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Introduction
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The Cantor space

What do we work with ?

Our playground The Cantor space

Denoted by 2ω

Topology The one generated by the cylinders rσs,
the set of sequences extending σ, for ev-
ery string σ

An open set U is A union of cylinders
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Algorithmic randomness (1)

What does it mean for a binary sequence to be random ?

Intuitively : Is it reasonable to think that c1, c2 or c3 could have
been obtained by a fair coin tossing ?

c1:000011000000001000100000100001000101000001000100 . . .

c2:101011000101100110100110001101011100100111001010 . . .

c3:001001000011111101101010100010001000010110100011 . . .
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Algorithmic randomness (1)

What does it mean for a binary sequence to be random ?

Intuitively : Is it reasonable to think that c1, c2 or c3 could have
been obtained by a fair coin tossing ?

c1:000011000000001000100000100001000101000001000100 . . .
Law of large number : no
c2:101011000101100110100110001101011100100111001010 . . .

c3:001001000011111101101010100010001000010110100011 . . .
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Algorithmic randomness (1)

What does it mean for a binary sequence to be random ?

Intuitively : Is it reasonable to think that c1, c2 or c3 could have
been obtained by a fair coin tossing ?

c1:000011000000001000100000100001000101000001000100 . . .
Law of large number : no
c2:1010 1100 0101 1001 1010 0110 0011 0101 1100 1001 1100 . . .
pattern repetition : no
c3:001001000011111101101010100010001000010110100011 . . .
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Algorithmic randomness (1)

What does it mean for a binary sequence to be random ?

Intuitively : Is it reasonable to think that c1, c2 or c3 could have
been obtained by a fair coin tossing ?

c1:000011000000001000100000100001000101000001000100 . . .
Law of large number : no
c2:1010 1100 0101 1001 1010 0110 0011 0101 1100 1001 1100 . . .
pattern repetition : no
c3:001001000011111101101010100010001000010110100011 . . .
c3 � π : no
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Algorithmic randomness (2)

Kolmogorov had the idea that our intuition of randomness for finite
strings, corresponds to the incompressibility of finite strings.

Definition (Kolmorogov)

For a given machine M : 2 ω Ñ 2 ω, the M-Kolmorogov complexity
CMpσq of a string σ if the size of the smallest program which outputs
σ via M.

Proposition/Definition (Kolmorogov)

There is a machine U : 2 ω Ñ 2 ω, universal in the sense that for
any machine M we have CUpσq ¤ CMpσq � cM with cM a constant
depending on M. The value C pσq � CUpσq is the Kolmogorov
complexity of the string σ, well defined up to a constant.
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Algorithmic randomness (3)

Proposition/Definition (Kolmorogov)

A string σ is d-incompressible if C pσq ¡ |σ| � d . The smallest d is,
the more random σ is.

How to extend this notion of randomness for strings, to infinite
sequences ? A first idea : A sequence X should be random if there
is some d so that each prefix of X is d-incompressible.

But that fails, as for any d we have:

0100 . . . 1010loooooooooooooooon
�σ with |σ|�d

010000010101010 . . . 010000101001010loooooooooooooooooooooooooooooooooooooooooooooooooooon
�τ with |τ |�σ seen as an integer

Then the machine Mpτq � |τ |pτ can d-compress some prefix of
X , for any d .
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Complexity of sets

Section 2

Complexity of sets
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Arithmetical complexity of sets

Following a work started by Baire in 1899 (Sur les fonctions de
variables réelles), pursued by Lebesgue in his PhD thesis (1905),
and many others (in particular Lusin and his student Suslin), we
define the Borel sets on the Cantor space:

Σ0
1 sets are Open sets

Π0
1 sets are Closed sets

Σ0
n�1 sets are Countable unions of Π0

n
sets

Π0
n�1 sets are Complements of Σ0

n�1 sets
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Effectivize the arithmetical complexity of sets (1)

This has latter been effectivized, following a work of Kleene and
Mostowsky:

Definition (Effectivization of open sets)

A set U is Σ0
1, or effectively open, if there is a code e for a program

enumerating string such that so that U is the union of the cylinders
corresponding to the enumerated strings.

Definition (Effectivization of closed sets)

A set U is Π0
1, or effectively closed, if is the complement of a Σ0

1

set.
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Effectivize the arithmetical complexity of sets (2)

We can then continue inductively:

�
Notation : rWes �

¤
σPWe

rσs

�

Σ0
1 sets are of the form rWes

Π0
1 sets are of the form rWes

c

Σ0
2 sets are of the form

�
nPWe

rWns
c

Π0
2 sets are of the form

�
nPWe

rWns

. . . . . .
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Algorithmic randomness

Section 3

Algorithmic
randomness
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Martin-Löf’s intuition

The first satisfactory definition of randomness for infinite sequences
has been made by Martin-Löf in 1966.

