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Higher randomness

Section 1

Introduction



What are Π1
1-sets ?

A good intuitive way to think of ∆1
1 and Π1

1 sets :

Theorem (Hamkins, Lewis)

The ∆1
1 sets of integers are exactly those that can be decided in a

computable ordinal length of time by an infinite time Turing
machine.

An extension of the theorem :

The Π1
1 sets of integer are exactly those one can enumerate in a

computable ordinal length of time by an infinite time Turing
machine.



Motivation

A very rich theory of computable randomness has been
developed during the last twenty years.

A very rich theory of Higher computability has been
developed, lying between computability and effective
descriptive set theory.

Time to mix them !

What part of this theory works in the Higher world ?



The Higher world

Here are the obvious higher analogue in the of usual notions in the
bottom world.

The bottom world The higher world

finite time t computable ordinal time α

computable Ø ∆0
1 ∆1

1

c.e. Ø Σ0
1 Π1

1

A ¥T X Ø X is ∆0
1pAq A ¥h X Ø X is ∆1

1pAq



Forcing continuity

Unlike in the ”bottom” world, where a Turing reduction is coutinuous,
an h-reduction can require infinitely many bits of the input to decide
only finitely many bits of the output. It’s a problem to ”import” results
of the bottom world into the higher world. As an example :

The higher world The bottom world

Any Π1
1 set which is not ∆1

1

can h-compute any Π1
1 set

Any c.e. set which is not com-
putable can Turing compute
any c.e. set ? ? ?

One main reason for this is that Π1
1 sets which are not ∆1

1 increase
ωck
1 , the smallest non-computable ordinal.

One solution : Forcing continuity.



The first ∆1
1 continuous reduction

The first attempt to use continuous version of hyperarithmetic reduci-
bility was made by Hjorth and Nies in order to study higher analogue
of Kucera-Gacs and Higher analogue of Base for randomness.

Definition

A fin-h reduction is a partial Π1
1 map M � 2 ω � 2 ω which is :

Consistent : If τ1 is mapped to σp0 and τ2 is mapped to σp1
then we must have τ1 K τ2

Closed under prefixes : If τ is mapped to something, any
prefix of τ should be mapped to something.

We say that A ¥fin�h X if for a fin-h reduction M we have
@n Dτ   X Dσ   A |τ | ¥ n ^ xσ, τy P M.



What happened ?

What are the properties of fin-h reductions ? We have three things
to say which will each initiate three different parts of the talk :

One good news
.

One bad news
.

One surprise
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The good news !

The Higher Kucera-Gacs works with continuous reduction. Great !
Of course it also works with hyperarithmetic reduction... But the
computation can even be made effectively continuous.

This comes next to a theorem of Martin and Friedman, saying
that an uncountable closed Σ1

1 class contains members above any
hyperarithmetical degree. So Higher Kucera-Gacs says that if the
class have positive measure, then the computation can be made
continuous.



The bad news

Base for randomness does not work as expected. The higher
version of this notion is equivalent to ∆1

1. The reason is that :

Continous Turing reduction is used to compute the oracle
but

Full power of the oracle is used for relativization.

We need to investigate what could be a ”continuous way” to use
the oracle.



The surprise

The reduction itself defined by Hjorth and Nies seems perfectible.

Sometimes...

Sometimes everything works exactly the same way in the bottom
world and in the Higher world.

But...

But there are also things which work differently and it took us time
to identify all the traps in which not to fall !
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Higher continuous
reductions



The first ∆1
1 continuous reduction

In the bottom world, the following four definitions are equivalent :

1 A ¥T X
.

2 There is a Σ0
1 partial map R : 2 ω Ñ 2 ω, consistent on

prefixes of A, such that
@n Dτ   X Dσ   A |τ | ¥ n ^ xσ, τy P R
.

3 There is a Σ0
1 partial map R : 2 ω Ñ 2 ω, consistent

everywhere, such that
@n Dτ   X Dσ   A |τ | ¥ n ^ xσ, τy P R
.

4 There is a Σ0
1 partial map R : 2 ω Ñ 2 ω, consistent

everywhere and closed under prefixes, such that
@n Dτ   X Dσ   A |τ | ¥ n ^ xσ, τy P R



The reduction fin-h defined at first By Hjorth and Nies is exactly
this last definition when we replace Σ0

1 by Π1
1.

A topological difference

The bottom world The higher world

At any time t of the enumera-
tion, the set of strings mapped
so far is a clopen set

At any time α of the enumera-
tion, the set of strings mapped
so far is an open set.

This make the three previous notions different in the higher world.
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Defeating fin-h

This is only one strategy. The problem is that one machine can force
you to pick an entire oracle in order to defeat it. How to continue
the construction and defeat other requirements ?

