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Introduction

Nous présentons dans ce document plusieurs contributions sur I’étude du contenu calcu-
latoire du théoreme de Ramsey. Le résultat principal, présenté dans le dernier chapitre,
est une réponse a une question ouverte depuis longtemps : la séparation des principes de
mathématiques & rebours SRT3 et RT3 dans les w-modeles.

Mathématiques a rebours

Les mathématiques a rebours sont un programme de logique mathématique visant a
déterminer quels axiomes sont nécessaires pour prouver des théoremes mathématiques. La
méthode peut étre succinctement décrite comme “Aller a rebours, des théoréemes vers les
axiomes”, contrastant avec la pratique ordinaire des mathématiques, consistant a dériver
les théoremes des axiomes.

La majeure partie de la recherche en mathématiques a rebours se place dans
I’arithmétique du second ordre. L’ensemble de la recherche dans ce domaine a établi que
des sous-systémes faibles de 'arithmétique du second ordre sont suffisants pour formaliser
presque toutes les mathématiques de Licence. En arithmétique du second ordre, les
objets sont représentés par des entiers naturels ou des ensembles d’entiers naturels. Par
exemple pour parler de théoremes portant sur les nombre réels, ces derniers peuvent étre
représentés par des séquences de Cauchy de nombres rationnels, chacune d’entre elle
pouvant étre représentée comme un ensemble d’entiers naturels.

Simpson [38] décrit cing sous-systeémes particuliers de I’arithmétique du second ordre,
apparaissant fréquemment en mathématique a rebours. Par ordre de force, ces systemes
sont dénotés par les initiales suivantes : RCAg, WKLo, ACAg, ATRy, et IT}-CA,.

1. RCAy! (Axiome récursif de compréhension) : Il s’agit du fragment de I’arithmétique
du second ordre qui comprend les axiomes de I'arithmétique de Robinson, I'induction
pour les formules E(l) et la compréhension pour les formules A(l]. Ces axiomes sont
nécessaires et suffisants pour montrer ’existance de tous les ensembles d’entiers
calculables.

Le sous-systeme RCA( est le systeme de base des mathématiques a rebours. En
dépit de sa faiblesse (il ne prouve pas l'existence d’ensembles non calculables), RCAg
est suffisant pour prouver un certain nombre de théoremes classiques, ne requérant
qu’une puissance axiomatique minimale.

2. WKL¢? (Le lemme faible de Konig) : Le sous-systeme WKL est composé de RCAg
plus le lemme faible de Konig, stipulant que tout sous-arbre infini de 2<“ a un chemin
infini.

!de ’anglais : Recursive Comprehension Axiom
2de l’anglais : Weak Konig’s Lemma
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WKLy peut prouver un certain nombre de résultats mathématiques ne découlant
pas de RCAq. Par exemple le théoréeme de complétude de Gddel.

3. ACAy® (Axiome de compréhension arithmétique) : ACA( consiste en RCAq plus
le schéma d’axiome de compréhension pour les formules arithmétiques. ACAg per-
met de former les ensembles d’entiers naturels satisfaisant un nombre arbitraire de
formules arithmétiques (c’est a dire avec aucune quantification sur les ensembles
d’entiers, mais possiblement avec des ensembles d’entiers en parametre).

ACA( peut étre vu comme le cadre dans lequel faire des mathématiques prédicatives,
méme si il y a des théoremes prédicatifs qui ne sont pas prouvables dans ACAy. La
plupart des résultats fondamentaux sur les entiers naturels, et beaucoup d’autres
théoremes mathématiques, sont prouvables dans ACAy.

4. ATRy* (Récursion arithmétique transfinie) : ATR( consiste en RCA plus la pos-
sibilité de définir des ensembles par récursion arithmétique transfinie sur les bons
ordres.

5. TI-CAy ° (Axiome de compréhension I1}) : TT}-CAg consiste en RCAg plus I'axiome
de compréhension pour les formules H%.

La plupart des théoremes mathématiques s’averent étre équivalents, relativement a
RCAy, a I'un des cinq systemes axiomatiques ci dessus, ce qui a conduit a leur surnom de
“Big Five”, traduit en francais par Ludovic Patey dans sa theése de doctorat par “Club
des Cing”.

Les modeles des sous-systemes de l'arithmétique du second ordre ont une partie du
premier ordre : les entiers, et une partie du second ordre : les ensembles. Un modele
dans lequel la partie du premier ordre est simplement w, est appelé un w-modéle. Sauf
mention contraire, tous les modeles considérés dans ce document seront des w-modeles
et nous écrirons simplement modele pour signifier w-modeéle, considérant simplement leur
partie du deuxieme ordre, celle du premier ordre étant implicite.

Pour séparer deux systemes de 'arithmétique du second ordre, par le théoreme de
compétude de Godel, il est nécessaire et suffisant de construire un modele de 'un qui n’est
pas modele de 'autre. Chacun des cinq sous-systemes du Club des Cinq differe déja sur
les w-modeles. Nous seront principalement intéressé par les trois premiers, RCAg, WKL
et ACAy, pour lesquels nous donnons plus de détails.

1. Les modeles de RCAg sont appelés Idéaur Turing : Les classes d’ensembles closes
par jointure Turing et réduction Turing. La classe des ensembles calculables est le
plus petit de ces modeles.

2. Les modeles de WKL sont appelés les ensembles de Scott : Les idéaux Turing qui
sont aussi des modeles du lemme faible de Konig : Pour tout arbre infini 7' ¢ 2<¢
qui est X-calculable pour X dans le modele, il y a un ensemble Y € [T'] qui est aussi
dans le modele. Il est facile de construire un arbre calculable infini ne contenant
aucun chemin infini calculable, ce qui sépare WKLy de RCAy.

Friedman a aussi montré que RCAg et WKL difféerent uniquement par leur partie

du second ordre : les deux systemes prouvent les mémes énoncés du premier ordre.

3. Les modeles de ACAq sont les idéaux Turing qui sont aussi clot par saut Turing.
Par le théoreme “low basis”, la classe des ensembles “low” (dont le saut Turing est

3de I'anglais : Arithmetic Comprehension Axiom
“de Panglais : Arithmetic Transfinite Recursion
®de l’anglais : II} Comprehension Axiom
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calculable par @,) est un modele de WKLy, et ce modele n’est pas clot par saut
Turing et donc donne une séparation entre ACAg et WKLg.

La partie du premier ordre de ACA( est exactement celle de I'arithmétique du
premier ordre de Péano; Ont dit que ACA( est une extension conservative de
I’arithmétique du premier ordre de Péano.

Le théoreme de Ramsey

Parmi les théorémes étudiés en mathématiques a rebours, le théoreme de Ramsey a regu
une attention particuliere de la part de la communauté, en raison du fait que sa version
pour les pairs d’entiers fut historiquement le premier théoreme dont on a mis en évidence
qu’il échappait au phénomene du Club des Cing. Nous en donnons ici une présentations
succincte, et le lecteur peut consulter Hirschfeldt [16] pour une introduction détaillée aux
mathématiques a rebours du théoreme de Ramsey.

Etant donné un ensemble d’entiers X, [ X]|" dénote I’ensemble des sous-ensembles de
X de taille n. Etant donné une couleur f: [w]™ — k, un ensemble d’entier H est homogeéne
pour cette couleur si f est constante sur [H]".

Statement (Théoréeme de Ramsey) : RT}: “Chaque k-coloration de [w]® admet
un ensemble homogene infini”. &

Dans ce qui suit, le principe RT}, est toujours considéré relativement & RCAy — comme
pour n’importe quel principe de mathématiques a rebours. Par exemple quand on écrit
“RT3 implique ACAg”, cela signifie que tout modele de RT3 + RCAq est aussi un modele
de ACA,.

Le théoreme de Ramsey et ses conséquences sont connues pour étre particulierement
difficiles & analyser d’un point de vue calculatoire. Jockusch [19] a montré que RT} est
équivalent & ACAg pour n > 3, impliquant donc que RT}, satisfait le phénomene du Club
des Cing. La question de savoir si RT% implique ACAq est longtemps restée ouverte,
avant d’étre résolue par Seetapun [37] qui a montré que RTZ est strictement plus faible
que ACAq. Plus tard, Jockusch [19, 20] et Liu [23] ont montrés que RT3 est incomparable
avec WKLy, et donc que RT% n’est pas linéairement ordonné avec les membres du Club
des Cing.

Afin d’avoir une meilleure compréhension du contenu calculatoire du théoréeme de Ram-
sey pour les pairs, Cholak, Jockusch et Slaman [3] 'ont décomposé en deux énoncés : le
théoreme de Ramsey stable pour les pairs, et le principe de cohésion. Une couleur pour les
pairs f: [w]? — k est stable si pour tout = € w, lim, f({x,y}) existe. Un ensemble infini C
est cohésif pour une séquence dénombrable d’ensembles Ry, R1,... si C ¢* R; ou C C* R;
pour tout i € w, ou € signifie inclusion sauf pour un nombre fini d’éléments.

( )

Statement (Théoréme de Ramsey stable pour les pairs) : SRT%: “Toute
k-coloration stable de [w]? admet un ensemble homogene infini”. o

\ J

Statement (Cohésion) : COH: “Toute séquence dénombrable d’ensemble admet un
| ensemble cohésif”. ¢

J

Cholak, Jockusch et Slaman [3] et Mileti [25] ont démontré 1’équivalence, relativement
a4 RCAg, entre RT? et SRT% + COH. Ils ont naturellement demandé si la décomposition est
non-triviale, dans le sens ol les deux énoncés SRT % et COH sont strictement plus faibles
que RT%. Hirschfeldt, Jockusch, Kjoss-Hanssen, Lempp et Slaman [18] ont partiellement
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répondu a la question en montrant que COH est strictement plus faible que RT% relative-
ment & RCAg. La question de savoir si SRT% implique RT% relativement & RCA( est restée
ouverte pendant longtemps. Comme RT% est équivalent a SRT% + COH, cette question est
équivalente a celle de savoir si SRT% implique COH relativement & RCAg.

D’un point de vue calculatoire, le théoreme de Ramsey stable pour les pairs et k
couleurs est équivalent & 1’énoncé combinatoirement plus simple appelé Dz.

Statement : DI: “Pour toute k-partition AY de w, Il existe un sous-ensemble infini
d’une des parties”. 2

Chong, Lempp et Yang [4], ont montré que SRT% et Di sont équivalent relativement a
RCAy. Le principe de cohésion admet aussi une caractérisation calculatoire intéressante.
Jockusch et Stephan [21] ont montré que la séquence des ensembles primitifs récursifs est
de difficulté maximale parmi les instances calculables de COH. Les ensembles cohésifs
pour cette séquence sont appelés p-cohesifs et leurs degrés Turing sont précisément ceux
dont le saut est PA relativement & (), c’est & dire les degrés dont le saut peut calculer un
chemin dans tout arbre binaire infini AJ. La question suivante est donc fortement liée &
séparation de SRT3 et COH.

Question : Y-a-t-il pour chaque ensemble AY, un ensemble infini dans lui ou son
complémentaire, dont le saut n’est pas de degré PA relativement a 0 2 2

Une approche naturelle pour séparer SRT% et RT% serait de prouver que chaque en-
semble Ag admet un ensemble infini G dans lui ou son complémentaire de degré low, c’est
A dire avec G’ <7 ).

Mais Downey, Hirschfeldt, Lempp et Solomon [8] ont construit un ensemble A9 avec
aucun ensemble low infini dans lui ou son complémentaire. De maniére surprenante,
Chong, Slaman et Yang [5] ont résolu la question SRT3 vs COH en construisant un modele
de RCA( + SRT?Z ne contenant que des ensembles low, et qui n’est donc pas un modele de
COH. La solution a cet apparent paradoxe vient du fait que le modele est non-standard
et ne satisfait pas I'induction ©9. Les ensembles de ce modele sont low a l’intérieur du
modéle, mais pas dans la méta-théorie. La construction de Downey, Hirschfeldt, Lempp
et Solomon [8] requiere I'induction %9.

La preuve de Chong, Slaman et Yang [5] — remarquable pour sa sophistication et
les nouvelles idées qu’elle contient — sépare formellement SRT3 et COH relativement 2
RCAy. La preuve n’est toutefois pas pleinement satisfaisante. D’abord elle laisse ouverte
la question de savoir si le principe (Vk)SRT% implique COH, une question qui a été posée
par Cholak, Jockusch et Slaman [3]. En effet, (Vk)SRT? implique I'induction £9, et donc
ne peut pas avoir de modele ne contenant que des ensembles low. Ensuite, la séparation
est faite par la partie du premier ordre des modeles, et il est naturel de demander si
une séparation peut étre obtenue basée sur la partie du second ordre. Chong, Slaman et
Yang [5] ont donc naturellement posé la question suivante:

Question : Est-ce que tout w-modele de RCAg + SRT% est un modele de COH? <

La question a eu un impact important dans le développement des mathématiques a
rebours, et plus généralement de la calculabilité, pas seulement pour la question elle-méme,
mais pour toutes les questions qui lui sont liées, les nouvelles techniques et 1’émulation
intellectuelle générée dans la communauté. Plusieurs articles dédiés a cette question [2,
4, 7, 11, 10, 12, 17, 27, 32, 33] ont amené a la redécouverte des degrés Weihrauch par
Dorais, Dzhafarov, Hirst, Mileti et Shafer [7], et a I'introduction de la réduction calculable
par Dzhafarov [11]. Dzhafarov [11, 12] a obtenu des séparations partielles en montrant
que COH n’est ni Weihrauch reductible, ni fortement calculatoirement réductible a SRT%.
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L’améalioration la plus récente est la preuve de Dzhafarov et Patey [10] qui ont montré
que COH n’est pas Weihrauch réductible a SRT% méme en autorisant un nombre fini de
fonctionnelles Turing.

Nous présentons dans ce document le travail effectué avec Ludovic Patey [27, 29, 28],
qui s’acheve sur la construction d’un w-modeéle de RCAg + SRT% qui n’est pas un modele
de COH.

Contenu du document

Le lecteur confiant principalement intéressé par la séparation entre SRT% et RT% peut
directement se rendre au Chapitre 5, qui a été écrit de maniére a pouvoir étre lu
indépendamment du reste de ce document, méme si les chapitres précédents aideront sans
doute a la compréhension de cette construction difficile.

Pour séparer SRT% et RT2, il est nécessaire d’étendre le forcing de Mathias calculable
de Dzhafarov and Jockusch, afin d’avoir un controéle fin sur la valeur de vérité les énoncés
Zg. Cela a initialement été développé par Cholak, Jockusch et Slaman [3], puis raffiné
successivement par Wang [41], Patey [33] et Monin et Patey [27].

Monin et Patey ont par la suite raffiné encore la technique [29] afin d’avoir un controle
sur la valeur de vérité des énoncés X2 pour un ordinal calculable a. Des outils centraux
introduits pour cela et utilisés tout le long de ce document sont les notions de classe “large”
et classe “stable par partition”, présentées dans le premier chapitre.

Ces notions sont ensuite utilisées dans le chapitre 2 et 3 pour créer une extension du
forcing de Mathias afin de montrer les résultats suivants:

( )

Theorem (M., Patey [29]): Soit m > 0. Soit Z non_(Z)(m)—calcu]able. Soit A un
ensemble quelconque. II existe un ensemble G € [A]” U[A]* tel que Z n’est pas G™-

calculable.
.

( )
Theorem (M., Patey [29]): Soit Z non A{. Soit A un ensemble quelconque. Il existe
un ensemble G € [A]“U[A]* tel que Z n’est pas AL(G) (et en particulier avec w{ = w§t).

N

Dans le chapitre 4 on prépare ensuite le lecteur a la lecture de la séparation entre
SRTZ et COH dans les w-modeles, en montrant comment utiliser le forcing de Mathias
pour créer des ensembles non cohésifs. Dans le chapitre 5 on prouve finalement les deux
théoremes suivants :

Theorem (M., Patey [28]): Pour tout ensemble Z dont le saut n’est pas PA rela-
tivement a ()" et pour tout ensemble Ag’Z A, il y a un ensemble G € [A]¥ U[A]¥ tel que
(G ® Z)" n'est pas PA relativement & ().

Le théoréme peut ensuite étre itéré pour construire un w-modele de RCAg + SRT%
ne contenant aucun ensemble dont le saut est PA relativement a @’, ce qui conduit au
théoreme suivant:

vii
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Theorem (M., Patey [28]): Il y a un w-modéle de RCAq + SRT% qui n’est pas un
modele de COH.

Cela répond a la question de Chong, Slaman et Yang [5], et aussi de Cholak, Jockusch
et Slaman [3] car tout w-modele de SRT3 est un modele de Yk SRT%.
mi-cA

}

ATR,

}

RT3 $—— ACA,

} }

RT3 WKL
N\
SRT3 COH
N
RCA

Figure 1: Un résumé des implications, relativement a RCAg, entre différents énoncés de
mathématiques a rebours, dans les w-modeles. Toutes les implications sont strictes, et
celles qui ne sont pas 1a sont des séparations.
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Introduction

We present in this document various contributions to the computational study of Ramsey’s
theorem. The main result, presented in the last chapter, is an answer to the long standing
open question of separating the reverse mathematics principles SRT% and RT% in w-models.

Reverse mathematics

Reverse mathematics is a program in mathematical logic that seeks to determine which
axioms are required to prove theorems of mathematics. Its defining method can briefly
be described as “going backwards from the theorems to the axioms”, in contrast to the
ordinary mathematical practice of deriving theorems from axioms.

Most reverse mathematics research focuses on subsystems of second-order arithmetic.
The body of research in reverse mathematics has established that weak subsystems of
second-order arithmetic suffice to formalize almost all undergraduate-level mathematics.
In second-order arithmetic, all objects can be represented as either natural numbers or
sets of natural numbers. For example, in order to prove theorems about real numbers, the
real numbers can be represented as Cauchy sequences of rational numbers, each of which
can be represented as a set of natural numbers.

Simpson [38] describes five particular subsystems of second-order arithmetic, that occur
frequently in reverse mathematics. In order of increasing strength, these systems are
named by the initialisms RCAg, WKLg, ACAg, ATRy, and IT}-CA,.

1. RCAq (Recursive Comprehension Axiom) : It is the fragment of second-order arith-
metic whose axioms are the axioms of Robinson arithmetic, induction for Z(f formu-
las, and comprehension for A(l) formulas. These axioms are necessary and sufficient
to show the existance of all computable sets of numbers.

The subsystem RCAj is the base system for reverse mathematics. Despite its seem-
ing weakness (of not proving any non-computable sets exist), RCAy is sufficient to
prove a number of classical theorems which, therefore, require only minimal logical

strength.
2. WKLy (Weak Koénig’s Lemma) : The subsystem WKL consists of RCA( plus the
weak Konig’s lemma, namely the statement that every infinite subtree of 2“ has an

infinite path.

WKLy can prove many classical mathematical results which do not follow from
RCAy. For instance Godel completeness theorem.

3. ACAy (Arithmetical Comprehension Axiom) : ACAg is RCAq plus the comprehen-
sion scheme for arithmetical formulas. That is, ACAg allows us to form the set of

ix
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natural numbers satisfying an arbitrary arithmetical formula (one with no quantifi-
cation on sets, although possibly containing set parameters).

ACA( can be thought of as a framework of predicative mathematics, although there
are predicatively provable theorems that are not provable in ACAy. Most of the
fundamental results about the natural numbers, and many other mathematical the-
orems, can be proven in this system.

4. ATRg (Arithmetical Transfinite Recursion) : ATRg is RCAy plus the possibility of
defining sets by arithmetical transfinite induction on well-orders.

5. TI-CAy : TI}-CAq (T1{-Comprehension Axiom) is RCAq plus the axiom of compre-
hension for II} formulas.

An early observation was that most mathematical theorems turn out to be equivalent,
over RCAy, to one of the five axiomatic systems above, which lead them to share the
nickname of “Big Five”.

Models of subsystems of second order arithmetic have a first-order part : the integers,
and a second-order part : the sets. A model in which the first-order part is merely w is
called an w-model. Unless mentioned otherwise, every model considered in this document
will be w-models and then we often just say model to mean w-models, considering it only
as a set of reals, the first order part being implicit.

To separate two subsystems of second order arithmetic, By Godel completeness theo-
rem, it is necessary and sufficient to build a model of one of them which is not a model of
the other one. Each of the big five subsystems differ already on w-models. We will only
be concern in this document by the three first principles, RCAy, WKLy and ACAy, for
which we provide more details.

1. The models of RCAg are called Turing ideals : class of sets which are closed by
Turing join and Turing reduction. The class of computable sets is the smallest such
model.

2. The models of WKL are called Scott sets : Turing ideals which are also models of
weak Konig’s lemma : for any infinite tree 7' ¢ 2 which is X-computable for X in
the model, there must be a set Y € [T'] which is in the model. It is easy to build
an infinite computable tree which contains no computable infinite path, separating
WKLy from RCAy.

Friedman also showed that RCAg and WKL can only be separated on their second
order parts : both system proves the same first-order sentences.

3. The models of ACAy are the Turing ideals which are also closed by Turing jump.
By the low basis theorem, the class of all low sets is a model of WKL, but it is not
closed by Turing jump and then provide a separation of ACAg from WKL.

The first-order part of ACAg is exactly first-order Peano arithmetic; ACAg is a
conservative extension of first-order Peano arithmetic. The two systems are provably
(in a weak system) equiconsistent.

The Ramsey theorem

Among the theorems studied in reverse mathematics, Ramsey’s theorem received a special
attention from the community, since Ramsey’s theorem for pairs historically was the first
theorem known to escape the Big Five phenomenon. We give here a brief presentation
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of this theorem in our context, and the reader can refer to Hirschfeldt [16] for a detailed
introduction to the reverse mathematics of Ramsey’s theorem.
Given a set of integers X, [X]" denotes the set of all subsets of X of size n. For a

coloring f : [w]™ - k, a set of integers H is homogeneous if f is constant over [ H |".

Statement (Ramsey’s theorem) : RT}: “Every k-coloring of [w]" admits an infi-
nite homogeneous set”. &

In what follows the principle RT} is always considered relative to RCAg — like any
reverse mathematic principle. For instance when we write “RT% implies ACAy”, it means
any model of RT3 + RCAj is also a model of ACAg.

Ramsey’s theorem and its consequences are notoriously hard to analyze from a
computable-theoretic viewpoint. Jockusch [19] proved that RT} is equivalent to ACAg
whenever n > 3, thereby showing that RT} satisfies the Big Five phenomenon. The
question whether RT% implies ACA( was a longstanding open question, until Seetapun [37]
proved that RT? is strictly weaker than ACAq. Later, Jockusch [19, 20] and Liu [23]
showed that RT% is incomparable with WKL, and therefore that RT% is not even linearly
ordered with the Big Five.

In order to understand better the computational and proof-theoretic content of Ram-
sey’s theorem for pairs, Cholak, Jockusch and Slaman [3] decomposed it into two state-
ments, namely, stable Ramsey’s theorem for pairs, and cohesiveness. A coloring of pairs
f:[w]? = k is stable if for every z € w, lim,, f({z,y}) exists. An infinite set C is cohesive
for a countable sequence of sets Rg, Ry, ... if C ¢* R; or C ¢* R; for every i € w, where C*
means inclusion but for finitely many elements.

( )

Statement (Stable Ramsey’s theorem for pairs) : SRT%: “Every stable k-
coloring of [w]? admits an infinite homogeneous set”. o

J

N\

Statement (Cohesiveness) : COH: “Every countable sequence of sets has a cohesive
set”. ¢

J

Cholak, Jockusch and Slaman [3] and Mileti [25] proved the equivalence over RCA
between RT% and SRT% + COH. They naturally wondered whether this decomposition is
non-trivial, in the sense that both statements SRT% and COH are strictly weaker than
RT,2€. Hirschfeldt, Jockusch, Kjoss-Hanssen, Lempp and Slaman [18] partially answered
the question by proving that COH is strictly weaker than RT3 over RCAq. The question
whether SRT% implies RT% over RCA( remained a long-standing open question. Since
RT% is equivalent to SRT% + COH, this is equivalent to the question whether SRT% implies
COH over RCAy.

From a computability-theoretic viewpoint, stable Ramsey’s theorem for pairs and k
colors is equivalent to a combinatorially simpler statement called Di.

Statement : Dj: “For every AV k-partition of w, there is an infinite subset of one of
the parts”. &

Chong, Lempp and Yang [4], proved that the computable equivalence between SRT%
and D% also holds over RCAg. The cohesiveness principle also admits a nice computability-
theoretic characterization. Jockusch and Stephan [21] proved that the sequence of all
primitive recursive sets is a maximally difficult instance of COH (among the computable
ones). The cohesive sets for this sequence are called p-cohesive and their Turing degrees

xi
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are precisely the ones whose jump is PA over @’, that is, the degrees whose jump can
compute a path through any AY infinite binary tree. The following computable-theoretic
question is therefore closely related to the previous question.

Question : Does every Ag set has an infinite subset in it or its complement whose jump
is not of PA degree over ()'? &

One natural approach to separate SRT% from RT% would be to prove that every A
set admits an infinite subset G in it or its complement of low degree, that is, G’ <r 0.
However, Downey, Hirschfeldt, Lempp and Solomon [8] constructed a Ag set with no low
infinite subset of it or its complement. Very surprisingly, Chong, Slaman and Yang [5]
answered the SRT% vs COH question by constructing a model of RCA( + SRT% with only
low sets, which is not a model of COH. The solution to this apparent paradox was the
use of a non-standard model of RCA in which X9 induction fails. The sets of this model
are low within the model, but not low in the meta-theory. The construction of Downey,
Hirschfeldt, Lempp and Solomon [8] requires X9 induction to be carried out.

The proof of Chong, Slaman and Yang [5] — remarkable by its sophistication and
striking new ideas — formally separates SRT3 from COH over RCAy. It remains however
not fully satisfactory. First, it leaves open the question whether (Vk)SRTz implies COH
which was also asked by Cholak, Jockusch and Slaman [3]. Indeed, (Vk)SRT% implies
Eg induction, and therefore cannot have any models with only low sets. Second, the
separation is done by playing with the first order part of the models, and it is natural
to ask if one could also achieve the separation based on the second order part. Chong,
Slaman and Yang [5] naturally asked the following question:

Question : Is every w-model of RCAg + SRT% a model of COH? &

This question had an important impact in the development of reverse mathematics,
and computability theory in general, not only by its self interest, but also by range of
related questions, new techniques and intellectual emulation it generated in the community.
Several articles are dedicated to this question [2, 4, 7, 11, 10, 12, 17, 27, 32, 33] and led to
the rediscovery of Weihrauch degrees by Dorais, Dzhafarov, Hirst, Mileti and Shafer [7],
and the design of the computable reduction by Dzhafarov [11]. Dzhafarov [11, 12] obtained
partial separations by proving that COH is neither Weihrauch reducible, nor strongly
computably reducible to SRT%. The most recent improvement is a proof by Dzhafarov
and Patey [10] proving that COH is not Weihrauch reducible to SRT% even when a finitely
many Turing functionals are allowed.

