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Abstract—Suppose you want to generate a random sequence
of zeros and ones and all you have at your disposal is a coin
which you suspect to be biased (but do not know the bias). Can
"perfect" randomness be produced with this coin? The answer
is positive, thanks to a little trick discovered by von Neumann.
In this paper, we investigate a generalization of this question: if
we have access to a source of bits produced according to some
probability measure µ in some class C of measures, and suppose
we know C but not µ (in the above example, C would be the class
of all Bernoulli measures), can perfect randomness be produced?
We will look at this question from the viewpoint of constructive
mathematics and in particular the theory of effective randomness.

I. INTRODUCTION

If one wants to play fair ’head or tail’ game with a biased
coin, one can use the so-called von Neumann’s trick. This trick
works as follows. Flip the biased coin twice. If one gets the
sequence ‘head-tail’, declare the result to be ‘head’, and if you
get the sequence ‘tail-head’, declare the result to be ‘tail’. If
one gets either ‘head-head’ or ‘tail-tail’, start over. Calling p
the probability that the biased coin gives a ‘head’, we see that
this process produces ‘head’ and ‘tail’ with equal probability
1{2 (as long as p is neither 0 nor 1 in which case the procedure
never produces any output). Of course this procedure can be
iterated if one wants to generate a longer (finite or infinite)
random sequence of zeroes and ones (where 0=‘head’ and
1=‘tail’), for example

Input (biased coin): 1111011011100111 . . .
Output: 0110 . . .

It is clear that for any given p different from 0 and 1, if
the input follows a Bernoulli distribution of parameter p, then
the output is uniformly distributed (Bernoulli distribution of
parameter 1{2).

Let us reformulate this result: we are given access to a
sequence of zeroes and ones and all we know about this
sequence is that it has been generated according to some
probability measure µ in some class C (the class of Bernoulli
measures with parameter p “ 0, 1). The class C is known
but not the measure µ. Yet it is possible to design a single
procedure which, under the sole assumption that the input is
µ-random for some µ P C, produces a random sequence.

The question we are concerned with is the following: what
are the classes of measures C for which such a randomness
extraction procedure can be designed? This is still an informal

question which can be interpreted in several ways. In this
paper, we approach it from a computability and constructive
mathematics viewpoint, interpreting ‘extraction procedure’
by computable extraction procedure and ‘randomness’ by
Martin-Löf randomness (whose definition is recalled below).

The two main results we prove are the following:

(1) We show that in case the class C of measures is
effectively compact and effectively orthogonal, then
one can extract randomness from any element that
is random with respect to any measure in C, in a
uniform way. This criterion applies to a wide variety of
measures and generalizes von Neumann’s theorem.

(2) In order to prove (1), we show that a measure µ belongs
to an effectively compact and effectively orthogonal
class C of measures if and only if the measure µ can
be computably “guessed" for any of its random reals
(in a sense we will make more precise). This answers
a question in [1, p.64].

II. CONSTRUCTIVE ANALYSIS AND EFFECTIVE
RANDOMNESS

In von Neumann’s trick, both the input and the output
belong to the set of infinite binary sequences, also known as
Cantor space (and denoted 2ω). In this paper, due to space
restriction, we will stick to this framework, but our results
can be extended with a little more effort to more general
computable metric spaces. However, we still need to introduce
the notions of computable topological space and computable
metric spaces, as we will need to consider the space of
measures on 2ω , and the space of open subsets of 2ω which
are respectively a computable metric space and a computable
topological space. Let us first briefly present the basic theory
of such spaces. The reader who is familiar with the theory can
skip this section.

A. Constructive topological spaces and constructive metric
spaces

Definition II.1. A constructive topological space a triple
pX,B, vq where
‚ X is a T0 second countable topological space.



‚ B is a countable basis for the topology of X (we assume
thatH and X belong to B) and v : NÑ B is a surjection

‚ The intersection operation is effective in the following
sense: there exists a computable function

f : Nˆ Nˆ NÑ N

such that

@i, j
ď

nPN
vpfpi, j, nqq “ vpiq X vpjq

REMARK: The last condition can always be satisfied, by
closing the set of basic open sets with all possible finite
intersections of them.

In a constructive topological space, the T0 requirement
implies that an element x is entirely determined by the set
of basic open set containing it. We denote by Opxq the set of
basic open sets containing x.

Definition II.2. Let pX,BX , vXq and pY,BY , vY q be two
constructive topological spaces. A function f : X Ñ Y
is said to be (partial) computable if there is a computably
enumerable set A of pairs of integers such that for all i,
f´1pvY piqq X Domf “

Ť

j:pi,jqPA vXpjq X Domf .

Let us now move to the setting of constructive metric spaces.
These spaces need to be endowed with a richer structure, but
they are nicely behaved and easier to study.

Definition II.3. A constructive metric space is given by
pX, d,D, γq where
‚ pX, dq is a separable complete metric space.
‚ D is a countable dense subset of X and γ : NÑ D is a

surjection.
‚ d is computable i.e. the function:

f :

"

Nˆ N Ñ R
pi, jq ÞÑ dpγpiq, γpjqq

is computable.

REMARK: A constructive metric space can always be seen as
a constructive topological space by taking the set of open balls
of Bpγpiq, rq for all i P N and r P Q` as basic open sets.

As we can see it in the definition, the notion of being com-
putable for a function is an effective version of the continuity.
It also induces a generalization of truth-table reducibility. A
function f : 2ω Ñ 2ω is computable iff there is a Turing
functional Φ such that for all oracles x, Φx is total and:

@n Φxpnq “ fpxqpnq

The next proposition further illustrates this.

Proposition II.1. Let pX,BX , vXq and pY,BY , vY q be two
constructive topological spaces. Let f : X Ñ Y be a function.
The following statements are equivalent:

1) There exists a partial computable function
g : Nˆ NÑ N such that:
@x P X gpv´1

X pOpxqq,Nq “ v´1
Y pOpfpxqqq

2) There exists a total computable function
g : Nˆ NÑ N such that:
@x P X gpv´1

X pOpxqq,Nqq “ v´1
Y pOpfpxqqq

3) There is a computably enumerable set A of pairs of inte-
gers such that for all i, f´1pvY piqq “

Ť

j:pi,jqPA vXpjq.

