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Abstract
Kechris showed in [8] that there exists a largest Π1

1 set of measure 0. An explicit construction of
this largest Π1

1 nullset has later been given in [6]. Due to its universal nature, it was conjectured
by many that this nullset has a high Borel rank (the question is explicitely mentioned in [3] and
[15]). In this paper, we refute this conjecture and show that this nullset is merely Σ0

3. Together
with a result of Liang Yu, our result also implies that the exact Borel complexity of this set is
Σ0

3.
To do this proof, we develop the machinery of effective randomness and effective Solovay gen-

ericity, investigating the connections between those notions and effective domination properties.
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1 Introduction

We will study in this paper the notion of forcing with closed sets of positive measure and
several variants of it. This forcing is generally attributed to Solovay, who used it in [14] to
produce a model of ZF +DC in which all sets of reals are Lebesgue measurable. Stronger and
stronger genericity for this forcing coincides with stronger and stronger notions of randomness.
It is actually possible to express most of the randomness definitions that have been made
over the years by forcing over closed sets of positive measure.

In the first section we give a brief overview of the part of algorithmic randomness that we
need in the paper. In the second section we make a modification to the usual definition of
effective Solovay genericity directly inspired by a notion introduced by Jockusch in [7] about
effective genericity for Cohen forcing. This new definition will reveal itself to be interesting
for its connections with effective domination properties. In the third section we will give a
quick description of what we need of higher computability theory and higher randomness
to approach the last section. Finally in the last section we give higher analogues of the
Solovay genericity notions studied in section two, and we show again their connections with
randomness and higher effective domination properties. This will allow us to conclude with
the Borel complexity of the largest Π1

1 nullset.

2 General Background

In this paper, we will work in the space of infinite sequences of 0’s and 1’s, called the
Cantor space, denoted by 2ω. We will call strings finite sequences of 0’s and 1’s, sequences
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elements of the Cantor space and sets the sets of sequences. For a string σ, we will denote
the set of sequences extending σ by [σ].

The set of integers We will denote the domain of the computable function Φe, and [We]
will denote

⋃
σ∈We

[σ], where We is seen as a set of strings. We will denote by 〈, 〉 a fixed
computable pairing function from ω × ω to ω.

We will consider computable functionals (computable functions using sequences as oracles)
as functions from the Cantor space to the Baire space. Then a computable functional Φ is
considered define on X ∈ 2ω if ∀n ΦX(n) ↓ and we denote by dom Φ the set {X | ∀n ΦX(n) ↓}.
We say that a function f is computable relative to X or X-computable if there is a computable
functional defined on X such that ΦX = f .

The topology on Cantor space is generated by the basic intervals [σ] = {X ∈ 2ω | X � σ}
for σ a string. For A ⊆ 2ω Lebesgue-measurable, λ(A) will denote the Lebesgue measure of
A, which is the unique Borel measure such that λ([σ]) = 2−|σ| for all strings σ.

2.1 About the arithmetical complexity of sets
In the Cantor space, open sets can be described as countable unions of strings. We call an
open set effective if it can be described as the union of a computably enumerable set of
strings, i.e. if it is equal to [We] for some e. Such a set is said to be Σ0

1. On the other hand,
when it is open but not necessarily effectively open, the set is said to be Σ0

1. However, a
non-effective open set is always effective relatively to some oracle. If X is such an oracle, we
say that the set is Σ0

1(X). A closed set is called effective if its complement is an effective open
set, in which case we say that the closed set is a Π0

1 set. We can then continue to describe
the effective Borel sets through the arithmetical hierarchy as effective unions of effective
Borel set of lower complexity and as their complements. So a Σ0

n+1 set will be an effective
union of Π0

n sets, and a Π0
n+1 set will be the complement of a Σ0

n+1 set. For example, a set
A is Σ0

4 if we have an integer e such that A =
⋃

m1∈We

⋂
m2∈Wm1

⋃
m3∈Wm2

[Wm3 ]c.

We have a canonical surjection from integers to Σ0
1 sets (The one which associates to e

the computably enumerable set [We]), but also from integers to Σ0
n sets for a fixed n. In the

above example, with n = 4 the integer e is associated to the Σ0
4 set A. In this context e will

be called an index for the set A.
Also for a computably enumerable set of integers W , we denote by W [t] the enumeration

of W up to stage t. We extend this definition to effective open sets: if O = [W ], then
O[t] = [W [t]]. Similarly, if F = Oc, F [t] = O[t]c.

2.2 About algorithmic randomness
In 1966, Martin-Löf gave in [10] a definition capturing elements of the Cantor space that can
be considered ‘random’. Many nice properties of the Martin-Löf random sequences make this
notion of randomness one of the most interesting and one of the most studied.

Intuitively a random sequence should not have any atypical property. A property is here
considered atypical if the set of sequences having it is of measure 0. It also makes sense to
consider only properties which can be described in some effective way (because any X has
the property of being in the set {X} and thus nothing would be random).

I Definition 1. An intersection of measurable sets
⋂
nAn is said to be effectively of

measure 0 if the function which to n associates the measure of An is bounded by a
decreasing computable function whose limit is 0. A Martin-Löf test is a Π0

2 set
⋂
nOn
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effectively of measure 0. We say that X ∈ 2ω isMartin-Löf random if it is in no Martin-Löf
test.

One can iterate this idea by considering Π0
n sets effectively of measure 0 for any n ≥ 2.

