Cuny logic worshop

Benoit Monin - LACL - Université Paris-Est Créteil

5 May 2017

ITTM and randomness

Algorithmic randomness

Algorithmic randomness

What does it mean for a binary sequence to be random ?

Intuitively : Is it reasonable to think that c_1, c_2 or c_3 could have been obtained by a fair coin tossing ?

 $c_1:000011000000010001000010000100010100001000100\dots$

What does it mean for a binary sequence to be random ?

Intuitively : Is it reasonable to think that c_1, c_2 or c_3 could have been obtained by a fair coin tossing ?

What does it mean for a binary sequence to be random ?

Intuitively : Is it reasonable to think that c_1, c_2 or c_3 could have been obtained by a fair coin tossing ?

What does it mean for a binary sequence to be random ?

Intuitively : Is it reasonable to think that c_1, c_2 or c_3 could have been obtained by a fair coin tossing ?

A general paragdigm

Intuition

A sequence of 2^{ω} should be random if it belongs to no set of measure 0 which is "simple to describe".

Fact

As long as at most countably many sets are "simple to describe", the set of randoms is of measure 1 (by countable additivty of measures).

The effective Borel hierarchy provides a range of natural candidates.

The Cantor space

What do we work with ?

Our playground	The Cantor space	
Denoted by	2^{ω}	
Topology	The one generated by the cylinders $[\sigma]$, the set of sequences extending σ , for every string σ	
An open set $\mathcal U$ is	A union of cylinders	
The measure λ	is the unique measure on 2^ω such that $\lambda([\sigma])=2^{- \sigma }$	

Arithmetical complexity of sets

Following a work started by **Baire** in 1899 (Sur les fonctions de variables réelles), pursued by **Lebesgue** in his PhD thesis (1905), and many others (in particular **Lusin** and his student **Suslin**), we define the **Borel sets** on the Cantor space:

$\mathbf{\Sigma}_1^0$ sets are	Open sets
${\sf \Pi}_1^0$ sets are	Closed sets
$\mathbf{\Sigma}_{n+1}^{0}$ sets are	Countable unions of Π^0_n sets
Π_{n+1}^0 sets are	Complements of Σ^0_{n+1} sets

Effectivize the arithmetical complexity of sets

This has latter been effectivized, following a work of **Kleene** and **Mostowsky**:

Definition (Effectivization of open sets)

A set \mathcal{U} is Σ_1^0 , or **effectively open**, if there is a code *e* for a program enumerating strings such that so that \mathcal{U} is the union of the cylinders corresponding to the enumerated strings.

Definition (Effectivization of closed sets)

A set ${\mathcal U}$ is $\Pi^0_1,$ or effectively closed, if it is the complement of a Σ^0_1 set.

Effectivize the arithmetical complexity of sets

We can then continue inductively: (Notation : $[W_e] = \bigcup_{\sigma \in W_e} [\sigma]$)

Σ^0_1 sets are	of the form $[W_e]$
Π^0_1 sets are	of the form $[W_e]^c$
Σ_2^0 sets are	of the form $\bigcup_{n \in W_e} [W_n]^c$
Π_2^0 sets are	of the form $\bigcap_{n \in W_e} [W_n]$

Martin-Löf's definition

Definition (Martin-Löf randomness)

A sequence is **Martin-Löf random** if it belongs to no Π_2^0 set 'effectively of measure 0'. A Π_2^0 set 'effectively of measure 0' is called a **Martin-Löf test**.

Definition (Effectively of measure 0)

An intersection $\bigcap A_n$ of sets is effectively of measure 0 if $\lambda(A_n) \leq 2^{-n}$.

Fact

One can equivalently require that the function $f : n \to \lambda(A_n)$ is bounded by a computable function going to 0.

Why Martin-Löf's definition ?

Question

Why don't we just take Π^0_2 sets of measure 0 ? How important is the 'effectively of measure 0' condition ?

Answer(1)

The 'effectively of measure 0' condition implies that there is a universal **Martin-Löf test**, that is a Martin-Löf test containing all the others.