Intuition

A sequence of 2ω should be random if it belongs to no set of measure
0 (using Lebesgue measure, the uniform measure).

Problem

Any sequence X belongs to the set tX u, which is of measure 0.

Solution

We can pick countably many sets of measure 0. The effective
hierarchy provides a range of natural candidates.
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Martin-Löf’s definition

Definition (Martin-Löf randomness)

A sequence is Martin-Löf random if it belongs to no Π0
2 set ‘effec-

tively of measure 0’. A Π0
2 set ‘effectively of measure 0’ is called a

Martin-Löf test.

Definition (Effectively of measure 0)

An intersection
£

An of sets is effectively of measure 0 if λpAnq ¤

2�n.

Fact

One can equivalently require that the function f : n Ñ λpAnq is
bounded by a computable function going to 0.
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Why Martin-Löf’s definition ?

Question

Why don’t we just take Π0
2 sets of measure 0 ? How important is

the ‘effectively of measure 0’ condition ?

Answer(1)

The ‘effectively of measure 0’ condition implies that there is a uni-
versal Martin-Löf test, that is a Martin-Löf test containing all the
others.

Answer(2)

It is not true anymore if we drop the ‘effectively of measure 0’ con-
dition. Instead we get a notion known as weak-2-randomness.
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Algorithmic randomness

We can build a hierachy of randomness notions:

1-random Every Π0
2 sets ‘effectively of measure 0‘

weakly-2-random Every Π0
2 sets of measure 0

2-random Every Π0
3 sets ‘effectively of measure 0‘

weakly-3-random Every Π0
3 sets of measure 0

. . . . . .

We have:

1-random Ð w2-random Ð 2-random Ð w3-random Ð . . .

All implications are strict
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Beyond arithmetic

Section 4

Beyond arithmetic
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Hyperarithmetical complexity of sets

We can extend the definition of Borel sets by induction over the
ordinals:

Σ0
1 sets are Open sets

Π0
1 sets are Closed sets

Σ0
α�1 sets are Countable unions of Π0

α sets

Σ0
sup

n
αn

sets are Countable unions of Π0
β sets for β   supn αn

Π0
α sets are Complements of Σ0

α sets

It is clear that no new sets are define at step ω1, by uncountablity
of ω1. Before that one can prove that the hierarchy is strict.
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Effective Hyperarithmetical complexity of sets

How about the effective version ? The challange is to be able to
effectively ‘unfold’ all the components of a Σ0

α set.

(Notation : The set of index n is denoted by tnu)

Σ0
1 sets are of the form rWes with index x0, ey

Π0
α sets are of the form teuc with index x1, ey

Σ0
α sets are of the form

�
nPWe

tnu where
n is an index for a Π0

β set with
β   α

with index x2, ey

Question : At what ordinal α no new set is added in the hierarchy ?
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Computable ordinals

Definition (Computable ordinals)

An ordinal α is computable if there is a c.e. well-order R � ω � ω
so that |R| � α.

Proposition (Strict initial segment)

The computable ordinals form a strict initial segment of the count-
able ordinals.

Proposition (well-founded trees)

An ordinal is computable iff it is the order-type of a c.e. well-founded
tree (tree with no infinite path).
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Order-type of well-founded trees

Tloooon
|T |�supn |Tn|�1

T2loooon
|T2|�supn |T2n|�1

T21loooon
|T21|�supn |T21n|�1

T211loooon
|T211|�H

T210loooon
|T210|�H

. . .

T20loooon
|T20|�supn |T20n|�1

T201loooon
|T201|�H

T200loooon
|T200|�H

. . .

. . .

T1loooon
|T1|�supn |T1n|�1

T11loooon
|T11|�H

T10loooon
|T10|�H

. . .

T0loooon
|T0|�H

. . .
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Computable ordinals and effective Borel sets (1)

Definition (smallest non-computable ordinal)

The smallest non-computable ordinal is denoted by ωck
1 , where the

ck stands for ‘Church-Kleene’.

It is of historical interest to notice that the Kleene’s recursion
theorem has been ‘cooked up’ to work with codes of computable
ordinals. Indeed, the theorem appear for the first time in 1938, in
the paper called ‘On notation for ordinal numbers’.

Claim

Indices of effective Borel sets are ‘essentially’ codes for computably
enumerable well-founded trees.
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Computable ordinals and effective Borel sets (1)

x2, ey

x1, n2y

n2 � x2, e2y

x1, n21y

.. . .

x1, n20y

.. . .