Martin-Löf randomness is also called 1-randomness, the use of Π0
3 sets effectively of measure

0 gives us 2-randomness, Π0
4 sets give us 3-randomness, and so on. The requirement for

a Martin-Löf test to be effectively of measure 0 is important and leads to very nice properties.
In particular there exists a universal Martin-Löf test, i.e. a test containing all the others
(see [10]). This is not the case anymore if we drop the ‘effectively of measure 0’ condition.
Instead we get a notion known as weak-2-randomness.

I Definition 2. We say that X ∈ 2ω is weakly-2-random if it is in no Π0
2 nullset.

As a randomness notion, weak-2-randomness is a strictly stronger than 1-randomness,
but is strictly weaker than 2-randomness (see [12] section 3.6).

3 Solovay genericity and its variants

Cohen introduced in [4] the general technique of forcing by forcing with all dense open sets
of the Cantor space (with the usual topology) in a countable model of ZFC. The most basic
effective version of this would be to say that X is generic if it belongs to all dense Σ0

1 sets, a
notion introduced by Kurtz in [9]. Jockusch introduced and studied in [7] a slightly different
notion.

I Definition 3 (Kurtz, Jockusch). We say that X is weakly-1-generic if it belongs to all
dense Σ0

1 sets. We say that X is 1-generic if for any Σ0
1 set U , either X belongs to U or X

belongs to some other Σ0
1 set U ′ disjoint from U .

We will apply Jockusch’s idea behind 1-genericity to forcing with Π0
1 sets. First note that

by definition, the weakly-2-randoms are exactly the sequences which are in all Σ0
2 sets of

measure 1. If we consider the topology generated by Π0
1 sets of positive measure, because

Σ0
2 sets of measure 1 are then dense open sets for this topology, we also get in some sense a

genericity notion.

3.1 Forcing with Π0
1 sets

Adding a measure requirement to the definition of genericity will always link us to randomness.
We study what happens if we drop the measure requirement and if we consider instead the
Σ0

2 sets which are dense for the topology generated by the Π0
1 sets, i.e. the Σ0

2 sets which
intersect all non-empty Π0

1 set. It is clear that the Cantor space with this topology is a Baire
space, i.e. has the property that an intersection of dense open sets is dense. This directly
comes from the fact that a decreasing intersection of non-empty closed sets is non-empty.
This justifies the following definition:

I Definition 4. Let {Gi}i∈ω be the collection of all Σ0
2 sets which intersect all the Π0

1 sets.
We say that X is weakly-Π0

1-generic if it belongs to
⋂
iGi.

As the next proposition shows, weak-Π0
1-genericity has nothing to do with randomness.

I Proposition 5. No weakly-Π0
1-generic sequence is 2-random.
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Proof. We construct uniformly in n a Σ0
2 set intersecting all Π0

1 sets and with measure
smaller than 2−n. Let {Fe}e∈ω be an enumeration of the Π0

1 sets. For each e we initialize σe
to the first string (using lexicographic order) of length n + e + 1. Our Σ0

2 set will consist
of a computably enumerable set A of indices of Π0

1 sets. We now describe the algorithm
to enumerate elements of A: At stage t, for each substage e < t in increasing order, if
the index of Fe ∩ [σe] has not been enumerated yet into A, then enumerate it. After that,
if (Fe ∩ [σe])[t] = ∅ then reset σe to be the string of length n + e + 1 following σe in the
lexicographic order. If σe is already the last such string, leave it unchanged.

Let us prove that the measure of the Σ0
2 set represented by A is smaller than 2−n. For

each e, if Fe ∩ [σe] = ∅ then by compactness (Fe ∩ [σe])[t] = ∅ for some t. Thus at most one
string σe of length n+ e+ 1 such that Fe ∩ [σe] 6= ∅ has been enumerated into A, and the
measure of A is bounded by

∑
e 2−n−e−1 ≤ 2−n. Now our Σ0

2 set is dense because if Fe is
not empty then there exists a string σe of length n+ e+ 1 such that Fe ∩ [σe] is not empty
and then A will intersect Fe.

From this we can then construct a Π0
3 set effectively of measure 0 and containing all the

weakly-Π0
1-generic sequences. J

Following Jockusch’s 1-genericity idea we now define Π0
1-genericity:

I Definition 6. A sequence X is Π0
1-generic if for all Σ0

2 sets G, either X is in G or there
is a Π0

1 set F disjoint from G such that X is in F .

We now establish a simple but surprising connection with computability theory, which
appears to be previously unknown. We say that a sequence X is computably dominated if
for every total function f : ω → ω, computable relative to X, there exists a total computable
function g such that g dominates f (i.e. ∀n f(n) ≤ g(n)).

I Proposition 7. A set X is Π0
1-generic iff it is computably dominated.

Proof. Suppose X is computably dominated and take any Σ0
2 set

⋃
n Fn. Suppose that

X belongs to its complement, a Π0
2 set

⋂
nOn. Let us define the X-computable function

f : ω → ω which to n associates the smallest t so that X ∈ On[t]. As X is computably
dominated, there is a computable function g which dominates f . Then X ∈

⋂
nOn[g(n)], an

effectively closed set disjoint from
⋃
n Fn.

