
Model-checking ATL under Imperfect Information and Perfect

Recall Semantics is Undecidable

Cătălin Dimaa, Ferucio Laurenţiu Ţipleab

aLACL, Université Paris Est-Créteil, 61 av. du G-ral de Gaulle, 94010 Créteil, France
bDepartment of Computer Science, “Al.I.Cuza” University of Iaşi, Iaşi 700506, Romania

Abstract

We propose a formal proof of the undecidability of the model checking problem for alternating-
time temporal logic under imperfect information and perfect recall semantics. This problem
was announced to be undecidable according to a personal communication on multi-player
games with imperfect information, but no formal proof was ever published. Our proof is
based on a direct reduction from the non-halting problem for Turing machines.

Keywords: Alternating-time temporal logic, imperfect information, perfect recall, model
checking, decidability

1. Introduction

The Alternating-time Temporal Logic (ATL) have been introduced in [1] as a logic to
reason about strategic abilities of agents in multi-agent systems. ATL extends CTL by
replacing the path quantifiers ∀ and ∃ by cooperation modalities ⟪A⟫, where A is a team
of agents. A formula ⟪A⟫' expresses that the team A has a collective strategy to enforce
'.

The semantics of ATL is defined over concurrent game structures (CGS) [1] which are
transition systems whose states are labeled by atomic propositions and for which a set
of agents is specified. Each agent may have incomplete/imperfect information about the
state of the system in the sense that the agent may not be able to difference between some
states. When the agent is able to observe the entire state labeling, we say that he has
complete/perfect information. A transition from a state to another one is performed by an
action tuple consisting of an action for each agent in the system. The action an agent is
allowed to perform at a state is chosen from a given set of actioned allowed to be performed
by the agent at that state and may depend on the current state (this is called imperfect
recall) or on the whole history of events that have happened (this is called perfect recall).
Combining imperfect or perfect information with imperfect or perfect recall we obtain four
types of concurrent game structures and, consequently, four types of semantics for ATL.

Email addresses: dima@univ-paris12.fr (Cătălin Dima), fltiplea@info.uaic.ro (Ferucio
Laurenţiu Ţiplea)

Preprint submitted to Elsevier June 29, 2010

A series of papers have been addressed the model-checking problem for ATL [1, 3, 2].
Based on unpublished work of Yannakakis [4], the model checking problem for ATL with
imperfect information and perfect recall semantics was announced to be undecidable in [1].
Since then, many authors have mentioned this result but, unfortunately, no formal proof
was ever published (see also [2]).

In this paper we propose a formal proof of this problem. Our proof is based on a
direct simulation of Turing machines by concurrent game structures under imperfect in-
formation and perfect recall, which allows for a reduction of the non-halting problem for
Turing machines to the model checking problem for ATL under imperfect information and
perfect recall semantics. Moreover, the strategies used by agents to simulate the Turing
machine are primitive recursive. This shows that the undecidability of model checking ATL
under imperfect information and perfect recall semantics is mainly due to the imperfect
information agents have about the system states.

While our proof is given for the de dicto strategies from [1], the same construction
works also for the de re strategies from [3, 5].

2. Alternating-time Temporal Logic

We recall in this section the syntax and semantics of the alternating-time temporal
logic. We will mainly follow the approach in [2] and fix first a few notations. ℕ stands
for the set of positive integers (natural numbers) and P denotes the powerset operator.
Given a set V , V + denotes the free semi-group and V ∗ denotes the free monoid generated
by V under concatenation. � stands for the empty word (the unity of V ∗). The notation
f ∶X ⇀ Y means that f is a partially defined function from X to Y .

ATL syntax. The syntax of ATL is given by the grammar

' ∶∶= p ∣ ¬' ∣ ' ∧' ∣ ⟪A⟫#' ∣ ⟪A⟫◻ ' ∣ ⟪A⟫'U'

where p ranges over a finite non-empty set of atomic propositions Π, A is a non-empty
subset of a finite set Ag of agents, and #, ◻, and U are the standard temporal operators
next, globally, and until, respectively.

Note that, in order to define combinations of temporal operators inside the coalition
operators, the weak-until operator should be given as a primitive operator [6], since it
cannot be derived from the above operators. However our result holds also for this restricted
syntax.

ATL semantics. ATL is interpreted over concurrent game structures (CGS) [1]. Such a
structure consists of a set of states labeled by atomic propositions and a set of agents. Each
agent may perform some actions and at least one action is available to the agent at each
state. His decision in choosing which action should be performed at some state may be
based on his capability of observing all or some atomic propositions at the current state,
usually called perfect or imperfect information, and on his full or partial history, usually
called perfect or imperfect recall.

2

In what follows we focus on CGS under imperfect information and perfect recall and
adopt the formal approach in [2]. A CGS under imperfect information is a tuple G =
(Ag,S,Π, �, (∼i ∣i ∈ Ag),Act, d,→), where:� Ag = {1, . . . , k} is a finite non-empty set of agents;� S is a finite non-empty set of states;� Π is a finite non-empty set of atomic propositions;� � ∶ S → P(Π) is the state-labeling function;� ∼i is an equivalence relation on S, for any agent i;� Act is a finite non-empty set of actions;� d ∶ Ag × S → P(Act) − {∅} gives the set of actions available to agents at each state,

satisfying d(i, s) = d(i, s′) for any agent i and states s and s′ with s ∼i s′;� →∶ S ×Actk ⇀ S is the (partially defined) transition function satisfying, for any s ∈ S
and (a1, . . . , ak) ∈ Actk, the following property:

→ (s, (a1, . . . , ak)) is defined iff ai ∈ d(i, s) for any agent i.