(see the appendix for the proof).

Definition II.4. An effectively open set (or Σ0
1 set) of a

constructive topological space pX,B, vq is an open set of the
form

Ť

iPA vpiq where A is a c.e. set of integers. An effectively
closed set (or Π0

1 set) is the complement of an effectively open
set.

We can now define the notion of computable point in a
constructive topological space.

Definition II.5. Let pX,BX , vXq be a constructive topolog-
ical space, we say that x P X is computable if Opxq is
effectively open. If pZ,BZ , vZq is some other constructive
topological space, and z P Z, we say that x is z-computable
(or computable relative to x) if there is a partial computable
function f from Z to X such that fpzq “ x.

This notion of computability coincides in the Cantor space
with the usual notion of computability. We finish this part with
an extension of the notion of lower semi-computability.

Definition II.6. Let pX,B, vq be a constructive topological
space. A function f : X Ñ R is lower semi-computable iff
@r P Q f´1ppr,`8sq is effectively open uniformly in r.

Equivalently, a function is lower semi-computable iff it is
computable as a function from X to R endowed with the
topology generated by upper sets of the form pr,`8s.

We present one last notion which will be central in this
paper, namely the notion of effective compactness.

Definition II.7. A subset K of a constructive topological
space pX,B, vq is effectively compact if it is effectively closed
and one can enumerate its open covers. This means, given
a standard enumeration pWeq of all computably enumerable
subsets of N, that the set

!

e | K Ď
ď

iPWe

vpiq
)

is computably enumerable. By the Rice-Shapiro theorem
(see [2]), this is equivalent to say that the set of finite
sets F (represented as finite objects) of integers such that
K Ď

Ť

iPF vpiq is computably enumerable.



B. The Cantor space

The space of all binary sequences is commonly called
Cantor space and denoted by 2ω . We will consider on this
space the (canonical) product topology generated by cylinders.
The cylinder generated by the string s, denoted by rss is the set
of all sequences starting by s, formally: rss “ tx P 2ω| s ĺ xu
where s P 2ăω . This topology makes 2ω a compact and 0-
dimensional topology Let s P 2ăω and let t P 2ăω Y 2ω . We
will write s ĺ t to mean that s is a prefix of t. We will write
|s| to denote the length of s and for all n ă |s|, we denote
by spnq the n-th bit of s (starting from 0 by convention). The
empty string (whose length is 0 by convention) is denoted
by ε. The concatenation of two strings s and t is written ŝ t.

The following is easy to prove (see [3]).

Proposition II.2. Let d be the function defined on 2ω ˆ 2ω

by dpx, yq “ 2´minti|xpiq“ypiqu. Let D be the set of elements
of 2ω whose bits are almost all zeros. Then there exists a
bijection γ : N Ñ D such that p2ω, d,D, γq is a computable
metric space. Moreover, it is effectively compact.

C. Probability measures on the Cantor space

We will work with the Borel σ-algebra on 2ω , which is
the smallest algebra containing all open sets of 2ω .

From the Caratheodory theorem of measure theory, it is
straightforward that a Borel probability measure on the Can-
tor space is uniquely determined by the value it takes on
cylinders. We will denote by Mp2ωq the set of all Borel
probability measures on the Cantor space. For our purposes,
the topology we need to consider on the space Mp2ωq is
the weak topology, i.e., the smallest topology such that a
sequence pµnq of measures converges to a measure µ if
and only if

ş

fpxqµnpdxq converges to
ş

fpxqµpdxq for all
bounded continuous functions f on 2ω . A very important
result (see for example [3]) is that for any constructive metric
space X , the set MpXq of probability measures over X is
itself a constructive metric spaces. This is not an obvious
result, and requires quite a bit of work. However, in the
Cantor space, measures have a concise repressentation which
simplifies things greatly. Indeed, by Carathedory’s theorem, a
measure µ on 2ω is uniquely determined by the values taken
by µ on cylinders. Therefore, one can identify Mp2ωq with
the following (effectively) closed subset of r0, 1s2

ăω

:

Mp2ωq ”

$

&

%

µ P r0, 1s2
ăω

ˇ

ˇ

ˇ

ˇ

@s P 2ăω µpsq “
µpŝ 0q ` µpŝ 1q
^ µpεq “ 1

,

.

-

a natural countable basis for the topology of Mp2ωq is the
set of cylinders, where this time cylinders are sets of the form

rps1, I1q; ps2, I2q; . . . ; psn, Inqs “ tµ | @k µpskq P Iku

where the si’s are strings and the Ik are open sub-intervals of
p0, 1q with rational endpoints (represented as a pair of ratio-
nals). This makes Mp2ωq a constructive topological space. As
we said above, we could even make it a constructive metric

space but this is not needed in the rest of the paper. An
important point however is that, as an effectively closed subset
of an effectively compact space (namely, r0, 1s2

ăω

), the space
Mp2ωq is effectively compact.

Proposition II.3. The space Mp2ωq, as a constructive topo-
logical space described above, is effectively compact.

With this representation, we also get a very simple charac-
terization of computable measures.

Proposition II.4. A probability measure µ over 2ω is com-
putable as a point of Mp2ωq if and only if the function
σ ÞÑ µprσsq is a computable function from 2ăω to r0, 1s
(respectively endowed with the discrete topology and the
canonical topology).

Recall that the goal of this paper is to study randomness
extraction, i.e., we want to investigate way to simulate fair,
independent, coin tosses. These correspond to the so-called
Lebesgue measure on 2ω .

Definition II.8. The Lebesgue measure on 2ω , or uniform
measure, denoted by λ is the unique measure on 2ω such that
λpsq “ 2´|s|, where |s| denote the size of the string s.

The Lebesgue measure distributes the weight 1 uniformly
on 2ω . On the other extreme, some measures give a positive
probability to single points of the space 2ω . Such elements are
called atoms of the measure.

Definition II.9. Let µ P Mp2ωq. Let x P 2ω . We say that x
is an atom of 2ω for the measure µ if µptxuq ą 0.