We present in this document the work done with Ludovic Patey [27, 29, 28], ending
with the construction of an w-model of RCAg + SRT% which is not a model of COH.

Overview of the document

The confident reader who is mainly interested in the separation of SRT3 from RT3 may
jump directly to Chapter 5 which has been written in a way so that it could be read
independently from the rest of the document, although, the rest of the document would
certainly help for a better understanding of this difficult construction.

In order to separate SRT% from RT%, one shall extend the computable Mathias forcing
of Dzhafarov and Jockusch to have a fine control the on truth of X9 statements. This
has been initially developed by Cholak, Jockusch and Slaman [3], and then successively
refined by Wang [41], Patey [33] and Monin and Patey [27].

Monin and Patey then refined again the techniques [29] to have a tight control of ¥
statements for any computable ordinal «. One central tool introduced for this and used

xii
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all along this document, is the notion of largeness and partition reqular classes, which are
presented in Chapter 1.

These notions are then used in Chapter 2 and 3 to design an extension of Mathias
forcing with which we show the following results :

( )

Theorem (M., Patey [29]): Let m > 0. Let Z be non @(m)—computable. Let A be
any set. Then there is a set G € [A]* U[A]® such that Z is not G"™-computable.

N\

( )
Theorem (M., Patey [29]): Let Z be non Af. Let A be any set. Then there is a set
G € [A]” U[A]* such that Z is not A}(G) (and in particular with w$ = w$*).

N

In Chapter 4 we then prepare the reader to the separation of SRT% from COH in w-
models, by showing how to use Mathias forcing to build non-cohesive sets. In Chapter 5
we finally prove the two main theorems:

Theorem (M., Patey [28]): For every set Z whose jump is not of PA degree over 0
and every Ag’z set A, there is a set G € [A]¥ U [A]“ such that (G® Z)' is not of PA
degree over 0.

This theorem can then be iterated to construct an w-model of RCA(+SRT? containing
no set whose jump is of PA degree over (), from which we deduce the following theorem.

Theorem (M., Patey [28]): There is an w-model of RCAq + SRT3 which is not a
model of COH.

This answers a question of Chong, Slaman and Yang [5], but also of Cholak, Jockusch
and Slaman [3] since any w-model of SRT3 is a model of Yk SRT%.

I}-CA

}

ATRg

}

RTY $—— ACAy

} }

RT3 WKL

N\

SRT2 COH

N\

RCAy

Figure 2: Summary diagram of implications between statements over RCAg, and over
w-models. All the implications are strict, and the missing implications are separations.

xiii



Chapter

Background and main definitions

We assume the reader is familiar with the main computability notions. Here is a non
exhaustive list of reference on the subject [6] [30] [9] [31].

1.1 Notations

We briefly specify here the notations we use, which should all be standard.

1.1.1 The Cantor space

We call strings finite sequences of zeros and ones. The empty word, denoted by ¢ is also
considered to be a string. The space of strings is denoted by 2<“, and a string itself will be
denoted by o, 7 or p. For a string o, we denote the length of o by |¢|. An infinite sequence
of zeros and ones will be called a set or a sequence and we typically use letters X, Y or
Z, to name sequences. The Cantor space, denoted by 2% is the set of all sequences.

For a string o and a sequence X we write o0 < X and we say ‘X extends o’ or that ‘o
is a prefix of X', if the |o]| first bits of X are equal to o. Similarly, for two strings o and
7, we say that o < 7 if |o| < |7| and if the |o]| first bits of 7 are equal to o. If we want the
extension to be strict we write o < 7. If two strings o and 7 are such that o £ 7 and 7 £ o,
we say that o and 7 are incomparable, and we write ¢ L 7. For a string o, a sequence X,
any n with 0 < n < |o| and any m, we write o(n) and X(m) to denote respectively the
value of the n-th bit of o and the value of the m-th bit of X (starting at position 0). For
two strings o, 7, we denote the concatenation of o to 7 by o7. Finally, for an integer n, a
string o and a sequence X, we denote by X|,, and o, respectively the n first bits of X
and the n first bits of o.

The elements of 2% are also considered to be sets of natural numbers, and the elements
of 2<“ as finite sets of natural numbers. In that regards, Given o,7 € 2*“ and X € 2%,
we write 0 € X to mean that o(i) = 1 implies X (i) =1 and we write o € 7 to mean that
o(i) =1 implies 7(i) = 1. Given X,Y € 2¥ we write X ¢* Y is X is included in Y except
for finitely many elements. Finally given X € 2 and n € w, we write [X]" to denote the
set of subset of X of size n. We write [ X]* to denote the set of infinite subsets of X.

1.1.2 The Baire space

As for the Cantor space, we call string a finite sequence of natural numbers (including
the empty word €), sequence or function an infinite one, and we define w<“ to be the set
of strings and w® to be the set of sequences. In practice it will be in general clear when
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strings/sequences are meant to be strings/sequences of the Baire space rather than of the
Cantor space, and when it might be ambiguous, we will always give precisions.

Elements of w** will be usually denoted by o, T or p and elements of w* will be usually
denoted by f,g or h. For an integer n, a sequence f and strings o, T, the notions of length
|o], extension/prefix 0 < X, 0 < T, 0 < T, comparability o 1 T, n-th value o(n), f(n),
concatenation o7, and restrictions f},, ol,, are as in the Cantor space.

1.1.3 Trees

Given a well-order < on a set A, a tree T' in A is a subset of A closed by predecessor : if
aeT and b<athen beT.

Most of the time we will consider that trees are subsets of 2<“ or w*“ for the order <
of prefix extension. Given a tree T'c 2<“ a path of T is a set X € 2“ such that X|,e T for
every n € w. We write [T'] for the set of paths of T.

1.1.4 Computability

Elements of w will be usually be denoted by a, b, c,d, e, 1, j, k,l, m,n, with e more specifically
used for ‘codes’. The letters r,s,t will usually refers to time of computations. We just
recall here some standard notation which will be used in this thesis.

For any e we denote by @, : w — w the computable function of code e. If we allow
a ‘computable process’ to access infinite objects as oracle, we then speak of computable
functional. So for any e € w, we will denote by ®. : 2“ x w - w the computable functional
of code e. Sometimes it will happen that we want our functionals to have more than one
oracle in input, with possibly some of them from the Baire space. When it is so we will
always give precisions. For a given fixed oracle X € 2¥, we denote by @*ex tw — w the
curryfication of ®, applied to oracle X. We write ®X(n) | or sometimes ®.(X,n) | if
the computation converges with oracle X and input n. We write ®X(n) 1 or sometimes
®.(X,n) 1 otherwise. Also for any e € w, we denote by W, the computably enumerable
set of code e, that is the domain of .. The notion relativizes and for X € w, we denote
WX the domain of ®X. Note that we will not make any difference between W, and W2~
(where 0% denotes the sequence corresponding to the empty set of natural numbers).

We will often consider functionals ®, : 2 x w — w as functions from 2 to w®, or as
functions from 2“ to 2*. In this case we write ®. : 2 - w* (respectively ®. : 2 — 2%)
and we write ®.(X) to denote the image of ®. on the sequence X. Such a function ®, is
defined on X when Vn ®.(X,n) | (respectively when Vn ®.(X,n) e {0,1}).

Quite often we will have to consider the running time of a given computation. So for
a functional ®., an oracle X and an integer n, we denote by ®.+(X,n) or by ®.(X,n)[t]
the result of the computation up to time t¢.

We will very often use computable bijections from w x w to w or more generally from
w" to w. We denote such bijections by (,...,) and we write for example (a,b) for the
result of the binary bijection on a and b. We give a first example of a the use of (,) by
introducing for sequences {X;},.,, the notation ®;¢,X;, which denotes the sequence Z
such that Z((i,7)) = X;(j). We also write X @ Y to denote the sequence Z such that
Z(21) =X (i) and Z(2i+1) =Y (4).

1.2 Mathias forcing

All the techniques of this documents will be enhancement of Mathias forcing, that we give
here :
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Definition 1.2.1 (Mathias, see [22]) : A Mathias condition is given by (o, X' ) where:
1. 02
2. Xelw]¥
3. Xn{0,...,|0]} =2

The partial order is defined by (7,Y) < (0, X) if
1. r=opforpc X

2.YcX &

An infinite sequence of Mathias conditions (09, Xo) > (01, X1) > ... ultimately builds a
generic G € 2¥, as the unique set such that o, < G for every n. Due to the requirement that
X is infinite for a condition (o, X), a sufficiently generic set of conditions will guaranty
that G is infinite. A Mathias conditions (o, X') is then also a guaranty that up to finitely
many elements, our generic will be a subset of X.

Mathias was able during his PhD thesis ([24] see [22]) to use his forcing to build a
model of set theory in which the following generalization of Ramsey’s theorem holds : For
any coloring of the elements of [w]“ in two colors, there is an infinite set X € [w]¥ every
infinite subset of which has the same color. Note that if the coloring is Borel, this is known
as the Galvin-Piikry theorem.

It is then not a surprise to see Mathias forcing necessary to study Ramsey’s theorem
from a computably theoretic perspective.

1.3 Computability theory

We give here the main theorems in computability theory that will be used in this document.

Theorem 1.3.1 (Low basis theorem (Jockusch, Soare [20])):
Let X €2¥. Let P be a non-empty I1{(X) class. The set X' uniformly computes a set
Y’ such that Y € P.

Note that a set X such that X’ <7 Y’ is called low relative to Y.

Definition 1.3.2 : A set X € 2¥ is PA(X) if X computes a function f :w — w such
that ®,(X,n) | implies f(n) # ®,(X,n) for every n. o

Definition 1.3.3 : A set X € 2% is p-cohesive if for every primitive recursive set Y we
have X ¢*Y or X c*w-Y. o

e )
Theorem 1.3.4 (Jockusch, Stephan [21]):
The following are equivalent for a set X :

1. X computes a p-cohesive set

2. X"is PA®)




1.4. MAIN DEFINITIONS

Definition 1.3.5 : A Scott set is a set M € 2“ such that
1. Forall X e M if X >0 Y then Y e M
2. For all X, Y e M then X ®Y e M

3. For all X e M if T € 2% is an X-computable tree such that [T'] is non-empty then
there is Y € [T] such that Y e M &

1.4 Main definitions

1.4.1 Largeness and Partition regularity

We introduce two key notions which will be used all along this document in order to
enhance Mathias forcing in various ways : largeness classes and partition regular classes.
The later is well known and has been studied in the literature as a general combinatorial
notion (see for instance [1] [36]). The less restrictive former notion was introduced in [27] !
in order to design a forcing notion to show that for any set A there exists G € [A]“U[w—-A]*
which is not of high Turing degree.

Definition 1.4.1 : A largeness class is a collection of sets £ ¢ 2“ such that:
1. £ is not empty
2. L is upward closed : If X e Land X €Y, then Y e L

3. If Yyu---uY, 2w, then there is ¢ < k such that Y; € £ 2

Note that given a set X and a set Ygu---u Y, 2 X we sometimes refer to Ypu---u Yy
as a k-cover of X.

Definition 1.4.2 : A partition regular class is a collection of sets £ ¢ 2% such that:
1. L is a largeness class

2. If X el and Ypu---uY, 2 X, then there is ¢ < k such that Y; € £

Furthermore L is proper if L + 2%. &

In the literature, partition regular classes are usually defined without explicitly requir-
ing (2) of Definition 1.4.1. However every studied example encountered by the author also
satisfies upward closure with respect to set inclusion. In addition to that, the fact that
Definition 1.4.2 contains (2) of Definition 1.4.1 brings the definition of partition regular-
ity right next to another very famous and well studied notion : Proper partition regular
classes are exactly the complements of proper set theoretic ideals : non-empty classes
T < 2% which are downward closed with respect to set inclusion, and which are closed by
finite union. Indeed if £ # 2* is partition regular and X,Y ¢ £ then also X uY ¢ £ by (2)
of Definition 1.4.2. Conversely if Z is an ideal and X ¢ Z with Ypu---uY, 2 X then Y; ¢ 7
for some ¢ < k by the finite union property of ideals.

Definition 1.4.3 : A partition regular class L is principal if for some n we have

L={Xe2¥ : ne X}

Lunder the name acceptability class
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A partition regular class £ is non-trivial if it contains no principal partition regular
class. &

Proposition 1.4.4 : A partition regular class £ contains only infinite sets iff it is non-
trivial. *

PROOF: Suppose L contains a finite set X = {ny,...,nt}. Then in particular we have
{ni1}u---u{nk} 2 X. It follows that we must have {n;} € £ for some i < k. Then any set
X containing n; is in £, that is, we have {X €2“ : ne X} ¢ L. Conversely it is clear that
if £ contains only infinite sets, then it is non-trivial. [

All the partition regular classes we manipulate in this document will be non-trivial.

Proposition 1.4.5 : Let £ be a non-trivial partition regular class. Then L is closed by
finite change of its elements. Furthermore if £ is measurable it has measure 1. *

PrOOF: Let X € L. By definition we have that any Y 2 X also belongs to £. Thus L is
closed by finite addition. Consider now any Y ¢ X such that |X - Y| is finite. We have
in particular that X =Y u{nyg,...,n;} for some elements ng,...,ng. As L contains only
infinite elements, we must have Y € £. Thus L is closed by finite suppression. We easily
conclude that L is closed by finite changes.

If £ is measurable, by the Kolmogorov 0-1 law it must be that £ is of measure 0 or of
measure 1. Suppose for contradiction that £ is of measure 0. As L is measurable, if must
be included in some Borel set A of measure 0. Let O be an oracle such that A is included
in a I13(0) set effectively of measure 0. Then no element of £ is O-Martin-Léf random.
Let Z be any O-Martin-Lof random set. We also have that Z is O-Martin-Lof random.
Also wC ZuZ. As we £ we must have Z € £ or Z € £, which is a contradiction. Thus £
is not of measure 0 and therefore it is of measure 1. m

We now connect partition regular classes with largeness classes. Let us first make sure
that if a set A contains a partition regular class, it contains one which contains all the
others.

Proposition 1.4.6 : Suppose {L;};e; is an arbitrary non-empty collection of partition
regular classes. Then U,;; £; is a partition regular class. *

PROOF: It is clear that U;c; £; is not empty. Let X € U;er £;. Let Y 2 X. There is ¢ such
that X € £;. As L; is partition regular we have Y € £; € U;er £;.

Let X € Ujer £;. Let Ygu---UY, 2 X. There is i such that X € £;. As £; is partition
regular we have that Yj € £; € U;er £; for some j < k. =

In particular for every class A such that A contains a partition regular class, there is
a largest partition regular class included in A. It leads to the following definition:

Definition 1.4.7 : Given a class A ¢ 2¥, let £(.A) denote the largest partition regular
subclass of A. If A does not contain a partition regular class, let £(A) be the empty
set. <

We now connect largeness classes to partition regular classes.
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Lemma 1.4.8 : For any class A € 2“ the class L(A) equals:

{XEQUJ t VEVXpu---uXp2X di<k st XzeA}

PROOF: For this proof we refer to L(.A) as defined by this proposition, in order to show
that it matches Definition 1.4.7. Note that by definition we must have L(A) ¢ A, as if
X ¢ A then itself as a 1-cover is not in A.

Let us show that £(A) contains every partition regular class included in A. Suppose
L € A is partition regular. Then given X € L, for every k and every Xou---u X, 2 X we
have X; € £ ¢ A for some i < k. It follows that X € £L(A) and thus that £ < £L(A).

Let us show that if £(A) is non-empty, it is a partition regular class. Suppose X €
L(A). Let Y 2 X. Then for every k, every k-cover of Y is also a k-cover of X. As
X € L(A), one element of the k-cover belongs to A. Thus for every k and every k-cover
of Y, one element of the k-cover belongs to A. It follows that Y € £(A).

Let X € £(A) and let Yyu---UYy 2 X for some k. Let us show there is some i < k
such that Y; € L(A). Suppose for contradiction that this is not the case. In particular for
every 7 < k there are sets Yoi, .. Y,; 2 Y] such that Vj < k;, we have in ¢ A. In particular
the sets {}/}i}inggki are a finite cover of X such that for every i < k and every j < k; we
have in ¢ A. This contradicts that X € £(A). Thus there must exists ¢ < k such that
Y; e L(A). So if L(.A) is non-empty it is a partition regular class. L]

Corollary 1.4.9 : An upward closed class is a largeness class iff it contains a partition
regular class.

PROOF: Let A be an upward closed class. Suppose A is a largeness class. Then from the
previous proposition we have w € £L(A) € A. Thus L£(.A) is non-empty which means it is a
partition regular class contained in A.

Suppose now that 4 contains a partition regular class £. Then £ ¢ £(.A) is non-empty
and then w € £L(.A) which implies by the previous proposition that A is a largeness class.m

Proposition 1.4.10 : Suppose {L, }new is a collection of partition regular (resp. large-
ness) classes with L£y,41 € £,,. Then Ny, £ is a partition regular (resp. largeness) class.*

PROOF: For every n we have that w € £,, because £,, is a largeness class. It follows that
W € MNpew Ln- In particular N, £, is not empty.

Suppose X € Nyew Ln- Let Y 2 X. For every n we have X € £,, and thus Y € £, as L,
is a largeness class. Thus Y € Nyew Ln-

Suppose X € Npew L£n (resp. w € Npew L£n)- Let You---uY, 2 X (resp. Ypu---UY; 2 w).
Suppose for contradiction that for every i < k the set Y; is not in N,e, £n. Thus there
must be some n such that for every i < k the set Y; isnot in £,,. As X € £, (resp. w € L),
it follows that £,, is not a partition regular class (resp. £, is not a largeness class), which
contradicts our hypothesis. [

1.4.2 1Ij Partition regular classes

In this section all the partition regular classes we deal with are considered non-trivial.
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Examples

We exclusively deal in this document with I19 (or ljg) partition regular classes, whose
canonical examples are given in the following definition:

Definition 1.4.11 : For any infinite set X we define L£x as the II13(X) partition regular
class of the sets that intersect X infinitely often. &

We exhibit here a few more Hg partition regular classes, in order to illustrate the
diversity we have among them, even when we restrict the complexity to intersection of
open sets.

Definition 1.4.12 : The complement of the summable ideal

£1/n:{X: 5 ! =+oo}

nex L+n

is a non-trivial TIY partition regular class. &

Definition 1.4.13 : The complement of the van der Waerden ideal:

Lw ={X : X contains arbitrarily long arithmetic progressions }

is a non-trivial I1Y partition regular class. ¢

These specific ideals bring us dangerously close to difficult open questions about natural
numbers : The famous Erdos conjecture on arithmetic progressions states that £y, € Ly .
We luckily here have no business with any of these specific propreties on natural numbers.
We are indeed, as often in computability, more concern “globally” with all Hg partition
regular classes.

Complexity

The first thing of interest for us is the low complexity of questions related to partition
regularity.

Proposition 1.4.14 : Let U be a X0 class. Then L£(U) is a I3 class. *

Proor: By Lemma 1.4.8 we have
ﬁ(u) :{XEQ"J : Vk VX()UUngX HZSleEu}

Once k is fixed, if for all Xqu---u X3 2 X there exists ¢ < k such that X; € U, then by
compactness there must exists a finite prefix o < X such that for every k-cover ryu---UT, 2 0
we must have [7;] €U for some i < k. It follows that for k fixed the class

{Xe2¥ : VXou---UXp2X Ji<k X; €U}

is a ¥ class. Thus £(U) is a IIJ class. m
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Corollary 1.4.15 : Let U be an upward closed E(l) class. The sentence “U is a largeness
class” is T19.

PRroOOF: By Corollary 1.4.9 the open set U is a largeness class iff w € £(U), which is by
the previous proposition a Hg sentence. ]

Minimal largeness classes

For this section we suppose that {U, }ec,, is an enumeration of all the E(l) upward closed
open sets.

Definition 1.4.16 : A largeness class NeecUe (for any set C) is minimal if for every
E(l) largeness class U, we have U N Neec Ue & Neecc Ue implies that U N Neec Ue is not a
largeness class. &

The canonical construction of a minimal largeness class is done with a gready algo-
rithm. This is made explicit with the next proposition.

Definition 1.4.17 : A presentation C of a largeness class Neec Ue is minimal if Neec Ue
is minimal. It is syntactically minimal if for every E(l) largeness class U, we have e ¢ C
implies that U, N Neec Ue is not a largeness class. o

Note that using Lemma 1.4.8, every minimal largeness class is a partition regular class.
We suppose the minimal largeness classes we work with are always non-trivial partition
regular classes.

Proposition 1.4.18 : There is a syntactically minimal presentation of a largeness class
which is computable in (". Furthermore every syntactically minimal presentation of a
largeness class computes 0" *

PROOF: Let a be an index for the X{ class of all sets containing at least two elements.
One can build a syntactically minimal presentation C of a largeness class by a gready
algorithm using (" : We start with Co =U,. For every new index n+1, we ask if Cp, nlyp,11
is a largeness class, which is by Corollary 1.4.9 a Hg question. If it is the case we set
Cn+1 = Cpu{n + 1}. Otherwise we set Cy1 = Cy. It is clear from Proposition 1.4.10
that C = U,, C), is a )""-computable syntactically minimal presentation of a largeness class.
Note that Ugs € U, also ensure that Uc is non-trivial.

Suppose now that C'is a (non-trivial) syntactically minimal presentation of a largeness
class. Let b be any index such that U, = U,. In particular we must have Necc Ue € Uy, and
thus that Uy N Neec Ue is a largeness class and thus that b e C'. Consider any Hg formula
vz 3y ¢(x,y). We uniformly build the index b of the following X! class : for every z, once
we find y; for every ¢ < x such that ¢(t,y;) is true, we put in U, all the strings of length z
with at least two 1’s.

Suppose the formula is true, thus we have that U} contains exactly the sets with at
least two elements and thus that b € C'. Otherwise there is some = such that U4, does not
contain the set 0°1%°. Note that every non-trivial partition regular class must contains
all the co-finite elements. Thus U}, contains no non-trivial partition regular class and thus
b¢ C. It follows that C' can decide every Hg formula and then compute 0" ]

It is not clear whether every minimal presentation (not necessarily syntactically mini-
mal) of a largeness class computes (”. All we can obtain here is that such presentations
must compute p-cohesive sets. To prove it we need the following lemma :
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Lemma 1.4.19 : Let A be a largeness class. Let Xou---uX; 2w. Then AnCLy, is a
largeness class for some 7 < [. *

PROOF: As A is a largeness class then £(A) ¢ A is a partition regular class. There
must be i <[ such that X; € L(A). Let us show that An Ly, is a largeness class. It
is clearly non-empty and upward closed. Let Ypu---uY, 2 w. In particular we have
YonX;)u--—-u((YpnX;)2X;. As X; € L(A) we must have Y; n X; e L(A) ¢ A for some
J <k, and clearly Y; n X; € Lx,. Thus Y;n X; e An Lx, and thus Y; e An Lx,. It follows
that An Ly, is a largeness class. ]

Proposition 1.4.20 : Every minimal presentation of a largeness class computes a p-
cohesive set. *

PRrOOF: Let NeccUe be a minimal largeness class. In particular for any computable set
X we must have, using Lemma 1.4.19 that Lx n NeecUe is a largeness class, or that
L+ N Neec Ue is a largeness class. Suppose without loss of generality that £x N Neec Ue
is a largeness class. Then by minimality we must have N.ecUe € Lx. In particular we
have X € NeecUe and X ¢ NeecU.. Tt follows that for any computable set X we have
X € Neec U or X € Neec U, but not both. Let us now compute, using C”, a total function
f:w—{0,1} such that f(e) = (0, €).

For any e let X, = {scw : ®.(0',e)[s] = 0}. Suppose that ®.(0,e) |=1i for i € {0,1}.
If @e(@', e) 4= 0, then X, is finite and thus X, € Neec Ue and X ¢ Neec Ue. If q)e(@', e) =1,
then X, is finite and thus X, € Neec Ue and X ¢ Neec Ue.

The function f is defined as follow : for any e, we look for the first n € C' such that
X, ¢ U, or X, ¢ U,. If X, ¢ U, then we set f(e) = 0 (Note that we must have in this
case ®.(0',e) # 0). If X, ¢ U, then we set fl(e) = 1 (Note that we must have in this

case B, (0’ e) = 1). Tt is clear that f is DNCg) . As f is C'-computable we have that C
computes a p-cohesive set. ]

For the developments to come, we would ideally need to work with largeness classes
with a presentation computable in some set which is PA(})"). We however still do not
know is such a presentations exist. To overcome this we will soon introduce the notion of
cohesive largeness classes.

Question 1.4.1 : Let C be a presentation of a minimal largeness class Neec Ue. Must we
have C 27 ()" 7 Is there such a presentation which is computable in a PA over ()’ ? &

Minimality with respect to a set

In order to overcome the necessity of working with a minimal largeness class having a
presentation computable in a PA((Z)'), we use a slightly weaker notion which will reveal
itself sufficient through Corollary 1.4.24 : the notion of cohesive largeness classes.

Before we introduce it, we slightly enhance Definition 1.4.16 to consider largeness
classes which are minimal with respect to every element in a countable set M. Also
in order to work with these countable sets, we need to introduce notations to improve
readability. The countable classes M = { Xy, X1,...} that we will use will come together
with presentations M = @,¢,X,,. Given such a presentation se way that e is an M-index
for X.. We also say that an index for a £9(X) class U for some X € M is given by the
pair {a,b) where U = U:X.
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—— Notation

Given a countable set M presented by M = ®,¢, Xy, given a set C' € w? of indices,
we write L{(fj"l for the set
N Uy
a

(a,b)eC

We are now ready to define largeness classes which are minimal with respect to a
countable set.

Definition 1.4.21 : Let M be a countable set. A largeness class Z/Ié\f‘ for some C' ¢ w?
is M-minimal if for every X € M and for every ¥J(X) largeness class U, we have
Un U(/JM Z Neecc Ue implies that U N Z/{é/l is not a largeness class. <

Cohesive largeness classes

We now turn to our solution to get around the necessity of having minimal largeness
classes which are computable in some PA(()").

Definition 1.4.22 : A largeness class £ is cohesive if for any computable X € 2% we
have £ ¢ Lx or L ¢ L. Given a countable set M, a largeness class £ is M-cohesive if
for any X € M we have £Lc Lx or L ¢ L. &

If £ is an M-cohesive largeness class, note that given any finite covering You---uY; 2 w
with Yp @ --- @ Y}, € M, there must be ¢ < k such that £ ¢ Ly;.

