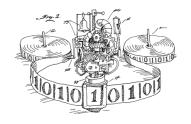
Randomness and ITTM

Benoit Monin

Université Paris-Est Créteil

CCR 2017 Infosys

The ITTM model



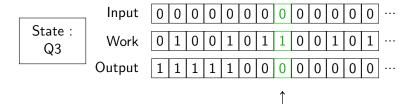
Section 1

The ITTM model

Infinite time Turing machines

An infinite-time Turing machine is a Turing machine with three tapes whose cells are indexed by natural numbers :

- The input tape
- The output tape
- The working tape

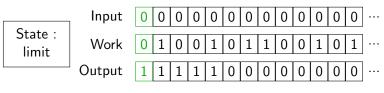


It behaves like a standard Turing machine at successor steps of computation.

Infinite time Turing machines

At limit steps of computation:

- The head goes back to the first cell.
- The machine goes into a "limit" state.
- The value of each cell equals the lim inf of the values at previous stages of computation.



Writable reals

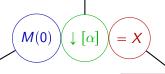
What is the equivalent of computable for an ITTM?

Definition

A real X is **writable** if there in an ITTM M such that :

$$M(0) \downarrow [\alpha] = X$$
 for some ordinal α .

M enters its **halting state** at step $\alpha + 1$



M starts with 0 on its input tape

X is on the output tape when M halts

Which reals are writable?

Definition

A class of real A is **decidable** if there is an ITTM M such that $M(X) \downarrow = 1$ if $X \in \mathcal{A}$ and $M(X) \downarrow = 0$ if $X \notin \mathcal{A}$.

Proposition (Hamkins, Lewis)

The class of reals coding for a well-order (with the code $X(\langle n, m \rangle) =$ 1 iff n < m) is decidable.

Decide well-orders

Proposition (Hamkins, Lewis)

The class of reals coding for a well-order (with the code $X(\langle n, m \rangle) =$ 1 iff n < m) is decidable.

The clockable ordinals

The algorithm is as follow, where < is the order coded by X:

Algorithm to decide well-orders

```
while < is not empty do
    Look for the smallest element a of < (coded by X)
   if there is no smaller element then
       write 0 and halts
   else
      remove a from <
   end
end
```

When < is empty, write 1 and halts.

Decide well-orders

How to find the smallest element?

```
Algorithm to find the smallest element
```

```
Write 1 on the first cell. Set the current element c = +\infty
if state is successor then
    if there exists a < c then
        Update c = a
        Flip the first cell to 0 and then back to 1
    end
else
    if If the first cell is 0 then
     c is the smallest element
    else
     There is no smallest element
    end
end
```

Decidable and writable sets

Proposition (Hamkins, Lewis)

The class of reals coding for a well-order (with the code $X(\langle n, m \rangle) =$ 1 iff n < m) is decidable.

The clockable ordinals

Corollary (Hamkins, Lewis)

Every Π_1^1 set is decidable.

Corollary (Hamkins, Lewis)

Every Π_1^1 set of integers is writable.

Computational power of ITTM

 ω_1^{ck} step of computations are enough to write any Π_1^1 set of integers. But there is no bound in the ordinal step of computation an ITTM can use.

Using a program that writes Kleene's O, we can design a program which writes the double hyperjump O^O and then $O^{(O^O)}$ and so on.

Where does it stop?

Proposition (Hamkins, Lewis)

Whatever an ITTM does, it does it before stage ω_1 .

Computational power of ITTM

Proposition (Hamkins, Lewis)

Whatever an ITTM does, it does it before stage ω_1 .

The configuration of an ITTM is given by :

- Its tapes
- Its state
- The position of the head.

Let $C(\alpha) \in 2^{\omega}$ be a canonical encoding of the tapes of an ITTM at stage α .

There must be some *limit ordinal* $\alpha < \omega_1$ such that $C(\alpha) = C(\omega_1)$. The full configuration of the machine at step ω_1 is then the same than the one step α .

The ITTM model

$$\omega_1$$
 0 1 0 0 0 0 0 0 0 1 0 0 1.

$$\sup\nolimits_{n}\alpha_{n}^{+}\quad \boxed{0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 1} \cdots$$

$$\alpha_2^+ > \alpha_1^+$$
 0 1 0 1 0 1 0 0 1 1 1 1 1 ...

$$\alpha_0$$
 0 1 1 1 0 1 0 0 1 1 1 1 1 .

