
UNIVERSITE PARIS.DIDEROT (Paris 7) SORBONNE PARIS CITE

Laboratoire d’Informatique Algorithmique : Fondements et Applications

Higher computability and randomness

Thèse présentée pour l’obtention du diplôme de

Docteur de l’université Paris Diderot, spécialité
Informatique

à l’école doctorale de Sciences Mathématiques de Paris Centre

Par

Benoit MONIN

sous la direction de Laurent BIENVENU

soutenue publiquement le 5 décembre 2014

RAPPORTEURS

M. Chi Tat CHONG National University of Singapore
M. Denis HIRSCHFELDT University of Chicago

JURY

M. Eugène ASARIN Université Paris 7 Examinateur
M. Laurent BIENVENU Université Paris 7 Directeur de thèse
M. Chi Tat CHONG National University of Singapore Rapporteur
M. Serge GRIGORIEFF Université Paris 7 Examinateur
M. Grégory LAFITTE Université Montpellier 2 Examinateur

Remerciements
Je souhaite remercier ici les nombreuses personnes ayant participé directement ou

indirectement à l’élaboration de cette thèse, mais aussi ceux qui simplement m’ont
accompagné dans la vie ces dernières années.

Je remercie d’abord chaleureusement Laurent Bienvenu qui a accepté de me prendre en
thèse alors que mes connaissances sur l’aléatoire algorithmique étaient plus qu’hasardeuses
(un comble). Il m’a malgré tout fait confiance et m’a enseigné patiemment tout ce que
je sais en randomness, et plus généralement j’ai beaucoup appris à ses cotés sur les
mathématiques et le métier de mathématicien.

Je remercie ensuite Noam Greenberg avec qui j’ai commencé à travailler au milieu de
ma thèse, et qui est presque devenu un deuxième directeur de thèse. J’ai aussi beaucoup
appris à ces cotés, notamment sur la calculabilité d’ordre supérieur et sans lui cette thèse
aurait certainement été très différente (et de moindre qualité).

Denis Hirschfeldt et Chi Tat Chong ont accepté d’être rapporteur de ma thèse,
rejoignant ainsi Laurent et moi-même dans le club très fermé des personnes ayant lu ce
document en détail. Aussi au delà de l’intérêt que l’on peut porter aux thématiques qui y
sont traitées, ces relectures ont représenté un gros travail qui a contribué à l’amélioration
du rapport de thèse, et je les en remercie donc avec gratitude.

Je remercie bien évidemment Eugène Asarin, Serge Grigorieff et Grégory Laffite
d’avoir accepté de faire partie du jury de cette thèse, qui fut une aventure scientifique
et humaine, qui a commencé pour moi il y a quatre ans et quelques mois, quand j’ai
entamé le Master LMFI (Logique mathématique et fondement de l’informatique) après un
parcours qui ne semblait pas m’y prédestiner. J’y ai rencontré de nombreuse personnes,
ainsi que durant mes trois années passées au LIAFA. En souvenir de pour tous ces bons
moments que nous avons partagés, des vendredis soirs à l’Irish aux vacances en Bretagne,
en passant par la tartiflette niveau 4, je remercie Shahin (pour être la meilleure personne
du monde, et aussi pour m’avoir aidé dans l’élaboration du théorème Theorem 6.4.3),
Nico (pour ses vidéos Youtube underground), Jean-Philippe (pour sa sagesse), Samy
(pour me faire croire que je parle très bien espagnol), Tristan (pour avoir eu la bonne
idée de m’inventer), Romain (pour savoir su dépoussiérer avec brio le style ringuard de
“la danse en soirée”), Seb (pour me faire découvrir des jeux de réflexion étranges), Rafa
(pour sa recette de nachos dip1), ainsi que Kuba, Nadia, Benjamin, Luis, Shaadi, Armen,
Yann, Catherine, Guillaume, et aussi Guillaume, et finalement tous les autres.

Cette thèse fut aussi l’occasion pour moi de voyager, en particulier à Buenos Aires
où j’ai fait la connaissance de Mushfeq et Kelty, que je remercie pour cette mémorable
randonnée des sept lacs en Patagonie. J’y ai rencontré de nombreuses autres personnes,
comme Luca, Linda, Greg, Ian, que je remercie également, ainsi que Quinn que je
remercie pour son soutien moral durant l’écriture de cette thèse, et pour toujours avoir
un nouveau puzzle mathématique à proposer, comme celui-là par exemple :

1Mixer des haricots rouges et des gousses d’ail puis mettre de côté la purée obtenue après l’avoir
assaisonnée. Dans un bol, ajouter de la chair d’avocat, du jus de citron et de la crème frâıche et mélanger
jusqu’à l’obtention d’une mixture homogène. Saler et poivrer. Dans un plat allant au four, déposer la
purée de haricots, puis la purée d’avocat. Recouvrir d’emmental râpé. Couper de la tomate en petits dés
et recouvrir le plat. Enfourner pendant 20 minutes à 150°C et servir accompagné de nachos. Bon appétit !

“Sept personnes portent chacunes un chapeau avec un chiffre entre un et sept inscrit
dessus (répétitions possibles). Elles doivent écrire en même temps un chiffre sur un
morceau de papier, de telle sorte qu’au moins une d’entre elle écrive le numéro de son
chapeau. Notez que chacun voit les numéros des autres chapeaux mais pas celui de son
propre chapeau, et que toute forme de communication est interdite ; on suppose bien sûr
que les protagonistes ont pu se parler autant qu’ils le voulaient avant de recevoir leurs
chapeaux.”

J’ai appris beaucoup de choses durant les séminaires réguliers du groupe de travail
“Calculabilité et Hasard” du LIAFA, aussi je remercie Antoine, Ludovic, Chris et Paul,
et bien sûr Serge et Laurent, pour ce qu’ils m’ont appris à travers leur participation
régulière. Je remercie aussi Sasha pour son accueil chaleureux à Moscou et pour nos
différents échanges scientifiques (notamment sur la représentation, adoptée dans cette
thèse, des ordinaux constructifs sous forme d’arbre).

Je remercie David pour toutes ces bonnes soirées passées en sa compagnie, souvent en
musique, et Damien pour son amitié depuis tant d’années. Finalement je tiens à remercier
mes parents, Pascal et Aude à qui je dois tout le reste, et mes frêres et soeurs, Vincent,
Claire, Anne et François, pour être là. J’ai enfin une pensée particulière pour Nikita qui
m’a accompagné pendant toutes ces années et que je remercie pour tous les moments
passés en sa compagnie.

