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Coarse computability

Given a set A € N. How close is A to being computable ? J

A recent paradigm : A is coarsely computable. This means there is
a computable set R such that the asymptotic density of

{n: A(n) = R(n)}

equals 1.

Reference : Downey, Jockusch, and Schupp, Asymptotic density and computably enumerable sets, Journal of

Mathematical Logic, 13, No. 2 (2013)



The y-value of a set A N

A computable set R tries to approximate a complicated set A :

A :100100100100000101001001 010101111010 101010100111
R : 000010110111 010101000101 010001011010101010100111

~1/2 correct
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~4/5 correct

V(A) = sup  p{n: A(n) = R(n)}

R computable

where p(Z) = liminf

n

[Z ~ [0, n)]
e




Some examples of values 7(A)

(A) = sup  p{n: A(n) = R(n)}
R computable
where p(Z) = |iminfw.

Some possible values

Acomputable = ~(A)
Arandom = ~(A)




[-value of a Turing degree

Andrews, Cai, Diamondstone, Jockusch and Lempp (2013) looked
at Turing degrees, rather than sets. They defined

I(A) = inf{y(B): Bhas the same Turing degree as A} J

A smaller I value means that A is further away from computable.

An oracle A is called computably dominated if every function that
A computes is below a computable function. They show :

@ If Ais random and computably dominated, then '(A) = 1/2.

@ If Ais not computably dominated then I'(A) = 0.




(A) > 1/2 implies T(A) =1

Fact (Hirschfeldt, Jockusch, McNicholl and Schupp)

IfT(A) > 1/2 then A is computable (so that T (A) =1).

The idea is to obtain B of the same Turing degree as A by
“padding” :
@ “Stretch” the value A(n) over the whole interval
In=[(n—=1),n!).
@ Since y(B) > 1/2 there is a computable R agreeing with B on
more than half of the bits in almost every interval /,.

@ So for almost all n, the bit A(n) equals the majority of values
R(k) where k € I,.



The '-question

Question (M-question, Andrews et al., 2013)

Is there a set A < N such that 0 < T(A) <1/27
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New examples towards answering the question

Recall : T-question, Andrews et al., 2013

Is there a set A < N such that 0 < '(A) <1/27

Summary of previously known examples :

NA) =0 A non computably dominated or A PA
I(A) =1/2 | Alow for Schnorr; A random & comp. dominated
rA)=1 A computable

@ Towards answering the question, we obtain natural classes of
oracles with I value 1/2, and with I value 0.

@ This yields new examples for both cases.



Weakly Schnorr engulfing

@ We view oracles as infinite bit sequences, that is, elements of
Cantor space 2V,

o A %9 set has the form | J;[o;] for an effective sequence {7,y
of strings. [0] denotes the sequences extending o.

@ A Schnorr test is an effective sequence (Sp,)men of Z(I) sets in
2N such that

e each \S,, is a computable real uniformly in m
o AS,, < 27™ (X is the usual uniform measure on 2¢).

e Fact : (), Sm fails to contain all computable sets.

We can relativize these notions to an oracle A.

We say that A is weakly Schnorr engulfing if A computes a Schnorr
test containing all the computable sets. J

This highness property of oracles was introduced by Rupprecht (2010), in
analogy with 1980s work in set theory (cardinal characteristics).



Examples of A such that '(A) > 1/2

@ The two known properties of A implying '(A) > 1/2 were :
(1) Computably dominated random, and

(2) low for Schnorr : every A-Schnorr test is covered by a plain
Schnorr test.

@ Both properties imply non-weakly Schnorr engulfing.
@ There is a non-weakly Schnorr engulfing set without any of
these properties. (Kjos-Hanssen, Stephan and Terwijn, 2015).

So the following result yields new examples of degrees with a
Gamma of 1/2.

Let A be not weakly Schnorr engulfing. Then I'(A) > 1/2.

Proof sketch : Given B <t A and rational € > 0, build an A-Schnorr test
so that any set R passing it approximates B with asymptotic correctness
> 1/2 — ¢ (this uses Chernoff bounds).



Characterization of w.S.e. via traces

An obvious question is whether conversely, ['(A) > 1/2 implies that
A is not weakly Schnorr engulfing. We characterised w.S.e. towards
obtaining an answer.

Let H: N — N be computable with >} 1/H(n) finite. {T,}new is a
small computable H-trace if

@ T, is a uniformly computable finite set
@ > |Ts|/H(n) is finite and computable.

Theorem

| A

A is weakly Schnorr engulfing iff for some computable function H,
there is an A-computable small H-trace capturing every
computable function bounded by H.




Examples of ['(A) = 0 : infinitely often equal

We know that A € N not computably dominated implies ['(A) = 0.

