a process can use the processor continuously. Letk1 andk2 be respectively
the time necessary to put a process in the waiting queue and toextract a process from the waiting
queue. Given a generic processAi we modify it in the following manner:

– We introduce a new clocky storing the processor time usage.

– We replace each transitionq
C,a,X
−−−→ q′ with q

C∧y≤k,a,X
−−−−−−→ q′, in such a manner to give to the

process the capability of running if and only if the process has not finished his processor time
quantity.

– We add a new stateqwait for each stateq of Ai representing that the process is waiting its next
turn, after finishing its processor time quantum. We also addtwo transitions involvingqwait:

• a transitionq
y=k,stopi,{y}
−−−−−−−→ qwait simulating that the process has finished his quantumk

and goes in a waiting time.

• a transitionqwait
y=0,starti,{y}
−−−−−−−−→ q simulating that the process woken up.

Let A′
1, . . . ,A

′
n be the modified timed automata as described above. Consider furthern corre-

sponding timed expressionsE1, . . . , En, with ‖Ei‖ = L(A′
i) for each1 ≤ i ≤ n.

Before defining the Round Robin Scheduler we define one more expressionEn+1 describing
the timek1 + k2 necessary for switching the context of the enqueued-dequeued processes:

En+1 = (〈enq t deq〉I)
∗, whereI = [k1 + k2, k1 + k2]

We define next the timed automatonB = (Q,X , Σ, η, δ, Q0, Qf) which represents the Round
Robin scheduler:
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– Q is the set of triples(i, P, d) where eitheri = 0 andP = ∅ andd = extract, or i ∈
{1, . . . , n} andP ⊆ {1, . . . , n} andd ∈ {starting, extract, put, running}.
The state(0, ∅, extract) represents the fact that all the processes have terminated their com-
putations. The states(i, P, running) represents the fact that the running process isAi and the
non-terminated processes are allAj with j ∈ P . The states(i, P, put) (resp.(i, P, extract))
represent the fact that the processAi is put (resp. is extracted) to (resp. from) the queue. The
states(i, P, starting) represent the fact that the processAi is about to start its execution.

– X = {x}, wherex will be a new clock that will be used to ensure that some step ofB is
performed instantaneously.

– Σ = {enq, deq} ∪
⋃n

i=1{starti, stopi, endi}.
– δ is composed of five types of transitions:

• (i, P, running)
true,stopi,{x}
−−−−−−−−→ (i, P, put). This transition specifies the fact that the process

Ai has finished his processor time quantity.

• (i, P, put)
x=0,enq,{x}
−−−−−−−→ (i, P, extract). This transition specifies the fact that the enqueued

process forAi is started.

• (i, P, extract)
true,deq,{x}
−−−−−−−→ (j, P, starting) with j = min(P ) if i = max(P ) andj =

min{h ∈ P | h > i} otherwise. This transition specifies the fact that the dequeued
process forAj is finished, wherej represents the index of the process that succeeds toi
in P .

• (i, P, starting)
x=0,starti,{x}
−−−−−−−−→ (i, P, running). This transition specifies the fact that the

processAj is woken up.

• (i, P, running)
true,endi,{x}
−−−−−−−→ (i, P ′, extract) with P ′ = P \ {i}. This transition specifies

that the processAi has terminated his computation and hence a new process amongthe
waiting processes inP \ {i} must be woken up.

– Q0 = {(1, {1, . . . , n}, running)}, meaning that, at the beginning, the first processes to run
isA1 and no process has finished its computation.

– Qf = {(0, ∅, extract)}, specifying that the whole computation terminates when allthe pro-
cesses have terminated their computations.

LetEn+2 be the zero-constrained expression equivalent with the timed automatonB. Finally,
let f be the renaming which deletes symbolsstarti, stopi, enq, deq (and alsoendi if needed).
The expression

f((E1 . . . En En+1) ∧ En+2)

is the fair shuffle expression simulating the behavior of theprocessesA1, . . . ,An running in a
uniprocessor system adopting the Round Robin policy.

