A unifying approach to the Gamma question

Benoit Monin joint work with André Nies

Université Paris-Est Créteil

6 January 2016

Given a set $A \subseteq \mathbb{N}$. How close is A to being computable?

A recent paradigm : A is coarsely computable. This means there is a computable set R such that the asymptotic density of

$$\{n: A(n) = R(n)\}$$

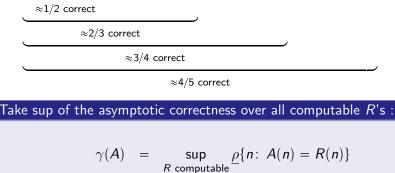
equals 1.

Reference : Downey, Jockusch, and Schupp, Asymptotic density and computably enumerable sets, Journal of Mathematical Logic, 13, No. 2 (2013)

The γ -value of a set $A \subseteq \mathbb{N}$

A computable set R tries to approximate a complicated set A :

- A : 100100100100 000101001001 010101111010 10101010111
- $R: \underbrace{000010110111}_{010101000101} 0100001010101010101010101111$



where
$$\underline{\rho}(Z) = \liminf_{n} \frac{|Z \cap [0, n)|}{n}$$
.

Recall

$$\begin{split} \gamma(A) &= \sup_{\substack{R \text{ computable}}} \underline{\rho}\{n: A(n) = R(n)\}\\ \text{where } \underline{\rho}(Z) &= \liminf_{n} \frac{|Z \cap [0, n)|}{n}. \end{split}$$

Some possible values

$$\begin{array}{rcl} A \, {\rm computable} & \Rightarrow & \gamma(A) = 1 \\ A \, {\rm random} & \Rightarrow & \gamma(A) = 1/2. \end{array}$$

Γ-value of a Turing degree

Andrews, Cai, Diamondstone, Jockusch and Lempp (2013) looked at Turing degrees, rather than sets. They defined

 $\Gamma(A) = \inf\{\gamma(B): B \text{ has the same Turing degree as } A\}$

A smaller Γ value means that A is further away from computable.

Example

An oracle A is called computably dominated if every function that A computes is below a computable function. *They show :*

- If A is random and computably dominated, then $\Gamma(A) = 1/2$.
- If A is not computably dominated then $\Gamma(A) = 0$.

$\Gamma(A) > 1/2$ implies $\Gamma(A) = 1$

Fact (Hirschfeldt, Jockusch, McNicholl and Schupp)

If $\Gamma(A) > 1/2$ then A is computable (so that $\Gamma(A) = 1$).

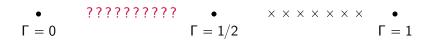
The idea is to obtain B of the same Turing degree as A by "padding":

- "Stretch" the value A(n) over the whole interval $I_n = [(n-1)!, n!)$.
- Since γ(B) > 1/2 there is a computable R agreeing with B on more than half of the bits in almost every interval I_n.
- So for almost all *n*, the bit A(n) equals the majority of values R(k) where $k \in I_n$.

The **F**-question

Question (Γ -question, Andrews et al., 2013)

Is there a set $A \subseteq \mathbb{N}$ such that $0 < \Gamma(A) < 1/2$?



New examples towards answering the question

Recall : **F**-question, Andrews et al., 2013

Is there a set $A \subseteq \mathbb{N}$ such that $0 < \Gamma(A) < 1/2$?

Summary of previously known examples :

$\Gamma(A) = 0$	A non computably dominated or A PA
$\Gamma(A) = 1/2$	A low for Schnorr; A random & comp. dominated
$\Gamma(A) = 1$	A computable

- Towards answering the question, we obtain natural classes of oracles with Γ value 1/2, and with Γ value 0.
- This yields new examples for both cases.

Weakly Schnorr engulfing

- We view oracles as infinite bit sequences, that is, elements of Cantor space 2^ℕ.
- A Σ₁⁰ set has the form ⋃_i[σ_i] for an effective sequence ⟨σ_i⟩_{i∈ℕ} of strings. [σ] denotes the sequences extending σ.
- A Schnorr test is an effective sequence $(S_m)_{m\in\mathbb{N}}$ of Σ^0_1 sets in $2^{\mathbb{N}}$ such that
 - each λS_m is a computable real uniformly in m
 - $\lambda S_m \leqslant 2^{-m} \ (\lambda \text{ is the usual uniform measure on } 2^{\omega}).$
- Fact : $\bigcap_m S_m$ fails to contain all computable sets.

We can relativize these notions to an oracle A.

We say that A is weakly Schnorr engulfing if A computes a Schnorr test containing all the computable sets.