D. Algorithmic randomness

Given a probability measure µ on 2ω , what does it mean for
a single point x P, 2ω to be random with respect to µ? This
question is at the root of the field of algorithmic randomness.
A satisfactory answer was given by Martin-Löf for the uniform
measure, which was later extended by Levin [4] and Gács [3].
Intuitively, we want x to be called random if it avoids all the
sets of µ measure 0 which can be effectively tested. The next
definition follows Gács [3].

Definition II.10. A uniform integrable test is a lower semi-
computable function t : 2ω ˆMp2ωq Ñ r0,`8s such that
for any measure µ we have

ş

2ω
tpx, µqµpdxq ď 1. We say that

x passes the test with the measure µ if tpx, µq is finite. We
say that x is µ-Martin-Löf random, or simply µ-random, if x
passes all uniform integrable tests with the measure µ. We
denote by MLRµ the set of µ-random sequences.

An important result of Levin [4], Gács [3], Hoyrup and
Rojás [5] is that there exists a universal uniform test.



Proposition II.5. There exists a universal uniform integrable
test u, that is, a test u such that for any other uniform
integrable test t, there exists a positive constant c such that
u ě t

c .

As corollary of this result, we get that a sequence x is
µ-random if and only if upx, µq ă 8. From this point on,
we fix a universal integrable test u. The higher upx, µq is,
the "less random" the point x is, relative to the measure µ.
Therefore, we sometimes refer to the quantity upx, µq as the
randomness deficiency of x relative to µ.

Some readers may know another definition of Martin-Löf
randomness, involving the so-called Martin-Löf and Solovay
tests. The two are in fact equivalent as proven recently by Day
and Miller [6]1.

Theorem II.1. For a given measure µ, and x P 2ω , the
following are equivalent:
‚ x is µ-random
‚ for every µ-computable sequence pOnq of open sets such

that µpOnq ă 2´n for all n, x R
Ş

nOn
‚ for every µ-computable sequence pOnq of open sets such

that µpOnq ă 2´n for all n, x belongs to only finitely
many On.

Here by µ-computable we mean that each On can be
computably enumerated relatively to µ and uniformly in n.
This terminology might seem somewhat non-standard, but we
will see in Section IV that there is a natural way to define the
concept of computable open set (which will simply coincide
with the notion of effectively open set).

E. Formalizing the initial problem in the setting of algorithmic
randomness

Now that we have set the framework in which we consider
randomness, we can formalize the initial question of the paper.

Question. What are the classes C Ď Mp2ωq of measures
allowing uniform randomness extraction, i.e., for which there
exists a partial computable function F : 2ω Ñ 2ω such that

For all x P 2ω , if x is µ-random for some µ P C,
then F pxq is λ-random?

While we do not give a full answer, we provide a criterion
for a class of measures to have this property which is quite
general and applies to many classical classes of measures
(including, of course, the class of Bernoulli measures).

III. THE LEVIN-KAUTZ CONVERSION PROCEDURE

So far we have asked, informally and now formally: can
we extract randomness from a µ-random sequence x when we
have only partial information about the underlying measure µ?
We have not yet said what happens if we do have full

1the result presented here is a reformulation of the Day-Miller theorem in
the context of computable open sets we developed

information about µ. In other words, what if we are given
an x which is µ-random for some computable µ? The next
theorem, due to Levin [7] and Kautz [8] gives a full answer
to this question: for any computable measure µ, there exists
a non-decreasing, in the sense of the lexicographic order,
partial computable function φ : 2ω Ñ 2ω , defined λ-almost
everywhere, such that µ “ λ ˝ φ´1. As a consequence, φ´1

transforms every µ-random element into a λ-random element,
except for µ-atoms.

Theorem III.1. Let µ be a computable probability measure
on 2ω . There exists a non-decreasing partial computable func-
tion φ : 2ω Ñ 2ω such that φ is defined λ-almost everywhere,
and for all Borel sets A Ď 2ω , µpAq “ λpφ´1pAqq.

Corollary III.1. Let µ be a computable probability measure
on 2ω . There exists a partial computable function ψ : 2ω Ñ 2ω

such that for every µ-random sequence x which is not an atom
of µ, ψpxq is λ-random.

This corollary is obtained by taking ψ “ φ´1, where φ is
the partial computable function of the previous theorem. It is
not too difficult (although it still requires a bit of work as we
will see below) that this function ψ works.

In fact, one can show that the Levin-Kautz conversion
procedure is uniform in the measure. Hence one gets a stronger
version of Corollary III.1.

Theorem III.2. There exists a partial computable function Γ :
2ω ˆMp2ωq Ñ 2ω such that if x is µ-random and is not an
atom of µ, then Γpx, µq is λ-random.

For completeness, let us present the proof of this theorem.

Proof: For any µ PMp2ωq, let us build uniformly in µ
a partial function ϕµ : 2ω Ñ 2ω such that
‚ ϕµ is µ-computable everywhere on its domain, but on

countably many points.
‚ @s P 2ăω , µprssq “ λpϕ´1

µ prssqq.
‚ ϕµ is increasing with respect to ăL, the lexicographic

order on 2ω .
‚ The images by ϕµ of points on which ϕµ is not µ-

computable are exactly the elements of 2ω containing
finitely many 1.

‚ If y is not µ-computable then ϕ´1
µ pyq is a single point

and is uniformly computable from y.
For all n P N˚, let sn,i be the i-th element of pt0, 1un,ăLq.
We define recursively an,0 “ 0 and an,i`1 “ an,i`µprsn,isq.
For all n P N, we have a sequence 0 “ an,0 ď an,1 ď ¨ ¨ ¨ ď
an,2n “ 1 such that intervals pran,i, an,i`1qq0ďiď2n form a
partition of r0, 1q. An interval of the form ra, a`µprssqq will
be denoted by As. Then we define:

ψ :

$

’

&

’

%

r0, 1r Ñ 2ω

x ÞÑ
č

sP2ăω

xPAs

rss



Let us show that ψ is well defined. We have:

@s@t P 2ăω As Ď At Ø rss Ď rts
@s@t P 2ăω x P As ^ x P At Ñ At Ď As _As Ď At

This implies that the intersection is a decreasing intersection
of a family of non-empty compact sets. So it is not empty.
Since the measure of the space is always 1, we have:
@n Ds P t0, 1un x P As. Finally there are some s of
arbitrarily long size such that x P As, which implies that the
intersection of all those strings contain only one point. So
ψpxq is well defined.

