◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Von Neumann's biased coin revisited

Benoit Monin - LIAFA - University of Paris VII

Join work with Laurent Bienvenu - CNRS & University of Paris VII

29 June 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Von Neumann's coin trick

Von Neumann's coin trick

- 日本 - 1 日本 - 日本 - 日本

Von Neumann's coin trick

I want to play Head or Tail

Suppose that you want to play a fair game of "head or tail", but all you have at your disposal is a biased coin, and you don't know the bias.

how to achieve this?

An easy but nice solution is to group the bits two by two, then you replace 01 by 0, replace 10 by 1 and you discard blocks 00 and 11.

Von Neumann's coin trick

I want to play Head or Tail

Suppose that you want to play a fair game of "head or tail", but all you have at your disposal is a biased coin, and you don't know the bias.

How to achieve this?

An easy but nice solution is to group the bits two by two, then you replace 01 by 0, replace 10 by 1 and you discard blocks 00 and 11.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Von Neumann's coin trick example

Example

The biased coin : P(head) = p and P(tail) = 1 - p

Von Neumann's coin trick example

Example

The biased coin : P(head) = p and P(tail) = 1 - pThe first results : 110111100101101101111100

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Von Neumann's coin trick example

Example

The biased coin : P(head) = p and P(tail) = 1 - pThe first results : 110111100101101101111100 The trick :

 $\underbrace{11}_{p^{2}} \underbrace{01}_{p(1-p)} \underbrace{11}_{p^{2}} \underbrace{10}_{p(1-p)} \underbrace{01}_{p(1-p)} \underbrace{01}_{p(1-p)} \underbrace{10}_{p(1-p)} \underbrace{11}_{p^{2}} \underbrace{01}_{p(1-p)} \underbrace{11}_{p^{2}} \underbrace{11}_{p$

Von Neumann's coin trick example

Example

The biased coin : P(head) = p and P(tail) = 1 - pThe first results : 110111100101101101111100 The trick :

 $\underbrace{11}_{p^2} \underbrace{01}_{p(1-p)} \underbrace{11}_{p^2} \underbrace{10}_{p(1-p)} \underbrace{01}_{p(1-p)} \underbrace{01}_{p(1-p)} \underbrace{10}_{p(1-p)} \underbrace{11}_{p(1-p)} \underbrace{01}_{p^2} \underbrace{11}_{p^2} \underbrace{01}_{p^2} \underbrace{11}_{p^2} \underbrace{11}_{p^2} \underbrace{00}_{p^2} \underbrace{1-p}_{p^2} \underbrace{1-p}_{p^2}$

The fair coin tossing : 010010

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Von Neumann's coin trick example

- We have a computable extraction procedure.
- It works even if the measure is not computable.
- It is uniform for all Bernoulli measures (except trivial ones) and all of their random elements.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Von Neumann's coin trick example

- We have a computable extraction procedure.
- It works even if the measure is not computable.
- It is uniform for all Bernoulli measures (except trivial ones) and all of their random elements.

Von Neumann's coin trick example

- We have a computable extraction procedure.
- It works even if the measure is not computable.
- It is uniform for all Bernoulli measures (except trivial ones) and all of their random elements.

Von Neumann's coin trick example

- We have a computable extraction procedure.
- It works even if the measure is not computable.
- It is uniform for all Bernoulli measures (except trivial ones) and all of their random elements.

A more general framework

- We have access to a random sequence for a given measure μ which we do not know.
- However, we do know that μ belongs to some particular class ${\cal C}.$
- Based on this information we are able to build a computable procedure which works for all µ ∈ C.

A more general framework

- We have access to a random sequence for a given measure μ which we do not know.
- However, we do know that μ belongs to some particular class C.
- Based on this information we are able to build a computable procedure which works for all µ ∈ C.

A more general framework

- We have access to a random sequence for a given measure μ which we do not know.
- However, we do know that μ belongs to some particular class ${\cal C}.$
- Based on this information we are able to build a computable procedure which works for all µ ∈ C.

A more general framework

- We have access to a random sequence for a given measure μ which we do not know.
- However, we do know that μ belongs to some particular class ${\cal C}.$
- Based on this information we are able to build a computable procedure which works for all µ ∈ C.

A more general framework

On a more abstract level, the situation is the following :

- We have access to a random sequence for a given measure μ which we do not know.
- However, we do know that μ belongs to some particular class ${\cal C}.$
- Based on this information we are able to build a computable procedure which works for all µ ∈ C.