Conversely suppose that X is Π0
1-generic and consider a functional Φ, defined on X. We

have that dom Φ = {X | ∀n ΦX(n) ↓} is a Π0
2 set containing X. But then as X is Π0

1-generic,
it is contained in a Π0

1 set F contained in the domain of Φ. Let us now build1 a computable
function f such that ∀X ∈ F ΦX < f . To compute the value of f(n) we find the smallest
pair 〈m, t〉 such that for all strings σ of size m with [σ] ⊆ F [t], the functional Φ halts on n
in less than t steps with σ as an oracle (considering that if Φ needs to use bits of the oracle
at positions bigger than |σ|, it does not halt). Then we set f(n) to the sum of all those
values plus one. All we need to show is that f is total. Fix n and let us prove there is a m
so that for all X ∈ F we have ΦX�m(n) ↓. Suppose not, then for all m there is X ∈ F with
Φσm(n) ↑ where σm = X �m. As {σm}m∈ω is infinite it has at least one limit sequence Y and
as F is closed we have Y ∈ F . Also as ΦY�m(n) ↑ for all m we have that Φ is not defined

1 One can also directly deduce the existence of such a function f using the fact that the supremum of a
computable function, over an effectively compact set, is right-ce.
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on Y which contradicts the hypothesis. Thus for some t we have that F [t] is covered by a
finite union

⋃
i≤k[σi] such that Φσi(n) ↓. It follows that for some t and some m we have that

Φσ(n) halts in less than t steps for all strings σ of size m such that [σ] ⊆ F [t].
J

A direct computation shows that the set of computably dominated sequences is Π0
4. The

above proposition lowers down the Borel complexity to Π0
3: if for every set A we denote

by A◦ the interior of A for the topology generated by Π0
1 sets, i.e. the union of all Π0

1 sets
included in A, then the set of computably dominated sequences is the intersection over all
the Π0

2 sets P , of P ◦ ∪ P c. We now give a lower bound on the Borel complexity of the
computably dominated sequences, however we do not know if it can be Σ0

3.

I Proposition 8. The set of computably dominated sequences is neither Σ0
2 nor Π0

2.

Proof. Let us show that it is not Π0
2. First note that for any Π0

2 set A, if A is dense (for
the usual topology) in some [σ] then it contains a weakly-1-generic sequence as defined by
Kurtz. Indeed, the intersection of A ∩ [σ] with all dense Σ0

1 sets will not be empty and will
then contain weakly-1-generic sequences. But by a result of computability theory (see [9]),
no weakly-1-generic is computably dominated. Thus a Π0

2 set containing only computably
dominated sequences is nowhere dense. But as the set of computably dominated sequences
is dense, being closed under finite change of prefixes, such a Π0

2 set cannot contain all of them.

To show that it is not Σ0
2, we adapt a technique that Liang Yu exposed in [15]. Suppose

that the set of computably dominated sequences is described as
⋃
n Fn with each Fn closed.

For each n let Bn =
⋃
{T | T ∩Fn = ∅ and T is a Π0

1 set with no computable member}. Let
us prove that the set Bn intersects any non-empty Π0

1 set with no computable members. Take
any non-empty Π0

1 set G with no computable members. By a classical result of computability
theory (see [12] proposition 1.5.12 combined with fact 1.8.36) G contains a non-computably
dominated sequence. Thus G contains a sequence X which is not in Fn. Then as Fn is closed
there is a string σ such that X ∈ G ∩ [σ] but G ∩ [σ] ∩ Fn = ∅. Thus G ∩ [σ] is a non-empty
Π0

1 set with no computable sequence, intersecting G and disjoint from Fn. Consequently
we have Bn ∩ G 6= ∅ and then each Bn is dense for the topology generated by Π0

1 sets
with no computable member. It follows that

⋂
nBn is also dense for this topology. From

Proposition 7 the set of computably dominated sequences is also dense for this topology.
Then there is a computably dominated sequence in

⋂
nBn. But we also have by design of the

Bn that
⋂
nBn ∩

⋃
n Fn = ∅, which contradicts the fact that

⋃
n Fn contains all computably

dominated sequences. J

3.2 Forcing with Π0
1 sets of positive measure

We now introduce a notion of genericity which is a measure-theoretic variation of Π0
1-genericity

defined in the previous section. The notion will be interesting for its counterpart in Higher
computability. Let us now come back to the topology generated by Π0

1 sets of positive
measure. To obtain weak-2-randomness we consider only Σ0

2 sets of measure 1. We now
consider all Σ0

2 sets which intersect with positive measure every Π0
1 set of positive measure.

I Definition 9. Let {Gi}i∈ω be the collection of all Σ0
2 sets A such that for any Π0

1 set F of
positive measure we have λ(A∩F ) > 0. Then we say that X is weakly-Π0

1-Solovay-generic
if it belongs to

⋂
iGi.

I Definition 10. We say that X is Π0
1-Solovay-generic if for any Σ0

2 set A, either X is in
it or there exists a Π0

1 set F of positive measure and disjoint from A such that X is in it.
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I Proposition 11. A set X is Π0
1-Solovay-generic iff it is weakly-2-random and computably

dominated.

Proof. Suppose that X is weakly-2-random and computably dominated. Take any Σ0
2 set and

suppose that X does not belong to it. By Proposition 7, as X is computably dominated, we
have that X belongs to some Π0

1 set disjoint from the Σ0
2 set. Also as X is weakly-2-random

this Π0
1 set has positive measure.

Conversely, suppose that X is Π0
1-Solovay-generic. In particular it is weakly-2-random

and Π0
1-generic. Then by Proposition 7 we have that it is computably dominated. J

3.3 A separation for weak and non weak-genericity
We will now prove that weak-genericity is not enough to obtain computable domination. For
this we shall adapt a proof of a theorem in [1] saying that for any function f , there is a
weakly-2-random X and an X-computable function g not dominated by f . Here we want
weak-Π0

1-Solovay-genericity instead of weak-2-randomness.

I Proposition 12. For any function f : ω → ω there is an X weakly-Π0
1-Solovay-generic

computing a function g : ω → ω which is above f infinitely often.