 α_0 : The smallest ordinal such that every cell converging at step ω_1 (in green) will never change pass that point.

 α_{n+1}^+ : The smallest ordinal $> \alpha_n^+$ such that the n+1 non-converging cells (in red) change value at least once in the interval $\left[\alpha_n^+, \alpha_{n+1}^+\right]$

Beyond the writable ordinals

Definition (Hamkins, Lewis)

An ordinal α is **writable** if there is an ITTM which writes an encoding of a well-order of ω with order-type α .

Proposition (Hamkins, Lewis)

The writables are all initial segments of the ordinals.

Definition (Hamkins, Lewis)

Let λ be the supremum of the writable ordinals.

Proposition (Hamkins, Lewis)

There is an ITTM which writes λ on its output tape, then leave the output tape unchanged without ever halting.

Proposition (Hamkins, Lewis)

There is a univeral ITTM U which runs simultaneously all the ITTM computations $P_e(0)$ for every $e \in \omega$.

Algorithm to eventually write λ

for every stage s do

Run the universal machine U for one step.

Compute the sum α_s of all ordinals which are on the output tapes of programs simulated by U[s] and which have terminated.

Write α_s on the output tape.

end

Let s be the smallest stage such that every halting ITTM have halted by stage s in the simulation U.

- **1** We clearly have $\alpha_s \geqslant \lambda$.
- 2 We clearly have that $\alpha_t = \alpha_s$ for every $s \ge t$.

The ITTM model ITTM and constructibility The clockable ordinals ITTM and randomness

Beyond the eventually writable ordinals

Definition (Hamkins, Lewis)

A real is **eventually writable** if there in an ITTM and a step α such that for every $\beta \geqslant \alpha$, the real is on the output tape at step β .

Proposition (Hamkins, Lewis)

The eventually writable ordinals are an initial segments of the ordinals.

Definition (Hamkins, Lewis)

Let ζ be the supremum of the eventually writable ordinals.

Proposition (Hamkins, Lewis)

There is an ITTM which at some point writes ζ on its output tape.

Beyond the eventually writable ordinals

Algorithm to accidentally write ζ

for every stage s do

Run the universal machine U for one step.

Compute the sum α_s of all ordinals which are on the output tapes of programs simulated by U[s].

Write α_s on the output tape.

end

Let s be the smallest stage such that every ITTM writing an eventually writable ordinal, have done so by stage s in the simulation U. We clearly have $\alpha_s \geqslant \zeta$.

Beyond the eventually writable ordinals

Definition (Hamkins, Lewis)

A real is **accidentally writable** if there in an ITTM and a step α such that the real is on the output tape at step α .

Proposition (Hamkins, Lewis)

The accidentally writables are all initial segments of the ordinals.

Definition (Hamkins, Lewis)

Let Σ be the supremum of the accidentally writables.

Proposition (Hamkins, Lewis)

We have $\lambda < \zeta < \Sigma$.

ITTM and constructibility

Section 2

ITTM and constructibility

The constructibles

Definition (Godel)

The **constructible universe** is defined by induction over the ordinals as follow:

The clockable ordinals

$$L_{\varnothing}=\varnothing$$
 $L_{\alpha^{+}}=\{X\subseteq L_{\alpha}:X \text{ is f.o. definable with param. in } L_{\alpha}\}$
 $L_{\sup_{n}\alpha_{n}}=\bigcup_{n}L_{\alpha_{n}}$

Theorem (Hamkins, Lewis)

- If α is writable and $X \in 2^{\omega} \cap L_{\alpha}$ then X is writable.
- If α is eventually writable and $X \in 2^{\omega} \cap L_{\alpha}$ then X is eventually writable.
- If α is accidentally writable and $X \in 2^{\omega} \cap L_{\alpha}$ then X is accidentally writable.

The admissibles

Definition (Admissibility)

An ordinal α is **admissible** if L_{α} is a model of Σ_1 -replacement. Formally for any Σ_1 formula Φ with parameters and any $N \in L_{\alpha}$ we must have :

 $\omega, \omega_1^{ck}, \omega_2^{ck}, \omega_3^{ck}, etc...$ are the first admissible ordinals. But $\sup_n \omega_n^{ck}$ is not admissible.

We define:

$$\tau_0 = \omega$$

 τ_{β} = The smallest admissible strictly greater than τ_{γ} for $\gamma < \beta$

The admissibles

The ITTM model

Proposition (Hamkins, Lewis)

The ordinals λ and ζ are admissible.

