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Introduction

The Cantor space

What do we work with ?

Our playground || The Cantor space

Denoted by 2

Topology The one generated by the cylinders [o],
the set of sequences extending o, for ev-
ery string o

An open set I/ is || A union of cylinders




Introduction

Algorithmic randomness (1)

What does it mean for a binary sequence to be random ?I

Intuitively : Is it reasonable to think that ¢, ¢; or ¢3 could have
been obtained by a fair coin tossing ?

¢1:000011000000001000100000100001000101000001000100. . .
¢2:101011000101100110100110001101011100100111001010. ..

c3:001001000011111101101010100010001000010110100011 ...
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Algorithmic randomness (1)

What does it mean for a binary sequence to be random ?I

Intuitively : Is it reasonable to think that ¢, ¢; or ¢3 could have
been obtained by a fair coin tossing ?
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Law of large number : no
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Introduction

Algorithmic randomness (1)

What does it mean for a binary sequence to be random ?I

Intuitively : Is it reasonable to think that ¢, ¢; or ¢3 could have
been obtained by a fair coin tossing ?

¢1:000011000000001000100000100001000101000001000100. ..
Law of large number : no

c2:1010 1100 0101 1001 1010 0110 0011 0101 1100 1001 1100...
pattern repetition : no
¢3:001001000011111101101010100010001000010110100011 . ..

C3 =7 : no
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Algorithmic randomness (2)

Kolmogorov had the idea that our intuition of randomness for finite
strings, corresponds to the incompressibility of finite strings.

Definition (Kolmorogov)

For a given machine M : 2<% — 2= the M-Kolmorogov complexity
Cn(o) of a string o if the size of the smallest program which outputs
o via M.

Proposition/Definition (Kolmorogov)

There is a machine U : 2% — 2=“| universal in the sense that for
any machine M we have Cy(c) < Cp(o) + cm with ¢y a constant
depending on M. The value C(0) = Cy(o) is the Kolmogorov
complexity of the string o, well defined up to a constant.
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Algorithmic randomness (3)

Proposition/Definition (Kolmorogov)

A string o is d-incompressible if C(o) > |o| — d. The smallest d is,
the more random o is.

How to extend this notion of randomness for strings, to infinite
sequences 7 A first idea : A sequence X should be random if there
is some d so that each prefix of X is d-incompressible.

But that fails, as for any d we have:

0100...1010010000010101010...010000101001010

=0 with |o|=d

Then the machine M(7) = |7|”7 can d-compress some prefix of
X, for any d.
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Complexity of sets

Arithmetical complexity of sets

Following a work started by Baire in 1899 (Sur les fonctions de
variables réelles), pursued by Lebesgue in his PhD thesis (1905),
and many others (in particular Lusin and his student Suslin), we
define the Borel sets on the Cantor space:

Z‘l) sets are

Open sets

I'I(l) sets are

Closed sets

Z?HI sets are

Countable unions of I'I?, sets

I'I?,Jr1 sets are

Complements of X0 _; sets




Complexity of sets

Effectivize the arithmetical complexity of sets (1)

This has latter been effectivized, following a work of Kleene and
Mostowsky:

Definition (Effectivization of open sets)

A set U is X9, or effectively open, if there is a code e for a program
enumerating string such that so that I/ is the union of the cylinders
corresponding to the enumerated strings.

Definition (Effectivization of closed sets)

AsetU is Fl(l), or effectively closed, if is the complement of a 2(1)
set.




Complexity of sets

Effectivize the arithmetical complexity of sets (2)

We can then continue inductively: <Notation D [We] = U [a])

Y0 sets are || of the form [W,]

N9 sets are || of the form [W,]¢

79 sets are || of the form [, [Wa]°

I"Ig sets are || of the form ﬂneWe[Wn]
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Algorithmic randomness

Martin-Lof's intuition

The first satisfactory definition of randomness for infinite sequences
has been made by Martin-Lof in 1966.

A sequence of 2* should be random if it belongs to no set of measure
0 (using Lebesgue measure, the uniform measure).