Let us show that ψ is µ-computable everywhere
but on countably many points. Let x be such that
@n P N˚ @m ď 2n x ‰ an,m. To compute ψpxq it
is enough to approximate more and more all the intervals
As. If x is in one interval without being at the border, we
will know it in a finite amount of time. The set pAsqsP2ăω

is countable so ψ is computable everywhere except on
countably many points. Furthermore if x “ an,m and
As “ ran,m, an,m`1q then @n x P Asˆ0n and so its image is
equal to the string s completed with only zeros.

Let us show that ψ is a morphism (in the measure-
theoretic sense). By construction ψ is a morphism
from pr0, 1s, λ,Bpr0, 1sqq to p2ω, µ,Bp2ωqq. Indeed
@n P N˚ @s P t0, 1un ψ´1prssq “ As. If As “ rai, ai`1q

we have λpAsq “ ai`1 ´ ai “ µprssq and so
µprssq “ λpψ´1prssqq. Our measure λ ˝ ψ´1 is equal
to the measure µ on all basic open sets of the Cantor space.
So by Caratheodory’s theorem we can extend the equality to
any Borel set.

It is easy to see that ψ is increasing with respect to
the lexicographic order. Let us show that if y is not µ-
computable then ψ´1pyq is a single point and is uniformly
computable from y. First we know that if y is an atom for the
measure µ then y is µ-computable. Indeed, if µpyq ą x ą 0
then there exists an open neighborhood of y such that y is
the only point of the neighborhood with measure greater
than x. Then it is enough to search for all basic open set
included in this neighborhood such that their measure is
greater than x. Thus if y is not µ-computable it cannot be
an atom of the measure µ. But since ψ is an increasing
function for lexicographic order, it cannot have more than
one pre-image on y, otherwise y would be an atom of the
measure. To compute ψ´1pyq it is enough to compute ψ on all
elements of 2ăω . Only one path can give y and for all other
paths, we know in a finite amount of time if it does not give y.

Now let f : 2ω Ñ r0, 1s be the usual identification
of a binary sequence s with the real in r0, 1s having binary
expansion s. We define ϕµ : 2ω Ñ 2ω by ϕµpxq “ ψpfpxqq.
f is total computable so ϕpxq is µ-computable for every
point such that ψ can compute its image by f . Each point of
r0, 1q has at most two pre-images by f , so ϕµ is computable

everywhere but on countably many points. Since f is an
increasing function with respect to lexicographic order then
so is ϕµ. We easily see that ϕ´1

µ is still a well defined and
computable function on all non µ-computable points. To
conclude, f and ψ are morphisms, then so is ϕµ.

Now, to get the functional Γ as in the theorem, set
Γpx, µq “ ϕ´1

µ pxq. Suppose now that x is µ-random and
is not an atom of µ. Then, y “ ϕ´1

µ pxq exists (as we have
shown). Let us show that it is λ-random. Suppose not and
take a test as in theorem II.1 such that y P

Ş

nOn. We have
that ϕµpyq P

Ş

ϕµpO
c
nq
c. Since Ocn is effectively closed, it is

effectively compact. The image of an effectively compact by
a µ-computable function is a µ-effectively compact. In the
Cantor space, effectively compact sets are effectively closed
sets and so ϕµpOcnq

c is a µ-effectively open set2 Besides we
have that V ci Ď ϕ´1

µ pϕµpV
c
i qq and so ϕ´1

µ pϕµpV
c
i qq

c Ď Vi.
Then:

λpϕ´1
µ pϕµpV

c
i qq

cq ď λpViq
ñ µpϕµpV

c
i q
cq ď λpViq

ñ µpϕµpV
c
i q
cq ď 2´i

Which implies, using theorem II.1 that ϕµpyq “ x is not µ-
random, which is a contradiction.

IV. LEARNABILITY OF PROBABILITY MEASURES

In view of the Levin-Kautz theorem, one can make the fol-
lowing (informal) conjecture regarding the original problem:
suppose we had a class of measures C such that from any
sequence x which is µ-random for some µ P C, one could
computably “guess" (in a uniform way) which measure of
that class x is random relative to. Then, applying the Levin-
Kautz procedure, one could computably transform x into a
λ-random sequence and therefore the class C would allow
uniform randomness extraction. The Bernoulli measures are
an example of such measures: from a sequence x which is
Bp-random for some p, one can compute p: indeed the law of
large numbers tells us that the frequency of zeroes and ones
tends to p, and the law of iterated logarithm gives a bound on
the speed of convergence (it is well known that Martin-Löf
random sequences satisfy both laws). The computation of p
is not completely uniform however. Consider the following
sequence:

x “ 0011010101110000100 . . .

which we know is Bp random for some p. Can we say anything
about p after having read the first twenty bits? No: there are
two possible scenarios (a) either p is close to 1{2, or (b) p
is not close to 1{2 but the first twenty bits are very atypical.
Reading more bits will not help; one cannot, computably and
after reading finitely many bits of x, distinguish between the
two cases, therefore p cannot be computed uniformly.

2Technically speaking the function φµ is not total, it is defined up to a
computable sets of points, which essentially allows us to treat the function
φµ as total.



Suppose on the other hand that we had an upper bound
on the randomness deficiency of upx,Bpq. Then after reading
sufficiently many bits, scenario (b) can be ruled out. This idea
is precisely the base for the theory of layerwise computable
functions introduced by Hoyrup and Rojás [9] (similar ideas
can be found in Eddalat [10], [11]). A function is said to
be µ-layerwise computable if it is defined on all µ-random
sequences, and it is uniformly computable up to an “advice"
on an upper bound for the randomness deficiency of x.

Definition IV.1. Let µ be a probability measure on 2ω . Let Y
be a computable metric space. A function f : 2ω Ñ Y is said
to be layerwise computable if
‚ it is defined on all µ-random sequences
‚ there exists a partial computable function F : 2ω ˆNÑ
Y such that, for all x P 2ω and c P N, if upx, µq ă c,
then F px, cq “ fpxq

Definition IV.2. A measure µ PMp2ωq is (layerwise) learn-
able if there exists a total computable function F : 2ω ˆNÑ
Mp2ωq such that:

@x P 2ω @c P N upx, µq ď cÑ F px, cq “ µ

A class of measure C Ď Mp2ωq is (layerwise) learnable if
there exists a computable function F : 2ω ˆ N Ñ Mp2ωq
such that:

@µ P C @x P 2ω @c P N upx, µq ď cÑ F px, cq “ µ

Theorem IV.1. Let C be an effectively compact class of
effectively orthogonal measures. Then C is learnable.