One solution : The perfect treesh-bone !



The treesh-bone (1)



The treesh-bone (2)



The treesh-bone (3)



The treesh-bone (4)

.
Put σ0
along all the blue strings

Even if we
are forced to stay along the
red part of the tree, we still
have a prefect tree that we
can continue to work with !

— :NarpT q,
The narrow subtree of T
— :σi pT q, the subtree of
T extending the string σi



The tree of trees (1)

We can imagine that working in a tree of trees.

T

NarpT q σi pT q...

Narpq σi pq... Narpq σi pq...

Narpq σi pq... Narpq σi pq... Narpq σi pq... Narpq σi pq...

The left node of T correspond to NarpT q

There is infinitely many right node σi pT q



The tree of trees (2)

We now order the requirement to do a higher finite injury
argument :

T

NarpT q σi pT q...

Narpq σi pq... Narpq σi pq...

Narpq σi pq... Narpq σi pq... Narpq σi pq... Narpq σi pq...

e1

e2

e3



The Higher Turing reduction

So some consistent map of strings cannot be made equivalent to
some consistent map of strings whose domain is closed by prefixes.

Similarly we can prove that if a map of strings, not consistent
everywhere, sends X to Y , there is not necessarily a consistent
map of strings sending X to Y .

These brings the new definition :

Definition

We say that A¥T B if there is a Π1
1 partial map R : 2 ω Ñ 2 ω,

consistent on prefixes of A, such that
@n Dτ   X Dσ   A |τ | ¥ n ^ xσ, τy P R.



Oracles for which reductions collapses

For a large class of oracles, in a measure theoretic sense, the three
notions of reductions are the same :

Fact

If ωA
1 � ωck

1 and A¥T X then A ¥fin�h X .
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Higher continuous
relativization



Relative randomness

As for Turing reduction, the most immediate way to think the
higher analogue of Martin-Löf random relatively to some oracle A
is to use the full power of A :

The bottom world The higher world

The class Un is Σ0
1pAq The class Un is Π1

1pAq

But this is giving too much power to A.



Relative randomness

We introduce continuous relativization :

Definition

A A-Π1
1 Martin-Löf test is a subset M of 2 ω � 2 ω � ω such that

for evey n the open set trτ s | Dσ   A pσ, τ, nq P Mu has measure
smaller than 2�n.

Again, this notion is inspired by some equivalences that we can
find in the bottom world.



Uniform Test

In the bottom world, we have a trimming lemma :

Definition

We can uniformily transform a Σ0
1 subset M of 2 ω � 2 ω into

another set M̃ such that

@X the open set trτ s | Dσ   X pσ, τ, nq P M̃u has measure
smaller than 2�n

@X if the open set trτ s | Dσ   X pσ, τ, nq P Mu has already
measure smaller than 2�n then it remains unchanged in M̃.

This leads to the fact that there is a universal Martin-Löf Test,
uniformly in every oracle.



No Universal Uniform Martin-Löf Test

But for the same reason as with the Turing reduction, the triming
lemma does not seems to work. In fact we will now prove the
following theorem :

Theorem (BGM)

There exists an oracle A such that for any ”oracle open set” Ue , if
@X UX

e � 2ω then there exists Ye such that

Ye R UA
e

A¥T Ye

Corrolary (BGM)

For some oracle A, there is no A-universal uniform Martin-Löf test.
(Since we cannot even get the first component of the test right...)



No Universal Uniform Martin-Löf Test

At level h � xei , niy of the tree of trees we ensure that if UA
e � 2ω

then the n first bits of Yi does not belongs to UA
e .

T

NarpT q σi pT q...

Narpq σi pq... Narpq σi pq...

Narpq σi pq... Narpq σi pq... Narpq σi pq... Narpq σi pq...

xe1, n1y

xe2, n2y

xe3, n3y

Also at level h � xei , niy we continue the enumeration of the
reduction of Xe to A so that A computes the n first bits of Xe .



No Universal Martin-Löf Test

But we also have a stronger result :

Theorem (BGM)

There exists an oracle A such that for any ”oracle open set” Ue , if
UA

e � 2ω then there exists Ye such that

Ye R UA
e

Ye is not A-MLR (Ye belongs to another A-test
�

n V A
e,n)

Corollary (BGM)

For some oracle A, there is no A-universal Martin-Löf test.



However...

One might be disappointed by a notion of relativization which does
not work. However a universal test still exists for a large class of
oracles :

Theorem (BGM)

If A is higher MLR or higher 1-generic then there is a A-universal
Martin-Löf test (but not necessarily uniform)

Theorem (BGM)

If A is higher-tt below Klenee’s O then there is a A-universal
uniform Martin-Löf test



Thank you. Questions ?