Due to its length, the proof is given in appendix. Using Proposition 12, we have some
weakly-Π0

1-Solovay-generics which are not computably dominated and so not Π0
1-Solovay-

generic. One can prove that weakly-Π0
1-Solovay-genericity implies weakly-Π0

1-genericity by
showing that any Σ0

2 set intersecting all the Π0
1 sets also intersects with positive measure all

Π0
1 sets of positive measure. Take any Σ0

2 set intersecting all the Π0
1 sets. Take now a set F

of positive measure and consider the Σ0
2 set

⋃
n Fn of Martin-Löf randoms (the complement

of the universal Martin-Löf test). As it has measure 1, there is some Fn such that F ∩Fn has
positive measure. But by hypothesis our Σ0

2 set intersects F ∩ Fn. The intersection contains
only Martin-Löf random sequences and thus is necessarily of positive measure. Thus there is
also some weakly-Π0

1-generics which are not Π0
1-generics.

4 Background on higher computability and higher randomness

We now give a few definitions of higher computability and higher randomness. The Turing
reductions are replaced by hyperarithmetical reductions. One intuitive way to understand a
hyperarithmetical computation is to think of a standard Turing computation, but with an
infinite-time Turing machine. For those machines the computational time is not an integer
anymore, but an ordinal. Tapes are infinite and pre-filled with 0’s, at a successor stage
everything happens as in a regular Turing machine. At a limit stage, the machine changes to
a special ‘limit’ state, the head comes back to the first cell of the first tape and if the value
of a cell of a tape does not converge, it is reset to 0 (otherwise it is set to the limit of its
previous values). The rest works as usual.

For example, we can build the ordinal time Turing machine which on a tape, at finite
computation time t = 〈s, e〉 write 1 on the cell number e of this tape if the program number
e halts in less than s steps. At ordinal time ω we then have the halting problem on this tape.
Then stages ω+n can be used to compute what one could compute with the halting problem.
This can be iterated to compute anything that could be computed in a finite jump. But we
can even go beyond a finite jump and continue through the ordinal jumps. To formalize this
properly we need to fix the notion of notation for computable ordinals.
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4.1 Computable ordinals
More details about this section can be found in [13]. An ordinal is defined as the order type
of a well-ordered set. When the ordinal is infinite and countable it can be the order-type of
a well-ordered set with domain ω. We say that a countable ordinal α is computable if we
have a relation R ⊆ ω × ω which is a well-founded linear order of a subset of ω of order-type
α and if there is some e such that (n,m) ∈ R ↔ 〈n,m〉 ∈ We. In this case we say that e
codes for α and we write |e| = α. Let us denote by W the set of integers which code for
computable ordinals and let us denote by Wα the set of integers which code for computable
ordinals strictly smaller than α.

As there are uncountably many countable ordinals, not all of them are computable.
Moreover it is known that they form a strict initial segment of the countable ordinals. We
denote by ωck1 the smallest non-computable ordinal. This notion can then be relativised.
We say that e is an X-code for the ordinal α if we have a relation R ⊆ ω × ω which is a
well-founded linear order of a subset of ω of order-type α and if (n,m) ∈ R↔ 〈n,m〉 ∈WX

e .
We then write |e|X = α. We denote by WX the set of X-codes for X-computable ordinals,
and we denote by WX

α the set of X-codes for X-computable ordinals strictly smaller than α.
Finally, we call ωX1 the smallest ordinal which is non-computable relatively to X. Note that
any countable ordinal is computable with a representation of itself as an oracle.

4.2 Second order definable sets
We say that a sequence X is hyperarithmetic if for some computable function f and some
computable ordinal α we have n ∈ X ↔ f(n) ∈ Wα. One can define the hyperarithmetic
sequences equivalently as the sequences we can Turing-compute with sufficiently many success-
ive effective joins and iterations of the jump, constructed by induction over the computable
ordinals. Also coming back to the analogy with infinite-time Turing machines we have in
[5] a theorem saying that a sequence X is hyperarithmetic iff it can be computed by an
infinite-time Turing-machine in a computable ordinal length of time. Similarly we define
what is hyperarithmetic for sets. We say that A ⊆ 2ω is hyperarithmetic if there exists e and
α computable such that X ∈ A↔ e ∈ WX

α .

We now define Π1
1 sequences. While hyperarithmetic sequences can be considered to be

the higher counterpart of computable sequences, Π1
1 sequences can be considered to be the

higher counterpart of computably enumerable sequences. They are the sequences one can
define with a formula of arithmetic containing arbitrary many first order quantifications and
only universal second order quantifications (with no negations in front of them). We have
another equivalent definition. A sequence X is Π1

1 if for some computable function f we
have n ∈ X ↔ ∃α < ωck1 f(n) ∈ Wα. Coming back to the analogy with infinite-time Turing
machines, the Π1

1 sequences also correspond to the sets of integers one can enumerate along
computable ordinal length of time with such a machine (when we interpret sequences as
sets of integers, considering that n in the set iff the n-th bit of the sequence is one). The
Σ1

1 sequences are their complements (again, when we see sequences as sets of integers), the
higher equivalent of co-recursively enumerable sequences. Finally a set A is Π1

1 if we have
an integer e so that X ∈ A↔ ∃α < ω1 e ∈ WX

α . We also have a canonical surjection from
integers to Π1

1 sets, so like the arithmetical sets, they can be indexed (in the above example,
e is an index for the Π1

1 set A).

A set is called ∆1
1 if it is both Σ1

1 and Π1
1. By a theorem of Kleene (see chapter 2 in [13])
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they are exactly the hyperarithmetical sets. An index for a ∆1
1 set will consist of a pair of

two indices. One expressing it as a Π1
1 predicate and one expressing its complement as a Π1

1
predicate.

Note that for Π1
1 sets, the existential quantification over the ordinals goes up to ω1.