Suppose that for some $N \in L_{\lambda}$ and a Σ_1 formula Φ we have :

$$L_{\lambda} \models \forall n \in N \ \exists z \ \Phi(n, z)$$

We define the following ITTM:

Algorithm to write λ

Write a code for N

for every $n \in N$ **do**

Look for the first writable α_n such that $L_{\alpha_n} \models \exists z \ \Phi(n,z)$

Write α_n somewhere.

end

Write $\sup_{n \in \mathbb{N}} \alpha_n$

The admissibles

Proposition (Hamkins, Lewis)

The ordinals λ is the λ -th admissible.

The ordinals ζ is the ζ -th admissible.

Suppose λ is the α -th admissible for $\alpha < \lambda$.

Algorithm to write λ

Write α

while $\alpha > 0$ do

Look for the smallest element e of α and remove it from α Look for the next admissible writable ordinal and write it to the e-th tape

end

Write the smallest admissible greater than all the one written previously.

The recursively inaccessible

Definition

An ordinal is **recursively inaccessible** if it is admissible and limit of admissible.

The clockable ordinals

Proposition

An ordinal α is recursively inaccessible iff $\alpha = \tau_{\alpha}$.

Corolarry

The ordinals λ and ζ are recursively inaccessible.

The recursively inaccessible

- $J_1 = \emptyset, \ J_2 = 0.$ $\rightarrow Define \ 1 < 2$
- ② If a is in the field of <, let $J_{2^a} = O^{J_a}$. \rightarrow Define $a < 2^a$ and $b < 2^a$ for any b < a.
- If a is in the field of < and if e is the code of a computable functional such that

$$\varphi_e(0, J_a) = a \text{ and } \varphi_e(n, J_a) < \varphi_e(n+1, J_a)$$

then $J_{3^e5^a} = \bigoplus_{m_i} J_{m_i}$ for $m_i = \varphi_e(i, J_a)$.

→ Define $b < 3^e 5^a$ for any $b < m_i$ for some i.

Fact

The smallest ordinal which does not have a code in the field of < is the first recursively inaccessible.

How big is λ

Proposition (Hamkins, Lewis)

The ordinals λ is the λ -th recursively admissible.

The ordinals ζ is the ζ -th recursively admissible.

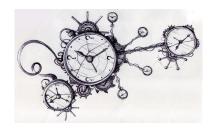
Definition

An ordinal is meta-recursively inaccessible if it is admissible and a limit of recursively inaccessible.

Proposition (Hamkins, Lewis)

The ordinals λ is the λ -th meta recursively admissible.

The ordinals ζ is the ζ -th meta recursively admissible.



Section 3

The clockable ordinals

Another notion will help us to understand better λ, ζ and Σ

Definition (Hamkins, Lewis)

An ordinal α is **clockable** if there is an ITTM which halts at stage α (at stage α it decides to go into the halting state).

What is the supremum of the clockable ordinals?

Definition (Hamkins, Lewis)

Let γ be the supremum of the clockable ordinals.

Proposition (Hamkins, Lewis)

We have $\lambda \leqslant \gamma$.

Proposition (Hamkins, Lewis)

We have $\lambda \leqslant \gamma$.

Suppose the ITTM M writes α . Then one can easily create an ITTM which does the following :

The clockable ordinals

Algorithm to countdown α

Use M to write α

while $\alpha > 0$ do

Find the smallest element of α and remove it from α .

end

Enter the halting state.

It is easy to see that the above algorithm takes at least α step before it ends.

Understanding the clockables

Theorem (Hamkins, Lewis)

The clockable ordinals are not an initial segment of the ordinals: If α is admissible then no ITTM halts in α steps.

The clockable ordinals

For α limit to be clockable we need for some $i \in \{0,1\}$ to have both :

- **1** A transition rule of the form : (limit, i) \rightarrow halt
- **2** The first cell to contain *i* at step α

If $\{C_i(\gamma)\}_{\gamma<\alpha}$ converges we have a limit $\beta<\alpha$ s.t. $C_i(\beta)=C_i(\alpha)$ \rightarrow We have (1) and (2) for $\beta < \alpha$

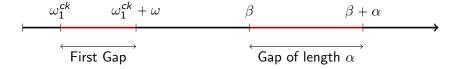
```
If \{C_i(\gamma)\}_{\gamma<\alpha} diverges, let :
f(n+1) = the smallest \alpha > f(n) s.t. C_0(\beta) changes for \beta \in [f(n), \alpha]
\rightarrow By admissibility sup, f(n) < \alpha and we have (1) and (2) for sup, \bar{f}(n)
```

In both cases the machine stopped before stage α .

