Error correcting code and computability theory

Benoit Monin

30 June 2016

Coarse computability

Given a set $A \subseteq \mathbb{N}$. How close is A to being computable?

A recent paradigm : A is coarsely computable. This means there is a computable set R such that the asymptotic density of

$$\{n\colon A(n)=R(n)\}$$

equals 1.

Reference: Downey, Jockusch, and Schupp, Asymptotic density and computably enumerable sets, Journal of Mathematical Logic, 13, No. 2 (2013)

The γ -value of a set $A \subseteq \mathbb{N}$

A computable set R tries to approximate a complicated set A:

 ${\approx}4/5~\text{correct}$

Take sup of the asymptotic correctness over all computable R's

$$\gamma(A) = \sup_{\substack{R \text{ computable}}} \underline{\rho}\{n \colon A(n) = R(n)\}$$
 where $\underline{\rho}(Z) = \liminf_{n} \frac{|Z \cap [0,n)|}{n}$.

The γ -value of a set $A \subseteq \mathbb{N}$

A computable set R tries to approximate a complicated set A:

 $A: 100100100100 000101001001 010101111010 10101010111 \\ R: \underbrace{00001011011}_{\approx 1/2 \text{ correct}} 010101000101 010001011010 101010101111 \\ \approx 2/3 \text{ correct}$

pprox 3/4 correct

 ${\approx}4/5~correct$

Take sup of the asymptotic correctness over all computable R's :

$$\gamma(A) = \sup_{\substack{R \text{ computable} \\ n}} \underline{\rho}\{n \colon A(n) = R(n)\}$$
 where $\underline{\rho}(Z) = \liminf_{n} \frac{|Z \cap [0, n)|}{n}$.

Some examples of values $\gamma(A)$

Recall

$$\begin{array}{rcl} \gamma(A) & = & \sup_{R \text{ computable}} \underline{\rho}\{n \colon A(n) = R(n)\} \\ \text{where } \underline{\rho}(Z) & = & \liminf_{n} \frac{|Z \cap [0,n)|}{n}. \end{array}$$

Theorem (Hirschfeldt, Jockusch, McNicholl, Schupp)

For any real $r \in [0,1]$, there is a set A with $\gamma(A) = r$. Moreover this value can either be both reached or not reached by some computable R in the definition of γ .

Γ-value of a Turing degree

Andrews, Cai, Diamondstone, Jockusch and Lempp (2013) looked at Turing degrees, rather than sets. They defined

$$\Gamma(A) = \inf{\{\gamma(B) : B \text{ has the same Turing degree as } A\}}$$

A smaller Γ value means that A is further away from computable.

Example

An oracle A is called computably dominated if every function that A computes is below a computable function. They show:

- If A is random and computably dominated, then $\Gamma(A) = 1/2$.
- If A is not computably dominated then $\Gamma(A) = 0$.

$\Gamma(A) > 1/2$ implies $\Gamma(A) = 1$

Fact (Hirschfeldt, Jockusch, McNicholl and Schupp)

If $\Gamma(A) > 1/2$ then A is computable (so that $\Gamma(A) = 1$).

The idea is to obtain B of the same Turing degree as A by "padding":

- "Stretch" the value A(n) over the whole interval $I_n = [(n-1)!, n!)$.
- Since $\gamma(B) > 1/2$ there is a computable R agreeing with B on more than half of the bits in almost every interval I_n .
- So for almost all n, the bit A(n) equals the majority of values R(k) where $k \in I_n$.

The Γ-question

Question (Γ -question, Andrews et al., 2013)

Is there a set $A \subseteq \mathbb{N}$ *such that* $0 < \Gamma(A) < 1/2$?

Theorem

Let
$$A \in 2^{\mathbb{N}}$$
. If $\Gamma(A) < 1/2$ then $\Gamma(A) = 0$.

The proof uses the field of error-correcting codes.

Examples of $\Gamma(A) = 0$: infinitely often equal

We know that $A \subseteq \mathbb{N}$ not computably dominated implies $\Gamma(A) = 0$.

- We say $g : \mathbb{N} \to \mathbb{N}$ is infinitely often equal (i.o.e.) if $\exists^{\infty} n \ f(n) = g(n)$ for each computable function $f : \mathbb{N} \to \mathbb{N}$.
- We say that $A \subseteq \mathbb{N}$ is i.o.e. if A computes function g that is i.o.e.