Problem
Any sequence X belongs to the set {X}, which is of measure 0.

We can pick countably many sets of measure 0. The effective
hierarchy provides a range of natural candidates.




Algorithmic randomness

Martin-Lof's definition

Definition (Martin-L6f randomness)

A sequence is Martin-Lof random if it belongs to no I'Ig set ‘effec-
tively of measure 0. A 3 set ‘effectively of measure 0’ is called a
Martin-Lof test.

Definition (Effectively of measure 0)

An intersection ﬂA,, of sets is effectively of measure 0 if A\(A,) <
2°"

One can equivalently require that the function f : n — A(A,) is
bounded by a computable function going to 0.




Algorithmic randomness

Why Martin-Lof's definition 7

Why don't we just take I'Ig sets of measure 0 ? How important is
the ‘effectively of measure 0’ condition ?

The ‘effectively of measure 0" condition implies that there is a uni-
versal Martin-Lof test, that is a Martin-Lof test containing all the
others.

It is not true anymore if we drop the ‘effectively of measure 0’ con-
dition. Instead we get a notion known as weak-2-randomness.




Algorithmic randomness

Algorithmic randomness

We can build a hierachy of randomness notions:

1-random Every M9 sets ‘effectively of measure 0'

weakly-2-random || Every I'Ig sets of measure 0

2-random Every M3 sets ‘effectively of measure 0'

weakly-3-random || Every I'Ig sets of measure 0

We have:
1-random <« w2-random « 2-random <« w3-random <« ...

All implications are strict
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Beyond arithmetic

Hyperarithmetical complexity of sets

We can extend the definition of Borel sets by induction over the

ordinals:
Z(lj sets are Open sets
I'I(l) sets are Closed sets

Zgﬂ sets are

Countable unions of I'Ig sets

Zgup o, Sets are
n

Countable unions of I'I?3 sets for 5 < sup, an,

0
M., sets are

Complements of Zoa sets

It is clear that no new sets are define at step wjy, by uncountablity
of wy. Before that one can prove that the hierarchy is strict.




Beyond arithmetic

Effective Hyperarithmetical complexity of sets

How about the effective version 7 The challange is to be able to
effectively ‘unfold’ all the components of a Zg set.

(Notation : The set of index n is denoted by {n})

nis an index for a ﬂ% set with
b <a

>0 sets are | of the form [W,] with index | (0, e)
MO sets are | of the form {e}¢ with index | (1,e)
Y0 sets are | of the form Unew, {n} where | with index | (2, e)

Question : At what ordinal & no new set is added in the hierarchy ?



Beyond arithmetic

Computable ordinals

Definition (Computable ordinals)

An ordinal « is computable if there is a c.e. well-order R € w X w
so that |R| = a.

Proposition (Strict initial segment)

The computable ordinals form a strict initial segment of the count-
able ordinals.

Proposition (well-founded trees)

An ordinal is computable iff it is the order-type of a c.e. well-founded
tree (tree with no infinite path).




Beyond arithmetic

Order-type of well-founded trees

T

—
| T|=sup, | Tn|+1

To Ty T
N— — —
[Tol=g  [Til=sup,|Ti|+1 | T2|=sup, | T2n|+1
T1o T11 T2o To1
N—r N— N—_— N—_—

[ Tiol= |Tul=& |Ta|=sup,|Toon|+1 | To1|=sup,, | To1n|+1

T200 T2o1 To10 To11
— N— —
| Too0|= |T201|=@ |Tow0|=L& |Tou1|=J



Beyond arithmetic

Computable ordinals and effective Borel sets (1)

Definition (smallest non-computable ordinal)

¢k where the

The smallest non-computable ordinal is denoted by w
ck stands for ‘Church-Kleene'.

It is of historical interest to notice that the Kleene's recursion
theorem has been ‘cooked up’ to work with codes of computable
ordinals. Indeed, the theorem appear for the first time in 1938, in
the paper called ‘On notation for ordinal numbers'.

