Higher randomness and forcing with closed sets

Benoit Monin - LIAFA - University of Paris VII

STACS - 07 March 2014

Overview

The goal of this work is to get a better understanding of two notions of randomness :

- 1/ The first one is called weakly-Π¹₁-randomness (Notion introduced by Nies, in 'Computability and randomness', 2009)
- 2/ The second one is called Π_1^1 -randomness (Notion introduced by Sacks, in 'Higher recursion theory', 1990)
- The goal : Show that 2/ is stronger than 1/
 - How : Yu and Chong proposed to show that the two notions have different Borel complexity.

We showed that this is not possible, as both sets are Σ_3^0 .

Complexity of sets

Higher randomness/genericity

Complexity of sets

Section 1

Complexity of sets

The Cantor space

What do we work with?

Our playground	The Cantor space
Denoted by	2^{ω}
Topology	The one generated by the cylinders $[\sigma]$, the set of sequences exntended σ , for every string σ
An open set \mathcal{U} is	A union of cylinders

Higher randomness/genericity

Arithmetical complexity of sets

The Borel sets on the Cantor space

Σ_1^0 sets are	Open sets	
${\sf \Pi}_1^0$ sets are	Closed sets	
$\mathbf{\Sigma}_{n+1}^{0}$ sets are	Countable unions of Π^0_n sets	
Π^0_{n+1} sets are	Complements of $\mathbf{\Sigma}_{n+1}^{0}$ sets	

What about a union of Π_n^0 sets for *n* unbounded in ω ?

Arithmetical complexity of sets

We define Borel sets by induction over the ordinals

Σ_1^0 sets are	Open sets	
${\sf \Pi}^0_1$ sets are	Closed sets	
$\mathbf{\Sigma}_{lpha+1}^{0}$ sets are	Countable unions of Π^0_{lpha} sets	
Π^{0}_{lpha+1} sets are	Complements of $\mathbf{\Sigma}_{lpha+1}^{0}$ sets	
$\Sigma^0_{\sup_n \alpha_n}$ sets are	Countable unions of Π^{0}_{β} sets for $\beta < \sup_{n} \alpha_{n}$	

Effectivize the arithmetical complexity of sets

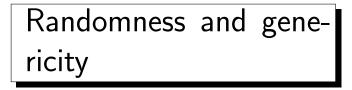
Notation :
$$[W_e] = \bigcup_{\sigma \in W_e} [\sigma]$$

Σ_1^0 sets are	of the form $[W_e]$
Π_1^0 sets are	of the form $[W_e]^c$
Σ_2^0 sets are	of the form $\bigcup_{n \in W_e} [W_n]^c$
Π_2^0 sets are	of the form $\bigcap_{n \in W_e} [W_n]$

Effectivize Σ^0_{α} for α not 'too big' is also doable.

Higher randomness/genericity

Randomness and genericity



Algorithmic randomness

The general idea of randomness :

- Fix a countable class of sets of measure 1
- Say that something is random if it belongs to all of them

1-random	every Σ_2^0 sets 'effectively of measure 1'
weakly-2-random	every Σ_2^0 sets of measure 1
2-random	every Σ_3^0 sets 'effectively of measure 1'

Algorithmic randomness

Effectively of measure 1 sets

A union of set $\bigcup A_n$ is said to be effectively of measure 1 if there is a computable function $f : \omega \mapsto [0,1]$ going to 1, such that $\lambda(A_n) > f(n)$.

We have :

1-random \leftarrow w2-random \leftarrow 2-random \leftarrow w3-random \leftarrow ...

All implications are strict

The general idea of genericity :

- $\textcircled{0} \quad \mathsf{Fix a countable class of dense open sets of } 2^{\omega}$
- Say that something is generic if it belongs to all of them

weakly-1-generic	every dense Σ_1^0 set
1-generic	every set $\mathcal{U} \cup (\widehat{2^\omega - \mathcal{U}})$ for \mathcal{U} a Σ^0_1 set
weakly-2-generic	every dense $\Sigma^0_1(\emptyset')$ set

weakly-1-generic \leftarrow 1-generic \leftarrow weakly-2-generic \leftarrow 2-generic \leftarrow ...