For which other class C can such an extraction procedure be built?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Algorithmic randomness

Section 2

Algorithmic randomness

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algorithmic randomness

Algorithmic randomness :

What does it mean for a string to be random?

Are

or

random ?

Algorithmic randomness

Algorithmic randomness :

What does it mean for a string to be random?

Intuition

A sequence of 2^{ω} should be random if it belongs to the smallest set of measure 1.

Definition (Martin-Löf)

A sequence of 2^{ω} is **Martin-Löf random** if it belongs to the smallest Σ_2^0 set, effectively of measure 1.

Algorithmic randomness

Algorithmic randomness :

What does it mean for a string to be random?

Intuition

A sequence of 2^{ω} should be random if it belongs to the smallest set of measure 1.

Definition (Martin-Löf)

A sequence of 2^{ω} is **Martin-Löf random** if it belongs to the smallest Σ_2^0 set, effectively of measure 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Algorithmic randomness

Definition (Martin-Löf test)

A Π_2^0 subset of 2^{ω} is a Martin-Löf test if it is effectively of measure 0, which means that the *n*-th open set of the intersection should be of measure less than 2^{-n} .

Definition (Martin-Löf test)

There is a largest Martin-Löf test. A sequence is not Martin-Löf random if it belongs to the largest Martin-Löf test.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Algorithmic randomness

Definition (Martin-Löf test)

A Π_2^0 subset of 2^{ω} is a Martin-Löf test if it is effectively of measure 0, which means that the *n*-th open set of the intersection should be of measure less than 2^{-n} .

Definition (Martin-Löf test)

There is a largest Martin-Löf test. A sequence is not Martin-Löf random if it belongs to the largest Martin-Löf test.

Algorithmic randomness : Martin-Löf test example

Illustration of a test :

Measure	f (., 1)	f (., 2)	f (., 3)	f (., 4)	
$\lambda(f(1,\mathbb{N}))\leqslant rac{1}{2}$	$\sigma_{1,1}$	$\sigma_{1,2}$	$\sigma_{1,3}$	$\sigma_{1,4}$	
$\lambda(f(2,\mathbb{N})) \leqslant \frac{1}{4}$	$\sigma_{2,1}$	$\sigma_{2,2}$	$\sigma_{2,3}$	$\sigma_{2,4}$	
$\lambda(f(3,\mathbb{N})) \leqslant \frac{1}{8}$	$\sigma_{3,1}$	$\sigma_{3,2}$	$\sigma_{3,3}$	$\sigma_{3,4}$	
$\lambda(f(4,\mathbb{N})) \leqslant \frac{1}{16}$	$\sigma_{4,1}$	$\sigma_{4,2}$	$\sigma_{4,3}$	$\sigma_{4,4}$	

Universal test :

Measure	Test 1	Test 2	Test 3	Test 4	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{1,i}^n \right) \leqslant \frac{1}{2}$	$(\sigma_{1,i}^1)_{i\in\mathbb{N}}$	$(\sigma_{1,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{1,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{1,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{2,i}^n \right) \leqslant \frac{1}{4}$	$(\sigma^{1}_{2,i})_{i\in\mathbb{N}}$	$(\sigma_{2,i}^2)_{i\in\mathbb{N}}$	$(\sigma^3_{2,i})_{i\in\mathbb{N}}$	$(\sigma_{2,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{3,i}^n\right) \leq \frac{1}{8}$	$(\sigma_{3,i}^1)_{i\in\mathbb{N}}$	$(\sigma_{3,i}^2)_{i\in\mathbb{N}}$	$(\sigma^3_{3,i})_{i\in\mathbb{N}}$	$(\sigma_{3,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{4,i}^n\right) \leqslant \frac{1}{16}$	$(\sigma_{4,i}^1)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^4)_{i\in\mathbb{N}}$	
			•••		

Universal test :

			Test 3		
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{1,i}^n \right) \leqslant \frac{1}{2}$	$(\sigma^1_{1,i})_{i\in\mathbb{N}}$	$(\sigma_{1,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{1,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{1,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{2,i}^n \right) \leqslant \frac{1}{4}$					
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{3,i}^n\right) \leq \frac{1}{8}$	$(\sigma_{3,i}^1)_{i\in\mathbb{N}}$	$(\sigma_{3,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{3,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{3,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{4,i}^n\right) \leqslant \frac{1}{16}$	$(\sigma_{4,i}^1)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^4)_{i\in\mathbb{N}}$	