Indices of effective Borel sets are ‘essentially’ codes for computably
enumerable well-founded trees.




Beyond arithmetic

Computable ordinals and effective Borel sets (1)

no = {2,ep) n ={2,e) np ={2,e)

(L, n00) (L,m01) <1,moy <1,m1y <1,mo) <1,n21)




Beyond arithmetic

Computable ordinals

It follows that every effective Borel set is ¥ for a < w§*.

one can prove that the hierarchy is strict before wfk.

Again

Definition (Hyperarithmetical sets)

The effective Borel sets are called hyperarithmetical sets.

Every Z?, set for n finite is definable by a first-order formula of
arithmetic. It is not the case anymore with Zg and beyond. We can
however define them with second order formulas of arithmetic.



Beyond arithmetic

Analytic and co-analytical sets (1)

Definition (X1 sets)

A subset A € 2% is X1 if it can be defined by a formula of arithmetic
whose second order quantifiers are only existential (with no negation
in front of them).

Definition (M1 sets)

A subset A C 2% is T} if it can be defined by a formula of arithmetic
whose second order quantifiers are only univeral (with no negation
in front of them).

Definition (Al sets)
A subset A € 2 is Al if it is both ¥} and Mi.




Beyond arithmetic

Analytic and co-analytical sets (2)

Proposition

An effective Borel set is both ¥1 and M].

While this proposition is essentially a tedious but straightforward
induction over the computable ordinals, the converse is less tedious
but much clever. A non-effective version was first prove by Suslin
in 1917 (“Sur une definition des ensembles mesurables B sans nom-
bres transfinis”). Then the effective version was proved much latter
(after the effective concepts were introduced) by Kleene in 1955
(‘Hierarchies of number theoretic predicates’).

Theorem (Suslin, Kleene)

An set is effective Borel iff it is both ¥} and Ii.




Beyond arithmetic

Analytic and co-analytical sets (3)

Notation

We denote by W the set of codes for computable ordinals, and
WX the set of X-codes for X-computable ordinals.

We denote by W, the set of codes for computable ordinals, coding
for ordinal strictly smaller than a.

Example : we have W = Wwfl;k and WX = Ww{(

We now have that the set W, play the same role as @’, but for I'Ii
predicates

Theorem (Complete I} set)

A set of integers A is ﬂ% iff there is a computable function f : w — w
so that ne A iff f(n) e W.




Beyond arithmetic

Analytic and co-analytical sets (4)

Ais || a set of integer a set of sequences
Nt | nedo f(n)ew XeAoee WX
for some  computable | for some e

function f
Al || neAdo f(n)ew, XeAdoee WX

for  some
function f and
computable ordinal «

computable

some

for some e and some

ordinal a



Beyond arithmetic

M} sets : Increasing union over the ordinals (1)

Suppose AC w is I'I% with index e and let us denote
Ao =1{n : pe(n) e W,}

Then A is an increasing union of A] sets:




Beyond arithmetic

M} sets : Increasing union over the ordinals (2)

Suppose A € 2% is I'I% with index e and let us denote
Ao ={X : ec WX}

Then A is an increasing union of A} sets:




Beyond arithmetic
An important example of I'I% set of sequences

The set {X D w > wfk} is a M} set :

Jee WX Vn Vf
X : fis not a bijection between the relation coded by n
and the one coded by e

Theorem (Sacks)

The set {X : w > w} is of measure 0.




Beyond arithmetic

Consequences of Sacks theorem

Suppose A < 2% is I'I% with index e, we then have :

w1

And for a}wfk we have

wf<>wfk for X in Ag

And then A\(A,)=0
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Higher randomness

Higher randomness

We can now define higher randomness notions

Definition Ai-random (Martin-L&f)

A sequence is A}—random if it belongs to no A% set of measure 0.

Definition Mi-random (Sacks)

A sequence is M}-random if it belongs to no M} set of measure 0.

What about ¥1-randomness ?

Theorem (Sacks)

A sequence is Y1-random iff it is A}-random




Higher randomness

M} randomness

Theorem (Keckris, Nies, Hjorth)

There is a universal M} set of measure 0, that is one containing all
the others.

