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Abstract. We present an overview of higher randomness and its recent developments. In

particular we present the main higher randomness notions, show how to separate them and study
their corresponding lowness classes. We study more specifically Π1

1-Martin-Löf randomness, the

higher analogue of the most well-known and studied class in classical algorithmic randomness,
and Π1

1-randomness, a notion which present many remarkable properties and does not have any

analogue in classical randomness.

Contents

1. Introduction 2
2. Higher computability 3
2.1. Background 3
2.2. Continuity in higher computability 5
2.3. Refinement of the notion of higher ∆0

2 7
3. Overview of the different classes in higher randomness 8
3.1. ∆1

1 randomness 8
3.2. Π1
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1-Martin-Löf randomness 14
5.1. The higher Kučera-Gács theorem 14
5.2. Higher Kolmogorov complexity 15
5.3. Equivalent characterizations of Π1

1-Martin-Löf randomness 17
5.4. Lowness for Π1
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1. Introduction

Mathematical objects often have a general definition which has no regard for any method or
procedure that can describe it. For instance, a function is defined as an arbitrary correspondence
between objects, but nothing in the definition requires that we are given a way to construct the
correspondence. Nonetheless, when the modern definition of functions (often credited to Dirichlet)
appeared, it was obvious that all the actual functions that were studied in practice were determined
by simple analytic expressions, such as explicit formulas or infinite series.

In the early days of logic, some mathematicians tried to delineate the functions which could be
defined by such accepted methods and they searched for their characteristic properties, presumably
nice properties not shared by all functions. Baire was first to introduce in his Thesis [1] what we
now call Baire functions, the smallest set which contains all continuous functions and is closed
under the taking of (pointwise) limits. His work was then pursued by Lebesgues [28], who initiated
the first systematic study of definable functions. According to Moschovakis [37] Lebesgue’s paper
truly started the subject of descriptive set theory.

At the time, the modern notions of computability and definability were yet to appear, but we
can see, through the work of Borel, Baire and Lebesgues, the necessity of giving a precise meaning
to the intuition we have of objects we can “describe” or “understand”. A couple of years later,
Godel’s work around his famous incompleteness theorems constituted certainly a key step leading
to the understanding of what is a computable object and to the understanding of definability in
general. This work was then pursued in the thirties, by Church with Lambda calculus, and by
Turing with his famous eponymous machine. The modern notion of computable function was made
clear and all the researchers were soon convinced of the rather philosophical following statement,
known as the Turing-Church thesis : “A function is computable (using either of the numerous
possible equivalent mathematical definitions) iff its values can be found by some purely mechanical
process”.

Let us now go back to the early days of descriptive set theory. The study of the hierarchy of
functions initiated by Baire and pursued by Lebesgue naturally led to the notion of Borel sets. One
goal here was again to refine the very general definition of sets (say of reals) in order to work with
objects we can understand and describe. The notion of Borel sets takes care of one aspect of sets
complexity, their complexity with respect to their “shape” : The sets of reals with simplest shape
complexity are the open sets (Σ0

1 sets) and their complement, the closed sets (Π0
1 sets). The first

ones are merely unions of interval and the second ones complements of unions of interval. We then
obtain sets of higher and higher complexity by taking countable unions or countable intersections
of sets of lower complexity. We obtain a hierarchy of sets, each of them having nice properties,
such as for instance being measurable or having the Baire property. However these hierarchy of
complexity is still unsatisfactory, because even a set of simple shape, like an open set, can be
very complex from the viewpoint of effectiveness: A set may be open, but there may be no way
to describe the intervals which compose it. It is Kleene, a student of Church -like Turing- who
reintroduced computability in the study of Borel sets. We now want to work only with open sets
that can be described in some effective way. Then when we consider a countable intersection or a
countable union, we also want to be able to describe in some effective way which sets take part in
this union or intersection. This led to the very nice and beautiful theory of effectively Borel sets,
and of effectively analytic and co-analytic sets, which constitute one of the core material of higher
randomness.

Computability and definability could be used successfully in the study of sets of reals. But it
was primarily designed to study sets of integers. Interestingly, the effective sets of reals proved
themselves useful to conduct a study of the sets of integers which are far from being describable
or understandable as single objects. This is the purpose of Algorithmic randomness. This field
tries to resolve an apparent paradox that probability theory is helpless with: If one flip a fair coin
twenty times in a row, a result like this 01001011011010101110 will seem rather “normal”, whereas
a result like this one : 00000000000000000000 will appear as non-random and extraordinary, to
the point that one would probably check if the coin is valid. However, these two outcomes have
the same probability of occurrence. So why one of them seems more random than the other one?
It is simply because one is hard to describe whereas the other one is simple to describe. This is an
extreme case, and it is not always the case that strings which seem non-random (with respect to
a fair-coin fliping) are simple to describe. Consider for instance a long string with twice more 0’s
than 1’s, but chaotic enough with regards to any other aspect you could think of. This string is
not necessarily simple to describe, but it belongs to a small set that is simple to describe : the set
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of strings with twice more 0’s than 1’s, which has small measure by the concentration inequalities,
like the Chernoff bounds. The mathematical formalization of this idea was a long process through
the 20’s century, started by Kolmorogov and Solomonov [45, 25]. Martin-Löf was the first in 1966
[32] to use the above paradigm to define randomness of infinite binary sequences: Such a sequence
is random if it belongs to no set of measure 0, for a given class of set which should be describable
in some way. Whichever notion of “being describable” is used, the only requirement is that at
most countably many sets are describable for this notion. This way the set of randoms still has
measure one, by the countable additivity of measures.

The field of higher randomness deals with effectively Borel, analytic and co-analytic sets. The
work conduct by various researchers in this area follows two different directions. The first direction
goes into the study of notions analogous to these of classical algorithmic randomness, which had
already led to a very rich theory. Most of the work done in algorithmic randomness carries through
higher randomness, but most of the time the proofs needs to be adapted to the new phenomenons
that appears in higher computability, in particular the lack of continuity. The second direction goes
into the study of notions which are new and specific to higher randomness, in particular the notion
of Π1

1-randomness. We will present here an overview of the work achieved by various authors in
this field. The presentation is however not exhaustive, and here in particular is a list of subjects
that we will not cover:

 The study of higher Kurtz randomness (see [24]).
 In [2] the authors emphasize that precautions must be taken with continuous relativization

of Turing reductions and continuous relativization of randomness. A more detailed study
of these issues is not given here, and is available in Chapter 7 of [35].

 The study of ∆1
2, Σ1

2 and Σ1
2-Martin-Löf-randomness (see [7]).

 The study of randomness with infinite time Turing machines (see [3]).

2. Higher computability

2.1. Background. We assume the reader is familiar with the notions of ∆1
1,Π

1
1 and Σ1

1 sets of
integers or of reals, and with admissibility and computability over Lωck1 . We simply recall here the

notations and basic things that we are going to use.

2.1.1. Computable ordinals and Borel sets.

Definition 2.1. An ordinal α is computable if there exists a computable binary relation on
elements of ω with order-type α. We let ωck1 denote the first non-computable ordinal.

The notion relativizes to any X P 2N. We write ωX1 for the smallest non X-computable ordinal.

The ∆1
1 subsets of N are elements of Lωck1 X N, that is, elements constructed with successive

uniform unions and intersections of set of lower complexity.

Definition 2.2. The effective Kleene’s hierarchy is defined by induction over the computable
ordinals as follows:

 A Σ0
1-index is given by a pair x0, ey. The set A corresponding to x0, ey is given by A �We,

the e-th Σ0
1 set.

 A Π0
α-index is given by a pair x1, ey where e is a Σ0

α-index. The set A corresponding to
x1, ey is given by A � N�B where B is the set corresponding to e.

 A Σ0
α-index is given by a pair x2, ey where We is not empty and enumerates only Π0

βn
-

indices for βn   α, with supnpβn � 1q � α. The set A corresponding to x2, ey is given by�
nAn, where An is the set corresponding to the n-th index enumerated by We.

We say that a set A is Σ0
α (resp. Π0

α) if for some Σ0
α-index (resp. Π0

α-index) e, A is the set
corresponding to e. We say that a set A is ∆0

α if it is both Σ0
α and Π0

α. Finally we say that a set
is Σ0

 α (resp. Π0
 α) if it is Σ0

β (resp. Π0
β) for some β   α.

For any α, there exists a complete Σ0
α set, that is, a set which is Σ0

α and such that any Σ0
α is

many-one reducible to it:

Definition 2.3. For any α   ωck1 , we denote by ∅α a complete set for the Σ0
α sets. We denote by

∅ α a complete set for the Σ0
 α sets.

Note that there is not necessarily a canonical way to define ∅α or ∅ α. A way to define them
is to use codes of computable ordinals.
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Definition 2.4. A code for an ordinal α is given by the code of a Turing machine which computes
a relation on ω or order-type α. We denote by O the set of codes for computable ordinals. For
α   ωck1 we denote by O α the set of codes of ordinal strictly smaller than α.

The notion relativizes to any X P 2N. We write OX for the set of codes which computes an
ordinal using X as an oracle. Similarly for OX α.

For a P O (resp. a P OX) we may denote by |a|o (resp. |a|Xo ) the ordinal coded by a.

A precise study of the complexity and completeness of the sets O α is given in [35]. This gives
an alternative way to define ∆1

1 sets of integer is to see them as the sets which are Turing reducible
to O α for some α   ωck1 .

We now similarly define ∆1
1 subsets of 2N:

Definition 2.5. The effective Borel hierarchy is defined by induction over the computable ordinals
as follows:

 A Σ0
1-index is given by a pair x0, ey. The set corresponding to this Σ0

1-index is given by�
σPWe

rσs.

 A Π0
α-index is given by a pair x1, ey where e is a Σ0

α-index. The set corresponding to this
Π0
α-index is given by 2N � B where B is the set corresponding to the index e.

 A Σ0
α-index is given by a pair x2, ey where We is not empty and enumerate only Π0

βn
indices,

with supnpβn � 1q � α. The set corresponding to this Σ0
α-index is given by

�
n Bn where

Bn is the set corresponding to the n-th index enumerated by We.

We say that a set B is Σ0
α (resp. Π0

α) if for some Σ0
α-index (resp. Π0

α-index) e, B is the set
corresponding to e. We say that a set B is ∆0

α if it is both Σ0
α and Π0

α. Finally we say that a set
is Σ0

 α (resp. Π0
 α) if it is Σ0

β (resp. Π0
β) for some β   α.

The following say that O is complete for the Π1
1 sets. In particular a Π1

1 set of integers can be
seen as a uniform union of ∆1

1 sets along ωck1 , and a Π1
1 set of reals can be seen as a uniform union

of Borel sets along ω1:

Proposition 2.6. A set of integer A is Π1
1 iff there is a computable function f such that “n P A

iff fpnq P O”. In particular A �
�
α ωck1

tn : fpnq P O αu.

A set of reals A is Π1
1 iff there is an integer e such that X P A iff “e P OX”. In particular

A �
�
α ω1

tX : e P OX αu.

We will also use a lot what we call a projectum function, that is, a Π1
1 injection from ωck1 into

N. Formally Π1
1 functions are defined on integers and not ordinals. There are two ways to consider

this: Either we work with actual ordinals and see Π1
1 functions as being Σ1-definable over Lωck1 , or

we consider functions which are defined on a Π1
1 set of unique codes of computable ordinals (that

is a Π1
1 set O1 � O such that for any α   ωck1 there exists exactly one code of α in O1).

Proposition 2.7. There is a Π1
1 function p : ωck1 Ñ N which is one-to-one. We call p a projectum

function.

Note that a Π1
1 set of unique codes of computable ordinals, can actually be considered as a

projectum function.

2.1.2. Π1
1 as an analogue of c.e. We will consider Π1

1 predicates from the computability theorist’s
viewpoint, that is, we will see them as enumerations of objects along computable ordinal stages of
computation. Let us cite a section of Sack’s book ([44, V.3.3]) that explains what we gain in doing
so:

“Post in a celebrated paper ([42]) liberated classical recursion theory from formal arguments by
presenting recursive enumerability as a natural mathematical notion safely handled by informal
mathematical procedures. He also stressed what may be called a dynamic view of recursion theory.
For example, he proves the existence of a simple set S by giving instructions in ordinary language
for the enumeration of S and then verifying that the instructions do in fact produce a simple set.
A formal approach to S would refer to formulas or equations from some formal system. A static
approach would attempt to define S by some explicit formula. The advantages of Post’s informal,
dynamic method are considerable. Without it arguments in classical recursion theory would be
lengthy and hard to devise. His method, and its advantages, lift to metarecursion theory.”
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Metarecursion theory attacks the problem of transposing notions of classical recursion theory,
that take place in the world of integers, into the world of computable ordinals, where elements of
the Cantor space are now replaced by functions from ωck1 to t0, 1u (sequences of “length” ωck1 ) and
where times of computation are now computable ordinals.

We will not deal here with Metarecursion theory, as we still want to work with sequences of
the Cantor space. Measure-theoretic notions and therefore algorithmic randomness are indeed
well-defined for sequences of length ω, but it is not clear at all if one can extend these notions to
sequences of ordinal length. For this reason, what we keep from Metarecursion theory are just the
ordinal times of computation.

In this settings, any ∆1
1 set of integer should be considered as a finite object. Any Π1

1 set A
should be seen as enumerable along the ordinal times of computation. The construction of a c.e.
set A is often done step by step, by describing As at computational step s, where As possibly
depends on the values of At for t   s, and by then defining A �

�
s ω As. A formal description of

A can then be given by n P A Ø Ds n P As. As each set As is ∆0
1 uniformly in s, the description

can then be formally written as a Σ0
1 predicate.

We can similarly build a Π1
1 set A by describing As for each ordinal computational step s   ωck1 ,

where As possibly depends on the values of At for t   s, and then by defining A �
�
s ωck1

As. If

one wants A to be formally Π1
1, one has to use codes for computable ordinal in order to give an

actual Π1
1 description of A. The definition should of course not depend on the code that we use,

but only the the ordinal represented by the code (and this will always be the case in what we do).
A way to go around this is otherwise to see the predicate n P A as being Σ0

1 over Lωck1 .

2.1.3. Admissibility. As explained in the previous section, we will use the informal argument of
recursion theory to enumerate sets along the computable ordinal, possibly using what happened at
previous steps of enumerations. The reason we can do that, is the admissibility of Lωck1 . For short,

given α   ωck1 , there is no function f : α Ñ ωck1 which is Σ0
1-definable in Lωck1 (with parameter

in Lα). In particular, inside admissible sets, we can safely make recursive definitions along the
ordinals. Another way to see admissibility is to consider Spector’s Σ1

1 boundedness principle : Let
A � O be a Σ1

1 set. Then there exists α such that A � Oα.
Admissibility will be mainly use as follow for us: whenever there is a Π1

1pXq total function f
from α   ωX1 into ωX1 , then we must have supn fpnq   ωX1 .

2.1.4. Notations. We denote the Cantor space by 2N and the set of strings of the Cantor space by
2 N. We denote the Baire space by NN and the set of strings of the Baire space by N N. Given
σ P 2 N we write rσs for its corresponding cylinder, that is, the set tX P 2N : σ   Xu. An open
set is a union of cylinders. Given W � 2 N we write rW s  for the set

�
σPW rσs. In particular we

will consider a lot open sets of the following type:

Definition 2.8. An open set U is a Π1
1-open set if there is a Π1

1 set W � 2 N such that U � rW s .
A Σ1

1-closed set is the complement of a Π1
1-open set.

We will denote the Lebesgue measure on the Cantor space by λ. We then have λprσsq � 2�|σ|

for any σ P 2 N. Given a measurable set A we also write λpA|σq for the measure of A inside σ,
that is, the quantity λpAX rσsq{λprσsq.

Given the enumeration of an object A long the computable ordinals, we can write As or Arss
for the current enumeration of A up to stage s. We will especially use the latter with the measure
of objects. For instance, given a Π1

1-open set U , we may write λpUqrss for the measure of U at
stage s. We also sometimes write Ar  ss for the current enumeration of an object up to stage s
(but without stage s).

The notation As will mainly be used when one want to refer as the enumeration up to stage s
as a specific object. In particular we will sometimes use the following terminology:

Definition 2.9. A higher computable sequence tfsus ωck1
is a sequence of uniformly ∆1

1 functions

fs, that is, each fs is ∆ uniformly in s.

2.2. Continuity in higher computability. In higher computability, reductions and relativiza-
tion are not continuous notions (unlike with normal computability):

Definition 2.10. We write that X ¥h Y and say that Y is hyperarithmetically reducible to X is
Y is ∆1

1pXq.
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For instance if X ¥h Y , infinitely many bits of X may be needed to determine one bit of Y . The
insight that randomness and traditional relative hyperarithmetic reducibility do not interact well
goes back to Hjorth and Nies [17], but it is in [2] that Bienvenu, Greenberg and Monin enlighten
the centrality of continuous reductions to the theory of randomness.

2.2.1. Higher Turing reductions. In order to study analogues of classical randomness notions in
the higher settings, we will need a continuous higher analogue of Turing reducibility. Recall that
a functional can be seen as a set of pairs pτ, σq of finite binary strings. If Φ is a functional then for
any X P 2¤ω (finite or infinite) we have that Φ is defined on X if:

(1) Φ is consistent on prefixes of X, that is, if σ1   X and σ2   X are comparable and if
pσ1, τ1q and pσ2, τ2q are in Φ then τ1 must be comparable with τ2.

(2) Φ is total on X, that is, for any n, there exists σ   X such that σ is mapped to a string
of length at least n.

When (1) and (2) are met there is a unique limit point Y P 2N of
�
trσs : Dn pXæn, σq P Φu.

We then write ΦpXq � Y . This motivates the following definition:

Definition 2.11 (Bienvenu, Greenberg, Monin [2]). A higher Turing reduction Φ is a Π1
1 partial

map from 2 N to 2 N. For a string σ, if Φ is consistent on prefixes of σ, we write Φpσq � τ where τ
is the longest string that prefixes of σ are mapped to in Φ; otherwise Φpσq is said to be undefined.
Given a sequence X, suppose the set:£

trσs : Dn ΦpXænq � σu

contains exactly one sequence Y , we write ΦpXq � Y . Otherwise the functional Φ is said to be
undefined on X. If ΦpXq � Y for some higher Turing reduction Φ we write X ¥ωck

1 T Y and say

that X higher Turing computes Y .

Hjorth and Nies were the first to define in [17] a notion of continuous higher reduction, that they
called fin-h reduction. The fin-h reduction was define analogously to higher Turing reduction, with
the additional restriction that the mapping must be both consistent and closed under prefixes. It
appears that the fin-h reduction is too restrictive for most theorems of higher randomness that
requires a higher continuous reduction.

Note that with normal Turing reductions, one can always required a c.e. set of pairs Φ to be
consistent everywhere, that is, one can uniformly transform Φ into a c.e. set Ψ such that Ψ is
consistent everywhere and such that if ΦpXq � Y then also ΨpXq � Y . Such a thing is not
necessarily possible with higher Turing reductions. In particular there are some X,Y such that X
higher Turing compute Y but such that X does not fin-h compute Y . For more details about this,
the reader can refer to Chapter 7 of [35].

So inconsistency cannot always be removed, but it can be made of measure as small as we want:

Lemma 2.12 (Bienvenu, Greenberg, Monin [2]). From any higher functional Φ one can obtain
effectively in ε a higher functional Ψ so that:

(1) The correct computations are unchanged in Ψ: For all X,Y such that ΦpXq � Y , we also
have ΨpXq � Y

(2) The measure of the Π1
1-open set on which Ψ is inconsistent is smaller than ε:

λptX | Dn1, n2 Dτ1 K τ2 pXæn1
, τ1q P Ψ^ pXæn2

, τ2q P Ψuq ¤ ε

Proof. Let us build Ψ uniformly in Φ and ε. Recall that p : ωck1 Ñ ω is the projectum function.
We can assume that at most one pair enters Φ at each stage. At stage s, if pσ1, τ1q enters Φrss, we
compute the ∆1

1 set of strings:

Us � tσ2 : σ2 is compatible with σ1 and pσ2, τ2q P Ψr  ss for some τ2 K τ1qu

We then find uniformly in Us and s a finite set of strings C with rCs  � rσ1s, such that rCs YUs
covers rσ1s and such that λprCs  X Usq ¤ 2�ppsqε. Then we put in Ψrss all the pairs pσ, τ1q for
σ P C.

We shall prove that (1) and (2) are satisfied. Suppose ΦpXq � Y and that pXæn1 , Y æn2q enters
Φrss at stage s. By definition of ΦpXq � Y , we have no m and no τ K Y æn2 such that pXæm, τq
is in Φr  ss. Then also we have no m and no τ K Y æn2

such that pXæm, τq is in Ψr  ss, because
pXæm, τq P Ψ implies pXæn, τq P Φ for n ¤ m. Therefore X R Us and as Us Y C covers Xæn1

, we
then have a prefix of X that is mapped to Y æn2

in Ψrss. Then we have (1). Also by construction,
at stage s, we add a measure of at most 2�ppsqε of inconsistency. Then the total inconsistency is
at most of ε, which gives us (2). �
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2.2.2. Continuous relativization of Π1
1. The higher continuous version of Turing reduction is a

way to say that some sequence Y is continuously ∆1
1 in X. We will also need a way to say that

some objects are continuously Π1
1 in X. This will be used mainly for continuous relativization of

randomness notions.

Definition 2.13 (Bienvenu, Greenberg, Monin [2]). An oracle-continuous Π1
1 set of integers is given

by a set W � 2 N � N. For a string σ we write Wσ to denote the set tn : Dτ ¤ σ pτ, nq P W u.
For a sequence X we write WX to denote the set tn : Dτ   X pτ, nq P W u. The set WX is then
called an X-continuous Π1

1 set of integers.

2.3. Refinement of the notion of higher ∆0
2. In this section we discuss the higher analogue of

the notion of being ∆0
2. We will identify in particular various restrictions of this notion, in order to

have sufficient conditions for higher ∆0
2 elements to collapse ωck1 . This work will be useful to show

several theorem. In particular that every non-∆1
1 higher K-trivial collapses ωck1 , and to separate

higher weak-2-randomness from Π1
1-randomness. Let us first give a higher version of Shoenfield’s

limit lemma:

2.3.1. The higher limit lemma.

Proposition 2.14 (Bienvenu, Greenberg, Monin [2]). Let A P 2N. The following are equivalent
for f P NN.

(1) O higher Turing computes f .
(2) O Turing computes f .
(3) There is a higher computable sequence tfsus ωck1

of functions from N to N with

limsÑωck1
fs � f .

Proof. (1)ùñ (2). Let Ψ be a higher Turing functional such that ΨpOq is defined. We define
the Turing functional Φ which using O, on each n, searches for the first pair m, k such that
Dt ΨpOæm, nqrts � k.

(2)ùñ (3). Let Ψ be a Turing functional such that ΨpOq � f . We simply let fs such that
fspnq � 1 iff ΨpOs, nq � 1 and fspnq � 0 otherwise.

(3)ùñ (1). We use the projectum function p : ωck1 Ñ ω. Given n P N, for each m P N with
sm � p�1pmq, we ask to O if Dt ¡ sm ftpnq � fsmpnq, until we find some m such that this is not
the case. Then we set fpnq � fsmpnq. �

Such a function is said to be a higher ∆0
2 function. There is a topological difference between

a ∆0
2 approximation tfsus ω and a higher ∆0

2 approximation tgsus ωck1
. In the first case the set

tfu Y tfs : s   ωu is a closed set, whereas in the second case, the set tgu Y tgs : s   ωck1 u needs
not to be closed. Also we present in this section various restrictions of the notion of higher ∆0

2

functions, introduced in [2], and that are built around this crucial point.