All implications are strict

Another type of genericity : Π_1^0 -Genericity

We consider genericity for the **topology generated by** Π_1^0 sets

Dense open sets

An open set is a countable union of Π_1^0 set. It is **dense** if it intersects any non empty Π_1^0 sets.

weakly- Π_1^0 -generic	every dense Σ_2^0 set
Π_1^0 -generic	every set of the form $\mathcal{F}\cup(2^{\stackrel{\circ}{\omega}}-\mathcal{U})$ for \mathcal{F} a Σ_2^0 set

Mix genericity and randomness : Π_1^0 -Solovay-Genericity

We still consider genericity for the **topology generated by** Π_1^0 sets

Open sets

An open set is now 'dense' if it intersects with positive measure any Π^0_1 sets of positive measure.

weakly- Π_1^0 -Solovay-generic	every 'dense' Σ_2^0 set
Π_1^0 -Solovay-generic	every Σ_2^0 set \mathcal{F} together with all Π_1^0 sets of positive measure, included in $2^{\omega} - \mathcal{F}$.

Results on Π_1^0 -Solovay-Genericity

Definition

A sequence X is **computably dominated** if any functions $f: \omega \to \omega$ that X can compute is dominated by a computable function $g: \omega \to \omega$ (that is we have for all n that $f(n) \leq g(n)$).

Theorem

A sequence X is Π_1^0 -generic iff it is computably dominated.

Theorem

A sequence X is Π_1^0 -Solovay generic iff it is computably dominated and weakly-2-random.

Higher randomness/genericity

Beyond arithmetic

Beyond arithmetic

Computable ordinals

Computabe ordinals

An ordinal α is computable if there is a c.e. well-order $R \subseteq \omega \times \omega$ so that $|R| = \alpha$.

W and W_{α}

We denote by W the set of codes for computable ordinals, and we denote by W_{α} the set of codes for computable ordinals strictly smaller than α .

Strict initial segment

The computable ordinals forms a strict initial segment of the countable ordinals.

Analytic and co-analytical sets

Π_1^1 sets

A set of integers/sequence is Π_1^1 if it definable by a formula of arithmetic whose quantifiers over sets are only universal.

Σ^1_1 sets

A set of integers/sequence is Σ_1^1 if it definable by a formula of arithmetic whose quantifiers over sets are only existential.

Δ_1^1 sets

A set of integers/sequence is Δ_1^1 if it both Π_1^1 and Σ_1^1 .

Analytic and co-analytical sets

Theorem

A set of integers A is Π_1^1 iff there is a computable function $f: \omega \mapsto \omega$ so that $n \in A$ iff $f(n) \in W$.

A set of sequences \mathcal{A} is Π_1^1 iff there is a code e so that $X \in A$ iff $e \in \mathbf{W}^X$.

Theorem

A set of integers A is Δ_1^1 iff there is a computable function $f: \omega \mapsto \omega$ and a computable ordinal α so that $n \in A$ iff $f(n) \in W_{\alpha}$.

A set of sequences \mathcal{A} is Δ_1^1 iff there is a code e and a computable ordinal α so that $X \in \mathcal{A}$ iff $e \in \boldsymbol{W}_{\alpha}^X$.

Example of Π_1^1 set of sequence

ω_1^X

We denote by ω_1^X the smallest non-computable-in-X ordinal.

The set
$$\{X : \omega_1^X > \omega_1^{ck}\}$$
 is :

- A Π₁¹ set
- of measure 0
- meager

Complexity of sets

Beyond arithmetic

Higher randomness/genericity

Higher randomness/genericity

Higher randomness & genericity

Another hierarchy

Π^1_1 open sets & Σ^1_1 closed sets

An open set is a Π_1^1 open set if it can be described with a Π_1^1 set of strings. The Σ_1^1 closed sets are complements of Π_1^1 open set.

