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Coarse computability

Given a set A € N. How close is A to being computable ? J

A recent paradigm : A is coarsely computable. This means there is
a computable set R such that the asymptotic density of

{n: A(n) = R(n)}

equals 1.

Reference : Downey, Jockusch, and Schupp, Asymptotic density and computably enumerable sets, Journal of

Mathematical Logic, 13, No. 2 (2013)



The y-value of a set A N

A computable set R tries to approximate a complicated set A :

A :100100100100000101001001 010101111010 101010100111
R : 000010110111 010101000101 010001011010101010100111
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V(A) = sup  p{n: A(n) = R(n)}

R computable

where p(Z) = liminf

n

[Z ~ [0, n)]
e




Some examples of values 7(A)

(A) = sup  p{n: A(n) = R(n)}
R computable
where p(Z) = |iminfw.

Some possible values

Acomputable = ~(A)
Arandom = ~(A)




[-value of a Turing degree

Andrews, Cai, Diamondstone, Jockusch and Lempp (2013) looked
at Turing degrees, rather than sets. They defined

I(A) = inf{y(B): Bhas the same Turing degree as A} J

A smaller I value means that A is further away from computable.

An oracle A is called computably dominated if every function that
A computes is below a computable function. They show :

@ If Ais random and computably dominated, then '(A) = 1/2.

@ If Ais not computably dominated then I'(A) = 0.




(A) > 1/2 implies T(A) =1

Fact (Hirschfeldt, Jockusch, McNicholl and Schupp)

IfT(A) > 1/2 then A is computable (so that T (A) =1).

The idea is to obtain B of the same Turing degree as A by
“padding” :
@ “Stretch” the value A(n) over the whole interval
In=[(n—=1),n!).
@ Since y(B) > 1/2 there is a computable R agreeing with B on
more than half of the bits in almost every interval /,.

@ So for almost all n, the bit A(n) equals the majority of values
R(k) where k € I,.



The '-question

Question (M-question, Andrews et al., 2013)

Is there a set A < N such that 0 < T(A) <1/27

. 2?2?2777 ° X X X X X X X '

r=o r=1/2 r=1

Let Ac 2N, IfT(A) < 1/2 then T(A) = 0.

The proof uses the field of error-correcting codes.



Examples of ['(A) = 0 : infinitely often equal

We know that A € N not computably dominated implies ['(A) = 0.

@ We say g : N — N is infinitely often equal (i.o.e.) if
3%n f(n) = g(n) for each computable function f : N — N.

@ We say that A< Nis i.o.e. if A computes function g that is i.o0.e.

Surprising fact : Ais i.0.e < A not computably dominated.

= Suppose A computes a function g that equals infinitely often to every
computable function. Then no computable function bounds g.

< Idea. Suppose A computes a function g that is dominated by no
computable function. Then g is infinitely often above the halting time of
any computable total function.



New Examples of I'(A) = 0 : weaken infinitely often equal

We know A not computably dominated implies ['(A) = 0.

We say that A is infinitely often equal (i.o.e.) if A computes a function g
such that 3*n f(n) = g(n) for each computable function f : N — N.

We can weaken this :

A computes a function g such that 3% n f(n) = g(n) for each computable

Let H: N — N be computable. We say that A is H-infinitely often equal if
function f bounded by H. J

This appears to get harder for A the faster H grows.



Ai.o.e. implies T(A) =0

Let H: N — N be computable. We say that A € N is H-infinitely often
equal if A computes a function g such that 3%n f(n) = g(n) for each
computable function f bounded by H.

Theorem (Monin, Nies)
Let A be 2(®")-j.0.e. for some a > 1. Then T'(A) = 0.




New example of ['(A) =0

Recall : A is H-infinitely often equal if A computes a function g such that
3%n f(n) = g(n) for each computable function f bounded by H.

Let A be 2(")-j.0.e. for some computable « > 1. Then T(A) = 0.

Proof sketch. First step : Let  be 2(®")-j.0.e. Then for any ke N, f
computes a function g that is 2(k")-j.o0.e.

f(0) f(1) f(2) f(3) f(4) f(5) ... i.0.e. every comp. funct. < 2(®")

- f(0)f(2)f(4)... i.o.e. every comp. funct. < nw— 2(a®)
or f(1)f(3)f(5)... i.0.e. every comp. funct. < nw— (e

terating this — f >7 g which i.0.e. every comp. funct. < 2(<")



Proof sketch. Second step : g is 2(K")-i.0.e. implies g =7 Z with
MNz)<1/k.

g0) g(1) ... g(n)

Z: 00 o1 On
N— N—_—r N—

loo|=k0  |ou|=kK! lon|=k"



Proof sketch. Second step : g is 2(K")-i.0.e. implies g =7 Z with
MNz)<1/k.

g(0) g(1) g(n)
SRR I,
loo|=k0 |o1|=kK |on|=k"
Computable R : 70 5l ... Th
1 (bit flip)
R: 7 T ... T
Jj©o 1 .. J(n)

J equals g infinitely often. Then for infinitely many n, 7,(i) # o,(f)
everywhere.



Proof sketch. Second step : g is 2(K")-i.0.e. implies g =7 Z with
MNz)<1/k.

g(0) g(1) g(n)
SRR I,
loo|=k0 |o1|=kK |on|=k"
Computable R : 70 5l ... Th
1 (bit flip)
R: 7 T ... T
Jj©o 1 .. J(n)

J equals g infinitely often. Then for infinitely many n, 7,(i) # o,(f)

everywhere. We have
Imal = (k= 1) ) 7|
i<n
Then the liminf of fraction of places where R agrees with Z is bounded
by 1/k.