We will write s
(a1,...,ak)
ÐÐÐÐÐ→ s′, whenever → (s, (a1, . . . , ak)) = s′.

If s and s′ are ∼i-equivalent (i.e., s ∼i s′) then we say that s and s′ are indistinguish-
able from the agent i’s point of view (due to his partial view on the states). Each ∼i is
component-wise extended to sequences of states. Thus, for �,�′ ∈ S+ we write � ∼i �′ and
say that � and �′ are ∼i-equivalent if � = s0⋯sn and �′ = s′

0
⋯s′n for some n ∈ ℕ, and sj ∼i s′j

for all 0 ≤ j ≤ n.
A perfect recall strategy for an agent i in a CGS G is a function � ∶ S+ → Act which is

compatible with d and ∼i, i.e.,� �(�s) ∈ d(i, s), for any � ∈ S∗ and s ∈ S;� �(�) = �(�′), for any �,�′ ∈ S+ with � ∼i �′.

A perfect recall strategy for a team A of agents is a family �A = (�i∣i ∈ A) of perfect
recall strategies for the agents in A. If �A is a perfect recall strategy for the agents in A,
�s ∈ S∗S, and a = (a1, . . . , ak) ∈ Actk, then we write a ∈ �A(�s) if the following properties
hold:� ai ∈ d(i, s), for any i ∈ Ag −A;� ai ∈ �i(�s), for any i ∈ A.

3

Given a state s of G and �A as above, define outG(s, �A) as being the set of all infinite
sequences of states � = s0s1s2⋯ such that s0 = s and, for any j ≥ 0, there exists a ∈
�A(s0⋯sj) with sj

a
Ð→ sj+1. For � = s0s1s2⋯ an infinite sequence of states and j ≥ 0, �[j]

denotes the j-th state in the sequence, �[j] = sj
The imperfect information perfect recall semantics for ATL, denoted ⊧iR, is defined as

follows (G is a CGS under imperfect information and s is a state of G):� (G, s) ⊧iR p if p ∈ �(s);� (G, s) ⊧iR ¬' if (G, s) /⊧iR ';� (G, s) ⊧iR ' ∧ if (G, s) ⊧iR ' and (G, s) ⊧iR ;� (G, s) ⊧iR ⟪A⟫#' if there exists a perfect recall strategy �A such that (G, �[1]) ⊧iR ',
for any � ∈ outG(s, �A);� (G, s) ⊧iR ⟪A⟫◻' if there exists a perfect recall strategy �A such that (G, �[j]) ⊧iR ',
for any � ∈ outG(s, �A) and any j ≥ 0;� (G, s) ⊧iR ⟪A⟫'U if there exists a perfect recall strategy �A such that for any
� ∈ outG(s, �A) there exists j ≥ 0 with (G, �[j]) ⊧iR and (G, �[k]) ⊧iR ' for all
0 ≤ k < j.

The model checking problem for ATL formulas under imperfect information and perfect
recall semantics is to decide, given an ATL formula ', a concurrent game structure G under
imperfect information, and a state s of G, whether (G, s) ⊧iR '.

Computation trees. The proof of our main result in the next section will be based on
computation trees associated to CGSs. These are special cases of labeled trees, which are
structures T = (V,E, v0, l1, l2), where� (V,E, v0) is a tree whose set of nodes is V , whose set of edges is E, and whose root

is v0;� l1 is the node-labeling function;� l2 is the edge-labeling function.

Paths in a labeled tree T = (V,E, v0, l1, l2) are defined inductively as usual as sequences
of nodes:� v0 is a path in T ;� if v0⋯vn is a path in T and (vn, v) ∈ E, then v0⋯vnv is a path in T .

If v is a node of T , then patℎT (v0, v) stands for the unique path from the root v0 to v in
T . The number of nodes on a path � is the length of � , denoted ∣� ∣. The labeling function
l1 is homomorphically extended to paths, that is, l1(�1�2) = l1(�1)l1(�2).

Levels in a labeled tree T = (V,E, v0, l1, l2) are sets of nodes of T defined inductively as
follows:

4

� levelT (0) = {v0};� levelT (n + 1) = {v ∈ V ∣(∃v′ ∈ levelT (n))((v′, v) ∈ E)}, for any n ≥ 0.

levelT (n) is referred to as the level n in T .
Given a CGS G, a state s of G, a coalition A of agents, and a perfect recall strategy �A

for agents in A, define inductively the s-rooted computation trees of G under �A as follows:� any tree with exactly one node (its root) labeled by s is an s-rooted computation
tree of G under �A;� if T = (V,E, v0, l1, l2) is an s-rooted computation tree of G under �A, v is a node of T ,

and l1(v)
a
Ð→ s′ for some action-tuple a ∈ �A(l1(patℎT (v0, v))) and state s′ such that

no edge from v is labeled by a, then the tree T ′ obtained as follows is an s-rooted
computation tree of G:

– T ′ is obtained from T by adding a new node v′ labeled by s′ and an edge (v, v′)
labeled by a.

If T ′ is obtained from T as above, we will also write T⇒G,�A
T ′ or T

a
⇒G,�A

T ′ if we want
to specify the action tuple a as well.