2.3.2. Collapsing approximations. Gandy showed that in any non-empty Σ1
1 set of reals, there is

an element X ¤T O such that ωX1 � ωck1 (see [44]). As the set of non-∆1
1 elements is Σ1

1, it follows
that some non-∆1

1 higher ∆0
2 sequence does not collapse ωck1 . We present here a natural restriction

of being higher ∆0
2, which is enough already for non-∆1

1 such approximable elements, to collapse
ωck1 .

Definition 2.15 (Bienvenu, Greenberg, Monin [2]). A collapsing approximation of a function f
is a higher Turing computable sequence tfsus ωck1

converging to f and such that for every stage s,

the function f is not in the closure of tft : t   su unless it is already an element of tft : t   su.

Theorem 2.16 (Bienvenu, Greenberg, Monin [2]). If f P NN is not ∆1
1 and has a collapsing

approximation then ωf1 ¡ ωck1 .

Proof. Suppose f has a collapsing approximation tfsus ωck1
. We can define the Π1

1pfq total function

g : ω Ñ ωck1 which to n associates the smallest ordinal sn so that fsn æn� f æn. Then we have
that f is in the closure of tftut s for s � sup sn. Therefore we have sup sn � ωck1 . Also as g is
Π1

1pfq and total it is also ∆1
1pfq. Then we can define a ∆1

1pfq sequence of computable ordinals,

unbounded in ωck1 which implies ωf1 ¡ ωck1 , by admissibility. �

Note that this is not the most general way for higher ∆0
2 elements to collapse ωck1 . Bienvenu,

Greenberg and Monin showed [2] that there is a higher ∆0
2 sequence X such that ωX1 ¡ ωck1 and

such that X does not have a collapsing approximation.
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2.3.3. Higher finite-change approximations. In the lower setting, any ∆0
2 approximation tfsusPN

is collapsing simply because at every step t, there are only finitely many versions fs for s ¤ t.
We restrict here the collapsing approximations to these which share this property with the ∆0

2

approximations indexed by N.

Definition 2.17. A higher finite-change approximation of a function f is a higher computable
sequence tfsus ωck1

such that lims fs � f and such that for any n, the sequence tfspnqus ωck1
changes finitely often.

2.3.4. Higher left-c.e. approximations. We now define the strongest restriction of higher ∆0
2, which

can be seen as a higher analogue of left-c.e.

Definition 2.18. A higher left-c.e. approximation of a function f is a higher computable sequence
tfsus ωck1

such that lims fs � f and such that for any stages s1   s2 we have fs1 smaller than fs2
for the lexicographic order.

Note that if tfsus ωck1
is a higher left-c.e. approximation, then tfspnqus ωck1

changes at most 2n

times and then tfsus ωck1
is higher finite-change.

Just like left-c.e. binary sequences are exactly the leftmost path of Π0
1 sets, it is not hard to see

that higher left-c.e. binary sequences are the leftmost path of Σ1
1-closed sets.

3. Overview of the different classes in higher randomness

We present in this section the main higher randomness classes. These notions are obtained by
extending the definability power one can use to capture non-random sequences in nullsets.

3.1. ∆1
1 randomness. Perhaps the simplest higher randomness notion, and also the first that has

been introduced is obtained by defining that a sequence is random if it belongs to no effectively
Borel set of measure 0:

Definition 3.1 (Sacks, [44] IV.2.5). We say that Z P 2N is ∆1
1-random if it is in no ∆1

1 nullset.

Martin-Löf was actually the first to promote this notion (see [33]), suggesting that it was the
appropriate mathematical concept of randomness. Even if his first definition undoubtedly became
the most successful over the years, this other definition got a second wind recently on the initiative
of Hjorth and Nies who started to study the analogy between the usual notions of randomness and
theirs higher counterparts. One could also define the randomness notion obtained by considering
Σ1

1 nullsets, but this turns out to be equivalent to ∆1
1-randomness.

Theorem 3.2 (Sacks [44] IV.2.5). A ∆1
1-random sequence is in no Σ1

1 nullset. Therefore Σ1
1-

randomness coincides with ∆1
1-randomness.

Proof. Let A �
�
α ω1

Aα be a Σ1
1 nullset. Note that we can suppose that the intersection is

decreasing. By Theorem 3.11 we have that
�
α ωck1

Aα is already of measure 0. Then we can define

the Π1
1 function f : ω Ñ ωck1 which associates to n the smallest ordinal α such that λpAαq ¤ 2�n.

As f is total, it is actually a ∆1
1 function, and then its range is a ∆1

1 set of computable ordinals,
which is then bounded by some computable ordinal β, by the Σ1

1-boundedness principle. Therefore
we have λp

�
α β Aαq � 0 and then A is contained in a ∆1

1 set of measure 0. �

3.2. Π1
1-Martin-Löf randomness and below. Hjorth and Nies introduced in [17] a higher ana-

logue of Martin-Löf randomness.

Definition 3.3 (Hjorth, Nies [17]). A Π1
1-Martin-Löf test is given by an intersection of open sets�

n Un, such that λpUnq ¤ 2�n for each n and such that each Un is Π1
1 uniformly in n. A sequence

X is Π1
1-Martin-Löf-random if it is in no Π1

1-Martin-Löf test.

It will be sometimes convenient to use a higher version of Solovay tests:

Definition 3.4. A higher Solovay test is given by a sequence tUnunPN of uniformly (in n) Π1
1-open

sets such that
°
nPN λpUnq is finite. A sequence X passes the higher Solovay test if it belongs to

only finitely many Un.

The proof that X is Π1
1-Martin-Löf random iff it passes all the Solovay tests works as in the

lower setting. An interesting possibility with higher Solovay tests, that will be used sometimes, is
that we can index each open set with a computable ordinal instead of indexing it with an integer.
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Formally, given a sequence of Π1
1-open sets tUsus ωck1 , we can build the higher Solovay test Vn

where each Vn starts with an empty enumeration, until n is witnessed to be a code for the ordinal
s, in which case Vn becomes equal to Us. It is clear that the notion of being captured in unchanged
between tUsus ωck1 and tVnunPN.

We now discuss the relationship between Π1
1-Martin-Löf randomness and ∆1

1-randomness. The-
orem 3.6 implies that the set of Π1

1-Martin-Löf randoms is included in the set of ∆1
1-randoms. In

other words, the notion of Π1
1-Martin-Löf randomness is stronger than or equal to the notion of ∆1

1

randomness. To see that, we simply need to make effective the Lebesgue’s theorem stating that
any Borel set of arbitrary complexity is approximable from above by Π0

2 sets of the same measure,
and from below by Σ0

2 sets of the same measure. Such an effective version of the theorem has
been done for the arithmetical hierarchy in Kurtz’s thesis [27] and in Kautz [19]. We present here
the proof of [35] for the whole effective hyperarithmetical hierarchy. We start with the following
lemma, which says that “µpAq ¡ q” is a Σ0

α predicate for A a Σ0
α set.

Lemma 3.5. Let µ be a computable Borel probability measure. Let A � 2N be a Σ0
α set. The set

tq P QX r0, 1s : µpAq ¡ qu is a Σ0
α set, uniformly in µ, and in an index for A.

Proof. The proof goes by induction on computable ordinals. If A is a Σ0
1 set, the predicate µpAq ¡ q

is equivalent to Dt µpArtsq ¡ q, which is Σ0
1 as Arts is a clopen set. Everything is clearly uniform.

Suppose that for an ordinal α, any Σ0
 α set A and any rational q ¡ 0, the set tq P QX r0, 1s :

µpAq ¡ qu is a Σ0
 α set uniformly in an index for A. Consider the Σ0

α set A �
�
n Bn where each

Bn is Π0
 α uniformly in n. The predicate µpAq ¡ q is equivalent to Dm µp

�
n¤m Bnq ¡ q. Also

for each m the set
�
n¤m Bn is a Π0

 α set uniformly in m. By induction hypothesis, it follows that

tq P QX r0, 1s : µp
�
n¤m Bnq ¡ qu is a Π0

 α set for every m and uniformly in m. It follows that

the set tq P QX r0, 1s : Dm µp
�
n¤m Bnq ¡ qu is a Σ0

α set. �

Theorem 3.6. For any Σ0
α set A � 2N, any positive rational q and any computable Borel proba-

bility measure µ, there is:

(1) A Σ0
1p∅

 α
q set U with A � U such that µpU �Aq ¤ q

(2) A Π0
1p∅

 α
q set F for some β   α, with F � A such that µpA� Fq ¤ q

Moreover an index for U can be found uniformly in q and in an index for A, and an index for F
can be found uniformly in q, in an index for A and in ∅α.

Proof. The proof goes by induction on computable ordinals. For a Σ0
1 set A, the Σ0

1 set U is trivially
A itself for any q. The Π0

1 set F is Urts for t the smallest integer such that µpU � Urtsq ¤ q. As
U � Urts is a Σ0

1 set, from Lemma 3.5 we have that µpU � Urtsq ¤ q is a Π0
1 predicate, making t

computable in ∅1
, uniformly in q and an index for U . This makes Urts a Π0

1 set whose index can

be uniformly obtained in an index for A, in q and in ∅1
.

Suppose that the theorem is true below ordinal α and let us prove that it is true at ordinal α.
Let A �

�
n Bn be a Σ0

α set, with each Bn a Π0
 α set. By induction hypothesis (2), for each Bn

and each positive rational q, we can find a Σ0
1p∅

 α
q set Un � Bn uniformly in q, in n and in ∅ α

such that µpUn�Bnq ¤ q. Now by induction hypothesis (1), for each Bn and each positive rational

q, we can find a Π0
1p∅

 α
q set Fn � Bn uniformly in q, and in n, such that µpBn � Fnq ¤ q.

For any q, fix a computable sequence tqnun ω such that
°
n qn ¤ q. The desired Σ0

1p∅
 α
q set U

is then the union of the Σ0
1p∅

 α
q sets Un � Bn such that µpUn �Bnq ¤ qn. As each open set Un is

obtained uniformly in an index for Bn, in qn and in ∅ α, their union is a Σ0
1p∅

 α
q set, uniformly

in an index for A and in q.

Still using the computable sequence tqnun ω such that
°
n qn ¤ q, the desired Π0

1p∅
β
q set F

is equal to
�
n m Fn where m is the smallest integer such that µpA �

�
n¤m Bnq ¤ q0 and with

Fn � Bn and µpBn �Fnq ¤ qn�1. As each closed set Fn is Π0
1p∅

 α
q and as there are only finitely

many of them, then their union is still a Π0
1p∅

 α
q set. Besides A �

�
n¤m Bn is a Σ0

1p∅
α
q set

uniformly in m and therefore, using Lemma 3.5, the integer m can be found uniformly in ∅α, in q
and in an index for A. We also have that A�F �

�
n mpBn�FnqYpA�

�
n¤m Bnq and therefore

µpA� Fq ¤
°
n m µpBn � Fnq � µpA�

�
n¤m Bnq ¤ q. �

We now easily deduce the following:

Proposition 3.7 (Hjorth, Nies [17]). If Z is Π1
1-Martin-Löf random, then Z is ∆1

1-random.
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Proof. Suppose Z is in a ∆1
1 nullset A. This nullset is Σ0

α for some computable α. Now using

Theorem 3.6, we can find uniformly in n a Σ0
1p∅

 α
q set of measure less than 2�n, and containing

A. Also a Σ0
1p∅

 α
q-open set is clearly a Π1

1-open set and we can then build a Π1
1-Martin-Löf test

capturing Z. �

We shall see in Section 4.1 that Π1
1-Martin-Löf randomness is strictly stronger than ∆1

1-
randomness.

3.3. Higher weak-2 and difference randomness. The higher analogue of weak-2-randomness
has also been studied by Chong and Yu in [6]. This notion received quite many different names in
the literature. Chong and Yu refereed to it as Strong-Π1

1-Martin-Löf randomness, Monin [36, 35]
refereed to it as weak-Π1

1-randomness and Bienvenu, Greenberg and Monin [2] as higher weak-2-
randomness. We stick here with this last name, which echoes to its well-know analogue in classical
randomness.

Definition 3.8 (Nies [38] 9.2.17). We say that Z is higher weakly-2-random if it belongs to no
uniform intersection of Π1

1-open sets
�
n Un, with λp

�
n Unq � 0.

It is clear that the notion of higher weakly-2-randomness is stronger than the notion of Π1
1-

Martin-Löf randomness. We shall see later that it is strictly stronger. In fact we will even see
another notion of randomness which is strictly between Π1

1-Martin-Löf randomness and higher
weak-2-randomness: Franklin and Ng defined in [11] a notion of test in classical randomness,
which exactly captures the sequences which are either not Martin-Löf random, or Turing compute
the halting problem. They called difference randomness this notion of randomness, which has been
very useful to prove various theorems.

Something analogous can be done in higher randomness, to capture exactly the Π1
1-Martin-Löf

random sequences which higher Turing compute O.

Definition 3.9 (Yu [39]). A sequence X is not higher difference random if there is a Σ1
1-closed

set F and a uniform sequence of Π1
1-open sets tUnunPN such that λpUn X Fq ¤ 2�n and such that

X P
�
npUn X Fq.

Yu [39] showed that a Π1
1-Martin-Löf random sequence is not higher difference random iff it

higher Turing computes O. We will see this in Section 6.1.

3.4. Π1
1-randomness. So far, the full descriptive power of Π1

1 or Σ1
1 predicates has not been used.

When Sacks introduced ∆1
1-randomness, he also introduced a notion stronger than any presented

so far : the tests are now the Π1
1 nullsets. Note that a Π1

1 set is not necessarily Borel. Lusin showed
however that they remain all Lebesgue-measurable, that is, any Π1

1 set is the union of a Borel set
and of a set which is included in a Borel set of measure 0. It is shown using the fact that any Π1

1

set A is a uniform union of Borel sets Aα over α   ω1 (formally for any Π1
1 set, there exists e P N

such that A �
�
α ω1

Aα with Aα � tX : e P OX αu).

Theorem 3.10 (Lusin). There is an ordinal γ and a Borel set B of measure 0 such that for any
Π1

1 set A �
�
α ω1

Aα, the set A�Aγ is contained in B. In particular any Π1
1 set is measurable.

Sacks proved later that the ordinal γ of the previous theorem actually equals ωck1 , making the
set tX : ωX1 ¡ ωck1 u a set of measure 0:

Theorem 3.11 (Sacks [44]). The set tX : ωX1 ¡ ωck1 u has measure 0. This set is in fact a Borel
set B of measure 0 such that for any Π1

1 set A �
�
α ω1

Aα, we have that A �Aωck1
is contained

in B.

Proof. Suppose ωX1 ¡ ωck1 . Then there must be an integer of OX coding for ωck1 . In particular,
there must be a functional Φ : 2N � ω Ñ ω, such that ΦpXq is total on ω and whose range
is a set of codes for X-computable ordinals, unbounded below ωck1 . Given any functional Φ, let
Pn,α � tX | ΦpX,nq P OXα u. Note that Pn,α is ∆1

1 uniformly in n and α. If ωX1 ¡ ωck1 is witnessed in
the way stated above, via the functional Φ, we must have X P

�
n

�
α ωck1

Pn,α�
�
α ωck1

�
n Pn,α.

Let us show λp
�
n

�
α ωck1

Pn,α �
�
α ωck1

�
n Pn,αq � 0.

Let r � λp
�
n

�
α ωck1

Pn,αq. For any rational q   r, let fq : ω Ñ O be the Π1
1 function defined

by:

fqpnq � min
α ωck1

s.t. λ

�£
k¤n

Pk,α

�
¡ q
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It is clear that fq is total. Let αq � supn fqpnq. By admissibility, we have αq   ωck1 . We have
in particular λp

�
n Pn,αq q ¥ q. As we can do this for any rational q   r, it follows that we have

λp
�
α ωck1

�
n Pn,αq q � r.

So for any functional Φ, the set of X P 2N for which Φ witnesses ωX1 ¡ ωck1 , is of measure 0. As
there are only countably many functionals, the set of X such that ωX1 ¡ ωck1 is a set of measure
0. �

The proof of the previous theorem details a Borel description of the set tX : ωX1 ¡ ωck1 u. Steel
actually showed that this set is Σ0

ωck
1 �2

and not Π0
ωck

1 �2
. A full proof can be found in [35]. We

have an interesting corollary:

Theorem 3.12 (Sacks [44]). If X is not ∆1
1, then λptY : Y ¥h Xuq � 0.

Proof. We have Y ¥h X iff OXα ¥T X for some α   ωX1 . Suppose λptY : Y ¥h Xuq ¡ 0. As
the set tX : ωX1 ¡ ωck1 u has measure 0, we can suppose that there is some α   ωck1 and a Turing
functional Φ such that λptY : ΦpOYα q � Xuq ¡ 0. As the set tY : ΦpOYα q � Xu is Borel, by the
Lebesgue density theorem, there is a string σ such that λptY : ΦpOYα q � Xu | σq ¡ 1{2. To know
the value of Xpnq, we simply compute the values λptY : ΦpOYα , nq � 1u | σq and λptY : ΦpOYα , nq �
0u | σq. Whichever measure is bigger than 1{2 gives us the correct value of Xpnq, and thus X is
∆1

1. �

Let us quickly argue that the set tX : ωX1 ¡ ωck1 u is also Π1
1. We have that ωX1 ¡ ωck1 iff “De P

OX^@n @f f is not an order-isomorphism between the order coded by e and the one coded by n”.
This is a Π1

1 statement.
The fact that every Π1

1 set is measurable, even though it is not necessarily Borel, gives the
possibility of another notion of higher randomness, which will appear to have many remarkable
properties, and no counterpart in classical randomness:

Definition 3.13 (Sacks [44] IV.2.5). We say that Z P 2N is Π1
1-random if it is in no Π1

1 nullset.

This last notion is very interesting for many reasons. One of them is that no X such that
ωX1 ¡ ωck1 is Π1

1-random, and we shall see now that this is the best we can do, as any randomness
notion weaker than Π1

1-randomness contains elements that make ωck1 a computable ordinal. This is
achieved through the following simple and yet beautiful theorem of Chong, Nies and Yu (see [5]):

Theorem 3.14 (Chong, Nies, Yu [5]). A sequence Z is Π1
1-random iff it is ∆1

1-random and
ωZ1 � ωck1 .

Proof. Suppose Z is ∆1
1-random. If ωZ1 ¡ ωck1 then by Theorem 3.11, Z is not Π1

1-random.
Suppose now that Z is not Π1

1-random and then captured by a Π1
1 set A �

�
α ω1

Aα of measure

0. If there is a computable α such that Z P Aα then Z is not ∆1
1-random as Aα is a ∆1

1 set of
measure 0. Otherwise Z P A�

�
α ωck1

Aα and then ωZ1 ¡ ωck1 . �

Another important property of Π1
1-randomness is certainly the existence of a universal Π1

1 nullset,
in the sense that it contains all the others. Kechris was the first to prove this, in [20], and he actually
proved a more general result, implying for example also the existence of a largest Π1

1 thin set (a
largest Π1

1 set which contains no perfect subset). We will discuss the relation with this largest
Π1

1 thin set and higher randomness in Section 7.4. Later, Hjorth and Nies gave in [17] an explicit
construction of this Π1

1 nullset.

Theorem 3.15 (Kechris [20] Hjorth, Nies [17]). There is a largest Π1
1 nullset.

Proof. Let tPeuePω be an enumeration of the Π1
1 sets, with Pe �

�
α ω1

Pe,α. Recall from above

that each set Pe�
�
α ωck1

Pe,α is always null and contained in the nullset tX | ωX1 ¡ ωck1 u. Let us

argue that uniformly in e, one can transform the set
�
α ωck1

Pe,α into a set
�
α ωck1

Qe,α (where

each Qe,α is ∆1
1 uniformly in e and a code of O�α) such that λp

�
α ωck1

Qe,αq � 0, and such that

if λp
�
α ωck1

Pe,αq � 0 then
�
α ωck1

Qe,α �
�
α ωck1

Pe,α.

To do so we simply set Qe,α � Pe,α if λpPe,αq � 0 (recall that the measure of a ∆1
1 set is

uniformly ∆1
1) and Qe,α � H otherwise. Then we define Q to be

�
e

�
α ωck1

Qe,α together with

the set tX | ωX1 ¡ ωck1 u. The set Q is clearly Π1
1, and by construction it is a nullset containing

every Π1
1 nullset. �
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Chong and Yu proved in [6] that higher weak-2-randomness is strictly stronger than Π1
1-

Martin-Löf-randomness (see Section 6.1). Bienvenu, Greenberg and Monin later showed that
Π1

1-randomness is strictly stronger than higher weak-2-randomness (see Section 6.2).

4. ∆1
1-randomness

4.1. Separation with Π1
1-Martin-Löf randomness. We shall see now that Π1

1-Martin-Löf rand-
omness is strictly stronger than ∆1

1-randomness. This was proved by Chong, Nies and Yu in [5]
using the notion of higher Kolmogorov complexity that we will introduce later. The proof they gave
can be seen as a higher analogue of the separation between computable randomness and Martin-Löf
randomness. We give here a similar proof, without using higher Kolmogorov complexity, but rather
a combination between higher priority method and forcing with closed sets of positive measure. A
similar technique will be reused for Theorem 6.7.

Theorem 4.1 (Chong, Nies, Yu [5]). There is a sequence X which is ∆1
1-random and not Π1

1-
Martin-Löf random.

Proof. Let tAsus ωck1 be an enumeration of the ∆1
1 sets of measure 1. To get this enumeration,

recall that the ∆1
1 sets are the Σ0

α sets, and that the measure of a Σ0
α set is ∆1

1, uniformly in α.
Recall that p : ωck1 Ñ ω is the projectum function, let O1

¤s � tpptq : t ¤ su, and for m P O1
¤s let

O1
¤sæm� tn P O

1
¤s : n   mu.

The construction:
We can suppose without loss of generality that A0 � 2N. At stage 0 we define for each n the

set Fn
0 to be 2N and the string σn0 to be the string consisting of 2n 0’s.

Suppose that at every stage t   s we have defined for each n P N a ∆1
1 closed set Fn

t and
a string σnt such that σnt   σn�1

t and with |σnt | � 2n. Suppose also that for each m we have
λp
�
n¤m Fn

t X rσ
m
t sq ¡ 0 and that if m P O1

¤t we have Fm
t � Ap�1pmq.

Suppose first that s is successor and let us define Fm
s and σms for each m P N. For each

m   ppsq we define σms � σms�1 and Fm
s � Fm

s�1. For each m ¥ ppsq in increasing order, if
m P O1

¤s, let t � p�1pmq and let us compute an increasing union of ∆1
1 closed sets

�
n Fn �

At with λpAt �
�
n Fnq � 0. Let Fm

s be the first closed set of the union
�
n Fn such that

λp
�
n m Fn

s X Fm
s X rσm�1

s sq ¡ 0. If m R O1
¤s, let Fm

s � 2N. Then let σms be the first string of
length 2m which extends σm�1

s , such that λp
�
n¤m Fn

s X rσ
m
s sq ¡ 0.

Finally, for a stage s limit we define for each n the string σns to be the limit of the sequence
tσns ut s and the closed set Fn

s to be the limit of the sequence tFn
s ut s. We shall argue that later

that such a limit always exists.

The verification:
For every m there is a stage s such that tO1

¤tæmus¤t ωck1 is stable. Furthermore, for each m, the

sequence tO1
¤tæmut ωck1 can change at most m times, because at most m values can be enumerated

in O1æm. It follows that at every limit stage s and for every m, the sequences tσms ut s and tFm
s ut s

also can change at most m times, and then converge. Let Fm the convergence value of tFm
s ut s.