ii

CONTENTS

Contents

Introduction (Français) vii

Aléatoirité et calculabilité d’ordre supérieur . vii

Résumé de la thèse . xiii

Introduction (English) xix

Higher randomness and computability . xix

Thesis summary . xxiv

1 Background 1

1.1 Basic spaces and structures . 1

1.1.1 The Cantor space . 1

1.1.2 The Baire space . 3

1.1.3 Trees . 3

1.2 Basic computability notions . 4

1.2.1 Computability on the Cantor space 4

1.2.2 The fixed point theorem . 4

1.2.3 Reductions . 5

1.2.4 The arithmetical hierarchy . 6

1.3 Ordinals . 8

1.3.1 Well-founded relations and ordinals 8

1.3.2 Ordinal arithmetic . 10

1.4 Computable ordinals . 11

1.4.1 Introduction to computable ordinals 11

1.4.2 Computable ordinals and trees . 12

1.4.3 Transfinite recursion over the computable ordinals 15

1.5 Descriptive complexity of sets of sequences 19

1.5.1 The Borel hierarchy . 19

1.5.2 The effective Borel hierarchy . 21

1.5.3 Borel hierarchies are strict . 23

1.5.4 Effectively closed and open sets . 27

1.6 Effective complexity of sets of integers . 28

1.6.1 Definition and closure properties . 28

1.6.2 The Kleene hierarchy and the computable trees 30

1.6.3 Complete sets and many-one reductions 32

1.6.4 The jump and the H-sets . 36

1.6.5 Kleene’s hierarchy is strict . 38

1.7 Connection between the effective Kleene’s and Borel’s hierarchies 40

1.8 Background on measures . 41

iii

CONTENTS

1.8.1 Classical facts on measures . 41

1.8.2 Measures and computability . 43

1.8.3 Fubini’s theorem . 46

1.9 Category . 47

2 Algorithmic randomness and Cohen genericity 51

2.1 Algorithmic randomness . 51

2.1.1 Martin-Löf randomness . 52

2.1.2 Notions of n-randomness and α-randomness 55

2.1.3 Notions of weak-n-randomness . 57

2.1.4 More on Martin-Löf randomness . 59

2.2 Genericity . 61

2.2.1 Cohen genericity . 61

2.2.2 Randomness as a genericity notion . 62

3 Beyond the Borel hierarchy 65

3.1 The complexity of sets . 65

3.2 The Σ1
1 sets . 68

3.3 The Π1
1 sets . 69

3.4 The ∆1
1 sets . 72

3.5 Further study of Kleene’s O . 75

3.6 Π1
1 as a higher analogue of c.e. 77

3.6.1 Motivation . 77

3.6.2 Enumerating Π1
1 sets . 79

3.7 Higher randomness . 82

3.7.1 Overview of the different classes . 82

3.7.2 Higher Kolmogorov complexity . 87

3.7.3 Higher discrete semi-measures . 91

3.7.4 Higher continuous semi-measures . 93

3.7.5 Equivalent characterizations of Π1
1-Martin-Löf randomness 94

4 Continuity and higher randomness 97

4.1 The higher Turing reduction . 98

4.1.1 The fin-h reduction . 99

4.1.2 The higher Turing reduction . 101

4.1.3 The continuous higher jump . 102

4.2 higher Turing and continuously Π1
1 on weak and strong oracles 103

4.2.1 On strong oracles . 103

4.2.2 On weak oracles . 105

4.2.3 On generic oracles for various forcing notions 106

4.3 Continuous relativization and randomness . 108

4.3.1 Continuous relativization for open sets 108

4.3.2 Continuous relativization for semi-measures 109

4.3.3 The van Lambalgen theorem . 110

4.3.4 The XYZ theorem . 112

4.4 Refinement of the notion of higher ∆0
2 . 114

4.4.1 The higher limit lemma . 115

4.4.2 Higher left-c.e. approximations . 116

4.4.3 Higher ω-computable approximations 116

4.4.4 Higher closed and compact approximations 117

4.4.5 Higher self-unclosed approximations 118

4.5 Continuously low for Π1
1-Martin-Löf randomness 119

iv

CONTENTS

4.5.1 hK-trivial sequences . 119

4.5.2 Low for hK and low for Π1
1-Martin-Löf randomness 122

4.5.3 Base for randomness . 132

5 Further studies on higher randomness 135

5.1 Higher difference randomness . 135

5.2 Π1
1-Martin-Löf[O]-randomness . 136

5.3 weak-Π1
1-randomness . 138

5.3.1 An equivalent test notion . 138

5.3.2 Separation of weak-Π1
1-randomness and Π1

1-randomness 141

5.4 Further studies on higher ∆0
2 approximations 145

5.4.1 Higher finite change approximations 146

5.4.2 Higher closed unbounded approximations 147

5.4.3 (ω + 1)-self-unclosed approximations 149

5.4.4 Separation of (ω+1)-self-unclosed and ω-self-unclosed approximations151

5.4.5 Separation of (ω + 1)-self-unclosed and closed approximations . . . 152

5.4.6 A summary . 154

6 Π1
1-randomness and Σ1

1-genericity 157

6.1 The Borel complexity of the set of Π1
1-randoms 157

6.2 Randoms with respect to (plain) Π1
1-Kolmogorov complexity 161

6.3 Equivalent test notions for Π1
1-randomness 162

6.3.1 First equivalence . 162

6.3.2 Second equivalence . 164

6.3.3 Third equivalence . 165

6.4 A higher hierarchy of complexity of sets . 168

6.4.1 On the Σ1
1 randomness notions in the higher hierarchy 169

6.4.2 On the Π1
1 randomness notions in the higher hierarchy 170

6.4.3 A lower bound on the higher complexity of randomness notions . . 174

6.4.4 Open questions on higher complexity 176

6.5 Lowness for Π1
1-randomness . 177

6.5.1 Characterization of lowness for Π1
1-randomness 177

6.5.2 Further discussion . 179

6.6 Higher generic sequences . 179

6.6.1 Definitions . 180

6.6.2 Π1
1-genericity . 181

6.6.3 Σ1
1-genericity . 185

6.6.4 Further discussion about lowness for higher genericity notions . . . 190

6.7 Steel forcing : The Borel complexity of the set of sequences which collapse
ωck1 . 192

6.7.1 Motivation . 192

6.7.2 The forcing notion . 193

6.7.3 The retagging lemma . 196

6.7.4 Preservation of ωck1 . 197

6.7.5 The Borel complexity of {X ∶ ωX1 > ωck1 } 199

7 The badly-behaved oracles 201

7.1 Time tricks : example with Π1
1-open sets . 201

7.2 Higher Turing computation and fin-h computation 203

7.3 Non-universality in continuous relativization 204

7.3.1 The perfect treesh-bone . 204

7.3.2 The tree of trees . 205

v

CONTENTS

7.3.3 No A-universal oracle continuous Π1
1-Martin-Löf tests 206

7.3.4 No A-universal A-continuous Π1
1-Martin-Löf tests 209

7.3.5 Higher A-continuously left-c.e. and Π1
1-Martin-Löf randoms 217

7.3.6 Further study on continuous relativization 219
7.4 On well-behaved oracles . 220

7.4.1 Self-unclosed approximable oracles . 220
7.4.2 Random oracles . 223

vi

CONTENTS

Introduction

Le présent document est un rapport de thèse, résultant de trois années de recherche,
menées sous la direction de Laurent Bienvenu, et rédigé en vue d’obtenir le titre de doc-
teur en informatique. Nous commençons par une introduction gentille au domaine des
mathématiques dont il est question. Nous donnerons ensuite le résumé détaillé de la thèse
et les principales contributions de celle-ci.

Aléatoirité et calculabilité d’ordre supérieur

Cette thèse est une contribution à trois domaines présentant de nombreuses connexions
entre eux : la théorie effective de l’aléatoire, la calculabilité d’ordre supérieur et la théorie
effective descriptive des ensembles. Nous donnons d’abord une introduction vulgarisée
à chacun de ces trois domaines mathématiques, avant d’expliquer l’intérêt de leur étude
conjointe. Ces explications déboucheront naturellement sur les problématiques motivées
et circonstanciées auxquelles nous nous attaquons.

Théorie effective descriptive des ensembles

Nous ne donnons qu’une idée sur les prémices de la théorie effective descriptive des
ensembles, qui va beaucoup plus loin que ce qui est présenté ici. Comme son nom
l’indique, la théorie descriptive des ensembles a pour objet d’étude... les ensembles, et
comme axe d’étude... leur description. Les ensembles que nous allons considérer seront
tous des sous-ensembles issus d’un espace des plus simples : l’espace 2N des suites infinies
de 0 et de 1, et nous allons nous intéresser à certains sous-ensembles de 2N qui sont,
informellement, ‘simples à décrire’ :

Considérons une châıne finie de 0 et de 1, par exemple : 01001010. L’ensemble des
éléments de 2N qui commencent par 01001010 admet pour description la châıne 01001010
elle-même. Ces ensembles seront appelés intervalles, et pour une châıne σ, ils seront
dénotés par [σ]. Nous nous intéressons à présent à une classe d’ensembles un cran plus
compliquée : les ouverts, c’est à dire les unions dénombrables d’intervalles.

Alors que chaque intervalle est aisé à décrire, la tâche peut être beaucoup plus
compliquée pour un ouvert, car un ouvert est constitué d’une infinité d’intervalles.
Certains ouverts restent toutefois simples à décrire. Par exemple, de la même manière
qu’il est aisé de décrire l’ensemble des nombres pairs (malgré son caractère infini), il est
aisé de décrire l’ouvert composé de l’union des intervalles [0pˆ1] pour tout nombre pair p,
où 0pˆ1 dénote la châıne composée de p chiffres 0 suivit du chiffre 1. En revanche, de par
leur caractère infini, certains ouverts sont ‘inaccessibles’ en ce sens qu’il est impossible
de les définir en un nombre fini de mots, et il en va de même pour certains ensembles

vii

CONTENTS

de nombres entiers. Nous reviendrons sur ce point dans quelques paragraphes. Pour
le moment notre préoccupation restera d’ordre ‘géométrique’, c’est-à-dire que nous ne
faisons pas de distinction entre les ouverts simples ou compliqués à décrire. En revanche
un ouvert a par définition une ‘forme géométrique’ des plus simples : il s’agit d’une union
d’intervalles. Nous abordons à présent la question des ensembles ayant une ‘forme’ plus
compliquée.

On s’aperçoit que relativement à un ouvert U , il est aisément possible de définir
le complémentaire de U : ‘l’ensemble des éléments qui ne sont pas dans U ’. Aussi les
complémentaires des ouverts seront appelés les fermés. La distinction entre ces deux
types d’ensemble est légitime. En effet il est aisé de construire des ensembles fermés ne
pouvant pas s’écrire comme union d’intervalles. Nous en donnons un exemple, en utilisant
la notion de mesure, qui sera détaillée dans la prochâıne section : on peut considérer une
liste de toutes les châınes finies {σi}i∈N, puis un intervalle de mesure 1/4 contenant la
suite σ0ˆ0∞ (où 0∞ est la suite constituée d’une infinité de 0), un intervalle de mesure
1/8 contenant σ1ˆ0∞, etc... L’union de tous ces intervalles est un ensemble de mesure au
plus 1/4 + 1/8 + ⋅ ⋅ ⋅ = 1/2. Aussi le complémentaire de cette union est un fermé non vide
(puisque de mesure au moins 1/2) et il ne peut contenir aucun intervalle [τ], car la suite
τ ˆ0∞ fait partie de son complémentaire. Qu’en est-il à présent des unions dénombrables
de fermés ?

On peut continuer à définir des classes d’ensembles de plus en plus compliquées en
considérant les unions dénombrables d’ensembles de la classe précédemment définie, et leur
complémentaire, menant à une nouvelle classe d’ensembles, un cran plus compliquée que
la précédente. En suivant le schéma que nous venons de décrire, les unions dénombrables
de fermés sont dans une nouvelle classe d’ensembles, intuitivement plus complexe que la
classe précédente (les ouverts et leur complémentaire).

Afin d’étudier ces classes d’ensembles dans de bonnes conditions, nous allons donner
un nom à chacune d’entre elles. La classe des ensembles ouverts sera la classe des ensem-
bles Σ0

1. La classe des ensembles fermés sera la classe des ensembles Π0
1. Ensuite, pour

chaque entier n, la classe des unions dénombrables d’ensembles Π0
n sera la classe des en-

sembles Σ0
n+1, et les complémentaires des ensembles Σ0

n+1 seront appelés ensembles Π0
n+1.

La hiérarchie précédente s’intéresse à la ‘complexité de forme’ des ensembles. Cette
étude de ‘complexité de forme’ fait partie de la théorie descriptive des ensembles ‘pure’.
Aussi nous avons bien précisé que nous parlerions de théorie effective descriptive des
ensembles. Il s’agit d’un raffinement des classes de complexité que nous venons de
définir, à l’aide de la calculabilité. Nous avons donné l’exemple de l’ouvert composé de
l’union des intervalles [0pˆ1] pour tout nombre pair p, qui est simple à décrire (nous
venons précisément de le faire). Qu’en serait-il par exemple de l’ouvert égal à l’union des
intervalles [0nˆ1] pour tous les n tel que ‘pile’ est obtenu lors d’un n-ième tirage à pile
ou face ? On sent bien intuitivement qu’il y a une ‘arnaque’ derrière cette définition,
même si l’on passe outre son caractère informel : on n’a en fait pas décrit grand chose,
puisque les éléments de notre ouvert dépendent du résultat d’une infinité de tirages à
pile ou face ; et nous nous trouvons bien incapable de définir un exemple raisonnable
d’un tel tirage, avec un nombre fini de mots. Mais puisque l’on n’a rien dit de précis
sur cet ouvert, et que l’on ne peut vraisemblablement rien en dire de précis, cela a-t-il
même un sens d’en parler ? Nous affirmons que oui, du moins dans une certaine mesure,
et nous y reviendrons dans la section suivante. Pour le moment, nous nous cantonnons
à souligner la différence entre ces deux ouverts, le premier parfaitement cernable par la

viii

CONTENTS

pensée, et le deuxième plus insaisissable, et dont l’existence même est sujette à caution.
L’idée générale est de faire une distinction entre les ouverts que l’on peut définir avec
précision en un nombre fini de mots, et les autres. La calculabilité fournit un cadre à
la fois naturel et satisfaisant (en particulier exempt de paradoxe) pour mener à bien
cet objectif. Un ouvert sera considéré ‘simple à décrire’ (on dira effectif) si il existe un
programme informatique (en particulier une liste finie d’instructions) qui énumère au fur
et à mesure qu’il s’exécute, des intervalles venant composer petit à petit l’ouvert.