Remark 7.Note however that we do not have global timing constraints, in the sense ofdeadlines
for each process. Such constraints would have to be modeled in B, and then require intersection
of fair regular expressions with a timed regular expression, hence the result would no longer be
a partitioned stopwatch automaton.
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A partitioned stopwatch automaton model for semaphores.We show now how to model con-
current timed processes utilizing a semaphore. Consider again n timed automataA1, . . . ,An

expressingn time-dependent processes. Each processAi uses symbolslocki andunlocki to op-
erate on the binary semaphore. We suppose that the semaphoreimplements a LIFO policy.

We can modify eachAi such that, after each transition labeledlocki, it needs to receive a
special symboloki before entering in the critical session. More formally, given a generic process

Ai we modify it by substituting each transitionq
C,locki,X−−−−−→ q′ with the two transitionsq

C,locki,X−−−−−→

(q′, wait) and(q′, wait)
true,oki,∅−−−−−→ q′ where(q′, wait) is a new state representing the fact that

the process has been enqueued and is waiting the ”ok” by the semaphore. LetA′
1, . . . ,A

′
n be

the timed automata modified as described above, andE1, . . . , En, respectively, the timed regular
expressions equivalent with each of them.

We then construct a timed automatonB = (Q,X , Σ, η, δ, Q0, Qf ) expressing the sequence
of accesses to the critical session. Its component are as follows:

– Q is the set of tuples(d, (i1, . . . , im)) whered ∈ {manage, running}, andm ≥ 0, ij ∈
{1, . . . , n} andij 6= ij′ if j 6= j′. In a state(running, (i1, . . . , im)), the indexi1 represents
the fact that processAi1 is inside its critical session, and the sequencei2, . . . , im represents the
queue of processes waiting to enter their critical sessions. The state(manage, (i1, . . . , im))
represents that a process has left the critical session by performing an unlock, and hence, a
new process amongAi1 , . . . ,Aim could enter in the critical session.

– X = ∅.
– Σ =

⋃n
i=1{locki, oki, unlocki}.

– η((d, (i1, . . . , im))) = {x}.
– δ is composed of three types of transitions:

• (running, (i1, . . . , im))
true,unlocki1 ,{}−−−−−−−−−→ (manage, (i2, . . . , im)) with m ≥ 1, meaning that

processAi1 has released the unlock.

• (manage, (i1, . . . , im))
true,oki1 ,{}−−−−−−→ (running, (i1, . . . , im)) with m ≥ 1, meaning that

the semaphore is not busy and hence the first processAi1 in the queue is allowed to enter
its critical session.

• (d, (i1, . . . , im))
true,lockim+1

,{}
−−−−−−−−−→ (d, (i1, i2, . . . , imim+1)) with d ∈ {running,manage},

namely the processAim+1
requires a lock on the critical session and hence is enqueued.

– Q0 = {(manage, (ǫ))}, meaning that, at the beginning, no process has performed a lock.
– Qf = {(manage, (ǫ))}, specifying that there are no more pending locks.

LetEn+1 be the zero-constrained expression equivalent with the timed automatonB. Finally,
let f be the renaming function that deletes all symbolsoki (and alsolocki andunlocki if needed).
The expression

f((E1 . . . En) ∧ En+1)

is a fair shuffle expression expressing the behavior of the processesA1, . . . ,An running in a
uniprocessor system and utilizing a semaphore for enteringtheir critical session.
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6 Conclusion

Figure 9 summarizes the main results for partitioned, stopwatch, resp. timed automata and the
different types of regular expressions. We mark a property with symbol “*” to represent the fact
that the result is proved in this paper.