Remark 1. It is easy to see that, for any atomic proposition p, the following property
holds true:� (G, s) ⊧iR ⟪A⟫◻ p if and only if there exists a perfect recall strategy �A such that

p ∈ �(l1(v)), for any s-rooted computation tree T of G under �A, and any node v of
T .

3. Undecidability of Model Checking ATLiR

We will prove in this section that the model checking problem for ATLiR is undecidable.
The proof technique is by reduction from the non-halting problem for deterministic Turing
machines. Given a deterministic Turing machine M , we construct a concurrent game
structure under imperfect information G with three agents Ag = {1,2,3}, a state sinit of G,
and an ATL formula ⟪{1,2}⟫◻ ok, where ok is an atomic proposition, such that M does
not halt on the empty word if and only if (G, sinit) ⊧iR ⟪{1,2}⟫◻ ok.

The deterministic Turing machines we consider are tuples M = (Q,Σ, q0,B, �), where
Q is a finite set of states, Σ is a finite tape alphabet, q0 is the initial state, B ∈ Σ is the
blank symbol, and � ∶ Q × Σ ⇀ Q × Σ × {L,R} is a partially defined transition function,
where “L” specifies a “left move” and “R” specifies a “right move”. A configuration of
M is a word a1⋯ai−1qai⋯an, where all a’s are from Σ and q is a state. Such a configura-
tion specifies that M is in state q, its read/write head points to the ith cell of the tape,
and the jth cell holds aj if j ≤ n, and B, otherwise. The initial configuration is q0B.
The transition relation on configurations, denoted ⇒M , is defined as usual. For instance,
a1⋯ai−1qai⋯an⇒Ma1⋯q′ai−1a′i⋯an if i > 1 and �(q, ai) = (q′, a′i,L).

5

The Turing machine M halts on the empty word if, starting with the initial configura-
tion, the machine reaches a configuration a1⋯ai−1qai⋯an for which �(q, ai) is undefined or
i = 1 and �(q, ai) = (q′, a′i,L) for some q′ and a′i.

Intuition first. The main idea of the construction is to encode the configurations of the Tur-
ing machine horizontally in the levels of the computation tree. A configuration a1⋯ai−1qai⋯ak
ofM will be simulated in A by some level in some computation tree like in Figure 1 (where
i = 2 and k = 3). The nodes of this tree are represented by circles. The label of a node

sinit

s′lb
sa1 s′tr sq,a2 s′tr sa3

Figure 1: Level corresponding to a1qa2a3

is carried inside the circle representing the node. The node labeled s′lb specifies the left
border ofM ’s tape, the node labeled s′tr is a cell separator also used to transfer information
between paths of computation trees, the nodes labeled sa1 and sa3 specify the content of
the first and third cell, respectively, and the node labeled sq,a2 specifies both the content
of the second cell and the fact that M is in state q and its read/write head points to the
second cell.

The generation of the initial configuration q0B of M is simulated by the computation
tree in Figure 2. All states in this tree ale labeled by ok; the node labeled sgen has one
more label, namely p1 (this label is graphically represented because it will be particularly
important in defining the agents strategies). As we will see later, the two maximal paths
in this tree are ∼2-equivalent. This allows, together with the strategy we will use, for the
synchronization in the last computation step of these paths.

sinit

s′init

slb

s′lb

(i, (q0), i)

(i, i, i)

(i, i, br1)

sgen ∣p1

sB

sq0,B

(i, (q0), i)

(i, i, i)

(i, i, br2)

Figure 2: Generating the initial configuration q0B of M

6

The levels encoding configurations of the Turing machine will be encoded on the even
positions in a computation tree, the odd levels being used for correctly representing transi-
tions of the Turing machine. Some nodes in the levels of even index will then encode tape
cells, while some other nodes will be used for transferring information between adjacent
cells. Some examples presenting this idea are given in the following, before the formal
construction and proof.

A computation step a1qa2a3 ⇒M a1a
′
2
q′a3 in the Turing machine is simulated by ex-

tending the computation tree in Figure 1 as in Figure 3. The synchronization between the
fourth and fifth paths is possible because, as we will see, these paths are ∼1-equivalent.
Similarly, the synchronization between the fifth and sixth paths is possible because these
paths are ∼2-equivalent.

sinit

s′lb

s′lb

s′lb

(i, i, i)

(i, i, i)

sa1

sa1

sa1

(i, i, i)

(i, i, i)

s′tr

s′tr

s′tr

(i, i, i)

(i, i, i)

sq,a2

sa′
2

sa′
2

(i, i, i)

((q, q′,R), i, i)

s′tr

sq,q′,R

s′tr

(i, (q, q′,R), i)

((q, q′,R), i, i)

sa3

sa3

sq′,a3

(i, (q, q′,R), i)

(i, i, i)

Figure 3: Simulation of a1qa2a3 ⇒M a1a
′

2
q′a3

The simulation represented in these two figures proceeds as follows: in the observable
history corresponding to the path ending in sq,a2, the only possibility for agent 1 to put
the system in a state which satisfies ok at the next level is to take action (q, q′,R), which
corresponds to the transition �(q, a2) = (q′, a′2,R) in the Turing machine. Due to identic
observability for agent 1, the same action has to be played by agent 1 in the history which
ends in state s′tr which is next to the right of state sq,a2 . The effect of this action in state
s′tr (combined with an idle action for agent 2) is to bring the system in state sq,q′,R. In
this state, it’s upto agent 2 to try to satisfy ok at the next step, and he can only do this
by applying the action (q, q′,R). The effect of this action in state sq,q′,R is to bring the
system back in state s′tr. But the same action has to be played by agent 2 in the history
which ends in state sa3 on level 3 of the tree, due to identical observability. This play will
lead the system to state sq′,a3 .