Also by design for every s ¤ ωck1 such that O1
¤s is infinite, the unique limit point Xs of

trσns sunPO1
¤s

belongs to
�
n Fn

t �
�
t¤sAt. Let X be the limit of the sequence tXsus ωck1

.

Let us argue that X is ∆1
1-random. Let sk be the smallest stage such that tFm

s usk¤t ωck1 is

stable for every m ¤ k. It is clear that the sequences X Y tXskukPN is a closed set. Also for every
k we have that

�
n¤k Fn X pX Y tXskukPNq is not empty because Xsk P

�
n¤k Fn. It follows that�

n Fn X pX Y tXskukPNq is not empty and then that
�
n Fn contains X, the only non ∆1

1 point of
tXsus ωck1

YX. Therefore X P
�
t ωck1

At and X is ∆1
1-random.

Let us argue that X is not Π1
1-Martin-Löf random. We argued already that tσmt ut ωck1

can

change at most m times. Then we can put each string σms of length 2m, into the m-th component
of a Π1

1-Martin-Löf test which has measure smaller than m� 2�2m ¤ 2�m. �

4.2. Lowness for ∆1
1-randomness. Chong, Nies and Yu studied in [5] lowness for ∆1

1-
randomness. They showed that it coincides with the notion of ∆1

1-traceability, that they also
defined:

Definition 4.2 (Chong, Nies and Yu [5]). A sequence X P 2N is ∆1
1-traceable if there is a ∆1

1

function g such that for any function f ¤h X, there is a ∆1
1 trace tTnunPN such that:



HIGHER RANDOMNESS 13

(1) @n fpnq P Tn
(2) @n |Tn| ¤ gpnq

Traceability notions have also been studied in set theory. In these field, traces are called slalom.
The notion of ∆1

1-traceable can also be seen the higher analogue of the notion of computably trace-
able. Also Kjos-Hanssen, Nies and Stephan showed [23] that a sequence is computably traceable iff
it is low for Schnorr randomness. The proof that X is low for ∆1

1-randomness iff X is ∆1
1-traceable,

works analogously. We first start with an easy lemma, whose analogue for computable traceability
is well known

Lemma 4.3. Let X be ∆1
1-traceable with bound g. Then for any ∆1

1 order function g1, the sequence
X is ∆1

1 traceable with bound g1.

Proof. Let f ¤h X. let h : NÑ N be the ∆1
1 function such that hp0q � 0 and hpnq is the smallest

greater than hpn � 1q for which @n @k ¥ hpnq g1pkq ¡ gpnq (which is possible as g1 is an order
function).

Let f 1 be such that f 1pnq is an encoding the the values of f from fphpnqq to fphpn�1q�1q. Note
that f 1 ¤h X. Also there is a ∆1

1 trace tT 1nunPN of f 1 with bound g. But this trace can be easily
transformed into a ∆1

1 trace tTnunPN of f with bound g1: We set Tk for 0 ¤ k ¤ hp1q�1 so that Tk
only contains the value of fpkq. Then inductively for each n we set Tk for hpnq ¤ k ¤ hpn� 1q� 1
so that each Tk contains the decoding of the k� hpnq-th value encoded by each element of T 1n. As
we have g1pkq ¡ gpnq for each k ¥ hpnq and as there are at most gpnq elements in T 1n, then there
are at most g1pkq elements in each Tk for hpnq ¤ k ¤ hpn� 1q � 1. �

Theorem 4.4 (Chong, Nies and Yu [5]). If X P 2N is ∆1
1-traceable then X is low for ∆1

1-
randomness.

Proof. Let A be a ∆1
1pXq nullset. From Theorem 3.6 one can find a uniform intersection of ∆1

1pXq
open sets

�
m Um such that:

(1) A �
�
m Um

(2) λpUmq � 2�m

Note that Theorem 3.6 only gives us λpUmq   2�m. One easily complete the set Um by adding
in a ∆1

1 way countably many string to that the measure equals 2�m.
For each open set Um there is a ∆1

1pXq function fm : NÑ 2 N such that Um �
�
nrfmpnqs. Let

us define a ∆1
1pXq function hm : NÑ N such that:

Am1 � tfmpkq : 0 ¤ k   hp1qu with r1 � λprA1s
 q ¥ 1{2� 2�m

Amn�1 � tfmpkq : hpnq ¤ k   hpn� 1qu with rn�1 � λprAn�1s
 q ¥ 1{2� p2�m �

°
i¤n riq

Note in particular that λpAmn q ¤ 2�n�12�m for n ¥ 1. Now let f be defined so that fpxn,myq �
Amn . Let g be a computable order function such that for every m we have

°
n gpxn,myq2

�n�12�m ¤
2�m�2. Note that this is possible as xn,my is polynomial in n and m. As X is ∆1

1-traceable there
is a trace tTnunPN of f with bound g.

To compute each ∆1
1 open set Vm we proceed as follow : For each Txn,my for some n, we

consider all its elements of measure smaller than 2�n�12�m and we put there union in Vm. As
we have

°
n gpxn,myq2

�n�12�m ¤ 2�m�2, then the measure of Vm is smaller than 2�mk�2. As
λpAmn q ¤ 2�n�12�m then rAmn s

  � Vm. It follows that
�
m Vm is a ∆1

1 set of measure 0 which
contains A. Then X is low for ∆1

1-randomness. �

Theorem 4.5 (Chong, Nies and Yu [5]). If X P 2N is low for ∆1
1-randomness, then X is ∆1

1-
traceable.

Proof. Let f ¤h X. For technical reasons, we suppose that for every n we have that n divides
fpnq. Note that this hypothesis is harmless, as if this is not the case, we can instead deal with the
function n ÞÑ n� pfpnq � 1q. Also note that any trace for such a function can also be transformed
into a trace for f .

Let Bn,k � tσ0n : |σ| � ku. Note that for any n, k we have λprBn,ks
 q � 2�n. We define the

∆1
1pXq open set Vn �

�
m¥nBm,fpmq. Note that we have λpVnq ¤

°
m¥n λprBn,gpnqs

 q ¤ 2�n�1.

It follows that
�
nrVns

  is a ∆1
1 set of measure 0. By hypothesis there is a ∆1

1 nullset A which
contains

�
nrVns

 . Also by Theorem 3.6 there is a ∆1
1 open sets U such that

�
nrVns

  � U and
with λpUq � 1{4.
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Claim : There exists a string σ and an integer n such that λpU | σq   1{4 and such that
λprVns  � U | σq � 0.

We suppose otherwise. Then we build a sequence σ0   σ1   whose limit point Z is in
�
nrVns

 

but not in U . Let σ0 be the empty string. Suppose σn has been defined such that λpU | σnq   1{4.
As the claim is suppose false, we then have λprVns

  � U | σnq ¡ 0. So we can choose τ P Vn with
τ ¥ σn such that λprτ s � U | σnq ¡ 0. By the Lebesgue density theorem there exists an extension
σn�1 of τ such that λprτ s � U | σn�1q ¡ 3{4 and then such that λpU | σn�1q   1{4. The limit
point Z of the sequence tσnunPN has the property that none of its prefix σn is such that rσns � U
(because λpU | σnq   1{4). But then as U is open, Z is not in U and yet Z P

�
nrVns

  which is a
contradiction.

So we pick a prefix σ and an integer a such that λpU | σq   1{4 and such that λprVas
 �U | σq � 0.

The trace Tn is defined as follow:

Tn � tk : λprBn,ks
  � U | σq � 0 and n divides ku if n ¡ a

Tn � tfpnqu if n ¤ a

It is clear that tTnunPN traces f . We shall now prove that |Tn|   2n for every n. It is here
that we use the fact that n divides gpnq. Recall that we have λprBn,ks

 q � 2�n. Therefore if U
covers rBn,ks

  it must measure at least 2�n. Now given a finite set E of multiple of n, the events
“covering Bn,k” are independent events for different k. In particular we have:

λ

�£
kPE

p2N � rBn,ks
 q

�
� ΠkPEp1� λprBn,ks

 qq

As λpBn,kq � 2�n we then have that λp
�
kPErBn,ks

 q � 1 � p1 � 2�nq|E|. For |E| large enough
we then have λp

�
kPErBn,ks

 q ¡ 1{4. In particular we need |E| to be large enough so that

p1� 2�nq|E|   3{4 iff pp2n � 1q{2nq|E|   3{4 iff p2n{p2n � 1qq|E| ¥ 4{3. Now for |E| � 2n we have
p2nq2

n

¥ 2p2n � 1q2
n

which implies that p2n{p2n � 1qq2
n

¥ 2 ¡ 4{3. It follows that we must have
|Tn|   2n as otherwise we have λpUq ¡ 1{4. �

5. Π1
1-Martin-Löf randomness

5.1. The higher Kučera-Gács theorem. Hjorth and Nies showed that for every X P 2N, there
is a Π1

1-Martin-Löf random Z ¥h X. They actually even show something stronger in that the
reduction can be made continuous in the sense of Definition 2.11. The proof is the same as the
one from Kučera in the lower settings. We first need the following combinatorial lemma:

Lemma 5.1. let σ be a string and F a closed set so that λpF | σq ¥ 2�n. Then there are at least
two extensions τ1, τ2 of σ of length |σ| � n� 1 so that for i P t1, 2u we have λpF | τiq ¥ 2�n�1.

Proof. Let C be the set of strings of length |σ| � n� 1 that extend σ. We have that λpF X rσsq �°
τPC λpF X rτ sq. Suppose that for strictly less than two extensions of length |σ| � n� 1 we have

λpF X rτisq ¥ 2�|τi|�n�1. Then we have:°
τPC λpF X rτ sq ¤ 2�|σ|�n�1 � p2n�1 � 1q2�|τi|�n�1

¤ 2�|σ|�n�1 � 2n�12�|σ|�2n�2 � 2�|σ|�2n�2

¤ 2�|σ|�n�1 � 2�|σ|�n�1 � 2�|σ|�2pn�1q

  2�|σ|�n

which contradicts λpF | σq ¥ 2�n. �

We now prove the higher analogue of Kučera-Gács theorem:

Theorem 5.2 (Hjorth, Nies [17]). For any sequence X and any Σ1
1 closed set F � 2N of positive

measure, there exists Z P F such that Z higher Turing computes X.

Proof. Consider a Σ1
1 closed set F � 2N with λpFq ¥ 2�c and a sequence X. According to what

Lemma 5.1 tells us, we define some length m0 � 0 and inductively mn�1 � mn � c� n� 1.
We define σ0 to be the empty word. Assuming σn of lengthmn is defined with λpF | σnq ¥ 2�c�n,

we will define an extension σn�1 of σn with the same property. From Lemma 5.1 there are at least
two extensions τ of σn of length mn � c� n� 1 � mn�1 such that λpF | τq ¥ 2�c�pn�1q. Also if
Xpnq � 0 let σn�1 be the leftmost of those extensions and if Xpnq � 1 let σn�1 be the rightmost
of those extensions. The unique limit point Z of trσnsunPN is our candidate. We shall now show
how we use it to compute X, by describing the reduction Φ � 2 N � 2 N.
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At stage 0, we map the empty word to the empty word in Φ. Then at successor stage s, and
substage n� 1, for each string σ of length mn which is mapped to τ in Φs�1, if there are distinct
leftmost and a rightmost extensions σ1, σ2 of σ of length mn�1 such that λpF | σiqrss ¥ 2�c�pn�1q

for i P t0, 1u, we map the leftmost one to τ0 in Φ at stage s; then we map the rightmost one to
τ1 in Φ at stage s. At limit stage s we let Φs to be the union of Φt for t   s.

By design, the functional Φ is consistent everywhere because for any two strings σ2 ¡ σ1 which
are mapped to something in Φ, the string σ2 is always mapped to an extension of what the string
σ1 is mapped to. We also clearly have ΦpZq � X, because for any prefix σ1 of Z of length mn

which is mapped to Xæn, there is always a stage at which the prefix σ2 of Z of length mn�1 will
be witnessed to be either the leftmost or the rightmost path of F that extends σ1 and such that
λpF | σ2qrss ¥ 2�c�pn�1q, in which case it will be mapped to Xæn�1. �

5.2. Higher Kolmogorov complexity. In this section, we introduce a higher version of the
notion of prefix-free Kolmogorov complexity, a fundamental concept of classical randomness. For
a very complete survey on the subject of lower Kolmorogov complexity, the reader can refer to [10]
[38] or [30].

While defining the notion of Π1
1-Martin-Löf randomness in [17], Hjorth and Nies also defined

the notion of Π1
1-Kolmorogov complexity, in order to study higher analogies of theorems occurring

in classical randomness.

Definition 5.3 (Hjorth, Nies [17]). A Π1
1-machine M is a Π1

1 partial function M : 2 N Ñ 2 N.
A Π1

1-prefix-free machine M is a Π1
1 partial function M : 2 N Ñ 2 N whose domain of definition

is a prefix-free set of strings. We denote by KM pσq the Π1
1-Kolmorogov complexity of a string σ

with respect to the Π1
1-machine M , defined to be the length of the smallest string τ such that

Mpτq � σ, if such a string exists, and by convention, 8 otherwise.

The proof that there is a universal computable prefix-free machine works similarly with Π1
1-

prefix-free machine:

Theorem 5.4 (Hjorth, Nies [17]). There is a universal Π1
1-prefix-free machine U , that is, for each

Π1
1-prefix-free machine M , there exists a constant cM such that KU pσq ¤ KM pσq � cm for any

string σ.

Proof. We first have to make sure that we can enumerate the Π1
1-prefix-free machines: we have a

total computable function such that for any e, the integer fpeq is always an index for a Π1
1-prefix-

free machine, and if e is already an index for a Π1
1-prefix-free machine, then fpeq is an index for

the same machine.
We see the machine Me as an enumeration of pairs pσ, τq (if Mpσq � τ) along the computable

ordinal times of computation. Given the machine Me, suppose that pσ, τq is enumerated in Me

at stage s. If Mfpeqr  ss contains pσ1, τ 1q such that σ1 is compatible with σ, then we enumerate
nothing in Mfpeq at stage s. Otherwise we enumerate pσ, τq in Mfpeq at stage s.

Then we simply define U to be the machine which enumerates p0ep1pσ, τq for each e, σ and τ
such that pσ, τq is enumerated in Mfpeq. For each machine M of index fpeq, the constant cM is
given by e� 1. �

Definition 5.5. For a string σ, we define Kpσq to be KU pσq for a universal Π1
1-prefix-free machine

U , fixed in advance.

Hjorth and Nies [17] gave a general technique, used to build Π1
1-prefix-free machines, that is, a

higher version of the well-known KC theorem. For this purpose we need the following definitions.

Definition 5.6. Given a set A � N � 2 N, the weight of A, denoted by wgpAq, refers to the
quantity

°
pl,σqPA 2�l if this quantity is finite, and refers to 8 otherwise. A set A � N� 2 N such

that wgpAq ¤ 1 is called a bounded request set.

In classical randomness, given a computably enumerable bounded request set A, we can effecti-
vely build a prefix-free machine M such that as long as pl, σq P A, then also Mpτq � σ for some
string τ of length l. Here is a higher version of the KC theorem:

Theorem 5.7 (Hjorth, Nies [17]). For any Π1
1-bounded request set A, there is a Π1

1-prefix-free
machine M such that for any string σ, if pl, σq P A, then for a string τ of length l we have
Mpτq � σ.
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Proof. The prefix-free machine M can be found uniformly in A. However, handling the case where
A is a finite set such that wgpAq � 1 makes the proof slightly more complicated. To keep things
as simple as possible, we assume wgpAq   1 (see below how this hypothesis is used). Except for
the sake of uniformity (which again can be achieved with a bit more work), such an assumption
is harmless, because if wgpAq � 1, by admissibility, there exists a computable stage s at which
wgpAsq � 1 already, and we can then directly define a Π1

1-prefix-free machine M that matches the
conditions of the theorem with respect to the ∆1

1 bounded request set As.
At each stage s, for each length l ¥ 1 we define a string σls either of length l or equal to the

empty word, and a sequence rs P 2N. The strings σls which are different from the empty word,
correspond to the strings available for a mapping at stage s � 1. The role of rs is double. First,
the real number represented by rs in a binary form, will be equal to the weight of As, which is also
the measure of the set of strings that is mapped to something in Ms. Then, if the pn � 1q-th bit
of rs is 0 (starting at position 0), it will also mean that the string σns is different from the empty
word and available for a future mapping. We need to ensure at each stage s that:

(1) The set of strings currently mapped in Ms, together with each σls different from the empty
word, forms a prefix free set of strings.

(2) rs is a binary representation of the weight of As, which is also the measure of the set of
strings mapped to something in Ms.

(3) If rspn� 1q � 0, the string σns is a string of length n. Otherwise it is the empty word.

At stage 0, we define σl0 � 0l�1p1 and r0 to be only 0’s. We have that p1q, p2q and p3q are
verified at stage 0.

At successor stage s suppose pl, τq enters As. If rs�1pl � 1q � 0 we put pσls�1, τq into Ms, we

set σls to the empty word and rspl � 1q to 1. For i � l and i ¥ 1 we set rspi � 1q � rs�1pi � 1q
and σis � σis�1. We can easily verify by induction that (1), (2) and (3) are true at stage s.
Otherwise, if rs�1pl � 1q � 1, let n be the largest integer bigger than 0 and smaller than l such
that rs�1pn � 1q � 0. We should argue that such an integer always exists. Suppose otherwise,
then either rs�1 � 1000 . . . , l � 1 and wgpAs�1q � 2�l � 1, which is not possible by our special
assumption, or wgpAs�1q � 2�l ¡ 1, which is not possible because A is a bounded request set.
Thus such an integer n exists. We then set σns to be the empty string and rspn � 1q � 1. Then
for every n   i ¤ l, we set σis to σns�1p0i�n�1p1 and rspi� 1q � 0. Then we map σns�1p0l�n�1p0

to τ in Ms. For 1 ¤ i   n and i ¡ l we set rspi� 1q � rs�1pi� 1q and σis � σis�1. We can easily
verify by induction that (1), (2) and (3) are true at stage s.

At limit stage s we set rs to the pointwise limit of trtut s. Then we set each σns to the
convergence value of the sequence tσns ut s. We shall argue that those convergence values always
exist. When for some n and some stage s we have rsæn� rs�1æn, then rs�1æn is bigger than rsæn in
the lexicographic order, but as there are at most 2n strings of length n, the sequence trsænus ωck1
can change at most 2n time. Then for any s, a convergence value for trtut s always exists. Also
when for some n and some s we have σns�1 � σns , then also rs�1æn� rsæn. But as the sequence
trsænus ωck1

can change at most 2n times, then also the sequence tσns us ωck1
can change at most

2n times. We can easily verify by induction that (1), (2) and (3) are true at stage s.
Because (1) is true at every stage s, we then have that M is a Π1

1-prefix-free machine, also by
construction we clearly have that if pl, σq P A, then Mpτq � σ for a string τ of length l. �

For a given Π1
1 prefix-free machine M , we can consider the probability that M outputs a given

string σ. One can imagine the following process : We flip a fair coin to get a bit, either 0 or 1,
and we repeat the process endlessly. So we get bigger and bigger strings σ1   σ2   σ3   . . . . In
the meantime we test each of our strings σi available so far, as an input for our machine M . If at
some point Mpσiq halts for one i (and it can be at most one i), then we stop the process.

It is clear that following the previous protocol, the probability that we output a given string
τ is given by

°
t2�|σ| : Mpσq � τu. Note that this all make sense, thanks to the prefix-free

requirement we have for our machine.

Definition 5.8. For a Π1
1 prefix-free machine M , we denote by PM pσq the probability that M

outputs σ, that is,
°
t2�|τ | : Mpτq � σu.

We now have the following higher analogue of the coding theorem, which is useful for the study
of lowness for Π1

1-Martin-Löf randomness.

Theorem 5.9 (Hjorth, Nies [17]). For any Π1
1-prefix-free machine M , we have a constant cM such

that PM pσq ¤ 2�Kpσq � cM for any σ.
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Proof. We build a Π1
1-bounded request set A from our machine M . At successor stage s, for every

string σ such that PM pσqrss � 0, we simply put into A the pair pm,σq for m � r� logpPM pσqrssqs�1
(as long as pm,σq is not already in Arss). At limit stage s, we define Arss to be

�
t sArts.

For a given σ suppose that PM pσq � r for r a real number and let n be the smallest integer such
that 2�n ¤ r. By construction the weight corresponding to σ in A is of at most

°
m¥n 2�m�1 �

2�n ¤ r. Also because
°
σ PM pσq ¤ 1 we have that A is a bounded request set for which we can

build a prefix-free machine N . Also for each string σ with PM pσq � r and 2�n the greatest power
of 2 such that 2�n ¤ r, we have that pn�1, σq is enumerated in A and then that PM pσq ¤ 2�n�1 ¤
2�n�1 � 4 � 2�KN pσq � 4 ¤ 2�Kpσq � cM for cM a constant depending on M . �

5.3. Equivalent characterizations of Π1
1-Martin-Löf randomness. We shall now see an im-

portant lemma. It is clear that any Σ0
1 set can be described by a Σ0

1 prefix-free set of strings. But
this does not hold anymore in the higher setting. Nonetheless, from a measure theoretical point of
view, a Π1

1-open set can be described by a set of strings which is as close as we want from being
prefix-free.

Definition 5.10. We say that a set of strings W is ε-prefix-free if
°
σPW λprσsq ¤ λprW s q � ε.

Lemma 5.11. For any Π1
1-open set U , one can obtain uniformly in ε and in an index for U , a

ε-prefix-free Π1
1 set of strings W with rW s  � U .

Proof. We use here the projectum function p : ωck1 Ñ ω. Let U be a Π1
1 set of strings describing

U . At successor stage s, if σ enters U , we find a finite prefix-free set of strings Cs, each of them
extending σ, such that rσs � rWs�1s

  Y rCss
  and such that λprWs�1s

  X rCss
 q ¤ 2�ppsq � ε

(and if nothing enters U we define Cs � H). We then add each string of Cs to Ws. At limit stage
s we define Ws to be

�
t sWt.

It is clear by construction that we have U � rW s . Moreover, we have
°
σPW λprσsq ¤ λpUq �°

s ωck1
rWs�1s

  X rCss
  ¤ λpUq � ε

°
s ωck1

2�ppsq ¤ λpUq � ε. �

We can now show the higher equivalent of the well known Levin-Schnorr theorem, in classical
randomness.

Theorem 5.12 (Hjorth, Nies [17]). Given a sequence Z, the following statements are equivalent.

(1) The sequence Z is Π1
1-Martin-Löf-random.

(2) There is a constant c such that for every n we have KpZænq ¥ n� c.

Proof. p1q ùñ p2q: Let us show that  (2) implies  (1). Uniformly in c P N, we define Uc �
tX | Dn KpXænq   n � cu. Each Uc is a Π1

1-open set and
�
c Uc contains all the sequences that

do not verify (2). It remains to prove λpUcq ¤ 2�c to deduce that none of them is Π1
1-Martin-Löf

random. Suppose for contradiction that λpUcq ¡ 2�c and let W be the (non effective) prefix-
free set of strings which describes Uc and which is minimal under the prefix ordering. We have
1 ¥

°
σPW 2�Kpσq ¥

°
σPW 2�|σ|2c ¥ λpUcq2c ¡ 1, which contradicts that µ is a Π1

1-continuous
semi-measure.
p2q ùñ p1q: Consider now a Π1

1-Martin-Löf-test
�
n Un and let us build a Π1

1-prefix-free machine
M such that for every X P

�
n Un and every c we have some n with KM pXænq   n � c. Using

Lemma 5.11, we can get a Π1
1 set of strings Wn, uniformly in n, such that Un � rWns

  and such
that

°
σPWn

λprσsq ¤ λpUnq � 2�n.