Model Closure Nonclosure Decidability of reachability

stopwatch automata=∗ union∗, intersection∗, – No
timed shuffle expressions renaming∗, Kleene star∗

)∗

partitioned stopwatch automata=∗ union∗, renaming∗, Kleene star∗ intersection∗ Yes∗

fair shuffle expressions=∗

distributed time-asynchronous automata

)∗

timed automata = union, intersection, – Yes
timed regular expressions renaming, Kleene star

Fig. 9. Summary of the main results

The equivalence between partitioned stopwatch automata and distributed time-asynchronous
automata presented here is more involved that in our previous paper [DL07], due to the use of
clock resets to zero, and not to generalized clock resets as in [DL07]. The communication mech-
anism between the components of the distributed time-asynchronous automaton that distributes
the centralized control of a to-be-simulated partitioned stopwatch automaton works by ensuring
that, during each “handshake” between what we called “source component” and “target com-
ponent” of a transition, both components achieve a form ofcommon knowledgeensuring them
that the other is consistently simulating the behavior of the partitioned stopwatch automaton.
It would be interesting to investigate whether general real-time epistemic frameworks like in
[Dim09,WL05] can be used to get a simpler proof of our simulation result.

Another interesting point to be studied is the relationshipbetween partitioned stopwatch auto-
mata and the class of Interrupt Timed Automata studied in [BH09], especially related with the
fact that the latter, though utilizing diagonal constraints, have a decidable emptiness problem.
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[BPT03] Patricia Bouyer, Antoine Petit, and Denis Thérien. An algebraic approach to data languages and timed languages.

Information and Computation, 182(2):137–162, 2003.
[CGP99] Edmund Clarke, Orna Grumberg, and Doron Peled.Model Checking. The MIT Press, 1999.
[Dim99] Catalin Dima. Kleene theorems for event-clock automata. InProceedings of FCT’99, volume 1684 ofLNCS, pages

215–225, 1999.
[Dim01] Catalin Dima. Real-time automata.Journal of Automata, Languages and Combinatorics, 6:3–23, 2001.
[Dim03] Catalin Dima. A nonarchimedian discretization fortimed languages. InProceedings of the First International

Workshop on Formal Modelling and Analysis of Timed Systems (FORMATS’03), volume 2791 ofLecture Notes in
Computer Science, pages 161–181. Springer Verlag, 2003.

[Dim05] Catalin Dima. Timed shuffle expressions. InProceedings of the 16-th International Conference on Concurrency
Theory (CONCUR’05), volume 3653 ofLecture Notes in Computer Science, pages 95–109. Springer Verlag, 2005.

[Dim09] Catalin Dima. Positive and negative results on the decidability of the model-checking problem for an epistemic
extension of timed ctl. InProceedings of TIME’09, pages 29–36. IEEE Computer Society, 2009.

[DL07] Catalin Dima and Ruggero Lanotte. Distributed time-asynchronous automata. InProceedings of the 4th International
Colloquium on Theoretical Aspects of Computing (ICTAC 2007), volume 4711 ofLecture Notes in Computer Science,
pages 185–200. Springer Verlag, 2007.

[DZ98] François Demichelis and Wieslaw Zielonka. Controlled timed automata. InProceedings of CONCUR’98, volume
1466 ofLecture Notes in Computer Science, pages 455–469. Springer, 1998.

[FKPY07] Elena Fersman, Pavel Krcál, Paul Pettersson, andWang Yi. Task automata: Schedulability, decidability and unde-
cidability. Inf. Comput., 205(8):1149–1172, 2007.

[FMPY06] Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Schedulability analysis of fixed-priority systems
using timed automata.Theor. Comput. Sci., 354(2):301–317, 2006.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, andPravin Varaiya. What’s decidable about hybrid automata.
Journal of Computer Systems Science, 57:94–124, 1998.

[HRS98] Thomas A. Henzinger, Jean-François Raskin, and Pierre-Yves Schobbens. The regular real-time languages. In
Proceedings of 25-th International Conference on Automata, Logics and Programming (ICALP’98), volume 1443 of
Lecture Notes in Computer Science, pages 580–591. Springer Verlag, 1998.

[Kri99] Padmanabhan Krishnan. Distributed timed automata. Electronic Notes in Theoretical Computer Science, 28, 1999.
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