On the other hand, in state sa1 , in order to ensure ok, both agents must play idle, which
leaves the system in state sa1 . Identical observability will then ensure that agent 1 has to
play idle also in state s′tr which is next to the right of state sa1 , and agent 2 has to play
idle in state s′lb on 3rd and 4th levels.

7

The effect of all these is that level 4 on this tree encodes the configuration a1q′a
′
2
a3,

which results from applying the transition �(q, a2) = (q′, a′2,R) to the configuration a1qa2a3.
States sgen and str are used for “creating” all the nodes that simulate tape cells. In a
computation tree which satisfies the goal ◻ok, these are the only states to have two sons.

Figure 4 presents the simulation of the computation step a1qa2a3 ⇒M q′a1a
′
2
a3 Note

here that the rôle of agents 1 and 2 are interchanged because it is a left transition.

sinit

s′lb

s′lb

s′lb

(i, i, i)

(i, i, i)

sa1

sa1

sq′,a1

((q, q′,L), i, i)

(i, i, i)

s′tr

sq,q′,L

s′tr

((q, q′,L), i, i)

(i, (q, q′,L), i)

sq,a2

sa′
2

sa′
2

(i, i, i)

(i, (q, q′,L), i)

s′tr

s′tr

s′tr

(i, i, i)

(i, i, i)

sa3

sa3

sa3

(i, i, i)

(i, i, i)

Figure 4: Simulation of a1qa2a3 ⇒M q′a1a
′

2
a3

And in Figure 5, a simulation of the computation q0B ⇒M aq1B ⇒M q2ab is shown.

Construction of a game structure associated to M . The concurrent game structure under
imperfect information G = (Ag,S,Π, �,Act, (∼i ∣i ∈ Ag), d,→) that simulates the determin-
istic Turing machine M is based on three agents, i.e. Ag = {1,2,3}. Its set S of states,
together with their meaning, consists of:� sinit (the initial state);� s′init (copy of sinit);� slb (specifies the left border of M ’s tape);� s′lb (copy of slb);� sgen (initiates the generation of a new blank cell of M ’s tape);� str (initiates the generation of a new cell separator);� s′tr (used for transferring information between to equivalent runs);� sa, for any a ∈ Σ (specifies that some tape cell holds a);� sq,a, for any state q ∈ Q and a ∈ Σ (specifies that M is in state q and the read/write

head points a cell holding symbol a);

8

sinit

s′init

slb

s′lb

s′lb

s′lb

s′lb

s′lb

(i, i, i)

(i, i, i)

(i, i, i)

(i, i, i)

(i, (q0), i)

(i, i, i)

(i, i, br1)

sgen ∣p1

sB

sq0,B

sa

sa

sa

sq2,a

((q1, q2,L), i, i)

(i, i, i)

(i, i, i)

((q0, q1,R), i, i)

(i, (q0), i)

(i, i, br1)

str ∣p2

s′tr

sq0,q1,R

s′tr

sq1,q2,L

s′tr

((q1, q2,L), i, i)

(i, (q1, q2,L), i)

(i, (q0, q1,R), i)

((q0, q1,R), i, i)

(i, i, br1)

sgen ∣p1

sB

sq1,B

sb

sb

(i, i, i)

(i, (q1, q2,L), i)

(i, (q0, q1,R), i)

(i, i, br1)

(i, i, br2)

(i, i, br2)

(i, i, br2)

Figure 5: Simulation of the computation q0B ⇒M aq1B ⇒M q2ab.� sq,q′,X , for any q, q′ ∈ Q and X ∈ {L,R} such that �(q, a) = (q′, a′,X) for some a and
a′ (specifies that the machine M enters state q′ from state q by an X-move);� serr (“error” state used to collect all “unwanted” transitions the agents must avoid
bringing the system in this state).

The set of atomic propositions is Π = {p1, p2, ok} and the labeling function � is:

�(s) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

{ok}, if s ∈ S − {sgen, str, serr}
{p1, ok}, if s = sgen
{p2, ok}, if s = str
∅, if s = serr

For the sake of simplicity, all states but serr will be called ok-states (being labeled by ok).
The relation ∼3 is the identity. The equivalence relations ∼1 and ∼2 are defined by

s ∼i s
′ iff (pi ∈ �(s) ⇔ pi ∈ �(s

′)),

9

for any i = 1,2. That is, s and s′ are ∼i-equivalent if the agent i observes pi either in both
states s and s′ or in none of them.

The set Act of actions consists of:� idle, which is meant to say that the agent doing it is not “in charge of” accomplishing
some local objective (this action will be abbreviated by i in our pictures and whenever
no confusion may arise);� (q0), which is an action meant to set up the initial state of M ;� (q, q′,X), for any q, q′ ∈ Q and X ∈ {L,R} with �(q, a) = (q′, a′,X) for some a, a′ ∈ Σ.
Such an action simulates the passing of M from q to q′ by an X-move;� br1 and br2, which are two “branching” actions.