Nous nous intéressons maintenant uniquement aux ouverts que l’on peut décrire avec
un programme informatique, laissant les autres de coté. On dira donc qu’un ensemble
U est Σ0

1 si il est ouvert et si il existe un programme informatique énumérant une suite
de châıne σ1, σ2, . . . tel que U = ⋃n[σn]. Un tel programme peut être considéré comme
étant une description de l’ensemble U . On continue ensuite inductivement : les ensembles
Π0

1 sont les complémentaires des ensembles Σ0
1 et admettent comme description la même

que celle de leurs complémentaires. On continue en définissant pour tout n les ensembles
Σ0
n+1 comme étant les unions effectives d’ensembles Π0

n, c’est à dire que pour un ensemble
Σ0
n+1, il doit exister un programme permettant d’énumérer les descriptions des ensembles

Π0
n le composant. Un tel programme fera donc office de description pour chaque nouvel

ensemble Σ0
n+1 ainsi défini.

On peut montrer que ces deux hiérarchies de complexité sont strictes : un cran de
complexité supplémentaire nous permet toujours de décrire strictement plus d’ensembles
qu’auparavant. On est pourtant loin d’avoir fait le tour : des ensembles, il y en a beaucoup...

Théorie algorithmique de l’aléatoire

Au début du 19ème siècle, Laplace donne dans son ouvrage Théorie analytique des
probabilités un résumé fort intéressant de cette discipline : “La théorie des hasards
consiste à réduire tous les événements du même genre à un certain nombre de cas
également possibles, c’est-à-dire tels que nous soyons également indécis sur leur existence,
et à déterminer le nombre de cas favorables à l’événement dont on cherche la probabilité.
Le rapport de ce nombre à tous les cas possibles est la mesure de cette probabilité qui
n’est ainsi qu’une fraction, dont le numérateur est le nombre des cas favorables et dont le
dénominateur est le nombre de tous les cas possibles”.

La théorie des probabilités nous enseigne que si on répète un très grand nombre
de fois une succession de dix tirages à pile ou face, on obtiendra à peu près autant de
fois la suite pppppppppp que la suite ppfpffppfp (où ‘p’=pile et ‘f’=face). Pourtant un
joueur obtenant la première de ces suites considèrera certainement cet évènement comme
extraordinaire, alors qu’il ne verra rien d’anormal à obtenir la deuxième.

Un examen attentif de la définition que Laplace donne de la ‘théorie du hasard’
permettrait presque de proposer une explication à ce phénomène : nous classons
machinalement, les ‘cas également possibles’ de suites de piles et de faces dans des
groupes, en fonction de certaines règles simples. Ainsi “ne contenir que des piles” est une
règle simple à formuler, permettant la création du groupe “des suites ne contenant que
des piles”. Si une suite obtenue après un tirage de pile ou face tombe dans un groupe
à la fois simple à décrire, et contenant peu d’éléments, elle nous semble alors non aléatoire.

La théorie des probabilités est impuissante à décrire ce phénomène. Aussi la théorie
effective descriptive des ensembles va-t-elle nous fournir un cadre naturel pour déterminer
les “règles” permettant de classer les suites dans les fameux groupes mentionnés ci-dessus.

ix

CONTENTS

Martin-Löf propose en 1966 dans [58] une définition qui reste aujourd’hui la plus connue et
la plus étudiée. Les “groupes” d’éléments que nous allons considérer pour la définition de
Martin-Löf seront simplement les ensembles Π0

2, c’est à dire d’après la définition donnée
dans la section précédente, les complémentaires d’unions effectifs de fermés effectifs. On
peut toutefois exprimer les ensembles Π0

2 plus simplement, comme intersections effectives
d’ouverts effectifs. Il nous reste à formaliser la notion de “contenir peu d’éléments”.

Pour ce faire, considérons A un ensemble Π0
2, c’est à dire un ensemble pouvant être

décrit comme une intersection d’ouverts effectifs, dont les descriptions sont énumérables
par un programme informatique P (chaque description étant elle-même un programme
informatique permettant d’énumérer l’ouvert correspondant). Notons Un l’ouvert dont la
description est la n-ième à être énumérée par P . On a donc A = ⋂n Un. On dira que A
est effectivement de mesure nulle si pour chaque entier n, la probabilité pour qu’une
suite de 0 et de 1 - tirée aléatoirement - appartienne à l’ensemble Un, est plus petite
que 2−n. On suppose bien sûr que les tirages successifs de chaque bit de la suite sont
uniformes (autant de chance de tirer 0 que 1). Intuitivement la probabilité pour qu’une
suite appartienne à l’ensemble ⋂n Un est donc de 0, puisque pour tout n, la probabilité
pour qu’elle appartienne à l’ensemble Un est plus petite que 2−n, et qu’elle appartient
par hypothèse à tous les Un. Il est donc justifié de considérer ces suites comme étant
non aléatoires, puisque la probabilité de les obtenir est nulle. Les suites aléatoire au
sens de Martin-Löf sont précisément celles qui ne sont dans aucun ensemble Π0

2 qui soit
effectivement de mesure nulle.

On formalise cette idée intuitive de probabilité en termes mathématiques à l’aide de la
notion de mesure uniforme sur 2N, que l’on dénote par λ. Par convention la mesure de
2N est de 1, ce qui correspond à la probabilité pour qu’une suite tirée aléatoirement soit
dans 2N (l’ensemble de toutes les suites). On écrira alors λ(2N) = 1. On définit ensuite
naturellement λ([0]) = 1/2 et λ([1]) = 1/2, chacune de ces valeurs correspondant à la
probabilité pour qu’une suite commence par 0 et respectivement par 1. Plus généralement
on définit λ([σ]) = 2−∣σ∣ pour toute châıne σ, où ∣σ∣ dénote la taille de σ. On constate
aisément que la fonction λ peut être étendue à toute union finie d’intervalles : pour
tout n et toute suite finie de châınes σ1, . . . , σn que l’on peut supposer deux à deux
incomparables, on a λ([σ1] ∪ ⋅ ⋅ ⋅ ∪ [σn]) = λ([σ0]) + ⋅ ⋅ ⋅ + λ([σn]), et effectivement, la
probabilité pour qu’une suite commence par une des châınes σi pour 1 ≤ i ≤ n est bien la
somme des probabilités pour chaque i, que la suite soit dans [σi].

On peut ensuite étendre la fonction λ à tout ensemble ouvert : Pour un ouvert U
et une description de U donnée par une suite infinie de châınes σ1, σ2, . . . , que l’on peut
supposer deux à deux incomparables, on a λ(U) = supi∈N λ([σ1] ∪ ⋅ ⋅ ⋅ ∪ [σi]), le supremum
pour tout i de la mesure de l’union des i premiers intervalles composant l’ouvert. Il
est possible de montrer que la mesure d’un ouvert, ainsi définie, est indépendante de la
description choisie, et ici encore, la mesure d’un ouvert correspond à la probabilité pour
qu’une suite soit un élément de cet ouvert.

Une suite est donc Martin-Löf aléatoire si elle n’appartient à aucun ensemble de type

⋂n Un (ensemble Π0
2) qui soit effectivement de mesure nulle, c’est à dire avec λ(Un) ≤ 2−n,

pour tout n. On peut vérifier que la notion de mesure s’étend bien de manière naturelle
aux ensembles Π0

2 comme étant cette fois-ci l’infimum de la mesure sur les intersections
des i premiers ouverts du Π0

2, pour tout i (une intersection finie d’ouverts étant toujours
un ouvert). Formellement on a λ(⋂n Un) = infi∈N λ(U1 ∩ ⋅ ⋅ ⋅ ∩ Ui). On peut également
vérifier que la mesure ainsi définie est indépendante de la manière dont est présenté le

x

CONTENTS

Π0
2. On peut étendre de la même manière cette notion de mesure à tout ensemble de

la hiérarchie définie dans la section précédente, et vérifier que cette mesure respecte
toujours l’idée intuitive de ce que doit être une mesure : si A1,A2,A3, . . . est une suite
dénombrable d’ensembles deux à deux disjoints, sur lesquels la mesure est définie, alors la
mesure est définie sur leur union et on a λ(A1∪A2∪A3∪ . . .) = λ(A1)+λ(A2)+λ(A2)
En particulier l’union de tous les ensembles Π0

2 et effectivement de mesure nulle, est lui
aussi un ensemble de mesure nulle, et le complémentaire de cette union, c’est à dire
l’ensemble des suites Martin-Löf aléatoires, un ensemble de mesure 1. Il y a en un certain
sens ‘beaucoup plus’ de suites aléatoires que de suites ‘non aléatoires’. Pourtant toute
tentative de donner une description précise (à l’aide d’un programme informatique) d’une
suite aléatoire est impossible, car une descripion trop précise permettrait de ‘l’enfermer’
dans un ensemble Π0

2 ‘petit’, c’est à dire effectivement de mesure nulle. Les suites
aléatoires sont donc des suites sur lesquelles on ne peut rien dire de précis, et elles se
trouvent être la majorité des suites.

De nombreuses autres variantes d’aléatoirité ont été étudiées depuis, et Martin-Löf
lui-même proposa une autre définition dans [59], beaucoup plus forte, où cette fois-ci les
ensembles de mesure nulle, capturant les suites non aléatoires, peuvent être décrits avec
la puissance des calculabilités d’ordre supérieur que nous abordons à présent.

Calculabilités d’ordre supérieur

Comme nous l’avons vu, la calculabilité peut être considérée comme une manière de
décrire certains objets infinis avec un nombre fini de mots, dans notre cas des programmes
informatiques. C’est ensuite le temps de calcul qui permet de dérouler petit à petit cette
description finie en un objet de plus en plus grand, qui est l’objet ainsi décrit. Comme
l’avaient remarqué les instigateurs de cette nouvelle science, en particulier Gödel et Turing,
un tel système de description conduit à des définitions naturelles d’objets incalculables.
L’exemple le plus connnu est celui de l’arrêt des programmes informatiques : la suite
infinie de 0 et de 1 telle que son nème bit est égal à 1 si le nème programme informatique
s’arrête et son nème bit est égal à 0 sinon, n’admet pas de description calculable. Si un
programme s’arrête on le saura toujours au bout d’un temps fini. Mais s’il ne s’arrête
pas on ne le saura peut-être jamais; intuitivement il nous faudrait en effet la possibilité
de vérifier que le programme ne s’arrête pas pour n’importe quel temps de calcul, ce
qui implique une infinité de choses à vérifier, et qui prendrait donc un temps de calcul infini.