Answer(2)

It is not true anymore if we drop the 'effectively of measure 0' condition. Instead we get a notion known as **weak-2-randomness**.

We can build a hierachy of randomness notions:

1-random	Every Π_2^0 sets 'effectively of measure 0'
weakly-2-random	Every Π_2^0 sets of measure 0
2-random	Every Π_3^0 sets 'effectively of measure 0'
weakly-3-random	Every Π_3^0 sets of measure 0

We have:

1-random \leftarrow w2-random \leftarrow 2-random \leftarrow w3-random \leftarrow ...

All implications are strict

Example

The set of sequences whose lim sup of the ratio of 0's and 1's is above $1/2 + \varepsilon$, is the set $\bigcap_n \mathcal{U}_n$ where:

$$\mathcal{U}_n = \bigcup_{m \ge n} \mathcal{C}_m$$

and

$$\mathcal{C}_m = \left\{ \sigma \in 2^m : \frac{\#\{i \le m : \sigma(i) = 0\}}{m} - \frac{1}{2} > \varepsilon \right\}$$

Using Hoeffding's inequality we have:

$$\lambda(\mathcal{C}_m) \leqslant e^{-2\varepsilon^2 m}$$

And thus:

$$\lambda(\mathcal{U}_n) \leqslant e^{-2\varepsilon^2 n}/(1-e^{-2\varepsilon^2})$$

Kolmogorov complexity

Definition (Levin, Gács, Chaitin)

A prefix-free machine is a computable function $U: 2^{<\omega} \to 2^{<\omega}$ whose domain of definition is prefix-free : If $U(\sigma) \downarrow$, then $U(\tau) \uparrow$ for any $\tau \neq \sigma$.

Theorem (Levin, Gács, Chaitin)

There is a universal prefix-free machine $U: 2^{<\omega} \rightarrow 2^{<\omega}$: The machine U is such that for any prefix-free machine M, we have a constant c_M for which $U(\sigma) \leq M(\sigma) + c_M$ for every σ .

Definition (Chaitin)

We define the prefix-free Kolmogorov complexity of σ by $K(\sigma) = \{\min |\tau| : U(\tau) = \sigma\}.$

Randomness and Kolmogorov complexity

Theorem (Levin, Schnorr)

A sequence X is Martin-Löf random iff there exists c such that $K(X \upharpoonright_n) \ge n + c$ for every n.

Theorem (Chaitin)

The binary representation of the probability that a computer program halts, is Martin-Löf random :

$$\Omega = \sum_{U(\sigma)\downarrow} 2^{-|\sigma|}$$

Lowness for randomness

Definition

A sequence Z is Martin-Löf random relative to A if Z is in no $\Pi_2^0(A)$ set effectively of measure 0.

Definition

A sequence A is **low for Martin-Löf randomness** if the Martin-Löf randoms are all Martin-Löf random relative to A.

If A is computable, then A is low for Martin-Löf randomness.

How about the converse ?

Lowness for randomness

Theorem (Chaitin)

A sequence X is K-trivial if $K(X \upharpoonright_n) \leq^+ K(n)$ for every n.

Theorem (Solovay)

There are non-computable K-trivial sets.

Theorem (Chaitin)

Every K-trivial is computable from the halting problem (in particular there are at most countably many K-trivials).

Theorem (Hirschfield, Nies)

A sequence A is low for Martin-Löf randomness iff A is K-trivial.

ITTM and randomness

Beyond arithmetic

Suppose T is a computable tree of 2^{ω} with **exactly** one infinite path.

Can we compute the path of the tree ?

Suppose T is a computable tree of 2^{ω} with **exactly** one infinite path.

Can we compute the path of the tree ?

Yes. The path is computable

Suppose T is a computable tree of 2^{ω} with perfectly many infinite paths.

Can we compute a path of the tree ?

Suppose T is a computable tree of 2^{ω} with perfectly many infinite paths.

Can we compute a path of the tree ?