Surprising fact : A is i.o.e \Leftrightarrow A not computably dominated.

- \Rightarrow Suppose A computes a function g that equals infinitely often to every computable function. Then no computable function bounds g.
- \Leftarrow *Idea*. Suppose *A* computes a function *g* that is dominated by no computable function. Then *g* is infinitely often above the halting time of any computable total function.

New Examples of $\Gamma(A) = 0$: weaken infinitely often equal

We know A not computably dominated implies $\Gamma(A) = 0$.

Recall

We say that A is infinitely often equal (i.o.e.) if A computes a function g such that $\exists^{\infty} n \ f(n) = g(n)$ for each computable function $f : \mathbb{N} \to \mathbb{N}$.

We can weaken this:

Let $H: \mathbb{N} \to \mathbb{N}$ be computable. We say that A is H-infinitely often equal if A computes a function g such that $\exists^{\infty} n \ f(n) = g(n)$ for each computable function f bounded by H.

This appears to get harder for A the faster H grows.

A i.o.e. implies $\Gamma(A) = 0$

Let $H \colon \mathbb{N} \to \mathbb{N}$ be computable. We say that $A \subseteq \mathbb{N}$ is H-infinitely often equal if A computes a function g such that $\exists^{\infty} n \ f(n) = g(n)$ for each computable function f bounded by H.

Theorem (Monin, Nies)

Let A be $2^{(\alpha^n)}$ -i.o.e. for some $\alpha > 1$. Then $\Gamma(A) = 0$.

New example of $\Gamma(A) = 0$

Recall : A is H-infinitely often equal if A computes a function g such that $\exists^{\infty} n \ f(n) = g(n)$ for each computable function f bounded by H.

Theorem

Let A be
$$2^{(\alpha^n)}$$
-i.o.e. for some computable $\alpha > 1$. Then $\Gamma(A) = 0$.

Proof sketch. First step : Let f be $2^{(\alpha^n)}$ -i.o.e. Then for any $k \in \mathbb{N}$, f computes a function g that is $2^{(k^n)}$ -i.o.e.

f(0) f(1) f(2) f(3) f(4) f(5) ... i.o.e. every comp. funct.
$$\leq 2^{(\alpha^n)}$$

$$ightarrow f(0)f(2)f(4)\dots$$
 i.o.e. every comp. funct. $\leqslant n \mapsto 2^{(\alpha^{2n})}$ or $f(1)f(3)f(5)\dots$ i.o.e. every comp. funct. $\leqslant n \mapsto 2^{(\alpha^{2n+1})}$

Iterating this $\to f \geqslant_T g$ which i.o.e. every comp. funct. $\leqslant 2^{(k^n)}$

Proof sketch. Second step : g is $2^{(k^n)}$ -i.o.e. implies $g\geqslant_{\mathcal{T}} Z$ with $\Gamma(Z)\leqslant 1/k$.

j equals g infinitely often. Then for infinitely many n, $\tau_n(i) \neq \sigma_n(i)$ everywhere. We have

$$|\tau_n| \geqslant (k-1) \sum_{i \le n} |\tau_i|$$

Then the liminf of fraction of places where R agrees with Z is bounded by 1/k.

Proof sketch. Second step : g is $2^{(k^n)}$ -i.o.e. implies $g\geqslant_{\mathcal{T}} Z$ with $\Gamma(Z)\leqslant 1/k$.

$$g(0) \quad g(1) \quad \dots \quad g(n) \quad \dots$$

$$= \quad = \quad \dots \quad = \quad \dots$$

$$Z: \quad \underbrace{\sigma_0}_{|\sigma_0|=k^0} \quad \underbrace{\sigma_1}_{|\sigma_1|=k^1} \quad \dots \quad \underbrace{\sigma_n}_{|\sigma_n|=k^n} \quad \dots$$

j equals g infinitely often. Then for infinitely many n, $\tau_n(i) \neq \sigma_n(i)$ everywhere. We have

$$|\tau_n| \geqslant (k-1) \sum_{i \le n} |\tau_i|$$

Then the liminf of fraction of places where R agrees with Z is bounded by 1/k.