Universal test :

			Test 3		
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{1,i}^n \right) \leqslant \frac{1}{2}$	$(\sigma^1_{1,i})_{i\in\mathbb{N}}$	$(\sigma_{1,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{1,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{1,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{2,i}^n \right) \leqslant \frac{1}{4}$					
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{3,i}^n\right) \leq \frac{1}{8}$	$(\sigma_{3,i}^1)_{i\in\mathbb{N}}$	$(\sigma_{3,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{3,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{3,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{4,i}^n \right) \leqslant \frac{1}{16}$	$(\sigma_{4,i}^1)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^4)_{i\in\mathbb{N}}$	
			•••		

Universal test :

			Test 3		
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{1,i}^n \right) \leqslant \frac{1}{2}$	$(\sigma^1_{1,i})_{i\in\mathbb{N}}$	$(\sigma_{1,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{1,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{1,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{2,i}^n \right) \leqslant \frac{1}{4}$	$(\sigma_{2,i}^1)_{i\in\mathbb{N}}$	$(\sigma_{2,i}^2)_{i\in\mathbb{N}}$	$(\sigma^3_{2,i})_{i\in\mathbb{N}}$	$(\sigma_{2,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{3,i}^n \right) \leq \frac{1}{8}$	$(\sigma_{3,i}^1)_{i\in\mathbb{N}}$	$(\sigma_{3,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{3,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{3,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{4,i}^n \right) \leqslant \frac{1}{16}$	$(\sigma_{4,i}^1)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^4)_{i\in\mathbb{N}}$	

Universal test :

	Test 1			Test 4	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{1,i}^n\right) \leqslant \frac{1}{2}$	$(\sigma^1_{1,i})_{i\in\mathbb{N}}$	$(\sigma_{1,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{1,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{1,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{2,i}^n \right) \leqslant \frac{1}{4}$	$(\sigma_{2,i}^1)_{i\in\mathbb{N}}$	$(\sigma^2_{2,i})_{i\in\mathbb{N}}$	$(\sigma^3_{2,i})_{i\in\mathbb{N}}$	$(\sigma_{2,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{3,i}^n\right) \leqslant \frac{1}{8}$	$(\sigma_{3,i}^1)_{i\in\mathbb{N}}$	$(\sigma_{3,i}^2)_{i\in\mathbb{N}}$	$(\sigma^3_{3,i})_{i\in\mathbb{N}}$	$(\sigma_{3,i}^4)_{i\in\mathbb{N}}$	
$\forall n \ \lambda \left(\bigcup_{i \in \mathbb{N}} \sigma_{4,i}^n \right) \leqslant \frac{1}{16}$	$(\sigma_{4,i}^1)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^2)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^3)_{i\in\mathbb{N}}$	$(\sigma_{4,i}^4)_{i\in\mathbb{N}}$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Algorithmic randomness : Integrable test

Switch to analysis

To test the randomness of sequences, we can equivalently use a more analytical notion.

ntuition

We can define $\mathbf{t} : 2^{\omega} \to \overline{\mathbb{R}^+}$ to be on a string x: The smallest *n* such that x does not belong to the *n*-th open set of the universal test.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Algorithmic randomness : Integrable test

Switch to analysis

To test the randomness of sequences, we can equivalently use a more analytical notion.

Intuition

We can define $\mathbf{t} : 2^{\omega} \to \mathbb{R}^+$ to be on a string x: The smallest n such that x does not belong to the *n*-th open set of the universal test.

Algorithmic randomness : Integrable test

Illustration $\mathbf{t}(x) = 4$:

Num	1	2	3	4	5	6	7	8	
1	$\sigma_{1,1}$	$\sigma_{1,2}$	$\sigma_{1,3}$	$\sigma_{1,4}$	$\sigma_{1,5}$	$\sigma_{1,6}$	$\sigma_{1,7}$	$\sigma_{1,8}$	
2	$\sigma_{2,1}$	σ _{2,2}	$\sigma_{2,3}$	σ _{2,4}	$\sigma_{2,5}$	$\sigma_{2,6}$	$\sigma_{2,7}$	σ _{2,8}	
3	$\sigma_{3,1}$	$\sigma_{3,2}$	$\sigma_{3,3}$	$\sigma_{3,4}$	$\sigma_{3,5}$	$\sigma_{3,6}$	$\sigma_{3,7}$	$\sigma_{3,8}$	
4	$\sigma_{4,1}$	$\sigma_{4,2}$	$\sigma_{4,3}$	$\sigma_{4,4}$	$\sigma_{4,5}$	$\sigma_{4,6}$	$\sigma_{4,7}$	$\sigma_{4,8}$	

