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Coarse computability

Given a set A � N. How close is A to being computable ?

A recent paradigm : A is coarsely computable. This means there is
a computable set R such that the asymptotic density of

tn : Apnq � Rpnqu

equals 1.

Reference : Downey, Jockusch, and Schupp, Asymptotic density and computably enumerable sets, Journal of

Mathematical Logic, 13, No. 2 (2013)



The γ-value of a set A � N
A computable set R tries to approximate a complicated set A :

A : 100100100100 000101001001 010101111010 101010100111
R : 000010110111loooooooooooooooooon

�1{2 correct

010101000101

loooooooooooooooooooooooooooooooooooooon
�2{3 correct

010001011010

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooon
�3{4 correct

101010100111

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon
�4{5 correct

Take sup of the asymptotic correctness over all computable R’s :

γpAq � sup
R computable

ρtn : Apnq � Rpnqu

where ρpZ q � lim inf
n

|Z X r0, nq|

n
.



Some examples of values γpAq

Recall

γpAq � sup
R computable

ρtn : Apnq � Rpnqu

where ρpZ q � lim inf
n

|Z X r0, nq|

n
.

Some possible values

A computable ñ γpAq � 1

A random ñ γpAq � 1{2.



Γ-value of a Turing degree

Andrews, Cai, Diamondstone, Jockusch and Lempp (2013) looked
at Turing degrees, rather than sets. They defined

ΓpAq � inftγpBq : B has the same Turing degree asAu

A smaller Γ value means that A is further away from computable.

Example

An oracle A is called computably dominated if every function that
A computes is below a computable function. They show :

If A is random and computably dominated, then ΓpAq � 1{2.

If A is not computably dominated then ΓpAq � 0.



ΓpAq ¡ 1{2 implies ΓpAq � 1

Fact (Hirschfeldt, Jockusch, McNicholl and Schupp)

If ΓpAq ¡ 1{2 then A is computable (so that ΓpAq � 1).

The idea is to obtain B of the same Turing degree as A by
“padding” :

“Stretch” the value Apnq over the whole interval
In � rpn � 1q!, n!q.

Since γpBq ¡ 1{2 there is a computable R agreeing with B on
more than half of the bits in almost every interval In.

So for almost all n, the bit Apnq equals the majority of values
Rpkq where k P In.



The Γ-question

Question (Γ-question, Andrews et al., 2013)

Is there a set A � N such that 0   ΓpAq   1{2 ?


 ? ? ? ? ? ? ? ? ? ? 
 � ������ 

Γ � 0 Γ � 1{2 Γ � 1



New examples towards answering the question

Recall : Γ-question, Andrews et al., 2013

Is there a set A � N such that 0   ΓpAq   1{2 ?

Summary of previously known examples :

ΓpAq � 0 A non computably dominated or A PA

ΓpAq � 1{2 A low for Schnorr ; A random & comp. dominated

ΓpAq � 1 A computable

Towards answering the question, we obtain natural classes of
oracles with Γ value 1{2, and with Γ value 0.

This yields new examples for both cases.



Weakly Schnorr engulfing

We view oracles as infinite bit sequences, that is, elements of
Cantor space 2N.

A Σ0
1 set has the form

�
i rσi s for an effective sequence xσiyiPN

of strings. rσs denotes the sequences extending σ.

A Schnorr test is an effective sequence pSmqmPN of Σ0
1 sets in

2N such that

each λSm is a computable real uniformly in m
λSm ¤ 2�m (λ is the usual uniform measure on 2ω).

Fact :
�

m Sm fails to contain all computable sets.

We can relativize these notions to an oracle A.

We say that A is weakly Schnorr engulfing if A computes a Schnorr
test containing all the computable sets.

This highness property of oracles was introduced by Rupprecht (2010), in

analogy with 1980s work in set theory (cardinal characteristics).



Examples of A such that ΓpAq ¥ 1{2

The two known properties of A implying ΓpAq ¥ 1{2 were :

(1) Computably dominated random, and
(2) low for Schnorr : every A-Schnorr test is covered by a plain

Schnorr test.

Both properties imply non-weakly Schnorr engulfing.

There is a non-weakly Schnorr engulfing set without any of
these properties. (Kjos-Hanssen, Stephan and Terwijn, 2015).

So the following result yields new examples of degrees with a
Gamma of 1{2.

Theorem

Let A be not weakly Schnorr engulfing. Then ΓpAq ¥ 1{2.

Proof sketch : Given B ¤T A and rational ε ¡ 0, build an A-Schnorr test
so that any set R passing it approximates B with asymptotic correctness
¥ 1{2� ε (this uses Chernoff bounds).



Characterization of w.S.e. via traces

An obvious question is whether conversely, ΓpAq ¥ 1{2 implies that
A is not weakly Schnorr engulfing. We characterised w.S.e. towards
obtaining an answer.

Let H : N ÞÑ N be computable with
°

1{Hpnq finite. tTnunPω is a
small computable H-trace if

Tn is a uniformly computable finite set
°

n |Tn|{Hpnq is finite and computable.

Theorem

A is weakly Schnorr engulfing iff for some computable function H,
there is an A-computable small H-trace capturing every
computable function bounded by H.



Examples of ΓpAq � 0 : infinitely often equal

We know that A � N not computably dominated implies ΓpAq � 0.

We say g : NÑ N is infinitely often equal (i.o.e.) if
D8n f pnq � gpnq for each computable function f : NÑ N.