Indeed, if ωX1 > ωck1 it is possible that X ∈ A is witnessed by some X-code e for α ≥ ωck1 .
This leads us to a Π1

1 set of great importance for this paper, the set {X | ωX1 > ωck1 } (the
proof that this set if Π1

1 can be found in section 9.1 of [12]). We now state two theorems
that will be useful for the rest of the paper.

I Theorem 13 (Sacks [13]). Uniformly in ε and an index for a ∆1
1 set A, one can compute

an index for a Σ1
1 closed set F so that F ⊆ A and λ(A− F ) ≤ ε. Also one can uniformly

from an index of a ∆1
1 set obtain an index for the ∆1

1 real being the measure of this set.

I Theorem 14 (Spector [13]). If f : ω → WX is a total Π1
1(X) functional predicate then

supn |f(n)| < ωX1 .

4.3 Higher randomness
We now introduce notions of randomness which are higher effective variations of the usual
randomness notions.

I Definition 15 (Sacks). We say that X ∈ 2ω is ∆1
1-random if it is in no ∆1

1 nullset.

Martin-Löf was actually the first to promote this notion (see [11]), suggesting that it was
the appropriate mathematical concept of randomness. Even if his first definition undoubtedly
became the most successful over the years, this other definition got a second wind recently
on the initiative of Hjorth and Nies who started to study the analogy between the usual
notions of randomness and their higher counterparts. In order to do so they created in [6] a
higher analogue of Martin-Löf randomness.

IDefinition 16 (Hjorth, Nies). A Π1
1-Martin-Löf test is given by an effectively null intersection

of open sets
⋂
nOn, each On being Π1

1 uniformly in n. A sequence X is Π1
1-ML-random if

it is in no Π1
1-Martin-Löf test.

This definition is strictly stronger than ∆1
1-randomness (see Corollary 9.3.5 in [12]). The

higher analogue of weak-2-randomness has also been studied (see [3]).

I Definition 17. We say that X is weakly-Π1
1-random if it belongs to no

⋂
nOn with each

On open set Π1
1 uniformly in n and with λ(

⋂
nOn) = 0.

Earlier, Sacks gave an even stronger definition, made possible by a theorem of Lusin
saying that even though Π1

1 sets are not necessarily Borel, they remain all measurable.

I Definition 18 (Sacks). We say that X ∈ 2ω is Π1
1-random if it is in no Π1

1 nullset.

This last definition is of great importance. Kechris proved that there is a universal
Π1

1 nullset, in the sense that it contains all the others (see [8]). Later, Hjorth and Nies
gave in [6] an explicit construction of this Π1

1 nullset. Chong and Yu proved in [3] that
weakly-Π1

1-randomness is strictly stronger than Π1
1-Martin-Löf-randomness, but it is still

unknown whether Π1
1-randomness coincides with weakly-Π1

1-randomness.
To separate the two notions, the idea of showing they have different Borel complexity

was promoted in [3]. In the next section we show that this will not be possible, by proving
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that the biggest Π1
1 nullset has the surprisingly small Borel complexity of Σ0

3. Using results
of [16] we will conclude that the Borel complexity of both the weakly-2-randoms and the
Π1

1-randoms, is strictly Π0
3. We now give some important results about higher randomness,

that will be needed to achieve this:

I Theorem 19 (Sacks). The set {X | ωX1 > ωck1 } has measure 0.

Thus no X such that ωX1 > ωck1 is Π1
1-random. The following beautiful theorem of Chong,

Yu and Nies (see [2]) strengthens Sacks’ theorem:

I Theorem 20 (Chong, Yu, Nies). A sequence X is Π1
1-random iff it is ∆1

1-random and
ωX1 = ωck1 .

One could also define the randomness notion introduced by Σ1
1 nullsets, but this turns

out to be equivalent to ∆1
1-randomness.

I Theorem 21 (Sacks). A ∆1
1-random sequence is in no Σ1

1 nullset. Therefore Σ1
1-randomness

coincides with ∆1
1-randomness.

5 Higher Solovay genericity and its variants

I Definition 22. We say that X is weakly-Σ1
1-Solovay-generic if it belongs to all sets

of the form
⋃
n Fn which intersect with positive measure all the Σ1

1 closed sets of positive
measure, where each Fn is a Σ1

1 closed set uniformly in n.

I Definition 23. We say that X is Σ1
1-Solovay-generic if for any set of the form

⋃
n Fn

where each Fn is a Σ1
1 closed set uniformly in n, either X is in

⋃
n Fn or X is in some Σ1

1
closed set of positive measure F , disjoint from

⋃
n Fn.

As in the lower case, one could drop the measure requirement in the definition of Σ1
1-

Solovay-genericity and obtain interesting relations with domination properties. However we
will focus in this paper only on (weakly-)Σ1

1-Solovay-genericity.

Unlike in the lower case, we have that the set of weakly-Σ1
1-Solovay-generics is of measure

1. We can actually prove easily that they coincide with the weakly-Π1
1-randoms. Let

⋃
n Fn

be a uniform union of Σ1
1 closed sets with measure strictly smaller than 1. Let

⋂
nOn be

its complement. As it is a Π1
1 set, we have e such that X ∈

⋂
nOn ↔ ∃α < ω1 e ∈ WX

α .
But by Theorem 19 we have that {X | ∃α ≥ ωck1 e ∈ WX

α } ⊆ S is of measure 0. Thus
for some computable α we have that {X | e ∈ WX

α } has positive measure. As it is a ∆1
1

set, we can find using Theorem 13 a Σ1
1 closed set of positive measure contained in it.