Proof sketch. Second step : g is $2^{(k^n)}$ -i.o.e. implies $g \geqslant_{\mathcal{T}} Z$ with $\Gamma(Z) \leqslant 1/k$.

$$g(0) \qquad g(1) \qquad \dots \qquad \qquad g(n) \qquad \dots$$

$$= \qquad = \qquad \dots \qquad \qquad = \qquad \dots$$

$$Z: \qquad \underbrace{\sigma_0}_{|\sigma_0|=k^0} \qquad \underbrace{\sigma_1}_{|\sigma_1|=k^1} \qquad \dots \qquad \underbrace{\sigma_n}_{|\sigma_n|=k^n} \qquad \dots$$

$$\downarrow \text{ (bit flip)}$$

$$\overline{R}: \qquad \overline{\tau_0} \qquad \overline{\tau_1} \qquad \dots \qquad \overline{\tau_n} \qquad \dots$$

$$= \qquad = \qquad = \qquad =$$

$$j(0) \qquad j(1) \qquad \dots \qquad \qquad j(n) \qquad \dots$$

j equals g infinitely often. Then for infinitely many n, $\tau_n(i) \neq \sigma_n(i)$ everywhere. We have

$$|\tau_n| \geqslant (k-1) \sum_{i \le n} |\tau_i|$$

Then the liminf of fraction of places where R agrees with Z is bounded by 1/k.

Theorem

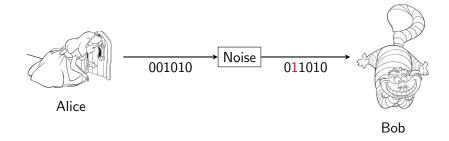
Suppose $\Gamma(X) < 1/2 - \varepsilon$.

Then there is $k \in \mathbb{N}$ and an X-computable sequence $\{\tau_n\}_{n \in \mathbb{N}}$ with $|\tau_n| = 2^{n/k}$, such that :

For every computable sequence $\{\sigma_n\}_{n\in\mathbb{N}}$ with $|\sigma_n|=|\tau_n|$, there are infinitely many n such that σ_n agrees with τ_n on a fraction of at least $1/2+\varepsilon$ bits.

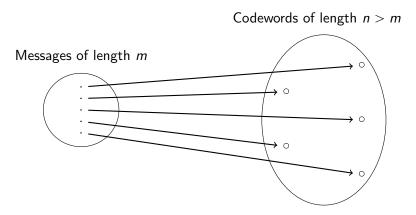
The error-correcting codes

We want to transmit a message of length m on a noisy chanel.



The error-correcting codes

We want to transmit a message of length m on a noisy chanel. We use an injection $\Phi: 2^m \to 2^n$ for n > m in such a way that the strings in the range of Φ are pairwise as far as possible.



If δ is the smallest relative Hamming distance between two strings in the range of Φ , we can correct up to a fraction of $\delta/2$ errors.

Theorem (Basic error-correcting)

For any $\epsilon>0$, there exists $\beta>0$ sufficiently small such that for any n we have $2^{\beta n}$ many strings of length n with pairwise Hamming distance bigger than $1/2-\varepsilon$.

Implication : We can correct up to a ratio of 1/4 of error by increasing the length a messages by a multiplicative factor.

Suppose now $\Gamma(X) < 1/4$. Let $\{\tau_n\}_{n \in \mathbb{N}}$ with $|\tau_n| = 2^{n/k}$, such that :

. . .

For any n we compute a sequence C_n of $2^{(\beta 2^{n/k})}$ many strings of length $2^{n/k}$ which all have pairwise Hamming distance larger than $1/4 - \varepsilon$.

From $\{\tau_n\}_{n\in\mathbb{N}}$, we compute the sequence $\{\rho_n\}_{n\in\mathbb{N}}$ of the strings of length $\beta 2^{n/k}$ whose code in C_n agrees with τ_n on more than $3/4+\varepsilon$ bits.

Claim: For every computable function g bounded by $2^{(\beta 2^{n/k})}$, there are infinitely many n such that $g(n) = \rho_n$ (seen as a binary string).

We need to correct up to 1/2 errors. For this we need to use the list decoding theorem :

Theorem (List decoding theorem)

Let $\varepsilon > 0$. For $L \in \mathbb{N}$ sufficiently large and $\beta > 0$ sufficiently small, there exists for any $n \in \mathbb{N}$ a set C of $2^{\beta n}$ many strings of length n such that :

For any string σ of length n, there are at most L elements τ of C such that σ agrees with τ on a fraction of bits of at least $1/2 + \varepsilon$.