Lemma 1.4.23 : Let M be a countable Scott set. Let Z/{é\fl be an M-cohesive largeness
class. Let V1,Vs be two Z?(X ) largeness classes for some X € M. Suppose Llé\’l NV, and
Ué\/l N Vs are both largeness classes. Then L{é"‘ NV NV, is a largeness class. *

PROOF: Suppose for contradiction that Z/{éft NYV1NVs is not a largeness class. There exists
then a finite set F' € C' such that Mg p)ec Z/lj(b NV1NnVs is not a largeness class. Let X € M
and U be a X{(X) class equal to N(a,b)eF UXe n V1V, We have a cover Yyu---UY; 2w
such that Y; ¢ U for every ¢ < k. As M is a Scott set there is such a cover in M. As Z/lé\/l
is an M-cohesive class, there must be i < k such that U1 ¢ Ly,. Tt follows that Y; e U
and j # ¢ implies Y} ¢Z/{£A. As both L{é‘/[ nV; and Z/{é‘/‘ N Vs are largeness class it must be
that V; e U n V1 and Y; e U2 0V, (as it cannot be the case for j # i), which contradicts
that Y; ¢ 4. Thus L[é\/‘ NV NV, is a largeness class. [ ]

Corollary 1.4.24 : Let M be a countable Scott set. Let £ be an M-cohesive largeness
class. There is a unique M-minimal largeness subclass of L.

PRrROOF: It is clear by combining the previous lemma with Proposition 1.4.10. [

— Notation

Given a countable Scott set M, given a cohesive largeness class Z/{é/l, we write
(Z/{é/l) for the unique minimal largeness subclass of L{é\/‘.
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Chapter

Arithmetic cone avoidance

2.1 Introdution

The goal of this chapter is to show the following theorems:

Theorem 2.1.1 (M., Patey [29]):
Let m > 0. Let Z be non ("""-computable. Let A be any set. Then there is a set

G € [A]Y U[A]” such that Z is not G(™-computable.

Theorem 2.1.2 (M., Patey [29]):
Let Z be non arithmetically definable. Let A be any set. Then there is a set G ¢

[A]“ U[A]“ such that Z is not arithmetically definable relative to G.

Dzhafarov and Jockusch showed [13] that given any non-computable set Z and given
any set A, there is an infinite subset G € A or G ¢ A which does not compute Z. Note that
even if A is infinite, leaving the possibility that G € A is important : given any set Z, any
infinite subset of A = {Z}, : n ew} can compute Z (considering A € w via a computable
encoding of strings into integers).

In order to show their result, Dzhafarov and Jockusch used computable Mathias forc-
ing, with the particularity of building two generics : one as an infinite subset of A and one
as an infinite subset of A. At the end of the construction Dzhafarov and Jockusch then
use what is referred to in the literature as a pairing argument to show that at least one of
the generic does not compute Z.

The author of this document together with L. Patey then designed in [27] an enhance-
ment of Dzhafarov and Jockusch’s techniques, inspired by the second jump control of [3],
in order to show that for any non—Ag set Z and any set A, there is an infinite subset
G c A or G ¢ A whose jump does not compute Z. Here again two generics are built, and
a pairing argument is used to show that there is at least one generic whose jump does not
compute Z.

The techniques used by the author and L. Patey could not be extended in order to
show that for any non-A® set Z and any set A, there is an infinite subset G ¢ A or G ¢ A
such that G does not compute Z. The encountered difficulty was overcome by the
same authors in [29], where they also show how to get around the pairing argument : only
one generic is built in whichever among A or A satisfies some specific property which

11
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makes the construction work. Note that Hirschfeldt [18] previously found a way to get
around the pairing by giving two different constructions, one if A or A is hyperimmune
relative to some countable Scott set and one if it is not the case. The solution we present
here is on the other hand uniform.

2.2 Preliminaries
In order to define our forcing conditions, we first need to construct a few things.

Proposition 2.2.1 : There is a sequence of sets { M, } <, such that:
1. M, codes for a countable Scott set M,,

2. @(n) is uniformly coded by an element of M,,

3. Each M is uniformly computable in pr+h)

PrOOF: Let us show the following: there is a functional ® : 2“ — 2 such that for any
oracle X, we have that M’ = ®(X') is such that M = @y, X, codes for a Scott set M
with Xy = X.

Fix a uniformly computable enumeration CS/ ,Cf ,... of all non-empty H?(Y) classes.
Let Dy be the T19(X) class of all @,,Y,, such that Yy = X and for every n = (a,b) € w,
Y41 € C(?jsbyj. Note that this H(l)(X) class is uniform in X and any member of Dx is a
code of a Scott set whose first element is X. Using the Low basis theorem [20], there is a
Turing functional ® such that ®(X’) is the jump of a member of Dx for any X.

Using this function ®, it is clear that uniformly in (Z)(n+1) one can compute the jump
of a set M, coding for a Scott set M,, and containing (Z)(n) as its first element. n

In order to use the same forcing to show both Theorem 2.1.1 and Theorem 2.1.2, we

need to make sure that as long as a fixed X is not computable from (Z)(n), then we can also
build our sequence { M, },<,, making sure that X is not computable from M,,.

Proposition 2.2.2 : Let n € w be such that X is not computable from @(n). There is
then a sequence {M,, }n<, satisfying (1) (2) and (3) of Proposition 2.2.1 with in addition
that X is not computable from M,,. *

PROOF: We decompose into two cases. Suppose first that X is not computable from
Q(n+1). Then as M, is computable from (Z)(TLH) it is clear that M, does not compute X
without any addition to the proof of Proposition 2.2.1.

Suppose now that X is computable from (Z)(nH). We only sketch here the idea, more
details being available in Theorem 4.1 of [18]: We have to choose M,, carefully, not only
using the Low Basis theorem, but also combining it with an effective version of the cone

avoidance basis theorem for I1{ class. We describe how to do one step. Let Py, be a non-
empty H?(@(n)) class and @, be a functional. We look for the first a such that P,,.1 = {Y €

P : ®.(Y,a) # X(a)} is non-empty. Note first that as X is not computable from 0 we
must find such an a. Note also that the process of checking if {Y e P : ®.(Y,a) # X(a)}
is non-empty is (Z)(THI) computable as X is @(nﬂ)—computable and as P is H?(Q(n)). It
follows that this steps can be uniformly interspersed in the construction of the low basis
theorem. [

12
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Let us assume that {M,, },<, is a sequence which verifies Proposition 2.2.1. Recall the
notation (UA1) from the previous section : the unique minimal largeness subclass of an
M-cohesive largeness class.

Proposition 2.2.3 : There is a sequence of sets {C, }new such that:

L. Uy ™ is an My-cohesive largeness class
Mn+1 Mn
2. Ug ™t e (U ™)

3. Each C, is coded by an element of M,,,1 uniformly in n and M, 1. *

In order to prove Proposition 2.2.3 we use the two following uniformity lemmas, which
will also be helpful later to continue the sequence of Proposition 2.2.3 through the com-
putable ordinals (see Proposition 3.2.2).

Lemma 2.2.4 : There is a functional ¢ : 2% x w — 2“ such that for any set M coding
for a Scott set M, for any e such that C' = ®.(M") is such that UX" is an M-cohesive
largeness class, D = ®(M", e) is such that C ¢ D and Up" = (UX). *

PrROOF: Say M = {Xy, X1,...} with M = @; X;. Let {(e,it)}tew be an enumeration of
w xw. Suppose that at stage t a finite set D' € {{eg,io),.. ., (et,%:)} has been defined such
that ng/} ﬂblé\/l is a largeness class and such that for any s < t, (es,is) ¢ D implies that

X; .
Us,” N ng/} n L{é’l is not a largeness class.

Then at stage t+1, we ask M" if u,ffjg“ nUL UM is a largeness class. If so we define
D' = DU {(ess1,4441)}. Otherwise we define D! = Dt Then D = CuU,; D! is uniformly
M"-computable and Upn' equals (ULY). ]

Lemma 2.2.5 : There is a functional ® : 2“ xwxw — w such that for any set M coding for
a Scott set M, for any set N coding for a Scott set A/ such that M’ € N with N-index i,/,
for any C' € N with N-index i, such that Uéw is a partition regular class, ®(N, iy, ic) is
an N-index for D 2 C' such that Z/lg/‘ is an M-cohesive largeness class. *

PROOF: The functional ® does the following : It looks for M’ at index iy, inside N/. From
M'" it computes M = &, X,. It then computes with M’ + C the tree T containing all the
elements o such that

( N 2“’—X,-)m( N Xi)e N U
o (e.d

o (i)=0 (1)=1 )eCllo]

Clearly [T] is not empty. The functional ® then finds an N-index for an element
Y € [T]. For o <Y let Xo = (No(i)=0(2* = Xi)) N (No(i)=0 Xi). We must have for every
o <Y that X, € L{é’l. It follows as Z/lé\/( is partition regular, that for every o <Y, Lx, nZ/{gI
is a largeness class. Thus Ny<y Lx, mL{é\/l is an M-cohesive largeness class. Also M oY &C
uniformly computes a set D such that leg/l =No<y L£x, nUéYt. The function ® then returns
an N-index for D. =

13
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PROOF (PROOF OF PROPOSITION 2.2.3): Suppose that stage n we have defined C,, ver-
ifying (1)(2) and (3). Let us define C41.

Note that the set C), is coded by an element of M,,,1, and thus that C,, is computable
in (Z)(n+2) and then computable in M. Using Lemma 2.2.4 we define D,, 2 C,, to be such
that UM" = (L{M”) and such that D,, is uniformly M) -computable. We define E,,,1 to
be the transfer of the M,-indices constituting D,, into M, i-indices, using that M, is an
element of M, 1. So we have Z/{évtnfl*l Z/{g:“.

Note that as E,41 is computable in M, & M,,,1 and thus in Q)((n+1)+1). It is then coded
by an element of M,,,1),1. Note also that Z/{J/E,Vlnfl“ is partition regular as it equals (Z/{é/ln")
Using Lemma 2.2.5 we uniformly find an M(n+1)+1—index of Cp+1 2 E,,+1 to be such that

leM”l+1 is an M,,,1-cohesive largeness class. n

2.3 The forcing

We now describe the forcing that will be used to show Theorem 2.1.1 and Theorem 2.1.2.
Let us fix any set Z and let A U A' 2w be any sets.
Using Proposition 2.2.2, let us fix a sequence { M, },,<, verifying Proposition 2.2.1 and

such that as long as Z is not computable from Q)(n), then Z is not computable from M,,. Let
us fix a sequence {C), } <o verifying Proposition 2.2.3. Let S = Ny« Ug:" = ﬂn<w(U£:").
Note that as an intersection of partition regular class, S is also a partition regular class.
As S is a largeness class, there must be some i < 2 such that A’ € S. Let then
A = A’ for some i such that A’ € S. Note that this is where we get around the disjunctive
requirement : inside whichever belongs to S among A° or A!, we guaranty the possibility

of building an infinite subset G such that as long as Z is not computable from @(n), it is
not computable from G,

Definition 2.3.1 : Let P, be the set of conditions (o, X) such that:
1. (0,X) is a Mathias condition
2.0cA
3. XcA
4. XeS

Given two conditions (o, X),(7,Y) € P, we let (0,X) < (7,Y) be the usual Mathias
extension, that is, o >7, X cY ando-7¢cY. o

We now define an abstract forcing question for X0 formulas. The Aq formulas we
manipulate have one set parameter. Also given a E% formulas, such as for instance
3z Vy ®(G,z,y) were ® is Ay, we often consider the XV class of elements of 2* mak-
ing the formula true, rather than the formula itself, as done in the following definition.

Definition 2.3.2 : Let 0 € 2. Given a XY class U, let o ?~U holds if
(Y : 3rcy -{0,... |ol} [cur] cU}null

is a largeness class. Then inductively, given a X9 class B = Uy, Bn, with 1 <m < w, we
let o 7+ B holds if

{Y : IrcY -H{0,...,|o|} anUUT?hL2w_B”}nué\':[£1_1

14
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is a largeness class.
For a condition p = (0, X) € P,, and a X0 set B for some m, we write p 7+ B if o 2+ B.¢

We shall now study the effectivity of the relation 7. To do so we introduce the
following notation.

Definition 2.3.3 : Let 0 € 2<“. Given a XY class B, we write (B, o) for the open set:
{Y : 3rcY -{0,...,|o|} [cuT] c B}
Given a X0, class B = U By, we write U(B, o) for the open set:

{Y : IrcY-{0,...,]o|} Inocur?w2*-B,}

Let us now study the complexity of the relation 7+ together with the complexity of
the sets U(B, o).

Proposition 2.3.4 : Let 0 € 2<%, Let B be a X9 class for 0 <m <w

1. The set U(B,0) is an upward-closed X0(C,_2 @ (D(m_l)) open set if m > 1 and an
upward-closed Z? open set if m = 1.

2. The relation ¢ 7+ B is I19(Cy_1 @ @(m)).

This is uniform in ¢ and a code for the class B. *

PRrROOF: This is done by induction on the effective Borel codes. We start with m = 1. Let
V be a XY class and o € 2<“. Tt is clear that

UV,0)={Y : IrcY -{0,...,|o|} [cuT]cV}

is an upward closed 2(1) class. Then o 7=V it U(V,0) r‘\L{é\gO is a largeness class, that is, iff

for every finite set F' ¢ C, the class U(V, o) HUIQ\/‘O is a largeness class. By Corollary 1.4.9,
for each F ¢ Cp, the statement is I19(Mp) uniformly in F, and thus I1Y(M}) uniformly in
F. Tt is then T19(()") uniformly in F. Thus the whole statement is II9(Co @ (}").

Suppose (1) and (2) are true for m, every ¥ class and every o. Let o € 2% and let
B =Une By be a X0 class. Let

UB,o)={Y : 7Y -{0,...,|o]} InocuT?+2*-B,}

Let us show (1). For each n € w, the class 2* -~ B, is a ¥¥ class uniformly in o uT and
in a code for B,,. By induction hypothesis, the relation curt 71 2¥ -1, is E?(Cm_l ® (Z)(m)).

It follows that U (B, o) is an upward closed X{(Cy,-1 & Q)(m)) class.
Let us now show (2). We have that U(B, o) ﬁZ/{é\:{n’” is a largeness class if for all F' ¢ C)y,,

the class U(B, o) ﬂZ/{}Vlm is a largeness class. By Corollary 1.4.9, it is a II9(M,,) statement

uniformly in F and then a II{(M],) statement uniformly in F' and then a H?((Z)(mﬂ))
statement uniformly in F. It follows that the statement “‘U(B,o) ﬂu(/}:lm is a largeness

class” is I19(C,, @ (Z)(m+1)). n

We now define the forcing relation. Again the relation is defined on E%L sets rather
than defined on X%0,.

15
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Definition 2.3.5 : Let (0, X) € P,. Let U be a X class. We define

(. X) v U <« [o]cU
(0, X) I+ 2-U < VrcX [ouT|¢U

Then inductively for X9 classes B = Up<, By for m > 1, we define:

(0, X) I+ B < dn (0, X)I+B,
(0,X) + 2-B « VnVrcXour?2¥-5,

We now show a couple of useful and classical properties on the forcing relation.

Lemma 2.3.6 : Let peP,,. Let B =N, By be a 1Y, class for m > 1. Then p - Npew, Bn
iff for every n € w and every ¢ < p we have ¢ 7+ B,. *

PROOF: Suppose p I+ Ny« B, with p = (0, X). By definition of the forcing relation it is
clear that for every n and every ¢ < p we have ¢ 7+ B,,. Suppose now that for every n and
every ¢ < p we have ¢ 7+ B,,. Given any 7 ¢ X we have that (cu7,X -{0,...,locuT|})isa
valid extension of p for which we have cut 7+ B,, for every n. It follows that p I N« By-®

Proposition 2.3.7 : Let peP,,. Let B be a X, class for some m > 0. If pi- B and g<p
then ¢ I- B. *

PROOF: It is clear for ¥¥ and TI{ classes. We proceed by induction on m. For m > 1
suppose B = Uy, Br is a X0, class. By definition, there is some n € w such that p I+ B,,.
As B, is a IIY by induction hypothesis, q I+ B,, and thus ¢ I- B.

m-1>
Suppose now B = Ny« By is a 112, class. By Lemma 2.3.6, for all n € w and all 7 < p,
r 7+ B,. Thus if ¢ < p, also for all n and all r < g, r 7+ B,. It follows that q I N,,<, Br. =

We now show a key lemma, showing that the forcing question 7+, computationally
simple, can decide if the corresponding formula can actually be forced, or if it its negation
which can be forced. This lemma can be considered as the core of the proof.

Lemma 2.3.8 : Let pe P, with p=(0,X). Let B = U, B, be a X0 class for m > 0.
1. Suppose p?+B. Then there exists ¢ < p such that q I+ B.

2. Suppose p 7+ B. Then there exists g < p such that ¢ I~ 2% - B. *

PrROOF: Let peP,. We start with m =1. Let V be a E? class and suppose p7+-V. Let
UV,o)={Y : IrcY -{0,...,|0|} [cuT]cV}

The class U(V,0) ﬂZ/{é\:O is a largeness class. As Ué:o is My-cohesive, then (Ué:o) c
UV,0). As X eS¢ (L{é\;lo) cU(V,o), there is 7 € X such that [cu7T] cV. As S contains
only infinite sets and is partition regular, X —{0,...,|ou7|} € S. Then (cur, X -{0,...,0U
7}) is a valid extension of (¢, X) such that (cur, X -{0,...,lcuT|}) IFU.

Suppose now that o 7+ U. The class U(V,0) ﬂL{gjO is not a largeness class. It follows

that there is a k-cover Yy u---U Yy 2 w such that Y; ¢ U(V,0) nZ/lé\:(’ for each i < k. As
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S is partition regular and as X € S we have some ¢ < k such that ;,n X e S ¢ Z/{é\;‘(’. It
follows that Y;n X ¢ U(V, o). Note that (o,Y;n X) is a valid extension of (o, X) for which
(o, YinX) -2 -V,

Suppose now B = U<, B is a E?n+1 class for m > 0. Suppose o ?+Up<, Bn. Let

UB,o)={Y : 37cY -{0,...,|o]} InocuT?+2*-B,}

By definition, the class U(B, a)mL{é\:‘nf" is a largeness class. As Z/{é\:zm is M,,,-cohesive and as,
by Proposition 2.3.4, the set U(B, o) is a £9(Y") for some Y € M,,, then (Ué::") cU(B,o).
As X eSc (L{é\:‘nm) CU(B,o), there is 7 ¢ X such that o u T 7% 2% — B,, for some n. Note
that as S contains only infinite sets and is partition regular we have X —{0,...,|lou7t|} € S.
Also (cuT, X —{0,...,|ouT]|}) is a valid extension of (o, X ) such that (cur, X -{0,...,|ou
7|}) 7% 2% = B,,. By induction hypothesis we have some ¢ < (cu7, X -{0,...,|cuT|}) such
that q I+ B,. It follows that ¢ I+ B.

Suppose now o 7% Up <, By It follows that U(B, o) n Z/{é\:{nm is not a largeness class. It
follows that there is a k-cover Yyu---UY) 2w such that Y; ¢ U(B, o) ﬁL{é\fn"L for each i < k.
As S is partition regular and as X € S, there is some ¢ < k such that Y;n X e S ¢ L{é\:ln"‘.
It follows that Y; n X ¢ U(B,0). It means that for every 7 € ¥; n X and every n € w,
ouT2Y-B,. It follows that (o,Y; n X) I Npw 2% = By,. n

Proposition 2.3.9 : Let F ¢ P, be a sufficiently generic filter. Then there is a unique

set G € 2“ such that for every (o, X) € F we have o < G£. *
ProOOF: Trivial. [
—— Notation

Let F c P, be a sufficiently generic filter. We write Gr € 2% for the set of the previous
proposition.

We now show that forcing implies truth.

Theorem 2.3.10:
Let F ¢ P, be a generic enough filter. Let p € F. Let B be a X¥ class for m > 0.
Suppose p I+ B. Then Gx € B. Suppose pI+2“ —B. Then Gf € 2 - B.

PROOF: By induction on m. Let p € P, with p = (0, X). We start with m =1. Let U be a
¥? class. Suppose p I- U, that is [¢] €U. Then clearly G € U. Suppose now p I~ 2 — U,
that is, [c uT] ¢U for all 7 € X. Then also Gx € 2 —U easily.

Let now B = Up<, Bn be a E?nH class. Suppose p I+ Up<y, Bn. Then there exists
n such that p I+ B,. By induction hypothesis we have if F is sufficiently generic, then
G]: € Bn & Un<w Bn

Let now B be a H9n+1 class. Suppose p I+ N« Bn.- Then by Lemma 2.3.6 for every n
and every ¢ < p, ¢ 7+ B,,. From Lemma 2.3.8, for every n € w and every ¢ < p, there is some
r < ¢ such that r I+ B,. It follows that for every n, the set {r € P, : r I+ B,} is dense
below p. If F is sufficiently generic, for every n € w, there is some r € F such that r I+ B,,.
By induction hypothesis, if F is sufficiently generic, then for every n € w, Gx € B,. It
follows that G € Ny<w Bn- =
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2.4 Preservation of arithmetic reductions
We now turn to the proof of Theorem 2.1.1 together with Theorem 2.1.2.

Proposition 2.4.1 : Let ® be a functional. Let n,i € w. Let m > 0. The set {X
3t (X ™ p)[t] b=} is a X0, class. *

PROOF: In case this is not obvious, a generalization will be proved with Proposition 3.1.2.m

Theorem (2.1.2): Let Z be non arithmetically definable. Let A be any set. Then

there is a set G € [A]¥ U[A]¥ such that Z is not arithmetically definable relative to G.

PROOF: Let ® be a functional. Let m > 0. Let B” = {X : ®(X) n) |}. We want to
show that Z # {n :Ggrm) € B"}. From Proposition 2.4.1, B" is %2

m+1-*

Let p € P, be a condition. From Proposition 2.3.4, the set {n : p?-B"} is I(C,, ®

®(m+1)). As Z is not I{(C,, @@(m+1)), then there is some n € Z such that p 7 B™ or some
n ¢ Z such that p?7+B". In the first case, by Lemma 2.3.8, there is an extension ¢ < p such
that ¢ I- 2 - B™ for some n € Z. In the second case, by Lemma 2.3.8, there is an extension
q < p such that g I+ B" for some n ¢ Z. By Theorem 2.3.10, in the first case @(Gg:m),n) 1

holds for some n € Z, and in the second case, @(G;_-m),n) } holds for some n ¢ Z.
If F is sufficiently generic, this is true for any m and any functional ®. It follows that
for any m the set Z is not E?(G(fm)) and thus not A?(Gg_-m)). ]

We now turn to the proof of Theorem 2.1.1. which is a bit more complicated, due to
the fact that the complexity of the relation 7+ is too big to have a direct simple proof.
Let us take the example of m = 0. Z is not computable and the forcing question for E(l)
sentences is T1{(Co ® @/) for Cy low relative to (). In the standard proof of cone avoidance
from Dzhafarov and Jockusch, the forcing question for X sentences is X9(X) for X which
does not compute Z, and this is the right complexity to have a direct proof.

Here the question is too complex (Z could for instance be computable in Cy) and forces
to have extra-complexity in the proof of cone avoidance. As the full proof may be a bit
abstract at first, we start with the case m = 0.

~

Theorem (2.1.1 for m =0): Let Z be non-computable. Let A be any set. Then there

is a set G € [A]* U[A]¥ such that Z is not G-computable.

PROOF: Recall that our set Z was fixed with in particular Z not AY(My). Let ® be a
functional. Let B®" = {X :®(X,n) |=0} and let B"" = {X : ®(X,n) |=1}. We want to
show that Z # {n :Gr e B} or w—Z # {n : Gx e B*"} whenever G is generic enough.
For each n the sets B™ and BY" are ¥? classes.

Let p = (0, X) be a forcing condition. We basically want to find ¢ < p such that ¢ i- B%"
for some n € Z or such that ¢ I- B for some n ¢ Z. By Theorem 2.3.10 the result would
follow. Let us show we can always find such an extension q.

Suppose first that Anugﬁo is a largeness class, where

A={Y : 3, cY -{0,....]o|} In[cumn] B Aloun]cB""}
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2.4. PRESERVATION OF ARITHMETIC REDUCTIONS

As Ugjo is My-cohesive we must have (Ué\,:‘)) c A and thus X ¢ (Z/{é\go) c A. Then
there is 79,71 € X and n such that [c U] € B®" and [cuT] € BY. If n e Z we let
g=(cut,X -{0,...,lcuml|}) and if n ¢ Z we let ¢ = (cuT,X —{0,...,lcum]}). We
have ¢ < p. In the first case ¢ I- B®" and in the second case g - B"". For a sufficiently
generic filter F containing ¢, in the first case we have Gz € B for n € Z and then
Gr¢BY" forne Z. Then Z #+ {n : Gx e BY"}. Symmetrically in the second case we
have w—-Z # {n : GreB""}.
Suppose now that A nugjo is not a largeness class. Let

Fo={n : Yg<pIr<qriB®"Y and Fy={n : Vg<pIr<qri B""}

Suppose first that F; # Z or Fy # w— Z. Suppose first Fy # Z. If there is n such that n ¢ Z
and n € Fy, then r I- BY™ for some r < p and for a sufficiently generic filter F containing
r we have Z # {n : Gz e BY™}. If there is n such that n € Z and n ¢ Fy, then there
exists ¢ < p such that for all » < ¢ we have r it B"". Thus there must be r < ¢ such
that r I- 2« — Bb™. It follows that for a sufficiently generic filter F containing r we have
Z#{n : GreB'"}.

Suppose now Fj # w—Z. Symmetrically we have a condition r < p such that w—Z2 # {n :
Gr € B¥"} for a sufficiently generic filter F containing 7. Suppose now for contradiction
that:

(1) i=Zand Fhy=w-Z

As Aml/{é{lo is not a largeness class, there must be a cover Ypu---uY, € My such that
Y ¢ AmZ/{é\jo for every i < k.
As S c (Z/léwo) is partition regular there must be ¢ < k such that X nY; e S ¢ (L{é\/lo).
0 0
We also have Y; ¢ Z/lé\;‘(’ and then Y; ¢ A. Thus

(2) For all n, for all 79,71 €Y; - {0,...,|o|} the following holds:

[cuTp] ¢ B%™ or [cum]¢ BLn

We shall now argue that for all n € Z there exists 7 € Y; — {0,...,|o|} such that
[cur] c BY". Let ne Z. If not then for every r < (0, X nY;) we have r it BY™ which
contradicts (1).

Symmetrically, we show that for all n € w— Z there exists 7 € Y; — {0, ...,|o|} such that
[0 uT] c B, Therefore, for every n € Z we have using (2) that:

1. There exists some 7 € Y; - {0,...,|o|} such that [cu 7] c B

2. For all 7cY; - {0,...,|o|} we have [cuT] ¢ B"
Symmetrically, for every n ¢ Z we prove, using (2), that:

1. There exists some 7 € Y; - {0,...,|o|} such that [cur] c B"

2. Forall 7cY; - {0,...,|o|} we have [cuT] ¢ B'"

We can now compute Z as follows : For each n € w, look for some 7 €Y; - {0,...,|o|}
such that either [ocuT] € B%" or [cuT] c BY™. This is a (M) event. Thus Z is
AY(My), which is a contradiction. ]

We now turn to the full proof, which is essentially the same
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Theorem (2.1.1): Let m > 0. Let Z be non @(m)—computab]e. Let A be any set. Then
there is a set G € [A]” U[A]* such that Z is not G\ -computable.