Justement, les calculabilités d’ordre supérieur peuvent être considérées comme
utilisant les algorithmes usuels, mais permettant une infinité d’étapes de calcul durant
leur exécution. Que peut-on bien vouloir dire par là ? Si l’on s’autorise un temps de
calcul infini, ne peut-on pas tout calculer ? Quel sens donner à la notion de temps de
calcul infini ? Il y a deux approches possibles pour répondre à ces questions. La première
est probablement la meilleure en ce sens qu’elle est celle qui en dit le plus sur le sujet.
Elle serait malheureusement trop longue à exposer ici, et nous nous rabattrons donc sur
la seconde, plus courte à expliquer.

On distingue les étapes de calcul limites des étapes de calcul successeurs. La
manière dont un programme informatique se comporte à une étape de calcul successeur
est identique à la manière dont il se comporte pour la calculabilité usuelle. Mais après
toutes les étapes finies de calcul 0,1,2, . . . , on s’autorise une étape de calcul limite, la
première d’entre elles. A cette étape en fait aucun calcul ne se passe, et c’est un peu
comme si tout recommençait depuis 0, à ceci près qu’on garde la mémoire de ce qui a
été effectué précédemment. Concrètement on peut imaginer qu’à cette étape, la valeur de

xi

CONTENTS

chaque bit de mémoire (mémoire que l’on suppose elle aussi infinie), est égale à la valeur
de convergence de la valeur de ce bit à chaque étape de calcul précédant cette étape
limite. C’est à dire que pour un bit donné, si il existe un temps t tel que pour tout temps
de calcul s supérieur à t, la valeur de ce bit est de 1, alors au temps de calcul limite, la
valeur de ce bit sera également de 1. Il est évidement possible que la valeur d’un bit ne
converge pas, et qu’elle change en permanence avant l’étape limite. Dans ce cas la valeur
du bit à l’étape limite revient à 0.

Ainsi après la première étape limite que nous notons ω, on poursuit le calcul
normalement aux étapes ω + 1, ω + 2, avec la mémoire de ce que l’on a fait précédemment.
Arrive ensuite la deuxième étape limite ω + ω, et ainsi de suite. Mais où cela s’arrête-t-il,
et au bout de ‘combien de temps’ (le ‘temps’ ici est à prendre dans un sens large...)
décide-t-on qu’un calcul doit finalement s’arrêter et donner sa réponse ? Si un calcul ne
s’arrête pas, il viendra bien un moment où on atteindra la première étape limite d’étapes
limites (appelons ces étapes les étapes 2-limites), puis la première étape limite d’étapes
limites d’étapes limites (les étapes 3-limites), et ainsi de suite jusqu’à la première étape
ω-limite, puis jusqu’à la première étape ω-limite d’étapes ω-limites, etc... On pourrait
continuer ainsi longtemps, d’ailleurs sans jamais s’arrêter. Il existe toutefois une borne
‘naturelle’ à toutes ces étapes limites, que l’on appelle étape limite ωck1 , et dont nous
essayons à présent de donner une idée informelle.

Les notions intuitives que nous venons de donner des étapes limites et successeurs ont
été imaginées bien avant l’apparition de la calculabilité, et ces notions sont plus connues
sous les noms d’ordinaux limites et ordinaux successeurs. Il est aisé d’avoir une idée
intuitive de ce que sont les ordinaux en les construisant tout simplement, comme nous
venons de le faire avec les premières étapes limites et successeurs d’un calcul infini. Aussi
un ordinal peut être vu de manière plus abstraite comme un ordre entre divers éléments
et ayant certaines propriétés. Par exemple l’ordre usuel des entiers (0 < 1 < 2 < . . .)
représente ω, le plus petit ordinal limite, alors que l’ordre usuel des entiers pairs, suivi de
l’ordre usuel des entiers impairs (c’est à dire 0 < 2 < 4 < ⋅ ⋅ ⋅ < 1 < 3 < 5 < . . .) représente
ω + ω, le deuxième ordinal limite; et à l’intérieur de cette représentation, l’ensemble des
entiers plus petits que 1 représente ω. Il est aisé d’imaginer de telles représentations pour
des ordinaux de plus en plus grands, mais le lecteur s’adonnant à cet exercice s’apercevra
qu’on finit forcément par se perdre dans ces itérations d’infinis successifs. Aussi parlera-
t-on d’ordinaux calculables pour les ordinaux que l’on peut représenter par un ordre
sur les entiers, avec un programme informatique. C’est-à-dire que pour un ordinal α, le
programme en question doit pouvoir énumérer petit à petit une liste de plus en plus grande
de conditions de la forme n < m pour n et m deux nombres entiers, de telle manière que
l’ordre ainsi défini représente l’ordinal α. On définit alors ωck1 comme étant le plus petit
ordinal non représentable de cette manière. Mais quel type de programme informatique
s’autorise-t-on pour représenter ces ordinaux ? Les programmes informatiques classiques
? où ceux qui peuvent justement s’exécuter en temps infini ? Un fait remarquable est que
cela n’a en fait pas d’importance. En effet ωck1 est le plus petit ordinal non calculable par
un programme informatique au sens classique, mais c’est aussi le plus petit ordinal non
calculable par un programme informatique pouvant effectuer un nombre de calcul infini,
mais borné par ωck1 lui même (c’est à dire que le calcul doit s’arrêter à un temps ordinal
α < ωck1 , l’ordinal α pouvant être choisi arbitrairement grand sous ωck1). Cette propriété
remarquable est une des raisons pour lesquelles ωck1 est un candidat naturel pour borner
le temps de calcul de nos machines infinies.

xii

CONTENTS

Aléatoirité d’ordre supérieur

Nous abordons à présent le sujet de cette thèse, qui se trouve au carrefour des trois
notions explicitées dans chacune des trois sections précédentes. Dans cette thèse, nous
proposons une étude des diverses notions d’aléatoirité qui ont fait suite à la deuxième
définition de Martin-Löf, celle qui utilise les calculabilités d’ordre supérieur, et que nous
esquissons à présent.

La notion d’ordinal calculable peut être utilisée pour continuer la hierachie descriptive
des ensembles décrite plus haut. Ainsi les ensembles Σ0

ω sont les unions effectives
d’ensembles Π0

n pour des entiers n arbitrairement grands, les ensembles Π0
ω leurs

complémentaires, les ensembles Σ0
ω+1 les unions effectives d’ensembles Π0

ω, et ainsi de
suite. La notion de mesure peut être étendue à tous ces ensembles. Pour sa deuxième
définition d’aléatoirité, Martin-Löf s’autorise cette fois-ci tous les ensembles Π0

α de
mesure nulle, pour tout ordinal α < ωck1 . Cette définition se trouve être équivalente à sa
première définition, mais où l’on utiliserait cette fois-ci des programmes informatiques à
temps de calcul infini, et borné par un ordinal α < ωck1 , pour énumérer les descriptions
d’un ensemble ouvert (l’ordinal en question pouvant être choisit arbitrairement, mais
strictement plus petit que ωck1).

Plusieurs autres notions d’aléatoirité, encore plus fortes ont été définies. Par exemple
la notion de Π1

1-Martin-Löf aléatoirité, similaire à la première notion d’aléatoire de Martin-
Löf, mais où cette fois-ci on s’autorise un temps de calcul infini, et borné par ωck1 et non
α < ωck1 . Une autre notion importante, et qui sera plus particulièrement étudiée dans cette
thèse, est la notion de Π1

1-aléatoirité, que nous ne développons pas dans cette introduction.

Résumé de la thèse

Nous commençons cette section en expliquant avec précision sur quoi porte la thèse. Nous
expliquons ensuite son contenu chapitre par chapitre, et nous terminons par un résumé
des contributions notables des travaux exposés ici.

Le sujet de thèse

Danc cette thèse, nous traitons principalement des notions d’aléatoirité d’ordre supérieur,
notamment les notions de ∆1

1-aléatoirité, de Π1
1-Martin-Löf aléatoirité, de Π1

1-aléatoirité
faible, et de Π1

1-aléatoirité, en mettant plus particulièrement l’accent sur cette dernière
notion : la Π1

1-aléatoirité. L’étude de ces notions d’aléatoirité soulève plusieurs
problématiques. Nous essayons notamment de comprendre les similarités et les différences
entre toutes ces notions, mais aussi entre ces notions et les notions d’aléatoirité classiques,
largement étudiées ces quinze dernières années.

Une différence importante entre les notions de calculabilité/aléatoirité d’ordre
supérieur et les notions de calculabilité/aléatoirité classique est de nature topologique.
Aussi avons-nous concentré nos efforts sur trois des phénomènes à travers lesquels cette
différence s’exprime : dans la notion de calcul, dans la notion d’aléatoire relatif, et dans
la notion d’approchabilité.

Nous soulignons également les liens étroits entre la notion d’aléatoirité et celle de
généricité, que l’on peut considérer comme une version catégorique (au sens de Baire)
de l’aléatoirité. Pour cette raison, nous étudions aussi la catégoricité effective d’ordre

xiii

CONTENTS

supérieur et nous mettons en avant les différences et similarités qu’elle présente avec la
notion d’aléatoirité.

Structure de la thèse

Nous détaillons ici la structure de la thèse, expliquant brièvement le contenu de chaque
chapitre.

Dans le premier chapitre nous définissons les notions de base sur l’espace de Cantor,
l’espace de Baire, la calculabilité et les ordinaux. Nous faisons ensuite une étude
détaillée des ordinaux calculables, que nous utilisons ensuite pour étudier les hiérarchies
boréliennes effective et non effective dans l’espace de Baire. Nous menons ensuite une
étude similaire de la hiérarchie de Kleene des ensembles d’entiers, établissant par la suite
les connexions entre la hiérarchie borélienne effective et celle de Kleene. Nous terminons
ce chapitre par quelques notions de base sur les mesures (afin d’étudier l’aléatoirité) et
sur les catégories de Baire (afin détudier la généricité).

Dans le deuxième chapitre, nous présentons l’aléatoire algorithmique, à travers la
notion principale du domaine : l’aléatoirité au sens de Martin-Löf ; puis nous itérons
cette notion à travers la hiérarchie borélienne effective, pour obtenir une hiérarchie
de notions d’aléatoirité. Enfin nous procédons de la même manière pour la notion de
généricité, avant d’expliquer en quoi les notions d’aléatoirité et de généricité sont similaires.