Proof: Suppose that x PMLRµ for µ P C and suppose
that upx, µq ď c. Since u is lower semi-computable, the set

tpz, νq P 2ω ˆMp2ωq| upz, νq ď cu

is an effectively closed set, and thus the set:

Ac “ C X tν | upx, νq ď cu

is x-effectively compact, uniformly in x, as C is effectively
compact. To see this, notice that the set tν | upx, νq ď cu is
effectively compact relative to x. This follows from the fact
(relativized to x) that the image of an effectively compact set
under a computable function (here the projection over x) is an
effectively compact set, and this is is uniform, i.e. from a code
of an effectively compact set one can compute a code for its
image. Of course the set C is effectively compact, therefore
also effectively compact relative to x, therefore the intersection
Ac is effectively compact relative to x, and a code for Ac can
be found uniformly in x and c.

Moreover, since C is effectively orthogonal, Ac contains
only one point, which is µ. It remains to use the fact that
if an effectively compact set A contains only one element,

this element is computable uniformly in the code for A (see
Lemma VIII.1 in the appendix).

In fact, Theorem IV.1 is a characterization of learnability,
which is both rather surprising and much more difficult to
prove.

Theorem IV.2. If D Ď Mp2ωq be a class of layerwise
learnable measures, then D is contained in an effectively
compact class of effectively orthogonal measures.

The remainder of this section will be dedicated to the
proof of Theorem IV.2. Before we present the core of the
argument, we will need some preliminary discussion. To prove
Theorem IV.2, we want to be able to say that the function
which takes as input a measure µ and an open set O and
returns µpOq is lower semi-computable in the input pµ,Oq.
However, it is not clear how to make sense of this. To do
so, we need to consider the space of open sets of 2ω as a
constructive topological space. This is achieved by taking as
basis the sets are the set of open sets containing one given
cylinders. Formally we denote by T p2ωq the set of open sets
of 2ω and we denote:

vsw “ tO P T p2ωq| rss Ď Ou

It is easy to see that tvsw| s P 2ăωu is a subbasis for a
T0, second countable topology. The basis is given by finite
intersections of elements of the subbasis. Then we have the
following proposition:

Proposition IV.1. Let O Ď 2ω be an open set. Then O is
effectively open if and only if it is a computable point of
T p2ωq.

Proof: Let O “
Ť

iPNrsis be an effectively enumerable
open set with its enumeration trsisuiPN. One can compute an
enumeration trtisuiPN of all basic open sets of 2ω included in
one of the rsis. Then all intersections of finite subsequences
of tvtiwuiPN are an effective enumeration of basic open sets
of T p2ωq containing O. The converse is similar.

We can use the two previous constructive topological spaces
in order to state this useful proposition:

Proposition IV.2. The evaluation map ev : Mp2ωq ˆ
T p2ωq Ñ R defined by evpµ,Oq “ µpOq is lower semi-
computable.

Proof: Let r P r0, 1s. Let OpMp2ωqq denote the set of
basic open sets of Mp2ωq and OpT p2ωqq denote the set of
basic open sets of T p2ωq. Let Ar “
$

’

’

&

’

’

%

ˆ

rps1, I1q; . . . ; psn, Inqs
˙

P
OpMp2ωqqˆ

ˇ

ˇ

ˇ

ˇrvs1w; . . . ; vsnws OpT p2ωqq

n P N, p
ř

kďn minpIkqq ą r

,

/

/

.

/

/

-



be an effective enumeration of basic open sets of Mp2ωq ˆ
T p2ωq such that any measure in the basic open set has
a value strictly greater than r on the corresponding basic
open set of 2ω . The enumeration Ar is effectively uniform
in r. Let us show that Ar “ ev´1ppr; 1sq. We trivially have
Ar Ď ev´1ppr; 1sq. We now show that ev´1ppr; 1sq Ď Ar.
Suppose that for µ P Mp2ωq and O P T p2ωq we have
µpOq ą r. Let us show that pµ,Oq P Ar. Since µpOq ą r
then there exists n P N and tsiuiďn a finite list of basic open
sets included in O such that

ř

i µprsisq ą r. Besides one
can find n rational numbers tqiuiďn such that qi ă µprsisq
and

ř

i qi ą r. Then pµ,Oq belongs to the open sets
rps0, pq0, 1qq; ps1, pq1, 1qq; . . . ; psn, pqn, 1qqs which is in Ar.

We can now prove Theorem IV.1.

Proof: Let F : 2ωˆNÑMp2ωq be a partial computable
function withnessing the learnability of the class D, i.e., a
function such that @µ P D @x P 2ω @c P N tpx, µq ď c Ñ
F px, cq “ µ. We define:

C “
"

µ PMp2ωq; @c P N µptx; F px, cq “ µuq ą 1´
1

c

*

Let us show that D Ď C. We know that for any µ we have:
ż

tpx, µqµpdxq ď 1

So using the Chebychev inequality we can deduce that:

@µ PMp2ωq @c P N µptx; tpx, µq ě cuq ď 1
c

@µ PMp2ωq @c P N µptx; tpx, µq ă cuq ą 1´ 1
c

From the hypothesis we know that:

@µ P D @c P N tx; tpx, µq ă cu Ď tx; F px, cq “ µu

Then we have:

@µ P D @c P N µ
`

tx; F px, cq “ µu
˘

ą 1´
1

c

So D Ď C.

Let us now show that C is an effectively closed set.
For this, we show that C, the complement of C, is an
effectively open set. We have:

C “
 

µ PMp2ωq; @c µptx; F px, cq “ µuq ą 1´ 1
c

(

“
 

µ PMp2ωq; @c µptx; F px, cq ‰ µuq ď 1
c

(

and thus

C “
 

µ PMp2ωq; Dc µptx; F px, cq ‰ µuq ą 1
c

(

We need to show that tx; F px, cq ‰ µu is effectively open
relative to µ. Suppose F py, cq ‰ µ. Since F is computable,
having an enumeration of open sets containing µ, we will
know in a finite time, with a finite prefix t of y if F py, cq ‰ µ.