Nothing between 0 and 1/2

Theorem

Let X € N. Suppose that for every k € N and every X-computable
sequence {7y} neny with |7, = 27k,
there is a computable sequence {0} neny with |op| = |75| such that

for almost every n, o, agrees with T, on a fraction of at least o
bits.

Then T(X) = a.




Nothing between 0 and 1/2

Theorem

Let X € N. Suppose that for every k € N and every X-computable
sequence {7y} neny with |7, = 27k,

there is a computable sequence {0} neny with |op| = |75| such that
for almost every n, o, agrees with T, on a fraction of at least «
bits.

Then T(X) = a.

y

Idea : The length of the n-th string equals 21/K — 1 times the sum
of the length of the previous strings. For ¢ as large as we want, let
k be large enough so that 2/ —1 < 1/c.

For Y <7 X, we split Y in strings {7h}nen of length 21k The
computable sequence {o,}nen given above implies y(Y) > %l/c

If this is true for every ¢ we have v(Y) = «. If this is true for every
Y <7 X we have I'(X) > «.



Nothing between 0 and 1/2

Suppose [(X) < 1/2 —«.
Then there is kK € N and an X-computable sequence {7,}neny with
|7n| = 2"k, such that :

For every computable sequence {op}nen with |o,| = |T,|, there are
infinitely many n such that o, agrees with T, on a fraction of at
most 1/2 — ¢ bits.




Nothing between 0 and 1/2

Suppose [(X) < 1/2 —«.
Then there is kK € N and an X-computable sequence {7,}neny with
|7n| = 2"k, such that :

For every computable sequence {op}nen with |o,| = |T,|, there are
infinitely many n such that o, agrees with T, on a fraction of at
most 1/2 — ¢ bits.

By taking the bitwise complement of every such computable se-
quence {op}nen We get :

For every computable sequence {op}nen With |o,| = |Ts|, there are
infinitely many n such that o, agrees with 17, on a fraction of at
least 1/2 + ¢ bits.




The error-correcting codes

We want to transmit a message of length m on a noisy chanel. We
use an injection ¢ : 2™ — 2" for n > m in such a way that the
strings in the range of ® are pairwise as far as possible.

If 0 is the smallest relative Hamming distance between two strings
in the range of ®, we can correct up to a fraction of §/2 errors.



The error-correcting codes

We want to transmit a message of length m on a noisy chanel. We
use an injection ¢ : 2™ — 2" for n > m in such a way that the
strings in the range of ® are pairwise as far as possible.

If 0 is the smallest relative Hamming distance between two strings
in the range of ®, we can correct up to a fraction of §/2 errors.

We cannot in general correct more than a ratio of 1/4 of errors. To
go beyond we need to use List decoding :

Theorem (List decoding theorem)

Lete > 0 and ne N . For L € N sufficiently large and 5 > 0
sufficiently small, there exists a set C of 25" many strings of length
n such that :

For any string o of length n, there are at most L elements T of C
such that o agrees with T on a fraction of bits of at least 1/2 + ¢.




Nothing between 0 and 1/2

Suppose [(X) < 1/2 —«.

Then there is k € N and an X-computable sequence {7,}nen with
|7n| = 2"k, such that :

For every computable sequence {op}nen With |o,| = |7s|, there are
infinitely many n such that o, agrees with 7, on a fraction of at
least 1/2 + ¢ bits.

For any n we compute a sequence C, of 2(62"%) many strings of
length 27/ such that any string o of length 2"k agrees with at
most L elements of C, on a fraction of at least 1/2 + ¢ bits.



Nothing between 0 and 1/2

Suppose [(X) < 1/2 —«.

Then there is k € N and an X-computable sequence {7,}nen with
|7n| = 2"k, such that :

For every computable sequence {op}nen With |o,| = |7s|, there are
infinitely many n such that o, agrees with 7, on a fraction of at
least 1/2 + ¢ bits.

For any n we compute a sequence C, of 2(62"%) many strings of
length 27/ such that any string o of length 2"k agrees with at
most L elements of C, on a fraction of at least 1/2 + ¢ bits.

From {7,} neny, we compute the sequence {D,} nen of all the strings of
length ﬁ2”/k whose code in C, agrees with 7, on more than 1/2 +¢
bits. We have |D,| < L for every n.

Claim : For every computable function g bounded by 282" there
are infinitely many n such that g(n) € D, (seen as a binary string).



Nothing between 0 and 1/2

Suppose [(X) < 1/2 —«.

Then there is an X-computable sequence {D,}n,en where D,
contains at most L strings of length 32" and such that :

For every computable function g bounded by 2(32"/k), there are in-
finitely many n such that g(n) € D, (seen as a binary string).
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An X-computable sequence {D,}nen Where D, contains at most L
strings of length [27 and such that :

For every computable function g bounded by 2(:2"), there are infi-
nitely many n such that g(n) € D,, (seen as a binary string).



Nothing between 0 and 1/2

Suppose [(X) < 1/2 —«.

Then there is an X-computable sequence {D,}n,en where D,
contains at most L strings of length 32" and such that :

For every computable function g bounded by 2(52"/k), there are in-
finitely many n such that g(n) € D, (seen as a binary string).

From this we compute :
An X-computable sequence {D,}nen Where D, contains at most L

strings of length [27 and such that :
For every computable function g bounded by 2(:2"), there are infi-
nitely many n such that g(n) € D,, (seen as a binary string).

We see the i-th element o; of D, as an L-uplet {o},...,ob). Let
h; be the function which to n gives oj where o; is the i-th string of
D,.

At least one h; must be 2(2")-j.0.e., which concludes the proof.
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