Dans le troisième chapitre nous posons les bases de la calculabilité d’ordre supérieur.
Nous commençons par définir et étudier les notions d’ensembles Σ1

1, Π1
1 et ∆1

1. Nous
définissons et étudions ensuite le nombre O de Klenne, l’ensemble des codes d’ordinaux
constructifs, qui sera central tout au long de la thèse. Nous expliquons ensuite en
quoi la notion d’être Π1

1 est l’analogue d’ordre supérieur de la notion - centrale en
calculabilité - d’être Σ0

1. Nous terminons enfin par une introduction des différentes
notions de base d’aléatoirité d’ordre supérieur, en insistant plus particulièrement sur
celle de Π1

1-Martin-Löf aléatoirité, l’analogue d’ordre supérieur de la principale notion
d’aléatoirité de la théorie classique.

Dans le quatrième chapitre nous étudions les problèmes issus des différences
topologiques entre calculabilité/aléatoirité d’orde supérieur, et calculabilité/aléatoirité
classique. Nous définissons la nouvelle notion de réduction Turing d’ordre supérieur,
dans le but de conserver la puissance descriptive que nous confère la réduction hy-
perarithmétique, tout en préservant la continuité inhérente aux réductions Turing
classiques. Nous étudions ensuite le comportement de cette nouvelle réduction sur divers
types d’éléments, notamment les éléments ‘suffisamment’ aléatoires ou ‘suffisamment’
génériques. Puis nous définissons une nouvelle façon de relativiser à un oracle, diverses
notions relatives à l’aléatoirité d’ordre supérieur, afin encore une fois de préserver la
continuité des relativisations classiques tout en gardant la puissance descriptive des
relativisations d’ordre supérieur. Nous utilisons cette nouvelle notion pour prouver
un analogue d’ordre supérieur de deux théorèmes importants de la théorie classique :
Le théorème XYZ et le théorème de van Lambalgen. Enfin nous définissons plusieurs
restrictions à la notion d’approchabilité d’ordre supérieur, toujours dans le but de
préserver la continuité des approximations classiques. Pour finir nous utilisons toutes
les notions précédemment introduites pour définir les notions de ‘low-for-hK’ et base
pour Π1

1-Martin-Löf aléatoirité, puis nous démontrons leur équivalence avec les notions
d’hK-trivialité.

xiv

CONTENTS

Dans le cinquième chapitre nous étudions de nouvelles notions d’aléatoirité d’ordre
supérieur, par analogie avec les notions d’aléatoirité classique. Nous définissons ainsi
la différence-aléatoirité d’ordre supérieur, la Π1

1-Martin-Löf[O]-aléatoirité et la Π1
1-

aléatoirité faible. Nous démontrons toutes les implications et non implications entre
ces différentes notions, et nous séparons notamment la notion de Π1

1-aléatoirité faible
de celle de Π1

1-aléatoirité. Afin de séparer les deux notions, nous utilisons une des
restriction de la notion d’approchabilité d’ordre supérieur : la notion d’approchabilité
‘self-unclosed’. Nous terminons ce chapitre par une étude d’étaillée des différentes notions
d’approchabilité.

Dans le sixième chapitre nous étudions les notions de Π1
1-aléatoirité et la notion

similaire de Σ1
1-généricité. Nous commençons par démontrer que la complexité borélienne

de l’ensemble des suites Π1
1-aléatoires est exactement Π0

3. Nous utilisons ce résultat pour
donner trois autres définitions de la notion de Π1

1-aléatoirité. Nous introduisons ensuite
une nouvelle hiérarchie de complexité effective des ensembles, et nous démontrons que la

Π1
1-aléatoirité cöıncide avec la Π

ωck1
4 -aléatoirité de cette hiérarchie. Nous montrons aussi

que l’ensemble des Π1
1-aléatoires est au niveau Π

ωck1
5 de cette hiérachie (donnant donc

une autre manière de caractériser l’ensemble des suites Π1
1-aléatoires). Nous démontrons

ensuite qu’un élément non trivial (non ∆1
1) “dé-aléatoirise” toujours un élément Π1

1-
aléatoire, répondant ainsi à une question ouverte de Hjorth et Nies (voir [30]). Nous
définissons et étudions également plusieurs notions de genericité d’ordre supérieur, en
montrant les similarités et les différences avec les notions d’aléatoirité d’ordre supérieur.
Nous terminons ce chapitre par une caractérisation de la complexité borélienne de
l’ensemble {X ∶ ωX1 > ωck1 }, en utilisant le forcing de Steel.

Dans le septième chapitre, nous étudions les problèmes issus du fait de forcer la con-
tinuité dans les calculs d’ordre supérieur ou dans la relativisation de notions d’ordre
supérieur. Nous séparons notamment la notion de réduction Turing d’ordre supérieur
de celle de réduction fin-h. Nous démontrons ensuites que pour certains oracles, il n’existe
pas de de test Π1

1-Martin-Löf universel relatif à ces oracles. Nous démontrons ensuite
malgré tout que pour tout oracle, il existe une suite Π1

1-Martin-Löf aléatoire relative à
cet oracle, qui est ‘approchable par la gauche’ relativement à l’oracle. Nous finissons par
une étude des oracles pour lesquels la relativisation continue se passe bien, notamment les
oracles ‘self-unclosed’, et dans une certaine mesure, les oracles Π1

1-Martin-Löf aléatoires.

Principales contributions

Nous détaillons ici les principaux résultats originaux de cette thèse :

� La contribution la plus importante de cette thèse est sans doute une meilleure
compréhension de l’ensemble des suites Π1

1-aléatoires, définies implicitement par
Kechris dans [33] qui prouva l’existence d’un plus grand ensemble Π1

1 de mesure
nulle, étudiées ensuite par Sacks, puis plus tard par Hjorth et Nies dans [30] qui
entamèrent l’étude proprement dite des éléments n’étant pas dans cet ensemble :
les Π1

1-aléatoires. Cette étude fut poursuivie par Chong, Nies et Yu dans [7], puis
par Chong et Yu dans [8]. Due à sa nature universelle, l’ensemble des Π1

1-aléatoires
était conjecturé par beaucoup comme ayant une grande complexité borélienne. Nous
démontrons dans cette thèse que celle-ci est au contraire relativement basse : Π0

3
(voir Corollaire 6.1.1). Nous utilisons ensuite ce résultat pour mener une étude
détaillée de cet ensemble, notamment :

– Nous résolvons par l’affirmative, la question ouverte depuis plusieurs années

xv

CONTENTS

(voir [30] et question 9.4.11 de l’ouvrage de référence [70]), de savoir si seules
les suites ∆1

1 sont ‘low’ pour la Π1
1-aléatoirité.

– Nous démontrons qu’une suite Π1
1-Martin-Löf aléatoire n’est pas Π1

1-aléatoire
si et seulement si elle calcule une suite Π1

1 non triviale (non ∆1
1).

– Nous séparons la notion de Π1
1-aléatoirité d’une notion d’aléatoire encore mal

comprise dans l’ordre supérieur (contrairement à son analogue classique) : avoir
infiniment souvent un préfixe de complexité maximale (voir Corollaire 6.2.1).

– Nous donnons deux autres notions de tests pour la Π1
1-aléatoirité (voir

Théorème 6.3.2 et Théorème 6.3.3).

� Un autre résultat important et contribuant toujours à une meilleure compréhension
de l’ensemble des Π1

1-aléatoires, est la séparation de cette notion avec celle de Π1
1-

aléatoirité faible (voir Théorème 5.3.3). Nous jugeons ce résultat important pour
lui-même, ainsi que pour sa démonstration, qui a nécessité l’introduction d’une idée
nouvelle et prometteuse : les approximations ‘self-unclosed’.

� Toujours afin de mieux comprendre l’ensemble des Π1
1-aléatoires, nous avons in-

troduit une nouvelle hiérarchie de complexité, motivée par la définition de la Π1
1-

aléatoirité faible, qui selon cette hiérarchie correspond à la notion de Π
ωck1
2 -aléatoirité.

Nous démontrons que l’ensemble des Π1
1-aléatoires correspond à la notion de Π

ωck1
4 -

aléatoirité pour cette hiérarchie, et que les notions d’aléatoirité s’effondrent au delà

de Π
ωck1
4 (voir Théorème 6.4.3).

� Un autre pan important de la thèse est l’étude de la continuité pour les réductions
d’ordre supérieur et la relativisation des notions d’aléatoirité d’ordre supérieur. Cette
étude est principalement menée dans le chapitre 4, puis dans le chapitre 7. Nous
donnons ici les principaux résultats relatifs à chacun de ces chapitres :

– Dans le chapitre 4, nous démontrons que l’on peut utiliser ces nouvelles notions
pour énoncer et démontrer de nombreux théorèmes analogues à ceux que l’on
trouve en aléatoirité classique. Notamment le théorème XYZ, le théorème de
van Lambalgen (voir Théorème 4.3.3 et Théorème 4.3.5). Nous montrons aussi
que les équivalences entre les notions de K-trivialité, low-for-K et base for ran-
domness peuvent être définies pour l’aléatoirité d’ordre supérieur et coincident
(voir Théorème 4.5.3 et Théorème 4.5.4).

– Dans le chapitre 7, nous étudions les oracles pour lesquels la relativisation
d’ordre supérieur continue et/ou la réduction Turing d’ordre supérieur, posent
des problèmes. Nous séparons notamment les notions de réduction Turing
d’ordre supérieur et de réduction fin-h. Nous démontrons également que pour
certains oracles, il n’existe pas de notion de test Π1

1-Martin-Löf universel, con-
tinument relatif à cet oracle. Nous démontrons ensuite malgré tout que pour
tout oracle A, il existe une suite Π1

1-Martin-Löf aléatoire continument relative-
ment à A, qui est ‘approchable par la gauche’ continument relativement à A.
Nous finissons par une étude des oracles pour lesquels la relativisation con-
tinue se passe bien, notamment les oracles ‘self-unclosed’, et dans une certaine
mesure, les oracles Π1

1-Martin-Löf aléatoires.

� Nous menons une étude circonstanciée des différentes restrictions de la notion
d’approchabilité (higher ∆0

2) dont l’approchabilité self-unclosed, utilisée pour
séparer la Π1

1-aléatoirité de la Π1
1-aléatoirité faible. Cette étude est d’abord menée

dans la section 4.4 où l’on dégage les principales notions, du moins celles qui sont

xvi

CONTENTS

utilisées au sein d’autres théorèmes. Une étude plus approfondie est ensuite menée
dans la section 5.4 où l’on étudie ces notions pour elles-mêmes, notamment en
prouvant qu’elles sont toutes différentes (voir Section 5.4.6 pour un résumé).