Thus
⋃
n Fn does not intersect all Σ1

1 closed sets of positive measure. Conversely a uniform
union of Σ1

1 closed sets of measure 1 intersects with positive measure any Σ1
1 closed set

of positive measure. Then the weakly-Σ1
1-Solovay-generics are exactly the weakly-Π1

1-randoms.

We will now prove that the notion of Σ1
1-Solovay-genericity is exactly the notion of

Π1
1-randomness. As explained at the end of the section (after Theorem 26), one can also

consider this equivalence as the higher counterpart of Proposition 11.
We already know from Theorem 20 that if X is weakly-Π1

1-random but not Π1
1-random,

then ωX1 > ωck1 . We will show that if X is Σ1
1-Solovay-generic then ωX1 = ωck1 which will

prove the difficult part of the equivalence.
In order to prove this, we use a technique developed by Sacks and simplified by Greenberg,

to show that the set of X with ωX1 > ωck1 has measure 0. First note that if ωX1 > ωck1 then
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there is o ∈ WX such that |o|X = ωck1 . In particular for each n we can uniformly restrain
the relation coded by o to all elements smaller than n. If |o|X is a limit ordinal this gives a
set of X-codes for ordinals smaller than |o|X but cofinal (i.e. unbounded) in |o|X . Thus if
ωX1 > ωck1 , there is a function f : ω →WX computable in X such that supn |f(n)|X = ωck1 .
The idea is the following. Suppose that for some X we have a computable function Φe such
that:

∀n ∃α < ωck1 ΦXe (n) ∈ WX
α

Suppose also that X is Σ1
1-Solovay-generic. Then we will show that the supremum of |ΦXe (n)|

over n ∈ ω is strictly smaller than ωck1 . To show this we need an approximation lemma,
which can be seen as an extension of Theorem 13.

I Lemma 24. For a Σ1
1 predicate S(X)↔ ∀α < ωck1 e /∈ WX

α , uniformly in e and n one can
find a Σ1

1 closed set F ⊆ S with λ(S − F ) ≤ 2−n.

Proof. One can equivalently write S(X) ↔ ∀o ∈ W e /∈ WX
|o|. Let So be the predicate

e /∈ WX
|o|. If o ∈ W one can uniformly in o and e obtain an index for the ∆1

1 predicate So.
The Π1

1 index for it corresponds to the property : "There exists no bijection from |e| to a
strict initial segment of |o|X", and a Π1

1 index for its complement is : "There exists no infinite
backward sequence in |e|, and there exists no bijection from |o|X to an initial segment of
|e|." Note that if o /∈ W, the index is still well defined but does not correspond to anything
specific.

Then uniformly in an index for So and in n we can find using Theorem 13 a Σ1
1 closed set

Fo such that Fo ⊆ So with λ(So−Fo) ≤ 2−o2−n. Now let us define F (X)↔ ∀o ∈ W X ∈ Fo.
As an intersection of closed sets, the set F is closed. And as W is Π1

1 and Fo is Σ1
1 uniformly

in o, we have that F is Σ1
1. To conclude we also we have that:

λ(S − F ) = λ(
⋃
o∈W S − Fo)

≤ λ(
⋃
o∈W So − Fo)

≤
∑
o∈W λ(So − Fo) ≤ 2−n.

J

We can now prove the desired theorem:

I Theorem 25. If Y is Σ1
1-Solovay-generic then ωY1 = ωck1 .

Proof. Suppose that Y is Σ1
1-Solovay-generic. For any functionnal Φ, consider the set

P = {X | ∀n ∃α < ωck1 ΦX(n) ∈ WX
α }.

Let Pn = {X | ∃α < ωck1 ΦX(n) ∈ WX
α } and Pn,α = {X | ΦX(n) ∈ WX

α }, so P =
⋂
n Pn

and Pn =
⋃
α<ωck

1
Pn,α.

From Lemma 24 we can find uniformly in n a uniform union of Σ1
1 closed sets included in

P cn with the same measure as P cn. From this we can find a uniform union of Σ1
1 closed sets

included in P c with the same measure as P c. Suppose that Y is in P , as it is Σ1
1-Solovay-

generic we have a Σ1
1 closed set F of positive measure containing Y which is disjoint from

P c up to a set of measure 0, formally λ(F ∩ P c) = 0. In particular for each n we have
λ(F ∩ P cn) = 0 and then λ(F c ∪ Pn) = 1. Then let f be the total function which to each pair
〈n,m〉 associates the smallest code on,m ∈ W such that:

λ(F c|on,m| ∪ Pn,|on,m|) > 1− 2−m
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where F cα is the ∆1
1 set of strings which are witnessed to be in F c via an ordinal smaller than

α. Using second part of Theorem 13 one can prove that f is Π1
1. Let α∗ = supn,m |f(n,m)|.

By Theorem 14 we have that α∗ < ωck1 . Then we have:

∀n λ(F cα∗ ∪
⋃
α<α∗ Pα,n) = 1

→ ∀n λ(Fα∗ ∩
⋂
α<α∗ P

c
α,n) = 0

→ ∀n λ(F −
⋃
α<α∗ Pα,n) = 0

→ λ(F −
⋂
n

⋃
α<α∗ Pα,n) = 0

As X is Σ1
1-Solovay-generic it is in particular weakly-Σ1

1-Solovay-generic and then weakly-
Π1

1-random. Thus by Theorem 21 it belongs to no Σ1
1 set of measure 0. Then as F −⋂

n

⋃
α<α∗ Pα,n is a Σ1

1 set of measure 0 we have that X belongs to
⋂
n

⋃
α<α∗ Pα,n and then

supn ΦX(n) ≤ α∗ < ωck1 . J

We can now prove the equivalence:

I Theorem 26. The set of Σ1
1-Solovay-generics is exactly the set of Π1

1-randoms.