The agents 1 and 2 are allowed to perform any action but br1 and br2, while the third
agent can only perform br1, br2, and idle. More precisely, d(i, s) = Act − {br1, br2} for any
i ∈ {1,2} and state s, d(3, s) = {br1, br2} if s ∈ {sinit, sgen, str}, and d(3, s) = idle, otherwise.

Note that the agents’ actions are designed such that d(i, s) = d(i, s′) for any agent i
and states s and s′ with s ∼i s′.

The transition relation of the game structure is as follows:� sinit
(i,i,br1)
ÐÐÐÐ→ s′init and sinit

(i,i,br2)
ÐÐÐÐ→ sgen and sinit

c
Ð→ serr, for any c different from the

above action tuples;� s′init
(i,i,i)
ÐÐÐ→ slb and s′init

c
Ð→ serr, for any c /= (i, i, i);� slb

(i,(q0),i)
ÐÐÐÐ→ s′lb and slb

c
Ð→ serr, for any c /= (i, (q0), i);� s′lb

(i,i,i)
ÐÐÐ→ s′lb and s

′
lb

c
Ð→ serr, for any c /= (i, i, i);� sgen

(i,i,br1)
ÐÐÐÐ→ sB and sgen

(i,i,br2)
ÐÐÐÐ→ str and sgen

c
Ð→ serr, for any c different from the above

action tuples;� str
(i,i,br1)
ÐÐÐÐ→ s′tr and str

(i,i,br2)
ÐÐÐÐ→ sgen and str

c
Ð→ serr, for any c different from the above

action tuples;� for any a ∈ Σ, the transitions at sa are:

– sa
(i,i,i)
ÐÐÐ→ sa;

– sB
(i,(q0),i)
ÐÐÐÐ→ sq0,B;

– sa
(i,(q,q′,R),i)
ÐÐÐÐÐÐ→ sq,a, for any action (q, q′,R);

– sa
((q,q′,L),i,i)
ÐÐÐÐÐÐ→ sq,a, for any action (q, q′,L);

10

– sa
c
Ð→ serr, for any c different from any of the above actions;� for any q ∈ Q and a ∈ Σ, the transitions at sq,a are:

– sq,a
((q,q′,R),i,i)
ÐÐÐÐÐÐ→ sa′ , if �(q, a) = (q′, a′,R);

– sq,a
((q,q′,L),i,i)
ÐÐÐÐÐÐ→ sa′ , if �(q, a) = (q′, a′,L);

– sq,a
c
Ð→ serr, for any c different from any of the above actions;� the transitions at s′tr are:

– s′tr
(i,i,i)
ÐÐÐ→ s′tr.

– s′tr
((q,q′,R),i,i)
ÐÐÐÐÐÐ→ sq,q′,R, for any action (q, q′,R);

– s′tr
(i,(q,q′,L),i)
ÐÐÐÐÐÐ→ sq,q′,L, for any action (q, q′,L);

– s′tr
c
Ð→ serr, for any c different from any of the above actions;� sq,q′,R

(i,(q,q′,R),i)
ÐÐÐÐÐÐ→ s′tr and sq,q′,L

((q,q′,L),i,i)
ÐÐÐÐÐÐ→ s′tr and sq,q′,X

c
Ð→ serr, for any X and any c

different from any of the above actions.

Proof of the correctness of the construction. Let M be a deterministic Turing machine.
Without loss of generality we may assume that M , starting in state q0, will never reach
again q0.

First, we prove that if M does not halt on the empty word then (G, sinit) ⊧iR ⟪{1,2}⟫◻
ok. According to Remark 1, it suffices to show that, if M does not halt on the empty
word, then there exists a strategy � = (�1, �2) for the agents 1 and 2 in G such that any
sinit-rooted computation tree of G under � has only nodes labeled by ok-states.

In order to define � with the property above, we classify the non-empty sequences of
states of G as follows:� a sequence � ∈ S+ is of type 1 if � = sinits′init�

′, where �′ ∈ S∗;� a sequence � ∈ S+ is of type 2 if � = sinitsgen�′, where �′ ∈ S∗. Type 2 sequences of
states can be further classified according to the number of states sgen and str they
contain:

– a sequence � is of type 2(i)(i−1), where i ≥ 1, if � = sinit(sgenstr)i−1sgen�′, where
�′ ∈ S∗ does not contain sgen and str;

– a sequence � is of type 2(i)(i), where i ≥ 1, if � = sinit(sgenstr)i�′, where �′ ∈ S∗

does not contain sgen and str.

Of course, there are sequences � ∈ S+ which are neither of type 1 nor of type 2. A path �
of a computation tree of G will be called of type x if l1(�) is of type x, where x is as above.

The following claim follows easily from definitions.

11

Claim 1. Let � and �′ be two non-empty sequences of states. Then, the following proper-
ties hold:

1. If � is of type 1 and �′ is of type 2, then � /∼1 �′;

2. If � is of type 1 and �′ is of type 2 and � ∼2 �′, then �′ is of type 2(1)(0);

3. If � and �′ are of type 2, have a different number of sgen or str states, and � ∼1 �′,
then � is of type 2(i)(i − 1) and �′ is of type 2(i)(i), or vice-versa;

4. If � and �′ are of type 2, have a different number of sgen or str states, and � ∼2 �′,
then � is of type 2(i)(i) and �′ is of type 2(i + 1)(i), or vice-versa.