� Nous contribuons aussi à une meilleure compréhension de la Π1
1-aléatoirité faible,

et notamment des différences entre cette notion et son analogue classique : la
2-aléatoirité faible. Nous mettons en particulier en évidence qu’une notion de
test correspondant à la 2-aléatoirité faible dans le cas classique, a un analogue
d’ordre supérieur distinct de la Π1

1-aléatoirité faible, donnant lieu à une autre notion
d’aléatoirité : la Π1

1-Martin-Löf[O] aléatoirité (voir Section 5.2). Nous identifions la
restriction nécessaire sur la notion de Π1

1-Martin-Löf[O] aléatoirité, afin de garder
l’équivalence avec la Π1

1-aléatoirité faible (voir Théorème 5.3.2).

� Nous définissons et étudions plusieurs notions de généricité d’ordre supérieur. Nous
identifions notamment les similarités et les différences avec les notions d’aléatoirité
d’ordre supérieur (voir Section 6.6). Nous montrons en particulier que de manière
inattendue, la notion de Σ1

1-généricité faible coincide avec la notion de Σ1
1-généricité

forte (contrairement aux notions analogues d’aléatoirité, voir Théorème 6.6.4).

� Nous menons dans la section 1.6 une étude originale des ensembles Σ0
α-complets, par

le biais des ensembles de codes d’ordinaux calculables.

� Nous donnons une preuve que la complexité borélienne de l’ensemble {X ∶ ωX1 > ωck1 }

est exactement Σ0
ωck
1 +2

. La preuve en question, dont les grandes lignes ont été

esquissées dans [88] est due à Steel, toutefois comme elle n’a jamais été écrite
complètement, et qu’elle est loin d’être évidente (et qu’il s’agit d’un très beau
résultat), nous avons jugé important d’en écrire les détails ici (voir Section 6.7).

xvii

CONTENTS

Introduction

This document is a thesis report resulting from three years of research under Laurent
Bienvenu’s supervision. We start with a gentle introduction to the mathematical fields
that we deal with here. We then give a detailed summary of the thesis and its main
contributions.

Higher randomness and computability

This thesis contributes to three fields of research which are connected to one another
in many ways: effective randomness, higher computability and effective descriptive set
theory. We first give an introduction to each of these fields, trying to explain the interest
of their joined study. These explanations will naturally lead to the questions we will be
dealing with all along the report.

Effective descriptive set theory

We only sketch here a few ideas on the very beginning of descriptive set theory, this field
extending way beyond than what is presented here. As its name suggests, descriptive set
theory studies... sets, with respect to their... description. The sets we consider here are
all subsets of one of the simplest spaces in mathematics: the space of infinite sequences
of 0’s and 1’s, denoted by 2ω, and we will focus our interest on the subsets of 2ω which
are, informally, simple to describe:

Let us consider a string, that is, a finite sequence of 0’s and 1’s, for instance:
01001010. The set of sequences of 2N starting with 01001010 can be described by the
string 01001010 itself. Those sets will be called intervals, and given a string σ, the
corresponding interval will be denoted by [σ]. Let us now increase the difficulty and
consider the so called open sets, that is, countable unions of intervals.

Each interval is clearly easy to describe, but the task might be much more complicated
for an open set: Indeed, such a set is built with infinitely many intervals. Some open
sets remain however simple to describe. For example it is easy to describe the set of
even numbers (despite the fact that there are infinitely many of them), and it then
follows that it is just as easy to describe the open set being the union of the intervals
[0pˆ1] for all even numbers p; where 0pˆ1 denotes the string starting with p times the
bit 0 followed by the bit 1. On the contrary, other open sets are ‘inaccessible’, due
to their infiniteness, and it is impossible to describe them with finitely many words;
the same being true for some sets of integers. We shall come back to this in a few
paragraphs. For now we care only about the ‘shape’ of a set, without making any further
distinctions. Also we emphasize that any open set has a very simple ‘shape’: it is merely

xix

CONTENTS

a union of intervals. We continue our study by increasing the ‘shape complexity’ once more.

It is clear that given an open set U , one can easily define its complement: ‘the set of
sequences which are not in U ’. The complement of an open set will be called a closed
set. The distinction between open sets and closed sets is legitimate, it is indeed easy to
build closed sets which cannot be described as a union of intervals, or which do not even
contain a single interval. We give here an example using the notion of measure, that we
will detail in the next section: Let us consider a list {σi}i∈N of all the strings and then,
an interval of measure 1/4 containing the sequence σ0ˆ0∞ (where 0∞ is the sequence of
infinitely many 0’s), an interval of measure 1/8 containing the sequence σ1ˆ0∞, etc...
The union of all those intervals is a set of measure at most 1/4 + 1/8 + ⋅ ⋅ ⋅ = 1/2. Also
the complement of this union is a closed set which is non-empty (as it has measure at
least 1/2) and which contains no interval [τ] because the sequence τ ˆ0∞ belongs to its
complement. Now, what about countable unions of closed sets?

We can continue to define more and more complicated classes of sets by considering
countable unions of sets of the previously defined class, and their complement, leading to
a new class of sets which is one step more complex than the previous one. For instance
the countable unions of closed sets are in a new class of sets, intuitively more complex
than the open sets and their complements.

In order to study those classes of sets in good conditions, we now give a name to
each of them. The class of open sets will be the class of Σ0

1 sets. The class of closed
sets will be the class of Π0

1 sets. Then for any integer n, the class of countable unions of
Π0
n sets will be the class of Σ0

n+1 sets, and their complement will be the class of Π0
n+1 sets.

This hierarchy deals with the ‘shape complexity’ of sets, which is part of pure
descriptive set theory. We will now introduce effective descriptive set theory, which is
a refinement of the classes of complexity we just defined. We gave above the example
of the open set built as the union of the intervals [0pˆ1] for p even. This open set is
very simple to describe accurately (we just gave an accurate description of it). What
about the open set which equals the union of intervals [0nˆ1] for every n such that
‘head’ is the n-th outcome of infinitely many coin tossing that the reader should perform,
starting from now? We feel of course swindled by this definition: it seems that we
did not describe much of this open set, because its elements depend on the result of
infinitely many upcoming coin tossing; and how could we know those results in advance?
We will come back on this in the next section. For now we simply emphasize the
difference between those two open sets, the first one accurately definable and the second
one, elusive and whose ‘existence’ is not even clear. The general idea is to make a
distinction between the open sets we can accurately define with a finite number of
words and the others. Computability is a suitable (in particular paradox-free) and
natural framework to pursue this goal. Also an open set will be considered ‘simple to
describe’ - we will say effective - if there is a computer program, that is, a finite list
of instructions, which enumerates intervals whose growing union converges to the open set.

We are now only interested in the effective open sets, leaving the others aside. We
say that a set U is Σ0

1 if it is open and if there is a computer program enumerating a list
of strings σ1, σ2, . . . such that U = ⋃n[σn]. Such a program can be seen as a description
of the set U . We continue inductively: The Π0

1 sets are the complements of the Σ0
1 sets

and have the same description as that of their complement. We continue inductively by
defining for every n the Σ0

n+1 sets as the effective unions of Π0
n sets, that is, for a Σ0

n+1 set

xx

CONTENTS

A, there must exists a program enumerating the descriptions of all the Π0
n sets A consists

of. Such a program is then a description of A.

We can show that both hierarchies of complexity are strict: by increasing the com-
plexity, we can always describe strictly more sets than before. We are nonetheless very
far from defining all possible sets this way: there are many sets...

Effective randomness

Probability theory teaches us that if we repeat a large number of times a list of ten
coin tossing, we will more or less equally obtain the same number of time the string
hhhhhhhhhh and the string hhthtthhth (where ‘h’=head and ‘t’=tail). However a player
obtaining the first of those strings will consider this event as extraordinary, whereas he
won’t see anything special about the second one.

The theory of effective randomness proposes a ‘solution’ to this apparent paradox.
We instinctively classify the possible outcomes of sequences of ten coin tosses into groups,
depending on some simple rules. Also the rule “containing only heads” is very simple to
formulate and leads to the creation of the group of strings containing only heads. When a
string obtained after a sequence of ten coin tosses happens to be into a group being both
simple to describe and containing few elements, it then seems not random to a human
mind.

Classical probability theory is not designed to study this phenomenon. But we will
see that effective descriptive set theory actually is a natural framework to decide what
are the ‘groups of strings depending on some simple rules’ that we mentioned above.
Martin-Löf proposed in 1966 [58] a definition of randomness which remains today the
most famous and the most studied. The groups of elements which are simple to describe
will merely be the Π0

2 sets, that is, according to the definition we gave, complements of
effective unions of Π0

1 sets. We can however simplify this definition a bit and consider
equivalently that Π0

2 sets are effective intersections of Σ0
1 sets. What remains to do is to

define the notion of containing ‘few elements’.

To do so, let us consider a Π0
2 set A, that is, the set A can be described as an

effective intersection of Σ0
1 sets (effectively open sets), whose descriptions are enumerable

by a computer program P (each description being itself a program that enumerates the
corresponding open set). Let Un be the open set whose description is the n-th to be
enumerated by P . We then have A = ⋂n Un. We say that A is effectively of measure
0 if for each n, the probability to be in Un for a sequence whose bits are successively
picked randomly, is smaller than 2−n. We suppose of course that each bit of the sequence
is picked randomly and uniformly, that is, we have each time as many chances to get 0
as we have to get 1. Intuitively the probability for a sequence to belong to ⋂n Un should
then be of 0, since for every n, the probability that it belongs to Un is smaller than
2−n, and since it belongs by hypothesis to all of them. It then makes sense to consider
those sequences as non-random, because the probability to obtain them is null. Also the
Martin-Löf random sequences are precisely those which belongs to no Π0

2 set which is
effectively of measure 0.