So y P rts Ď tx; F px, cq ‰ µu which makes the required set
µ-effectively open. We can now define:

γ :

"

Mp2ωq ˆ N Ñ T p2ωq
pµ, cq ÞÑ tx; F px, cq ‰ µu

Since γpµ, cq is µ-effectively open, by Proposition IV.1,
γpµ, cq is µ-computable and so γ is computable. Recall the
definition of the evaluation map:

ev :

"

Mp2ωq ˆ T p2ωq Ñ R
pµ,Bq ÞÑ µpBq

By Proposition IV.2, ev is lower semi-computable. For a
fixed c P N, we now define:

δc :

"

Mp2ωq Ñ R
µ ÞÑ evpµ, γpµ, cqq

As a composition of lower semi-computable functions, δc
is lower semi-computable. Therefore:

C “
 

µ PMp2ωq; Dc P N µptx; F px, cq ‰ µuq ą 1
c

(

“
Ť

c PN
 

µ PMp2ωq; δcpµq ą
1
c

(

“
Ť

c PN δ
´1
c pp

1
c , 1sq

We deduce that this is a countable union of effectively
open sets. It is not hard to see that the open sets are uniformly
effective in c.

Let us show that the class is effectively orthogonal.
Suppose that x P MLRµ and consider the sets
Vµ,c “ tx; F px, 2cq ‰ µu. As shown above, all Vµ,c
are µ-effectively open sets, uniformly in c. Furthermore we
have that µpVµ,cq ď 2´c. From Theorem II.1, since x is
µ-random, it can only belong to finitely many sets Vµ,c.
So for any other measure ν P C we have that x P Vν,c
for infinitely many c and so x R MLRν . Then the class is
effectively orthogonal.

V. ON THE POSSIBILITY OF RANDOMNESS EXTRACTION

We can now put everything together to get, as promised, a
generalization of von Neumann’s trick to more general classes
of measures.

Theorem V.1. Given a class C of measures on 2ω , if C is Π0
1

and has the effective orthogonality property, then uniform ran-
domness extraction is possible on C-random sequences. That
is, there exists a partial computable function E : 2ω Ñ 2ω

such that for every sequence x, if x is µ-random for some
µ P C and x is not an atom of µ, then Epxq is λ-random.

Proof: On an input x P 2ω , the function E does the
following:

(i) It assumes that x is random with respect to some µ P
C, and starts by making a “guess" on the value of the
randomness deficiency of x with respect to µ. Say it
starts with c “ 1.



(ii) It computes a code for the Π0
1 subset of C

Ac “ C X tν | upx, νq ď cu

(iii) The set Ac is effectively compact relative to x and,
under the assumption that x is random; is either (a)
empty or (b) contains only one element. Thus E runs the
procedure described in Γpx, µq described in the Levin-
Kautz conversion theorem (Theorem III.2) and computes
an element µ such that, if we are in case (b), Ac “ tµu

(iv) It then runs the Levin-Kautz conversion procedure on
the pair px, µq and produces a binary sequence (i.e. starts
outputting bits one by one).

(v) Meanwhile, E keeps enumerating the complement
of Ac. If Ac is in fact empty, then by effective
compactness, this will be recognized at some finite
stage. In this case, interrupt the running procedure (iv),
increases c by 1 and goes back to step (ii).

Let us show that this algorithm is correct. Assume x is µ-
random for some µ P C with randomness deficiency at most d,
and is not an atom of µ. For all c ă d, the class Ac will be
empty hence for each such c the production of bits performed
by step (iv) will be interrupted by (v). Hence the variable c
in the algorithm will eventually reach the value d, and by that
time, only a finite string σ has been produced in the output.
When the variable c reaches the value d, by construction, we
have Ac “ tµu, thus E correctly computes the measure µ
at step (iii) and therefore step (iv) correctly produces a λ-
random sequence z. Therefore the full output of the algorithm
is the sequence σz. Using the classical fact that λ-randomness
is invariant under finite changes of bits (adding finitely many
bits, deleting finitely many bits, or replacing finitely many
bits), this shows that σz is random as z is by construction.

One can even extend the previous theorem to computable
unions of Π0

1 classes with the orthogonality property.

Theorem V.2. The conclusion of Theorem V.1 still holds
under the weaker assumption that C is a computable union
Ť

m Cm of Π0
1 classes all of whom have the effective orthog-

onality property. In particular Theorem V.1 holds if C is a Σ0
2

class with the orthogonality property.

Proof: Let pCmq be an enumeration of the Π0
1 classes

whose union is C. Without loss of generality, assume that every
element Cm is repeated infinitely often in this enumeration.
Now, modify the algorithm of the previous proof as follows:
in step (ii), the "search space" Ac is taken to be equal to
CcXtν | upx, νq ď cu. This is enough because if upx, µq ă d
for some µ P C, then µ P Cm for some m which (because of
the repetition assumption), can be taken as large as wanted,
in particular bigger than d. Then, x P Am, and hence the
algorithm will eventually run step (iv) forever, without being
interrupted by step (v). And of course, as all the Cm have
the effective orthogonality property, the variable c eventually

reaches a value such that Ac is exactly a singleton. The rest
of the proof is the same.

In terms of the arithmetical complexity of the class C,
Theorem V.2 is optimal, i.e., it does not hold under the
assumption that C is Π0

2 instead of Σ0
2. Indeed, Levin proved

that there exists on 2ω a neutral measures, i.e., a measures ν
such that all sequences x P 2ω are random with respect to
ν. No neutral measure is computable, but there are neutral
measures that are computable using 0’, the halting set, as an
oracle. It is well-known that if z is a 0’-computable element
of a computable metric space, then the singleton tzu is a
Π0

2 subset of that space. Therefore, take the class C “ tνu
where ν is a 0’-computable neutral measure. Then C is
Π0

2 and (obviously!) has the effective orthogonality property.
Now take a 1-generic sequence3 x P 2ω which is not an
atom of ν (there are uncountable many 1-generic and only
countably many atoms). Thus x is ν-random (by definition of
a neutral measure), is not an atom of ν, and there is no partial
computable function E such that Epxq is λ-random, as no 1-
generic sequence computes a λ-random real (see [12, Exercise
4.1.6]).