Then to define M , we first define the Π1
1-bounded request set A by enumerating p|σ| � n, σq

for each n and each σ P W2n�2. We have that A is a bounded request set because wgpAq ¤°
n

°
σPW2n�2

2�|σ|�n ¤
°
n 2n

°
σPW2n�2

2�|σ| ¤
°
n 2npλpU2n�2q � 2�2n�2q ¤

°
n 2n2�2n�1 ¤°

n 2�n�1 ¤ 1. Also we have for any X P
�
n Un and any n, a prefix of X in W2n�2 which is

compressed by at least n, with the Π1
1 prefix-free machine defined from A. Therefore for every c

there is an n such that KpXænq   n� c. �

We can also deduce from Lemma 5.11 a characterization of Π1
1-Martin-Löf-randomness, an

analogue of a result of Kučera’s [26].

Proposition 5.13. A sequence Z is Π1
1-Martin-Löf-random if and only if Z has a tail in every

non-null Σ1
1 closed set.

Proof. Suppose that Z is not Π1
1-Martin-Löf-random. Then every tail of Z is not Π1

1-Martin-Löf-
random, so Z and all of its tails miss every Σ1

1 closed set consisting only of Π1
1-Martin-Löf-random

sequences (e.g. complements of components of the universal Π1
1-Martin-Löf-test).
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Suppose that Z is Π1
1-Martin-Löf-random. Let P be Σ1

1 closed and non-null, and let V be the
complement of P. Let ε be such that λpVq � ε   1. By Lemma 5.11, let V be a ε-prefix-free Π1

1

set of strings which generates V. We let Vm � rV ms , where V m is the set of concatenations of m
strings, all from V . We have

°
σPVm λprσsq ¤ p

°
σPV λprσsqq

m, and the measure of Vm is bounded
by the weight of V m. The important point is that λpVmq goes to 0 computably, so

�
m Vm is a

Π1
1-Martin-Löf test. Let m be least such that X R Vm; as V0 � 2N, m ¡ 0. Let σ P V m�1 which is

a prefix of X. Let Y be such that X � σY . Then Y P P. �

5.4. Lowness for Π1
1-Martin-Löf randomness. The sequences which are low for Martin-Löf

randomness have been extensively studied. We shall transpose in this section the main results of
the lower setting to the higher setting, using continuous relativization.

In general, given a randomness notion C whose definition relativizes to any oracle X, we say
that X is low for C if CX � C.

Definition 5.14 (Hjorth, Nies [17]). We say that A is low for Π1
1-Martin-Löf randomness iff every

Π1
1-Martin-Löf random Z is also Π1

1pAq-Martin-Löf random.

5.4.1. higher K-trivial sequences.

Definition 5.15 (Hjorth, Nies [17]). A sequence A is higher K-trivial if for some constant d,
KpAænq ¤ Kpnq � d.

It is obvious that any ∆1
1 sequence is higher K-trivial, because up to an index for such a sequence

A, the information about the length of a prefix of A is enough to retrieve that prefix. We shall see
that just like for the lower setting, there are non-∆1

1 and higher K-trivial sequences. Solovay was
the first in [46] to build an incomputable K-trivial sequence. Later, Hjorth and Nies showed that
similarly, there are non-∆1

1 higher K-trivial sequences. Both proofs are similar in the lower and in
the higher setting.

Theorem 5.16 (Hjorth, Nies [17]). There is a higher K-trivial which is not ∆1
1.

Proof. The construction :
We want to build a Π1

1 higher K-trivial sequence X which is co-infinite and which intersect any
infinite Π1

1 set. Let tPeuePN be an enumeration of the Π1
1 sets and let U be a universal Π1

1-prefix-free
machine. We enumerate X and build at the same time a Π1

1-bounded request set M such that
inftm : pm,Xænq PMu ¤ KU pnq � 1. We keep track of a set of Boolean values Re, initialized to
false and meaning that X does not intersect Pe yet.

At successor stage s, at substage e for which Re is false, if there is n P Pe,s with n ¥ 2e and such
that the weight of M at stage s and substage e � 1, restricted to strings of length bigger than n,
is smaller than 2�e�1, then we enumerate n in X at stage s, we set Re to true, and for every pair
pl,Xs�1æmq in M at stage s and substage e� 1, we put pl,Xsæmq in M at stage s and substage e.

After all substages e, if pσ, nq is enumerated in U at stage s, we enumerate p|σ| � 1, Xsænq in
M at stage s.

The verification :
We should prove that wgpMq ¤ 1. The weight of all the pairs we enumerate in M because of

some pσ, nq in U , is bounded by 1{2 (because
°
pσ,nqPU 2�|σ| ¤ 1 and because for each pσ, nq P U

we increase the weight of M by at most 2�|σ|�1). Then for each e, the additional weight we put
in is bounded by 2�e�1. Therefore the weight of M is bounded by 1.

We should now prove that X is not ∆1
1. It is clearly co-infinite, as for each e we add in X at

most one integer bigger than 2e. Suppose that Pe is infinite. Then at some stage s it is already
infinite, by admissibility. Also at any stage t we have wgpM rtsq ¤ 1. Therefore there is a smallest
length n such that the weight of M at stage s, restricted to strings of length bigger than n, is
smaller than 2�e�1. At this point, the integer n is enumerated in X if Re is still false. So X
intersects every infinite Π1

1 set.
Also by construction it is clear that inftm : pm,Xænq P Mu ¤ KU pnq � 1. Therefore X is

higher K-trivial. �

Chaitin proved in [4] that there are only countably many K-trivial sequences. With a similar
proof, we also have that there are only countably many higher K-trivial sequences.

Theorem 5.17 (Hjorth, Nies [17]). There is a constant c, such that for each constant d and each
n, there are at most c� 2d many strings σ of length n such that Kpσq ¤ Kp|σ|q � d.
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Proof. Let M be the machine which on a string τ outputs |Upτq|. If τ is a short description for
any string of length n via U , then τ is a short description for n, via the machine M . Also by the
coding theorem (Theorem 5.9) we have PM pnq   2�Kpnq � cM for some constant cM (recall PM
from Definition 5.8). We now claim that for any length n and any d, there are at most cM � 2d

strings σ of length n such that Kpσq ¤ Kpnq � d. Suppose otherwise for a given length n. Then
PM pnq ¥ cM � 2d � 2�Kpnq�d � cM � 2�Kpnq, which is a contradiction. �

Corollary 5.18 (Hjorth, Nies [17]). There is a constant c, such that for each constant d there are
at most c � 2d many sequences X such that KpXænq ¤ Kpnq � d for every n. In particular there
are at most countably many higher K-trivial sequences.

Proof. With c the constant of the previous theorem, if there are more than c� 2d many sequences
X such that KpXænq ¤ Kpnq � d for every n, then also for n large enough, there are more than
c� 2d many strings σ of length n such that Kpσq ¤ Kp|σ|q � d. �

The previous theorem will allow us to determine that higher K-trivial sequences are actually
fairly simple to describe: They are all higher ∆0

2 sequences. Also we can even put them in the
sharper class of sequences with a collapsing approximation.

Theorem 5.19 (Hjorth, Nies [17]). Every higher K-trivial sequence A has a collapsing approxi-
mation.

Proof. Suppose that A is higher K-trivial with constant d. For each stage s   ωck1 , let us define
the ∆1

1 function fs : 2 N Ñ N by fspσq � 1 if @τ ¤ σ Kpτqrss ¤ Kp|τ |qrss � d and fspσq � 0
otherwise. Note first that Ts � tσ : fspσq � 1u is a tree, that is, if fspσq � 1 then also we must
have fspτq � 1 for τ ¤ σ. Let us show that tfsus ωck1

is a finite-change approximation converging

to some function f . Suppose otherwise and let σ be minimal for the prefix ordering, such that
tfspσqus ωck1

changes infinitely often. By minimality of σ we have stages s1   s2 ¤ ωck1 such that

tfspτqus1¤s¤s2 is stable for any τ   σ but such that tfspσqus1¤s¤s2 changes infinitely often. Note
also that in this case we must have fspτq � 1 for every τ   σ and every s P rs1, s2s because any
set Ts is a tree and because we must have infinitely many stages s P rs1, s2s with fspσq � 1. This
imply in particular that @s P rs1, s2s @τ   σ Kspτq ¤ Ksp|τ |q � d. Also we must have infinitely
stages t0   t1   t2   � � � P rs1, s2s such that ftipσq � 1 but fti�1pσq � 0 for i P N. For each stage
ti we have Kpσqrtis ¤ Kp|σ|qrtis � d but Kpσqrti � 1s ¡ Kp|σ|qrti � 1s � d. As K is decreasing it
means that Kp|σ|qrti � 1s   Ksrtis. But then we have Kp|σ|qrt0s ¡ Kp|σ|qrt1s ¡ Kp|σ|qrt2s ¡ . . .
which is a contradiction.

Thus tfsus ωck1
is a finite-change approximation converging to some function f . This implies

that the sequence of trees tTsus ωck1
converges pointwise to a tree T whose paths are exactly the

sequences which are higher K-trivial with constant d. In particular A P rT s. As rT s contains
finitely many elements, then there must be a prefix σ of A such that A is the only element of rT s.
Now let A1 be the set of stages such that s P A1 iff for every n, Ts contains at most c� 2d strings
of length n. Let A2 be the set of stages such that s P A2 iff Ts contains at least one infinite path
extending σ. By admissibility, we have that both A1 and A2 are unbounded below ωck1 . Also As
tfsus ωck1

is a finite-change approximation, we also have that both A1 and A2 are closed. Thus

A1 X A2 is a closed unbounded set of stages. Let tTsus ωck1
be the approximation of T restricted

to stages s P A1 XA2. As stage s let As be the leftmost path of Ts extending σ.
It is clear that tAsus ωck1

converges to A, because there is only one infinite path extending

σ in T , and because tfsus ωck1
is a finite-change approximation. Let us show that tAsus ωck1

is

collapsing. For contradiction, suppose otherwise, that is for some lengths n1   n2   . . . and some
stages s1   s2   . . . such that s � supi si   ωck1 , we have Aæni  Asi for each i P N. As As the
sequence tfsus ωck1

is a finite-change approximation, we must have A P Ts. But as s P A1 XA2 we

must have that Ts contains at most c� 2d many path and thus that A is ∆1
1. �

Using Theorem 2.16, the following is immediate:

Corollary 5.20 (Hjorth, Nies [17]). If X is higher K-trivial and X is not ∆1
1, then ωX1 ¡ ωck1 .

5.4.2. Lowness and continuity. Hjorth and Nies showed [17] that A is low for Π1
1-Martin-Löf rand-

omness iff A is ∆1
1. In order to see that, we will restrict the notion of relativization in the same

way we restricted the notion of hyperarithmetical reducibility : by forcing to keep continuity. In
the lower settings, any Σ0

1pXq set of reals U , can also be seen as a c.e. set of pairs W � 2 N�2 N,
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such that U �
�
trτ s : pσ, τq PW and σ   Xu. Note that such a set W gives Σ0

1pY q sets of reals
for every Y P 2N.

Definition 5.21 (Bienvenu, Greenberg, Monin [2]). An open set U is X-continuously Π1
1 if there

is an X-continuous Π1
1 set of strings W such that U � rWX s .

Definition 5.22 (Bienvenu, Greenberg, Monin [2]). An X-continuous Π1
1-Martin-Löf test is given

by a uniform sequence of X-continuous Π1
1 open sets tUnunPN, such that for any n we have λpUXn q ¤

2�n.

In the lower settings, given c.e. description W � 2 N � 2 N of a Σ0
1pXq set of reals U such that

λpUq ¤ ε, it is possible to uniformly transform W into V � 2 N � 2 N, such that @X λpV Xq ¤ ε
and such that @X λpWXq ¤ ε Ñ rW sX � rV sX . Note that this is not always possible with X-
continuous Π1

1-open sets. In particular, there are some oracle X such that there exists no universal
X-continuous Π1

1-Martin-Löf test (see Chapter 7 of [35]). The fact that continuous relativization
lacks such convenient properties, diminishes its interest. It is nonetheless still a well-defined notion,
and it will find its use in the study of lowness for Π1

1-Martin-Löf randomness. In particular we
define:

Definition 5.23 (Bienvenu, Greenberg, Monin [2]). A sequence A is continuously low for Π1
1-

Martin-Löf randomness if the A-continuous Π1
1-Martin-Löf randoms coincide with the Π1

1-Martin-
Löf randoms.

It is clear that if A is low for Π1
1-Martin-Löf randomness, then also it must be continuously

low for Π1
1-Martin-Löf randomness. Also we will now see that higher K-triviality coincides with

continuous lowness for Π1
1-Martin-Löf randomness. We will then see that no non-∆1

1 higher K-
trivial is low for Π1

1-Martin-Löf randomness (using this time full relativization), which will imply
that only the ∆1

1 sets are low for Π1
1-Martin-Löf randomness.

We have defined continuous lowness for Π1
1-Martin-Löf randomness. Let us now define the

analogue notion for the higher Kolmogorov complexity.

Definition 5.24 (Bienvenu, Greenberg, Monin [2]). A sequence X is continuously low for K if for

any X-continuous Π1
1 prefix-free machine M we have a constant cM such that Kpσq ¤ KX

M pσq�cM
for every σ.

Lemma 5.25 (Bienvenu, Greenberg, Monin [2]). Given an oracle-continuous Π1
1-open set U �

2 N � 2 N one can define uniformly in n P N and in ε P Q� an oracle-continuous Π1
1-open set

V � 2 N � 2 N such that:

 If λpUXq ¤ 2�n then UX � VX .
 λptX : λpVXq ¡ 2�nuq ¤ ε.

Proof. Let n be fixed. Recall that p : ωck1 Ñ ω is the projectum function. At stage 0 we set
V0 � H. At successor stage s, suppose that pσ, τq is enumerated in U . Let us consider the ∆1

1-open
set W � tX : λpVXs�1Yrτ sq ¡ 2�nu. Let us find a finite set of strings B such that rBs YW � rσs

and such that λprBs  XWq ¤ ε � 2�ppsq. For any string ρ in B we then add pρ, τq in V at stage
s. At limit stage s we define Vs to be the union of Vt for t   s.

It is obvious that if λpUXq ¤ 2�n, then UX � VX . Also by construction, at successor stage
s, we add in tX : λpVXs�1q ¡ 2�nu something of measure at most ε � 2�ppsq. It follows that

λptX : λpVXq ¡ 2�nuq ¤ ε. �

Before we continue, we emphisize that continuous relativization can be used, thanks to the
previous lemma, to show the higher analogue of the van Lambalgen theorem:

Theorem 5.26 (Bienvenu, Greenberg, Monin [2]). The sequence X`Y is Π1
1-Martin-Löf random

iff X is Π1
1-Martin-Löf random and Y is X-continuously Π1

1-Martin-Löf random.

Proof. Suppose first that some sequence X`Y is captured by some Π1
1-Martin-Löf test

�
n Un. For

Un �
�
σ1,σ2

rσ1 ` σ2s, note that we clearly have λp
�
σ1,σ2

rσ1 ` σ2sq � λσ1,σ2
p
�
rσ1s � rσ2sq. Also

we can consider that the pair pX,Y q is not Π1
1-Martin-Löf random in the product space 2N � 2N.

Let
�
n Un be a uniform intersection of Π1

1-open sets of 2N � 2N with λpUnq ¤ 2�n and pX,Y q P�
n Un. For a string σ and an integer n, let us denote by Uσn the Π1

1-open set tY : @X ¡ σ pX,Y q P
Unu. Let Vn be the X-continuously Π1

1-open set containing Y and equal to
�
σ X Uσ2n. Suppose

that for all but finitely many n we have λpVnq ¤ 2�n. Then Y is not X-continuously Π1
1-Martin-Löf

random. Otherwise there are infinitely many n such that λpVnq ¡ 2�n. Also consider now for each
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n the Π1
1-open set Sn � tZ : λpUZ2nq ¡ 2�nu. Let us show that λpSnq ¤ 2�n. Suppose otherwise

and let A be a pairwise disjoint set of strings describing Sn. We have λpU2nq ¥
°
σPA 2�|σ|λpUσ2nq ¡

2�n
°
σPA 2�|σ| ¡ 2�2n, which is a contradiction. Thus λpSnq ¤ 2�n for every n and we have for

infinitely many n such that X P Sn. Also tSnunPN is a Π1
1-Solovay test capturing X, which is then

not Π1
1-Martin-Löf random.

Conversely, suppose that X is not Π1
1-Martin-Löf random or that Y is not X-continuously Π1

1-
Martin-Löf random. It is enough to deal with the last case, as if X is not Π1

1-Martin-Löf random
it is certainly not Y -continuously Π1

1-Martin-Löf random either. So suppose that Y is in some
X-continuous Π1

1-Martin-Löf test
�
n UXn where each Un can be seen as a Π1

1 subset of 2 N � 2 N.
From Lemma 5.25 we can consider that each Un is such that λptZ : λpUZn q ¡ 2�nu ¤ 2�nq still
with Y P

�
n UXn . It is clear that the set

�
τP2 N rτ s � Uτn is a Π1

1-open subset of 2N � 2N, defined
uniformly in n and which contains pX,Y q. Let us prove that it has measure smaller than 2�n�1.

Since for τ ¤ τ 1 we have Uτn � Uτ 1n , we then have λp
�
τP2 N rτ s � Uτnq � supm

°
|τ |�m λprτ s � Uτnq.

Also for each m, the measure of the set of strings τ of length m such that λpUτnq ¡ 2�n is of
εm ¤ 2�n, whereas on other strings τ of length m we have λpUτnq ¤ 2�n. We then have:¸

|τ |�m

λprτ s � Uτnq ¤ p1� εmq2�n � εm ¤ 2�n�1

It follows that λp
�
τP2 N rτ s � Uτnq ¤ 2�n�1 and we then have a Π1

1-Martin-Löf test capturing
pX,Y q. �

5.4.3. Low for K and low for Π1
1-Martin-Löf randomness.

Proposition 5.27 (Bienvenu, Greenberg, Monin [2]). If a sequence X is continuously low for K,
then it is higher K-trivial.

Proof. Let U be a universal Π1
1-prefix-free machine and let M be the Π1

1 set of triples where we
enumerate tσ, τ, σu in M at stage s if Upτq � |σ| at stage s. We have for every oracle X that

MX is a prefix-free machine. We also have for any X and any σ   X that KX
M pσq � Kpnq. Now

because X is low for K we have KpXænq ¤ KX
M pXænq � cM � Kpnq � cM which makes X higher

K-trivial as well. �

It is clear that continuous lowness for K implies continuous lowness for Π1
1-Martin-Löf random-

ness. The converse also holds but requires some work. We shall show that just as in the lower
settings, continuous lowness for Π1

1-Martin-Löf randomness implies continuous lowness for K. A
direct proof of that would certainly be possible, but we will instead show more, by using the
following notion:

Definition 5.28 (Bienvenu, Greenberg, Monin [2]). The sequence A is a continuous base for Π1
1-

Martin-Löf randomness if there is some A-continuous Π1
1-Martin-Löf random sequence Z such that

Z ¥ωck
1 T A.

We can first observe that any sequence which is continuously low for K is also a continuous base
for Π1

1-Martin-Löf randomness.

Proposition 5.29 (Bienvenu, Greenberg, Monin [2]). If A is continuously low for K, then A is a
continuous base for Π1

1-Martin-Löf randomness.

Proof. Being continuously low for K implies being continuously low for Π1
1-Martin-Löf randomness.

Also by Theorem 5.2, for any sequence A, there is a Π1
1-Martin-Löf random Z such that Z higher

Turing computes A. Also as A is continuously low for Π1
1-Martin-Löf randomness, the sequence Z

is A-continuously Π1
1-Martin-Löf random. �

Hirschfeldt, Nies and Stephan proved in [16] that the two notions actually coincide in the lower
setting. The result can be transfered in the higher setting, but the proof needs to be modified due
to the usual topological issues of higher computability.

Theorem 5.30 (Bienvenu, Greenberg, Monin [2]). If A is a base for continuous Π1
1-Martin-Löf

randomness, then A is continuously low for K.

Proof. Suppose that Z is A-continuously Π1
1-Martin-Löf random and suppose that ΦpZq � A

for some higher Turing functional Φ. We can assume that if pτ, σq is in Φ then Φ also contains
pτ, σ1q for each σ1 ¤ σ. Let M be any higher A-continuous prefix-free machine. Note that
we see M as a Π1

1 subset of 2 N � 2 N � 2 N such that MX is a prefix-free machine. Note
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also that MY need not to be a prefix-free machine for any oracle Y . We can assume that
each triple pτ, σ, ρq is enumerated ωck1 -cofinally many times in M . For each integer d we will
describe an algorithm having d as a parameter. Each instance of the algorithm will enume-
rate some Π1

1 set of strings Cτ,σ,ρ for each triple pτ, σ, ρq P 2 N � 2 N � 2 N (so called ‘hungry
sets’ by Hirschfeldt, Nies and Stephan) and will enumerate a Π1

1 bounded request set N � N�2 N.

The algorithm for a parameter d:
Before giving the algorithm, let us first fix for each triple pτ, σ, ρq a rational δτ,σ,ρ such that°
τ,σ,ρ δτ,σ,ρ ¤ 1. Recall also that p : ωck1 Ñ ω is the projectum function.

At the beginning of the algorithm, for each triple pτ, σ, ρq we set C0
τ,σ,ρ � H. Then at successor

stage s � 1 of the algorithm, let pτ, σ, ρq be the new triple enumerated in Ms. Look at all pairs
pη, τq enumerated in Φ at stage t   s until two conditions are met: First the string η should not
be marked as used (as defined below). Then we must have λprCsτ,σ,ρs

 q � 2�|η| ¤ 2�d2�|σ|. If no
such pair pη, τq is found then we go to the next stage.

Otherwise we want to add η to Csτ,σ,ρ. But we also want to keep all the open sets described by
each Csτ,σ,ρ pairwise disjoint. Since it is not be always possible, we keep them ‘mostly disjoint’. Let
Us be the set of all the strings in any of the Csτ,σ,ρ which are compatible with η. It is possible that
rηs � rUss  is not an open set. To remedy this, just like in the proof of Lemma 5.11, let Bs be a
finite set of strings such that rBss  Y rUss  � rηs and such that λprBss  X rUss q ¤ 2�ppsqδτ,σ,ρ.
Note that it is ∆1

1 uniformly in s to find such a set Bs. Then we mark η and all strings extending
η as ‘used’ and we set Cs�1

τ,σ,ρ � Csσ,x,q Y Bs. Then if λprCs�1
τ,σ,ρs

 q ¡ 2�d�12�|σ| we enumerate the
pair pd� 1� |σ|, ρq into N .

Finally, at limit stage s we set each Csτ,σ,ρ to be
�
t s C

t
τ,σ,ρ.

Verification : Bounded request set
We have to prove that for each d, the set N created by the instance of the algorithm with para-

meter d, is a bounded request set. In other words we have to prove that wgpNq �
°
pl,ρqPN 2�l ¤ 1.