We can mathematically formalize the intuition we have behind probabilities, with the
notion of uniform measure on 2N, that we denote by λ. By convention the measure of
2N is 1, which corresponds to the probability for a sequence randomly produced to be in
2N (the space of all sequences). We will then write λ(2N) = 1. We then naturally define

xxi

CONTENTS

λ([0]) = 1/2 and λ([1]) = 1/2, each of those values corresponding to the probability for a
sequence to start by 0 and respectively by 1. More generally we define λ([σ]) = 2−∣σ∣ for
every string σ, where ∣σ∣ denotes the length of σ. We then easily see that the function λ
can be extended to every finite union of intervals: for any n and any finite list of pairwise
incomparable strings σ1, . . . , σn, we define λ([σ1]∪ ⋅ ⋅ ⋅ ∪ [σn]) = λ([σ0])+ ⋅ ⋅ ⋅ +λ([σn]), and
indeed, the probability for a sequence to start by one of the strings σi for 1 ≤ i ≤ n is the
sum over each i of the probability for a sequence to be in [σi].

We can even extend the function λ to any open set: For an open set U and a
description of U given by the countable list of strings σ1, σ2, . . . , that we can suppose
pairwise incomparable, we have λ(U) = supi∈N λ([σ1] ∪ ⋅ ⋅ ⋅ ∪ [σi]), the supremum over
i of the measure of the unions of the i first intervals of the description. Note that an
open set can be represented by countable union of pairwise incomparable strings in many
different ways, and the we defined the measure on representation of open sets rather
than on open sets themselves. Fortunately it is possible to show that the measure of
an open set does not depends on the representation we consider. Here again the mea-
sure of an open set corresponds to the probability for a sequence to belong to this open set.

A string is then Martin-Löf random if it belongs to no Π0
2 set ⋂n Un effectively of

measure 0, that is, with λ(Un) ≤ 2−n for every n. We can check that the notion of measure
naturally extends to Π0

2 sets, as the infimum over i of the measure of the i first intersections
of the open sets forming the Π0

2 set. Formally we have λ(⋂n Un) = infi∈N λ(U1 ∩ ⋅ ⋅ ⋅ ∩ Ui).
We can also check that the measure defined this way is independent of the presentation
of a Π0

2 set. We can extend similarly the notion of measure to any set of the hierarchy
defined in the previous section and verify that this measure always respects the intuitive
idea one should have about measures: Given a countable sequence of pairwise disjoint
sets A1,A2,A3, . . . on which the measure is defined, then the measure is also defined
on their union by λ(A1 ∪A2 ∪A3 ∪ . . .) = λ(A1) + λ(A2) + λ(A2) In particular the
union of all the Π0

2 sets which are effectively of measure 0 is itself a Π0
2 set effectively of

measure 0, and the complement of this union, that is, the set of Martin-Löf randoms, is
a set of measure 1. Therefore there are in some sense, much more sequences which are
random than sequences which are not. However any attempt to give a specific description
(with the help of a computer program) of a random sequence is not possible, as such a
description would allow us to capture it in a ‘small’ Π0

2 set, that is, a Π0
2 set effectively of

measure 0. The random strings are then those about which nothing specific can be said
and yet, they happen to form the majority of sequences...

Many other definitions of effective randomness, all variations of the same idea that
some groups of sequences are both ‘small’ and ‘simple to define’, have been made over the
years. Martin-Löf himself proposed in [59] a much stronger definition, according to which
the sets of measure 0 (that capture the non random sequences) can this time be described
using the power of higher computability, that we shall now introduce.

Higher computability

As we said, computability can be seen as a way to describe some infinite objects with a
finite number of words, in our case, computer programs. All the information contained in
such a finite description can then be unfolded along a time of computation, to describe an
infinite object, or more precisely a finite object growing endlessly towards an infinite one.
The investigators of this new science already noticed in the early days (especially Gödel
and Turing), that such a system lead to natural definitions of uncomputable objects. The
most famous example is certainly the undecidability of the halting problem of a computer

xxii

CONTENTS

program: the sequence of 0’s and 1’s having its n-th bit equal to 1 if the n-th computer
program stops and equal to 0 otherwise. This sequence does not have a computable
description. If a computer program stops, we will know after some time (after it stops),
but if it never stops, we might never know for sure that it won’t. Intuitively, we would
need to check if the program doesn’t stop for any time of computation, which would
imply infinitely many things to check, and would then take infinitely many computation
steps.

Precisely, higher computability can be considered as using usual algorithms, but
allowing infinitely many computation steps during their execution. But what meaning can
we give to the notion of infinite time of computation? There are two possible approaches
to answer this question. The first one is more mathematical and will be developed in this
thesis. We sketch here the second one, on which it is probably easier to give some intuition.

We distinguish limit steps of computation and successor steps of computation.
With this new computability, a computer program works analogously at successor steps
than it does with usual computability. But after all the finite steps of computation
0,1,2,3, . . . , which are all successor steps, we have a limit step of computation. At this
first limit step, no computation is actually done, and it is more or less as if we were
starting everything again from time 0, except that we keep a trace of what has been
done previously. Concretely, we can consider that each bit of the memory (that we
suppose infinite), is equal to the convergence value of the sequence of all values taken
by this bit during the previous times of computation. For example at a limit step s and
for given a bit, if there exists a time t < s such that for every computation step r with
t ≤ r < s, the value of this bit is 1, then the value of this bit at the limit step s will also
be 1. It is of course possible for the value of a bit not to converge, that is, to oscillate
endlessly between 0 and 1, before the limit step s. In this case, its value at step s is set to 0.

After the first limit step, which we denote by ω, we continue the computation
normally at each successor step ω + 1, ω + 2, with the trace of what has been done
previously. Then comes the second limit step ω + ω, and so on. But ‘when’ does this
stop? In classical computability theory, a computer program has to stop at after a finite
time of computation t < ω, or otherwise it is (rightfully) considered to be a ‘non halting
program’. Now ω is a mere step of computation. So what should be the ‘time bound’
for our halting infinite computation? Suppose a computation ‘never’ stops. After step
ω, the computation continues on steps ω + 1, ω + 2, etc., until the second limit step,
ω + ω, and then ω + ω + ω, etc... After some time it will reach the first limit step of
limit steps (let us call them 2-limit steps), and then the first limit step of limit steps
of limit steps (the 3-limit steps), and so on until the first ω-limit step, then the first
ω-limit step of ω-limit steps, etc... We could continue for a while, actually even forever.
There exists however a ‘natural bound’ to all those limit steps which can play the role of
a ‘new infinite’, namely, the limit step ωck1 about which we now try to give an informal idea.

The intuitive notions we just gave of limit steps and successor steps were imagined long
before the emergence of computability theory, and they are better known as limit ordinals
and successor ordinals. It is easy to have an intuitive idea of the nature of ordinals, by just
building them, as we did with the first limit and successor steps of an infinite computation.
But an ordinal can be seen in a more abstract way, as a special order on some elements.
For example the usual order on integers (0 < 1 < 2 < . . .) represents ω, the smallest limit
ordinal, whereas the usual order on even integers followed by the usual order on odd
integers (that is 0 < 2 < 4 < ⋅ ⋅ ⋅ < 1 < 3 < 5 < . . .) represents ω + ω, the second limit ordinal;

xxiii

CONTENTS

and inside this representation, the set of integers smaller than 1 represents ω. It is easy to
imagine such representations for bigger and bigger ordinals, but the reader willing to try
such an exercise should sooner or later get lost into those endless iterations of infinites.
Also we should talk of computable ordinals for those that we can represent by an order
over the integers, with a computer program. Concretely for a computable ordinal α, the
program should enumerate a longer and longer list of conditions of the form n <m for n,m
two integers, in a way that the order defined this way represents the ordinal α. We then
define ωck1 as the smallest ordinal that we cannot represent this way. But what type of
computability do we allow to represent ordinals? The classical one for which programs run
in finite time, or the higher computability for which programs executes in infinite time?
A remarkable fact is that this does not matter for the definition of ωck1 . It is a non trivial
fact that ωck1 is both the smallest ordinal not computable using classical computability, or
not computable using a version of higher computability for which ωck1 is itself the strict
upper bound on the time of computation we allow to execute a program (which should
then terminates at some ordinal step α < ωck1). This remarkable closure property is one of
the reason ωck1 is a natural candidate to be the time bound of infinitary computations.

Higher randomness

The subject of this thesis is at the crossroad of the three notions explained in each of
the previous sections. In this thesis we study various randomness notions which followed
the second definition of Martin-Löf, the one using higher computability and that we now
briefly explain.

The notion of ordinal can be used to pursue the effective descriptive hierarchy
described in the first section. The Σ0

ω sets are the effective unions of the effective
intersections of Π0

n sets for n unbounded in the natural numbers, the Π0
ω sets are their

complement, and the Σ0
ω+1 sets are the effective unions of Π0

ω sets, and so on. The notion
of measure can be extended to all those sets. Also for his second definition of randomness,
Martin-Löf considers that anything which is captured by a Σ0

α set of measure 0, for any
α < ωck1 , is not random. This definition happens to be equivalent to his first definition,
but where a program is now allowed to describe an open set (by enumerating strings)
with infinitely many computation steps up to some step α < ωck1 (the step α at which the
description should be complete can be taken as big as we want below ωck1).

Several other notions of randomness, even stronger, have been made over the years. For
instance the notion of Π1

1-Martin-Löf randomness, similar to Martin-Löf’s first randomness
notion, but where the time of computation allowed to describe an open set can go all the
way up to ωck1 . Another important notion, which will be intensively studied here, is Π1

1-
randomness, that we do not develop for now.

Thesis summary

We start this section explaining more accurately the content of this thesis. We then
develop those explanations chapter by chapter and we end with a summary of the main
original contribution of the thesis.

The subject

We mainly deal with higher randomness notions, that is, ∆1
1-randomnes, Π1

1-Martin-Löf
randomness, weak-Π1

1-randomness and especially Π1
1-randomness. We also try to under-

stand the similarities and differences between all those higher randomness notions, but

xxiv

CONTENTS

also between the classical randomness notions and the higher ones.

One important difference between the notions of higher computability/randomness
and their classical counterparts, is of topological nature. Also we have concentrated
our efforts on three different concepts for which this topological difference arises: The
notion of computation, the notion of relativization of randomness and the notion of
approximation.

We also emphasize the tight connection between randomness notions and genercity
notions, as we can consider the latter as a categorical version (in the sense of Baire) of
randomness. For this reason we also study higher effective categoricity and we point out
the differences and similarities higher categoricity shares with higher randomness.

Structure of the thesis

We detail here the thesis’ structure, briefly explaining the content of each chapter.

In the first chapter we define basic notions on the Cantor space, on the Baire space,
we define computability theory and ordinals. We then pursue with a detailed overview of
computable ordinals that we then use to study the Borel and effective Borel hierarchies
in the Baire space. We then study similarly Kleene’s hierarchy on sets of integers,
establishing its connections with the effective Borel hierarchy. We end this chapter
with a few basic notions on measure theory (in order to study randomness) and Baire
categoricity (in order to study genericity).