Now, define a strategy � = (�1, �2) as follows:� �1(sinit) = �1(�) = idle, for any type 1 sequence � ∈ S+;� �2(sinit) = �2(�) = idle, for any type 1 sequence � ∈ S+ different from sinits
′
initslb, and

�2(sinits′initslb) = (q0);� �1(�sq,a) = (q, q′,R) = �1(�′s′tr), for any �sq,a of type 2(i)(i − 1) and any �′s′tr of
type 2(i)(i) for which i ≥ 1 and the following property holds:

– ∣�sq,a∣ = 3 + (2j − 1) = ∣�′s′tr ∣ for some j ≥ 1, and the agent 1 simulating the first
j steps of M deduces that the current configuration of M is of the form uqav,
where ∣u∣ = i − 1, and �(q, a) = (q′, a′,R), for some q′ and a′;� �1(�sa) = (q, q′,L) = �1(�′sq,q′,L), for any �sa of type 2(i)(i − 1) and any �′sq,q′,L of

type 2(i)(i) for which i ≥ 1 and the following property holds:

– ∣�sa∣ = 3 + 2j = ∣�′sq,q′,L∣ for some j ≥ 1, and the agent 1 simulating the first j
steps of M deduces that the current configuration of M is of the form uaqbv,
where ∣u∣ = i − 1, and �(q, b) = (q′, b′,L), for some q′ and b′;� �2(�sq,q′,R) = (q, q′,R) = �2(�′sa), for any �sq,q′,R of type 2(i)(i) and any �′sa of

type 2(i + 1)(i) for which i ≥ 1 and the following property holds:

– ∣�sq,q′,R∣ = 3 + 2j = ∣�′sa∣ for some j ≥ 1, and the agent 2 simulating the first j
steps of M deduces that the current configuration of M is of the form uqav,
where ∣u∣ = i − 1, and �(q, a) = (q′, a′,R), for some q′ and a′;� �2(�s′tr) = (q, q

′,L) = �2(�′sq,a), for any �s′tr of type 2(i)(i) and any �′sq,a of type
2(i + 1)(i) for which i ≥ 1 and the following property holds:

– ∣�s′tr∣ = 3 + (2j − 1) = ∣�′sq,a∣ for some j ≥ 1, and the agent 2 simulating the first
j steps of M deduces that the current configuration of M is of the form uaqbv,
where ∣u∣ = i − 1, and �(q, b) = (q′, b′,L), for some q′ and b′;� �2(sinitsgensB) = (q0);

12

� �1(�) = idle and �2(�′) = idle for all the other cases.

The strategies �1 and �2 are both compatible with d, �1 is compatible with ∼1, and �2
is compatible with ∼2.

Any tree with exactly one node (its root) labeled by sinit is an sinit-rooted computation
tree of G under � and its nodes are all labeled by ok-states.

Assume that T is an sinit-rooted computation tree of G under � and all its nodes are
labeled by ok-states. It is easy to see that T may only have type 1, type 2(i)(i − 1), or
type 2(i)(i) paths, for some i ≥ 1. Any extension T ′ of T (i.e., T ⇒G,�T ′) adds new nodes
to T which cannot be labeled by serr because M does not halt (see the definition of �).
Therefore, any sinit-rooted computation tree of G under � has all its nodes labeled by
ok-states.

Conversely, we show that M does not halt on the empty word if all sinit-rooted com-
putation trees of G under some strategy � for {1,2} have only nodes labeled by ok-states.

Let � be a strategy with the property above and consider an sinit-rooted computation
tree T = (V,E, v0, l1, l2) under �. A node v of T will be called of type x if l1(patℎT (v0, v))
is of type x (x is 1, 2, 2(i)(i − 1), or 2(i)(i), for some i ≥ 1).

We then define a partial ordering ≺T on the nodes of T as the least partial ordering
with the following properties:� if v and v′ are nodes on the same level of T and l1(v′) ∈ {sgen, str}, then v ≺T v′;� if v and v′ are nodes on the same level of T and there exist u on the path from root

to v and u′ on the path from root to v′ with u ≺T u′, then v ≺T v′

Some properties of T and its level sets are listed in the sequel.

Claim 2. Let T = (V,E, v0, l1, l2) be an sinit-rooted computation tree of G under �, and
n ≥ 1. Then:

1. levelT (n) has at most n+ 1 nodes, and each of them is either of type 1, or of type 2,
or of type 2(i)(i − 1), or of type 2(i)(i), for some i ≥ 1;

2. levelT (n) contains at most one node of type 1;

3. levelT (n) contains at most one node of type 2(i)(i−1) and at most one node of type
2(i)(i), for each i ≤ ⌈n/2⌉;

4. for any v, v′ ∈ levelT (n), v ≺T v′ if and only if one of the following properties hold:

(a) v = v′;
(b) v is of type 1;
(c) v is of type 2(i)(i′), v′ is of type 2(j)(j′), and i < j or, if i = j then i′ < j′.

5. ≺T is a total ordering on levelT (n).

Proof. All the properties in Claim 2 can be proved by induction on n ≥ 1 and make use
of the fact that all nodes of T are labeled by ok-states. Thus, if v is a node on the level
n of T and it is not label by sgen or str, then it may have at most one descendant v′ on

13

the level n + 1 (by �, each of the agents 1 and 2 has exactly one choice at l1(v), and by
d3, the agent 3 has exactly one choice as well at l1(v)). Moreover, v′ and v have the same
type. If v is labeled by sgen, then its type is 2(i)(i − 1) for some i ≥ 1, and it may have at
most two descendants v′ and v′′ on the level n + 1 (by �, each of the agents 1 and 2 has
exactly one choice at l1(v), but the agent 3 has two choices). One of this descendants is
of type 2(i)(i − 1), while the other is of type 2(i)(i) and it is labeled by str. Similarly, if
v is labeled by str, then its type is 2(i)(i) for some i ≥ 1, and it may have at most two
descendants v′ and v′′ on the level n + 1. One of this descendants is of type 2(i)(i), while
the other is of type 2(i + 1)(i) and it is labeled by sgen.