We can have a 'higher Borel hierarchy' starting from Π^1_1 open sets and Σ^1_1 closed sets :

- A set is $\Pi_2^0(\Pi_1^1)$ is it is a uniform intersection of Π_1^1 open sets.
- $\label{eq:alpha} \textbf{O} \mbox{ A set is } \Sigma^0_2(\Sigma^1_1) \mbox{ is it is a uniform union of } \Sigma^1_1 \mbox{ closed sets.}$
- (a) A set is $\Pi^0_3(\Sigma^1_1)$ is it is a uniform intersection of a uniform union of Σ^1_1 closed sets.
- A set is $\Sigma_3^0(\Pi_1^1)$ is it is a uniform union of a uniform intersection of Π_1^1 open sets.

Higher randomness

Δ_1^1 -random

A sequence is weakly- Δ_1^1 -random if it belongs to no Δ_1^1 nullset

weakly- Π_1^1 -random

A sequence is weakly- Π_1^1 -random if it belongs to no $\Pi_2^0(\Pi_1^1)$ nullset

Π^1_1 -random

A sequence is Π_1^1 -random if it belongs to no Π_1^1 nullset

We have

 $\Delta_1^1\text{-}\mathsf{random} \leftarrow \mathsf{weakly-}\Pi_1^1\text{-}\mathsf{random} \leftarrow \Pi_1^1\text{-}\mathsf{random}.$

Higher randomness

Is Π_1^1 -random different from weakly- Π_1^1 -random?

An approach to solve this question is to show that the set of Π_1^1 -randoms and the set of weakly- Π_1^1 -randoms have different Borel complexity. We showed that is not possible, as both sets are Σ_3^0 .

Higher randomness with genericity

We give an analogue of the notions of Solovay genericity with Π^0_1 sets.

weakly- Σ_1^1 -Solovay-generic

A sequence is weakly- Σ_1^1 -Solovay-generic if it is in every $\Sigma_2^0(\Sigma_1^1)$ sets intersecting with positive measure every Σ_1^1 closed set.

Σ_1^1 -Solovay-generic

A sequence X is Σ_1^1 -Solovay-generic if for every $\Sigma_2^0(\Sigma_1^1)$ sets \mathcal{F} , either X is in it or X belongs to a Σ_1^1 set of positive measure, included in the complement of \mathcal{F} .

Equivalence 1

Fact

The set of weakly- Π_1^1 -randoms is obvisouly Σ_3^0 .

Theorem 1

A sequence is weakly- $\Sigma_1^1\mbox{-}Solovay\mbox{-}generic iff it is weakly-<math display="inline">\Pi_1^1\mbox{-}random.$

- → If X is weakly- Σ_1^1 -Solovay-generic then it is surely in every $\Sigma_2^0(\Sigma_1^1)$ sets of measure 1.
- $\leftarrow \mbox{ If X is not weakly-Σ_1^1-Solovay-generic then it is in a $\Pi_2^0(\Pi_1^1)$ containing no Σ_1^1 closed set of positive measure. But such a $\Pi_2^0(\Pi_1^1)$ is necessarily of measure 0 (Not trivial). }$

Equivalence 2

Theorem 2

A sequence is Σ_1^1 -Solovay-generic iff it is Π_1^1 -random

Theorem Chong, Yu, Nies

A sequence is Π_1^1 -random iff it is Δ_1^1 -random and $\omega_1^X = \omega_1^{ck}$.

Proof Idea of theorem 2 :

- $\leftarrow \mbox{ If X is not Σ_1^1-Solovay-generic then it is in a $\Pi_2^0(\Pi_1^1)$ set \mathcal{G} so that for no Σ_1^1 closed set of positive measure \mathcal{F} we have $X \in \mathcal{F} \subseteq \mathcal{G}$. If $\omega_1^X = \omega_1^{ck}$ we can deduce from this that X is in a Δ_1^1 set of measure 0 (not trivial).}$
- → If X is Σ_1^1 -Solovay-generic then surely X is Δ_1^1 -random. All that need to be proved is that $\omega_1^X = \omega_1^{ck}$. This is the tricky part.

Consequences

Corollary

The set of Π_1^1 -randoms has the same Borel complexity than the weakly- Π_1^1 -randomns : Σ_3^0 . Using a result of Liang Yu, this complexity is strict (it is not Π_3^0).

However, using a another technique, we recently proved that :

Last results

There is some X which is weakly- Π_1^1 -random but not Π_1^1 -random.