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Algorithmic randomness : Integrable test

Illustration $\mathbf{t}(x) = 4$:

Num	1	2	3	4	5	6	7	8	
1	$\sigma_{1,1}$	$\sigma_{1,2}$	$\sigma_{1,3}$	$\sigma_{1,4}$	$\sigma_{1,5}$	$\sigma_{1,6}$	$\sigma_{1,7}$	$\sigma_{1,8}$	
2	$\sigma_{2,1}$	σ _{2,2}	$\sigma_{2,3}$	σ _{2,4}	$\sigma_{2,5}$	$\sigma_{2,6}$	σ _{2,7}	σ _{2,8}	
3	$\sigma_{3,1}$	$\sigma_{3,2}$	$\sigma_{3,3}$	$\sigma_{3,4}$	$\sigma_{3,5}$	$\sigma_{3,6}$	$\sigma_{3,7}$	$\sigma_{3,8}$	
4	$\sigma_{4,1}$	$\sigma_{4,2}$	$\sigma_{4,3}$	$\sigma_{4,4}$	$\sigma_{4,5}$	$\sigma_{4,6}$	$\sigma_{4,7}$	$\sigma_{4,8}$	

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Algorithmic randomness : Integrable test

Illustration $\mathbf{t}(x) = 4$:

Num	1	2	3	4	5	6	7	8	
1	$\sigma_{1,1}$	$\sigma_{1,2}$	$\sigma_{1,3}$	$\sigma_{1,4}$	$\sigma_{1,5}$	$\sigma_{1,6}$	$\sigma_{1,7}$	$\sigma_{1,8}$	
2	$\sigma_{2,1}$	σ _{2,2}	$\sigma_{2,3}$	σ _{2,4}	$\sigma_{2,5}$	$\sigma_{2,6}$	σ _{2,7}	σ _{2,8}	
3	$\sigma_{3,1}$	σ _{3,2}	$\sigma_{3,3}$	$\sigma_{3,4}$	$\sigma_{3,5}$	$\sigma_{3,6}$	σ _{3,7}	$\sigma_{3,8}$	
4	$\sigma_{4,1}$	$\sigma_{4,2}$	$\sigma_{4,3}$	$\sigma_{4,4}$	$\sigma_{4,5}$	$\sigma_{4,6}$	$\sigma_{4,7}$	$\sigma_{4,8}$	

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Algorithmic randomness : Integrable test

Illustration $\mathbf{t}(x) = 4$:

Num	1	2	3	4	5	6	7	8	
1	$\sigma_{1,1}$	$\sigma_{1,2}$	$\sigma_{1,3}$	$\sigma_{1,4}$	$\sigma_{1,5}$	$\sigma_{1,6}$	$\sigma_{1,7}$	$\sigma_{1,8}$	
2	$\sigma_{2,1}$	σ _{2,2}	$\sigma_{2,3}$	σ _{2,4}	$\sigma_{2,5}$	$\sigma_{2,6}$	σ _{2,7}	$\sigma_{2,8}$	
3	$\sigma_{3,1}$	$\sigma_{3,2}$	$\sigma_{3,3}$	$\sigma_{3,4}$	$\sigma_{3,5}$	$\sigma_{3,6}$	σ _{3,7}	$\sigma_{3,8}$	
4	$\sigma_{4,1}$	$\sigma_{4,2}$	$\sigma_{4,3}$	$\sigma_{4,4}$	$\sigma_{4,5}$	$\sigma_{4,6}$	$\sigma_{4,7}$	$\sigma_{4,8}$	

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Properties of \mathbf{t}

We have that :

- **t** is computabily approximable from below, uniformily in x (**t** is lower semi-computable).
- $\int \mathbf{t}(x) dx$ is finite (as the $\sum_{n} (n+1)2^{-n}$ is finite).

Definition (integrable test)

Such a function is called an **integrable test**. There is a universal integrable test.