Proof. Using Theorem 20 we have that the Σ1
1-Solovay-generics are included in the Π1

1-
randoms. We just have to prove the reverse inclusion.

Suppose Y is not Σ1
1-Solovay-generic. If ωY1 > ωck1 then Y is not Π1

1-random. Otherwise
ωY1 = ωck1 and in this case there is a sequence of Σ1

1 closed sets
⋃
n Fn of positive measure

such that X is not in
⋃
n Fn and such that any Σ1

1 closed set of positive measure which is
disjoint from

⋃
n Fn does not contain Y . The complement of

⋃
n Fn is a Π1

1 set P containing
Y . Let e be so that P (X) ↔ ∃α < ω1 e ∈ WX

α . As ωY1 = ωck1 and P (Y ), we have that
∃α < ωck1 e ∈ WY

α . But then Y is in a ∆1
1 set that one can approximate using Theorem 13

by an effective union of Σ1
1 closed sets of the same measure. Thus as X can be in none of

them it is in a Π1
1 set of measure 0 and then not Π1

1-random. J

The previous theorem gives an interesting corollary, making a connection with another
domination property. We say that a sequence X is hyp-dominated if for every total function
f : ω → ω, ∆1

1 relative to X, there exists a total ∆1
1 function g such that g dominates f

(i.e. ∀n f(n) ≤ g(n)). Chong, Yu and Nies proved in [2] that all Π1
1-random sequences are

hyp-dominated. It follows from that and from the previous theorem that a sequence X is
Σ1

1-Solovay-generic iff it is weakly-2-random and hyp-dominated. This can be seen as the
higher counterpart of Proposition 11.

We have a second corollary, giving a higher bound on the Borel complexity of the
Π1

1-randoms, and then on the biggest Π1
1 nullset.

I Corollary 27. The set of Π1
1-randoms is Π0

3.

The Π0
3 set is obtained exactly the same way we obtain the Π0

3 set of computably
dominated sequences. The following result of Liang Yu (see [16]) can be used to prove that
the set of Π1

1-randoms is not Σ0
3.

I Theorem 28 (Liang Yu). Let
⋂
nOn be a Π0

2 sets contaning only weakly-Π1
1-randoms.

Then the set {F | F is a Σ1
1 closed set and

⋂
nOn ∩ F = ∅} intersects with positive measure

any Σ1
1 closed sets of positive measure.

It follows that the set of weakly-Π1
1-randoms cannot be Σ0

3 but also that the set of Π1
1-

randoms cannot be Σ0
3. Indeed, suppose that the set of Π1

1-randoms is equal to
⋃
n

⋂
mOn,m

each On,m being open. For each n let An = {F | F is a Σ1
1 closed set and

⋂
mOn,m∩F = ∅}.

We have
⋂
nAn ∩

⋃
n

⋂
mOn,m = ∅, and from Theorem 28 we have that

⋂
nAn contains
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some Solovay-Σ1
1-generic elements, which contradicts that

⋃
n

⋂
mOn,m contains all of them.

The question whether it is possible for X to be weakly-Solovay-Σ1
1-generic but not Solovay-

Σ1
1-generic (equivalently weakly-Π1

1-random but not Π1
1-random) is still open. The technique

that we use in the lower case to separate weak genericity from non weak genericity does not
seem to work here.
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A Proof of Theorem 12

For this proof we will use the Kucěra-Gács theorem, saying that within any Π0
1 set of positive

measure, we can computably encode any real by some sequence of this Π0
1 set. However for

both the encoding and the decoding we need to know the same lower bound on the measure
of the set. We give here the exact theorem that we use to do our proof:

I Theorem 29 (Kucěra-Gács). There is a computable function Φ such that uniformly in an
integer n, a rational q and an index e for a Π0

1 set F with λ(F ) > q, one can find, relatively
to the halting problem, a string σ so that [σ] ∩ F is still of positive measure and so that the
function Φ with σ as an oracle and applied to 〈e, q〉, outputs n.

One can find a detailed proof of this theorem in section 3.3.2 of [12]. Let us say that a Σ0
2

set has the (∗) property if it intersects with positive measure all Π0
1 sets of positive measure.

The weakly-Π0
1-Solovay-generic sequence X will be defined as the limit of a sequence of

strings σ0 ≺ σ1 ≺ σ2 ≺ . . . of longer and longer length. We first give a naive version of our
argument: In the first Π0

1 component F of the first Σ0
2 set with the (*) property, we use the

Kucěra-Gács theorem to encode f(0) + 1 using an index e for F and a lower bound q for
the measure of F . It means that as specified in Theorem 29 we find a string σ0 so that the
function Φ with σ0 as an oracle and applied to 〈q, e〉 will output f(0) + 1. As [σ0] ∩ F still
has positive measure there is a Π0

1 set enumerated in the second Σ0
2 set with the (∗) property,

which intersects [σ0] ∩ F with positive measure. We then encode in this second Π0
1 set the

value f(1) + 1. We can continue like this for all Σ0
2 sets with the (*) property.

There are two obstacles here. During the decoding, we do not know what Π0
1 sets and

what lower bound on their measure have been used for the encoding. So we do not just
encode in each Π0

1 set the value f(n) + 1, but also the index of the next Σ0
2 set with the (∗)

property. But even if we have the right Σ0
2 set, we still do not know which of its Π0

1 sets have
been used. We fix this by doing something special in both the encoding and the decoding. Fix
in advance an enumeration {〈ni, qi〉}i<ω where ni is an integer and qi a rational. During the
encoding, pick the Π0

1 set number ni such that the pair 〈ni, qi〉 is the first in the enumeration
with the property that qi is a lower bound of its measure. During the decoding, we will pick
Π0

1 sets in the order given by the same enumeration. If at some point the measure goes below
the corresponding rational we will know it in a finite time. Then we restart the decoding
with the next Π0

1 set in the enumeration. We know that at some point we will have the right
one.