Understanding the clockables

Definition (Hamkins, Lewis)

A gap of size α in the clockable ordinals is an interval of ordinals $[\alpha_0, \alpha_0 + \alpha]$ such that no ITTM halts in this interval, but some halt after that.



Theorem (Hamkins, Lewis)

For any writable α , there is a gap of size at least α in the clockable ordinals.

Understanding the clockables

Algorithm to witness large gaps

end

Note that if α is writabe then $\lambda + \alpha < \zeta < \Sigma$. Suppose there is no gap of size α .

- → Then the algorithm will at some point :
 - **1** Eventually write λ and will see that no ITTM halts in $[\lambda, \lambda + \alpha]$
 - 2 Write $\lambda + \alpha$ and halts

This is a contradiction.

Understanding λ, ζ, Σ

Lemma (Welch)

The ITTM model

Let $i \in \omega$. If the sequence $\{C_i(\alpha)\}_{\alpha < \lambda}$ converges, then for every $\alpha \in [\lambda, \Sigma]$ we have $C_i(\alpha) = C_i(\lambda)$.

Suppose w.l.o.g. that $\{C_i(\alpha)\}_{\alpha<\lambda}$ converges to 0. Let β be the smallest such that for all $\alpha \in [\beta, \lambda]$ we have $C_i(\alpha) = 0$.

Algorithm

```
for every \alpha > \beta written by U do
     Simulate another run of U for \alpha steps
     if C_i(\gamma) = 1 for \gamma \in [\beta, \alpha] then
        Write \alpha and halt.
     end
```

end

Suppose there is an accidentally writable ordinal $\alpha > \beta$ s.t. $C_i(\alpha) = 1$. Then U will write such an ordinal at some point, and the above program will then write $\alpha > \lambda$ and halt. This is a contradiction.

Understanding λ, ζ, Σ

Theorem (Welch)

The whole state of an ITTM at step ζ is the same than its state at step Σ . In particular, it enters an infinite loop at stage ζ .

The clockable ordinals

The theorem follows from the two following lemmas:

Lemma (Welch)

Let $i \in \omega$. If the sequence $\{C_i(\alpha)\}_{\alpha < \zeta}$ converges, then for every $\alpha \in [\zeta, \Sigma]$ we have $C_i(\alpha) = C_i(\zeta)$.

Lemma (Welch)

Let $i \in \omega$. If the sequence $\{C_i(\alpha)\}_{\alpha < \zeta}$ diverges, then the sequence $\{C_i(\alpha)\}_{\alpha < \Sigma}$ diverges.

```
Suppose w.l.o.g. that \{C_i(\alpha)\}_{\alpha<\zeta} converges to 0.
Let \beta be the smallest such that for all \alpha \in [\beta, \zeta] we have C_i(\alpha) = 0.
The ordinal \beta is eventually writable through different versions \{\beta_s\}_{s \in ORD}
```

Algorithm

```
for every s and every \alpha > \beta_s written by U do
    Simulate another run of U for \alpha steps
    if C_i(\gamma) = 1 for \gamma \in [\beta_s, \alpha] and \beta_s has changed then
         Write \alpha on the output tape.
    end
end
```

Suppose there is an accidentally writable ordinal $\alpha > \beta$ s.t. $C_i(\alpha) = 1$. Then some ordinal $\alpha' \ge \alpha$ will be written at some stage at which β_s has stabilized. Thus the above program will then eventually write some $\alpha' > \zeta$. This is a contradiction.

Understanding λ, ζ, Σ

Suppose $\{C_i(\alpha)\}_{\alpha < \Sigma}$ converges.

Algorithm

```
Set \beta = 0
for every \alpha > \beta written by U do
     Simulate another run of U for \alpha steps
     if C_i(\gamma) changes for \gamma \in [\beta, \alpha] then
          Let \beta = \alpha
          Write \alpha
     end
```

end

The algorithm will eventually write some ordinal α s.t. $\{C_i(\gamma)\}$ does not change for $\gamma \in [\alpha, \Sigma]$. But then α is eventually writable and $\{C_i(\alpha)\}_{\alpha < \zeta}$ converges.