PrROOF: The case m = 0 has been handled. We suppose now m > 0. Recall that our
set Z was fixed with in particular Z not AY(M,,). Let ® be a functional. Let B®" =
{X :®(X™ n) =0} and let B'™ = {X : ®(X(™ n) |= 1}. We want to show that
Z+{n :GreBY} orw-Z# {n : G e B*"} whenever G is generic enough. From
Proposition 2.4.1, for each n the sets B%" and BY™ are %20 ,; classes.

Let p = (0, X) be a forcing condition. We basically want to find ¢ < p such that ¢ - B%"
for some n € Z or such that ¢ - BY" for some n ¢ Z. By Theorem 2.3.10 the result would
follow. Let us show we can always find such an extension q.

For each n € w, let BY" = Uye, BY™ and BY" = Upe,, B;’n. Suppose first that A m?/{é\::"
is a largeness class, where

A={Y : 319, 1 cY -{0,...,|o|} I(n,a,b) O'UTQ?I-FQW—BS’n/\UUTl?I%Qw—Bg’n}

As Z/lCMmm is M ,-cohesive we must have (L{é\:‘nm> c A and thus X ¢ (Z/{é:ln’") c A. Then there
is 19,71 € X and n,a,b such that o ury 7w 2% —Bg’” and o U 2% — B;’". If ne Z we let
g=(cuty,X -{0,...,lcunl}) and if n ¢ Z we let ¢ =(cum,X —{0,...,lcumnl}). We
have ¢ < p. By Lemma 2.3.8, in the first case we have some 7 < ¢ such that r I B%" and in
the second case some r < ¢ such that r I BY". For a sufficiently generic filter F containing
r, in the first case we have G € B%" for n € Z and then G ¢ BY" for n € Z. Then
Z #{n : G eB'"}. Symmetrically in the second case we have w—Z # {n : Gz e B""}.
Suppose now that Amugflm is not a largeness class. Let

Fo={n : Vq<pIr<qrwB>"} and Fy={n: Yg<pIr<sqrir B}

Suppose first Fy # Z or Fy + w— Z. Suppose first F} # Z. If there is n such that n ¢ Z and
n € Fy, then r - BY" for some r < p and we have Z # {n : Gr e B""} for a sufficiently
generic filter F containing r. If there is n such that n € Z and n ¢ I}, then for some ¢ <p
and all r < ¢ we have 7 ¥ B"™. Thus there must be 7 < ¢ such that r I+ 2¥ — BL". Tt follows
that Z # {n : Gz e BY"} for a sufficiently generic filter F containing .

Suppose now Fj # w—Z. Symmetrically there is a condition r < p such that w—2 # {n :
Gr € B¥"} for a sufficiently generic filter F containing . Suppose now for contradiction
that:

(1) We have F} =Z and Fp=w—-Z

As A mugfnm is not a largeness class, there must be a cover You---u Y, € M,, such
that Y; ¢ A ﬁUé\:lnm for every i < k.

As Sc (Z/{é\:lnm) is partition regular there must be i < k such that X nY; e S ¢ (Llé\:im).
We also have Y] ¢ Mé‘jﬂm and then Y; ¢ A. Thus

(2) For all n,a,b, for all 79,7 €Y; - {0,...,|o|} the following holds:

ocuTy 2% —Bg’” or cuT 2% —B;’”
We shall now argue that for all n € Z there exists 7 € Y; —{0,...,|o|} together with b

such that o u 7T 7 2% — Bg ™. Let n € Z and suppose otherwise. Then for every 7 ¢ X nY;
and every b we have c U T 7+2% — B;’n, which by definition means (o, X nY;) I+ 2 — BL"
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which contradicts (1). It follows that there exists 7 € Y; - {0,...,|o|} together with b such
that o U7 7w 2% - B

Symmetrically, we show that for all n € w— Z there exists 7 ¢ Y; - {0,...,|o|} together
with a such that o U7 7% 2% — BY™. Therefore, for every n € Z we have using (2) that:

1. There exists some 7 € Y; —{0,...,|o|} and b € w such that o U T 7# 2% — B;’n

2. For all 7cY; - {0,...,|o|} and for all a € w, c U T ?+-2% - B
Symmetrically, for every n ¢ Z we prove, using (2), that:

1. There exists some 7 € Y; - {0,...,|o|} and a € w such that o U7 7% 2% — BY"

2. Forall 7cY;-{0,...,|o|} and for all b e w, UUT?»—Q“’—B;’"

We can now compute Z as follows : For each n € w, look for some 7 €Y; - {0,...,|o|}
and some c € w such that either o U T 7+ 2% — Bg’" or cuT2Y— Bé’". This is a E?(Mm)
event. Thus Z is A}(M,,), which is a contradiction. n

21



Chapter

Hyperarithmetic cone avoidance

The goal of this section if to show the following theorem:

Theorem 3.0.1 (M., Patey [29]): .
Let Z be non Al. Let A be any set. Then there is a set G € [A]* U[A]“ such that Z is

not Al(G) (and in particular with w{ = wS).

3.1 Background

We start with a short background on higher recursion theory.

3.1.1 Computable ordinals

We let w§t denote the first non-computable ordinal. There is a IT} set O; € w such that
each o € 01 codes for an ordinal o < w¢* and each ordinal a < w$* has a unique code in O;.
Furthermore given that o € O1, one can computably recognize if o codes for 0, if o codes
for a successor ordinal « + 1, in which case we can uniformly and computably produce a
code in O; for a, and if o codes for a limit ordinal sup,, 55, in which case we can uniformly
and computably produce for each n codes in Oy for ,. See [35] for more details about
1. In this section, we manipulate each ordinal « < w‘fk via its respective code in O;. To

simplify the reading, we use the notation « instead of the code for a.

3.1.2 The effective Borel sets

We also use codes for effective Borel subsets of w or of 2 : For a < w{* a code for a %0,

set B = U<, Br is the code of a function that effectively enumerates codes for each Hg set
B,,. A code for a 112, | set B = Ny, Bn is the code of a function that effectively enumerates
codes for each X0 set B,. For a = sup,, 3, limit a code of a ¥? set B = Uy Bg, is the
code of a function that effectively enumerate codes for each H%n set Bg, with sup,, 3, = a.

ck
1

The code of a I set B = N, Bp, is the code of a function that effectively enumerate
codes for each Z‘%n set Bg, with sup,, 8, = a. We also assume the codes for effective Borel

sets include some information so that we can computably distinguish 112 from %0 codes
as well as distinguish if a =1, if « is successor or if it is limit.
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3.1.3 The iterated jumps

We use such codes to iterate the jump through the ordinals:
100 =g
9. glerh) 2 (@(a))/
3. (GUPnan) _ @neww(an)

Note that for n < w the set 0™ is ¥Y and complete for X0 questions. Above the first
limit ordinal the situation is slightly different : Q)(w) is AY and not X0. Also given a > w

+1) . .
we have that (™" is »9 and complete for X0 questions.
Proposition 3.1.1 : Let new.
1. Let m>0. The set {X : ne X(™}isa 20 class.

2. Let a be limit. The set {X : ne XM} isa A% class for some [ < .

3. Let a =3 +1 with #>w. Theset {X : ne X(®}isa Z% class. *

PROOF: The set {X : ne X'} is clearly ¥0. Let m > 1. the set {X : ne X(™} equals

U N (X :i¢X™Da N (X :iex(mD)
{o: ®n(om)i} {i : 0(:)=0} {i : o(i)=1}

This is by induction a X2, set.

Let a be limit. Let pi,p2 be projections of the pairing function, that is,
z = (p1(x),p2(x)). Then {X : n e X} equals {X : pi(n) € X®()} which
is a A% set for B < a.

Let = B+1. The set {X : ne XD equals

(X 1 i¢XxPyn N (X :iex®)
{o: Bu(on)i} i : 0(i)=0} {i: o(i)=1}

This is by induction a E% class. n

Proposition 3.1.2 : Let ® be a functional. Let n,i € w.
1. Let m>0. The set {X : 3t ®(X ™) n)[t] }=i} is a X0 | class.

2. Let > w. The set {X : 3t ®(X () n)[t] =i} is a XY class. *

Proor: Trivial using Proposition 3.1.1 m
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3.1.4 IIj and Y] sets of integers

We previously mentioned a H% set 07 of unique notations for ordinals. This set is included
in Kleene'’s O, the set of all the constructible codes for the computable ordinals. Given
an ordinal « < w , let O, denote the elements of @ which code for an ordinal strictly
smaller than a. Each O is Al uniformly in « (it actually always is a £0,, set [26]).
It is well-known that O is a H%—complete set [35], that is, for any II} set B € w there
is a computable function f :w — w such that n € B <> f(n) € O. For such a II} set B
let us define B, = {n : f(n) € O« }. In particular, each B, is Aj uniformly in « and

B = anfk B,. In particular B is a ng;@ set. Note that contrary to Eg sets for a < wfk,

the Egck sets are not described with a computable code, but rather with a H1 set of codes
1

for all the HO that constitutes it. For B =UJ
even make sure that at most one new element appears 1n each B,. For this reason, we
often see H% sets as enumerable along the computable ordinals.

By complementation a Z% set B € w can be seen as co-enumerable along the computable
ordinals and we have B =N » B, where each B, is A} uniformly in ae. We also say in

this case that B is chk
1

ar<wsk B, a X’ ik set, with a little hack, we can

c
Oé<UJ1

3.1.5 Xi-boundedness

A central theorem when working with 3} and I} sets is ©.1-boundedness:

Theorem 3.1.3 (X]-boundedness [39]):

Let B be a E% set of codes for ordinals, then the supremum of the ordinals coded by

elements of B is strictly smaller than w$.

We mostly here use the following corollary:

{Corollary 3.1.4: Let f:w—wf * be a total M1} function. Then sup,, f(n) = a < wfk. ]

Note that f :w — w{* means the range of f is a subset of O;. The corollary comes
from the fact that if f is total, then it becomes Al and its range is then a ¥} set of codes
for ordinals. As an example we apply here Y1-boundedness to show a simple fact that will
be needed later : adding an w-bounded quantifier to a ngk or a Hgfk set does not change

its complexity.

Lemma 3.1.5 : Every ¥0 . set of integers is .. *
wi®+1 wy

PRrOOF: Let B be ngkﬂ, that is, B = Unew mawak B, . where each B, , is Eg uni-
formly in n and «. Then B is chk via the following equality : Upnew ﬂaewgk Bpa =

1
ﬂaEWfk Unew Ngea Bn,g- The inclustion Upe, ﬂawak By € ﬂaewfk Unew Npea B, is clear.

k

For the other inclusion, suppose that m ¢ Upe, Nyepek Bn,as then the function f:w — wf

aEwl
which to n associates the smallest a such that m ¢ Ngeq By g is total. By E%—boundedness
there must be some « such that for every n the integer m is in no set Ngeq By, g- [
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3.1.6 IIi and Y] sets of reals

Given X € 2% we let OX be the set of X-constructible codes for X-computable ordinals.
We let wit > wé* be the smallest non X-computable ordinal. For a < w{¥, we let OX be
the elements of OX coding for an ordinal strictly smaller than a.

One can show that a set B ¢ 2% is 1] iff there exists some e € w such that B = {X :
e € O}, that is, B is the set of elements relative to which e codes for an X-computable
ordinal. In particular, B = Ug<o, {X : e € OX}. Note that the union may go up to wi,
indeed, I} sets of reals are not necessarily Borel.

A TI} set of particular interest is the set of element X such that wi¥ > w§¥. The set is
Borel, but not effectively. One can even prove that it contains no non-empty 1 subset :

this is known as the Gandy Basis theorem (see Sacks [35, III.1.5]):

Theorem 3.1.6 (Gandy Basis theorem):
Let B S 2% be a non-empty %1 set. Then there exists X € B such that w;X = wS*.

3.1.7 The general strategy to show hyperarithmetic cone avoidance

Let Z be non A}. Our goal is to build a generic G ¢ A or G € w — A such that Z is not
Al(G). This is done in two steps: first show that Z is not G(®)-computable for any o < w§*

and second show that le = wfk, so in particular we cannot have that 7 is G(a)-computable

for w® < a < W'

The first part is simply an iteration of the forcing through the computable ordinals,
and raises no particular issue. This is done in Section 3.2.

The second part is a little bit trickier but still follows a canonical technic, which has
often been used, up to some cosmetic changes in its presentation, to show this kind of
preservation theorem (see for instance [15], [34] or [40]) : Suppose w{’ > w§¥, in particular
there is an element e € O which codes for wfk, that is e is the code of a functional with
Vn ®.(G,n) le Ofwf’“ with sup,, |®.(G,n)| = w* where |®.(G,n)| is the ordinal coded by
®.(G,n). All we have to do is to show that such a code e does not exist. Given e we show
that one of the following holds:

1. In Va<wi* &.(G,n) ¢ OS,
2. Ja<wi® ¥n .(G,n) € OF,

Each set {X : ®.(X,n) ¢ OX} is Al uniformly in . It follows that the set {X : In Va <
Wik B (X,n) ¢ OX Y isa Egck” set of reals. Contrary to chk,ﬁ sets of integers, such sets
1 1

cannot be simplified. We are then required to extend our forcing questions in order to
control the truth of chkﬂ—statements. This is what will be done in Section 3.4.
1

3.2 Preliminaries

We start by making sure that we can extend Proposition 2.2.1 through the computable
ordinals.

Proposition 3.2.1 : There is a sequence of sets {M,}

a<w

ok such that:
1. M, codes for a countable Scott set M,

2. @(a) is uniformly coded by an element of M,
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3. Each M/ is uniformly computable in (D(OHD *

PRrROOF: In the proof of Proposition 2.2.1 we show how to build a functional ® : 2% — 2%
such that for any oracle X, we have that M’ = ®(X") is such that M = @, X,, codes for
a Scott set M with Xy = X.

ck

We simply use here this functionnal with any Q)(Ml) for o < wi". [

Note Q)(’H) is computable in @(a) for f < o in a uniform way : there is a unique com-
putable function f(@(a),a,ﬂ) which outputs @(’B) for every 8 < a.. Also Proposition 3.2.1
implies that Mg is computable in Q)(a) for 8 < a and similarly, the computation is uniform

in B,
We now turn to an extention of Proposition 2.2.3 to the computable ordinals, for which
we reuse Lemma 2.2.4 and Lemma 2.2.5.

Proposition 3.2.2 : There is a sequence of sets {C,} ck such that:

a<w

1. Z/{é\fla is an M-cohesive largeness class
@

2. B <« implies L{Ma c (ngﬂ)

3. Each C,, is coded by an element of M1 uniformly in o and Mg.1. *

PRrOOF: Let X;* be the element of M, of code 7, so that each M, = ®;X;*. Let us argue
that there is a computable function f : ka Ck x w such that whenever 5 < «, then

X b= f(a i’ Given an ordinal o the function f considers the M,-code of P (which
is uniformly coded in M,) and uses it to produce an M,-code of Mg = @iX,L. (as Mg
is computable in @(a), uniformly in 3,a) and then returns an M,-code of Xiﬁ . Given
B < a and C’ ¢ w?, we then let g(a, 3,C) = {{e, f(a,,7)) : (e,i) € C}. In particular,
Mo
Uyitos o =Ue"
Suppose that stage o we have defined by induction sets Cg for each 3 < «, verifying

(1)(2) and (3). Let us proceed and define Cj,.
Suppose first that oo = 3 + 1 is successor. Note that the set Cg is coded by an element

of Mg, uniformly in 3, and thus that Cg is uniformly computable in (Z)(ﬁ *2) and then

uniformly computable in Mg. Using Lemma 2.2.4 we define Dg 2 Cp to be such that

Z/lg/;ﬁ = (L{é\; ) and such that Dg is uniformly Mg-computable. We define E, to be

g(a, B,Dg), so that U]{:\za = Z/{gjf . Note that as F, is uniformly computable in M g and

thus in Q(QH), it is uniformly coded by an element of M,.1. Note also that L{g:a is
partition regular as it equals (Z/lé; 7). Using Lemma 2.2.5 we uniformly find an M-

index of C, 2 E, to be such that MM“ is an M-cohesive largeness class.
At limit stage « = sup,, 5, each set (g, is coded by an element of Mg, 1 uniformly in

Bn and that Mg, 1 is uniformly computable in (Z)( ) Tt follows that Un Cg, is uniformly
D) " We define D, to be U, g(a, B,,Cs,). Note that D, is uniformly

and thus coded by an element of M, uniformly in «. Note also

computable in ()
@ (a+1)

M ﬂn

computable in
that UM = Mew U

partition regular. Usmg Lemma 2.2.0 there is a set C,, 2 D,, such that Ugj“ is M -cohesive
and such that C,, is uniformly coded by an element of M. m

= NnewlUe Ms ") As an intersection of partition regular class, U ]D\{: is
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3.3 The forcing

Let AU A! = w. Let Z € 2% be non-hyperarithmetic. From now on, fix sequences
{./\/la}awfk and {Ca}a<w§k which verify Proposition 3.2.1 and Proposition 3.2.2, respec-
tively. Recall that in order to show lef = w¥ we need to decide the truth of ng’““
statments. To do so it is not enough to work with the partition regular class Mg <wek Z/{é; 7.
We need something a bit more restrictive. We do not give details right away about that,
and assume we work within some partition regular class S ¢ Mg <wek Ué\; ?. The details on

S are given in Section 3.4. . ‘

Note that there must be i < 2 such that A* € S. Let then A = A* for some i such that
AleS.
Definition 3.3.1 : Let owk be the set of conditions (o, X) such that:

1. (0,X) is a Mathias condition

2. 0cA

3. XcA

4. X eS8

Given two conditions (o, X),(7,Y) € Per we let (0,X) < (7,Y) be the usual Mathias
extension, that is, o >7, X cY ando-7CcY. 2

Note that we have owk c P,. Recall the relation
c-B

that was defined in Definition 2.3.2 for 0 sets B. We now extend this definition to ¥°
sets for a > w

Definition 3.3.2 : Let 0 € 2<“. Let a withw < a< wfk. Given a Zg class B = Un<w Bg,,
we define o 7+ B if

(Y : IrcY —{0,... |ol} In o uT 2% - Bg, } Ul

is a largeness class.
For a condition p = (0,X) € owk and an effectively Borel set B, we write p?+ B if
o+ B. &

We now extend Definition 2.3.3 in a straightforward way to effective transfinite Borel
sets.

Definition 3.3.3 : Let 0 € 2<“. Given a XY class B, we write (B, ) for the open set:
{Y : 3rcY -{0,...,|o|} [cuT] c B}
Given a X0 class B = Up<, Bg, for 1 <a< wfk we write U(B, o) for the open set:

{Y : 3rcY -{0,...,|]o]} Inout?%2“-Bg }

Proposition 2.3.4 settled the complexity of the relation 7~ by showing that it is
Y(Cra ea@“”)) for a ¥.2, class. We extend here the proposition for X0 classes. Note that
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in the following one might have the false impression that we loose one jump compare to
Proposition 2.3.4. This is due to the fact that for « > w the Eg—complete set is @(aH) and
not @(a).

Proposition 3.3.4 : Let 0 € 2<“. Let B be a X0 class for a > w.

1. The set U(B,o) is an upward closed X{(Cy_1 @ (Z)(a)) open set if « is successor and
an upward closed E?((Z)(a)) open set if « is limit.

2. The relation o 7+ B is TI9(C, ® ®(a+1)).

This is uniform in ¢ and a code for the class B. *

PRrROOF: This is done by induction on the effective Borel codes. Let w < ar < wfk . Suppose
(1) and (2) are true for any w < 3 < a. Let 0 € 2<% and let B = U,.«, Bs, be a £ class. Let

UB,o)={Y : IrcY -{0,...,|o|} InocuT?+2"-Bg,}

Let us show (1). Suppose first « is limit. For each n € w, the class 2¥-Bg, is a Egn class
uniformly in o u7 and in a code for Bg,. By induction hypothesis, or by Proposition 2.3.4

in case @ = w, the relation o UT 7% 2% - Bg, is, in any case, 2(1)((2)(5“2)) and thus E?(@(a)).

It follows that U(B,0) is an upward-closed Z?(@(a)) open set.
Suppose now « > w with a = §+ 1. For each n we have that 2* - Bg, is a E% class

uniformly in n. By induction hypothesis, the relation o U T 71 2% - Bs_ is 9(Cs @ (Z)(ﬁﬂ)).

It follows that U (B, o) is an upward closed X{(Cp-_1 ® @(a)) class.
Let us now show (2). Suppose a > w successor or limit. Then U(B, o) mL{é;la is a

largeness class if for all F' ¢ C,, the class U(B,0) mbl}wa is a largeness class. It is a
9(M,) statement uniformly in F' and then a I19( M) statement uniformly in F' and then

a H?(@(aﬂ)) statement uniformly in F. It follows that the statement U(B,0) nU; > is a
largeness class is I1{(C, @ @(Ml)). ]

We finally extend the forcing relation of Definition 2.3.5 to the transfinite

Definition 3.3.5 : Let (0,X) € owk. Let U be a X class. We define

(. X) v U <« [o]cU
(0, X) + 2-U < VrcX [ouT|¢U

Then inductively for $0 classes B = Uy, Bg, with 0 < a <w* | we define:

(0, X) I+ B < 3dn (0,X) I+ Bg,
(0,X) I+ 2-B <« VnVrcXour?2Y-Bg,

Note that the relation I+ does not change compare to the arithmetical case : the
definition goes through exactly the same way in the transfinite. It is the same for the
relation 7. For these reasons the following lemmas and propositions and theorems are all
proved exactly the same way as for the arithmetical case, only now our set S is included
in ﬂﬁwfk ué\;lg and not just in Ny« L{é\’tm.

m
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Lemma 3.3.6 : Let pe owk. Let B = Np<w Bs, be a 110 class. Then p I Npew Bg,, iff for
every n € w and every ¢ < p we have ¢ 7+ Bg,,. *

PRroOOF: Same as Lemma 2.3.6. ]

Proposition 3.3.7 : Let p ¢ Pwizk. Let B be an effectively Borel set. If pi- B and ¢ < p
then g I+ B. *

PRrROOF: Same as Proposition 2.3.7. [

Lemma 3.3.8 : Let pe¢ owk. Let B = Up<w Bg, be a Zg class for 0 < a < wf’“.

1. Suppose p?+B. Then there exists ¢ < p such that ¢ I+ B.

2. Suppose p 7t B. Then there exists ¢ < p such that ¢ I+ 2% - B. *
PROOF: Same as Lemma 2.3.8. m
— Notation

Let F ¢ ]owk be a sufficiently generic filter. We write G € 2“ for the unique set such
that 0 < G for (0,X) € L

( )

Theorem 3.3.9:
Let F ¢ owk be a generic enough filter. Let p € F. Let By = Up<, Bg, be a 39 class for

O<a< wfk. Suppose p I+ B,. Then G € B,. Suppose p I+ 2 — B,. Then G € 2 - B,,.

N

Proor: Same as Theorem 2.3.10. m

We now have all the necessary parts to extend Theorem 2.1.1 in the transfinite.

Theorem 3.3.10:
Let o < wfk be a limit ordinal. Suppose Z is not A?(@('B)) for every B < a. Let F be a

sufficiently generic filter. Then for every 3 < o, Z is not A?(Gg@).

PROOF: Let ® be a functional and 8 < o. Let B" = {X : ®(X ) n) |}. We want to show
that Z + {n : Ggf) € B"}. From Proposition 3.1.2, B" is a Z%u set for each n € w (Z% if
f2wand X3, if f<w).

Let p e Pk be a condition. From Proposition 3.3.4, the set {n : p?+B"}is H(l)(@(ﬁﬁ”)).
As Z is not H?(@(5+3)), then there is some n € Z such that p 7+ B™ or some n ¢ Z such
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that p7—B"™. In the first case, there is an extension ¢ < p such that ¢ I~ 2* — B™ for some
n € Z. In the second case, there is an extension ¢ < p such that g I+ B" for some n ¢ Z. By

Theorem 3.3.9, in the first case @(G(}?),n) 1 holds for some n € Z, and in the second case,

@(Gg_-ﬁ),n) } holds for some n ¢ Z.
If F is sufficiently generic, this is true for any § < « and any functional ®. It follows
that for any ordinal 3 the set Z is not E?(Gg_-ﬁ)) and thus not A?(Gg_-ﬁ)). ]

Note that an extension of Theorem 2.1.2 in the transfinite would also be possible :
Given Z non A?(@(a)), one can find G ¢ A such that Z is not A?(G(fa)). We however do
not need to have that level of precision to show hyperarithmetic cone avoidance. There
is on the other hand a new difficulty. We also need to show that for sufficiently generic
filters F ¢ ]P)wfk, the generic G does not collapse wfk . This is done in the next section.

3.4 Preservation of wfk

Definition 3.4.1 : Let I" be a class of complexity. A largeness class A is ['-minimal, if
for every I'-open set U we have ANl is a largeness class implies A € U. o

Proposition 3.4.2 : The class Mok Ué,\;lo‘ is Af-minimal. *

PROOF: For every a < w{* we have that P ¢ M, and Navewset Ugjo‘ ¢ (Cy) where (C,) is

M-minimal. As 0 e M, we also have that (C,) is minimal for E?((D(a)) open sets. It

follows that ﬂawfk Z/{éz“ is A%—minimal. n

As discussed previously, in order to show preservation of wf’“ we will need to force

ngk” statements. Given a Egck class B = U ck By, and p = (0,X) € owk, we will in

1
particular need to ask questions of the form : is

a<<w

Y : 3rcY —{0,....|o]} Ja<wF curr2Y - Byl n UMe
1 Ca

a<wfk

a largeness class ?

The problem is that this question is already definitionally too complex. It is of the form
Va < wfk da < wfk ... and we cannot afford such an alternation of two transfinite quantifiers
to preserve w$*. We will use a trick in order to overcome this difficulty : the use of a Al-
cohesive set C' €N ck Z/{é;la with wl = w*. Then instead of asking if U NN, e L{é;l"‘ is
a largeness class for a H%—Open set U, it will be enough, through Corollary 3.4.8, to ask if
Un Lo is a largness class (recall the class Lo of elements intersecting C' infinitely often),
while Corollary 3.4.7 will make sure that this question has the right complexity.

a<w a<wf

Proposition 3.4.3 : There is a set C' € N ck Z/lé,\;la such that C is Aj-cohesive and
c ck

(/JI =w1. *

a<w

PROOF: Let us argue that for any partition regular class N,,«, U, where each U, is open,
not necessarily effectively of uniformly, there is a Al-cohesive C' in N,«,U,. This is
done by Mathias forcing with conditions (o, X) such that X is Al with X € M, Un.
Given a condition (0,X) and n we can force the generic to be in U, as follows : As
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X e U, we must have that o u X € U,, because U,, is upward closed. Thus there must be
7c X -{0,...,|o|} such that [c UT] CU,. As Ny Uy contains only infinite set we must
have X -{0,...,|ouT|} € Np<wUpn. Thus (cut, X -{0,...,|cuTl|}) is a valid extension. Let
now Y be Al. We can force the generic to be included in Y or w—Y up to finitely many
elements as follow : We have X nY e N,., U, or X n(w-Y) € Nyewy. Then (0, X NY)
or (o, X Nn(w-Y)) is a valid extension. Thus any partition regular class N,,«,, U, contains
a Al-cohesive set. In particular we have that N ck Ué:a contains a Al-cohesive set.