However, a last problem is that by the time we have the right Π0
1 set, we might have

decided a lot of values of the function f and maybe the one that we have coded is already
taken. The trick is to design the encoding in a way that we know in advance the time it will
take to reach the right Π0

1 set. The value of f we encode has to be chosen accordingly. We
now give the details.

The encoding:
Without loss of generality we can suppose f strictly increasing. Let {Si}i∈ω be an

enumeration of all the Σ0
2 sets. For each Si and each n let us define the Π0

1 set Fi,n so that
Si =

⋃
n Fi,n. Now let {ei}i<ω be a list of indices for all the Σ0

2 sets Sei
having the (∗)

property. Let {〈ni, qi〉}i<ω be an effective list of all pairs of integers and rationals.
Let us define a string σ0 = ε (the empty string), a Π0

1 set T0 = Fe0,0, and an integer
representing time with t0 = 0. Start by encoding f(0) + 1 and e1 into T0 ∩ [σ0], assuming
without loss of generality that it has measure bigger than some q that we will reuse in the
decoding. Let σ1 be the string encoding those values. Suppose now that for i ≤ k + 1
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the strings σi have been defined, and for i ≤ k the integers ti and the Π0
1 sets Ti have

been defined. Let us define σk+2, tk+1 and Tk+1. Let i be the smallest integer such that
λ(Fek+1,ni

∩ Tk ∩ [σk+1]) ≥ qi. Let t be the computational time necessary to decode the two
values encoded in Tk ∩ [σk], which is also the computational time necessary to find σk+1
during the decoding, assuming we already know X, Tk, σk, and the lower bound on the
measure of Tk∩ [σk] that has been used for the encoding. Let t′ be the smallest computational
time s so that for all j < i we have λ(Fk+1,nj

∩Tk ∩ [σk+1])[s] < qj , and let tk+1 = tk + t+ t′.
let Tk+1 be Fek+1,ni ∩ Tk. Then we encode f(tk+1 + 1) + 1 and ek+2 into Tk+1 ∩ σk+1, using
qi as a lower bound. Finally let σk+2 be the string encoding those values.

The decoding:
We set e0 to be the same as the one used in the encoding, n0 = 0, q0 to be the measure

used in the encoding of the first two values in T0 ∩ [σ0], and T0 = Fe0,n0 . For each k > 0 we
initialize the Π0

1 set Tk = ∅, the integers ek = 0 and the pairs 〈nk, qk〉 to be the first element
in the list {〈ni, qi〉}i<ω. Then we set for each k ≥ 0 the string σk = ε.

At stage t for each substage k ≤ t in increasing order, if Tk = ∅ go to the stage t + 1.
Otherwise check whether λ(Tk ∩ [σk])[t] ≥ qk.

Case 1 : λ(Tk ∩ [σk])[t] ≥ qk. Then perform the t first computation steps of the decoding
with Tk ∩ [σk] as the Π0

1 set and qk as the lower bound on the measure. If in t steps or less we
get two values a and b, set all the unassigned values of g(m) for m ≤ t to be a and set ek+1
to be b. Also set σk+1 to be the prefix used in the decoding and Tk+1 to be Tk ∩ Fek+1,nk+1 .
Then go to next substage, or next stage if it is the last substage.

Case 2 : λ(Tk ∩ [σk])[t] < qk. Then move 〈nk, qk〉 to the next element in the list
{〈ni, qi〉}i<ω. Set Tk = Tk−1 ∩ Fek,nk

. Also for all k′ > k reset Tk′ to be ∅ and 〈nk′ , qk′〉 to
the first element in the list {〈ni, qi〉}i<ω. Then restart at the same stage t and the same
substage k.

Verification:
Let the stages tk be those that we defined during the encoding process. Let us prove that

at stage tk and substage k of the decoding process we have the right Π0
1 set Tk, the right

string σk and the right value qk used for the encoding.
It is obviously true for t0. Suppose this is true up to k and let us show this is true

for k + 1. Let i be the index so that 〈ni, qi〉 is the first pair in the enumeration with
λ(Fek+1,ni ∩ Tk ∩ [σk+1])[t] ≥ qi. Recall that tk+1 = tk + t + t′, where t′ is the smallest
time such that for all j < i we have λ(Fek+1,nj

∩ Tk ∩ [σk+1])[t] < qj and where t is the
computational time necessary to find σk+1 during the decoding, assuming we already know
Tk, σk and the lower bound on the measure of Tk ∩ [σk] that have been used for the encoding.
By the induction hypothesis we already have those three inputs at time tk. Then at time
tk + t we know Tk, σk+1, and using σk+1, we know ek+1. Obviously by the time tk + t+ t′

we could eliminate all the Fek+1,nj
for j < i and then we have the right Tk+1.

Now let us prove that g is infinitely often bigger than f . When we just moved to the
right Tk, no more values of g will be decided until the two values are decoded inside Tk ∩ [σk].
The reason is that for all k′ > k the set Tk′ is reset to ∅ in the algorithm. Then until this is
done the values of g are decided at most up to tk. And once this is done we have the right
value of f(tk + 1) + 1 that we will have assigned to some g(s) for at least one s ≤ tk + 1. As
f is strictly increasing we have g(s) > f(s).
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