The clockable ordinals

Understanding λ, ζ, Σ

Theorem (Welch)

The whole state of an ITTM at step ζ is the same than its state at step Σ . In particular, it enters an infinite loop at stage ζ .

Corollary (Welch)

 λ is the supremum of the clockable ordinals.

Indeed, suppose that we have $M(0)\downarrow [\alpha]$ for some M and α accidentally writable. Then we can run $M(0)[\beta]$ for every β accidentally writable until we find one for which M halts, and then write β . Thus α must be writable.

Suppose now that $M(0) \uparrow [\Sigma]$. Then M will never halt. Thus if M halts, it halts at a writable step.

Understanding λ, ζ, Σ

Theorem (Welch)

The whole state of an ITTM at step ζ is the same than its state at step Σ . In particular, it enters an infinite loop at stage ζ .

The clockable ordinals

Corollary (Welch)

- The writable reals are exactly the reals of L_{λ} .
- The eventually writable reals are exactly the reals of L_{ζ} .
- The accidentally writable reals are exactly the reals of L_{Σ} .

We can construct every successive configurations of a running ITTM. Also to compute a writable reals, there are less than λ steps of computation and then less than λ steps of construction. Thus every writable real is in L_{λ} .

The argumet is similar for ζ and Σ .

Understanding λ, ζ, Σ

Definition

Let $\alpha \leq \beta$. We say that L_{α} is *n*-stable in L_{β} and write $L_{\alpha} <_{n} L_{\beta}$ if

The clockable ordinals

$$L_{\alpha} \models \Phi \leftrightarrow L_{\beta} \models \Phi$$

For every Σ_n formula Φ with parameters in L_{α} .

Theorem (Welch)

 (λ, ζ, Σ) is the lexicographically smallest triplet such that :

$$L_{\lambda} <_1 L_{\zeta} <_2 L_{\Sigma}$$

Understanding λ, ζ, Σ

Theorem (Welch)

The ordinal Σ is not admissible.

To see this, we define the following function $f: \omega \to \Sigma$:

$$f(0) = \zeta$$

 $f(n) = \text{the smallest } \alpha > f(n+1) \text{ s.t. } C(\alpha) \upharpoonright_n = C(\zeta) \upharpoonright_n$

It is not very hard to show that we must have $\sup_{n} f(n) = \Sigma$

Theorem (Welch)

The ordinal Σ is a limit of admissible.

Otherwise, if α is the greatest admissible smaller than Σ , one could compute $\Sigma \leqslant \omega_1^{\alpha}$.

ITTM and randomness

Section 4

ITTM and randomness

ITTM and randomness

Definition (Carl, Schlicht)

X is α -random if X is in no set whose Borel code is in L_{α} .

Definition

An open set U is α -c.e. if $U = \bigcap_{\sigma \in A} [\sigma]$ for a set $A \subseteq 2^{<\omega}$ such that:

$$\sigma \in A \leftrightarrow L_{\alpha} \models \Phi(\sigma)$$

for some Σ_1 formula Φ with parameters in L_{α} .

Definition (Carl, Schlicht)

X is α -ML-random if X is in no set uniform intersection $\bigcap_n U_n$ of α -open set, with $\lambda(\mathcal{U}_n) \leq 2^{-n}$.

Toolbox for the constructibles

Theorem (satisfaction is uniform)

There is a Σ_1 formula $\Phi(e,x)$ such that for any $e \in \omega$, any α limit and any $x \in L_{\alpha}$ we have :

The clockable ordinals

$$L_{\alpha} \models \Phi(e, x) \leftrightarrow L_{\alpha} \models \Phi_{e}(x)$$

Theorem (L is absolute)

There is a Σ_1 formula $\Phi(\beta, X)$ such that for any α limit and any $\beta < \alpha$ we have :

$$L_{\alpha} \models \Phi(\beta, X) \leftrightarrow L_{\beta} = X$$

Theorem (axiom of choice)

There is a Σ_1 formula $\Phi(x,y)$ such that for any α limit and any $x,y\in L_\alpha$ we have :

$$x < y \leftrightarrow L_{\alpha} \models \Phi(x, y)$$

is a well-order of L_{α}

Toolbox for the constructibles

Theorem (measure is uniform)

There is a Σ_1 formula $\Phi(e,q)$ such that for any $e \in \omega$, any α limit, any parameter $x \in L_{\alpha}$, and any rational q we have :

The clockable ordinals

$$L_{\alpha} \models \Phi(x, e, q) \leftrightarrow \lambda \left(\bigcup \{ [\sigma] : L_{\alpha} \models \Phi_{e}(x, \sigma) \} \right) > q$$

Theorem (measure is uniform)

There is a Σ_1 formula $\Phi(e,x)$ such that for any α limit, any Borel code $x \in L_{\alpha}$, and any rational q we have :

$$L_{\alpha} \models \Phi(x, q) \leftrightarrow \lambda([x]) > q$$

where [x] is the Borel set coded by x.