We say that A � N is i.o.e. if A computes function g that is i.o.e.

Surprising fact : A is i.o.e ô A not computably dominated.

ñ Suppose A computes a function g that equals infinitely often to every
computable function. Then no computable function bounds g .

ð Idea. Suppose A computes a function g that is dominated by no
computable function. Then g is infinitely often above the halting time of
any computable total function.



New Examples of ΓpAq � 0 : weaken infinitely often equal

We know A not computably dominated implies ΓpAq � 0.

Recall

We say that A is infinitely often equal (i.o.e.) if A computes a function g
such that D8n f pnq � gpnq for each computable function f : NÑ N.

We can weaken this :

Let H : NÑ N be computable. We say that A is H-infinitely often equal if
A computes a function g such that D8n f pnq � gpnq for each computable
function f bounded by H.

This appears to get harder for A the faster H grows.



New example of ΓpAq � 0

Let H : N Ñ N be computable. We say that A � N is H-infinitely often

equal if A computes a function g such that D8n f pnq � gpnq for each

computable function f bounded by H.

Theorem

Let A be 2pα
nq-i.o.e. for some α ¡ 1. Then ΓpAq � 0.

Previously known examples of sets A with ΓpAq � 0 :

not computably dominated, and

degree of a completion of Peano arithmetic (PA for short).

If A is in one of these classes, for any computable bound H, A can
compute an H-i.o.e. function.

Given a computable H ¥ 2, we can build an H-i.o.e. set A that is
computably dominated, and not PA. So we have a new example ΓpAq � 0
(using Rupprecht (2010)).



New example of ΓpAq � 0

Recall : A is H-infinitely often equal if A computes a function g such that

D8n f pnq � gpnq for each computable function f bounded by H.

Theorem

Let A be 2pα
nq-i.o.e. for some computable α ¡ 1. Then ΓpAq � 0.

Proof sketch. First step : Let f be 2pα
nq-i.o.e. Then for any k P N, f

computes a function g that is 2pk
nq-i.o.e.

f(0) f(1) f(2) f(3) f(4) f(5) . . . i.o.e. every comp. funct. ¤ 2pα
nq

Ñ f p0qf p2qf p4q . . . i.o.e. every comp. funct. ¤ n ÞÑ 2pα
2nq

or f p1qf p3qf p5q . . . i.o.e. every comp. funct. ¤ n ÞÑ 2pα
2n�1q

Iterating this Ñ f ¥T g which i.o.e. every comp. funct. ¤ 2pk
nq



Proof sketch. Second step : g is 2pk
nq-i.o.e. implies g ¥T Z with

ΓpZ q ¤ 1{k .

gp0q gp1q . . . gpnq . . .
� � . . . � . . .

Z : σ0loooon
|σ0|�k0

σ1loooon
|σ1|�k1

. . . σnloooon
|σn|�kn

. . .

Computable R : τ0 τ1 . . . τn . . .
Ó (bit flip)

R : τ0 τ1 . . . τn . . .
� � � �
jp0q jp1q . . . jpnq . . .

j equals g infinitely often. Then for infinitely many n, τnpiq � σnpiq
everywhere. We have

|τn| ¥ pk � 1q
¸

i n

|τi |

Then the lim inf of fraction of places where R agrees with Z is bounded
by 1{k.



Infinitely often equal : hierarchy

It is interesting to study infinite often equality for its own sake.

Question

Let H be a computable bound. Can we always find H 1 ¡¡ H such
that some f is H-i.o.e. but f computes no function that is H 1-i.o.e. ?

First step : What about H-i.o.e. for H constant ?
X computable Ñ X not 2-i.o.e. Ñ X not c-i.o.e. for c P N
X not 2-i.o.e. Ñ X computable.
X not 3-i.o.e. Ñ ?

Z P 2N : 0010101000100100101
R computable : 1101010111011011010

Z P 3N : 0210122002100102122
R computable : 1102010111011211210



Infinitely often equal : constant bound

For any c P N, we can show X not c-i.o.e. Ñ X computable. Let
c � 3.

For Z P 2ω, let #Z
2 : ω2 Ñ ω the function which on a, b P N returns

|Z Xta, bu|. Note that #Z
2 can take three different values : 0, 1 and

2.

Theorem (Kummer)

Suppose Z is an oracle such that #Z
3 is traceable via some trace

tTnunPω, where each Tn is c.e. uniformly in n and |Tn| ¤ 3. Then
Z is computable.

Example :

0 1 2 3 4 5 6 7 � � �
Z � 0 1 0 0 1 1 0 1 � � �

#Z
3 p2, 3q P t0, 2u

#Z
3 p1, 4q P t1, 2u

#Z
3 p3, 7q P t0, 1u

. . .



Infinitely often equal : implications

Known implications :

c-i.o.e. for c ¥ 2 Ð Hpnq-i.o.e with H computable
order function s.t.

°
n

1
Hpnq � 8

Ù Ò
not computable Hpnq-i.o.e with H computable

order function s.t.
°

n
1

Hpnq   8

We don’t know that there is a proper hierarchy for functions H
with 8 ¡

°
n 1{Hpnq.



Summary

X is 2pα
nq-i.o.e.

(for some α ¡ 1)

Ñ ΓpX q � 0

ΓpX q   1{2 Ñ X computes a small H-trace
capturing all computable
functions bounded by H
(for some computable bound H)

X computable Ø ΓpX q ¡ 1{2
Ø ΓpX q � 1
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