Not necessarily

proposition

Every Π_1^0 class of 2^{ω} is the set of infinite paths of a computable tree $T \subseteq 2^{<\omega}$.

proposition

There is a Π_1^0 class which contains only Martin-Löf randoms.

proposition

The oracles which can compute a path in any Π_1^0 class are exactly the oracles which can compute a complete extention of Peano Arithmetic.

Suppose T is a computable tree of ω^{ω} with **exactly** one infinite path. What computational power is needed to compute such a path ?

Computable ordinals

We define an order < on a subset of ω as the smallest subset of $\omega\times\omega$ such that:

$$\begin{array}{ll} 1 < 2 \\ \text{if} & a \text{ is in the support of } < & \text{then} & a < 2^b \\ \text{if} & a_1 < a_2 \dots \text{ and if } \varphi_e(n) = a_n & \text{then} & a_n < 3.5^e \ \forall n \\ \text{if} & a < b \text{ and } b < c & \text{then} & a < c \end{array}$$

Let \mathcal{O} be the support of <. For every $e \in \mathcal{O}$ we define |e| to be the order type of < restricted to elements smaller than e.

Definition (Kleene)

An ordinal α is computable if $\alpha = |e|$ for $e \in \mathcal{O}$.

Proposition

The computable ordinals form a strict initial segment of the countable ordinals.

Computable ordinals

We define a jump hierarchy by induction over <:

$$\begin{array}{rcl} H_0 &=& \varnothing \\ H_{2^a} &=& (H_a)' \\ H_{3.5^e} &=& \oplus_n H_{\varphi_e(n)} \end{array}$$

proposition

For $e_1 < e_2$ we have $H_{e_1} <_T H_{e_2}$.

proposition

For every $e \in O$, the Turing degree of H_e is the Turing degree of the unique infinite path of a computable tree.

Hyperarithmetical complexity of sets

We can extend the definition of Borel sets by induction over the ordinals:

$\mathbf{\Sigma}_1^0$ sets are	Open sets
${\sf \Pi}^0_1$ sets are	Closed sets
$\mathbf{\Sigma}_{lpha+1}^{0}$ sets are	Countable unions of Π^0_lpha sets
$\Sigma^{0}_{\sup_{n} \alpha_{n}}$ sets are	Countable unions of Π^0_{β} sets for $\beta < \sup_n \alpha_n$
Π^0_{lpha} sets are	Complements of $\mathbf{\Sigma}^{0}_{lpha}$ sets

It is clear that no new sets are define at step ω_1 , by uncountablity of ω_1 . Before that one can prove that the hierarchy is strict.

Effective Hyperarithmetical complexity of sets

How about the effective version ? The challange is to be able to effectively 'unfold' all the components of a Σ^0_α set.

(Notation : The set of index *n* is denoted by $\{n\}$)

Σ^0_1 sets are	of the form $[W_e]$	with index	$\langle 0, e angle$
Π^0_{lpha} sets are	of the form $\{e\}^c$	with index	$\langle 1, e angle$
Σ^0_lpha sets are	of the form $\bigcup_{n \in W_e} \{n\}$ where n is an index for a Π_{β}^0 set with $\beta < \alpha$	with index	$\langle 2, e angle$

Question : At what ordinal α no new set is added in the hierarchy ?

Order-type of well-founded trees

Computable ordinals and effective Borel sets

Definition (smallest non-computable ordinal)

The smallest non-computable ordinal is denoted by $\omega_1^{\rm ck}$, where the ck stands for 'Church-Kleene'.

It is of historical interest to notice that the **Kleene's recursion theorem** has been 'cooked up' to work with codes of computable ordinals. Indeed, the theorem appear for the first time in 1938, in the paper called 'On notation for ordinal numbers'.

Claim

Indices of effective Borel sets are 'essentially' codes for computably enumerable well-founded trees.

Computable ordinals and effective Borel sets

Hyperarimthetical sets

It follows that every effective Borel set is Σ^0_{α} for $\alpha < \omega_1^{ck}$. Again one can prove that the hierarchy is strict before ω_1^{ck} .