Combining these remarks with the fact that levelT (1) may contain at most two nodes,
one of them labeled by s′init (which is of type 1) and the other by sgen, we obtain (1), (2),
and (3) in the Claim.

(4) follows from the definition of ≺T and the above properties, and (5) follows from (4).
◻

If levelT (n) = {v1, . . . , vn+1} of an sinit-rooted computation tree T of G under � has
exactly n + 1 nodes, then we say that it is complete. Moreover, if we assume that v1 ≺T
⋯ ≺T vn+1, then we may view levelT (n) as a sequence of nodes, v1⋯vn+1.

Claim 3. Let T = (V,E, v0, l1, l2) be an sinit-rooted computation tree of G under �, and
n ≥ 1 such that levelT (n) is complete and its sequence of nodes is v1⋯vn+1. Then, the
following properties hold:

1. levelT (m) is complete, for any m ≤ n;

2. v1 is of type 1, v2i is of type 2(i)(i − 1), and v2i+1 is of type 2(i)(i), for all i ≥ 1 with
2i ≤ n;

3. (a) l1(patℎT (v0, v1)) ∼2 l1(patℎT (v0, v2));
(b) l1(patℎT (v0, v2i)) ∼1 l1(patℎT (v0, v2i+1)), for all i ≥ 1 with 2i ≤ n;
(c) l1(patℎT (v0, v2i+1)) ∼2 l1(patℎT (v0, v2(i+1))), for all i ≥ 1 with 2i + 1 ≤ n;

4. l1(v1⋯vn+1) is of the one of the following forms:

(a) s′initsgen, if n = 1;
(b) slbsBstr, if n = 2;
(c) s′lbsa1s

′
tr⋯saj−1s

′
trsq,ajstr′saj+1⋯s

′
trsams

′
trsgen, if n > 2 is odd, where a1, . . . , am ∈ Σ,

q ∈ Q, m = (n − 1)/2, and 1 ≤ j ≤m (for j = 1, sa1 becomes sq,a1, and for j =m,
am becomes sq,am);

(d) s′lbsa1s
′
tr⋯saj−1s

′
trsajsq,q′,Xsaj+1⋯s

′
trsam−1s

′
trsBstr, if n > 2 is even, where a1, . . . , am−1 ∈

Σ, q, q′ ∈ Q, X ∈ {L,R}, m = n/2, and 1 ≤ j ≤m − 1;

5. there exists an sinit-rooted computation tree T ′ of G under � such that T
∗
⇒G,� T

′ and
levelT ′(n + 1) is complete. Moreover, if the sequence of nodes of levelT (n) has the
form (4a) ((4b), (4c), (4d)), then levelT ′(n + 1) has the form (4b) ((4c), (4d), (4c),
respectively).

14

Proof. (1), (2), and (3) can be proved in a similar way to the statements in Claim 2.
We prove (4) and (5) together. It is easy to show that l1(v1⋯vn+1) has the form (4a)

if n = 1. As l1(patℎT (v0, v1)) ∼2 l1(patℎT (v0, v2)) and T has only ok-states, the strategy
�2 should select only idle as the only choice for agent 2 at l1(v1) and l1(v2). �1 should
select idle for agent 1 at l1(v1) and l1(v2), while the agent 3 has the only choice idle at
l1(v1) and two choices, br1 and br2, at l1(v2). Therefore, we can extend T by adding a new
descendant v′

1
of v1 and two new descendants v′

2
and v′′

2
of v2, by the rules

l1(v1)
(i,i,i)
ÐÐÐ→ l1(v

′
1
) = slb, l1(v2)

(i,i,br1)
ÐÐÐÐ→ l1(v

′
2
) = sB, l1(v2)

(i,i,br2)
ÐÐÐÐ→ l1(v

′′
2
) = str.

We obtain a new sinit-rooted computation tree T ′ of G under � whose level 2 satisfies (4)
and (5).

Assume n = 2 and l1(v1, v2, v3) = slbsBstr. As l1(patℎT (v0, v1)) ∼2 l1(patℎT (v0, v2)) and
T has only ok-states, the strategy �2 should select only (q0) as the only choice for agent
2 at l1(v1) and l1(v2). The agents 1 has the only choice idle at l1(v1) and l2(v2) (by �1),
and the agent 3 has the same choice at these states (by d3). Therefore, we can add a new
descendant v′

1
of v1 and a new descendant v′

2
of v2 by the rules

l1(v1) = slb
(i,(q0),i)
ÐÐÐÐ→ l1(v

′
1) = s

′
lb and l1(v2) = sB

(i,(q0),i)
ÐÐÐÐ→ l1(v

′
2) = sq0,B.