As the set of {X : wf’ > w } is a M} set of measure 0. Therefore
if something is Mi-random, then w = wS. We have a very nice

theorem about the converse:

Theorem (Chong, Yu, Nies)

A sequence X is Mi-random iff it is Al-random and w{ = wek.




Higher randomness

Another hierarchy (1)

Definition (M} open set)

A T1} open set is an open set U so that for a I} set of strings A
we have Y = U{[a] . o€ Al

Definition (Index for M} open set)

For a N} open set U = U{[a] : (o) € W} with f a computable
function, we say that a code e for f is an index for I/, and we write

U = (W,

Definition (X1 closed set)

A Y1 closed set is the complement of a M} open set.




Higher randomness

Another hierarchy (2)

We can establish a new hierarchy by taking successive effective union
and effective intersection of N1 open sets and X1 closed sets.

ck ck
3T sets are || M} open sets [We ] with index | e

ck ck
M;T sets are || X closed sets [WeT | with index | e

w§k . -
X Ly setsare || (Unew,{m} whereeach misan | with index | e

. wek
index for a ;!

ner

ni1 Sets are || (), cy. {m} where each misan | with index | e

i ka
index for a ¥ ,!




Higher randomness

Another hierarchy (3)

Unlike what we have with the other hierarchies, we now have that
ck ka
1

W . .
a X,' is not necessarily ¥ 1 ;:

The blue sets are M} sets

The are Y1 sets



Higher randomness

Other higher randomness notions (1)

We can now define;

Definition Mi-MLR (Hjorth, Nies)

ck
A sequence is I'Ii—MLR if it belongs to no I"I;J1 sets effectively of
measure 0

Definition weakly-M}-random (Nies)

ck
A sequence is strongly—l’l%—MLR if it belongs to no ﬂ‘;l set of mea-
sure 0.




Higher randomness

Other higher randomness notions (2)

We cannot straightforwardly continue to define randomness notions
along the hierarchy, because for example, M3 sets of measure 0 are

Y1 sets (ﬂ U Fp.m where each F, ., is X1 closed), and then fail to
n m

capture even Mi-MLR.

ck
And we can however define the notion of being captured by ;!
sets of measure 0 for n even. But it collapse for n = 4:

. sk WEE om0 o
A sequence is no I1;* sets of measure 0 iff it is in no M{ sets of

e el e wsk
measure 0 iff it is in no [1,* sets of measure 0 for any n.

ck
The question has not been investigated for I'Iff1 sets effectively of
measure 0.



Higher randomness

Other higher randomness notions (3)

What is known:

Alrandom «— MIMLR « stronglyMiMLR «
ck
I'I%random = ‘stronglyl'lfl MLR'

All the implications are strict. The proof of separation between

ck
I—I;J1 random and Mirandom requires a refinement of the notion of
being A9 that would not make sense in the lower world.



Higher randomness

In the lower case: A A9 sequence X:

X =lim X

SEwW

we have that {X;}s<, is a closed set, by definition of convergence

ck
In the higher case: A A;}l sequence X:

X = lim X
sewfk

There is no reason for {Xs} o to be a closed set...

S<wW



Higher randomness

Definition (closed approximation)

A sequence X has a closed approximation if X = Iimk Xs where
SEW]

« Is a closed set.

each X, is A} uniformly in s and where {X5}5<w1

Definition (wicked approximation)

A sequence X has a wicked approximation if X = Iimk Xs where
SEWS
each X; is Al uniformly in s and where for any t < wS* we have

X ¢ {Xs}s<e
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Topological differences

The first Al continuous reduction

In the bottom world, the following four definitions are equivalent:

QA>T X

@ There is a X9 partial map R : 2 — 2<%  consistent on
prefixes of A, such that
Vn 31 <X Jo0 <A |1] = nnalo,T)eER

© There is a X9 partial map R : 2 — 2<%  consistent
everywhere, such that
Vn 3t <X Jo <A |1| = nAlo,T)ER