Definition (Hyperarithmetical sets)

The effective Borel sets are called hyperarithmetical sets.

Every Σ_n^0 set for *n* finite is definable by a first-order formula of arithmetic. It is not the case anymore with Σ_{ω}^0 and beyond. We can however define them with second order formulas of arithmetic.

Definition (Σ_1^1 sets)

A subset $\mathcal{A} \subseteq 2^{\omega}$ is Σ_1^1 if it can be defined by a formula of arithmetic whose second order quantifiers are only existential (with no negation in front of them).

Definition $(\Pi_1^1 \text{ sets})$

A subset $\mathcal{A} \subseteq 2^{\omega}$ is Π_1^1 if it can be defined by a formula of arithmetic whose second order quantifiers are only univeral (with no negation in front of them).

Definition $(\Delta_1^1 \text{ sets})$

A subset $\mathcal{A} \subseteq 2^{\omega}$ is Δ_1^1 if it is both Σ_1^1 and Π_1^1 .

Proposition

An effective Borel set is both Σ_1^1 and Π_1^1 .

While this proposition is essentially a tedious but straightforward induction over the computable ordinals, the converse is less tedious but much clever. A non-effective version was first prove by Suslin in 1917 ("Sur une definition des ensembles mesurables B sans nombres transfinis"). Then the effective version was proved much latter (after the effective concepts were introduced) by Kleene in 1955 ('Hierarchies of number theoretic predicates').

Theorem (Suslin, Kleene)

An set is effective Borel iff it is both Σ_1^1 and Π_1^1 .

Notation

We denote by \mathcal{O} the set of codes for computable ordinals, and \mathcal{O}^X the set of X-codes for X-computable ordinals. We denote by \mathcal{O}_{α} the set of codes for computable ordinals, coding

for ordinal strictly smaller than α .

Example : we have
$$\mathcal{O} = \mathcal{O}_{\omega_1^{\mathsf{ck}}}$$
 and $\mathcal{O}^X = \mathcal{O}_{\omega_1^X}^X$

We now have that the set \mathcal{O} , play the same role as \emptyset' , but for Π_1^1 predicates of ω .

Theorem (Complete Π_1^1 set)

A set of integers A is Π_1^1 iff there is a computable function $f : \omega \mapsto \omega$ so that $n \in A$ iff $f(n) \in W$.

${\cal A}$ is	a set of integer	a set of sequences
Π^1_1	$n \in \mathcal{A} \leftrightarrow f(n) \in \mathcal{O}$	$X \in \mathcal{A} \leftrightarrow e \in \mathcal{O}^X$
	for some computable function <i>f</i>	for some <i>e</i>
Δ^1_1	$n \in \mathcal{A} \leftrightarrow f(n) \in \mathcal{O}_{\alpha}$	$X \in \mathcal{A} \leftrightarrow e \in \mathcal{O}^X_{lpha}$
	for some computable function f and some computable ordinal α	for some e and some ordinal α

Π_1^1 sets : Increasing union over the ordinals

Suppose $A \subseteq \omega$ is Π^1_1 with index *e* and let us denote

$$A_{\alpha} = \{ n : \varphi_e(n) \in \mathcal{O}_{\alpha} \}$$

Then A is an increasing union of Δ_1^1 sets:

Π_1^1 sets : Increasing union over the ordinals

Suppose $\mathcal{A}\subseteq 2^\omega$ is Π^1_1 with index e and let us denote

$$\mathcal{A}_{\alpha} = \{X : e \in \mathcal{O}_{\alpha}^X\}$$

Then \mathcal{A} is an increasing union of $\mathbf{\Delta}_1^1$ sets:

An important example of Π_1^1 set of sequences

Definition

For a sequence $X \in 2^{\omega}$, the smallest non-X-computable ordinal is denoted by ω_1^X .

The set $C = \{X : \omega_1^X > \omega_1^{ck}\}$ is a Π_1^1 set with the following properties:

- C is of measure 0 (Sacks).
- C is a meager set (Feferman).
- \mathcal{C} contains no Σ_1^1 subset (Gandy).