Randomness

We have that x is random iff $\mathbf{t}(x)$ is finite for all integrable tests iff $\mathbf{t}(x)$ is finite for the universal integrable test.

Properties of t

We have that :

- **t** is computabily approximable from below, uniformily in x (**t** is lower semi-computable).
- $\int \mathbf{t}(x) dx$ is finite (as the $\sum_{n} (n+1)2^{-n}$ is finite).

Definition (integrable test)

Such a function is called an **integrable test**. There is a universal integrable test.

Randomness

Properties of **t**

We have that :

- **t** is computabily approximable from below, uniformily in x (**t** is lower semi-computable).
- $\int \mathbf{t}(x) dx$ is finite (as the $\sum_{n} (n+1)2^{-n}$ is finite).

Definition (integrable test)

Such a function is called an **integrable test**. There is a universal integrable test.

Randomness

Properties of **t**

We have that :

- **t** is computabily approximable from below, uniformily in x (**t** is lower semi-computable).
- $\int \mathbf{t}(x) dx$ is finite (as the $\sum_{n} (n+1)2^{-n}$ is finite).

Definition (integrable test)

Such a function is called an **integrable test**. There is a universal integrable test.

Randomness

Properties of **t**

We have that :

- **t** is computabily approximable from below, uniformily in x (**t** is lower semi-computable).
- $\int \mathbf{t}(x) dx$ is finite (as the $\sum_{n} (n+1)2^{-n}$ is finite).

Definition (integrable test)

Such a function is called an **integrable test**. There is a universal integrable test.

Randomness

The space of probability measures on 2^{ω} will be denoted by $\mathcal{M}(2^{\omega})$.

Question

What if we want to define random sequences obtained by flipping a biased coin? The definition generalizes itself pretty well as long as the measure is computable.

Definition (Martin-Löf randomness for computable measure)

Let μ be a computable measure. A sequence of 2^{ω} is **Martin-Löf** random for the measure μ if it belongs to the smallest Σ_2^0 set, effectively of μ measure 1.

The space of probability measures on 2^{ω} will be denoted by $\mathcal{M}(2^{\omega})$.

Question

What if we want to define random sequences obtained by flipping a biased coin? The definition generalizes itself pretty well as long as the measure is computable.

Definition (Martin-Löf randomness for computable measure)

Let μ be a computable measure. A sequence of 2^{ω} is **Martin-Löf** random for the measure μ if it belongs to the smallest Σ_2^0 set, effectively of μ measure 1.

The space of probability measures on 2^{ω} will be denoted by $\mathcal{M}(2^{\omega})$.

Question

What if we want to define random sequences obtained by flipping a biased coin? The definition generalizes itself pretty well as long as the measure is computable.

Definition (Martin-Löf randomness for computable measure)

Let μ be a computable measure. A sequence of 2^{ω} is Martin-Löf random for the measure μ if it belongs to the smallest Σ_2^0 set, effectively of μ measure 1.

Algorithmic randomness for other measures

Problem

When the measure is not computable, we cannot necessarily obtain universal Martin-Löf test for the measure...

ntuition

A possibility is to add the measure as an oracle to create our test, but a measure can have many different binary representations having different Turing-degrees. So it is not clear which one to choose.

Algorithmic randomness for other measures

Problem

When the measure is not computable, we cannot necessarily obtain universal Martin-Löf test for the measure...

Intuition

A possibility is to add the measure as an oracle to create our test, but a measure can have many different binary representations having different Turing-degrees. So it is not clear which one to choose.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Algorithmic randomness for other measures

Idea

You can take a representation such that any other representation can compute it. (the smallest one).

Theorem (Day, Miller)

Some measures does not have a smallest representation in the Turing degree !

Solution

Instead of using representations, we should extend the notion of computability to the space of measures

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algorithmic randomness for other measures

Idea

You can take a representation such that any other representation can compute it. (the smallest one).

Theorem (Day, Miller)

Some measures does not have a smallest representation in the Turing degree !

Solution

Instead of using representations, we should extend the notion of computability to the space of measures

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algorithmic randomness for other measures

Idea

You can take a representation such that any other representation can compute it. (the smallest one).

Theorem (Day, Miller)

Some measures does not have a smallest representation in the Turing degree !