@ We say g : N — N is infinitely often equal (i.o.e.) if
3%n f(n) = g(n) for each computable function f : N — N.

@ We say that A< Nis i.o.e. if A computes function g that is i.o0.e.

Surprising fact : Ais i.0.e < A not computably dominated.

= Suppose A computes a function g that equals infinitely often to every
computable function. Then no computable function bounds g.

< Idea. Suppose A computes a function g that is dominated by no
computable function. Then g is infinitely often above the halting time of
any computable total function.



New Examples of I'(A) = 0 : weaken infinitely often equal

We know A not computably dominated implies ['(A) = 0.

We say that A is infinitely often equal (i.o.e.) if A computes a function g
such that 3*n f(n) = g(n) for each computable function f : N — N.

We can weaken this :

A computes a function g such that 3% n f(n) = g(n) for each computable

Let H: N — N be computable. We say that A is H-infinitely often equal if
function f bounded by H. J

This appears to get harder for A the faster H grows.



New example of ['(A) =0

Let H: N — N be computable. We say that A € N is H-infinitely often
equal if A computes a function g such that 3%n f(n) = g(n) for each
computable function f bounded by H.

Theorem
Let A be 2(®")-j.0.e. for some a > 1. Then ['(A) = 0.

| \

Previously known examples of sets A with ['(A) =0 :
@ not computably dominated, and

@ degree of a completion of Peano arithmetic (PA for short).

If A is in one of these classes, for any computable bound H, A can
compute an H-i.o.e. function.

Given a computable H > 2, we can build an H-i.o.e. set A that is
computably dominated, and not PA. So we have a new example ['(A) =0
(using Rupprecht (2010)).



New example of ['(A) =0

Recall : A is H-infinitely often equal if A computes a function g such that
3%n f(n) = g(n) for each computable function f bounded by H.

Let A be 2(")-j.0.e. for some computable « > 1. Then T(A) = 0.

Proof sketch. First step : Let  be 2(®")-j.0.e. Then for any ke N, f
computes a function g that is 2(k")-j.o0.e.

f(0) f(1) f(2) f(3) f(4) f(5) ... i.0.e. every comp. funct. < 2(®")

- f(0)f(2)f(4)... i.o.e. every comp. funct. < nw— 2(a®)
or f(1)f(3)f(5)... i.0.e. every comp. funct. < nw— (e

terating this — f >7 g which i.0.e. every comp. funct. < 2(<")



Proof sketch. Second step : g is 2(K")-i.0.e. implies g =7 Z with
MNz)<1/k.

g(0) g(1) g(n)
SRR I,
loo|=k0 |o1|=kK |on|=k"
Computable R : 70 sl ... Th
1 (bit flip)
R: 7 T ... T
Jjo  j1 .. J(n)

J equals g infinitely often. Then for infinitely many n, 7,(i) # o,(f)

everywhere. We have
Imal = (k= 1) ) 7l
i<n
Then the liminf of fraction of places where R agrees with Z is bounded
by 1/k.



Infinitely often equal : hierarchy

It is interesting to study infinite often equality for its own sake.

Let H be a computable bound. Can we always find H' >> H such
that some f is H-i.o.e. but f computes no function that is H'-i.o.e.?

First step : What about H-i.o.e. for H constant?

X computable — X not 2-i.o.e. —» X not c-i.o.e. for ce N
X not 2-i.0.e. — X computable.

X not 3-i.o.e. =7

Z e2¥: 0010101000100100101
R computable : 1101010111011011010
Z € 3¥: 0210122002100102122
R computable : 1102010111011211210




Infinitely often equal : constant bound

For any ¢ € N, we can show X not c-i.o.e. = X computable. Let
c=3.

For Z € 2%, let #% : w? — w the function which on a, b € N returns
|Z n{a, b}|. Note that #5 can take three different values : 0,1 and
2.

Theorem (Kummer)

Suppose Z is an oracle such that #32 is traceable via some trace
{Th}new, where each T, is c.e. uniformly in n and |T,| < 3. Then
Z is computable.

Example :

#%£(2,3) € {0,2}
01234567---  #%£(1,4) e {1,2}
Z= 01001101--- #£(3,7) € {0,1}



Infinitely often equal : implications

Known implications :

c-i.oe. forc =2 « H(n)-i.o.e with H computable
order function s.t. Zn Ay = ©
I T
not computable H(n)-i.o.e with H computable
order function s.t. 3. =7 Ay < ®

We don't know that there is a proper hierarchy for functions H
with 00 > > 1/H(n).



Xis 2(®.ioe. — T[(X)=0

(for some o > 1)

MNX)<1/2 — X computes a small H-trace
capturing all computable
functions bounded by H
(for some computable bound H)

X computable rx)>1/2

rx) =1

RN
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