•
$$C$$
 is a $\Sigma^{0}_{\omega_{1}^{ck}+2}$ set which is not $\Pi^{0}_{\omega_{1}^{ck}+2}$ (Steel).

ITTM and randomness

Higher randomness

Section 3

Higher randomness

Higher randomness

We can now define higher randomness notions

Definition Δ_1^1 -random (Martin-Löf)

A sequence is Δ_1^1 -random if it belongs to no Δ_1^1 set of measure 0.

Definition Π_1^1 -random (Sacks)

A sequence is Π_1^1 -random if it belongs to no Π_1^1 set of measure 0.

What about Σ_1^1 -randomness ?

Theorem (Sacks)

A sequence is Σ_1^1 -random iff it is Δ_1^1 -random.

Π_1^1 randomness

The following theorems make Π^1_1 -randomness an interesting notion of randomness:

Theorem (Keckris, Nies, Hjorth)

There is a universal Π_1^1 set of measure 0, that is one containing all the others.

As the set of $\{X : \omega_1^X > \omega_1^{ck}\}$ is a Π_1^1 set of measure 0. Therefore if something is Π_1^1 -random, then $\omega_1^X = \omega_1^{ck}$. We have a very nice theorem about the converse:

Theorem (Chong, Yu, Nies)

A sequence X is Π_1^1 -random iff it is Δ_1^1 -random and $\omega_1^X = \omega_1^{ck}$.

Borel complexity of Π_1^1 randoms

Due to its universal nature, the set of Π_1^1 randoms is expected to have a higher Borel rank. But surprisingly we have:

Theorem (M.)

The set of Π_1^1 randoms is a Π_3^0 set of the form:

$$\bigcap_{n}\bigcup_{m}\mathcal{F}_{n,m}$$

For each $\mathcal{F}_{n,m}$ a Σ_1^1 closed set.

where

Definition

A Π_1^1 -open set is an open set \mathcal{U} so that for a Π_1^1 set of strings A we have $\mathcal{U} = \bigcup \{ [\sigma] : \sigma \in A \}$. A Σ_1^1 -closed set is the complement of a Π_1^1 -open set.

Lowness for Π_1^1 -randomness

Definition

We say that A is low for Π_1^1 -randomness if every $\Pi_1^1(A)$ -random is also Π_1^1 -random.

It is clear that any Δ_1^1 binary sequence is low for Π_1^1 -randomness. Are there other sequences which are low for Π_1^1 -randomness?

Theorem (Greenberg, M.)

The Δ_1^1 sequences are the only sequences that are low for Π_1^1 -randomness.

Another hierarchy

Definition (Π_1^1 open set)

A Π_1^1 open set is an open set \mathcal{U} so that for a Π_1^1 set of strings A we have $\mathcal{U} = \bigcup \{ [\sigma] : \sigma \in A \}.$

Definition (Index for Π_1^1 open set)

For a Π_1^1 open set $\mathcal{U} = \bigcup \{ [\sigma] : f(\sigma) \in \mathbf{W} \}$ with f a computable function, we say that a code e for f is an **index** for \mathcal{U} , and we write $\mathcal{U} = [W_e^{\omega_1^{ck}}].$

Definition $(\Sigma_1^1 \text{ closed set})$

A Σ_1^1 closed set is the complement of a Π_1^1 open set.

Another hierarchy

We can establish a new hierarchy by taking successive effective union and effective intersection of Π_1^1 open sets and Σ_1^1 closed sets.