We also have that the set N,

sets is a X1 class. As their intersection is non-empty, by the X1-basis theorem it must

contains C' with w{’ = ws*. L]

a<w

ck Ué\:a is a Y1 class and that the class of Al-cohesive

From now on we fix a Al-cohesive set C' € N,__ e Ugl" with w{ = wik.
1 a

Lemma 3.4.4 : Let U be a Al open set. Suppose Lo NU is a largeness class. Then
mOwak Z/{é\«ja cu *

PROOF: Suppose Lo nU is a largeness class. Let us show that U n ﬂa<w§k Z/lé\;(“ is a
largeness class. Suppose first for contradiction that it is not. Then there is a A% cover

Ypu---UY}, 2 w together with a Al open largeness class V' 2 ﬂawfk Mé\:” such that Y; ¢ UnV
for every i < k. As each Y] is A%, there is some i < k such that C c* Y;. Note also that
since C' € Mg yer ng:a, then C € L(V) and thus Lo NV is a largeness class. It follows that
Yje LonV for some j < k. As j # ¢ implies |Y;nC| < oo, then Y; € LNV and thus Y; € V.
As Lo nU is a largeness class then by a similar argument, Y; € Lo nlU and thus Y; eU. It
follows that Y; e i NV, contradicting our hypothesis. Thus & NN ck Mé\,;la is a largeness

a<w
class.
Now from Proposition 3.4.2 we have that ﬂa<wi~k L{é\:a is minimal for A% open sets,
then Myeger UL €U. n

Definition 3.4.5 : Let B=UJ
p 7+ B if the set

ck B, be a Egck class. Let p=(0,X) € owk. We define
1

a<w

Y : 3rcY -{0,....|o]} Ja<w* cur 2 —BYn Lo
1

is a largeness class. ¢

: 0 -
Given a wa’“ class B=U,.,

ck B, the following set

{V : 3rcY -{0,....]o|} Ja<wif o ur22Y - B,}

is a H% open set, that is an open set Uycg[c] where B = Ua<wf;¢ B, is a H:][ set of strings.
We also suppose that each B, is @(a)—computable and that {B,}, <tk is increasing. Given

such a set U described by U ¢ w we write U, for the Al open set Uyer, [0]-

Proposition 3.4.6 : Let U/ be an upward-closed H% open set. The class U N Lo is a
largeness class iff there exists some « < wfk such that U, N L¢ is a largeness class. *
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PROOF: Suppose U, N Lo is a largeness class. Then clearly U n Lo is a largeness class.
Suppose now that U N Lo is a largeness class. For each n let L{E be the Z?(C ) open set
such that Lo =N, US with US| cUS. We have

n+1
Vn Vk 3a VYpu---uY), Ji<k 3o cY; [o] cUynUS

Note that given k and « the predicate PP = vyyu.-.uY, ik oY, [0] c U, nUS
is ¥9(C @ @(a+1)) uniformly in n,k and a. Thus the function f : w? — w¢* which to

n,k associates the smallest a such that Pp* is true is a total I1}(C) function. By X1-
boundedness we have 3 = sup,, j, f(n, k) < w{ = wk. Tt follows that

Vn Yk VYgu--UY, Ji<k IocY; [o] cUsnUdS

Then Ug € U is such that Ug N L¢ is a largeness class. ]

Corollary 3.4.7 : Let B=U
p?-Bis Egck(C’)
1

a<w

ot Bo be a chk class. Let (0,X) € P er. The relation
1

PRrROOF: The relation p 7+ B is equivalent to
Ja<w (Y 1 IrcY -{0,...,|o]} cuT M 2¥ - By} n Lo

is a largeness class. n

Corollary 3.4.8 : The class N

ok Z/lé\:a is minimal for II} open sets U such that
Un Lo is a largeness class.

a<w

ProoF: Given a H%—Open set U such that U nLq is a largeness class, there must be a < wf’“

such that U, N L¢ is a largeness class. By Lemma 3.4.4 it must be that N ck Ué\j“ CU,m

a<w

Definition 3.4.9 : Let B=N ck B, be a chk class. Let p=(0,X) ¢ P er. We define
1

p Ik Bif for every 7€ X - {0,...,|o|} and for every a < w{* we have o U T 7B, o

a<w

Proposition 3.4.10 : Let B = ﬂawfk Bs be a chk class. Let F be sufficiently generic
1
with pe F. Let pi- B. Then Gr € B. *

PrOOF: Using Lemma 3.3.8, for every « and every g < p, there is some r < ¢ such that
7 I+ By. Thus for every « the set {r : r I+ By} is dense below p. It follows from
Theorem 3.3.9 that if F is sufficiently generic, Gr € B. m

We now increase the complexity by one notch to reach what we need for preservation
of w‘fk.

32



3.4. PRESERVATION OF w{'&

Definition 3.4.11 : Let B = U, Bn be a Eg
Nevewsh Br.o. We define p 7+ B if the set

ki1 class where each Hgfk set B, =

{Y : 37cY —{0,...,|ol} Inocur?%2“ =B} n Lo

is a largeness class. o

a<w

Given a ng’ul class B = Upew, Br, with B, =N ok B, the following set

U={Y : FI7cY -{0,...,|o|} InocuT™2*-B,}

is a X1(C) open set, that is an open set U = Uyep[o] where B =N ok B, is a ©1(C) set

ok is decreasing. We then write U, for

a<<w
of strings. We furthermore assume that {B,}
the Al(C)-open set Ugyep, [0]-

Computability theorists have a strong habits of working with enumerable open sets.
With that respect, E%—open sets, that is, co-enumerable along the computable ordinals,
are strange objects to consider. Note that given such an open set we have U €N, <tk Uy,

but not necessarily equality. However the elements X of N ck U, — U are all such that

wi¥ > wsF. Tt is in particular a meager and nullset.

Let us detail a little bit the set B =N ck B, that we can consider so that U = Uyep[o].
To ease the notation we introduce the following definition, in the same spirit as U(B,0)
defined previously:

a<w

a<w

a<w

Definition 3.4.12 : Let B be a X0 class. We define V(B, o) to be the set

{Y : 3rcY -{0,...,|o|} cuT v+ B}

or<eosh B« given

Given a ng'“rl class B = Upey, B, with B, =N
U={Y : FI7cY -{0,...,|o|} InocuT™2*-B,}
we have by Corollary 3.4.7 that U equals:
{(V : 3rcY -{0,...,|o|} In Va<w* V(2¥ = Ba,0 UT) N Le is ot a largeness class}
Let
B ={r with 7(i) = 0 for i <|o|: In Va <wi¥ V(2-B, ,0uT)NLe is not a largeness class}
Let

B, ={7 with 7(¢) =0 for i < |o|: In VS <a V(2¥-B,, g,0uUT)nLc is not a largeness class}

By ©1-boundedness (see Lemma 3.1.5) we have that B = N, B,. We also have i = Uyep[c]-
We now show the core lemma that will be used to show lef = wé¥ for F a sufficiently
generic filter:

Lemma 3.4.13 : Let B = N, ek Ba be a Y1(C) set of strings where each B, is Al(C)

uniformly in o and where 3 < o implies B, € Bg. Let U = Uyep[o] be a $1(C) upward
closed open set with U, = Ugep,[0] a A}(C) upward closed open set. We have U ¢
ﬂawfk U,. Furthermore, U n Lo is a largeness class iff for every a < wfk, U,N Lo is a
largeness class. *

a<w
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PRroOF: It is clear that U c N, <tk U,. Also it is clear that if U N L is a largeness class,
then also N, <weh U, N L is a largeness class.

Suppose U N L¢ is not a largeness class. Then there is a cover Ygu---U Yy 2 w with
Y; ¢ U n Lo for every i < k. There must be a E?(C) open set V 2 Lo such that Y; ¢U NV
for every i < k.

Let f:w — wf ¥ be the function which on n finds a cover oguU---U oy 2 {0,...,n} and
a such that for i < k and every 7 < o; we have [7] € V implies 7 ¢ By. AsUNnV is not a
largeness class, f is a total IT} (C') function. By ¥i-boundedness, 3 = sup,, f(n) < w{ = ws*.
By compactness, there is a cover Ygu---uY} such that for every ¢ < k if Y¥; € V then for
every 7 <Y;, 7 ¢ Bg and thus Y; ¢ Ug.

It follows that Ug N L is not a largeness class. m

Corollary 3.4.14 : L contains a unique largeness subclass, which is minimal for both
I} and X}(C)-open sets U.

PROOF: Suppose Uy, U; are two X1 (C) open sets with Ui = Ugep, [0] and U; o = UseB,..[0]-
for ¢ < 2. Suppose also Uy N Lo and Uy n Lo are largeness classes. By Lemma 3.4.13 it
follows that N« Uoo N Lo and N,k Ur,a N Lo are largeness classes. By Lemma 3.4.4

OC<UJ O£<Ld1
it follows that Mook UG € Npeger Uo,a and Mot UL € Nogyer Un
AS Mocust U, N Mot Una = Mot (Una N U1a) then Myen UL € Nyeger Uoa N
Uia). As Nyeyer Zx{é\j" NnLc is a largeness class then Mook (Up,a mZ/{La) NLc is a largeness

class. Thus by Lemma 3.4.13 the set Uy N is a largeness class.
It follow that the intersection Z of every X1(C) open set U such that U n L¢ is a
largeness class, is a largeness class. Furthermore as Z/{gj‘” N Lc is a largeness class for

ck Ué:“. Also from Corollary 3.4.8 the class

every «, the class Z must be included in N, "

Nevewsk Z/{é\j“ is minimal for IT}-open sets U such that U N L¢ is a largeness class. It follows

that the class Z n L¢ is minimal for $1(C) and I} open sets. L]

We can now detail the class S involved in the definition of owk : Let § be the unique

largeness class included in Lo which is minimal for Ei(C) and H;{ open sets, that is,
Mook Ll * intersected with every X1(C') open set U such that Un L¢ is a largeness class.
Note that °S must be partition regular.

Lemma 3.4.15 : Consider a X0 class B = Upe, Br with chk set B, = ﬂaewf;@ Br.a-
1

Let p=(0,X)eP ek Suppose o 7}— B. Then there is a condition ¢ < p together with some
n such that ¢ I+ N ck B *

ck +1
a<w

PROOF: Let
U={Y : F7cY -{0,...,|o|} InocuT™2*-B,}

The class U is a X}(C)-open set and U N L¢ is a largeness class. By definition of S, S c U.
As X € S cU there is some 7 € X —{0,...,|o|} and some n such that cu7T 7+ 2% - B,,. Let

now
V=AY : 3pcY -{0,...,Jout|} JacuTUup?+B, o}

Asourt? HLUaEwck 2% — By« then Vn L is not a largeness class. Thus there is a cover
You---uUYy 2 w such that Y; ¢ Vn Lo for every ¢ < k. As V n L is upward-closed,
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XnY; ¢VnLeo for every i < k. As § ¢ L is partition regular, there is some ¢ < k such
that X nY; € S ¢ L. Therefore we must have X nY; ¢ V and thus

Vpc X nY;—{0,....lcut|} VaouTup?-By o
Thus (c uT, X NY;) is an extension of (o, X) such that:

(cur,XnY) I+ () Bna

ck
a<w1

Lemma 3.4.16 : Consider a Eg class B = Upey By with chk set B, =N
1

ck Bn7a.
1

ck+1 o<w

1
Let p=(0,X) ¢ ]P)wfk. Suppose o 7+ B. Then there is a condition ¢ < p together with some
B8 < wfk such that q I Nyew Ua<p 29 = Bpa- *
PrROOF: Let

U={Y : FI7cY -{0,...,|o|]} IncuT™w2¥-8,}

The class U is a ¥1(C)-open set and U N L¢ is not a largeness class. Let us recall
Definition 3.4.12 together with the notation coming after it: V(B,0) is the set

{Y : 37cY -{0,...,|o|} ouT B}
Together with
B = {7 with 7(i) = 0 for i < |o|: In Ya <ws* V(Bp.a,0UT) N Lo is not a largeness class}

with B =N ck B, such that

a<w
By = {7 with 7(i) =0 for i <|o|: In VS <a V(B,g,0UT)NLc is not a largeness class}

and with U = Uyep[o].
Using Lemma 3.4.13, there is some a < wfk — that we can suppose limit — such that
the set

Uy ={Y : It cY -{0,...,|o|} In VB <a V(B,3,0UT)NnLc is not a largeness class}

is such that U, N L is not a largeness class. Thus there is a cover Ypu---UY;_1 2 w such
that Y; ¢ U, n Lo for every i < k. As U, n Lo is upward-closed, then also X nY; ¢ U, n Lo
for every i < k. As X e S < Lo and as S is partition regular, there is some i < k such that
XnY;eSc Lo It follows that X nY; ¢ U, and thus that:

Vrc X nY;—A{0,...,|o} Vn 3 <a V(B,3,0uUT)NLc is a largeness class

Let {Bm }mew be such that sup,, B, = a. Let 7€ X nY; - {0,...,|0|} and n € w. We have
for some m that V(B,,,,,0 UT) N Lc is a largeness class. Then the set

{Y : 3pcY -{0,...,]out|} Imoutup?B,s,.}nLc
is a largeness class and then
(Y : 3pcY —{0,....[our]} 3m o uTup? Bug, } nUL

is a largeness class and thus o U T 7-U,, 2% - B,, 3,,- As this is true for every n and every
T XnY;-{0,...,|0]} it follows that (o, X NnY;) is an extension of (o, X ) such that

(O',XﬂYi) I+ m U QW—Bn,g

new B<a

This concludes the proof. [
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3.4. PRESERVATION OF w{'&

We now show that if F ¢ owk is sufficiently generic, then lef = wfk. We use the

following fact : If w{ > ws*, then in particular some G-computable ordinal must code for
wfk, that is, there must be a G-computable function ® such that for every n, ®(G,n)
codes, relative to G, for an ordinal smaller than w{* and with sup,, |®(G,n)| = w{*. We
show that this never happens by forcing that for every functional ® either for some n,
®(G,n) does not code for an ordinal smaller than w$”, or there is an ordinal a < w$* such
that ®(G,n) always codes for some ordinal smaller than a.

Given G and « let OF be the set of G-codes for ordinals smaller than . For a < w§k,

the class {G : ne O} is Al uniformly in o and n.

Theorem 3.4.17:

Suppose F ¢ owk is sufficiently generic. Then lef = wfk.

PROOF: Let p ¢ owk be a condition. Given a functional ®: 2¥ x w — w, let

B={X : 3n Va<wfk <I>(X,n)¢0§}

Suppose p?—B. Then from Lemma 3.4.15, there is an extension g < p and some n such
that
gIF{X : Va<w® &(X,n)¢ 00X}

It follows from Proposition 3.4.10 that if F is sufficiently generic, for every a < wfk,

O(Gr,n) ¢ OOG/T. Suppose now p?# B. Then from Lemma 3.4.16, there is an extension
q < p and some « < wfk such that

qgIF{X : Vn ®(X,n) e 05}

It follows from Theorem 3.3.9 that if F is sufficiently generic, sup,, ®(G£,n) < a. ]

We can finally show the desired theorem.

Theorem (3.0.1): Let Z be non Ai. Let A be any set. Then there is a set G ¢
[A]“ U[A]® such that Z is not A}(G) (and in particular with w = wS*).

PRrOOF: Let F ¢ ]P)wfk be sufficiently generic. Then from Theorem 3.3.10 the set Z is not
A?(G(ﬁ)) for o < w$*. From Theorem 3.4.17 wff = wS*. Thus Z is not A%(Ggg)). L]
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Chapter

Mathias forcing to create non-cohesive sets

The goal of this chapter is to prepare the next one : Chapter 5. In order to separate

SRT3 from RT3 in w-models, we have to show the following : for any set A, there is a set
G e [A]¥ U[w - A]¥ which computes no p-cohesive set *.

The combination of the two following facts illustrates the difficulty of proving the
theorem to come.

1. Effective Mathias forcing is the only known technic to find for any set A an element
G e [A]YU[w— A]* which has some lowness property (cone avoiding, non PA, etc...).

2. Sets which are sufficiently generic for Mathias forcing are cohesive.

We give in this chapter the beginning of a solution in order to overcome the difficulty
raised by (1) and (2) : we show how to use Mathias forcing so that sufficiently generic sets
are not cohesive. We do so while proving Liu’s theorem :

Theorem 4.0.1 (Liu [23]):
For any set A an element G € [A]* U[w - A]¥ is not of PA degree.

We show that such an element G in the previous theorem can always be picked non-
cohesive.

4.1 Partition genericity

We start by enriching our toolbox with a new notion that will make our life simpler in the
proofs to come. Recall that all the partition regular class we consider are non-trivial. We
use here the notation Uq for the intersection of E(l) class : Neec Ue.

Definition 4.1.1 : Let Uy be a largeness class. We say that X is partition generic
below Uc if for every E(l) set U such that U nU¢ is a largeness class, we have X e U nU¢.

If X is partition generic below 2“ we simply say that X is partition generic. We
say that X is bi-partition generic below Uc is both X and X are partition generic below
Uc. <&

' This is anyway the spirit. In practice we will not be able to show that for any set A, but for sufficiently
many of them.
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4.2. LIU'S THEOREM

We have that w is partition-generic. From Proposition 1.4.5 every non-trivial partition
regular class if of measure 1. It follows that any Kurtz-random belongs to every Hg
partition regular classes and thus that any Kurtz-random is bi-partition generic.

The class of partition generic elements is not itself partition regular. But the class of
elements which are partition generic somewhere is partition regular. This is made clear
through the two following lemmas.

Lemma 4.1.2 : Let Uc be a largeness class. Suppose X is partition generic below Uc.
Let YouY; 2 X. Suppose Y; ¢ L(Uc). Then Yi_; is partition generic below Ue:. *

PROOF: We assume that X is partition generic below Uc and Y; ¢ L(Uc).

Suppose for contradiction that there is a E(l) class V such that V nlc is a largeness
class, and such that Yi_; ¢ V nlUg. In particular there is a 2(1) class U such that U nU¢ is
a largeness class and such that ;1 ¢/ and Y; ¢ U.

Note that as X is partition generic below Uex, we have X € L(U nUc). However we
have Y; ¢ U nUc and Y1 ¢ U nUe. This contradicts that X € L(U nU¢). Thus Y;_1 must
be partition generic below Uc. [

Lemma 4.1.3 : Let Uo be a largeness class. Suppose X is partition generic below Uc.
Let You---uY; 2 X. Then there is a Z(l) class U such that U nUc is a largeness class,
together with some ¢ < k such that Y; is partition generic below U nlUc. *

ProoF: We assume that X is partition generic below Ugz. We proceed by induction on
© < k. Suppose Yy is not partition generic below Ux. Thus there must be an open set
such that Vo nUcp is a largeness class but with Yy ¢ Vy. By Lemma 4.1.2 it follows that
Y1 u---uY} is partition generic below Vo nUc.

We continue inductively : if Y7 is not partition generic below Vy N, there must be
an open set Vi such that Vi nVynlc is a largeness class but with Y7 ¢ V;. It follows that
Yo u---UY} is partition generic below Vi nVynlUc.

If we can continue like this for every ¢ < k. Then we have Z(l] classes Vp, ..., Vi1 such
that Vi_1n---nVynUc is a largeness class with Y, partition generic below Vi_1n---nVynlc.

Otherwise we stop for some j < k-1 and we have E(l) classes Vp,...,V; such that
Vin---nVynUc is a largeness class and such that Y}, is partition generic below V;n---n
VQ N UC. | |

Partition genericity clearly relativizes to some oracle : Given Ug = Neec Ue with each
U, a YI(B) class, a set X is B-partition generic below U if for every X{(B) open set U
such that U NnU¢ is a largeness class, we have X ¢ U.

It is also clear how Lemma 4.1.3 relativizes : Suppose X is B-partition generic below
Uc. Let You---uY, 2 X. Then there is a E?(B) class U such that U NnUg is a largeness
class, together with some ¢ < k such that Y; is B-partition generic below U nlUc.

4.2 Liu’s theorem

We give in this section a simplification on the original proof of Liu’s theorem, using the
machinery developed so far : partition regularity, largeness and partition genericity. We
actually show slightly more than Liu’s theorem : not only G € [A]¥ U [w - A]¥ can be
picked non-PA, but we can make sure that it belongs to any Hg largeness class fixed in
advance. We also show a relative version of this:
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4.2. LIU'S THEOREM

Theorem 4.2.1 (Improvement of Liu’s):
Let A be any set. Let B be non-PA. Let N, U, be a TI9(B) largeness class. There is an
element G € [A]Y U [w - A]¥ with G € N, U,, and such that G & B is non-PA.

The forcing conditions will depend on the oracle B and on the II9(B) largeness class
N, Un, that we then both fix now.

Lemma 4.2.2 : Let Agu A1 2w be an arbitrary cover of w. For some ¢ < 2, there exists
a X{(B) class U such that U NN, U, is a largeness class, and such that A; is B-partition
generic below U NN, Uy,. *

ProoOF: We have that w is B-partition generic below N, U,. The current lemma then
follows from Lemma 4.1.3. [

Let now Agu A1 2 w be an arbitrary cover of w. From the previous lemma, there exists
i <2 and a X9(B) class U be such that A; is B-partition generic below U n M, Uy,. From
now on we fix A= A;. Let P be the set of conditions (¢, X,U) where:

1. (0,X) is a Mathias condition
2.0cA
3. U is a XY(B) class such that U NN, U, is a largeness class
4. X c A is partition generic below U n N, U,
The order is defined by (o, X,U) < (7,Y, V) if:
1. (0,X) < (7,Y) as Mathias conditions
2.UcVY

Note that here again we know in advance in which side Ag or A; our generic will be :
whichever that can be B-partition generic somewhere below N, U,.

— Notation
Let F ¢ P be a sufficiently generic filter. We write G € 2 for the unique set such that
o < Ggx for every (o, X,U) € F.

Definition 4.2.3 : Let p = (0, X,U) be a forcing condition. Let ®.(B & G,n) be a
functional. We define:

pl-3In & (BaG,n)l=d,(n) < Ind(B@do,n)l=d,(n)
pl-3n & (BaG,n) 1t < dnVocX & (Bodo;uo,n)?t

Note that if p i+ In (B & G,n) |= ®,(n) it is clear that for any generic filter F ¢ P
with p € F we have In ®.(B® Gx,n) |= ®,(n). Similarly if p i+ In ®.(B & G,n) 1 then
for any generic filter F ¢ P with p € F, we have 3n ®.(B & Gz,n) 1.
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4.2. LIU'S THEOREM

Lemma 4.2.4 : Let p = (0, X,U) be a forcing condition. Let ®.(B®G, n) be a functional.
There exists a condition ¢ < p such that:

g - Ind®(BeG,n)l=2,(n)
or ¢ I+ 3Ind®(BoG,n)?t

PROOF: Recall that Nye, Uy is the fixed T19(B) largeness class such that X is B-partition
generic below U N Ne Ui Let P(n, k,i) be the predicate:

VXou-—uXp2w3j<k XjeUnlUy and 37 X; - {0,...,|o|} Pc(B®oUT,N) =1
Suppose first that the following is true for every k € w:
Vn 3i<2 P(n,k,1)

Note that it is uniformly B-c.e. to know whether P(n,k,i) is true. Let us fix k € w.
Let us define the computable functional ¥y : w — {0,1} defined by Wx(n) to be the first
value i < 2 that is found such that P(n,k,4) is true. By hypothesis the functional ¥y, is
a total B-computable function. In particular as B is non-P.A. there exists n such that

Ur(n) = ®,(n). We thus have :

VXou---UXp 2w 3j <k XjeUnUy, and 37 € X;-{0,...,|o|} In Pc(BoouT,n) |= ®y(n)
As Uy1 €U, we also have for every k, k" with k' > k that

VXU UXp 2w 35 <k Xj eUnlUy, and 37 € X;-{0,...,|o|} In D (BodouTt,n) |= ®,(n)

As this is true for every k, k" with k£’ > k, it implies by Lemma 1.4.8 that for every k
the set w belongs to L(U N V) where:

V=AY el : IrcY -{0,...,|o|} In ®(B@®ouT,n)l=d,(n)}

and in particular ¥V N Ne, Ui is a largeness class.

As X is B-partition generic below U N Npe, Ur, it belongs toV N Npe, Ux. We thus
must have some 7€ X —{0,...,|o|} such that In ®.(B®our,n) |= P,(n). Also as X is
B-partition generic below U NNge, Uy and as L(V NNpe, Ux) contains only infinite sets, we
must have by Lemma 4.1.2 that X -{0,...,|ocuT|} is B-partition generic below U NNge,, Uk
Let ¢=(cuT,X —{0,...,|locut|},U). We have that ¢ I+ In ®.(B & G,n) |=P,(n).

Suppose now that there exists k € w such that
In Vi< 2 =P(n,k,i)

In particular we have for some k and some n we have a cover Xg u---uX lg 2w and a cover
X3 u---uX,i 2 w such that for i < 2 we have:

Vi<k Xj¢UnU or VT X;-{0,....|0]} ®e(Bo®ouUT,n)t or D (BOouUT,N)|=1-i

We have that {XgﬁXl}}adg,bdf is a cover of w. As X is B-partition generic below UNNe,, Us
and as U NN, Ui is a largeness class, there must be by Lemma 4.1.3 some V € U such
that V N N, Ui is a largeness class, together with a,b < k£ such that Xg n Xb1 NnX is
B-partition generic below V N Ny, Ug. Note that as XJn X} n X € L(V N Njeo U ), we
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4.3. MATHIAS FORCING TO BUILD NON-COHESIVE SET

must have also that both X2 and X}) belong to £(V NNy, Ux) (as largeness classes are
closed upwards). In particular X 3 , X l} eVl CUNU. Tt follows that:

vrc X0-{0,...,|0]} ®(B®ouT,n)t or ®(Beour,n)l=1
Vrc X} -{0,...,]o} ®c(B®our,n)t or d.(Be®out,n)l=0

Let 7 ¢ (XY n X})-{0,...,|o]}. As we cannot have both ®.(B® o ur,n) |=1 and
d.(B@®ourmn) l=0, it must be that ®.(B@® o ur,n) t. Thus V7 ¢ (X2 n X}) -
{0,...,]o]} ®c(BoouT,n) 1. Let ¢ = (0, X2n X} nX,V). We have ¢ I+ In ®.(BoG,n) t.=

Lemma 4.2.5 : Let p = (0, X,U) be a forcing condition. For any n € w there is a forcing
condition ¢ = (7,Y,U) < (o, X,U) such that 7 €U, (where N, U, is the largeness class we
start with). *

PROOF: We must have X € L(U N NyewUn). In particular as {0,...,|o|} n X = @ and as
largeness classes are closed upwards, we have cUX € L(UNNye Uy ) and thus cUX € U,. It
follows that there exists a prefix 7 < X such that [cuT] € U,. AsUNNpew Uy contains only
infinite sets, and as X is B-partition generic below U NN, Un, we have by Lemma 4.1.2
that X —{0,...,|cu7|} is B-partition generic below U NN, Uy, The condition ¢ is given
by (cuT, X,U). m

Theorem (4.2.1): Let A be any set. Let B be non-PA. Let N, U, be aTI3(B) largeness
class. There is an element G € [A]* U[w - A]* with G € N,,U,, and such that G ® B is
non-PA.