This highness property of oracles was introduced by Rupprecht (2010), in analogy with 1980s work in set theory (cardinal characteristics).

Examples of A such that $\Gamma(A) \ge 1/2$

- The two known properties of A implying $\Gamma(A) \ge 1/2$ were :
 - (1) Computably dominated random, and
 - (2) low for Schnorr : every A-Schnorr test is covered by a plain Schnorr test.
- Both properties imply non-weakly Schnorr engulfing.
- There is a non-weakly Schnorr engulfing set without any of these properties. (Kjos-Hanssen, Stephan and Terwijn, 2015).

So the following result yields new examples of degrees with a Gamma of 1/2.

Theorem

Let A be not weakly Schnorr engulfing. Then $\Gamma(A) \ge 1/2$.

Proof sketch : Given $B \leq_T A$ and rational $\varepsilon > 0$, build an A-Schnorr test so that any set R passing it approximates B with asymptotic correctness $\ge 1/2 - \varepsilon$ (this uses Chernoff bounds).

Characterization of w.S.e. via traces

An obvious question is whether conversely, $\Gamma(A) \ge 1/2$ implies that A is not weakly Schnorr engulfing. We characterised w.S.e. towards obtaining an answer.

Let $H : \mathbb{N} \mapsto \mathbb{N}$ be computable with $\sum 1/H(n)$ finite. $\{T_n\}_{n \in \omega}$ is a small computable H-trace if

- T_n is a uniformly computable finite set
- $\sum_{n} |T_n|/H(n)$ is finite and computable.

Theorem

A is weakly Schnorr engulfing iff for some computable function H, there is an A-computable small H-trace capturing every computable function bounded by H.

Examples of $\Gamma(A) = 0$: infinitely often equal

We know that $A \subseteq \mathbb{N}$ not computably dominated implies $\Gamma(A) = 0$.

- We say $g : \mathbb{N} \to \mathbb{N}$ is infinitely often equal (i.o.e.) if $\exists^{\infty} n f(n) = g(n)$ for each computable function $f : \mathbb{N} \to \mathbb{N}$.
- We say that $A \subseteq \mathbb{N}$ is i.o.e. if A computes function g that is i.o.e.

Surprising fact : A is i.o.e \Leftrightarrow A not computably dominated.

 \Rightarrow Suppose A computes a function g that equals infinitely often to every computable function. Then no computable function bounds g.

 \leftarrow *Idea*. Suppose A computes a function g that is dominated by no computable function. Then g is infinitely often above the halting time of any computable total function.

New Examples of $\Gamma(A) = 0$: weaken infinitely often equal

We know A not computably dominated implies $\Gamma(A) = 0$.

Recall

We say that A is infinitely often equal (i.o.e.) if A computes a function g such that $\exists^{\infty} n \ f(n) = g(n)$ for each computable function $f : \mathbb{N} \to \mathbb{N}$.

We can weaken this :

Let $H: \mathbb{N} \to \mathbb{N}$ be computable. We say that A is *H*-infinitely often equal if A computes a function g such that $\exists^{\infty} n f(n) = g(n)$ for each computable function f bounded by H.

This appears to get harder for A the faster H grows.

Let $H: \mathbb{N} \to \mathbb{N}$ be computable. We say that $A \subseteq \mathbb{N}$ is *H*-infinitely often equal if *A* computes a function *g* such that $\exists^{\infty} n \ f(n) = g(n)$ for each computable function *f* bounded by *H*.

Theorem

Let A be
$$2^{(\alpha^n)}$$
-i.o.e. for some $\alpha > 1$. Then $\Gamma(A) = 0$.

Previously known examples of sets A with $\Gamma(A) = 0$:

- not computably dominated, and
- degree of a completion of Peano arithmetic (PA for short).

If A is in one of these classes, for any computable bound H, A can compute an H-i.o.e. function.

Given a computable $H \ge 2$, we can build an *H*-i.o.e. set *A* that is computably dominated, and not PA. So we have a new example $\Gamma(A) = 0$ (using Rupprecht (2010)).

New example of $\Gamma(A) = 0$

Recall : A is H-infinitely often equal if A computes a function g such that $\exists^{\infty} n \ f(n) = g(n)$ for each computable function f bounded by H.

Theorem

Let A be $2^{(\alpha^n)}$ -i.o.e. for some computable $\alpha > 1$. Then $\Gamma(A) = 0$.