Solution

Instead of using representations, we should extend the notion of computability to the space of measures

Computability in $\overline{\mathcal{M}(2^{\omega})}$

How can we extend the notion of integrable test $\mathbf{t}: \mathcal{M}(2^{\omega}) \times 2^{\omega} \to \overline{\mathbb{R}^+}$?

What do we do in \mathbb{R} ?

In \mathbb{R} we say that a function f is computable if from any fast cauchy sequence converging to x we can output a fast cauchy sequence converging to f(x).

What do we do in $\mathbb R$?

Equivalently, f is computable if from any sequence of all intervals with rationals endpoints containing x, f can output the sequence of intervals with rationals endpoints containing f(x).

Computability in $\mathcal{M}(2^{\omega})$

How can we extend the notion of integrable test $\mathbf{t}: \mathcal{M}(2^{\omega}) \times 2^{\omega} \to \overline{\mathbb{R}^+}$?

What do we do in \mathbb{R} ?

In \mathbb{R} we say that a function f is computable if from any fast cauchy sequence converging to x we can output a fast cauchy sequence converging to f(x).

What do we do in $\mathbb R$ \Im

Equivalently, f is computable if from any sequence of all intervals with rationals endpoints containing x, f can output the sequence of intervals with rationals endpoints containing f(x).

Computability in $\mathcal{M}(2^{\omega})$

How can we extend the notion of integrable test $\mathbf{t}: \mathcal{M}(2^{\omega}) \times 2^{\omega} \to \overline{\mathbb{R}^+}$?

What do we do in \mathbb{R} ?

In \mathbb{R} we say that a function f is computable if from any fast cauchy sequence converging to x we can output a fast cauchy sequence converging to f(x).

What do we do in \mathbb{R} ?

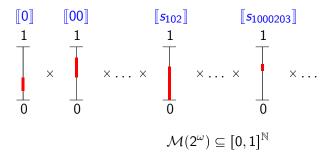
Equivalently, f is computable if from any sequence of all intervals with rationals endpoints containing x, f can output the sequence of intervals with rationals endpoints containing f(x).

Randomness extraction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Algorithmic randomness for different measures

A basic open set in the space of measure :



Algorithmic randomness for different measures

The space of measures

- The space of measure is a closed subset of $[0,1]^{\mathbb{N}}$. $\forall s \in 2^{\omega} \quad \mu(s) = \mu(s0) + \mu(s1).$
- The topology is the one induced by the product topology on $[0,1]^{\mathbb{N}}.$
- A measure is computable iff the set of basic open sets containing it is effectively enumerable.

ntegrable tests

Algorithmic randomness for different measures

The space of measures

- The space of measure is a closed subset of $[0,1]^{\mathbb{N}}$. $\forall s \in 2^{\omega} \quad \mu(s) = \mu(s0) + \mu(s1).$
- The topology is the one induced by the product topology on $[0,1]^{\mathbb{N}}.$
- A measure is computable iff the set of basic open sets containing it is effectively enumerable.

ntegrable tests

Algorithmic randomness for different measures

The space of measures

- The space of measure is a closed subset of $[0,1]^{\mathbb{N}}$. $\forall s \in 2^{\omega} \quad \mu(s) = \mu(s0) + \mu(s1).$
- The topology is the one induced by the product topology on $[0,1]^{\mathbb{N}}.$
- A measure is computable iff the set of basic open sets containing it is effectively enumerable.

ntegrable tests

Algorithmic randomness for different measures

The space of measures

- The space of measure is a closed subset of $[0,1]^{\mathbb{N}}$. $\forall s \in 2^{\omega} \quad \mu(s) = \mu(s0) + \mu(s1).$
- The topology is the one induced by the product topology on $[0,1]^{\mathbb{N}}.$
- A measure is computable iff the set of basic open sets containing it is effectively enumerable.

Integrable tests

Algorithmic randomness for different measures

Definition (Uniform tests)

A uniform integrable test is a lower semi-computable function $t: 2^{\omega} \times \mathcal{M}(2^{\omega}) \to \overline{\mathbb{R}}$ such that $: \int t(x, \mu) d\mu(x)$ is finite for all μ

heorem (Levin-Gács-Hoyrup-Rojás)

There exists a universal uniform integrable test **u** which dominates every other integrable tests up to a multiplicative constant.