PROOF: We use the framework developed with Lemma 4.2.5 and Lemma 4.2.4 to build
G ¢ A generic enough. [

4.3 Mathias forcing to build non-cohesive set

We now show how enhance the previous proof in order to obtain non-cohesive solution,
still with Mathias forcing. We use Theorem 4.2.1 as a blackbox. The idea is rather simple
: We iterate the forcing several time. Given a computable set X, we find Gy ¢ A with
Go € Lx not PA. Then we find G ¢ A with Gy € L+ such that Go @ G is not PA. As
Go ® G1 217 Gou G it is clear that Gg u G is not PA. Furthermore as Gg U G1 intersects
both X and X infinitely often, it is not cohesive.

There is however a catch in this construction : recall that we work within whichever
among A or A is partition generic somewhere. Suppose for instance both A and A are
partition generic. Once we have built Gg € A with Gy € Lx not PA, it might be that A is
nowhere Go-partition generic below L. We then have no choice but to build G inside
A. Let us illustrate this with an example :

Example 4.3.1 : We build a set A such that:
e Both A and A are partition generic

e Any infinite subset of A computes an infinite subset of A and any infinite subset
of A computes an infinite subset of A.
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4.3. MATHIAS FORCING TO BUILD NON-COHESIVE SET

We build A as 09 <071 < ... such that [o;] is included in the i-th X! largeness class. We
also make sure that each o; is of even length and that it contains 2n for 2n < |oy| iff it
does not contain 2n + 1. It is then clear how an infinite subset of one side computes an
infinite subset of the other side. The construction goes as follow : suppose o; is defined.
Consider the i + 1-th X (non-trivial) largeness class 2. Let X be the even numbers. It
must be that ;X or 0; X belongs to U. We take 0,41 to be of even length and equal to
o;7 for 7 < X or 7 < X such that [o;7] cU.

Now given such a set A, once we have built Gy € A, A is not anymore Gp-partition
generic, as it does not belong to Lg(,) where ®(Gp) is an infinite subset of A. o

Of course the previous example does not say anything about A being Gg-partition
generic somewhere, but it is possible to show there is no way out like this. For instance
one can build a A set A such that every set G € [A]* U [A]® which contains infinitely
many even and odd numbers, compute the halting problem (and in particular is not PA).
Given a set A, there is then no hope to find a generic G witnessed no to be cohesive using
any computable set and its complement.

In order to overcome this difficulty, we simply iterate a third time. This is done in the
next proposition.

Proposition 4.3.2 : Let A be any set. There is an element G € [A]Y U [w — A]¥ which is
not PA and not cohesive. *
PROOF: Let XouU X; U X5 2w be three computable infinite sets. Let Ag = A and A; = A.
Using Theorem 4.2.1 we build Gg ¢ A;, (for iy € {0,1}) not PA with Gy € Lx,. We then
build G ¢ 4;, such that Gy @ G is not PA and with G; € Lx,. We finally build G ¢ 4;,
such that Gy @ G1 ® G2 is not PA and with G € L,.

As ig,i1,12 € {0,1}, we must have i, =i, = i for some a # b and then G, UG} € A; both
not PA and not cohesive. m

A direct construction would of course be possible, and even necessary if one wants to
push this simple idea to find a generic G € [A]¥ U[w - A]¥ which not only is no p-cohesive,
but compute no p-cohesive set. For that we need to extend our notions of largeness classes
in product spaces.
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Chapter

Separation of RT% from SRT% in w-models

5.1 Overview

The goal of this chapter is to show the following theorem:

Theorem 5.1.1 (M., Patey [28]):
For every set Z whose jump is not of PA degree over ()’ and every Ag’Z set A, there is

a set G e [A]” U[A]* such that (G & Z)' is not of PA degree over ().

This theorem can then be iterated to construct an w-model of RCA(+SRT? containing
no set whose jump is of PA degree over ()" and thus no p-cohesive set.

Theorem 5.1.2 (M., Patey [28]):
There is an w-model of RCAq + SRT3 which is not a model of COH.

Proor: By Theorem 5.1.1, there is a countable sequence of sets Zy, Z1,... such that
for every s € w, the jump of Zg® --- ® Z, is not of PA degree over @,, and for every
Ag(ZO ®---®Z,) set A, there is some ¢ € w such that Z; € Aor Z; ¢ A. Let T = {X ¢
29:3s X <p Zp@® - @ Zs}. The collection Z is a Turing ideal. Let M be the w-structure
whose second-order part is Z. Every instance of SRT% in Z has a solution in Z, so M is
an w-model of SRT%. Moreover, Z does not contain any set whose jump is of PA degree
over (). By Theorem 1.3.4, 7 does not contain any p-cohesive set, so M is not a model of
COH. m

The rest of this chapter is dedicated to the proof of Theorem 5.1.1. Note this theorem
can be seen as a one jump iteration of Theorem 4.0.1, with the difference is that we do
not start from any set A, but only from a AJ sets A. It is still an open question to know
whether Theorem 5.1.1 holds for any set A.

5.2 Sketch of the proof

The full proof of Theorem 5.1.1 is somewhat a bit of a complicated construction. However
like in most complicated constructions, the underlying intuition behind it is not that
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5.2. SKETCH OF THE PROOF

hard to get, and having this intuition in mind while reading the proof helps a lot the
understanding. The goal of this section is to provide such an intuition for the reader.

We adopt for that an iterative reasoning : We start from the ideas behind the proof
of Theorem 4.0.1 given in Chapter 4 and try to apply them in the case of Theorem 5.1.1
(with Z = ). We then identify what goes wrong and how we are naturally “forced” to
work with product spaces and to go through the ideas exposed in Section 4.3.

Note that the full proof can be read independently from the rest of the document, but
this section suppose the reader went through Chapter 4 (and in particular understood the
basics of largeness and partition regular classes).

Assume we have a AJ set A with A% = 4 and A! =w - A.

5.2.1 A first step : defeat one functional

Let ®, be a functional. We want to build G € [A°]* u [A']* such that ®.(G',n) |#
®,(0',n) or such that ®.(G’,n) 1 for some n. Note that we have a computable function
7w xwxw—wsuch that In ©.(G',n) =1 iff 3z Yy O, ;)(G,7,y). We then want to
decide the truth of X9 statements.

To continue let us define the computable function ¢ : w x 2 x w — to be such that:

Ue(eom) = {X : IrcX-{0,...,|o|} Jy ~Pc(cuT,z,y)}

Assume first for this example that A is partition generic and consider forcing condi-
tions (o, X,U) where (o, X) is a Mathias condition with o ¢ A%, with X a low set and
such that A%n X is partition generic below U for some Z? largeness class U. Let us define
the forcing question

(o, X,U) 3z Vy (G, z,y)

if
Un N Ue(e,0ur,z) 18 not a largeness class.

TEXNAY zew

Note that the forcing question is X9(()") (using that A° n X is ()'-computable).

Forcing the truth of ) statements

Let us suppose the following is true:
Vn Jie{0,1} p?7-3z Yy ,(,,:)(G, 2, y)

Then the function f : w — {0,1} which on n finds the first 7 € {0,1} such that
p?3x Yy @, n4)(G 2, y) is ()'-computable and total. Thus there must be some n such
that @, (0", n) |= f(n) and then some n such that & n Nrexn A0 wew U (n(e i) our,z) 18 DO
a largeness class with i = @n(@/,n). There is then a cover Ypu---uU Yy 2 w such that
Y ¢ UNMNrcxna0 gew Ue(n(eni),oure) for j <k. As X n A is partition generic below U there
is j < k such that A°n X n Y; is partition generic below V ¢ U where V is a »{ largeness
class. In particular AN X nYj €V cU and then A°NX NY; ¢ Nrcxnao vew Ue(n(eni)our)-
Let 7 € X n A and = € w be such that AN X nY; ¢ Ue(n(ensi),oure)- 1t means that
for any p ¢ A°n X nY; -{0,...,Jc ut|} and any y we have ®(c U T U p,z,y). Thus
(cuT,XnY;-{0,...,lcur|},V) is a condition ensuring that any generic G extending it

will satisfy 3z Yy @, .4 (G, 2,y) and thus ®.(G',n) |=i= 3, (0", n).

44



5.2. SKETCH OF THE PROOF

Forcing the truth of II) statements

Suppose now the following is true :
In Vie{0,1} p7v 3z Yy Oy iy (Gr 2, y)

Let n be such that p?# 3z Yy @y ,.0) (G, 2,y) and p?% 3z Yy @pe 1) (Gr2,y). For
i €{0,1} we then have that both

(a) Lo=Un mTEXnAO,xew u((n(e,n,O),aUT,x)

(b) Ly=Un mTSXﬁAO,xew u((n(e,n,l),aUT,x)

are such that & n Ly and U n Ly are largeness classes. Note that as A° n X is partition
generic below U, we have AN X el n Ly and A°n X el n L. It means that:

(1) For any 7 ¢ A°n X and any z there exists pg € A n X —{0,...,|o u 7|} such that
Jy ﬁq)n(e’mo)(a UTUpp,x,y)) holds.

(2) For any 7 ¢ A°n X and any z there exists p; € A n X - {0,...,|o u 7|} such that

Yy Py (e 1y (0 UTUp1,2,y)) holds.

One then easily see how to use (1) and (2) to iteratively build G ¢ A° such that we
ultimately have Ya 3y —®, . (G, x,y) for every i € {0,1}. We then have ®.(G',n) # 0
and ®.(G’,n) # 1 implying ®.(G',n) 1.

5.2.2 Defeating more functionals (part 1)

The issue now comes from iterating to more functionals in the IIJ case. Let Lo, L1 be
like in (a) and (b) above. The first thing we want is that for any forcing condition
(1,Y,V) < (0,X,U) we still have A°nY € Ly and A°nY e £;. For that the largeness
class V should be compatible with £y and £1, that is, Vn Ly and Vn L1 must be largeness
classes. It follows that we want to include both Ly and £ in our forcing condition.

The easy case

Suppose first that /N Lyn Ly is a largeness class. Then we can simply enrich the forcing by
considering the condition (o, X, ) where C is a ()’ set of indices for ¥ classes such that
UNnLyN Ly =Neec Ue. Future extensions (7,Y, D) < (0, X, C) shall be such that D 2 C is
a AY set of indices such that Neep U, is a largeness class and such that A°NY is partition
generic below NeepUe. For a condition (o, X, C') the forcing question becomes

(0, X,0) 73z Vy O (G, x,y)
if
() Uen N Ue(e,our,z) 18 Ot a largeness class.

eeC TEXNAO zew

Note that in the 28 case or in the Hg case, nothing changes and we can then defeat
as many functionals as we want, as long as when the Hg outcome occurs with largeness
classes Ly and L1, we have that Necc U N LoN L1 is a largeness class.
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The hard case

The real issue comes when UnLyN Ly is not a largeness class. This is what naturally forces
us to work within product spaces. A largeness class V € 2“ x 2% is simply a class which is
upward closed on each of its component and such that VXou---u X 2w VYpu---uYy 2
w Jig,i1 <k s.t. (X5, Y, ) € V. One defines the notion of partition genericity accordingly.

Still with £ and £ as in (a) and (b) above, we now want to consider the largeness
class (UNLy) x (UNLy). Suppose for now that (A°n X, A°n X) is partition generic below
(UNLy)x(UNLy) : this is some extra simplification we will get rid of in the next section.
Note that we still build one generic G ¢ A%, but from this point on the construction of G
will need to take finite extension sometimes from i/ n Ly and sometimes from U N L. For
this reason we now modify the definition of ¢ for further question so that {(e, o, x) is such
that

Ue(eopy = 1(XY) - TS XUY —{0,...,|o[} Fy ~Pe(ouT,2,y)}

We also modify our condition (¢, X) into (o, (X0, X1),C) with X¢ = X; = X, so that now
C' is the set of indices for elements of 2 x 2* such that NeecUe = (UNLy) x (UNL1). The
forcing question itself becomes:

(Ua (Xo, X1>> C) 3z Vy q)e(Ga x,y)
if

() Uen N Ue(e,our,z) 18 not a largeness class.
eeC TEAOO(XQU.Xl),SCEw

With the same reasoning as before, we now have in the X9 case an extension (our, (Xon
Yy, X1nY1),Cu{a}) with 7 ¢ AN (XouX1) such that (A°n XYy, A°nX1nY7) is partition
generic below U, NUeec: Ue and such that for some 2 we have Vp ¢ A°n((XonYy)u(X1nY1))
and all y that @, ,, ;)(c UTUp,z,y) holds for some i and some n such that @, (0", n) =1

In the Hg case we have two largeness classes L.9 € Lo x L1 and L4 € Lo x L1 such
that working now in the product space L.g x L.1 will now allow us to make the jump of
our generic diverge, building it as before iteratively by finite extension. Here again we can
iterate in growing product spaces, defeating as many functional as we want, but with the
extra-assumption that (A°n X, A°n X1,...,A%n X,,,) is always partition generic in our
current largeness class.

5.2.3 Defeating more functionals (part 2)

In the hard case of the previous section we assumed (A°n X, A% X) was partition generic
below U n Lo xU n L1. But similarly to what was discussed in Section 4.3, we cannot
necessarily ensure that : It may be that A” is partition generic but such that (A%, A%) is
nowehere partition generic below some largeness class Lo x £1. Worse than that, it may be
that neither (A%, A%) nor (A!, A!) are partition generic somewhere below some largeness
class Lox L£1. But having (A%, A') or (A, A?) partition generic is not of any help for us as
this would only lead to the construction of a generic G ¢ A°uU A!, achieving then nothing.

Here is how we proceed. For a reservoir X, we first make (X, X) partition generic below
UNLyxUNLy and then find a trick so that (X n A%, X n A%) belongs to the large classes we
are interested in, for some i € {0,1}. The first step is in fact rather simple : we can always
make sure that our reservoirs are low. Recall that Lx is the class of elements intersecting
X infinitely often. If X is partition generic below U N Ly and below U N L1, we always
have that Un Lon Lx and U n L1 N Lx are largeness classes such that (X, X) is partition
generic below (UNLynLx)x(UNLiNnLx) in a very strong way : not only (X, X) €V for
any 2(1) class V € 2% x 2% such that Vn(UnLonLx xUNL1NnLx) is a largeness class, but
(X,X) €V for a class V of any complexity such that Vn(UnNLonLx xUNLiNLx) is a
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largeness class (because (X,w-X), (w-X, X) or (w—X,w-X) obviously don’t belong to
VaUNLonLx xUNLiNnLx)). Note that this require us to now work with £9(Z) classes
for low sets Z. The fact that Z is low makes the question “is U a largeness class?” for a
¥0(Z) open set a I13(Z) question and then H?(@’). So the complexity of future forcing
questions does not change.

Now that (X, X) is partition generic below (U N Lon Lx) x (U N L1 N Lyx) the second
step — making (X n A%, X n A%) belongs to our largeness classes for i € {0,1} — is more
difficult. In particular we cannot do the same with AY or A! which are presumably not
low. We are then forced to use a trick similar to the one discussed in Section 4.3 : we
need three largeness classes Ly, £1 and Lo such that being in two of them is enough to
ensure ®.(G’,n) 1 for some n. In order to do so, we shall use a lemma from Liu, stating
that given any ()'-c.e. set W of finite {0,1}-valued partial function, either W contains v
such that v(n) |= @n(@’,n) } for every n € domw, or w— W contains as many pairwise
incompatible finite {0, 1}-valued partial functions as we want.

We change our function 7 which now takes a code e and a finite {0, 1}-valued partial
function v, in such a way that:

In e domv ®.(G',n) | iff 3z Yy @, (G, z,y)

We also change our forcing conditions. They are first of the form p = (0¢,01,X,C)
where

e g;c Al forie{0,1}
e X €2% is a low reservoir such that (o;, X) are Mathias conditions.
e Cis a AY set of indices such that NeecUe € Ly is a largeness class

We finally change the forcing question so that it integrates a side i € {0,1}, as we don’t
know anymore if we will succeed the construction in A° or A'.

(007 g1, X7 C) ?'_i dz Vy QE(G7 Z, y)
if
(N Uen N Ue(e,0;ur,2) 18 DOt a largeness class.
ecC TCA'NX Tew

Now given a functional ®., a forcing condition p = (0¢,01,X,C) and a side i € {0,1},
we consider the ()'-c.e. set W of finite {0,1}-valued partial functions defined by:

W={v : p?-'3x Yy ey (Grz,9)}

If W contains a valuation v such that v(n) |= ®,(0’,n) | for every n e domv then we
force as before with the £ case that ®.(G?,n) |= &, (', n) for some n — where G; ¢ A’ is
the generic built on side ¢. Otherwise we can find using Liu’s lemma three pairwise incom-
patible finite {0, 1}-valued partial functions vg,v1,vs such that p ?#* 3z Vy Py (e0;) (Gy 2, y)
for j € {0,1,2}. Just as before this leads to three largeness classes Lo, £ and L, corre-
sponding respectively to the three valuations vy, v1,v2 such that each £; can help us make
the jump of our generic always disagree with v; on domv;. Note that for any largeness
class V € Lo x L1 x Lo we must have (A%, A%, A2) eV for ig, i,z € {0,1} with 4, = i for
some a # b. Given such a largeness class V, suppose for instance that (A!, A% A%) ¢ V.
Suppose also the largeness classes Ly, £, and Lo where created for side ¢ = 0 (that is, with
p?0 3z Yy @n(ewj)(G,x,y)). Then we can achieve one more step in satisfying the Hg
outcome with the help of £y x L5 : as (Al,AO,AO) €V C Lyx Ly x Ly then A € £, and
A% € £5. We would of course have to repeat the question for the same functional e and
the side 7 = 1.
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5.2.4 Defeating more functionals (part 3)

After forcing our first Hg outcome on some side i € {0,1} we then have a forcing condition
of the form (g, 01, (X0, X1, X2),C) such that NeecUe € Lx, x Lx, x Lx,. We now have
three “branches” within which the II3 outcome may be satisfied : Lx, x Lx,, Lx, x Lx,
and Lx, x Lx,. We do not know which one will end up being the “correct” one, that is
the one containing (A%, A?) all the time as the construction goes through. Each of these
branch will now be treated as separately as possible, given that we still want a unique
largeness class. For this reason we now duplicated the finite part of the forcing condition
which now becomes:

01 01 02 02 12 12
p:(a() y01 »0¢g 01 ,0p ,07 7<X07X17X2>7C)

b . . .
where 0?’ = ;. We then need to consider each “branch” for the next forcing question,
which now becomes :

p?-i 3z Vy ®(G,z,y)
iff

s.t. ﬁi)e(ag’l UTUp,T,9)
(Yo, Y1, Ya) : EIpEY()UYQOE{0,...,|a§’2UT|} Jyew }

NeccUeN  T€AIN(XoUX2),zew s.t. _@6(00, UTUPaxallé)
N (Yo Y1, Ya) : EIpEYluYglg{O,...,\ai’ utl} Iyew }

TEAIN(X1UX2),zew s.t. =@c(0; VT Up, T, Y)

dpcYyuY - 0,...,0‘0’1UT dyew
{(%Jhb) : p=71o 14 | 0 I} 3y }
TCAIN(XoUX1),rew

is not a largeness class.

In case of the ¥ outcome, we can ensure the X9 formula for one of the branch (on side
i), but without increasing the number of branches we consider (we still are with largeness
subclasses of 2¥ x 2¥ x 2¢). In case of the II outcome, we have to act similarly to what
was done to handle the first Hg outcome : we find sufficiently many incomparable finite
{0, 1}-valued partial functions (say m many) each of them giving a largeness class £; for
j <m. We then duplicate everything to work with the largeness class Lo x---x L,,—1. Note
that each £; is itself a largeness subclass of 2% x 2% x 2%,

What is the correct number m 7 we need m to be such that if

(AD, A, A%, .. A AL A ) eLox-x Loy

m-1>4*m-1>

where each Aj is either A% or A, then we must have A;‘i = A;ll = A;‘; = A;; for j1 #ja<m
and ig # 41 € {0,1,2}. This way we can keep defeating the first functional with the I3
outcome on one branch, while also defeating the new one. It turns out that m must be at
least 7. This is what will be formalized with symmetric sets in the next sections.

The idea behind “branches” will be formalized with the Q-forcing and the P-forcing.
A P-forcing condition will be a “full” forcing condition as in the example given above. A
Q-forcing condition will correspond to one branch of the P-forcing condition.

5.3 Preliminaries

5.3.1 Liu’s lemma

The proof requires a key lemma that Liu used for his separation of WKL from RT%.
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—— Notation
Given a partial function defined on w, we write v(n) | to mean that v is defined on n
and v(n) 1 otherwise.

We say that two partial functions vq,vy are compatible if v1(n) | and ve(n) | implies
v1(n) = v2(n). They are otherwise incompatible.

I Definition 5.3.1 : A wvaluation is a finite partial function v cw — {0,1}. o
In what follows we always consider that valuations are presented in a strongly finite

way, that is, as a finite object by oppose to an infinite object which happens to be finite,
the important point being to uniformly know the last value on which a valuation is defined.

—— Notation
We write Jx for the partial function n — ®,(X,n)

Lemma 5.3.2 (Liu, [23]) : Let X be a set and Y > X be non PA relative to X. Let
W be a Y-c.e. set of valuations. Either W contains a valuation v compatible with Jx
and such that domwv € dom Jx, or for any k there are k pairwise incompatible valuations
outside of W. *

PRrROOF: Suppose W contains no valuation v compatible with Jx and such that domw ¢
dom Jx. It means that for any valuation v € W, there exists n such that v(n) | and either
¢, (X,n) 1 orv(n)l+Jx(n)l.

Let A be the set of finite sets of integers F' such that for all v € W which is defined on
F and such that domv — F' ¢ dom Jx we have v(m) |# Jx(m) | for some m € domwv - F.

Let F' e A. Suppose for contradiction that for all integers n ¢ F' we have Fu{n} ¢ A,
that is, there exists v € W which is defined on Fu{n}, such that domv-Fu{n} c dom Jx
and such that v(m) |= Jx(m) | for all m e domv - Fu{n}.

We can use that to define a total Y-computable {0,1}-valued function f such that
f(n) # Jx(n) for all n, contradicting that Y is not PA relative to X. For n ¢ F' we search
for v € W which is defined on F'u {n}, such that domv— F u{n} € dom Jx and such that
v(m) {= Jx(m) | for all m e domv - Fu{n}. We then set f(n) =wv(n). Note that we have
domwv - Fu{n} ¢ dom Jx together with v(m) |= Jx(m) | for all m € domwv - F u {n}.
Suppose in addition that v(n) |= Jx(n) | then we obtain domwv — F' € dom Jy together
with v(m) |= Jx(m) | for all m € domwv — F which contradicts our hypothesis on F. Thus
it must be that either Jx(n) 1 or v(n) |# Jx(n) |. In any case we have f(n) # Jx(n) for
all n outside of F. We can easily add values for f on F so that f(n) # Jx(n) for all n
which contradicts that Y is not PA relative to X. Thus for any F € A there exists n such
that Fu{n} € A.

Note that F' = & belongs to A : otherwise we would have a valuation v € W such that
domv ¢ dom Jx with v(m) |= Jx(m) | for all m € domwv, contradicting our hypothesis on
W. Let ng be the smallest such that {ng} € A. Define inductively ny,; as the smallest

not in {ng,...,ng} such that {ng,...,ng1} € A.
Fix k and suppose now that a valuation v is defined exactly on {ng,...,ni}. Then
domwv — {ng,...,n;} cdomJx and v(m) |= Jx(m) | for all m e domwv - {ng,...,ng}. As

{nog,...,nk} € A it follows that v ¢ W.
Then for any k there are 2F pairwise incompatible valuations which are not in W. m
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5.3.2 Largeness classes in product spaces

In order to find an element G € [A]“ U [w — A]¥ which computes no p-cohesive set, we
would need to iterate countably many times an argument like the one of Proposition 4.3.2.
In order to be able to do so, we need to “include” the iterations inside the forcing. This
calls for an extension of Largeness classes to product spaces.

For technical reasons, yet to come, we will need a tight control on the indices of our
products. To illustrate this, suppose we have a subclass of 2“ x 2¥ x 2“ x 2“ x 2“ and want
its projection along the first and third component. We will need to do such operations
and for that we consider subclasses of I — 2% for a finite set I.

The definitions, propositions and lemmas given here are straightforward extension to
product spaces of those given in Section 1.4.1.

Definition 5.3.3 : Let I be a finite set. A largeness subclass of I — 2“ is a subset
A c I — 2% such that:

1. A is not empty

2. Ais upward closed on each component : If (X, : pel)e Aand X, cY, for every
pel, then (Y, : pel)e A

3. For every k, for every p € I, for every k-cover Yp0 U---u ka 2 w, there is a function
F:I-{0,... k} such that (Y{® : pel)e A o

Definition 5.3.4 : Let I be a finite set. A partition regular subclass of I — 2% is a
subset £ ¢ I - 2% such that:

1. L is a largeness class

2. If (X, : pel)eL and Ypou---quk 2 X, for every p € I, then there is f: 1 —
{0,...,k} such that (Ypf(p) :pelyel

A partition regular class £ is non-trivial if it contains only sets which are infinite on
each component. &

All the partition regular classes we manipulate in this document will be non-trivial.

Proposition 5.3.5 : Let I be a finite set. Suppose {L;};c; is an arbitrary non-empty
collection of partition regular subclass of I — 2%. Then U £; is a partition regular
subclass of I — 2. *

PrOOF: Like the proof of Proposition 1.4.6. ]

In particular for every class A € I — 2¥ such that A contains a partition regular
class, there is a largest partition regular class included in A. It leads to an extension of
Definition 1.4.7 : L£(.A) is the largest partition regular class of A, and the empty set if no
such class exists.

— Notation
Given a set A € w and a finite set I we write ®; A for the element (X, : pel)el - 2¥
such that X, = A for pe .