Proof sketch. First step : Let f be $2^{(\alpha^n)}$ -i.o.e. Then for any $k \in \mathbb{N}$, f computes a function g that is $2^{(k^n)}$ -i.o.e.

f(0) f(1) f(2) f(3) f(4) f(5) ... i.o.e. every comp. funct. $\leq 2^{(\alpha^n)}$

 $\rightarrow \qquad f(0)f(2)f(4)\dots \text{ i.o.e. every comp. funct. } \leqslant n \mapsto 2^{(\alpha^{2n})} \\ \text{or } f(1)f(3)f(5)\dots \text{ i.o.e. every comp. funct. } \leqslant n \mapsto 2^{(\alpha^{2n+1})}$

Iterating this $\rightarrow f \ge_T g$ which i.o.e. every comp. funct. $\le 2^{(k^n)}$

Proof sketch. Second step : g is $2^{(k^n)}$ -i.o.e. implies $g \ge_T Z$ with $\Gamma(Z) \le 1/k$.

$$g(0) \quad g(1) \quad \dots \qquad g(n) \quad \dots$$

$$= \quad = \quad \dots \qquad = \quad \dots$$

$$Z: \quad \underbrace{\sigma_0}_{|\sigma_0|=k^0} \quad \underbrace{\sigma_1}_{|\sigma_1|=k^1} \quad \dots \quad \underbrace{\sigma_n}_{|\sigma_n|=k^n} \quad \dots$$

$$fr : \quad \tau_0 \quad \tau_1 \quad \dots \quad \tau_n \quad \dots$$

$$\downarrow \text{(bit flip)}$$

$$\overline{R}: \quad \overline{\tau_0} \quad \overline{\tau_1} \quad \dots \quad \overline{\tau_n} \quad \dots$$

$$= \quad = \quad = \quad =$$

$$j(0) \quad j(1) \quad \dots \quad j(n) \quad \dots$$

j equals *g* infinitely often. Then for infinitely many *n*, $\tau_n(i) \neq \sigma_n(i)$ everywhere. We have

$$|\tau_n| \ge (k-1)\sum_{i< n} |\tau_i|$$

Then the lim inf of fraction of places where R agrees with Z is bounded by 1/k.

Infinitely often equal : hierarchy

It is interesting to study infinite often equality for its own sake.

Question

Let *H* be a computable bound. Can we always find H' >> H such that some *f* is *H*-i.o.e. but *f* computes no function that is H'-i.o.e.?

First step : What about *H*-i.o.e. for *H* constant? *X* computable \rightarrow *X* not 2-i.o.e. \rightarrow *X* not *c*-i.o.e. for $c \in \mathbb{N}$ *X* not 2-i.o.e. \rightarrow *X* computable. *X* not 3-i.o.e. \rightarrow ?

$Z\in 2^{\mathbb{N}}$:	0010101000100100101
R computable :	1101010111011011010
$Z\in 3^{\mathbb{N}}$:	0210122002100102122
R computable :	1102010111011211210

Infinitely often equal : constant bound

For any $c \in \mathbb{N}$, we can show X not c-i.o.e. \rightarrow X computable. Let c = 3.

For $Z \in 2^{\omega}$, let $\#_2^Z : \omega^2 \to \omega$ the function which on $a, b \in \mathbb{N}$ returns $|Z \cap \{a, b\}|$. Note that $\#_2^Z$ can take three different values : 0, 1 and 2.

Theorem (Kummer)

Suppose Z is an oracle such that $\#_3^Z$ is traceable via some trace $\{T_n\}_{n\in\omega}$, where each T_n is c.e. uniformly in n and $|T_n| \leq 3$. Then Z is computable.

Example :

Infinitely often equal : implications

Known implications :

$$\begin{array}{rcl} c\text{-i.o.e. for } c \geqslant 2 & \leftarrow & H(n)\text{-i.o.e with } H \text{ computable} \\ & & \text{order function s.t. } \sum_n \frac{1}{H(n)} = \infty \\ & & \uparrow \\ & & & \text{not computable} \\ & & H(n)\text{-i.o.e with } H \text{ computable} \\ & & \text{order function s.t. } \sum_n \frac{1}{H(n)} < \infty \end{array}$$

We don't know that there is a proper hierarchy for functions H with $\infty > \sum_n 1/H(n)$.

Summary

$$X \text{ is } 2^{(\alpha^n)} \text{-i.o.e.} \rightarrow \Gamma(X) = 0$$

(for some $\alpha > 1$)

$$\Gamma(X) < 1/2 \rightarrow X$$
 computes a small *H*-trace
capturing all computable
functions bounded by *H*
(for some computable bound *H*)

$$\begin{array}{rcl} X \text{ computable} & \leftrightarrow & \Gamma(X) > 1/2 \\ & \leftrightarrow & \Gamma(X) = 1 \end{array}$$