Projectibles and ML-randomness

Definition

We say that α is **projectible** into $\beta < \alpha$ if there is an injective function $f: \alpha \to \beta$ that is Σ_1 -definable in L_{α} .

The least β such that α is projectible into β is called the **projectum** of α and denoted by α^* .

Theorem (Angles d'Auriac, Monin)

The following are equivalent for α limit such that $L_{\alpha} \models$ everything is countable :

- α is projectible into ω .
- There is a universal α -ML-test.
- α -ML-randomness is strictly stronger than α -randomness.

Projectibles and Universal ML-Test

Suppose α is projectible into ω . It is then possible to effectively assign an integer all the parameters in L_{α} and then to each α -c.e. open sets.

Suppose we have an intersection of open sets $\bigcap_k U_k$, each U_k being the union of clopens $[\sigma]$ given by the Σ_1 formula

$$\exists x \; \Phi_m(x, k, p, \sigma)$$

with p a parameter. Let f be the projectum. One can uniformly define the Σ_1 formula $\Psi(n,m,k,\sigma)$:

$$\exists p \ f(n) = p \land \exists x \ \Phi_{g(m)}(x, k, p, \sigma)$$

where:

$$\exists x \; \Phi_{g(m)}(x, k, p, \sigma) \equiv \exists x \; \Phi_{m}(x, k, p, \sigma) \land \\ \lambda(\bigcup \{ [\sigma] : \forall z \leq x \; \Phi_{m}(\beta, z, \sigma) \}) \leq 2^{-k}$$

Using this one easily define a universal test like in the lower case.

Projectibles and ML-randomness

Suppose that α is projectible into ω . Then one can perform a separation between α -ML-randomness and α -randomness in a similar way one separates Δ^1_1 -randomness from Π^1_1 -ML-randomness : we create a α - Δ_2 element X such that :

- $X \upharpoonright_n$ changes at most n times
- X is α -random

To do so we use the fact that:

- The set of Borel codes of L_{α} for Borel sets of measure 1 is projectible into ω
- For each Borel set B of L_{α} on can find a Borel code for a union $\bigcup_n F_n \subseteq B$ of closed set of measure 1

المما:ممم

Projectibles and ML-randomness

Indices					
0					
1	\bigcup	F_0^1	F_1^1	F_2^1	 $\lambda(\bigcup_m F_m^1) = 1$
2					
3					
4					
5					
6					
7					
8					

المما:ممم

Projectibles and ML-randomness

Indices					
0					
1	U	F_0^1	F_1^1	F_2^1	 $\lambda(\bigcup_{m} F_{m}^{1}) = 1$
2					
3					
4					
5					
6	U	F_0^6	F_{1}^{6}	F_{2}^{6}	 $\lambda(\bigcup_{m} F_{m}^{6}) = 1$
7					
8					

المما:ممم

Projectibles and ML-randomness

Indices					
0					
1	U	F_0^1	F_1^1	F_2^1	 $\lambda(\bigcup_{m} F_{m}^{1}) = 1$
2					
3	U	F_0^3	F_1^3	F_2^3	 $\lambda(\bigcup_m F_m^3) = 1$
4					
5					
6	U	F_0^6	F_{1}^{6}	F_2^6	 $\lambda(\bigcup_{m} F_{m}^{6}) = 1$
7					
8					

Theorem

If α is not projectible into $\beta < \alpha$, then α is recursively inaccessible. Thus if α is not recursively inaccessible and if $L_{\alpha} \models$ everything is countable, then α is projectible into ω .

Theorem

Suppose $L_{\alpha} \models$ everything is countable. If α is not projectible into ω then $L_{\alpha} \models \Sigma_1$ -comprehension for subsets of ω .