. . .

x1, n1y

n1 � x2, e1y

x1, n11y

.. . .

x1, n10y

.. . .

. . .

x1, n0y

n0 � x2, e0y

x1, n01y

.. . .

x1, n00y

.. . .

. . .

. . .
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Computable ordinals

It follows that every effective Borel set is Σ0
α for α   ωck

1 . Again
one can prove that the hierarchy is strict before ωck

1 .

Definition (Hyperarithmetical sets)

The effective Borel sets are called hyperarithmetical sets.

Every Σ0
n set for n finite is definable by a first-order formula of

arithmetic. It is not the case anymore with Σ0
ω and beyond. We can

however define them with second order formulas of arithmetic.
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Analytic and co-analytical sets (1)

Definition (Σ1
1 sets)

A subset A � 2ω is Σ1
1 if it can be defined by a formula of arithmetic

whose second order quantifiers are only existential (with no negation
in front of them).

Definition (Π1
1 sets)

A subset A � 2ω is Π1
1 if it can be defined by a formula of arithmetic

whose second order quantifiers are only univeral (with no negation
in front of them).

Definition (∆1
1 sets)

A subset A � 2ω is ∆1
1 if it is both Σ1

1 and Π1
1.
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Analytic and co-analytical sets (2)

Proposition

An effective Borel set is both Σ1
1 and Π1

1.

While this proposition is essentially a tedious but straightforward
induction over the computable ordinals, the converse is less tedious
but much clever. A non-effective version was first prove by Suslin
in 1917 (“Sur une definition des ensembles mesurables B sans nom-
bres transfinis”). Then the effective version was proved much latter
(after the effective concepts were introduced) by Kleene in 1955
(‘Hierarchies of number theoretic predicates’).

Theorem (Suslin, Kleene)

An set is effective Borel iff it is both Σ1
1 and Π1

1.
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Analytic and co-analytical sets (3)

Notation

We denote by W the set of codes for computable ordinals, and
W

X the set of X -codes for X -computable ordinals.
We denote by Wα the set of codes for computable ordinals, coding
for ordinal strictly smaller than α.

Example : we have W �Wωck
1

and W X �W ωX
1

We now have that the set W , play the same role as ∅1, but for Π1
1

predicates

Theorem (Complete Π1
1 set)

A set of integers A is Π1
1 iff there is a computable function f : ω ÞÑ ω

so that n P A iff f pnq PW .
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Analytic and co-analytical sets (4)

A is a set of integer a set of sequences

Π1
1 n P AØ f pnq PW

for some computable
function f

X P AØ e PW X

for some e

∆1
1 n P AØ f pnq PW α

for some computable
function f and some
computable ordinal α

X P AØ e PW X
α

for some e and some
ordinal α



Introduction Complexity of sets Algorithmic randomness Beyond arithmetic Higher randomness Topological differences

Π1
1 sets : Increasing union over the ordinals (1)

Suppose A � ω is Π1
1 with index e and let us denote

Aα � tn : ϕepnq PW αu

Then A is an increasing union of ∆1
1 sets:

A0 . . . Aω
Aω�1

. . . ωck
1
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Π1
1 sets : Increasing union over the ordinals (2)

Suppose A � 2ω is Π1
1 with index e and let us denote

Aα � tX : e PW X
α u

Then A is an increasing union of ∆1
1 sets:

A0 . . . Aω
Aω�1

. . . ω1
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An important example of Π1
1 set of sequences

The set
!

X : ωX
1 ¡ ωck

1

)
is a Π1

1 set :

$&%X :
De PW X @n @f
f is not a bijection between the relation coded by n
and the one coded by e

,.-

Theorem (Sacks)

The set tX : ωX
1 ¡ ωck

1 u is of measure 0.
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Consequences of Sacks theorem

Suppose A � 2ω is Π1
1 with index e, we then have :

A0 . . . Aω
. . .Aωck

1

...ω1

And for α¥ωck
1 we have

ωX
1 ¡ω

ck
1 for X in Aα

And then λpAαq�0
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Higher randomness

Section 5

Higher randomness
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Higher randomness

We can now define higher randomness notions

Definition ∆1
1-random (Martin-Löf)

A sequence is ∆1
1-random if it belongs to no ∆1

1 set of measure 0.

Definition Π1
1-random (Sacks)

A sequence is Π1
1-random if it belongs to no Π1

1 set of measure 0.

What about Σ1
1-randomness ?