Randomness

Intuitively $\mathbf{u}(x,\mu)$ can represent the randomness deficiency of x with respect to the measure μ . We say that x is Martin-löf random for the measure μ iff $\mathbf{u}(x,\mu) < +\infty$. The notion matches the previous one for computable measures.

Algorithmic randomness for different measures

Definition (Uniform tests)

A uniform integrable test is a lower semi-computable function $t: 2^{\omega} \times \mathcal{M}(2^{\omega}) \to \overline{\mathbb{R}}$ such that $: \int t(x,\mu) d\mu(x)$ is finite for all μ

Theorem (Levin-Gács-Hoyrup-Rojás)

There exists a universal uniform integrable test \mathbf{u} which dominates every other integrable tests up to a multiplicative constant.

Randomness

Intuitively $\mathbf{u}(x,\mu)$ can represent the randomness deficiency of x with respect to the measure μ . We say that x is Martin-löf random for the measure μ iff $\mathbf{u}(x,\mu) < +\infty$. The notion matches the previous one for computable measures.

Algorithmic randomness for different measures

Definition (Uniform tests)

A uniform integrable test is a lower semi-computable function $t: 2^{\omega} \times \mathcal{M}(2^{\omega}) \to \overline{\mathbb{R}}$ such that $: \int t(x, \mu) d\mu(x)$ is finite for all μ

Theorem (Levin-Gács-Hoyrup-Rojás)

There exists a universal uniform integrable test \mathbf{u} which dominates every other integrable tests up to a multiplicative constant.

Randomness

Intuitively $\mathbf{u}(x,\mu)$ can represent the randomness deficiency of x with respect to the measure μ . We say that x is Martin-löf random for the measure μ iff $\mathbf{u}(x,\mu) < +\infty$. The notion matches the previous one for computable measures.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Randomness extraction

Randomness extraction

Reformulation of the problem

Reformulation of the problem

Given a class $C \subseteq \mathcal{M}(2^{\omega})$, is there a computable function $f: 2^{\omega} \to 2^{\omega}$ such that :

For all x such that $\mathbf{u}(x,\mu) < \infty$ for some $\mu \in C$, f(x) is a binary sequence random for the uniform measure?

A first piece of the puzzle

Randomness can be extracted when the measure is known.

The Levin-Kautz conversion procedure

Theorem (Levin-Kautz)

If μ is a computable measure on 2^{ω} , then there is a computable $f: 2^{\omega} \to 2^{\omega}$ such that f(x) is random for all μ -random x which are not atoms of μ (x is an atom of μ if $\mu(\{x\}) > 0$, which implies that x is computable).

It is not hard to see that Levin-Kautz theorem is uniform :

heorem (Levin-Kautz, extended

There is a computable $f : 2^{\omega} \times \mathcal{M}(2^{\omega}) \to 2^{\omega}$ such that $f(x, \mu)$ is random whenever x is μ -random without being an atom of μ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Levin-Kautz conversion procedure

Theorem (Levin-Kautz)

If μ is a computable measure on 2^{ω} , then there is a computable $f: 2^{\omega} \to 2^{\omega}$ such that f(x) is random for all μ -random x which are not atoms of μ (x is an atom of μ if $\mu(\{x\}) > 0$, which implies that x is computable).

It is not hard to see that Levin-Kautz theorem is uniform :

Theorem (Levin-Kautz, extended)

There is a computable $f : 2^{\omega} \times \mathcal{M}(2^{\omega}) \to 2^{\omega}$ such that $f(x, \mu)$ is random whenever x is μ -random without being an atom of μ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

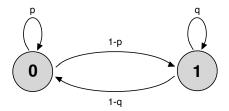
Guessing the measure

Guessing the measure

Suppose a measure μ was such that it could be *guessed*, in some uniform way from any of its random (non-atomic) elements. Then randomness extraction for such measures would be possible on that particular μ .

Example

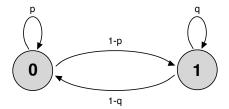
Suppose μ is represented with a Markov chain of type



And we get a random x = 000000010000000110000000000....Can we deduce anything about p and q after reading finitely many bits? No! Maybe p is small and only the beginning of the sequence is atypical.

Example

Suppose μ is represented with a Markov chain of type

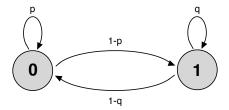


And we get a random x = 0000000100000011000000000...

Can we deduce anything about p and q after reading finitely many bits? No ! Maybe p is small and only the beginning of the sequence is atypical.