VI. AN EXAMPLE: MARKOV CHAINS

We now give a concrete example of Σ0
2 effectively orthog-

onal class of measure on which we can extract randomness:
the set of Markov measures. A Markov measure on 2ω is
a measure such that the relative probability of each bit of
the sequence to be 0 only depends on the values of the m-
th previous bits for a fixed constant m. Formally, µ is a
Markov chain if there exists an integer m such that for all
strings σ1, σ2, for all strings τ of length m

µpσ1 τ̂ˆ0qµpσ2 τ̂q “ µpσ2 τ̂ˆ0qµpσ1 τ̂q

It is clear from this definition that the class of Markov
measures on 2ω is Σ0

2. Unfortunately, it does not have the
effective orthogonality property, so we cannot directly apply
the results of the previous section. However, we can overcome
this problem by finding a computable union C “

Ť

m Cm
of effectively closed classes with the effective orthogonality
property such that any sequence x which is random with
respect to some Markov measure µ, is ν-random for some
ν P C.

This is done using some classical results on the theory of
Markov chains. Let us begin by a few definitions.

Definition VI.1. A matrix P PMmpRq is called a stochastic
matrix if its entries are non-negative and the sum of entry of
each row is 1 i.e. @0 ă i, j ď m Pi,j ě 0 and @0 ă i ď m
we have

řm
j“1 Pi,j “ 1. Analogously, a stochastic vector is a

vector taking its values in r0, 1s and such that the sum of its
element is 1.

3see for example [12] for a definition of such reals



A stochastic matrix, together with a stochastic vector, both
of size 2m, uniquely define a Markov chain of memory m over
the Cantor space. The case i-th coordinate of the stochastic
vector corresponds to the probability that our process starts
with the i-th element of 2m, while the entry at the i-th line
and j-th column of the matrix gives us the probability that our
process produces the j-th element of 2m, knowing that it just
produced the i-th element of 2m. If P is a stochastic matrix
of size 2m we will write P ps, tq to denote Pi,j where s is the
i-th element of 2m and t is the j-th element of 2m (say in the
lexicographic order).

As we will see, this class is not effectively orthogonal by
itself, but we can find a Σ0

2 subclass of effectively orthogonal
Markov measures such that any element random with respect
to some measure in the whole class is also random with respect
to a measure in the subclass. In order to introduce Markov
measures we first need a few notions. In this section, MmpXq
will denote the space of square matrix of size m taking their
values in X . VmpXq will denote the space of vector of size
m. If P PMmpXq we write Pi,j to denote the value of P on
the i-th line and the j-th column. If V P VmpXq we write Vi
to denote the value of V on the i-th line. By convention we
start the indexation by 1. In our case we will only be interested
in finite Markov processes and so in finite stochastic matrices.

Definition VI.2. Let N P N. Let P PM2N pRq be a stochastic
matrix. Let π be a stochastic vector of size 2N . Then µ P
Mp2ωq is the Markov measure with memory N associated
to P and π if @m @x P ts P 2ăω; |s| “ mNu we have:

µpxq “ π px1qP px2, x3q . . . P pxm´1, xmq

where pxiqiďm denotes xpiN ` 1q . . . xppi` 1qNq.

Proposition VI.1. Let N P N˚. The set MarkN of Markov
measures with memory N is effectively compact.

Proof: Let X “
Ť

mPN 2mN be the set of all finite strings
having a multiple of N as length. We have that µ P MarkN
iff

@x1, x2 P X @s P 2N @t P 2N

pµpx1 ŝq ‰ 0^ µpx2 ŝq ‰ 0q Ñ µpx1ˆsˆtq
µpx1ˆsq

“
µpx2ˆsˆtq
µpx2ˆsq

Ø

@x1, x2 P X @s P 2N @t P 2N

µpx1 ŝ̂ tqµpx2 ŝq “ µpx2 ŝ̂ tqµpx1 ŝq

which is a closed condition. As the set of measure is effectively
compact, then MarkN is also effectively compact.

Now in order to extract an effectively orthogonal subclass
of MarkN , we introduce the notion of a state in a stochastic
matrix.

Definition VI.3. Let P P MpRq be a stochastic matrix. A
state j is said to be accessible from a state i if Dn pPnqi,j ą 0.

We write j Ð i if j is accessible from i. We write j Ø i for
the equivalence relation pj Ð iq ^ pi Ð jq. An equivalence
class H for the equivalence relation Ø is called an accessi-
bility class is said to be final if any other equivalence class
is inaccessible from it.

Two different issues can make Markov measures to share
their random. The first issue is due to final accessibility classes.
Only the states in such classes will matter for the randomness
of a sequence, since with probability 1, the process will
eventually fall into one of them. But if a Markov measure
has n several final accessibility classes, its random sequences
will be exactly the union of all randoms for n simpler Markov
measures, each of them having one of the final accessibility
class.

So we can restrict ourselves to the Markov measures having
one final accessibility class.

The second issue is to deal with states which are not in
a final accessibility class. This is done by replacing all these
states by only one initial state, which will force an arbitrary
large number of bit to have a fixed value. This way for any
possible random sequence starting by a string depending on a
non final accessibility class, it will be random for the Markov
chain having the right corresponding initial and final states.

Proposition VI.2. Let N P N˚. Let C Ď 2N . Let s P

p2NzCqYtεu. The class MarkN,C,p of Markov measures such
that:
‚ The first N bits are fixed to the string p, i.e. µppq “ 1
‚ The set C is an final accessibility class such that there

is a probability of 1
|C| to go from s to each state in C

is a Σ0
2 class of measures.

Proof: Let X “
Ť

mPN 2mN be the set of all finite strings
having a multiple of N as length. By definition, the class
MarkN,C,p can be defined by three conditions:

1 : @r P C @s P C Dt1, . . . , tN P C
µpp r̂ ŝq ‰ 0_ ¨ ¨ ¨ _ µpp r̂ t̂1 . . . tn ŝq ‰ 0

2 : @r P C @s R C @t1, . . . , tN P 2N

µpp r̂ ŝq “ 0^ ¨ ¨ ¨ ^ µpp r̂ t̂1 . . . tn ŝq “ 0

3 : µppq “ 1^ @t P C µpp t̂q “ 1
|C|

(conditions 1 and 2 express the fact that C is a final accessi-
bility class).