Theorem (Sacks)

A sequence is Σ1
1-random iff it is ∆1

1-random
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Π1
1 randomness

Theorem (Keckris, Nies, Hjorth)

There is a universal Π1
1 set of measure 0, that is one containing all

the others.

As the set of tX : ωX
1 ¡ ωck

1 u is a Π1
1 set of measure 0. Therefore

if something is Π1
1-random, then ωX

1 � ωck
1 . We have a very nice

theorem about the converse:

Theorem (Chong, Yu, Nies)

A sequence X is Π1
1-random iff it is ∆1

1-random and ωX
1 � ωck

1 .



Introduction Complexity of sets Algorithmic randomness Beyond arithmetic Higher randomness Topological differences

Another hierarchy (1)

Definition (Π1
1 open set)

A Π1
1 open set is an open set U so that for a Π1

1 set of strings A

we have U �
¤
trσs : σ P Au.

Definition (Index for Π1
1 open set)

For a Π1
1 open set U �

¤
trσs : f pσq PW u with f a computable

function, we say that a code e for f is an index for U , and we write

U � rW
ωck

1
e s.

Definition (Σ1
1 closed set)

A Σ1
1 closed set is the complement of a Π1

1 open set.
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Another hierarchy (2)

We can establish a new hierarchy by taking successive effective union
and effective intersection of Π1

1 open sets and Σ1
1 closed sets.

Σ
ωck

1
1 sets are Π1

1 open sets rW
ωck

1
e s with index e

Π
ωck

1
1 sets are Σ1

1 closed sets rW
ωck

1
e sc with index e

Σ
ωck

1
n�1 sets are

�
mPWe

tmu where each m is an

index for a Π
ωck

1
n

with index e

Π
ωck

1
n�1 sets are

�
mPWe

tmu where each m is an

index for a Σ
ωck

1
n

with index e
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Another hierarchy (3)

Unlike what we have with the other hierarchies, we now have that

a Σ
ωck

1
n is not necessarily Σ

ωck
1

n�1:

Σ
ωck

1
1 Σ

ωck
1

2 Σ
ωck

1
3 Σ

ωck
1

4 . . .

Π
ωck

1
1 Π

ωck
1

2 Π
ωck

1
3 Π

ωck
1

4 . . .

The blue sets are Π1
1 sets

The green sets are Σ1
1 sets
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Other higher randomness notions (1)

We can now define:

Definition Π1
1-MLR (Hjorth, Nies)

A sequence is Π1
1-MLR if it belongs to no Π

ωck
1

2 sets effectively of
measure 0

Definition weakly-Π1
1-random (Nies)

A sequence is strongly-Π1
1-MLR if it belongs to no Π

ωck
1

2 set of mea-
sure 0.
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Other higher randomness notions (2)

We cannot straightforwardly continue to define randomness notions
along the hierarchy, because for example, Π0

3 sets of measure 0 are

Σ1
1 sets (

£
n

¤
m

Fn,m where each Fn,m is Σ1
1 closed), and then fail to

capture even Π1
1-MLR.

And we can however define the notion of being captured by Π
ωck

1
n

sets of measure 0 for n even. But it collapse for n � 4:

Theorem

A sequence is no Π
ωck

1
4 sets of measure 0 iff it is in no Π1

1 sets of

measure 0 iff it is in no Π
ωck

1
n sets of measure 0 for any n.

The question has not been investigated for Π
ωck

1
4 sets effectively of

measure 0.
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Other higher randomness notions (3)

What is known:

∆1
1random Ð Π1

1MLR Ð stronglyΠ1
1MLR Ð

Π1
1random � ‘stronglyΠ

ωck
1

4 MLR 1

All the implications are strict. The proof of separation between

Π
ωck

1
2 random and Π1

1random requires a refinement of the notion of
being ∆0

2 that would not make sense in the lower world.
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Higher ∆0
2 (1)

In the lower case: A ∆0
2 sequence X :

X � lim
sPω

Xs

we have that tXsus¤ω is a closed set, by definition of convergence

In the higher case: A ∆
ωck

1
2 sequence X :

X � lim
sPωck

1

Xs

There is no reason for tXsus¤ωck
1

to be a closed set...
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Higher ∆0
2 (2)

Definition (closed approximation)

A sequence X has a closed approximation if X � lim
sPωck

1

Xs where

each Xs is ∆1
1 uniformly in s and where tXsus¤ωck

1
is a closed set.