Example

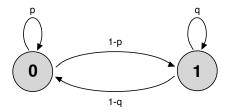
Suppose μ is represented with a Markov chain of type



And we get a random x = 0000000100000011000000000....Can we deduce anything about p and q after reading finitely many bits? No ! Maybe p is small and only the beginning of the sequence is atypical.

Example

Suppose μ is represented with a Markov chain of type



And we get a random x = 00000001000000011000000000...Can we deduce anything about p and q after reading finitely many bits? No ! Maybe p is small and only the beginning of the sequence is atypical.

Layerwiseness

However...

We could compute p and q if we knew a bound on the randomness deficiency of x with respect to μ !

ayerwise computability (Hoyrup and Rojás)

A function F is μ -layerwise computable over a space x if it is defined on all μ -random reals and it can be uniformly computed modulo an "advice" which is an upper bound on the randomness deficiency $\mathbf{u}(x, \mu)$.

Definition (Bienvenu-Monin)

A measure μ is **(layerwise) learnable** if it can be layerwise computed from its random elements.

Layerwiseness

However...

We could compute p and q if we knew a bound on the randomness deficiency of x with respect to μ !

Layerwise computability (Hoyrup and Rojás)

A function *F* is μ -layerwise computable over a space *x* if it is defined on all μ -random reals and it can be uniformly computed modulo an "advice" which is an upper bound on the randomness deficiency $\mathbf{u}(x, \mu)$.

Definition (Bienvenu-Monin

A measure μ is **(layerwise) learnable** if it can be layerwise computed from its random elements.

Layerwiseness

However...

We could compute p and q if we knew a bound on the randomness deficiency of x with respect to μ !

Layerwise computability (Hoyrup and Rojás)

A function *F* is μ -layerwise computable over a space *x* if it is defined on all μ -random reals and it can be uniformly computed modulo an "advice" which is an upper bound on the randomness deficiency $\mathbf{u}(x, \mu)$.

Definition (Bienvenu-Monin)

A measure μ is **(layerwise) learnable** if it can be layerwise computed from its random elements.

A criterion

A criterion for learnability :

Theorem (Bienvenu-Monin)

If a measure μ belongs to a class C of measures such that (i) C is Π_1^0 (ii) no distinct ν_1, ν_2 have a random in common (*) then μ is learnable.

Surprisingly, the converse holds :

Theorem (Bienvenu-Monin)

If a measure μ is learnable, then it can be embedded into a Π_1^0 class of measures with the (*) property.

A criterion

A criterion for learnability :

Theorem (Bienvenu-Monin)

If a measure μ belongs to a class C of measures such that (i) C is Π_1^0 (ii) no distinct ν_1, ν_2 have a random in common (*) then μ is learnable.

Surprisingly, the converse holds :

Theorem (Bienvenu-Monin)

If a measure μ is learnable, then it can be embedded into a Π_1^0 class of measures with the (*) property.

Putting things together

We are ready to present a partial answer to the original question.

heorem (Bienvenu-Monin)

Let C be a Π_1^0 class of measures with the (*) property. Then uniform randomness extraction is possible, i.e., there exists a partial computable function $f: 2^{\omega} \rightarrow 2^{\omega}$ such that :

if x is μ -random for some $\mu \in C$ and x is not an atom of μ , then f(x) is random for the uniform measure.

(this even extends to Σ_2^0 classes with the (*) property).

Putting things together

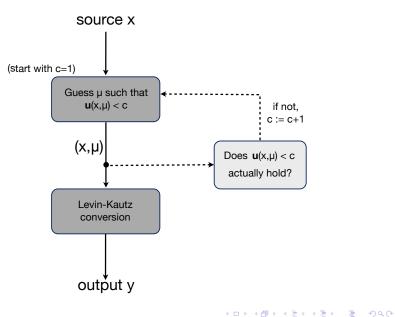
We are ready to present a partial answer to the original question.

Theorem (Bienvenu-Monin)

Let C be a Π_1^0 class of measures with the (*) property. Then uniform randomness extraction is possible, i.e., there exists a partial computable function $f: 2^{\omega} \rightarrow 2^{\omega}$ such that :

if x is μ -random for some $\mu \in C$ and x is not an atom of μ , then f(x) is random for the uniform measure.

(this even extends to Σ_2^0 classes with the (*) property).



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you. Questions?