Suppose α not project. into ω . Let $A \subseteq \omega$ s.t. $n \in A \leftrightarrow L_{\alpha} \models \exists x \ \Phi(x, n)$ $f(n) = \min \beta > f(n-1) \ s.t. L_{\alpha} \models \exists x \in L_{\beta} \ \Phi(x, n)$ Suppose for contradiction that $f(\omega)$ unbounded in α . Define :

 $g(\beta) = \min \gamma \in f(\omega) \ s.t.\gamma \notin \{g(\gamma') : \gamma' < \gamma\}$

As α admissible, g is a bijection between $f(\omega)$ and α . Thus $h(\beta) = f^{-1}(g(\beta))$

is a projectum into ω . Contradiction.

Randomness with the non-projectibles

If α such that $L_{\alpha} \models$ everything is countable is not projectible into ω , then the randomness notions collapses.

The clockable ordinals

Suppose α is not projectible into ω . Then every open α -c.e. set is a set with a Borel code in L_{α} . It follows that α -randomness coincides with α -ML-randomness.

It follows that there is no universal α -ML-test, because there is never a universal α -test for α limit.

Theorem (Friedman)

For every limit accidentally writable α we have that : L_{α} = everything is countable.

If β is not countable in α , one could build in L_{α} a countable ordinal γ (smaller than β) such that $L_{\gamma} <_2 L_{\beta}$ which contradicts minimality of the pair (ζ, Σ) .

λ -ML-randomness

Theorem

The ordinal λ is projectible into ω without using any parameters.

Each writable ordinal can be effectively assigned to the code of the ITTM writting it.

Corollary

Most work in Δ_1^1 and Π_1^1 -ML-randomness still work with λ -ML-randomness and λ -randomness. In particular λ -ML-randomness is strictly weaker than λ -randomness.

ζ -ML-randomness

Theorem

The ordinal ζ is not projectible into ω .

Suppose that an eventually writable parameter α can be used to have a projuctum $f: \zeta \to \omega$. Then every eventually writable ordinals become writable using α . Then ζ becomes eventually writable using α . But then ζ is eventually writable.

Corollary

 ζ -randomness coincides with ζ -ML-randomness. An analogue of Ω for ζ -randomness does not exists.

ζ -ML-randomness

Theorem

The ordinal ζ is not projectible into ω .

Corollary

For many writable ordinals α we have that α -randomness coincides with α -ML-randomness.

 $L_{\Sigma} \models \exists \alpha \text{ not projectible into } \omega$

By the fact that $L_{\lambda} <_1 L_{\Sigma}$ we must have :

 $L_{\lambda} \models \exists \alpha \text{ not projectible into } \omega$

Σ-ML-randomness

Theorem

The ordinal Σ is projectible into ω , using ζ as a parameter.

We can use the fact that (ζ, Σ) is the least pair such that : $C(\zeta) = C(\Sigma)$, with the function :

$$f(0) = \zeta$$

 $f(n) = \text{the smallest } \alpha > f(n+1) \text{ s.t. } C(\alpha) \upharpoonright_n = C(\zeta) \upharpoonright_n$

Every ordinal f(n) is then Σ_1 -definable with ζ as a parameter.

As $L_{\Sigma} \models$ "everything is countable", it follows that every ordinal smaller than f(n) for some n is Σ_1 -definable with ζ as a parameter.

As $\sup_n f(n) = \Sigma$, it follows that every accidentally writable is Σ_1 -definable with ζ as a parameter.

The projectum is then a code for the formula defining each ordinal.

ITTM-random and ITTM-decidable random

Definition (Hamkins, Lewis)

A class of real \mathcal{A} is **semi-decidable** if there is an ITTM M such that $M(X) \downarrow$ if $X \in \mathcal{A}$.

Definition (Carl, Schlicht)

A sequence X is **ITTM-random** if X is in no semi-decidable set of measure 0.

Definition (Carl, Schlicht)

A sequence X is **ITTM-decidable random** iff X is in no decidable set of measure 0.

Lowness for λ, ζ, Σ

Definition

We say that X is low for λ if $\lambda^X = \lambda$.

We say that X is low for ζ if $\zeta^X = \zeta$.

We say that X is low for Σ if $\zeta^X = \Sigma$.

$\mathsf{Theorem}$

For any ordinal α with $\lambda \leq \alpha < \zeta$ we have $\lambda^{\alpha} > \lambda$ but :

- $\mathbf{0}$ $\zeta^{\alpha} = \zeta$.
- $\Sigma^{\alpha} = \Sigma$.