$\mathbf{\Sigma}_{1}^{\omega_{1}^{ck}}$ sets are	Π^1_1 open sets $[W_e^{\omega_1^{ck}}]$	with index	е
$\Pi_1^{\omega_1^{ck}}$ sets are	Σ_1^1 closed sets $[W_e^{\omega_1^{ck}}]^c$	with index	е
$\mathbf{\Sigma}_{\pmb{n}+1}^{\mathbf{\omega}_1^{ck}}$ sets are	$\bigcup_{m \in W_e} \{m\} \text{ where each } m \text{ is an}$ index for a $\prod_{n=1}^{\omega_1^{ck}}$	with index	е
$\Pi_{n+1}^{\omega_1^{ck}}$ sets are	$\bigcap_{m \in W_e} \{m\} \text{ where each } m \text{ is an}$ index for a $\sum_{n=1}^{\omega_1^{ck}}$	with index	е

Another hierarchy

We can now define another hierarchy, starting with $\Pi^1_1\text{-open sets}$ and $\Sigma^1_1\text{-closed sets.}$

The blue sets are Π_1^1 sets

The green sets are Σ_1^1 sets

Other higher randomness notions

Definition Π_1^1 -MLR (Hjorth, Nies)

A sequence is Π_1^1 -MLR if it belongs to no $\Pi_2^{\omega_1^{ck}}$ sets effectively of measure 0.

Definition strongly- Π_1^1 -random (Nies)

A sequence is strongly- Π_1^1 -MLR (or weakly- Π_1^1 -random) if it belongs to no $\Pi_2^{\omega_1^{ck}}$ set of measure 0.

Definition strongly- Π_1^1 -random (M.)

A sequence is strongly- $\Pi_n^{\omega_1^{ck}}$ -MLR if it is in no $\Pi_n^{\omega_1^{ck}}$ set of measure 0.

Separation of randomness notions

Theorem (Hjorth, Nies)

 Π_1^1 -Martin-Löf randomness is strictly stronger than Δ_1^1 -randomness.

Theorem (Chong, Yu 2012)

weakly- $\Pi^1_1\text{-}\mathsf{randomness}$ is strictly stronger than $\Pi^1_1\text{-}\mathsf{Martin-L\"of}$ randomness.

Theorem (Greenberg, Bienvenu, M.)

 Π_1^1 -randomness is strictly stronger than weakly- Π_1^1 -randomness.

Randomness notions along the hierarchy

Proposition

For a sequence X, the following are equivalent:

- X is in no $\Pi_3^{\omega_1^{ck}}$ set of measure 0.
- X is Δ_1^1 -random.

Theorem (Greenberg, M.)

For a sequence X, the following are equivalent:

- X is in no $\Pi_4^{\omega_1^{ck}}$ set of measure 0.
- X is in no $\Pi_n^{\omega_1^{ck}}$ set of measure 0 for any n.
- X is in no Π_1^1 set of measure 0.

Other higher randomness notions

What is known:

$$\Delta_{1}^{1} random \leftarrow \Pi_{1}^{1} MLR \leftarrow strongly \Pi_{1}^{1} MLR \leftarrow$$
$$\Pi_{1}^{1} random = `strongly \Pi_{4}^{\omega_{1}^{ck}} MLR'$$

All the implications are strict. The proof of separation between $\Pi_2^{\omega_2^{ck}}$ random and Π_1^1 random was a difficult question, open for a while.

Beyond arithmetic

Higher randomness

ITTM and randomness

ITTM and randomness

Section 4

ITTM and randomness

ITTM

An infinite-time Turing machine is a Turing machine with three tapes whose cells are indexed by natural numbers:

- The input tape
- The output tape
- The working tape

It behaves like a standard Turing machine at successor step of computation.

At limit step of computation:

- The head goes back to the first cell
- The machine goes into a "limit" state.
- The value of each cell equals the lim inf of the values at previous stages of computation.

Writable reals and decidable classes

What is the equivalent of computable for an ITTM:

definition A real X is writable if there in an ITTM M such that $M(0) \downarrow [\alpha] = X$ for some ordinal α .

We also define the following notions:

definition

A class of real \mathcal{A} is **decidable** if there is an ITTM M such that $M(X) \downarrow = 1$ if $X \in \mathcal{A}$ and $M(X) \downarrow = 0$ if $X \notin \mathcal{A}$.

definition

A class of real \mathcal{A} is **semi-decidable** if there is an ITTM M such that $M(X) \downarrow$ if $X \in \mathcal{A}$.