@ There is a X partial map R : 2<% — 2<¥ consistent
everywhere and closed under prefixes, such that
Vn 3t <X Jo <A |1|=nAlo,T)eER



Topological differences

The first Al continuous reduction

A first attempt to use continuous version of hyperarithmetic re-
ducibility was made by Hjorth and Nies in order to study higher
analogue of Kucera-Gacs and Higher analogue of Base for random-
ness. They defined fin-h reductions, corresponding to the strongest
notion among those defined in the previous slides:

Definition

A fin-h reduction is a M} partial map R : 2<% — 2<*, consistent
everywhere and closed under prefixes, such that
Vn 31 <X Jo0 <A |1 = nnalo,T)ER

We say that A >4,_, X if for a fin-h reduction M we have
Vn 3t <X 3o <A || = nnlo,Tye M.




A topological difference.

The bottom world H The higher world

At any time t of the enumera- || At any time « of the enumera-
tion, the set of strings mapped || tion, the set of strings mapped
so far is a clopen set so far is an open set.

This make the three previous notions different in the higher world.



Topological differences

The Fishbone

Oracle A



Topological differences

The Fishbone

Oracle A

- “~ g0
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The Fishbone

Oracle A
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The Fishbone

Oracle A




Topological differences

The Fishbone

Oracle A




Topological differences

Defeating fin-h

Oracle A Basic strategy:



Topological differences

Defeating fin-h

Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Oracle A

- T 00



Topological differences

Defeating fin-h

Oracle A Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Suppose it matches one
prefix to c0 as well...

>~ 00




Topological differences

Defeating fin-h

Oracle A Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Suppose it matches one
prefix to c0 as well...

Then you win




Topological differences

Defeating fin-h

Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Oracle A

Otherwise...
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Defeating fin-h

Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Oracle A

Otherwise...
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Defeating fin-h
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Defeating fin-h

Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Oracle A

Otherwise...
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Defeating fin-h

Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Oracle A o

Otherwise...




Topological differences

Defeating fin-h

Basic strategy:

Wait for
the opponent to decide
sth. on all the prefixes.

Otherwise...




Topological differences

Defeating fin-h

This is only one strategy. The problem is that one machine can force
you to pick an entire oracle in order to defeat it. How to continue
the construction and defeat other requirements ?

One solution : The perfect treesh-bone ! I



Topological differences

The treesh-bone (1)







Topological differences

The treesh-bone (3)




Topological differences

The treesh-bone (4)

Put 00
along all the blue strings

Even if we

are forced to stay along the
red part of the tree, we still
have a prefect tree that we
can continue to work with !

—:Nar(T),

The narrow subtree of T
—:0i(T), the subtree of

T extending the string o;



The tree of trees (1)

We can imagine that working in a tree of trees.

Nar() oi()... Nar() oi()... Nar() oi()

Nar() Nar()

\Ear// \//
\/

@ The left node of T correspond to Nar(T)
@ There is infinitely many right node o;(T)



The tree of trees (2)

We now order the requirement to do a higher finite injury

Narbara// Nar\ 7// Narbarcy//... Nar\ 0/,//
\/ N/

\/

€3

€1




Topological differences

The Higher Turing reduction

So some consistent map of strings cannot be made equivalent to
some consistent map of strings whose domain is closed by prefixes.

Similarly we can prove that if a map of strings, not consistent
everywhere, sends X to Y, there is not necessarily a consistent
map of strings sending X to Y.

These brings the new definition:

Definition

We say that A>7B if there is a M1 partial map R : 2<% — 2<%,
consistent on prefixes of A, such that
Vnir <X do <A || =ZnAlo,T)eR.




Topological differences

Oracles for which reductions collapses

For a large class of oracles, in a measure theoretic sense, the three
notions of reductions are the same:

If w = wSk and A=7X then A >g,_p X.




Topological differences

Thank youI



	Introduction
	Complexity of sets
	Algorithmic randomness
	Beyond arithmetic
	Higher randomness
	Topological differences