It is clear that we have wgpNq ¤ 1
2

°
τ,σ,ρ λprCτ,σ,ρs

 q because each rCτ,σ,ρs
  has measure at most

2�d � 2�|σ|, and for each of them we enumerate at most once some pd� 1� |σ|, ρq into N . So it is
enough to prove that

°
τ,σ,ρ λprCτ,σ,ρs

 q ¤ 2. Let

E �
¤

pτ 1,σ1,ρ1q�pτ,σ,ρq

prCτ,σ,ρs
  X rCτ 1,σ1,ρ1s

 q

and let Eτ,σ,ρ be the open set generated by strings η such that rηs is covered by rCτ,σ,ρs
  after rηs

is covered by some rCτ 1,σ1,ρ1s
  for pτ 1, σ1, ρ1q � pτ, σ, ρq. Let E1

τ,σ,ρ be the open set generated by
strings η such that rηs � E and such that rηs is covered by rCτ,σ,ρs

  before it is covered by other
rCτ 1,σ1,ρ1s

  for pτ 1, σ1, ρ1q � pτ, σ, ρq. We have:¸
τ,σ,ρ

λprCτ,σ,ρs
 q ¤

¸
τ,σ,ρ

λprCτ,σ,ρs
  � Eq �

¸
pτ,σ,ρq

λpE1
τ,σ,ρq �

¸
pτ,σ,ρq

λpEτ,σ,ρq

Clearly
°
τ,σ,ρ λprCτ,σ,ρs

  � Eq �
°
pτ,σ,ρq λpE

1
τ,σ,ρq ¤ 1 because all the sets involved are pairwise

disjoint, by the definition of E and E1
τ,σ,ρ. Let us prove that

°
pτ,σ,ρq λpEτ,σ,ρq ¤ 1. We have:¸

pτ,σ,ρq

λpEτ,σ,ρq ¤
¸

pτ,σ,ρq

¸
s ωck1

λprBss  X rUss q

¤
¸

pτ,σ,ρq

¸
s ωck1

2�ppsq � δτ,σ,ρ

¤ 1

Therefore N is a bounded request set.

Verification : Martin-Löf test
Let Cdτ,σ,ρ be the set of strings Cτ,σ,ρ created by an instance of the algorithm with d as para-

meter. Let CAd �
�
Cdτ A,σ,ρ. By construction we have that λprCAd s

 q ¤
°
τ A,σ,ρ λprCτ,σ,ρs

 q ¤°
σPdompMq 2�d2�|σ|. As MA is an A-continuous higher prefix-free machine we have that°
σPdompMq 2�|σ| ¤ 1 and then λprCAd s

 q ¤ 2�d. Then
�
drC

A
d s
  is a A-continuous Π1

1-Martin-Löf
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test. This implies by hypothesis that there is some d such that Z R rCAd s
 .

Verification : Continuously low for K
First note that if Z P Cτ,σ,ρ for some strings τ, σ, ρ, we necessarily have τ   A, because

otherwise some prefix of Z would be mapped to something incomparable with A, which is a
contradiction. We now only consider the algorithm with d as a parameter where Z R rCAd s

 . We
pretend that if pτ, σ, ρq is enumerated in M for σ ¤ A then pd� 1� |σ|, ρq will be enumerated in
N . Suppose not, then it means that λprCτ,σ,ρs

 q ¤ 2�d�1 � 2�|σ|. Let η   Z be large enough so

that λprCτ,σ,ρs
 q � 2�|η|   2�d � 2�|σ|. There exists s such that pτ, σ, ρq is enumerated in M at

stage s and such that for some t ¤ s we have pη1, τq which is enumerated in Φ at stage t for η1 ¥ η.
At this stage, if η1 was marked as used it means that some prefix of η1 was already enumerated
in another Csτ 1,σ1,ρ1 for τ 1   A, and so that Z is in rCAd s

  which is a contradiction. If η1 was not

marked as used then some Bs is created such that η1 � rBss  Y rUss . If a prefix of Z is in Bs

then Z is in rCs�1
τ,σ,ρs

  otherwise Z was already in some rCsτ 1,σ1,ρ1s
  for τ 1   A. In either case it is a

contradiction. Therefore pd� 1� |σ|, ρq will be enumerated in N . It follows that from N , we can
build a Π1

1 prefix-free machine that compresses as well as MA, up to the constant d� 1. �

Corollary 5.31 (Bienvenu, Greenberg, Monin [2]). If a sequence A is continuously low for Π1
1-

Martin-Löf randomness, then also it is continuously low for K.

Proof. Suppose A is continuously low for Π1
1-Martin-Löf randomness. By the higher Kučera-

Gács theorem (Theorem 5.2), there is a Π1
1-Martin-Löf random sequence Z which higher Turing

computes A. But Z is also A-continuously Π1
1-Martin-Löf random, making A a continuous base

for Π1
1-Martin-Löf randomness. Therefore A is continuously low for K. �

Corollary 5.32 (Hjorth, Nies [17]). A sequence A is low for Π1
1-Martin-Löf randomness, with full

relativization, iff it is ∆1
1.

Proof. Suppose A is not continuously low for Π1
1-Martin-Löf randomness, then it is certainly not

low for Π1
1-Martin-Löf randomness using full relativization. Now if it is low for Π1

1-Martin-Löf
randomness it is then continuously low for K and therefore higher K-trivial. If furthermore it is
not ∆1

1, by Corollary 5.20 we then have ωA1 ¡ ωck1 . Also then we have A ¥h O and therefore A
hyperarithmetically computes a member in any non-empty Σ1

1 class. In particular it hyperarithme-
tically computes a Π1

1-Martin-Löf random Z which is therefore in a ∆1
1pAq nullset. It follows that

A is not low for Π1
1-Martin-Löf randomness. �

So no non-∆1
1 sequence is low for Π1

1-Martin-Löf randomness. It is however possible to show
that non-∆1

1 sequences are continuously low for Π1
1-Martin-Löf randomness. Actually it is possible

to show that any higher K-trivial is also continuously low for Π1
1-Martin-Löf randomness. The

proof works similarly to the one of Hirschfeldt and Nies in the lower settings, with some additional
care due to the continuity problems which comes with higher computability. The proof is rather
long and technical, which is why we do not present it here, but the reader who is interested in it
can refer to Section of 4.5 of [35].

6. More higher randomness notions

6.1. Higher difference randomness. Recall higher difference randomness from Definition 3.9.
We shall now show that a Π1

1-Martin-Löf random is higher difference random iff does not higher
Turing computes O.

Lemma 6.1. Let Z be a Π1
1-Martin-Löf random sequence. Let Φ be a functional. For any ε, let Φε

be the transformation of Φ given by Lemma 2.12, so that the open set of sequences on which Φ is
not consistent has measure smaller than ε. Then there exists c such that λpΦ�1

2�n
pZænqq ¤ 2�n2c

for every n.

Proof. Let µpσq � λpΦ�1
2�|σ|

pσqq. Let us show that there must be a constant c such that µpZænq ¤

2�n2c for every n. Let Wc � tσ | µprσsq ¡ 2�|σ|2c�1u. Let us show that λprWcs
 q ¤ 2�c. Suppose

otherwise, that is λprWcs
 q ¡ 2�c. Let tσnunPN be a prefix-free set of strings of Wc, minimal for

the prefix ordering. Let Aσn be the open set of strings which are mapped to extensions of σn via
Φ2�|σn| . Because σn P Wc we have λpAσnq ¡ 2�|σn|2c�1. Let Eσn be the open set of string which
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are in sets Aσn X Aσi for i � n. By hypothesis on Φ2�|σn| we have λpEσnq ¤ 2�|σn| and thus that
λpAσn �Eσnq ¡ 2�|σn|2c�1� 2�|σn|. Also the sets Aσn �Eσn are pairwise disjoint. It follows that:°

n λpAσn � Eσnq ¥
°
n 2�|σn|2c�1 � 2�|σn|

¥ 2c�1
°
n 2�|σn| �

°
n 2�|σn|

¥ p2c�1 � 1q
°
n 2�|σn|

¥ p2c�1 � 1q2�c

¡ 1

This is a contradiction. It follows that λprWcs
 q ¤ 2�c. As Z is Π1

1-martin-Löf random, there
exists c such that Z R Uc and thus there exists c such that µpZænq ¤ 2�n2c for every n. �

Theorem 6.2 (Yu [39]). Let Z be a Π1
1-Martin-Löf random sequence. Then Z is not higher

difference random iff Z higher Turing computes O.

Proof. Suppose Z higher Turing compute O. Then also Z higher Turing computes Ω, the leftmost
path of a Σ1

1-closed set containing only Π1
1-martin-Löf random sequences. Let Φ be such that

ΦpZq � Ω. From Lemma 6.1 there exists a constant c such that λpΦ�1
2�n
pZænqq ¤ 2�n2c for every

n. In what follows, the notation Φ�1prσsq implicitly means Φ�1
2�|σ|

prσsq.

For every n, we define the Π1
1-open set Un to be

�
s ωck1

Φ�1prΩs ænsq. Then we define the

Π1
1-open set V to be

�
nPN

�
s ωck1

tΦ�1prΩsænsq : Ωsæn� Ωs�1ænu. Because Ω is higher left-c.e.

we clearly have Z P
�
npUn X Vcq. Also Un X Vc is actually equal to Φ�1prΩænsq and therefore its

measure is smaller than 2�n2c for every n. Thus Z is not higher difference random.

For the converse, suppose that a Π1
1-Martin-Löf random Z belongs to

�
npUnXFq with λpUnX

Fq ¤ 2�n. We build a Π1
1-Solovay test tVmumPN. If m enter O at stage s, we search for the smallest

stage t ¡ s such that λpUm,t X Ftq ¤ 2�m and we set Vm � Um,t X Bt with Bt � Ft a clopen set
such that λpUm,t X Btq   2�m�1. Note that we can find Bt uniformly in Um,t, Ft and m.

As Z is Π1
1-Martin-Löf random, there is some n such that for all m ¥ n, the sequence Z is not in

Vm. Also to know if m ¥ n is in O, with the help of Z, we search for the smallest stage s such that
Z P Um,s. We claim that m P O iff m P Os. Suppose otherwise, that is, m P O but m R Os. Note
that for every stage t ¥ s we have Z P Um,t X Ft, because otherwise Z could not be in Um X F .
Now for t the smallest stage bigger than s such that m P Ot and such that λpUm,t X Ftq ¤ 2�m,
we then have that Um,t X Bt is enumerated in Vm. But then Z P Vm which is a contradiction. �

Corollary 6.3 (Yu [39]). Higher difference randomness is strictly stronger than Π1
1-Martin-Löf

randomness.

Proof. It is clear that a Π1
1-Martin-Löf test is also a higher difference test. So the set of higher

difference randoms is included in the set of Π1
1-Martin-Löf randoms.

Also using the higher Kučera-Gács theorem (see Theorem 5.2), there is some Π1
1-Martin-Löf

random sequence which higher Turing computes O and which is then not higher difference random,
so the inclusion is strict. �

6.2. Higher weak-2-randomness.

6.2.1. An equivalent test notion. In order to get a better understanding of higher weak-2-
randomness, Bienvenu, Greenberg and Monin [2] developed an equivalent new type of test. We
start by generalization of a result from Chong and Yu (see [6]) which says that every higher
left-c.e. sequence can be captured by a higher weak-2-test.

Theorem 6.4 (Bienvenu, Greenberg, Monin [2]). No sequence X P 2N with a higher finite-change
approximation is higher weakly-2-random.

Proof. Let tXsus¤t be a finite-change approximation of X. In particular, note that the set C �
tXsus¤ωck1 is a closed set. Let Un �

�
s ωck1

rXsæns and let us prove that
�
n Un � C. If an element

is in Un then its distance to the closed set C is smaller than 2�n (it shares the same first n bits with
an element of C). Thus if it is in all the Un, its distance to the closed set C is null and thus it is an
element of C. Therefore we have

�
n Un � C and as C is countable it has measure 0. Therefore we

have that
�
n Un is a higher weak-2-test containing X. �

We now bring the technique of Theorem 6.4 to its full generalization, by giving an equivalent
notion of higher weak-2-tests, that uses finite-change approximations of elements of the Baire space.
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Theorem 6.5 (Bienvenu, Greenberg, Monin [2]). Let tUeuePω be a standard enumeration of the
Π1

1-open sets. For a sequence X we have that the following is equivalent :

(1) X is higher weakly-2-random.
(2) X is in no uniform intersection of Π1

1-open sets
�
n Ufpnq where f has a finite change

approximation and with λpUfpnqq ¤ 2�n.

Proof. p1q ùñ p2q : Consider a set
�
n Ufpnq with tfsus ωck1 a finite-change approximation of f ,

with λpUfpnqq ¤ 2�n and with X P
�
n Ufpnq. Note that that we can consider without loss of

generality that λpUfspnqq ¤ 2�n for any n and any stage s (as we can simply stop enumerating
Ufspnq if the measure gets too big). Let us prove that X is not higher weakly-2-random. To do so
consider the set A �

�
s¤ωck1

�
nPN Ufspnq and the set B �

�
n ω

�
s ωck1

�
m¤n Ufspmq.

Let us prove that B � A. Suppose that Y P B. Then for all n there is a smallest stage sn so
that Y P

�
m¤n Ufsn pmq. As f has a finite-change approximation we have that the limit point of

tfsnunPN is equal to fs for some s � supn sn. For any k there is i ¥ k be such that fsiæk� fsæk and
then such that

�
m¤k Ufsi pmq �

�
m¤k Ufspmq. Now we have by definition of the sequence tsnunPN

that Y P
�
m¤i Ufsi pmq and therefore we have that Y P

�
m¤k Ufspmq. Since this holds for any k,

this shows that Y belongs to
�
k Ufspkq and thus we have Y P A.

Let us prove that λpBq � 0. By measure countable subadditivity we have λpAq ¤°
s¤ωck1

λ
��

n Ufspnq
�
. For each s ¤ ωck1 we have λp

�
n Ufspnqq � 0 and then that λpAq � 0. But

then as B � A we have λpBq � 0.
Let us prove that X P B. For all n, there is some stage sn such that fsnæn� fæn. Then at stage

sn we have X P
�
m¤n Ufsn pmq. As this is true for all n, we have X P B. We can then conclude

that B is in a higher weak-2-test containing X.

p2q ùñ p1q : Suppose now that X is not higher weakly-2-random in order to prove that it
is in some set

�
n Ufpnq where f has a finite change approximation. Suppose that X P

�
n Vn

with λp
�
n Vnq � 0. We define fpnq to be the smallest m such that λpVmq ¤ 2�n. We have for

every n that λpVfpnqq ¤ 2�n and X P Vfpnq. All we need to prove is that f has a finite change

approximation tfsus ωck1
. We simply let fspnq be the smallest m such that λpVmrssq ¤ 2�n. Then

we clearly have for each n that the set ts : fspnq � fs�1pnqu is finite. �

Corollary 6.6 (Bienvenu, Greenberg and Monin [2]). Higher weak-2-randomness is strictly stron-
ger than higher difference randomness.

Proof. From the previous theorem, we can deduce that higher weak-2-randomness is stronger than
higher difference randomness. Consider the leftmost path Ω of a Σ1

1 closed set containing only
Π1

1-Martin-Löf randoms. In particular Ω is higher left-c.e. and then it is Turing computable by
O. Also if Z higher Turing computes O it also higher Turing computes Ω. Let tΩsus ωck1

be a

higher left-c.e. sequence converging to Ω. Given Z that is Π1
1-Martin-Löf random and not higher

difference random, let Φ be the higher Turing functional such that ΦpZq � Ω. From Lemma 6.1,
there exists c such that @n Φ�1

2�n
pΩænq ¤ 2�n2c. Using this, we simply define fspnq to be the index

of the open set Φ�1
2�n�c

pΩsæn�cq. It is clear that tfsus ωck1
is finite-change, as tΩsus ωck1

is. It is also

clear that Z P Ufpnq for every n and that λpUfpnqq ¤ 2�n. Thus Z is not higher weakly-2-random.
Now to prove that the inclusion is strict. Let Ω1,Ω2 be the two halves of Ω, that is, Ω � Ω1`Ω2.

By the higher van Lambalgen theorem (see Theorem 5.26) we have that Ω1 and Ω2 are higher
Turing incomparable. Therefore, neither Ω1 nor Ω2 higher Turing compute O. It follows that
neither Ω1 nor Ω2 is higher difference random. However Ω1 and Ω2 still have higher finite-change
approximations. Therefore they are not higher weakly 2 random. �

6.2.2. Separation of higher weak-2-randomness and Π1
1-randomness. We now separate the notion

of higher weak-2-randomness and the notion of Π1
1-randomness. This is actually done by building a

collapsing approximation of a sequence X which is higher weakly-2-random. To do so we build an
approximation tXsus ωck1

such that for any n, there is no infinite sequence of ordinals s0   s1   . . .

for which Xæn� Xsiæn and for which Xsipnq � Xsi�1pnq. It is clear that such an approximation is

collapsing when X is not ∆1
1: Suppose X is in the closure of tXt : t   su for some smallest stage

s. Then X cannot be the only limit point of tXt : t   su as otherwise X would be ∆1
1. But then

there are several limit points and this implies infinitely many changes above some prefix of X.

Theorem 6.7 (Bienvenu, Greenberg and Monin [2]). There is a higher weak-2-random X with a
collapsing approximation. In particular, there is a higher weak-2-random X that is not Π1

1-random.
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The rest of the section is dedicated to the proof of Theorem 6.7. Let tSiuiPω be an enumeration
of all the higher Σ0

2 sets. For each Si and each j let us define the Σ1
1 closed set Fi,j so that

Si �
�
j Fi,j .

Sketch of the proof:
We will build X as a limit point of some tXsus ωck1 . Each Xs is built as the unique limit point

of a sequence trσns sunPN, where σ1
s   σ2

s   . . . . At each stage we will ensure that Xs is in some
sense higher weakly-2-random at stage s. By this, we mean that for any n, as long as λpSnrssq � 1,
we believe that Xs should belong to Snrss. If at some point we have λpSnrssq   1 (which is by
admissibility equivalent to λpSnq   1) then n is removed from the set of indices that we use to
make Xs higher weakly-2-random.

Concretely we have at each stage s a set of indices tenunPN which are initialized at stage 0 with
en � n. Suppose that at stage s we have for each n that λpSenrssq � 1. Then it is easy to build
a ∆1

1 sequence Xs in
�
n Senrss: We can suppose that e0 is such that Fe0,i � 2N for all i. So for

d0 � 0 and σ0 equal the empty word, we have λpFe0,d0 | σ0q ¥ 1. Then, inductively, assuming that
for some n we have λp

�
k¤n Fek,dk | σnq ¥ 2�n, we then continue the construction as follows:

Step 1: We find one strict extension σn�1 of σn so that λp
�
k¤n Fek,dk | σn�1qrss ¥ 2�n.

Step 2: We find some index dn�1 such that λp
�
k¤n�1 Fek,dk | σn�1qrss ¥ 2�n�1.

This way we have an intersection of closed sets containing at most one point Xs. Also by
the measure requirement, this intersection is not empty at each step and then we really have
Xs P

�
n Senrss. Note that for the actual construction we will need different lower bounds for the

measure requirements. This is due to some technicalities, explained in the next paragraphs.
We only try here to give the general idea. To have that the Xs converge to some X, we have to

keep the chosen strings and closed sets at stage s � 1 equal if possible to those of stage s. When
do we have to change them? Three things can happen :

(1) We might have λpSenqrss � 1 for all s   t but λpSenqrts   1.
(2) We might have a smallest n such that (3) does not happen up to n� 1 and such that the

measure of
�
k¤n Fek,dk inside rσn�1s drops below 2�n at stage t.

(3) We might have a smallest n such that (2) does not happen up to n and such that the
measure of

�
k¤n�1 Fek,dk inside rσn�1s drops below 2�n�1 at stage t.

If (1) happens then the index en is set to some fixed index a so that λpSaq � 1, therefore each
index en can change at most once. If (2) happens, it is the responsibility of the string σn�1 to
change, and if (3) happens it is the responsibility of the index dn�1 to change.

For (2), we are sure that there exists one extension σn�1 of σn of length |σn| � 1 such that the
measure inside rσn�1s does not drop below 2�n. So as long as the construction is stable ‘below
the choice of σn�1, the string σn�1 can change at most once. We will see that in practice we will
need extensions of length |σn| � 2n, but for the same reason, the string σn�1 can then change at
most finitely often.

For (3), as long as λpSen�1
q � 1, we are sure that we will change only finitely often of index

dn�1. However if λpSen�1
q   1 it can happen that dn�1 will change infinitely often at stages

s1   s2   . . . , and that t � supn sn is the first stage for which we witness λpSen�1qrts   1 (then at
stage t the integer en�1 is set to a the fixed index such that λpSaq � 1). There is nothing we can
do to prevent those infinitely many changes, which could lead as well to infinitely many changes of
the string σn�2. However we can still ensure that if this happens, the string σn�1 will then change,
and its previous value will be banished forever, so that the approximation of the sequence X is
still collapsing. To do so, we need to take extensions sufficiently long, so that the current closed
set still has positive measure inside at least two of them. That way we can afford to banish one of
them. So before the formal proof, we recall here Lemma 5.1 that helps us to achieve this:

Lemma 6.8. let σ be a string and F a closed set so that λpF | σq ¥ 2�n. Then there is at least
two extensions τ1, τ2 of σ of length |σ| � n� 1 so that for i P t1, 2u we have λpF | τiq ¥ 2�n�1.

Before the construction:
Let tSiuiPN be an enumeration of all the higher Σ0

2 sets, with Si �
�
jPN Fi,j where each Fi,j is

a Σ1
1 closed set. We can assume that each union is increasing. We start by deciding in advance the

length mn of each extension. We set m0 � 0 and then recursively we set mn�1 � mn � p2n� 1q.
Finally, let a be an integer so that Fa,i � 2N for every i.



HIGHER RANDOMNESS 27

For each stage s and each n we will define indices ens and dns for the closed set Fens ,dns , as well
as strings σns . Also to simplify the reading, we define three predicates:

Apn, sq means λp
�
k¤n Feks ,dks | σ

n
s qrss ¥ 2�2n

Apn, s, σq means λp
�
k¤n Feks ,dks | σqrss ¥ 2�2n�1

Apn, s, σ, dq means λp
�
k¤n Feks ,dks X Fen�1

s ,d | σqrss ¥ 2�2n�2

The construction:
At stage 0 we define for each n the set Pn0 to be the set of strings of length mn, ordered

lexicographically. We initialize each string σn0 to be the first string of Pn0 (so they are all a range
of 0), we initialize e0

0 to a and en�1
0 to n. Then we initialize to 0 each index dn0 of the sets Fen0 ,dn0 .

At successor stage s � 1 and substage 0, we set e0
s�1 � e0

s � a, σ0
s�1 � σ0

s (always the empty

word) and d0
s�1 � d0

s � 0. Now assume that at substage n we have defined eks�1, dks�1 and σks�1

for k ¤ n and that we have Apn, s� 1q is true. Let us now define en�1
s�1 , dn�1

s�1 and σn�1
s�1 at substage

n� 1.

Def. of en�1
s�1 : If λpSen�1

s
qrs � 1s � 1, set en�1

s�1 � en�1
s and Pn�1

s�1 � Pn�1
s , otherwise set

en�1
s�1 � a and Pn�1

s�1 � Pn�1
s � tσn�1

s u (the string σn�1
s is banished).

Def. of σn�1
s�1 : If Apn, s� 1, σn�1

s q and σn�1
s extends σns�1, set σn�1

s�1 � σn�1
s . Otherwise set

σn�1
s�1 to be the first string of Pn�1

s�1 extending σns�1 such that Apn, s� 1, σn�1
s�1 q.

Def. of dn�1
s�1 : If Apn, s � 1, σn�1

s�1 , d
n�1
s q set dn�1

s�1 � dn�1
s . Otherwise set dn�1

s�1 to be the

smallest integer such that Apn, s� 1, σn�1
s�1 , d

n�1
s�1 q.

Finally after every substage, define Xs�1 to be the unique element in
�
nrσ

n
s�1s.