Definition (wicked approximation)

A sequence X has a wicked approximation if X � lim
sPωck

1

Xs where

each Xs is ∆1
1 uniformly in s and where for any t   ωck

1 we have
X R tXsus¤t
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Topological differences

Section 6

Topological differences
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The first ∆1
1 continuous reduction

In the bottom world, the following four definitions are equivalent:

1 A ¥T X
.

2 There is a Σ0
1 partial map R : 2 ω Ñ 2 ω, consistent on

prefixes of A, such that
@n Dτ   X Dσ   A |τ | ¥ n ^ xσ, τy P R
.

3 There is a Σ0
1 partial map R : 2 ω Ñ 2 ω, consistent

everywhere, such that
@n Dτ   X Dσ   A |τ | ¥ n ^ xσ, τy P R
.

4 There is a Σ0
1 partial map R : 2 ω Ñ 2 ω, consistent

everywhere and closed under prefixes, such that
@n Dτ   X Dσ   A |τ | ¥ n ^ xσ, τy P R
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The first ∆1
1 continuous reduction

A first attempt to use continuous version of hyperarithmetic re-
ducibility was made by Hjorth and Nies in order to study higher
analogue of Kucera-Gacs and Higher analogue of Base for random-
ness. They defined fin-h reductions, corresponding to the strongest
notion among those defined in the previous slides:

Definition

A fin-h reduction is a Π1
1 partial map R : 2 ω Ñ 2 ω, consistent

everywhere and closed under prefixes, such that
@n Dτ   X Dσ   A |τ | ¥ n ^ xσ, τy P R

We say that A ¥fin�h X if for a fin-h reduction M we have
@n Dτ   X Dσ   A |τ | ¥ n ^ xσ, τy P M.
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A topological difference

The bottom world The higher world

At any time t of the enumera-
tion, the set of strings mapped
so far is a clopen set

At any time α of the enumera-
tion, the set of strings mapped
so far is an open set.

This make the three previous notions different in the higher world.
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The Fishbone

Oracle A
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The Fishbone

Oracle A
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The Fishbone

Oracle A

σ0
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σ1
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The Fishbone

Oracle A

σ0

σ0

σ1

σ1
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Defeating fin-h

Oracle A

.
Basic strategy:
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Defeating fin-h

Oracle A

σ0

.
Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.
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Defeating fin-h

Oracle A

σ0

σ0

.
Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Suppose it matches one
prefix to σ0 as well...
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Defeating fin-h

Oracle A

σ0

σ0

σ1

.
Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Suppose it matches one
prefix to σ0 as well...

Then you win
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Defeating fin-h

Oracle A

σ0

σ

.
Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Otherwise...
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Defeating fin-h

Oracle A

σ0

σ

σ0

.
Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Otherwise...
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Defeating fin-h

Oracle A
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Wait for
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sth. on all the prefixes.

Otherwise...
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Defeating fin-h

Oracle A

σ0

σ

σ0

σ

σ0

.
Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Otherwise...
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Defeating fin-h

This is only one strategy. The problem is that one machine can force
you to pick an entire oracle in order to defeat it. How to continue
the construction and defeat other requirements ?

One solution : The perfect treesh-bone !
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The treesh-bone (1)
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The treesh-bone (2)
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The treesh-bone (3)
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The treesh-bone (4)

.
Put σ0
along all the blue strings

Even if we
are forced to stay along the
red part of the tree, we still
have a prefect tree that we
can continue to work with !

—:NarpT q,
The narrow subtree of T
—:σi pT q, the subtree of
T extending the string σi
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The tree of trees (1)

We can imagine that working in a tree of trees.

T

NarpT q σi pT q...

Narpq σi pq... Narpq σi pq...

Narpq σi pq... Narpq σi pq... Narpq σi pq... Narpq σi pq...

The left node of T correspond to NarpT q

There is infinitely many right node σi pT q
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The tree of trees (2)

We now order the requirement to do a higher finite injury
argument:

T

NarpT q σi pT q...

Narpq σi pq... Narpq σi pq...

Narpq σi pq... Narpq σi pq... Narpq σi pq... Narpq σi pq...

e1

e2

e3
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The Higher Turing reduction

So some consistent map of strings cannot be made equivalent to
some consistent map of strings whose domain is closed by prefixes.

Similarly we can prove that if a map of strings, not consistent
everywhere, sends X to Y , there is not necessarily a consistent
map of strings sending X to Y .

These brings the new definition:

Definition

We say that A¥T B if there is a Π1
1 partial map R : 2 ω Ñ 2 ω,

consistent on prefixes of A, such that
@n Dτ   X Dσ   A |τ | ¥ n ^ xσ, τy P R.
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Oracles for which reductions collapses

For a large class of oracles, in a measure theoretic sense, the three
notions of reductions are the same:

Fact

If ωA
1 � ωck

1 and A¥T X then A ¥fin�h X .
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Thank you
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