It is clear that conditions 2 and 3 are effectively closed. As
to condition 1, it can be rewritten as:

11 : Dq Ps0, 1s XQ @r P C @s P C Dt1, . . . , tN P C
µpp r̂ ŝq ě q _ ¨ ¨ ¨ _ µpp r̂ t̂1 . . . tn ŝq ě q

and therefore is a Σ0
2 condition.

We now prove the desired proposition:



Proposition VI.3. The class

Mark “
ď

tMarkN,C,s| N P N˚ C Ď 2N s P p2NzCqYtεuu

is is an effectively orthogonal Σ0
2 class. Furthermore any

sequence random for an extended Markov measure will be
random for a measure in Mark.

Proof: We can easily see that the class is Σ0
2. Now Let

N P N˚ and let

MarkN “
ď

CP2N

sPp2N zCqYtεu

MarkN,C,s

Note that Mark “
Ť

NPNMarkN is an increasing sequence,
indeed we have MarkN Ď MarkN`1. So it is enough to
show that for any N P N˚, MarkN is orthogonal. If two
different measures µ, ν P MarkN do not have the same N
bits fixed, they are orthogonal since they have disjoint support.
If they have the same first N bits fixed then some conditional
probability to go from one state i to another state j will differ
between µ and ν, and this will be reflected by their random
elements. That is, the relative frequency of occurrence of the
patter t after the pattern s, with t the j-th string and s the
i-th string, will have some fixed value fµ “ Pµi,j on all µ-
random elements, and fν “ P νi,j on ν-random elements. Since
these two values differ, µ and ν will have no common random
element.

Finally, the fact that any sequence random for a Markov
measure will be random for a measure in Mark comes from
our construction and was discussed previously: the states
which do not belong to any final equivalent class is handled
by fixing the corresponding N first bits, and the fact that one
Markov measure can have several final accessibility class is
handled by the fact that their random will be the union of
those of the corresponding measures in Mark, each of them
having one of the final accessibility class.

Corollary VI.1. Uniform randomness extraction is possible
on the class of Markov measures, i.e., there exists a partial
computable function E : 2ω Ñ 2ω such that Epxq is λ-random
whenever x is µ-random for some Markov measure µ.

VII. CONCLUSION

We have obtained in this paper a strong generalization
of von Neumann’s trick for Bernoulli measures by showing
that any computable union of Π0

1 classes of measures
with the effective orthogonality property allows a uniform
randomness extraction. We believe this is interesting for
several reasons. First, while it does not fully characterize
the classes of measures allowing randomness extraction, the
criterion given is quite general and applies to a wide variety
of classes: Bernoulli measures, Markov chains, etc, and the
list could be made much longer if we had worked on a
compact computable metric space (all the results presented

in this paper extend to this setting): Poisson processes,
brownian motion, etc. Second, this is an example of a
theorem of constructive mathematics which does not seem to
have an analogue (at least not an obvious one) in classical
mathematics. Indeed, one could classically interpret von
Neumann’s trick as follows: there exists a function F such
that µ˝F´1 “ λ for all Bernoulli measures (except the trivial
ones). We on the other hand present a uniform procedure
to extract randomness from all Markov chains, while it is
clear that there is no function F such that µ ˝ F´1 “ λ
for all Markov measures µ. The fact that our extraction
procedure is only partial computable (which it has to be
because of potential atoms in the measures) makes even
less likely the existence of a natural analogue to our results
in classical mathematics. We also introduced and gave a
complete characterization of the notion of learnability for a
class of probability measures which we believe is interesting
in its own right, and should have further applications in the
field of algorithmic randomness.
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VIII. APPENDIX

Proof of Propostion II.1

Proof: 1 Ñ 2 : Assuming that f : X Ñ Y is computable
with some partial computable function g : N ˆ N Ñ N.
One can build a total function g1 extending g such that
g1pv´1pOpxq,Nqqq “ v´1pOpfpxqqq. To compute g1pO,nq,
we compute for all m ď n the first n steps of gpO,mq. If
at least one terminates and have never been assigned to a
g1pO,mq for some m ă n, then we assign it to g1pO,nq.
Otherwise we assign Y to g1pO,nq.
2 Ñ 1 : trivial

1 Ñ 3 : Assuming that f is computable, let O P OpY q.
If fpxq P O then there is an open set V P Opxq and
an integer n P N such that gpV, nq “ O. Note that
gpV, nq “ O Ñ fpV q Ď O. So by enumerating all V P OpXq
and outputting V each time Dn gpV, nq “ O, we have an
enumeration of f´1pOq.

3 Ñ 1 : Assuming that f´1pOq is an enumerable open
set, one can enumerate

Ť

OPOpY q f
´1pOqˆO. For each basic

open set U enumerated in f´1pOq, define gpU, nq “ O, where
n is the smallest integer such that gpU, nq is undefined. Img
will contain all basic open sets containing a point in Imf . So
for any open set U containing some fpxq, we will have an
open set O containing x and a n P N such that gpO,nq “ U
which implies gpv´1pOpxq,Nqqq “ v´1pOpfpxqqq.

With truth-table reducibility, with an approximation more
and more precise of any Cantor space element, one can
uniformly compute an approximation more and more precise
of another Cantor space element. It is basically the same here,
the approximation being the set of open sets containing a given
element.

Lemma VIII.1. Let X be an effectively compact computable
topological space. Let tQeu be a standard enumeration of the
Π0

1 subsets of X. There exists a partial computable function
S : NÑ X such that, for all e, if Qe is a singleton txeu, then
Speq “ xe.

Proof: As X is effectively compact, each Π0
1 subset of X

is also effectively compact. So the set of finite sequences
of basic open sets of X covering each Qe is effectively
enumerable uniformly e. If a specific Qe contains only one
point, then a single basic open set contains this point iff it
covers Qe. So when enumerating finite sequences of basic
open sets of X covering Qe, we decide to keep only the
sequences containing one element. This way we obtain an
enumeration of all basic open sets containing the point, which
makes it a computable point.