At limit stage s, for each n ¥ 0 set ens to be the convergence value of tent ut s and set Pns to
be the convergence value of tPnt ut s (among other things we will have to prove that we always
have convergence). At substage n, if tσnt ut s does not converge, set σns to be the first string of
Pns extending σn�1

s , otherwise set σns to be the convergence value. If tdnt ut s does not converge,
set dns to 0, otherwise set it to its convergence value. Finally after every substage, define Xs to be
the unique element in

�
nrσ

n
s s.

The verification:
Claim 1: For every n the sequence tens us ωck1 can change at most once. In particular, for every

s and every n we have that tent ut s converges.
It is clear because ens�1 � ens only if λpSens rs � 1sq   1. Also when this happens we have

ens�1 � a and then it can not happen anymore.

Claim 2: For every stage s, any string τ of size mn and any closed set F such that λpF | τq ¥
2�2n, there is a string σ P Pn�1

s which extends τ so that λpF | σq ¥ 2�2n�1.
Suppose that λpF | τq ¥ 2�2n for |τ | � mn. Using Lemma 5.1 we have two strings τ1 and τ2 of

length mn � 2n � 1 so that for i P t1, 2u we have λpF | τiq ¥ 2�2n�1. Also mn�1 � mn � 2n � 1
and then τ1, τ2 P Pn�1

0 . By construction and by Claim 1, at any stage s we have that Pn�1
0

contains at most one more string than Pn�1
s . Then at any stage s we have at least one string

σ P Pn�1
s which extends τ and so that λpF | σq ¥ 2�2n�1.

Claim 3: The construction converges, in particular the sequence tXsus ωck1 converges to X.

There is no difficulty here.

Claim 4: The sequence tXsus ωck1
is collapsing.

Let Dps, nq be the sentence : “There is an infinite sequence of ordinal s0   s1   . . . with
supi si � s, such that Xsiæn� Xsi�1

æn, and such that Xsipnq � Xsi�1
pnq”.

For tXsus ωck1
to be collapsing, it is enough to prove that for any s and any n, if Dps, nq is true,

then Xæn� Xsæn. Let s be any stage such that Dps, nq is true for some n. Let n be the smallest
integer such that Dps, nq is true, and let s0   s1   . . . be a sequence of ordinals making Dps, nq
true.

Let us prove that there is some i such that tXtænusi¤t s is stable. If n � 1 it is clear because

Xtæ1� 0 for every t   ωck1 . If n ¡ 1, then by minimality of n, we necessarily have that tXtæ2ut s
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converges, otherwise Dps, 1q would be true. So for some i we have that tXtæ2usi¤t s is stable. We
continue inductively to prove that there is some i such that tXtænusi¤t s is stable.

Let us now fix the integer m such that tσmt usi¤t s is stable, and such that σm�1
sj � σm�1

sj�1
for j P

N. We shall now prove that for at least one k ¤ m (presumably for k � m), the sequence tdkt usi¤t s
does not converge. Suppose otherwise, that is, the sequence tdkt | k ¤ musi¤t s converges, then
there is some j ¥ i such that tdkt | k ¤ musj¤t s is stable. But then for all t with sj ¤ t   s we
have Apm, tq and then we also have Apm, sq. Then using Claim 2 with

�
k¤m Feks ,dks rss as the closed

set F , we have at least one string σ in Pm�1
s extending σms such that Apm, s, σq is true and then

such that Apm, t, σq is true for every t with sj ¤ t   s. Also this contradicts that tσm�1
t usi¤t s

does not converge.
So let k ¤ m be the smallest integer such that tdkt usi¤t s does not converge, equivalently

limt s d
k
t � 8. In particular we have Apk � 1, s, σks q, but there is no d large enough such that

Apk � 1, s, σks , dq. This is only possible if λpSeks qrss   1. Then at stage s � 1 we have that

σks ¤ σms   Xsæn is banished, that is, removed from P ks .
It follows that we have Xæn� Xsæn. Thus, by minimality of n, for every n1 such that Dps, n1q

is true, we have Xæn1� Xsæn1 .

Claim 5: The sequence X is higher weakly-2-random.
It is clear that if λpSnq � 1, then en�1 � lims ωck1

en�1
s is equal to n. Therefore any sequence

in
�
n Sen is higher weakly-2-random. We shall then simply prove that we have X P

�
n Sen .

Let sn be the smallest ordinal such that tpekt , d
k
t q | k ¤ nusn¤t ωck1

is stable and equal to

tpek, dkq | k ¤ nu. In particular we have that A � tXsnunPN Y tXu is a closed set and that�
k¤n Fek,dk XA is not empty because it contains Xsn . Then also

�
kPN Fek,dk XA is not empty

and it then contains X, as it is the only non ∆1
1 point of A.

7. Π1
1-randomness

7.1. The Borel complexity of the set of Π1
1-randoms. For a while not much was known about

Π1
1-randomness, mainly because the community did not have an angle of attack. This came with

the work of Monin [36] who found a decomposition of the largest Π1
1 nullset into simpler objects,

objects that computability theorists are used to work with. Monin defined for this two genericity
notions equal respectively to higher weak-2-randomness and Π1

1-randomness. This then helped to
answer several open questions.

Definition 7.1 (Monin [36]). We say that X is weakly-Σ1
1-Solovay-generic if it belongs to all sets

of the form
�
n Fn which intersect with positive measure all the Σ1

1-closed sets of positive measure,
where each Fn is a Σ1

1-closed set uniformly in n.

Definition 7.2 (Monin [36]). We say that X is Σ1
1-Solovay-generic if for any set of the form

�
n Fn

where each Fn is a Σ1
1-closed set uniformly in n, either X is in

�
n Fn or X is in some Σ1

1-closed
set of positive measure F , disjoint from

�
n Fn.

Proposition 7.3 (Monin [36]). A sequence X is weakly-Σ1
1-Solovay-generic iff it is higher weakly-

2-random.

Proof. Note first that X is higher weakly-2-random iff it is in every uniform union of Σ1
1-closed sets

of measure 1. We shall prove that a uniform union of Σ1
1-closed sets is of measure 1 iff it intersects

with positive measure every Σ1
1-closed set of positive measure.

Let us prove that a uniform union of Σ1
1 closed sets of measure less than 1 cannot intersect all Σ1

1-
closed sets of positive measure. Let

�
n Fn be a uniform union of Σ1

1-closed sets of measure strictly
smaller than 1. Let

�
n Un be its complement. We shall prove that already for some computable s

we have that
�
n Un,s is of positive measure. We actually have that A �

�
n Un�

�
s ωck1

�
n Un,s �

tX : ωX1 ¡ ωck1 u. Indeed, ifX P A then the Π1
1pXq total function which to n associates the smallest

s such that X P
�
m¤n Um,s has its range unbounded in ωck1 , implying that ωX1 ¡ ωck1 . Also using

Theorem 3.11 saying that λptX : ωX1 ¡ ωck1 uq � 0 we then have λp
�
n Unq � λp

�
s ωck1

�
n Un,sq,

and as λp
�
n Unq ¡ 0, there exists then some s such that λp

�
n Un,sq ¡ 0. Also

�
n Un,s is a ∆1

1

set of positive measure, and then by Theorem 3.6 there exists a ∆1
1-closed set of positive measure

F �
�
n Un,s �

�
n Un. Thus

�
n Fn does not intersect all Σ1

1-closed sets of positive measure.
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Conversely a uniform union of Σ1
1-closed sets of measure 1 obviously intersects with positive

measure any Σ1
1-closed set of positive measure. Then the weakly-Σ1

1-Solovay-generics are exactly
the higher weakly-2-randoms. �

We shall now prove that the notion of Σ1
1-Solovay-genericity coincides with the notion of Π1

1-
randomness. We already know from Theorem 3.14 that if X is higher weakly-2-random but not
Π1

1-random, then ωX1 ¡ ωck1 . We first should prove that if X is Σ1
1-Solovay-generic then ωX1 � ωck1

(this is the difficult part of the equivalence).
Note first that ωX1 ¡ ωck1 iff there is a P OX such that |a|Xo � ωck1 . In particular, ωX1 ¡ ωck1

iff there is a Turing functional Φ : 2 N � N Ñ N such that for any n we have ΦpX,nq P OX
 ωck1

and with supn |ΦpX,nq|
X
o � ωck1 . We should show that if X is Σ1

1-Solovay-generic and if we have
some Φ such that ΦpX,nq P OX

 ωck1
for all n, then supn |ΦpX,nq|

X
o   ωck1 . To show this we need

an approximation lemma, which can be seen as an extension of Theorem 3.6, saying that any ∆1
1

set can be approximated from below by a uniform union of ∆1
1-closed sets of the same measure.

We cannot extend this to all Σ1
1 sets, but we can for a restricted type of Σ1

1 set:

Lemma 7.4. For a Σ1
1 set S �

�
α ωck1

Sα where each Sα is ∆1
1 uniformly in α, one can find

uniformly in an index for S and in any n, a Σ1
1 closed set F � S with λpS � Fq ¤ 2�n.

Proof. Recall that p : ωck1 Ñ ω is the projectum function. Using Theorem 3.6, one can find
uniformly in α   ωck1 a ∆1

1-closed set F � Sα such that λpSα � Fαq ¤ 2�ppαq2�n. We now define
the Σ1

1-closed set F to be
�
α Fα. We clearly have F � S and we have:

λpS � Fq � λpS �
�
α ωck1

Fαq
� λp

�
α ωck1

pS � Fαqq
¤ λp

�
α ωck1

pSα � Fαqq
¤

°
α ωck1

λpSα � Fαq ¤ 2�n.

�

We can now prove the desired theorem:

Theorem 7.5 (Monin [36]). If Y is Σ1
1-Solovay-generic then ωY1 � ωck1 .

Proof. Suppose that Y is Σ1
1-Solovay-generic. For any functional Φ, consider the set

P � tX | @n Dα   ωck1 ΦpX,nq P OXα u

Let Pn � tX | Dα   ωck1 ΦpX,nq P OXα u and Pn,α � tX | ΦpX,nq P OXα u, so P �
�
n Pn and

Pn �
�
α ωck1

Pn,α.

Note that the complement of each Pn is a restricted type of Σ1
1 set, on which we can then apply

Lemma 7.4. So we can find uniformly in n a uniform union of Σ1
1-closed sets included in Pcn with

the same measure as Pcn. From this we can find a uniform union of Σ1
1-closed sets included in

Pc with the same measure as Pc. Suppose that Y is in P. As it is Σ1
1-Solovay-generic we have a

Σ1
1-closed set F of positive measure containing Y which is disjoint from Pc up to a set of measure 0,

formally λpF XPcq � 0. In particular for each n we have λpF XPcnq � 0 and then λpFcYPnq � 1.
Then let f be the Π1

1 total function which to each pair xn,my associates the smallest computable
ordinal α   ωck1 such that:

λpFc
α Y Pn,αq ¡ 1� 2�m

where tFc
αuα ωck1

is the co-enumeration of Fc. Let α� � supn,m |fpn,mq|. As f is total and Π1
1,

we have by admissibility that α�   ωck1 . Also

@n λpFc
α� Y

�
α α� Pα,nq � 1

Ñ @n λpFα� X
�
α α� Pcα,nq � 0

Ñ @n λpF �
�
α α� Pα,nq � 0

Ñ λpF �
�
n

�
α α� Pα,nq � 0

As Y is Σ1
1-Solovay-generic it is in particular weakly-Σ1

1-Solovay-generic and then higher weakly-2-
random. Thus by Theorem 3.2 it belongs to no Σ1

1 set of measure 0. Then as F �
�
n

�
α α� Pα,n

is a Σ1
1 set of measure 0 we have that Y belongs to

�
n

�
α α� Pα,n and then supn |ΦpY, nq|

Y
o ¤

α�   ωck1 . �

We can now prove the equivalence:
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Theorem 7.6 (Monin [36]). The set of Σ1
1-Solovay-generics coincides with the set of Π1

1-randoms.

Proof. Using Theorem 3.14 combined with the previous theorem, we have that the Σ1
1-Solovay-

generics are included in the Π1
1-randoms. We just have to prove the reverse inclusion.

Suppose Y is not Σ1
1-Solovay-generic. If ωY1 ¡ ωck1 then Y is not Π1

1-random. Otherwise
ωY1 � ωck1 and also there is a sequence of Σ1

1-closed sets
�
n Fn of positive measure such that Y is

not in
�
n Fn and such that any Σ1

1-closed set of positive measure which is disjoint from
�
n Fn does

not contain Y . Let
�
n Un be the complement of

�
n Fn. As ωY1 � ωck1 we have that Y P

�
n Un,s

for some computable ordinal s (the proof of this is like in the proof of Proposition 7.3). Also as�
n Un,s is a ∆1

1 set, either it is of measure 0 and then Y is not ∆1
1-random, or it is of positive

measure and can then be approximated from below, using Theorem 3.6 by a uniform union of
∆1

1-closed sets, of the same measure. Also as Y is in none of them it is in their complement in�
n Un,s, which is a ∆1

1-set of measure 0. Then Y is not ∆1
1-random. �

The previous theorem gives a higher bound on the Borel complexity of the Π1
1-randoms, and

then on the Borel complexity of the largest Π1
1 nullset.

Corollary 7.7 (Monin [36]). The set of Π1
1-randoms is Π0

3.

The previous corollary, combined with a result of Liang Yu (see [40]) shows that the complexity
of the set of Π1

1-randoms is exactly Π0
3. Yu’s result is an adaptation of one of its earlier result,

showing that the set of weakly-2-randoms (in the lower settings) cannot be Σ0
3 [48].

Theorem 7.8 (Yu [40]). Let P be the set of forcing condition consisting of Σ1
1-closed sets containing

only Π1
1-Martin-Löf randoms, and ordered by reverse inclusion. Let

�
n Un be a Π0

2 set containing
only higher weakly-2-randoms. Then the set tF P P |

�
n Un X F � Hu is dense in P.

Proof. We first show that for any Σ1
1-closed set F , there is a uniform sequence of Π1

1-open set�
n Vn such that:

(1) For every n we have λpF X Vnq ¤ 2�n (so in particular F X
�
n Vn is a higher difference

test).
(2) For any σ, if F X rσs � H, then F X rσs X

�
n Vn � H

As stage s, for every σ, we put in Vn the leftmost extension of σ of length 2|σ| � n� 1 which is in
Frss (if it exists). Note that for every σ, there is at most one string of length 2|σ| �n� 1 which is
in F . It follows that λpF X Vnq ¤

°
mPN

°
|σ|�m ¤ 2�2m�n�1 ¤

°
mPN 2�m�n�1 ¤ 2�n. Note also

that for any σ, the set
�
n Vn contains the leftmost path of F if this leftmost path exists.

Consider now a Σ1
1-closed set F only Π1

1-Martin-Löf randoms together with the set
�
n Vn of

the previous paragraph. Suppose that for every σ such that F X rσs is not empty, then
�
n Un

intersects FXrσs. Then both
�
n Un and

�
n Vn are dense in F (for the partial order of strings). In

particular
�
n UnX

�
n Vn is dense in F and thus there must be an element X P

�
n UnX

�
n VnXF .

As X P F X
�
n Vn, it follows that X is not higher difference random. But then X is not higher

weakly-2-random which contradicts X P
�
n Un. It follows that there must exists σ such that σXF

is not empty but such that
�
n Un X F X rσs is empty. �

It follows that the set of higher weakly-2-randoms cannot be Σ0
3 but also that the set of Π1

1-
randoms cannot be Σ0

3, and more generally:

Corollary 7.9 (Yu [40]). No set A containing the set of Π1
1-random sequences and contained in

the set of higher weakly-2-random sequences is Σ0
3.

Proof. Suppose that such a set A is equal to
�
n

�
m Un,m each Un,m being open. Let P be the

partial order of Theorem 7.8. For each n let Bn �
�
tF P P |

�
m Un,m X F � Hu. We have�

n Bn X
�
n

�
m Un,m � H. Also each set

�
m Un,m is a Π0

2 set containing only higher weakly-2-
randoms. Therefore by Theorem 7.8 we have that

�
n Bn contains some Solovay-Σ1

1-generic element
(some Π1

1-random element), which contradicts that A �
�
n

�
m Un,m contains all of them. �

7.2. Randoms with respect to (plain) Π1
1-Kolmogorov complexity. Monin deduced from

Corollary 7.9 another interesting theorem. Before stating it, we need to introduce a few notions.
In classical randomness, we can define a non prefix-free Kolmogorov complexity C : 2 N Ñ N,
also called plain complexity. Miller [34] together with Nies, Stephan, and Terwijn [41] proved
that a sequence X is 2-random iff infinitely many prefixes of X have maximal plain Kolmogorov
complexity. We can make a similar definition in the higher setting:
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Definition 7.10. A Π1
1-machine M is a Π1

1 partial function M : 2 N Ñ 2 N. We denote by CM pσq
the Π1

1-Kolmorogov complexity of a string σ with respect to the Π1
1-machine M , defined to be the

length of the smallest string τ such that Mpτq � σ, if such a string exists, and by convention, 8
otherwise.

Just like we proved that there exists a universal Π1
1-prefix-free machine (see Theorem 5.4) we

can prove that there is a universal Π1
1-machine (we leave the proof to the reader, as it is very

similar to the proof of Theorem 5.4):

Theorem 7.11 (Universal Π1
1-machine theorem). There is a universal Π1

1-machine U , that is, for
each Π1

1-machine M , there exists a constant cM such that CU pσq ¤ CM pσq � cm for any string σ.

We can then give a meaning to the Π1
1-Kolmorogov complexity of a string:

Definition 7.12. For a string σ, we define Cpσq to be CU pσq for a universal Π1
1-machine U , fixed

in advance.

Let us now define the set A of sequences which have infinitely many prefixes of maximal Π1
1-

Kolmogorov complexity:

A � tX | Dc @n Dm ¥ n CpXæmq ¥ m� cu

Proposition 7.13. The set A contains the Π1
1-randoms and is contained in the Π1

1-Martin-Löf
randoms.

Proof. It is clear that A is a Σ1
1 set. So to show that it contains the Π1

1-randoms, it is enough to
show that it is of measure 1. For every length n, there are at most

°
i¤n�c�1 2i � 2n�c strings

of length smaller than or equal to n � c � 1. Thus the number of strings σ of length n such that
Cpσq   n � c is at most of 2n�c. Thus the measure of the clopen set generated by these strings
is at most of 2�c. It follows that for any c, n we have λptX | @m ¥ n CpXæmq   m � cuq   2�c.
Also for n1 ¤ n2 we have tX | @m ¥ n1 CpXæmq   m � cu � tX | @m ¥ n2 CpXæmq   m � cu.
Thus we have λptX | Dn @m ¥ n CpXæmq   m� cuq   2�c. It follows that the measure of A must
be 1. In particular A contains the set of Π1

1-randoms.
Let us argue that A is contained in the set of Π1

1-Martin-Löf randoms. Indeed, given a prefix-free
machine M such that @c Dn KM pXænq   n� c, one can build the machine N which on any string
σ look for strings τ1, τ2 with σ � τ1τ2 such that Mpτ1q Ó and then output Mpτ1qτ2. Now given τ1
of length smaller n � c such that Mpτ1q � Xæn, we clearly have that N compresses every string
Xæm by at least c for every m ¥ n. �

It follows directly from Corollary 7.9 that A does not coincide with the set of Π1
1-randoms or

with the set of higher weakly-2-randoms:

Proposition 7.14 (Monin [35] Section 6.2). The set A strictly contains the set of Π1
1-randoms.

The set A is not contained in the set of higher weakly-2-randoms.

Proof. The set A is easily seen to be Σ0
3. The results follows then from Corollary 7.9. �

The following question remains open:

Question 7.15. Does the set A contain the higher weakly-2-randoms?

7.3. Lowness an cupping for Π1
1-randomness.

7.3.1. Lowness for Π1
1-randomness. Greenberg and Monin could use Theorem 7.6 to solve the

question of lowness for Π1
1-randomness [38, question 9.4.11]: Is there some sequence A which is not

∆1
1 and such that the largest Π1

1pAq set equals the largest Π1
1 set? They answered the question by

the negative, in a strong sense.

Theorem 7.16 (Greenberg, Monin [15]). If A is not hyperarithmetic, then some Π1
1-random is

not Π1
1pAq-Martin-Löf random.

Greenberg and Monin also improved this result with Theorem 7.21 by showing that a non-
hyperarithmetic A can be cupped above O with a Π1

1-random sequence Z, that is, Z ` A ¥h O.
However the direct proof of Theorem 7.16 is simpler and we believe is interesting in its own
right. Indeed the second proof elaborates on the simpler one. The proof can be transfered in a
straightforward way to the lower setting, simplifying the proof that a non K-trivial is not low for
weak-2-randomness [9].
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The proof is also based on Hjorth and Nies’s Corollary 5.32 : only the ∆1
1 sets are low for

Π1
1-Martin-Löf-randomness (with full relativisation). Our first step is a higher version of Kjos-

Hanssen’s characterization of lowness for Martin-Löf randomness [21].

Lemma 7.17. Suppose that A is not hyperarithmetic. Let U be a Π1
1pAq-open set which contains

all reals which are not Π1
1pAq-Martin-Löf-random. Then U intersects with positive measure every

Σ1
1-closed set of positive measure.

Proof. As mentioned, we use the fact that A is not low for Π1
1-Martin-Löf-randomness. Let X be

a Π1
1-Martin-Löf random which is not Π1

1pAq-Martin-Löf-random. Let P be a non-null Σ1
1 closed

set. By Kučera’s Proposition 5.13, there is a tail Y of X in P. Since Y is not Π1
1pAq-Martin-Löf-

random, Y P U , so U X P � H. Also this intersection must have positive measure: for σ   Y and
rσs � U , we have that rσs X P is a non-empty Σ1

1-closed set containing Y . As Y is Π1
1-Martin-Löf

random then we must have λprσs X Pq ¡ 0. �

Proof of Theorem 7.16. Let A R ∆1
1; let tUnu be the universal Π1

1pAq-Martin-Löf test. Let P be
the set of forcing condition consisting of Σ1

1-closed set containing only Π1
1-Martin-Löf randoms,

and ordered by reverse inclusion. By Lemma 7.17, for every n, the set of elements of P included
in Un, is dense in P. It follows that if a sequence of conditions p1 ¡ p2 ¡ p3 ¡ . . . is sufficiently
generic, then every element of

�
nrpns is a member of

�
n Un.

By Theorem 7.6 if a sequence of condition p1 ¡ p2 ¡ p3 ¡ . . . is sufficiently generic, then every
element of

�
nrpns is Π1

1-random.
It follows that there are Π1

1-random elements in
�
n Un. �

7.3.2. Cupping with a Π1
1-random.

Definition 7.18 (Chong, Nies, Yu [5]). A real X is Π1
1-random cuppable if there is a Π1

1-random
sequence Z such that X ` Z ¥h O.

Chong, Nies and Yu, together with Harrington and Slaman proved in [5] a theorem making
an interesting connection between lowness for Π1

1-randomness and lowness for ∆1
1-randomness: A

sequence Z is low for Π1
1-randomness iff it is low for ∆1

1-randomness and non Π1
1-random cuppable.

Later Greenberg and Monin showed [15] that every non-∆1
1 real is Π1

1-random cuppable. Note that

if A` Z ¥h O, then ωA`Z1 ¡ ωck1 and that the set tZ : ωA`Z1 ¡ ωck1 u is a Π1
1pAq nullset. Thus if

A is Π1
1-random cuppable it is not low for Π1

1-randomness. It implies that Greenberg and Monin’s
result strengthen Theorem 7.16. They actually even showed something stronger : If A is not ∆1

1,
then A can join with a Π1

1-random above any degree. This cupping result is very similar to another
cupping result of Greenberg, Miller, Monin and Turetsky [13]; they show that if A ¦LR B then A
can be cupped (in the Turing degrees) with B-Martin-Löf-randoms arbitrarily high. Before we
continue, we need to show two lemmas. The first one is the same as in [13].