Given a set A € 2% and a finite set I we write ® A for the class of elements ®; X for
X e A
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We now connect largeness classes to partition regular classes, by showing a lemma
analogous to Lemma 1.4.8 with the difference that A4 needs to be upward closed.

Lemma 5.3.6 : Let I be a finite set. For any upward closed class A ¢ I — 2% the class
L(A) equals:

(Xp : pel)el -2 : Vk‘VpEIVXgU---UX”jQXp
3f T >{0,...,k} st (X[® :pel)ed

PROOF: For this proof we refer to £L(A) as defined by this proposition, in order to show
that it matches Definition 1.4.7. Note that by definition we must have L£(A) € A, as if
(Xo : pel)¢.Athen itself as a 1-cover is not in A.

Let us show that £(A) contains every partition regular class included in A. Suppose
L ¢ A is partition regular. Then given (X, : p e I) € L, for every k, every p and every
Xgu---UXF’f 2 X, we have (Xg(p) : pel)eLcAforsome f:1—{0,...,k}. It follows
that (X, : pel)e L(A) and thus that £ < L(A).

Let us show that if £(.A) is non-empty, it is a partition regular class. Suppose (X, :
pel)e L(A). Let Y, 2 X, for every p € I. Then for every k, for p € I, every k-cover
Zgu---uZF’f of Y, is also a k-cover of X,,. As (X, : peI)eL(A), there must be a function

f+I—-A{0,...,k} such that (Zg(p) : pel)eL(A). It follows that (Y, : pel)e L(A).
Thus £(.A) is upward closed.
Let (X, : pel)eL(A)andlet Ypou---quk 2 X, for every p. Let us show there is some

f:1-{0,...,k} such that (Ypf(p) : pel)e L(A). Suppose for contradiction that this is
not the case. In particular for every f: I — {0,...,k} there are sets Yﬁp u-~~uYf£ 2 Ypf(p)
such that for all g we have (Yﬁgp) pel)¢ A

Also each sets {Y;,p}le—»{o,...,k}@skf is a finite cover of X,. Let Zg, e, Z:f" be a finite

cover of X, such that each Zéf" is either included or disjoint from each set Y]?p for f:
I - {0,...,k} and i < ky. As (X, : peI)e L(A) there must be a function h such

that (Zg(p) : pel)e A Let f be defined by f(p) to be i for the smallest ¢ such that
Zg(p) c Ypi. Then Zg(p) c Ypf(p). Let now g be the function which to p associates the
smallest ¢ such that Zg ) ¢ Yﬁp‘ We then have Zg ) ¢ ng gp). As A is upward closed we
have (Yﬁgp) : pel)e L(A) which is a contradiction. So there is some f:I — {0,...,k}

such that (Ypf(p) : pel)e L(A). Thus if L(A) is non-empty it is a partition regular
class.

It follows that £(.A) is empty if A contains no partition regular class and £(.A) is the
largest partition regular subclass of A otherwise. m

Corollary 5.3.7 : Let I be a finite set. An upward closed subclass of I — 2“ is a
largeness class iff it contains a partition regular class.

PROOF: Suppose a class A is a largeness class. Then by definition we must have @;w ¢
L(A). It follows that L(A) c A is a partition regular class.

Suppose now A contains a partition regular class. Then L£(.A)is not empty and then
@rwe L(A)c A and then A is a largeness class. ]
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Proposition 5.3.8 : Let I be a finite set. Suppose {L; }new is a collection of partition
regular (resp. largeness) subclass of I - 2% with L1 € £,,. Thus Nye, £ is a partition
regular (resp. largeness) class. *

PRrROOF: Like the proof of Proposition 1.4.10. ]
Proposition 5.3.9 : Let I be a finite set. Let U be an upward closed E(l) subclass of
I — 2% for the product topology. Then L£(U) is a I19 class subclass of I — 2%, *

ProOOF: Like the proof of Proposition 1.4.14. =

Corollary 5.3.10 : Let I be a finite set. Let I be an upward closed X! subclass of
I — 2% for the product topology. The sentence “U is a largeness class” is Hg.

PROOF: By Proposition 5.3.8 we have that U is a largeness class iff ®;w € L(U), which is
a TIY sentence. [

5.3.3 A strong version of partition genericity

One of the main issue, making the construction complicated, is that if X is partition
generic below some class U, it is not necessarily the case that (X, X) will be partition
generic below U x Y. This will be dealt with for the set A itself (the set inside which we
want to build our generic), by using basically ‘a lot” of components. This will be done in
the next section with the use of symmetric sets.

We however still have to deal with the reservoirs of our Mathias conditions. To do so,
we will cheat and use the fact that our reservoir have simple complexity : they will all
be low sets. There is then a radical way to make any set X partition generic below some
class U : take U to be Lx. Doing so, (X, X) will clearly remains partition generic below
Lx x Lx. The fact that our reservoir are all low sets makes it possible without making
the forcing question two complex.

We state here the few tools related to the use of this trick.

Definition 5.3.11 : Let I be a finite set. For any set (X, : p € I) where each X, is
infinite, we define L£x, . pery as the partition regular class of all the sets (Y, : pel)
such that [ X, nY,| = oo for every p € I. &

Proposition 5.3.12 : Let (X, : peI), (Y, : pel)el - 2“ be such that X, =" Y.
Then
Lixo « per) = £(v, + per)

PRroor: For any p, a set intersects X, infinitely often iff it intersects Y|, infinitely often.
The proposition follows. m
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Lemma 5.3.13 : Let (X, : pel),(Y, : pel)el—2“ We have

L(Lix, : pery N L1y, < pen) = Lixpnv, : per)

PROOF: Let us show the left to right inclusion. Let (Z, : p € I) be in some partition
regular subclass of L(x, . pery N Ly, : per)- Suppose there is T € I such that Z:n X n Yz is
finite. Thus Z; ¢* (w - X;) U (w - Y7).

Let Zg = Z, for p # Tand Z0 = Z:n(w-X:). Let Zé = Z, for p # Tand Z} = Zn(w-Yz).
As (Z, : pel)isin a non-trivial partition regular class, we must have (Z; : peI) in
this class for some i € {0,1}. But (Zg tpel) ¢ Lix, : pery and (Zé tpel)é Ly, per)
which is a contradiction. Thus Z: n X, n Y is infinite for every Te I. Thus (Z, : pel)e
L(X oY, : pel)-

Let us show the right to left inclusion. First if X; n Y; is finite for some T € I then
Lx,ny, : per) €quals the empty set and is then included everywhere. Suppose now X.NYr is
infinite for every t € I. The set Lix ny, : per) 1S a partition regular subclass of £ix, . pery N
Ly, : pery- By definition of £(A) for a class A the left to right inclusion holds. ]

Lemma 5.3.14 : Let A ¢ I — 2“ be a largeness class. Let Xg U---u Xzf 2 w for every
p € I. Then there must be some f:{0,...,k} - I such that Aﬂ£<Xf(p> : pel) is a largeness
AL

class. *

PROOF: Suppose otherwise. There for every f : {0,...,k} — I there are covers qup u
k
U X fp 2 w for every p such that (X?’(pp) cpel)¢ AO.C(Xg(p) : pel) for every g : I —
{0,...,k¢}. ‘
For every p € I let Yp0 U---U Y™ 2 w be such that Y] is included or disjoint from
X}p for every f and every j < ky. There must be some h : I - {0,...,m} such that
(th(p) : pel)e A. Now let f be the function which to p associates i such that th(p)

intersects Xé infinitely often. Then we have (th(p) :pel)e An E(Xf(p)
)

Let now g which to p assigns ¢ such that th

: pel)’
) ¢ X?(pp). We then have (X}](pp) D pe

Ie An £<Xg(p) : oel) which is a contradiction. ]

Proposition 5.3.15 : Let A <€ Lx, . o1y be a largeness class. For every p € [ let Ypo U
U ka 2 w. Then there must be some f:{0,...,k} — I such that AnL o) .
(XonYd ®) : per

a largeness class. *

)IS

PROOF: By Lemma 5.3.14 there must be a function f : {0,...,k} - I such that An

L is a largeness class. Also we have
(Ybf(p) . pEI) g

L (A ML, per) N Lyt pd>) cAnL (ﬁ(xp cper) N Ly s pel>)
Thus by Lemma 5.3.13 we have

£(An Lo, s penyn £ AL,

(Ypf(p) : peI))

contains a partition regular class and is then a largeness

mepf(p) : pel)

Thus A n ﬁ(XmeDf(p) : pel)

class. .
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5.3.4 Symmetric set of strings

We now present a key tool for the combinatorics of the construction. The goal is to be
able to iterate the idea behind Proposition 4.3.2 : with Agu A; 2 w, if we have a largeness
class £ ¢ 2% x 2¥ x 2*  we must have (A4;,, A;,, Ai,) € L for ip,i1,i2 € {0,1} and there must
be a # b such that A;, = A;,. As long as it is enough for Ay or A; to be in two components
of L, we are good.

If now we want Ay or A; to be in two components among the first three, and also
in two other distinct components (to defeat more functionals), how should we iterate our
product ? This is the goal of this section.

Definition 5.3.16 : Given a finite function o:{0,...,n} - w we write (0)" for the set
of finite functions t: {0,...,n} - w with 1(¢) < 0(¢) for i < n. o

Note that a finite function o defined on {0,...,n} for some n can be seen as a string
of w<“. We will therefore often manipulate them as strings, using for instance |o| for the
sie of o or o7 for the concatenation of o and T.

—— Notation
Given a set I of finite functions defined on {0,...,n} for some n, we write I for the
tree corresponding to the closure of I by prefixes of its elements.

Definition 5.3.17 : We say that a tree T' € w*“ is exactly 2-bushy if every node of T
which is not a leaf has exactly 2 immediate extensions in 7. o

Definition 5.3.18 : Given a finite function o : {0,...,n} - w, we say that a subset
I c (o) is symmetric if I™ is an exactly 2-bushy tree and if given T € I which is not
a leaf and its two immediate extensions mny,ng in I~ we have for every string ¢ that
Tnio e [~ iff tnooe I, 2

In other words, below every node o of I~, the left subtree of o must be identical to
the right subtree of o, except for the roots of both subtrees. Here is a example of a tree
presentation of the symmetric set generated by finite functions defined on {0,1,2,3}:

. / \ .
\ 29 14 / \
/ N /\6

4 4 6 4

/N /N /N /NN

0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2

/
14
N\
6

Figure 5.1: The tree presentation of a symmetric set

Recall that given a finite function o :{0,...,n} - w we write (0)" for the set of finite
functions t:{0,...,n} - w with 1(i) < o(7) for i < n.
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Definition 5.3.19 : Let ug =1, 0g = ug and Iy = (00)0. Let uy,4+1 be the smallest number
such that for any partition Pj||P» = (un+10,)", one of the part contains a symmetric
set. Let I41 = (ups10,)" &

The sets I, and their symmetric subsets will play an important role in the forcing. We
introduce for that some notation.

— Notation
We write I < I,, to mean that I is a symmetric subset of I,,. We write I < U, I,, to
mean that I < I, for some n.

We explain here how to compute the exact values of u,, and then the sets I,,. To do so
we let v, be the number of symmetric subsets of I,. Note that the symmetric subset of
I,,4+1 are exactly the sets {moT : Te I}u{miT : Te I} for any mj # mo with my,ma < up41
and any I < I,,. It follows that v, = (“"2“)1)” : the number of possibility to pick two
values smaller than u,.; times the number of symmetric subset of I,,.

We then have that u,.1 = 2v, + 1 : each partition of the elements of I,,;1 induces ;1
partitions of the elements of I,,. For each of these partition of I,,, one of the part contains
a symmetric subset. As they are v, possible symmetric subsets of I, if we have 2v,, + 1
partitions, at least two of them will share the same symmetric set on the same side. By
induction on can show that this number is optimal by forcing every possibilities.

Un+1

Now from v,41 = ( 5 )vn and vg = 1 we obtain v,41 = ngi<n+1(1;i). Together with
ug =1, vg =1 and up.1 = 2v, + 1 we then have:

upg = 1
Uy = 3
Uy, = 2H1<i<n(u2") +1 forn>1

The first values are ug = 1, u; = 3, uo =7, ug = 127, ug = 1008127. We now introduce
another notation that will be helpful to manipulate symmetric sets.

Definition 5.3.20 : Let I < I,,. A set J is a l-extension of I, in which case we write
J <11, if J is of the form

J={mgot : tel}u{mit : T}

For mg, mq1 € upy1. Note that we have J < I,,1.
For I,J < U, I, we write J < I and we say that J is an extension of I if we have
J=Jy <1 Jp_1 51 ... %9 J1 <1 for some sets Jq,...,Jp < Uy In. &

Note that extensions are done “backward”. We give here a graphical example :
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//\\\ , /\\

/I\ /I\ /I\ /I\ /I\

Figure 5.2: The tree with plain lines (partially represented) is a subset of I3. The blue
part represent some symmetric set I < I3. The dashed part represent a possible extension
J < I with J < Iy.

—— Notation

Given an I < U, I,, and given a string T we write T/ for the set {tp : peI}.

Note that given J < I the set {T : Tl € J} is itself a symmetric set.

Definition 5.3.21 : For I, J< U, I, such that J < I, the complement of I in J, denoted
by J - I, is the symmetric set of elements T such that J={tp : te J-I,pel}. &

Definition 5.3.22 : Let I ¢ J c I,, for some n.

1. For £ ¢ J — 2, the projection of L to I, written L], is given by the class of all
(X1 : tel)such that there exists X for every T e J—1I such that (X; : TeJ)e L.

2. For £Lc I — 2% the completion of L in J, written ® s L, is given by the class of all
(Xt : teJ)eJ - 2% such that (X : Tel)el - 2%, o

Definition 5.3.23 : Let J,I < U, I, with J < I. For £ c I — 2% the completion of L
in J, written ®; L is the class of elements (Y, : TeJ—-1I,pel)eJ — 2 such that
Yo = X, for every Te€ J — 1 and every pe [. o

Mind the fact that the notation ® can mean four different things depending on the
context : From the notation after Proposition 5.3.5 if A € 2 then ®; A denote the element
of I — 2% for which we “duplicate” A on each component. Still from the notation after
Proposition 5.3.5 if A € 2% then ®; A denote the subclass of I - 2 which is its cross
product on each component.

From Definition 5.3.22 above, if I ¢ J ¢ I, and A € I - 2% then ® ; A denote the
subclass of J — 2% for which we add the cross product with 2“ on missing components.
Finally from Definition 5.3.23 above, if J,I < U,, I, with J <I and A< — 2“ then ® ; A
denote the class for which we “duplicate” the elements indexed by p € I on every index
tpeJ forteJ-1.
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5.4 The forcing machinery

From now on we fix a set Z which is not PA over () and a AY(Z) set A cw. We write A°
for A and Al for w - A. We are going to build generics G° € [A’]* and G' € [A1]* such
that one of them will not be PA(()").

We suppose {®.(G,x,y)}ecw is a list of all the functional Ay formula, that is, if
®.(0,a,b) is true for some a,b and o € 2, then ®.(o7,a,b) is true for every 7€ 2<%,

— Notation
We will write ®.(Z ® G, z,y) to mean that the formula is meant to be used with set
parameter Z & G for the set Z relative to which the construction is done, and for the
generic set G that we built. Similarly we write ®.(Z @ o, z,y) to mean ®.(7 ® 0, z,y)
for 7 = Z[‘|U‘

5.4.1 The Q-forcing

The full forcing — the P-forcing — can be seen as a tree of simpler forcing conditions, the
Q-forcing, that we define now.

Definition 5.4.1 : For n € w, a Q,-condition is a tuple (0p,01,(X, : peI),H) where
1. (04,Uper Xp) is a Mathias condition for every 7 € {0,1}
2. ;¢ A' for i € {0,1}
3. H is a large subclass of I - 2% for some I < I,
4. H<Lix,: e

Let Q= U, Qn. A Q,-condition is valid for side i € {0,1} if (AN X, : pel)eH &

We now define the forcing extension.

Definition 5.4.2 : Given two conditions p,q € Q with p = (09,01,(X, : peI),H) and
q=(m0,71,(Yp : peJ),K). We define g < p by:

(1) (75, Upes Yp) < (04, Uper Xp) as Mathias conditions for every i € {0,1}

2) J<I
(3) Y € X, for every pel and any te J - 1.
(4)

Kc®;H <&

Note that (4) in the above definition is equivalent to Kl H for every Te J —I.

Lemma 5.4.3 : Let p,q € Q with g < p. If ¢ is valid for side 7 then p is valid for side 4. *

PROOF: Let p = (09,01,(Xp : p e I),H). Let g = (10,71,(Y, : p e J),K). Suppose
(A"nY, : peJ)eK. Note that Yy, € X, for every Te J - I. Thus as K is upward closed
on each of its component we have (Ai NX, : pel)ekty forevery e J—1I. As KlyySH
for every T e J - I we have (A°n X, : pel)eH. Thus p is valid for side i. [
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Recall that Z is the set relative to which we do the construction. In order to define
the forcing relations, we need the following functions:

Definition 5.4.4 : For every I < U, I, we define (7 :w x 2¥ x w — w to be the function
which on e,0 and z associates the code for the open subset Ue, (¢ 5,s) of I — 2% defined
by:

{(Xp s pel) : HTEUIX,)—{O,...,|U|} Jy —@G(ZEB(UUT),m,y)}
pe

Proposition 5.4.5 : Let I,J < U, I,. Suppose J <. Then for any e, o, x we have

@MC[(B,O’,x) < Z/{CJ(67gvx)

PRrROOF: Let (Y : TeJ~1,pel) besuch that Yr, = X, for (X, : pel) ele (coq)- Let
Br = Uper Xp and By = Ures-1,per Y.

Note that By = B;. By hypothesis there exists 7 ¢ By - {0,...,|o|} and y such that
-®.(Z®(ocuT),z,y), then also there exists 7 € By —{0,...,|o|} and y such that -®.(Z @
(cuT),x,y). It follows that (Yop : TeJ~1,pel) €U, (com) n

We now define the forcing relations.

Definition 5.4.6 : Let p = (00,01,(X, : peI),H)beaQ condition. Let .(Z0G, x,y)
be a AY functional formula. Let i € {0,1}. We define:

1. pir? 3z Vy ®.(Z @G, z,y) if there exists = such that for all 7 ¢ Uper Xp and for all
y we have ®.(Z @ (o; UT),x,y).

2. pik YV Iy ~®.(Z @G, x,y) if for X' = A'n Uper Xp we have

Hc m u{](e,aiur,z)

TEX, rew

Proposition 5.4.7 : Let p = (09,01,(X, : p € I),H) be a Q condition. Let ®.(Z &
G,z,y) be a A} functional formula. Let i € {0,1}. Let ¢ < p.

(1) If pi-i 3z Yy ®.(Z ® G, x,y) then ¢+ 3z Vy ®.(Z & G, x,y).

(2) If pi-i Yo Jy -®.(Z ® G, z,y) then q - Vo Jy - (Z & G, x,y). *

PROOF: Let ¢ = (70, 71,(Y, : peJ),K). For (1) let = be such that for all 7 ¢ Uper X, and
for all y we have ®.(Z & (0; uT),x,y). Let now 7 € Upes Yp. We have Uper Yy € Uper Xp
and thus 7 € Uper Xp. Note also that 7 = o; U p for some p € Uper Xp. It follows that
TUT=0;UpUT. As puT S Uper X, then for all y we have ®.(Z @ (0;upuT),2,y). Then
for all y we have ®.(Z ® (1; UT),z,y). Then ¢qI-* 3z Vy ®.(Z & G,z,vy)

For (2) note that we have L ¢ ® ; H. Let Xi= At NUper Xp and Yi= Al NUpes Yp. Fix
7CY?and z ew. As ¢ < p we have Y ¢ X? and then 7 ¢ X*. Note that 7; = o; Up for some
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pSXi Soriur=0;UpuT. As puT € X' by hypothesis we have H ¢ Ue, (e,ou(pur),z) and
then using Proposition 5.4.5

@’H c (EJ@UcI(e,aiu(pur),z) S Uy (e050(pur) )

As K € ®;H we then have K €U, (c.0.0(pur),e) = Ue,(e,rurz)- As the choice of 7 and
x was arbitrary we then have

Kc m u{J(e,TiUT,x)

7Yt rew

Thus ¢ I Yz y -®.(Z @ G, z,y) n

Proposition 5.4.8 : Given a sufficiently generic Q-filter F, there are unique sets Gg_-, Gé_-
such that for every conditions (o9, 01,(X, : pe€I),H) € F we have o < Gof and o < Glf.*

Proor: Trivial. -

—— Notation

Given a sufficiently generic Q-filter F € Q we write Gi}- for the associated generic on
side 1.

Definition 5.4.9 : A Q-filter F ¢ Q is II3-complete on side i if for every Aq functional
formula ®.(Z ® G,x,y), whenever there is p € F such that p ! Vo 3y ®.(Z ® G, z,7)
for ¢ € {0,1} then for every z there exists ¢ € F with ¢ = (0¢,01,(X, : peI),H) such
that 3y ®.(Z & 0y, x,y) holds. &

Lemma 5.4.10 : Let F be a Q-filter Hg—complete onsidei. Let pe F. Let ®.(Z@®G, x,y)
be a Ag functional formula.

(1) If pi-i 3z Yy ®.(Z ® G, z,y) then Iz Yy &.(Z @ Gg_-,a:,y) holds.

(2) If pi-i Yo Jy -®.(Z ® G, z,y) then Vo Jy -®.(Z ® G-, x,y) holds. *

PROOF: Let p = (0¢,01,(X, : p € I),H). For (1) there is some z such that for all
7 € Uper Xp and all y we have ®.(Z & (o; UT),2,y). Suppose for contradiction the there
exists y such that -®.(Z & G'z,z,y). Then -®.(Z & 0,z,y) holds for some o < G'z. It
follows that -®.(Z @ p, z,y) holds for every extension of p > o. One of this extension must
be of the form o;uT for 7 € Uper Xp, which is a contradiction. Thus 3z Yy @e(ZeaGif, x,y)
holds.

For (2) we need to use the fact that F is I13-complete on side i : for every x there
exists ¢ € F with ¢ = (79, 71,(Y, : p € J),K) such that Iy -®.(Z & 7, z,y) holds. Thus
for every x there exists y such that -®.(Z & G%,z,y) holds. n

For the previous proposition to work, we need our filter to be Hg—complete on side i.
This is the difficulty in this proof, and the reason we need later the P-forcing.

We now connect the forcing of X9 statements, to valuations and making our generic
not PA(()"). For that we fix an enumeration {®,(X,n)}ee, of the {0,1}-valued partial
functional.
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Definition 5.4.11 : Let n: w x 2 - w be a function which takes an integer e and a
valuation v in parameter and returns the code n(e,v) such that for any X € 2*:

In e domv ®.(X',n) =v(n) iff Iz Vy @, (X, z,y)

Definition 5.4.12 : Let p € Q. We define

1 pir 3z ®,((Z @ G),z) |= (0, x) if there exists a valuation v compatible with
J(D' and with domwv € dom J(Z)/ such that p I+ 3z Yy (. ,\(Z ® G, 2,y).

2. pirt 3z @, ((Z® G)',x) 1 if there are two incompatible valuations vg,v1 such that
pIF Vo Jy _‘(I)n(e,vo)(Z ® G,x,y) and p I-' Vo Jy _‘(I)n(e,vl)(Z & G,x,y). ¢

Definition 5.4.13 : A Q-filter F < Q is PA-generic on side i if for every functional
®.(G,n), there exists p € F and n such that either

L pi ., (Ze®G),n) l=®, (0, n)
2. piH @, ((Z®G)',n) t 3

Lemma 5.4.14 : Let F be a Q-filter II-complete on side i for i € {0,1}. Let p € Q.

L Ifpiri3n @.((Z@G)',n) I= ,(0',n) then .((Z ® G%)",n) = &, (I, n) holds for

some n.

2. If pit" In @.((Z® G)’,n) 1 then ®.((Z & G%)’,n) 1 holds for some n. *

PrOOF: For (1) let v be a valuation compatible with J(Z)/ such that domv ¢ dom J@r
for which we have p - 3z Vy Py(e0)(Z ® G,7,y). By Lemma 5.4.10 we must have
some z such that Vy @, ,)(Z ® G'z,x,y) holds. By definition of n we must have some
n € domwv such that ®.((Z ® G%)’,n) = v(n) holds. By assumptions on v we then have
®.((Z®Gl) ,n) b=, (0, n). |

For (2) let vo,v1 be two incompatible valuations such that p I* Vo 3y -®, . ,)(Z &
G,z,y) and p I+ Vo Jy =@, (Z © G, 7,y). By Lemma 5.4.10 we must have that both
Vo Iy e (Z @G, 2,y) and Vo 3y ~@, ..,y (Z ® G, z,y) holds. By definition of
it must be that

d.((ZoG%) ,n)t or ®.((Z & G'%) ,n) |# vo(n) for every n e domwg

and
D.((Z®G%) ,n) 1 or ®.((Z @G ,n) |z vi(n) for every n e domw,

As vg and v; are incompatible we must have some n such that vg(n) |# vi(n) |. Therefore
we must have ®.((Z ® G')',n) 1 (using that ®. is {0, 1}-valued). ]
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5.4.2 The P-forcing

The goal is now to create a Hg-complete and PA-generic Q-filter. We use for that the
P-forcing for which a condition is a combination of several QQ-conditions. Ultimately a
filter for P can be seen as a ﬁnitely branching tree of Q-conditions.

Recall that Z is a set not PA(()") and A a AY(Z) set with A° = A and A' =w - A. We
fix in addition a countable Scott set M containing Z and low relative to Z, that is such
that M’ <p Z' for a presentation M of M. Recall also that the notation Z/léw for C cwxw
means (g pyec Us ? Where { Xy bnew is an enumeration of the elements of M.

Definition 5.4.15 : For n € w, a P,,-condition is a tuple
({{og,01) = 1< L}, (Xp = peln),C)
where
1 L{C is a large subclass of I, - 2¥
2) (at,0f, (Xp = pe I),UC tr) is a Q,, condition for every I < I,,.

4

(1)
(2)
(3) C a AY(Z) set.
(4) X, e M for every pe I,
() U

5} (_: E : pely)
For I < I,, we write p! for the Q,-condition defined by
(U(])vafv(Xp : pEI),Ué/I[‘[)

Let P=U, P, o

We now define forcing extension.

Definition 5.4.16 : Given two P-conditions p = ({(c8,0f) : 1< I,},{X, : pel,),C)
and ¢ = ({{(7{, ) «+ T< I,},(Y, : peln), D) we define ¢ < p if

1. m2n

2. For every J < I, and I < I,, such that J < I we have ¢’ < p’. o

We now define the forcing question, which is parametered by a set S c{I < I,}.