Computational power of ITTM

Proposition (Hamkins, Lewis)

The Δ_1^1 reals are exactly the reals writable at step smaller than ω_1^{ck} .

Proposition (Hamkins, Lewis)

The class of reals coding for a well-order (with the code $X(\langle n, m \rangle) = 1$ iff n < m) is decidable.

Corollary (Hamkins, Lewis)

Every Π_1^1 set of real is decidable.

Corollary (Hamkins, Lewis)

The set of codes for computable ordinals \mathcal{O} is writable.

Beyond writable ordinals

Proposition (Hamkins, Lewis)

Whatever an ITTM does, it does it before stage ω_1 .

Definition (Hamkins, Lewis)

Let λ be the supremum of the writable ordinals.

Proposition (Hamkins, Lewis)

There is an ITTM which writes λ on its output tape, then leave the output tape unchanged without ever halting.

Definition (Hamkins, Lewis)

A real is eventually writable if there in an ITTM and a step α such that for every $\beta \ge \alpha$, the real is on the output tape at step β . Let ζ be the supremum of the eventually writable ordinals.

Beyond eventually writable ordinals

Proposition (Hamkins, Lewis)

There is an ITTM which at some point writes ζ on its output tape.

Definition (Hamkins, Lewis)

A real is accidentally writable if there in an ITTM and a step α such that the real is on the output tape at step α . Let Σ be the supremum of the accidentally writables.

Another notion will help us to understand better λ,ζ and Σ

Definition (Hamkins, Lewis)

An ordinal is clockable if there is an ITTM which halts at stage α .

What is the supremum of the clockable ordinals ?

Understanding ITTM

Theorem (Welch)

The whole state of an ITTM at step ζ is the same than its state at step Σ . In particular, it enters an infinite loop at stage ζ .

Corollary (Welch)

 λ is the supremum of the clockable ordinals.

Corollary (Welch)

The writable reals are exactly the reals of L_{λ} .

$$\begin{array}{rcl} L_{\varnothing} & = & \varnothing \\ L_{\alpha+1} & = & \{A \subseteq L_{\alpha} : \text{ first order definable in } L_{\alpha}\} \\ L_{\sup_{n} \alpha_{n}} & = & \bigcup_{n} L_{\alpha_{n}} \end{array}$$

Understanding ITTM

$$\begin{array}{rcl} \mathcal{L}_{\varnothing} &=& \varnothing\\ \mathcal{L}_{\alpha+1} &=& \{A \subseteq \mathcal{L}_{\alpha} : \text{ first order definable in } \mathcal{L}_{\alpha}\}\\ \mathcal{L}_{\sup_{n} \alpha_{n}} &=& \bigcup_{n} \mathcal{L}_{\alpha_{n}} \end{array}$$

Corollary (Welch)

- The writable reals are exactly the reals of L_{λ} .
- The eventually writable reals are exactly the reals of L_{ζ} .
- The accidentally writable reals are exatly the reals of L_{Σ} .

Corollary (Welch)

 (λ,ζ,Σ) is the lexicographically smallest triplet such that:

$$L_{\lambda} \prec_1 L_{\zeta} \prec_2 L_{\Sigma}$$

ITTM and randomness

Definition (Carl, Schlicht)

A sequence X is ITTM-random if X is in no semi-decidable set of measure 0.

Definition (Carl, Schlicht)

A sequence X is ITTM-decidable random iff X is in no decidable set of measure 0.

Definition (Carl, Schlicht)

A sequence X is α -random if X is in no set whose Borel code is in L_{α} .

ITTM and randomness

Theorem (Carl, Schlicht)

The following are equivalent for a sequence X:

- X is ITTM-random
- **2** X is Σ -random and $\Sigma^X = \Sigma$
- **3** X is λ -random and $\Sigma^X = \Sigma$

Theorem (Carl, Schlicht)

The following are equivalent for a sequence X:

- X is ITTM-decidable random
- **2** X is λ -random