Lemma 7.19 (Greenberg, Monin [15]). Let W be a set of strings such that λprW s q   0.1 and such
that rW s  intersects every Σ1

1-closed set of positive measure. For any string τ and any Σ1
1-closed

set P such that λpP | τq ¡ 0.1 there is some σ PW such that λpP | τσq ¥ 0.8.

Proof. First we find an extension ρ of τ such that ρ extends no string in τW (where τW � tτσ :
σ P W u), and such that λpP | ρq ¡ 0.9. This is done with the Lebesgue density theorem. Letting
G � 2N � rτW s , as λpG | τq ¡ 0.9 and λpP | τq ¡ 0.1, we must have λpG X P | τq ¡ 0 and
by the Lebesgue density theorem there is an extension ρ of τ such that λpG X P | ρq ¡ 0.9. In
particular we must have λpP | ρq ¡ 0.9 and G X rρs is nonempty. In particular ρ cannot extend a
string in τW .

Next we find an extension ν of ρ such that ν P τW and such that λpP | νq ¥ 0.8 as required.
We let Q be the Σ1

1-closed subset obtained from P X rρs by removing all cylinders in which the
measure of P drops below 0.8. Formally

Q �
 
X P P X rρs : @n ¥ |ρ|

�
λpP | Xænq ¥ 0.8

�(
.

By considering the antichain of minimal strings removed we see that λpP � Q | ρq ¤ 0.8. Since
λpP | ρq ¡ 0.9 we see that λpQ | ρq ¡ 0.1. In particular, Q is a positive measure Σ1

1 subset of
rτ s, and so by hypothesis on W , we have that rτW s  intersects Q. Choose ν P τW such that
rνs X Q � H. Note that we must have ν ¡ ρ because ρ extends no string in τW . Thus by the
definition of Q we have λpP | νq ¥ 0.8. �

The second one is needed in order to deal with the usual topological issues that one have with
higher computability.
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Lemma 7.20 (Greenberg, Monin [15]). Let U be a Π1
1-open set. Then for every ε ¡ 0 there is a Π1

1

set of strings W (and a higher effective enumeration tWsu of W ) such that:

 rW s  equals U up to a set of measure 0.
 For every s   ωck

1 , if σ PWs�1 �Ws then λprWss
  | σq   ε.

Proof. Let U be a Π1
1 set of strings generating U . As above we assume that at most one string

enters U at each stage. We enumerate W : say σ P Us�1 � Us. Let

Gs � tτ ¥ σ : λpUs | τq   εu.

This is ∆1
1. We then eumerate in Ws�1 a ∆1

1 prefix-free set of strings which generates rGss
 . Note

that rWss
  � Us (and so rW s  � U).

By induction on s we show that λpUs � rWss
 q � 0. Suppose it is true at stage s and let us

show it is true at stage s � 1. It suffices to show that for σ P Us�1 � Us we have that rσs equals
rGss

  Y prWss
  X rσsq up to a set of measure 0. Suppose not. Then by the Lebegue density

theorem there is some τ ¥ σ such that λprGss
  Y rWss

  | τq   ε. Since by induction hypothesis
we have λpUs � rWss

 q � 0 we then have λpUs | τq   ε which implies that τ P Gs, which is a
contradiction.

It remains to show that λprWss
  | τq   ε for any τ P Ws�1 �Ws. But such τ is an element

of Gs, so λpUs | τq   ε, and Us equals rWss
  up to a set of measure 0. �

We can now show the cupping result:

Theorem 7.21 (Greenberg, Monin [15]). If A is not ∆1
1 then for all Y P 2N there is some Π1

1-
random Z such that Y ¤h A` Z.

Proof. We are given A which is not hyperarithmetic and some Y P 2N. Let U be a Π1
1pAq-open set

of measure less than 0.1, which contains all reals which are not Π1
1pAq-random. Using Lemma 7.20

let W be a Π1
1 set of strings such that rW s  equals U up to a set of measure 0 and such that for

every s   ωck
1 , if σ P Ws�1 �Ws then λprWss

  | σq   0.1. Let also S1,S2, . . . be a list of Σ0
2 sets

which are each the union of Σ1
1-closed sets, co-null, and such that

�
k Sk contains only Π1

1-random
sequences (this is given by Theorem 7.6). We construct Z as a sequence Y p0qσ0Y p1qσ1 � � � with
each σn P W . To make Z Π1

1-random we that Z P
�
n Sn. To make sure that Z ` A computes Y ,

we also makes sure that for each n with τn � Y p0qσ0Y p1qσ1 . . . σn�1Y pnq, we have that σn�1 is
the first string in W such that τnσn�1   Z. The computation then works as follow : Suppose we
have retried Y p0q, . . . Y pnq and σ0, . . . σn�1 with τn � Y p0qσ0Y p1qσ1 . . . σn�1Y pnq. Then using A
we enumerate W until we find a string σ PW such that τnσ   Z. Then we must have σn � σ and
we must have that Y pn� 1q is the bit of Z following τnσn.

We start with P0 � 2N and τ0 � Y p0q. Suppose that at step n we have defined σ0, . . . , σn�1 PW
and τ0, . . . , τn with τi � Y p0qσ0Y p1qσ1 � � �Y pn� 1qσi�1Y piq for every i ¤ n. Suppose also that we
have defined a Σ1

1-closed set of positive measure Pn �
�
i¤n Si such that:

(1) λpPn | τnq ¡ 0.1.
(2) For any i ¤ n for si � 1 the first stage such that σi PWsi�1, we have Pn X prσis � rWsis

 q
is empty.

Let us define σn, τn�1 and Pn�1 such that (1) and (2) are still true at step n� 1. By Lemma 7.19
there exists a string σn P W such that λpPn | τnσnq ¥ 0.8. Now let τn�1 � τnσnY pn � 1q. It is
clear that we must have λpPn | τnσnY pn � 1qq ¥ 0.3. Then let P 1

n to be the intersection of Pn
together with rτnσns � rτnWsns

  where sn � 1 is the smallest stage such that σn P W . By the
choice of W we have that λpP 1

n | τnσnq ¥ 0.2. Finally we find a Σ1
1 closed set F � Sn�1 of measure

sufficiently close to 1, so that λpPn�1 | τnσnq ¥ 0.1 for Pn�1 � Pn X F . �

7.4. Π1
1-randomness with respect to different measures. Algorithmic randomness has been

studied with respect to different measures. As long as a measure µ is computable, the definitions
of randomness with respect to µ are the same but with replacing λ by µ. When the measure µ
is not computable, it makes sense to have access to the measure to define the tests. For instance
to show that there is a universal Martin-Löf test, it is important to have access to the measure.
The problem is that the measure is a complex object, and in particular, there is not necessarily
a smallest representation of a measure in the Turing degree. This has been showed by Day and
Miller in [8], building upon some work of Levin [29].

Several authors could overcome this issue in two different ways that turned out to be equivalent
(see [12] [18] and [8]) : either one can extend the notions of computability to metric spaces (in
particular the metric space of probability measures) and define randomness notions accordingly,
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or one can define X to be non-random with respect to a measure µ if for any representation µ̂ of
µ, the sequence X is captured by a µ-random test that uses µ̂ as an oracle.

Reimann and Slaman showed [43] that X is not computable iff it is Martin-Löf random with
respect to a measure µ such that µptXuq � 0. Reimann and Slaman also showed that there are
some non-computable sequences X such that for any measure µ for which µptXuq � 0, if X is
Martin-Löf random with respect to µ, then µ must concentrate positive measure on some single
points (we call these points atoms of the measure).

Reimann and Slaman then defined the class NCR of element which are Martin-Löf random with
respect to no continuous measure, that is, measures with no atoms. They showed that this class
is a subclass of the ∆1

1 sequences.
Following this work, Chong and Yu [6] studied the class of elements which are not Π1

1-random
with respect to any continuous measure.

Definition 7.22 (Chong, Yu [6]). Given a representation µ̂ P 2N of a measure µ, we say that X
is Π1

1-random relative to µ̂ if it does not belong to any Π1
1pµ̂q set A with µpAq � 0.

Definition 7.23 (Chong, Yu [6]). We say that Z P 2N is Π1
1-random relative to a measure µ if

there exists a representation µ̂ of µ such that Z is Π1
1-random relative to µ̂.

Definition 7.24 (Chong, Yu [6]). The class NCRΠ1
1

is the class of element X P 2N such that for

any continuous measure µ, X is not Π1
1-random relative to µ.

A well known set of higher computability is the largest Π1
1 set which contains no perfect subset.

This is the set:

C � tX P 2N : X P LωX1 u

Theorem 7.25 (Mansfield [31] Solovay [47]). The set C is the largest Π1
1 set which contains no

perfect subset.

Chong and Yu then provided another characterization of C:

Theorem 7.26 (Chong, Yu [6]).

NCRΠ1
1
� C

The theorem follows from the two following lemmas:

Lemma 7.27 (Chong, Yu [6]). NCRΠ1
1

is a Π1
1 set which contains no perfect subset. Therefore

NCRΠ1
1
� C.

Proof. Let us show that NCRΠ1
1

is a Π1
1. Given any representation µ̂ of a measure, one can define

uniformly in µ̂ the largest Π1
1pµ̂q set Qµ̂ such that µpQµ̂q � 0. To do so we need to adapt the

proof of Theorem 3.11 to show that tX : ωX`µ̂1 ¡ ωµ̂1 u is a Π1
1pµ̂q set of µ measure 0. The proof

relativizes with no difficulty. We then need to adapt the construction of the largest Π1
1 nullset

given in the proof of Theorem 3.15. Here again everything relativizes smoothly with no difficulty.
Now we have:

X P NCRΠ1
1
Ø @µ̂pµ̂ is te representation of a continuous measure Ñ X P Qµ̂q

which is a Π1
1 predicate.

Let us now show that NCRΠ1
1

contains no perfect subset. Consider a perfect tree T . We define

the measure µ as µp2Nq � 1 and then inductively:

µprσisq � µprσsq if σp1� iq R T
µprσisq � 1{2µprσsq otherwise

It is clear that µ is a continuous measure. It is also clear that we have µprT sq � 1. Note that for
any representation µ̂ of µ, the set of elements of T which are Π1

1-random relative to µ̂ is a set of
µ-measure 1. It is also clear that µ has a smallest representation µ̂ in the Turing degree, i.e. a
computable encoding of the set tpσ, nq : µpσq � 2�nu (note that not all measure have a smallest
representation in the Turing degree). It follows that the set of elements of which are Π1

1-random
relative to µ is the same as the set of element which are Π1

1-random relative to µ̂. Therefore T
contains elements which are not in NCRΠ1

1
. �

Lemma 7.28 (Chong, Yu [6]). C � NCRΠ1
1
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Proof. Suppose X P C. Let µ be any continuous measure with any representation µ̂. Suppose first
that µ̂ ¥h X. Then tXu is in a ∆1

1pµ̂q set. Also as µ is continuous, this ∆1
1pµ̂q set is of µ-measure

0. Thus X is not Π1
1-random relative to µ̂. Suppose now µ̂ §h X. Note that X P LωX1 . Also

if ωµ̂1 ¥ ωX1 we must have X P Lωµ̂1
and thus µ̂ ¥h X. It follows that ωµ̂1   ωX1 . But the set

tX : ωX1 ¡ ωµ̂1 u is a Π1
1pµ̂q set of µ-measure 0. Thus X is not Π1

1-random relative to µ̂. Then for
any representation µ̂ of µ, the sequence X is not Π1

1-random relative to µ̂. As this is true for any
measure µ, we then have X P NCRΠ1

1
. �

7.5. Π1
1-randomness and minimal pair with O. Recall the following theorem of Downey, Nies,

Weber and Yu (see [9]) of classical randomness: For a sequence Z Martin-Löf random the following
are equivalent:

(1) Z is weakly-2-random.

(2) Z forms a minimal pair with ∅p1q.
(3) Z does not compute any non-computable c.e. set.

A first higher counterpart of p1q Ø p2q of the above would be: ‘For Z Π1
1-Martin-Löf random,

Z is higher weakly-2-random iff Z forms a higher Turing minimal pair with Kleene’s O’. But this
cannot be true, as by the Gandy Basis theorem, there is a Π1

1-random, and therefore a higher
weakly-2-random, which is Turing computable by Kleene’s O. However, we will be able instead to
obtain a higher version of the equivalence p1q Ø p3q, but with Π1

1-randomness in place of higher
weak-2-randomness.

7.5.1. Π1
1-randomness and computing Π1

1 sequences. We shall prove here that a Π1
1-Martin-Löf

random Z is Π1
1-random iff it does not higher Turing compute a Π1

1 sequence which is not ∆1
1.

Note that by the separation of Π1
1-randomness from higher weak-2-randomness, this implies that

some higher weak-2-random sequences compute non-∆1
1 Π1

1 sequences.

Theorem 7.29 (Greenberg, Monin [15]). For a set Z Π1
1-Martin-Löf random, the following are

equivalent:

(1) Z is Π1
1-random.

(2) Z does not higher Turing compute a Π1
1 sequence which is not ∆1

1.

Proof. (1)ùñ p2q: This is the easy direction. Suppose that Z higher Turing computes a Π1
1

sequence A which is not ∆1
1. As A is Π1

1, we have an approximation tAsus ωck1
of A such that for

any limit ordinal s we have limt sAt � As. As A is not ∆1
1 it cannot be equal to As for some

computable s. We can now define the Π1
1pAq total function f : ω Ñ ωck1 by sending fpnq to the

smallest ordinal s such that Asæn� Aæn. Therefore we have supn fpnq � ωck1 . Also as A is higher
Turing below Z we also have that f is Π1

1pZq, and as f is total it is also ∆1
1pZq and therefore the

range of f is a ∆1
1pZq set of ordinals, cofinal in ωck1 , which implies that ωZ1 ¡ ωck1 .

(2)ùñ p1q: Suppose that Z is Π1
1-Martin-Löf random but not Π1

1-random. Then from Theo-
rem 7.6 there is a uniform intersection of Π1

1-open sets
�
n Un so that Z P

�
n Un and so that no

∆1
1-closed set F �

�
n Un of positive measure contains Z. Then as Z is ∆1

1-random we actually
have that no ∆1

1 closed set F �
�
n Un contains Z. Let tWeue ω be an enumeration of the Π1

1

subsets of N. We will construct a Π1
1 sequence A which is not ∆1

1 and such that Z higher Turing
computes A. The usual way to make A not ∆1

1, is by meeting each requirement:

Re : We infinite Ñ AXWe � H

making sure in the meantime that A is co-infinite.

Construction of A:
At stage s, at substage xe,m, ky, if Re is actively satisfied, go to the next substage, otherwise if

m P Werss with m ¡ 2e, then consider the ∆1
1 set

�
n Unrss and compute an increasing union of

∆1
1-closed sets

�
n Fn with

�
n Fn �

�
n Unrss and λp

�
n Fnq � λp

�
n Unrssq.

If λpUmrss �Fkq ¤ 2�e then enumerate m into A at stage s, mark Re as ‘actively satisfied’ and
let Vxm,ey � Umrss � Fk.

This ends the algorithm. The sets Vxm,ey are intended to form a higher Solovay test.

Verification that A is not ∆1
1:
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A is co-infinite because for each e at most one m is enumerated into A and this m is bigger
than 2e. Now suppose that We is infinite. By the admissibility there exists s   ωck1 so that Werss
is infinite. Then there exists t ¥ s so that λp

�
n Un �

�
n Unrtsq   2�e. Then there is a ∆1

1-closed
set Fk �

�
n Unrts so that λp

�
n Un � Fkq   2�e. Then there exists an integer a such that for all

b ¥ a we have λpUb � Fkq   2�e and in particular λpUbrrs � Fkq   2�e for any stage r. But as
Werts is infinite we have some m P Werts with m ¡ 2e such that λpUmrts � Fkq   2�e. Then at
stage t and substage xe,m, ky, the integer m is enumerated into A, if Re is not met yet.

Verification that tVxm,eyum,ePN is a higher Solovay test:
Note that each Vxm,ey is well-defined uniformly in m and e. We implicitly have that Vxm,ey

enumerates nothing until the algorithm decides otherwise, which can happen at most once for a
given pair pm, eq, and even at most once for a given e, as when it happens, Re is actively satisfied.
Also as each Vm,e has measure smaller than 2�e, we have a higher Solovay test.

Computation of A from Z:
We now just describe the algorithm to compute A from Z. The verification that the algorithm

works as expected is given in the next paragraph. Let p be the smallest integer so that for any
m ¥ p, the set Z is in no Vxm,ey for any e, which exists because Z passes the Solovay test Vxm,ey.
To decide whether m ¥ p is in A, we look for the smallest s such that Z P Umrss. Then decide
that m is in A iff m is in Arss.

Verification that Z computes A:
Let p be the smallest integer so that for any m ¥ p the set Z is in no Vxm,ey for any e. Suppose

for contradiction that we have m ¥ p and s   ωck1 such that Z P Umrss and m R Arss, but m P Arts
for t ¡ s. By construction, it means that we have some e and some ∆1

1-closed set Fk �
�
n Un

with λpUmrts � Fkq   2�e and Vxm,ey � Umrts � Fk.
As Z does not belong to Vxm,ey and does not belong to Fk, it does not belong to Umrts which

contradicts the fact that it belongs to Umrss � Umrts. �

Corollary 7.30 (Greenberg, Monin [15]). Some higher weakly-2-random computes a Π1
1 set which

is not ∆1
1.

Proof. This follows from the previous theorem and from Theorem 6.7 saying that the set of Π1
1-

randoms is strictly included in the set of higher weakly-2-randoms. �

Theorem 7.29 can now be used to give another equivalent notion of test for Π1
1-randomness, in

the same spirit as the definition of higher difference randomness.

Theorem 7.31 (Greenberg, Monin [15]). For a sequence X, the following are equivalent:

(1) X is captured by a set F X
�
n Un with λpF X

�
n Unq � 0 where F is a Σ1

1 set and each
Un is a Π1

1-open set uniformly in n.
(2) X is not Π1

1-random.
(3) X is captured by a set F X

�
n Un with λpF X

�
n Unq � 0 where F is a Σ1

1-closed set and
each Un is a Π1

1-open set uniformly in n.

Proof. (1)ùñ (2): Suppose first that X is captured by a set F X
�
n Un of measure 0. Then either

ωX1 ¡ ωck1 , in which case X is not Π1
1-random, or there exists some stage s for which X P

�
n Unrss.

As also X P F we then have X P Unrss X F , which is a Σ1
1 set of measure 0. Therefore X is not

∆1
1-random and thus not Π1

1-random.

(2)ùñ (3): Suppose now that X is not Π1
1-random. Then by Theorem 7.29, either it is not

Π1
1-Martin-Löf random, in which case we have (3) with F � 2N and tUnun ω a Π1

1-Martin-Löf test,
or it higher Turing computes a Π1

1 set Y which is not ∆1
1, via a higher functional Φ. We define

Un �
�
s Φ�1pYsænq. We now define a Σ1

1-closed set by defining its complement Fc: We put in Fc

at successor stage s� 1, the open set Φ�1pYsænq for every n as soon as we witness Ysæn� Ys�1æn.
It follows that

�
n Un X F contains only the sequences which higher Turing computes Y with the

functional Φ, or some sequences on which Φ is not consistent. In particular, by Theorem 3.12,
the set of sequences which higher Turing compute Y has measure 0. Therefore the measure of�
n Un X F is bounded by the measure of the inconsistency set of Φ.
Also recall Lemma 2.12 saying that uniformly in ε, we can obtain a version of Φ for which the

inconsistency set of Φ has measure smaller than ε. We can then uniformly in ε define a uniform
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intersection of Π1
1-open sets

�
n Uεn such that λp

�
n Uεn X Fq ¤ ε. Note that we can keep the same

set F for any ε. Then we have λp
�
ε,n Uεn X Fq � 0 and X P

�
ε,n Uεn X F .

(3)ùñ (1) is immediate. �

7.5.2. Π1
1-Martin-Löf[O]-randomness. Greenberg and Monin [15] also studied a randomness notion

which is strong enough to make non-random any higher ∆0
2 sequence. The motivation for this

notion goes back to the notion of test, equivalent in the lower setting to weak-2-tests. The two
following are equivalent:

(1) X is weakly-2-random.

(2) X is in no set
�
n Ufpnq with f : N Ñ N a ∅p1q-computable function such that λpUfpnqq ¤

2�n.

This resemble the test notion of Theorem 6.5, except that in Theorem 6.5 we had to restrict
ourselves to functions with a finite-change approximation. We study now what we obtain if one
can use any higher ∆0

2 function.

Definition 7.32 (Greenberg, Monin [15]). A sequence X is Π1
1-Martin-Löf[O]-random (to be

pronounced, for a mysterious reason: Π1
1-Martin-Löf ‘plop O’ randomness) if X is in no set

�
n Ufpnq

with f higher Turing computable by O and with λpUfpnq ¤ 2�n for each n.

So as we will see, we don’t have the equivalence between Π1
1-Martin-Löf[O]-randomness and

higher weak-2-randomness. Nevertheless there is a way to remove O from this definition, in order
to get a better understanding of it:

Proposition 7.33 (Greenberg, Monin [15]). The following are equivalent for a sequence X P 2N:

(1) X is Π1
1-Martin-Löf[O]-random.

(2) X does not belong to any test pUsqs ωck1 not necessarily nested where each Us is a Π1
1-open

set uniformly in s, and such that λp
�
s Usq � 0.

Proof. Let us show that (2) implies (1). Let
�
n Ufpnq be an Π1

1-Martin-Löf[O] test. Recall that

p : ωck1 Ñ ω is the projectum function and let us define Vs �
�
n ppsq

�
t¡s Uftpnq. It is clear that�

n Ufpnq �
�
s Vs. To prove that λp

�
s Vsq � 0, let us prove that

�
s Vs �

�
n Ufpnq. For each n

there exists s large enough such that n ¤ ppsq and @m ¤ n
�
t¡s Uftpmq � Ufpmq. Then we have

for that n and s that Vs �
�
m¤n Ufpmq and then

�
s Vs �

�
n Ufpnq.

Let us show that (1) implies (2). Suppose now that we have a test pUsqs ωck1 with λp
�
s Usq � 0.

Then using O we can higher Turing compute the measure of each Us uniformly in s. Then for each
n, O can higher Turing compute sn such that λpUsnq ¤ 2�n and then we can find an equivalent
Π1

1-Martin-Löf[O] test, by setting Vn � Usn . �

We shall now see that Π1
1-Martin-Löf[O]-randomness is strictly stronger than Π1

1-randomness.
For this we first prove:

Proposition 7.34 (Greenberg, Monin [15]). If X P 2N higher Turing computes a non ∆1
1 higher

∆0
2 sequence Y , then X is not Π1

1-Martin-Löf[O]-random.

Proof. The set A �
�
n,s

�
t¥s Φ�1pYtænq is also equal to the set

�
n Φ�1pYtænq. Also by Sack’s

theorem (Theorem 3.12), as Y is not ∆1
1, the set of sequences which higher Turing compute Y is

a nullset. However the function Φ can also be inconsistent. Therefore the measure of the set A is
bounded by the measure of the Π1

1-open set on which Φ is inconsistent. Also by Lemma 2.12 we
can transform Φ uniformly in any ε so that the measure of this open set is smaller than ε, without
damaging the right computations of Φ. But then uniformly in n we can define the set An like
above, but with the measure of An bounded by 2�n. Also by Proposition 7.33, we then have that�
nAn is a Π1

1-Martin-Löf[O] test, and by design, it contains X. �

Theorem 7.35 (Greenberg, Monin [15]). Π1
1-Martin-Löf[O]-randomness is strictly stronger than

Π1
1-randomness.