Definition 5.4.17 : Let p = ({{o},01) : < I,},{X, : pel,),C) be aP, condition.
Let Sc{I<I,}. Let @.(Z®G,z,y) be a AY functional formula. For I< I,, and i € {0,1}
let X} be A* nUper Xp. We define p 7= 3z Vy ®.(Z ® G, x,y) to hold if

uC n m m ®UC[(60 Tur,x)

IeS rc Xt zew In

is not a largeness class <

At this point an example will probably help the understanding.
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Example 5.4.18 : We have I; = {0,1,2} with {0,1} < I, {0,2} < I; and {1,2} < I;.
Let
01 0,1 02 02 1,2
({<O‘0 aal a>a<00 701 a>a<00 701 a>} <X07X17X2> C)

be a Pj-condition. Suppose S = {{0,1},{0,2},{1,2}} and let ¢ =0. Then

p2-23z Yy . (Z @G, x,y)
holds iff

3pcYouYi-{0,...,|o0" 3
{(YD,Y;[,YQ) . p— OU 1 {06’1 )|UO UT|} yew }
TEAIN(XoUX),zew s.t. _"I)G(ZEB (U() UTBJQP)axﬂJ)
(Yo Y1, Ya) : ElngouYg—{O,O.z..,|aO’ utl} Jyew }
Z/{é‘/lm TCAN(XguX3),zew s.t. _'(I)e(Z ® (O-O’ uT L;QP)’ T, y)
(Yo, Y1.Ya) : 309Y1UY2—{0,-2--,|GO’ uTtl} yew }
) ) . 1,
TCAIN(X1UX3),rew s.t. _'(I)E(ZGB (UO UTUp),J},y)
is not a largeness class. o

We now show that the question has the right complexity.

Lemma 5.4.19 : Let p= ({{ol,0f) : I<1,},(X, : pel,),C)beal, condition. Let S ¢
{I<1,}. Let ®.(Z&G,z,y) be a A functional formula. The question p 7+ 3z Yy ®.(Z
G,z,y) is ¥0(Z") uniformly in e,i and S. *

PrROOF: For I < I,, and i € {0,1} let Xt be A" n Uper Xp. Let D be a set of indices such
that

u UC N ﬂ ﬂ ®UC1(60' Tur,x)
IeS TCX’ zew In

Let M be the set coding for M. Note that as A,C and M are all A(Z) then also D
is AY(Z). By Proposition 5.3.8 Uﬁ/l is a largeness class iff for every finite set F' € D the
open set Z/{I{YI is a largeness class. By a relativized version of Corollary 5.3.10 the question
“is YU is a largeness class ?” is TI3(M) uniformly in F, in e,i and S. Tt is then TI9(M")
and then H?(Z’ ) uniformly in F, in e,i and S. Thus the question “is Z/{g is a largeness
class 77 is II9(Z’) uniformly in e,i and S.

It follows that the question p?l—is Iz Vy ®(Z @G, x,y) is X{(Z') uniformly in e, and
S. [

We now turn to the proof of the two main lemmas, which can be seen as the core of
the proof.

Lemma 5.4.20 : Let p= ({{o},0]) : I 1,},(X, : pel,),C) be aP, condition. Let
Sc{Iql,}. Let ®.(Z®G, z,y) be a A functional formula. Suppose p?+-% 3z Vy &.(Z @
G,x,y) for some i € {0,1}. Then there is an extension ¢ < p with ¢ € P, and some I € S
such that ¢/ - 3z Yy ®.(Z & G, z,y). *

PROOF: Let Xt = A" nUpes X, for I< I,. As p?-i5 3z Yy ®(Z @ G, 2,y) we have

MC n m ﬁ ®u<1(ea' uT,)

IeS TCX’ xew In

is not a largeness class. Thus by Proposition 5.3.8 there exists a ¥9(X) class U ¢ I,, — 2¥
for some X € M such that U3 nNes Nrexi zew @1, Ue (e,07ur.2) €U and already U is not a
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largeness class. Then there exists covers X 8 U---uX c]f 2w e M for every p € I,, such that for
every function f: I, - {0,...,k} we have (Xg(p) cpely)¢U. AsUp c Lx, : per,) there

must be by Proposition 5.3.15 some f: I,, > {0, ..., k} such that Z/{é\/l r1£<X AxX1®)  per) is
pMNAp ; n

a largeness class and in particular such that (Xmeg(p) cpely)e Z/{é/t c Y. Then we must
have <Xp npr(p) : p € I?’L) ¢ ﬂIES mTQX}.,CCEW ®[n Z/{CI(B,G{UT,.’L')' Let I* € S, Tx E AZ ﬂUpEI* Xp
and z. € w be such that

<Xmepf(p) : p61n>¢@u<[*(6705*UT*7$*)

It follows that
(X,nX]® :per)eu

Cry (e,UZ.I* UTw,Tx )

Thus ®.(Z & (ail* U Ty Up),Ts,y) holds for every p € Uper, Xp N Xg(p) and every y € w.

I 1 L. I,

Let 71, = ol | and 7/ = o] except for I, for which we let 7,* = 0,* UT.. Let m =

KA
maxe(o.1y.az, 7] Let Yy = Xp 0 XJ® ~{0,...,m} for p e I,. By Proposition 5.3.12 we
have .L'(Xpmxg(p) :

the fact that Y, € M for p € I,, let D be such that U' =UX' 0 Ly, . per,)- Let

vl Ly, : per,) and thus L{é\fl N Ly, : per,) 18 a largeness class. Using
q= ({<7'0]v7'1[> P 14 1} (Y, 2 pely), D)
By design ¢ < p is a P,-condition such that ¢’ I-* 32 Vy ®.(Z & G, z,v). m

Before showing the next lemma, we provide a picture which may be of help for the
reader while reading the proof : an illustration of the relation between largeness classes of
a condition p € P,, and an extension g < p with ¢ € P,,41.
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Le

&
7/ U

N

Lo x L1 x Lo

& Y
V)]
// PO\
£m0 X Exl X £x2 X L

@

x3 X £m4 x £x5 X £m6

Bl Bl

(A% A1, AL (Al Al AY

Figure 5.3: In this picture L. is a largeness subclass of 2. Then Ly, £ and Lo are the
three largeness classes obtained when forcing our first IIJ statement. Each of them is a
subclass of L.. Then each L,, for a < 7 are the seven largeness classes obtained when
forcing our second Hg statement. Each of them is a largeness subclass of Ly x £1 x Lo and
we are then at this point in the product space Is — 2*. We then have a partial illustration
of a good combination in the belong relation (A7(°) : p e I,) for a possible f : I,, - {0,1} :
Here (A, Al) € L1112y and (A1, AY) e Lyatq1,2y- Having (A, A) € L1 x Lo helps us defeat
one functional and having (A%, A') € Ly M1,2y and (AL, AY) € L4 P12y helps us defeat
another one.

Lemma 5.4.21 : Let p= ({{o},0]) : I 1,},(X, : pel,),C) be aP, condition. Let
Sc{l<I,}. Let &, (Z®G,2,y),..., P, . (Z&G,2,y) be ups1 many AY functional
formulas. Let i € {0,1} and suppose p ?#% 3z Vy e, (Z@®G,1,y) for every j < upi1. Then
there is one extension ¢ < p with g € P, such that for every I € S and every J € I,

extending I we have for a,b the two possible nodes of J= of length 1 that:

¢’ F vz Jy -, (Z &G, z,y) and ¢ vz By -P., (ZG,x,y)

PROOF: Let X} = A'n Uper Xp for I < I,. Let C be the class Z/{éft. For every j < w41, as
pMs 3z Vy @, (Z © G, 7,y) we have

Cj =Cn m m ®Z/{CI(€j,U,{UT,$)

IeS Xt wew In

is a largeness class.

Let D ¢ 1,41 — 2% be the class Co x Ca x --- x C,,,,,-1. Let D be a set of indices such
that L{{)\’l =D. For J I,,1 with J < I let 7'6] = O'é and Ti] = 0{. Let Y;, = X, for every
p € I,, and every j < un4+1. Finally let

q:({<7—6]77—i]> : Jq[n+1}7<YP : pEIn+1)7D)

Let us show that ¢ is a P,41 condition. As a product of wu,.1 large subclasses of
I, - 2%, D is a large subclass of I,;1 - 2. As X} is AS(Z) for every I < I, it follows
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that the set of indices D is AY(Z). As Cc Lix, : pel,), then C; € Lix, : per,) for j <upq1.
Thus Cj € Ly, : per,) for j < ups+1 and thus D ¢ Ly, . e,y It follows that ¢ is a Py
condition.

Let us show that ¢ < p. Let I < I, and J < I,41 with J < I and let a,b be such
that J = {ap : pel}u{bp : pel}. Itisclear that Y, ¢ X, Yj, € X, and that
(78, Uperay Yo) < (08, Uper, Xp) and (14, Uper,.., Yo) < (01, Uper, X,) as Mathias conditions
(the conditions are in fact equal). Note also that as C,7S Cly and as Cpl7S Cl1 we have

Calr xCpt 1€ @ Cly
7

As Dtj=Cytr xCpl; we then have D1 ;S ®;Ctr. Thus ¢7 < p’. As this is the case for
I« I, and every J < I,4+1 with J <1 we then have g < p.

Let us finally show that for every I € S and every J € I,,,1 extending I we have for a,b
the two possible nodes of J= of length 1 that:

¢’ F vz Jy -®.. (Za& G, x,y) and ¢ vz By -0, (Z&G,x,y)
We want to show for Y} =A'n Upes Yy that we have:
M M
Up'tic m UCJ(ea,TiJUT,x) and Up' 7€ m uCJ(Eb,TiJUT,I)
TCY, wew TCY ), wew

Let us show the first inclusion, the second one being shown symmetrically. We have

Ca = ﬂ ®u<[(6a,U-IUT7x) and then Ca s m u{[(ea,a.IUT,x)

Xt wew In X zew

Also Llﬁ/l by= Co 1 xCp M. Note that Yj = X} and T{] = Uil. Suppose (X, : pealu
bl) € U{j\’l 7. Let 7 € Y; = X} and 2 € w be such that there exists p € Upeqs Xp and
y such that ~®.,(Z ® (0 UT Up),2,y). Then there exists p € Upe;s Y, and y such that

-®. (Z® (1 uTup),z,y). Thus
Z/lf{lhg N Ue (ear?ur,z) and then ¢ Fiva Jy -®. (ZaoG,z,y)

TEY ], wew

We show the same symmetrically for b. =

Before we continue, we give an illustration of a PP filter, seen as a tree of Q-forcing
conditions

p
W
2 fQng
Po b1 D2
" "
IEON IO
QT Qe
Po,0 Po,1 Po,20 P20 P21 . P2,20
/«f?*
b‘;\

Figure 5.4: Here the blue part correspond to the beginning of a path of Q-forcing con-
ditions. At the first level there are three possibilities : {0,1},{1,2} and {0,2}. At the
second level there are 21 possibilities : the number of possible extensions of some I < I
by some J < Iy, which is the number of possibility to pick 2 elements out of 7 : the two
elements along each edge correspond to the two new element added in the symmetric set.
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We now combine the two previous lemmas to show that given a P-condition, we can
find an extension deciding the truth of a Zg formula for every (Q-condition composing it.
We also directly combine it with the notation n for Definition 5.4.11. This will then be
used to build a PA-generic Q-filter.

Lemma 5.4.22 : Let p € P,,. Let ®.(G,x) be a functional. Let i € {0,1}. There is a P11
or a IP,, condition ¢ < p such that for every I < I,,1 we have

(1) Either ¢/ - 3z ®.((Z @ G)',z) |= (0, z)
(2) Or ¢’ H 3z ®.((Z®G)',x) 1 *

PRrROOF: Recall :w x 2* - w be such that
In e domv ®.(G',n) = v(n) iff Iz Yy @, ,)(G,z,y)

Let pg = p. Suppose we have defined conditions py < pg_1 < ... < pg with p; € P,, for t < k,
elements I* <1 I,, for ¢ < k and valuations v; for ¢ < k such that p{il - 3z Yy Dy e (Z @
G,x,y) for t < k.

Let Sp = {I : I<IL,}-{I' : t<k}. Let Wy be the set of valuations v such that
Dk ?I—fgk 3z Yy ®pc.0)(Z ® G, x,y). By Lemma 5.4.19 the set Wy, is Z'-c.e.

From Lemma 5.3.2 either W}, contains a valuation v compatible with J@’ with domwv ¢
dom J@f, or there are u,,1 many pairwise incompatible valuations outside W.

Suppose we are in the first case and let v, € W}, witness that. Then from Lemma 5.4.20
there exists I¥ € Sy, and pgyq < pr with pgsq € P, such that péil - 3z Vy D ey (Z @
G, x,y). Note that by definition this is the same as piil I 3z B((ZoG) ,z) \= (0, 2).
We can continue the induction.

If we always are in the first case until we exhausts all of {I : 1< I}, letting m = [{I :
I < I,}| we then have that p,, < p is such that p,, € P, and p., - 3z ®.((Z ® G)', ) |=
<I>x((7)', x) for every I < I, (using Lemma 5.4.3). Then ¢ = p,, satisfies the lemma.

Suppose now that for some k in the induction we are in the second case, by Lemma 5.3.2
fix up+1 many pairwise incompatible valuations wy, ..., w,,,,-1 outside of W}, such that
pr Mg, 32 VY e, ) (G, x,y) for every j < unii.

From Lemma 5.4.21 we have an extension ¢ < p, with g € P,,+1 such that for every
I €S and every J< I,,,1 with J < I we have for a,b the two possible nodes of J= of length
1 that:

¢ vz By =@ (cw,)(Z @®G,r,y) and ¢ vz Jy =@ e (Z ® G 2, y)

Note that by definition this implies ¢/ IF* 32 ®.((Z @ G),z) 1. Let J < I,,+1. Either
J < I for some I € Sy in which case ¢7 I+ 3z ®.((Z&G)',x) 1, or J < I for some I ¢ Sy,. This
is case we have g < p; for some ¢ such that p! I 3z Yy Qe ) (Z0G, T,y). As q’ < pF we
then have ¢/ I 3z Vy (e, 1) (Z®G, 2, y) and then ¢/ F 3 B ((Z0G), x) |= B (0, z).
It follows that for every J < I,4; we have (1) or (2). ]

We now show the first step in the creation of a I13-complete Q-filter.

Lemma 5.4.23 : Let peP,. Let ®.(Z& G, x,y) be a A? functional formula. Let J < I,,.
Suppose p’ - Yo Jy -®.(Z & G, x,y) for i € {0,1}. Suppose also that p’ is valid for side
i. Let 2 € w. Then there is an extension ¢ < p with ¢ € P,, such that for ¢’ = (09,01, (X< :
Te J),H) we have Jy -P.(Z & 04, z,y) holds. Furthermore for every I < I,, and every
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j €{0,1} we have that p! is valid for side j iff ¢ is valid for side 7. *
PrROOF: Let p= ({{od,0l) : I 1,},(X, : pel,),C). We have
p’ = (05,07, (Xp : pe)U"s)

Let X} =A'n Uper Xp for I < I,. As pl IF Va Iy 8. (Z @ G, x,y) we have

ué\/l WS m UCJ(G,U;]UT,iv)

i
TEX Y, TEw

As p” is valid for side i we have (A’ NnX, : pel) eugﬂrJ. For 7 =€ and = e w. We then
have A
(A'nX, : pelJ) €U, (0 )

Then there exists 7 € Upes A’n X, such that 3y =®.(Z& (0] ur),z,y) holds. Let 77/ = o/ uT
and 77, =0/ ,. For I+ Jlet 7} =0l and 7| = o/ |. Let m = maxe(01} 141, |7 Let
Y, = Xp - {0,...,m} for p € I,. Note that by Proposition 5.3.12 we have Ly . per,) =
Lix, : per,) and thus Llé/l S Ly, : pel,)-

It follows that ¢ = ({(7d,{) + 1< I,},(Y, : pel,),C) is a P, condition such that
Jy =P (Z @ T{],.’E,y).

Suppose now that (47N X, : pel)eUX for some j e {0,1} and some I < I,. Then
as Z/lé‘/l g E(Xp : per) We must have ®@; A’ ¢ L{é‘/l '7 and then ®; A7 € E(Yp : pel) and then
(A nY, : pel)eUdy. .

We shall now show that for every n, one branch in the tree of P, conditions must be
valid for some side i € {0,1}.

Lemma 5.4.24 : Let p € P,. Thereisi e {0,1} and I< I, such that p’ is valid for side i.

PrROOF: Let p=({{cd,0l) : I<1,},(X, : pel,),C). The lemma follows from the com-
binatoric used to define I,,. We have Ué\/l € Lix, : pe1,)- 1t follows from Proposition 5.3.15
that there must be some f : I, > {0,1} such that &% n Liaronx, : pel,
class and thus such that (Af(p) NX, : pely)e L{é\/‘. By construction of I,,, there must

exists some I < I, such that f(p) =0 for p € I or such that f(p) =1 for p e I. We then
have (A'n X, : pel) el for some i€ {0,1}. Thus p’ is valid for side 1. ]

y is a largeness

Definition 5.4.25 : Let F c P be a filter. A path of F is a function f:F — U, I, such
that:

(1) pePy, iff f(p) eI,
A path is valid for side 7 if furthermore we have

(3) p/® is valid for side i o
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Lemma 5.4.26 : Let F c P be a filter. Then for some i € {0,1} such that this filter has
a path valid for side 3. *

PrOOF: We can assume without loss of generality that F =pg > p1 > p2 = ... with p, € P,,.
Let us define the finitely branching tree 7' = {(pl,i) : p, € F,I< I,,i€{0,1}} with the
partial order being (pl,i) < (¢7,,7) iff ¢/, < pL and i = j. Let S ¢ T be the set of nodes
(pl,i) such that p! is valid for side 4. From Lemma 5.4.24 the set S is infinite. From
Lemma 5.4.3 it is a subtree of T : if (¢7,,4) € S and (pl,i) < (¢7,,7) then (pf,i) e S.
From Konig’s lemma it has an infinite path and there is then a function f satisfying
(1) (2) and (3) of Definition 5.4.25. (]

Lemma 5.4.27 : There exists a Q-filter which is both PA-generic and Hg—complete on
side ¢ for some i € {0,1}. *

PRrROOF: Let py = ((¢,€)w,2¥). For n+1 = (e,z,j) where j € {0,1} we define p,.1 the
following way: If j = 0 we let using Lemma 5.4.22 p,.1 < p be such that for every i € {0,1}
and every I < I, for m such that p,.1 € I,, we have

(a) Either p! ' 32 ®.((Z® G)',z) |= (0, z)
(b) Or pl IH 3z ®.((Z @ G)',x) 1}

If j # 0 and using Lemma 5.4.23 we let p,,+1 such that for every I < I,,, for m such that p,, €
P, we have for every i € {0, 1} for which pl, is valid for side i that pl, I-* Vo 3y -®.(G, z,y)
implies 3y ~®.(0;, z,y) where pl = (09,01,(X, : pel),H).

Let F = {pn }new- By design every path of F is a PA-generic Q-filter. By Lemma 5.4.26
let f be a valid path through F. By construction f(F) must be a PA-generic Q-filter which
is T19-complete on side i for some i € {0, 1}. ]

We can finally show the theorem:

Theorem (5.1.1): For every set Z whose jump is not of PA degree over 0" and every
Ag’z set A, there is a set G € [A]¥ U[A]“ such that (G & Z)' is not of PA degree over

0.

Proor: Using Lemma 5.4.27 let F beA a PA—generic Q-filter Hg—complete on side 7 for
i € {0,1}. By design we must have G € [A’]“. From Lemma 5.4.14 it must be that
(Z @ G%) is not PA(0"). "
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Chapter

Conclusion and future research

We conclude with some open questions regarding potential future research directions.

6.1 About cone avoidance

Consider the following theorems proved in Chapter 3.

~

Theorem (2.1.1 for m =0): Let Z be non-computable. Let A be any set. Then there

is a set G € [A]Y U[A]¥ such that Z is not G-computable.

~

Theorem (2.1.1): Let m > 0. Let Z be non (Z)(m)—computable. Let A be any set. Then
there is a set G € [A]* U[A]® such that Z is not G -computable.

Note the first one was first proved Dzhafarov and Jockusch [13]. A common way to
state this theorem is to say “RT% admits strong cone avoidance”. The meaning is the
following : RT% is simply the pigeonhole principle for infinite sets : Given a set A, there
exists an infinite subset in A or in its complement. “Cone avoidance” means solutions
of instances of RT3 can always avoid non-trivial cones in the Turing degrees : For any
non-computable Z, we may find G € [A]* U[A]¥ which is not in the cone of Turing degrees
above Z. What interests us now is the difference between “cone avoidance” and “strong
cone avoidance” : for the first one, we are only interested in computable instances, or at
least instances which are not themselves in the cone of Turing degree we want to avoid.
For the second one we are interested in any instance. Theorem 2.1.1 for m = 0 then says
that “RT3 admits strong cone avoidance”.

Using the Cholak, Jockusch, and Slaman’s [3] decomposition of RT% into COH+SRT %,
we can use strong cone avoidance of RT} to show that RT3 admits cone avoidance (but
not strong cone avoidance) : this is Seetapun’s theorem.

Theorem 6.1.1 (Seetapun [37]):
Let ¢ : [w]?> - {0,1} be a color and let Z be non c-comutable. Then there is a set
G € [w]® such that ¢ is monochromatic on [G]? and such that Z is not G-computable.
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Note that using the development of Chapter 3 and Chapter 4 we are now able to show
the following generalization, still using the Cholak, Jockusch, and Slaman’s [3] decompo-
sition of RT3 into COH + SRT%:

Theorem 6.1.2:

Let ¢ : [w]®> - {0,1} be a color and let Z be non ¢™-computable for n € w (not Al(c)
respectively). Then there is a set H € [w]* such that ¢ is monochromatic on [H]? and
such that Z is not H™-computable (not AL(H) respectively).

PROOF: We briefly sketch the proof where Z is not ¢(™-computable for n € w, the case
not Al(c) being similar. Let ¢: [w]? = {0,1} be a color and let Z be non ¢(™-computable
for new. Let R, = {x : ¢({n,z}) = 0}. Using a relativized version of Theorem 2.1.1 we
find an infinite set X which is cohesive for the sequence of sets { R, } new and such that Z is
not (co X )(”)—computable. Note that a slightly different form of Theorem 2.1.1 is used :
we do not have an arbitrary set A, but rather countably may sets { R, } e, However it is
clear that any set generic enough for P,, will be cohesive for { Ry, }new-

Note that as X is { R, }new-cohesive, then lim,cx ¢(n,z) exists for every n. Let f:w —
X be an X-computable bijection. We basically use f to now work “as if w were X”.

Let A € 2% be such that A(n) = limzex ¢(f(n),z). Using 2.1.1 again we find G €
[A]¥U[w-A]* such that Z is not (c@ X ®G)(™-computable. Suppose with loss of generality
G e [A]¥. Using X, G and ¢ we compute H € X infinite such that ¢ is monochromatic on
[H]? as follow : Let G = {ng,n1,ns,...}. Put f(ng) in H. Suppose at stage k we have put
Nays---,Ng, in H. Then let a1 be the smallest such that c¢(f(ng,;), nq,,,) = 0 for every
1 < k. By construction of A and as G ¢ A we must find such an element ag,1.

Ultimately H is infinite and by construction ¢ is monochromatic on [H]?. As H is
¢® X ® G-computable then H(™ does not compute Z. m

It is easy to see that RT% does not admit strong cone avoidance : even SRT% does not.
For any function f one can design an instance of SRT% every solution of which computes
a function dominating f. For appropriate functions f one can then design instances of
SRT% every solution of which computes the halting problem (in fact any A% set fixed in
advance). However Wang was able to show that if we are allowed to keep 2 colors (among
many) then we have the following:

Theorem 6.1.3 (Wang [42]):
Let k ew and c: [w]®> - {0,...,k} be a any color and let Z be non computable. Then
there is a set H € [w]® such that |c([H]?)| < 2 and such that Z is not H-computable.

This new principle, where we are allowed to keep 2 colors among k, is called RTIQ(Q.
Wang then proved that RTi2 admits strong cone avoidance for any k. One can ask if
the same can be done with jump-cone avoidance and above. This leads to the following
question:

Question 6.1.1 : Fixn ew. Let Z be non @(n)-computable. Does there exists m € w such
that for any k € w and ¢ : [w]? = {0,..., k}, there is a set H € [w]” such that |[c([H]?)| < m
and such that Z is not G(")-computable ? &
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Many similar questions can be ask for various type of combinatorial problems. We give
here another example.

Theorem 6.1.4 (Dzhafarov, Patey [14]):

Let Z be non-computable. For any coloring ¢ : [2“]? — {0,1}, there exists a perfect
tree T' € 2% such that ¢ is monochromatic on the pairs of comparable nodes of T" and
such that Z is not T-computable.

Note that in the above theorem, a perfect tree is a non-empty set of strings such that
o € T implies o719 € T and o7 € T for some 79, 71 incomparable. In particular it is not
required to be closed by prefixes. We can ask the following question:

Question 6.1.2 : Fix n € w. Let Z be non (Z)(n)—computable. Does there exists m € w
such that for any k € w and c: [2<¥]? - {0,...,k}, there is a perfect tree T' such that at
most m colors are used by ¢ on the pairs of comparable nodes of T" and such that Z is not
T _computable ? &

6.2 RT? vs SRT}

Before the separation between RT3 and SRT%, every theorem about the weakness of RT3
worked for any set A, that is, theorems where of the form “for every set A, there exists
G e [A]Y U [w— A]“ which is computably weak”.

However Theorem 5.1.1 only works for AJ sets A, which is somewhat disappointing.
The various attempts to obtain the same result for any set A have failed so far. We then
ask the following question:

Question 6.2.1 : Does there exists a set A such that every G € [A]YU[w— A]¥ computes
a p-cohesive set? &

We connect this question to another more abstract one : remember the definition of
partition generic : X is partition generic below U for a largeness class U if X belongs
to every Hg partition regular class C € Y. By considering the largeness classes Lx for
computable infinite sets X, partition generics sets can be considered as the opposite of
cohesive sets : they intersect every computable sets infinitely often.

Question 6.2.2 : Let A be any set. Does there exists a Z(l] largeness class U and a set

G e [A]Y U[A]¥ such that G is not PA and partition generic below U. o

Note that we could ask the same question with cone avoidance instead of not being
PA. The important point is to be able to control the truth of E(IJ statements, while being
partition generic somewhere. Following the ideas of Theorem 4.2.1 we can always make
sure that our generic belongs to a Hg partition regular class that we fix in advance. The
previous question ask if we can make it belong to as many IIJ partition regular class as
possible.

We end with a last question, which can be seen as a variation of the previous one:

Question 6.2.3 : Let C be a Eg largeness class. Let A be any set. Does there exists a

set G € [A]Y U[A]¥ such that G is not PA and belongs to C. o

Zg partition regular classes which are not Hg includes for instance sets with positive
upper density or sets of strings which are dense somewhere. It may be possible to build a
counter example with one of these two classes.
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