(1) Indeed, suppose ζ is eventually writable using α and the machine M. As α is also eventually writable, we can run M on every version of α and eventually write ζ which is a contradiction. (2) Same argument.

The clockable ordinals

Lowness for λ, ζ, Σ

$\mathsf{Theorem}$

The following are equivalent:

- $\Sigma^X > \Sigma$
- $\delta \lambda^X > \Sigma$.
- $(1) \rightarrow (2)$: We can again use the function:

$$f(0) = \zeta$$

 $f(n) = \text{the smallest } \alpha > f(n+1) \text{ s.t. } C(\alpha) \upharpoonright_n = C(\zeta) \upharpoonright_n$

The clockable ordinals

To show that every ordinal f(n) becomes eventually writable uniformly in n. Thus $\Sigma = \sup_{n} f(n)$ is also eventually writable.

 $(2) \rightarrow (3)$: Define the machine that looks for the first pair of ordinals $\alpha < \beta$ such that $L_{\alpha} <_2 L_{\beta}$. Then write β . These ordinals must be ζ and Σ .

Lowness for λ, ζ, Σ and randomness

$\mathsf{Theorem}$

For any X the triplet $(\lambda^X, \zeta^X, \Sigma^X)$ is the lexicographically least pair such that $L_{\lambda^X}[X] <_1 L_{\zeta^X}[X] <_2 L_{\Sigma^X}[X]$.

The clockable ordinals

Theorem (Carl, Schlicht)

If X is $(\Sigma + 1)$ -random, then $L_{\lambda}[X] <_1 L_{\zeta}[X] <_2 L_{\Sigma}[X]$. In particular $\Sigma^X = \Sigma$. $\zeta^X = \zeta$ and $\lambda^X = \lambda$.

Corollary (Carl, Schlicht)

The set $\{X : \Sigma^X > \Sigma\}$ and $\{X : \lambda^X > \lambda\}$ are included in Borel sets of measure 0.

Theorem (Carl, Schlicht)

The following are equivalent for a sequence X:

- X is ITTM-decidable random
- \bigcirc X is λ -random

Suppose some machine M decides a set of measure 0 that X belongs to. In particular it decides a set of measure 1 X does not belong to. We have :

$$\lambda(\{X : M(X) \downarrow = 0\}) = 1$$

We then have

$$\lambda(\{X : M(X) \downarrow [\lambda] = 0\}) = 1$$

as the set of X s.t. $\lambda^X = \lambda$ has measure 1. But then by admissibility :

$$\lambda(\{X : M(X) \downarrow [\alpha] = 0\}) = 1$$

already for some writable α . The complement of this set is a Borel set of measure 0, with a writable code, and containing X.

ITTM-randomness

Theorem (Carl, Schlicht)

The following are equivalent for a sequence X:

- X is ITTM-random
- ② X is Σ -random and $\Sigma^X = \Sigma$
- **3** X is ζ -random and $\Sigma^X = \Sigma$

Lemma (Carl, Schlicht)

If $\Sigma^X > \Sigma$, then X is not ITTM-random.

The set $\{X: \Sigma^X > \Sigma\}$ is an ITTM-semi-decidable set of measure 0. We saw that it is of measure 0. To see that it is ITTM-decidable, one can designe the machine which halts whenever it founds two X-accidentally writable ordinals $\alpha < \beta$ such that $L_\alpha <_1 L_\beta$.

ITTM-randomness

Lemma (Carl, Schlicht)

If X is not Σ -random, then X is not ITTM-random.

If X is not Σ -random, then with X as an oracle, we can look for the first accidentally writable code for a Borel set of measure 0 containing X.

Lemma (Carl, Schlicht)

If X is ζ -random, but not ITTM-random, then $\Sigma^X > \Sigma$.

Suppose there is a ITTM M which semi-decide a set of measure 0 containing X. Suppose $M(X) \downarrow [\alpha]$. Then we must have $\alpha \geqslant \zeta$ as otherwise the set $\{X: M(X) \downarrow [\alpha]\}$ would ba set set of measure 0 with a Borel code in L_{ζ} . Thus we must have $\lambda^X > \zeta$ and then $\Sigma^X > \Sigma$.

ITTM-randomness

Question

Does there exists X such that X is Σ -random but not ITTM random?

Question

If X is Σ -random, do we have $L_{\zeta}[X] \prec_2 L_{\Sigma}[X]$?