Proof. By the proposition above we have that Π1
1-Martin-Löf[O]-randomness is either incompa-

rable with Π1
1-randomness, or strictly stronger than Π1

1-randomness: Indeed, by the Gandy basis
theorem, there is a higher ∆0

2 sequence which is Π1
1-random. All that remains to be proved is that

Π1
1-Martin-Löf[O]-randomness is stronger than Π1

1-randomness.
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By Theorem 7.6, if X is ∆1
1-random but not Π1

1-random, then there exists a uniform intersection
of Π1

1-open sets
�
n Un such that X P

�
n Un but X is in no Σ1

1-closed set F with F �
�
n Un. Let

us argue that there is an effective enumeration tFsus ωck1 of the Σ1
1-closed sets included in

�
n Un.

For a given Σ1
1-closed set F , we can build the Π1

1 function f : ω Ñ ωck1 which to n associates the
least t such that Ft �

�
m¤n Um,t. If we really have F �

�
n Un then f is total and then its range

is bounded by some computable ordinal t, for which we already have Ft �
�
n Un,t �

�
n Un.

So if a Σ1
1-closed set is included in

�
n Un we will know it at some computable ordinal stage.

Then we can easily get an effective enumeration tFsus ωck1 of the Σ1
1-closed sets included in

�
n Un

by checking at each stage t and for each index of a Σ1
1-closed set F if we have Ft �

�
n Un,t. Also we

have that X is in
�
n UnX

�
s ωck1

Fc
s which is a set of measure 0 and therefore, by Proposition 7.33

a Π1
1-Martin-Löf[O] test. �

This theorem yields a natural question, which is still open at the moment. We have that no
sequence computing a higher ∆0

2 sequence is Π1
1-Martin-Löf[O]-random. Does the converse hold

on Π1
1-Martin-Löf random sequences? Using Theorem 7.29, we already know that the Π1

1-Martin-
Löf randoms which are not Π1

1-random can higher Turing computes higher ∆0
2 sequences (even

Π1
1 sequences). But what about the sequences which are Π1

1-random but not Π1
1-Martin-Löf[O]-

random?

Question 7.36. Is there some X which is Π1
1-random, not Π1

1-Martin-Löf[O]-random, and which
does not higher Turing compute any higher ∆0

2 sequence?

8. Randomness along a higher hierarchy of complexity of sets

The notion of higher weak-2-randomness deals with uniform intersection of Π1
1-open sets, the

uniformity being along the natural numbers. Also one could think of iterating this notion. We
could consider for example uniform union of uniform intersections of Π1

1 open sets. Recall that
we proved in Section 6.2.2 that higher weak-2-randomness is strictly weaker than Π1

1-randomness,
that is, uniform intersections of Π1

1-open sets, of measure 0, are not enough to cover the largest Π1
1

nullset.
Greenberg and Monin [15] showed that if we just allow a little bit more descriptional power to

define our nullsets, that is allowing more successive intersection and union operations over Π1
1-open

sets, we can then define nullsets that capture every non Π1
1-random sequence. We start by defining

formally the new hierarchy on the complexity of sets, that we will use.

Definition 8.1 (Greenberg, Monin [15]). A set is Σck
1 if it is a Π1

1-open set. It is Πck
1 if it is a

Σ1
1-closed set. It is Σck

n�1 if it is an effective union over N of a sequence of Πck
n sets and it is Πck

n�1

if it is an effective intersection over N of a sequence of Σck
n sets.

We do not iterate the definition through the computable ordinal, first because we will not use
it, and then because it is not clear what should be the meaning of Σck

ω . Indeed, this new hierarchy
has the unusual property that a Πck

1 set is not necessarily a Πck
2 set; more generally, a Πck

n set is
not necessarily Πck

n�p for p odd, and a Σck
n set is not necessarily Σck

n�p for p odd. Indeed, Πck
n sets

for n odd and Σck
n for n even are all Σ1

1 sets, but Πck
n sets for n even and Σck

n for n odd are all Π1
1

sets. We give here an illustration of this new hierarchy:

Σ
ωck1
1 Σ

ωck1
2 Σ

ωck1
3 Σ

ωck1
4 Σ

ωck1
5 . . .

Π
ωck1
1 Π

ωck1
2 Π

ωck1
3 Π

ωck1
4 Π

ωck1
5 . . .

Figure 1. The higher hierarchy of complexity of sets.
The blue complexities correspond to Π1

1 sets.
The green complexities correspond to Σ1

1 sets.

With this higher complexity notion, we have by definition that any sequence is higher weakly-
2-random iff it is in no null Πck

2 set. The question we study here is :

What randomness notions do we obtain by considering null Πck
n sets or null Σck

n sets?

Definition 8.2 (Greenberg, Monin [15]). We say that X is Σck
n -random, respectively Πck

n -random,
if X is in no Σck

n nullset, respectively in no Πck
n nullset.
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8.1. On the Σ1
1 randomness notions in the higher hierarchy. It is clear that complexities

corresponding to Σ1
1 sets will give us a notion at least weaker than Σ1

1-randomness and then than
∆1

1-randomness. Concretely, the notion of being in no null Σck
2 sets, or no null Πck

3 sets, etc... gives
us a notion of randomness at least weaker than Σ1

1-randomness. The notion of Πck
1 -randomness

has been studied by Kjos-hanssen, Nies, Stephan, and Yu in [24], under the name of ∆1
1-Kurtz

randomness. In particular they studied lowness for the notion of ∆1
1-Kurtz randomness.

The notion of ∆1
1-randomness where the Borel complexity of the null sets is restrained has also

been studied by Chong, Nies and Yu in [5]. In particular, they observed that uniform intersection
of ∆1

1 open sets, effectively of measure 0, are enough to capture any non ∆1
1-random. What we

consider here is different, as we start our successive unions and intersections with Σ1
1 closed sets.

Theorem 8.3 (Greenberg, Monin [15]). We have:

Πck
1 -randomness Ø Σck

2 -randomness Ð Πck
3 -randomness = ∆1

1-randomness.

The reverse implication is strict. Also it follows from Πck
3 -randomness = ∆1

1-randomness that
Πck

3�p-randomness and Σck
2�p-randomness for p even are all equivalent to ∆1

1-randomness.

Proof. It is clear that Πck
1 -randomness is the same as Σck

2 -randomness, because in both cases the
non random sequences are those which are in the union of all Σ1

1-closed null sets.
Let us prove that Πck

3 nullsets are enough to cover any ∆1
1 nullsets. Using Theorem 3.6 we

can approximate from above any ∆1
1 set by a uniform intersection of ∆1

1-open sets
�
n Un. Also

as each Un is ∆1
1 uniformly in n, the predicate σ � Un and the predicate σ � Un are both ∆1

1

which implies that we can easily define uniformly in n a ∆1
1 total function hn : ω Ñ 2 ω such that�

mrhnpmqs � Un. We then define uniformly in pn,mq the ∆1
1-closed set Fn

m to be rhnpmqs. We
then have

�
n

�
m Fn

m �
�
n Un.

Let us prove that Πck
1 -randomness is strictly weaker than ∆1

1-randomness. The proof is similar
to the one that Kurtz-randomness (being in no Π0

1 sets of measure 0) is strictly weaker than Martin-
Löf randomness. We use here some Baire category notions: The set of Πck

1 -randoms is a countable
intersection of open sets of measure 1. Also it is clear that an open set of measure 1 is necessarily
dense. But then this intersection contains some Cohen generic sequences. Also any X which is
generic for even the weakest notion of genericity generally studied, namely weakly-1-generic, is not
Martin-Löf random (because each open set of a universal Martin-Löf test is dense), and therefore
certainly not ∆1

1-random.
Now, as Πck

3�p nullsets and Σck
2�p nullsets are all Σ1

1 nullsets for p even, the corresponding

randomness notions are all equivalent to Σ1
1-randomness = ∆1

1-randomness. �

8.2. On the Π1
1 randomness notions in the higher hierarchy. We know that the higher

weakly-2-randoms are exactly the elements which are Πck
2 -random. Also it is clear that this notion

coincides with Σck
3 -randomness, as in both case the non-random elements are the unions of all the

Πck
2 null sets. We shall now prove that Πck

4 -randomness coincide with Π1
1-randomness.

To do so, we will use Π1
1 functionals Φ from 2N into sequences of computable ordinals, that

is, pωck1 q
N. Concretely such a functional Φ is given by a Π1

1 subset of 2 N � N � ωck1 . We then
say that Φ is defined on X, if for every n, there exists a unique α such that for some m we have
pXæm, n, αq P Φ.

Note that just like for usual higher Turing reductions, we cannot guarantee that such a functional
is consistent everywhere. Also if along some oracle X, some n is mapped to at least two distinct
ordinals, then the functional is said to be inconsistent on X. The inconsistency set cannot be
completely removed, however, as in Lemma 2.12, it can be made of measure as small as we want.
We will prove this formally in Lemma 8.4, but first we give a few notations.

The set of elements on which Φ is defined (and consistent) will be denoted by CdompΦq. If for
some X and n there is some α (not necessarily unique) such that pXæm, n, αq P Φ for some m, we
write ΦpX,nq � α. One can consider ΦX as a multivalued function. Note that the equality symbol
‘�’ used in the expression ΦpX,nq � α does not mean that ΦpX,nq is equal to α in the strict
sense of equality, but more than ΦpX,nq is mapped to α (among possibly other values). Then the
set of elements X such that for any n we have ΦpX,nq � α for at least one α will be denoted by
dompΦq. Formally:

dompΦq �
£
n

tX : Dm,αn pXæm, n, αnq P Φu
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One nice thing about dompΦq is that it is a Πck
2 set, whereas CdompΦq is more complicated. We

now prove, as a consequence of Theorem 7.29 (a sequence Z is Π1
1-Martin-Löf random but not Π1

1-
random iff it higher Turing computes a strictly Π1

1 sequence) that the measure of the inconsistency
set of a functional Φ can be made as small as we want:

Lemma 8.4. If Z is Π1
1-Martin-Löf random and not Π1

1-random, one can define uniformly in ε P Q
a Π1

1 functional Φ � 2 N � N� ωck1 such that:

 Φ is defined (and consistent) on Z, and supn ΦpZ, nq � ωck1 .
 The measure of the Π1

1 open set on which Φ is not consistent is smaller than ε. Formally:

λptX : Dn,m1,m2 Dα1 � α2 ΦpXæm1
, nq � α1 and ΦpXæm2

, nq � α2uq ¤ ε

Proof. From 7.29 we have a higher Turing functional Ψ so that ΨpZq � A for A a Π1
1 set which is

not ∆1
1. From Lemma 2.12, the measure of the inconsistency set of Φ can be made smaller than ε,

uniformly in ε.
To define Φ, we enumerate pσ, n, αq in Φ if there exists τ of length bigger than n and α such

that pσ, τq P Ψ and α is the first ordinal for which we have τæn� Aαæn. We verify easily that such
a functional Φ has the desired properties. �

Using those Π1
1 functionals, we now state the following theorem, which is the heart of the proof

that Πck
4 -randomness coincide with Π1

1-randomness.

Theorem 8.5 (Greenberg, Monin [15]). For any Π1
1 functional Φ � 2 N�N�ωck1 , One can define,

uniformly in an index for Φ, a Πck
4 nullset A such that tX P CdompΦq : supn ΦpX,nq � ωck1 u � A.

Before proving Theorem 8.5 we see some of its consequences, in particular using Lemma 8.4, it
implies that Πck

4 -randomness coincides with Π1
1-randomness:

Theorem 8.6 (Greenberg, Monin [15]). We have:

Πck
2 -randomness Ø Σck

3 -randomness Ð Πck
4 -randomness = Π1

1-randomness.

The reverse implication is strict. Also it follows from Πck
4 -randomness = Π1

1-randomness that
Πck

4�p-randomness and Σck
3�p-randomness are all equivalent to Π1

1-randomness for p even and all

weaker than Π1
1-randomness for p odd.

Proof. Let us first prove that Theorem 8.5 implies that Πck
4 -randomness = Π1

1-randomness. One
direction is obvious as the largest Π1

1 nullset covers any Πck
4 nullset. For the other direction, suppose

that Z is not Π1
1-random. If Z is not Π1

1-Martin-Löf random it is by definition covered by a Πck
2

nullset. Otherwise we can define using Lemma 8.4 a Π1
1 functional Φ � 2 N � N� ωck1 defined on

Z, with supn ΦpZ, nq � ωck1 . It follows using Theorem 8.5 that Z can be captured by a Πck
4 nullset.

We also deduce that Πck
2 -randomness, corresponding to higher weak-2-randomness, is strictly

weaker than Πck
4 -randomness, using Theorem 6.7 that separates the two notions. The fact that

Σck
3 -randomness coincide with Πck

2 -randomness is clear. The rest of the proposition follows: For
any n the null Σck

n or Πck
n sets are either also null Π1

1 sets, or covered by some null Π1
1 sets. �

Corollary 8.7 (Greenberg, Monin [15]). The set of Π1
1-randoms is Πck

5 .

Proof. We actually have an effective listing tΦeuePN of the Π1
1 functionals Φe � 2 N �N� ωck1 , as

it is simply the listing of all the Π1
1 subsets of 2 N�N�ωck1 (recall that inconsistency is allowed).

Then using Theorem 8.5, we can define uniformly in e a Πck
4 null set Ae which captures:

tX P CdompΦq : sup
n

ΦepX,nq � ωck1 u

Also using Lemma 8.4 we know that as long as Z is not Π1
1-random and Π1

1-Martin-Löf random,
it will be captured by some of those set Ae. Therefore, the uniform union of all the sets Ae, itself
joined with the universal Π1

1-Martin-Löf test, is a Σck
5 nullset containing the biggest Π1

1 nullset.
And as a Σck

5 set is itself Π1
1, it actually coincides with the biggest Π1

1 nullset. �

It is unkown whether the above Corollary is optimal or not. Bienvenu, Greenberg and Monin
[2, Proposition 5.3] showed that the set of Π1

1 randoms is not Πck
3 , but the following remains open:

Question 8.8. Is the set of Π1
1 randoms Σck

4 ?

The rest of this section is dedicated to the proof of Theorem 8.5. So consider a Π1
1 functi-

onal Φ � 2 N � N � ωck1 . Let us fix some ε and let us assume that the inconsistency set of Φ
has measure smaller than ε. From now on, the construction will remain uniform in Φ and then in ε.
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The strategy:
The strategy is to define uniformly in each version of Φ that have an inconsistency set of measure

smaller ε, a Πck
4 set C such that:

 tX P CdompΦq : supn ΦpX,nq � ωck1 u � C � dompΦq.
 tX P CdompΦq : supn ΦpX,nq   ωck1 u � 2N � C.

In particular, it will follow that C contains either some element X such that ωX1 ¡ ωck1 , or some
element X P dompΦq such that Φ is not consistent on X. As by Theorem 3.11 the measure of
the set of X such that ωX1 ¡ ωck1 is null, it follows that the measure of C is bounded by ε, the
measure of the inconsistency set of Φ. Also uniformly in ε we can define the Πck

4 set Cε contai-
ning tX P CdompΦq : supn ΦpX,nq � ωck1 u and of measure smaller than ε. It follows that the
intersection over ε of the sets Cε is a Πck

4 nullset containing tX P CdompΦq : supn ΦpX,nq � ωck1 u.

Some notations:
In what follows, we denote byRe the e-th c.e. subset of N�N, that is, pn,mq P Re Ø xn,my PWe,

where We is the usual e-th c.e. subset of N. We will consider such a set as a c.e. binary relation.
Also for a computable ordinal α we denote by Rα the c.e. binary relation coded by the smallest
integer a P O such that |a|o � α.

We also denote by Re æk, the binary relation Re restricted to elements ‘smaller’ than k in
the sense of R, that is, the pair pn,mq is in Reæk iff the pair pm, kq and pn,mq are both in Re
(pn,mq P Re is intended to be understood as n   m in the sense of Re). Note that Reæk is well
defined for any e, but the underlying idea really makes sense when Re represents an order, and we
actually intend to use it only when Re represents a linear order.

Finally, we say that a function f : N Ñ N is a morphism from a linear order coded by a
binary relation Re1 to another linear order coded by a binary relation Re2 , if f is total on
domRe1 , with fpdomRe1q � domRe2 and if px, yq P Re1 Ñ pfpxq, fpyqq P Re2 . Here domRe
denotes the support of Re, that is, the set of integer a such that pa, bq P Re or pb, aq P Re for some b.

Definition of the Πck
4 set C

We now do the proof of Theorem 8.5. Let us define uniformly in each integer e the sets Ae and
Be:

Ae �

$&%X P 2N :
Dn Dαn ΦpX,nq � αn and

@f f is not a morphism from Rαn to Re

,.-
and

Be �

$&%X P 2N :
Dm @n Dαn ΦpX,nq � αn and

@f f is not a morphism from Reæm to Rαn

,.-
Let us now define the Π0

2 set G of integers e such that Re is a linear order of N. We finally
define:

C �
£
ePG

pdompΦq X pAe Y Beqq

Proof that C is Πck
4 :

We have that dompΦq is Πck
2 , that Ae is Σck

1 uniformly in e and that Be is Σck
3 uniformly in e.

Then the set dompΦq X pAe Y Beq is Σck
3 uniformly in e. As G has a Π0

2 description, we then have
that C is a Πck

4 set.

Proof that C captures enough:
We should prove that tX P CdompΦq : supn ΦpX,nq � ωck1 u � C. Fix some Z P CdompΦq and

suppose that supn ΦpZ, nq � ωck1 . Let us prove for any e P G that Z P Ae Y Be. It will follow that
Z P C.

Suppose first that Re is a well-founded relation. As e is already in G we have that Re is a
c.e. well-ordered relation with |Re|   ωck1 . But then there is some n so that ΦpZ, nq � αn with
|αn| ¡ |Re| and we cannot have a morphism from Rαn to Re. Then Z P Ae.

Suppose now that Re is an ill-founded relation. There is then some m so that Reæm is already
ill-founded. But as Rαn is well-founded for every αn � ΦpZ, nq, then for every n we cannot have
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a morphism from Reæm to Rαn , and then Z P Be.

Proof that C does not capture too much:
Let us now prove that for any X P CdompΦq, if supn ΦpX,nq   ωck1 then X R C. Consider such

a sequence X with supn ΦpX,nq � α   ωck1 . In particular there exists some integer e P G so that
Re is a well-order of order-type α. For this e we certainly have for all αn � ΦpX,nq a morphism
from Rαn into Re and then X R Ae.

Let us now prove that X R Be. For any m we have |Reæm |   α. But because α � supn ΦpX,nq
there is necessarily some n so that ΦpX,nq � αn ¡ |Reæm |. Thus there is a morphism from Reæm
into Rαn . Then X R Be, and therefore X R C. This ends the proof.

9. Open questions

We sum up in this section the open questions which appear in this paper. We also add three
new open questions, one of them not directly related to higher randomness, but more with higher
genericity and with higher computability.

9.1. Higher Plain complexity. In Section 7.2 we defined the set A of sequences which have
infinitely many prefixes of maximal Π1

1-Kolmogorov complexity:

A � tX | Dc @n Dm ¥ n CpXæmq ¥ m� cu

We saw that the set A contains the Π1
1-randoms and is contained in the Π1

1-Martin-Löf randoms.
We deduced from that using Corollary 7.9 that we cannot have Π1

1-randoms � A � weakly-2-
randoms. The following question remains open:

Question 9.1. Does the set A contain the higher weakly-2-randoms?

We add this question which is also still unanswered:

Question 9.2. Does the set A coincides with the Π1
1-Martin-Löf randoms ?

9.2. Higher randomness and minimal pair with O. The notion of Π1
1-Martin-Löf[O] rand-

omness defined in Section 7.5.2 removes all the higher ∆0
2 randoms and even all the randoms which

higher Turing compute higher ∆0
2 sequences. We do not know if this is optimal, that is, we do not

know if a Π1
1 random Z which is not Π1

1-Martin-Löf[O] has to compute a higher ∆0
2:

Question 9.3. Is there some X which is Π1
1-random, not Π1

1-Martin-Löf[O]-random, and which
does not higher Turing compute any higher ∆0

2 sequence?

9.3. Complexity of the set of Π1
1-randoms. We showed with Corollary 8.7 that the set of Π1

1-
random is Πck

5 . Bienvenu, Greenberg and Monin showed [2, Proposition 5.3] that every Πck
3 set of

measure 1 contains a sequence X with a finite-change approximation. In particular this sequence
cannot be Π1

1-random and then the set of Π1
1-randoms cannot be Πck

3 . The proof of Bienvenu,
Greenberg and Monin strongly uses the measure 1 assumption, and not just a positive measure
assuption. Also it is unkown if there exists a Πck

3 set of positive measure which contains only
Π1

1-randoms, or more specifically:

Question 9.4. Is the set of Π1
1-random Σck

4 ?

9.4. Higher randomness and DNR functions. Just like for partial computable functions, there
is a uniform enumeration tΦeuePN of the Π1

1 partial functions. We can then define a higher version
of being DNC : a function f : N Ñ N is a Π1

1-DNC function if for every e we have fpeq � Φepeq.
Liang Yu asked the following question:

Question 9.5 (Yu). Does every Π1
1-DNR function hyperarithmetically compute a Π1

1-Martin-Löf
random real ?

In the lower setting, X computes a DNC function iff X computes an infinite subset of a random,
and this is provably different from computing a random (see [22] and [14]). It is unknown if things
are different in the higher settings.
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9.5. Higher randomness and LR reductions. Yu asked the following question:

Question 9.6 (Yu). Suppose ωX1 � ωck1 . Does there exists a ∆1
1pXq random sequence Y so that

X ¤h Y ?

When X is not ∆1
1, note that if Y is ∆1

1pXq-random, then for any α   ωck1 , we cannot have
Y α ¥T X. Also a ∆1

1pXq sequence Y such that Y ¥h X must be such that ωY1 ¡ ωck1 .
It follows that a positive answer to the following question would provide a negative answer to

Question 9.6.

Question 9.7 (Yu). Does there exists X such that ωX1 � ωck1 and such that every ∆1
1pXq-random

is Π1
1-random ?

Note that the previous question is connected with a higher version of the LR reduction : X is
LR above Y if every X-random is also Y -random. Higher versions of the LR reduction could be,
for instance, defined for ∆1

1 and Π1
1-randomness, and these reductions have not been studied yet.

9.6. Genericity and higher computability. We end with a small digression. In [15] Greenberg
and Monin define the notion of Σ1

1-genericity and show that it is the categorical analogue of Π1
1-

randomness. A characterization of lowness for Σ1
1-genericity is still unkown:

Question 9.8. Is there a non-∆1
1 sequence which is low for Σ1

1-genericity ?

The question is connected to a higher computability question of Liang Yu:

Question 9.9 (Yu). Let C be a perfect Σ1
1 set. Let A be a non ∆1

1 sequence. Does there necessarily

exists X P C such that ωA`X1 ¡ ωck1 ?

If some non-∆1
1 sequence was low for Σ1

1-genericity, it would negatively answer the question
of Liang Yu, as the set of Σ1

1-generics is Σ1
1, and as we have ωA`X1 � ωck1 for every X which is

Σ1
1-generic relative to A.
The closest known answer to the question is given by the following theorem, from Chong and

Yu [6]:

Theorem 9.10 (Chong, Yu [6]). Given two perfect Σ1
1 sets C1, C2, there exists X1 P C1 and X2 P C2

such that ωX1`X2
1 ¡ ωck1 .
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[32] Per Martin-Löf. The definition of random sequences. Information and Control, 9:602?619, 1966.
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