There are two choices at l1(v3), namely (i, i, br1) and (i, i, br2), allowing to add two de-
scendants v′

3
and v′′

3
of v3 on the next level. Moreover, l1(v′3) = s

′
tr and l1(v′′3) = sgen. As

a conclusion, T can be extended to a new tree T ′ whose sequence of nodes on level 3 are
v′
1
v′
2
v′
3
v′′
3
and l1(v′1v

′
2
v′
3
v′′
3
) = s′lbsq0,Bs

′
trsgen which is the form (4c). Moreover, (5) holds too.

Assume n > 2 odd, l1(v1⋯vn+1) of the form (4c), and j > 1 (the case j = 1 can be
discussed in a similar way). We have that l1(v2j) = sq,aj and l1(v2j−1) = l1(v2j+1) = s′tr.
Due to the fact that l1(patℎT (v0, v2j)) ∼1 l1(patℎT (v0, v2j+1)) and T has only ok-states,
�1 should select an action of the form (q, q′,R) or (q, q′,L) for agent 1 as a choice at
l1(v2j) and l1(v2j+1) (q′ ∈ Q and this choice is obtained from the transition function of M).
Assume that this choice is (q, q′,R) and �(q, aj) = (q′, a′j ,R) (the other case is similar to
this). Each of the agents 2 and 3 has exactly one choice at l1(v2j) and l1(v2j+1), namely
idle. Therefore, T can be extended by adding two new descendants v′

2j and v′
2j+1 by the

rules

l1(v2j) = sq,aj
((q,q′,R),i,i)
ÐÐÐÐÐÐ→ l1(v

′
2j) = sa′j and l1(v2j+1) = s

′
tr

((q,q′,R),i,i)
ÐÐÐÐÐÐ→ l1(v

′
2j+1) = sq,q′,R.

For the nodes vi with i /∈ {2j,2j+1, n+1}, there is exactly one choice for each agent, namely
idle, and therefore, a new descendant v′i of vi can be added by the rule

l1(vi)
(i,i,i)
ÐÐÐ→ l1(v

′
i) = l1(vi).

For the node vn+1 we may reason as in the case n = 2 above. Two descendants v′n+1 and
v′′n+1 can be added, with l1(v′n+1) = sB and l1(v′′n+1) = str.

In this way, we obtain a new tree T ′ whose level n + 1 satisfies (4) and (5).
The case “n > 2 even and l1(v1⋯vn+1) of the form (4d)” can be treated analogously to

the above one. ◻

15

Consider further the homomorphism ℎ ∶ S → (Q ∪Σ)∗ given by:

ℎ(s) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

a, if s = sa

qa, if s = sq,a

�, otherwise

We shall write ℎ(levelT (n)) for ℎ(v1⋯vn+1), where v1⋯vn+1 is the sequence of nodes
associated to complete level levelT (n) of some sinit-rooted computation tree T of G under
�.

Claim 4. Let T = (V,E, v0, l1, l2) be an sinit-rooted computation tree of G under �, and
n ≥ 3 odd such that levelT (n) is complete. Then:

1. ℎ(levelT (n)) ∈ Σ∗QΣΣ∗;

2. there exists an sinit-rooted computation tree T ′ of G under � such that T
∗
⇒G,� T

′,
levelT ′(n + 2) is complete, and ℎ(levelT (n))⇒Mℎ(levelT ′(n + 2)).

Proof. From the definition of ℎ, Claim 3, and by inspecting the proof of Claim 3. ◻

It is straightforward to see that there exists an sinit-rooted computation tree T of G
under � whose levelT (3) is complete. Moreover, by Claim 3, we have ℎ(levelT (3)) = q0B
(that is, the initial configuration of M). Then, combining with Claim 4, we obtain that
M does not halt on the empty word if all sinit-rooted computation trees of G under some
strategy � for {1,2} have only nodes labeled by ok-states.

Our discussion above leads to:

Theorem 1. The model checking problem for ATLiR is undecidable.

4. Conclusions

The proof above shows that the strategies used by the agents 1 and 2 to simulate the
deterministic Turing machine M are primitive recursive. Therefore, the crucial elements
which allow to simulate M are the equivalence relations ∼1 and ∼2. These equivalence
relations are “inter-related” and are used to transfer information from one computation
path can be transferred to another computation path.

A deeper analysis of the nature of the observational equivalence relations associated to
agents in a CGS would be interesting.

16

References

References

[1] R. Alur, Th. A. Henzinger, O. Kupferman. Alternating-time Temporal Logic, Journal
of the ACM 49, 2002, 672–713. Preliminary version appeared in the Proc. of the 38th
IEEE Symposium on Foundations of Computer Science (FOCS ’97), 1997, 100-109.

[2] N. Bulling, J. Dix, W. Jamroga. Model Checking Logics of Strategic Ability: Com-
plexity, in “Specification and Verification of Multi-Agent Systems” (M. Dastani, K.
Hindriks, J.-J. Meyer, eds.), Springer-Verlag, 2010 (to appear).

[3] P.-Y. Schobbens. Alternating-time Logic with Imperfect Recall, Electronic Notes in
theoretical Computer Science 85(2), 2004.

[4] M. Yannakakis. Synchronous Multi-player Games with Incomplete Information are
Undecidable, personal communication, 1997.

[5] W. Jamroga and Th. Agotnes. Constructive Knowledge: What Agents Can Achieve
under Imperfect Information, Journal of Applied Non-Classical Logics, 17, (4), p.
423–475, 2007.

[6] Fr. Laroussinie, N. Markey and Gh. Oreiby, On the Expressiveness and Complexity of
ATL, Logical Methods in Computer Science, 4(2), 2008.

17