In the second chapter we introduce algorithmic randomness, and in particular the
main notion of this field: Martin-Löf randomness; then we iterate this notion through
the effective Borel hierarchy and we obtain a corresponding hierarchy of randomness
notions. Finally we proceed similarly with the notion of genericity, before explaining
some similarities between randomness and genericty notions.

In the third chapter we give the foundations of higher computability. We start by
defining and studying the Σ1

1, Π1
1 and ∆1

1 sets. We then define and study Klenne’s O
(the set of constructible ordinals), which will be a central notion all along this thesis.
We explain why Π1

1 sets can be considered as a higher analogue of Σ0
1 sets. We end this

chapter by introducing basic higher randomness notions, insisting more on Π1
1-Martin-Löf

randomness, the higher counterpart of Martin-Löf randomness.

In the fourth chapter we study issues arising from the topological differences between
higher computability/randomness and classical computability/randomness. We define
the notion of higher Turing reduction, in order to keep the descriptive power of the
hyperarithmetic reductions and meanwhile to preserve the continuity of classical Turing
reductions. We then study the behaviour of this new reduction on various sequences,
like the ‘sufficiently random’ ones or the ‘sufficiently generic’ ones. We then define a
way of relativizing to an oracle, various notions related to higher randomness, in order
to preserve the continuity of classical relativization, and meanwhile to get the power of
higher relativizations. We then use this notion to prove an analogue of two important
theorems of classical randomness: The XYZ theorem and the van Lambalgen theorem.
We finally define several restrictions to the notion of higher approximation, still in order
to preserve the continuity we have with classical approximations. We end this chapter by
using all the previously introduced notions to define ‘low-for-hK’ and ‘continuous base
for Π1

1-Martin-Löf randomness’, and we show that there are all equivalent to the notion

xxv

CONTENTS

of hK-triviality.

In the fifth chapter we study new higher randomness notions that are inspired by some
classical ones. We define higher difference randomness, Π1

1-Martin-Löf[O]-randomness
and weak-Π1

1-randomness. We then prove all implications and non-implications between
those randomness notions. In particular, we separate the notion of Π1

1-randomness from
weak-Π1

1-randomness. In order to separate those two classes, we use a restriction of the
notion of higher approximations: the self-unclosed approximations. We end this chapter
by a detailed study of different approximation notions.

In the sixth chapter we study Π1
1-randomness and the similar categorical notion of

Σ1
1-genericty. We start by showing that the Borel complexity of the set of Π1

1-randoms is
exactly Π0

3. We use this result to give three other characterizations of Π1
1-randomness. We

introduce a new hierarchy of complexity of sets. We show that Π1
1-randomness coincides

with Π
ωck1
4 -randomness of this hierarchy. We also show that the set of Π1

1-randoms is

at level Π
ωck1
5 of this hierarchy. We then show that a non trivial (non ∆1

1) sequence
always derandomizes a Π1

1-random sequence, answering an open question of Hjorth et
Nies (see [30]). We then define and study several higher genericity notions, showing
theirs similarities and differences with higher randomness notions. We end this chapter
by a caracterization of the Borel complexity of the set {X ∶ ωX1 > ωck1 }, using Steel forcing.

In the seventh chapter we study the issues arising from the operation of forcing continu-
ity in higher computations and higher relativizations. In particular we separate the notion
of Turing reduction from the one of fin-h reduction. We then show that for some oracles,
there is no universal Π1

1-Martin-Löf test continuously relativized to this oracle. However,
we also show that for any oracle there exists a Π1

1-Martin-Löf random sequence relatively
to this oracle and ‘left-approximable’ relatively to this oracle. We end by a study of oracles
for which continuous relativization is not an issue, that is, the self-unclosed approximable
oracles and in some sense, Π1

1-Martin-Löf random oracles.

Main contributions

We detail here the main original contributions of this thesis:

� The most important contribution is probably a better understanding of the set of Π1
1-

random sequences, implicitly defined by Kechris in [33] who identified the existence
of a largest Π1

1 nullset, studied then by Sacks and then by Hjorth and Nies [30] who
started to actually study the Π1

1-randoms for themselves. This study has then been
pursued by Chong, Nies and Yu in [7] and by Chong and Yu in [8]. Due to its
universal nature, the set of Π1

1-randoms was conjectured by many to have a hight
Borel complexity. We show in this thesis that its Borel complexity is at the contrary
relatively low: Π0

3 (see Corollary 6.1.1). We then use this result to conduct a detailed
study of this set, in particular:

– We solve by the affirmative a question which has been open for several years
(see [30] and question 9.4.11 of [70]): “Are the ∆1

1 sequences the only low for
Π1

1-randomness sequences?”.

– We show that a Π1
1-Martin-Löf random sequence is not Π1

1-random iff it com-
putes a non trivial (non ∆1

1) Π1
1 sequence.

– We separate the notion of Π1
1-randomness with a notion still not well-understood

(unlike its classical analogue): having infinitely often a prefix of maximal plain
higher Kolmogovov complexity (see Corollary 6.2.1).

xxvi

CONTENTS

– We give two other notions of test for Π1
1-randomness (see Theorem 6.3.2 and

Theorem 6.3.3).

� Another important result, still contributing to a better understanding of Π1
1-

randomness, is the separation of this notion from the one of weak-Π1
1-randomness

(see Theorem 5.3.3). We think this result is important for itself, as well as for
its proof, which required the introduction of the new and promising notions of
‘self-unclosed’ approximation.

� Still to get a better understanding of Π1
1-randomness, we introduced a new hierarchy

of complexity of sets, directly inspired by the definition of weak-Π1
1-randomness,

which on this hierarchy corresponds to the notion of Π
ωck1
2 -randomness. We show

that the set of Π1
1-randoms corresponds to the notion of Π

ωck1
4 -randomness according

to this hierarchy and that the other randomness notions collapse above Π
ωck1
4 (see

Theorem 6.4.3).

� Another important part of this thesis is the study of continuity for higher reductions
and randomness relativization. This study is mainly conducted in Chapter 4 and
Chapter 7. We give here the main results of each of those chapters.

– In Chapter 4 we show that we can use the new reduction and approximation
notions to give a higher counterpart of many important theorems of classical
randomness, in particular the XYZ theorem and the van Lambalgen theorem
(see Theorem 4.3.3 and Theorem 4.3.5). We also show that the equivalent no-
tions of K-triviality, low-for-K et base for randomness can be defined for higher
randomness, and are also all equivalent (see Theorem 4.5.3 and Theorem 4.5.4).

– In Chapter 7 we study oracles for which the continuous higher relativization
raises some issues. In particular we separate the notions of higher Turing re-
duction and the notion of fin-h reduction. We also show that for some oracles
there is no universal Π1

1-Martin-Löf test continuously relativized to this ora-
cle. We then show that however, for any oracle A, there is always a sequence
which is Π1

1-Martin-Löf random continuously relativized to A and approximable
from the left, continuously relatively to A. We end this chapter by a study of
the oracles for which the continuous relativization raises no issues, that is, the
self-unclosed oracles, and in some sense the Π1

1-Martin-Löf random oracles

� We study the different restrictions of the notion of higher approximations (higher
∆0

2). In particular the self-unclosed approximations, used to separate Π1
1-randomness

from weak-Π1
1-randomness. This study is first done in Section 4.4 in which we identify

the main notions, or at least those which are used in other theorems. A further study
of those notions for themselves is done in Section 5.4 in which we separate each notion
with others.

� We also contribute to a better understanding of the notion of weak-Π1
1-randomness,

in particular we study the differences between this notion and its classical analogue:
weak-2-randomness. We identify a test notion corresponding to weak-2-randomness
in the lower setting, but different from weak-Π1

1-randomness in the higher setting.
This naturally leads to a new notion of randomness: Π1

1-Martin-Löf[O] randomness
(see Section 5.2). We also identify the restriction we need on the notion of Π1

1-Martin-
Löf[O] randomness in order to keep the equivalence with weak-Π1

1-randomness (see
Theorem 5.3.2).

xxvii

CONTENTS

� We define and study several higher genericity notions. We emphasize the similarities
and differences with higher randomness notions (see Section 6.6). We also show
that unexpectedly, the notion of weak-Σ1

1-genericity coincides with the one of
Σ1

1-genericity (unlike the corresponding randomness notions see Theorem 6.6.4).

� In Section 1.6 we pursue an original study of the Σ0
α-complete sets, with respect to

sets of codes of computable ordinals.

� We give a proof that the Borel complexity of the set {X ∶ ωX1 > ωck1 } is exactly
Σ0
ωck
1 +2

. The proof we give, sketched in [88], is due to Steel but it has never been

fully written down. Since it is not an obvious result (and is a beautiful one!) we
judged that it was worth providing a detailed proof here (see Section 6.7).

xxviii

Chapter 1
Background

Le savant n’étudie pas la nature parce que cela est utile ; il l’étudie parce qu’il y
prend plaisir et il y prend plaisir parce qu’elle est belle. Si la nature n’était pas
belle, elle ne vaudrait pas la peine d’être connue, la vie ne vaudrait pas la peine
d’être vécue. Je ne parle pas ici, bien entendu, de cette beauté qui frappe les sens,
de la beauté des qualités et des apparences ; non que j’en fasse fi, loin de là, mais
elle n’a rien à faire avec la science ; je veux parler de cette beauté plus intime qui
vient de l’ordre harmonieux des parties, et qu’une intelligence pure peut saisir.

Science et méthode, Henri Poincaré

1.1 Basic spaces and structures

In this thesis we will mainly work with either the Cantor space or the Baire space. Both of
them deserve a small subsection, in which we try to sum up all the basic things the reader
needs to know about them. We then have a last subsection describing basic vocabulary
and definitions about trees.

1.1.1 The Cantor space

Basic vocabulary

In this thesis, we call strings finite sequences of zeros and ones. The empty word, denoted
by ε is also considered to be a string. The space of strings is denoted by 2<N, and a string
itself will be denoted by σ, τ or ρ. For a string σ, we denote the length of σ by ∣σ∣. An
infinite sequence of zeros and ones will be simply called a sequence and we typically use
letters X, Y or Z, to name sequences. The Cantor space, denoted by 2N is the set of all
sequences.

For a string σ and a sequence X we write σ ≺X and we say ‘X extends σ’ or that ‘σ
is a prefix of X’, if the ∣σ∣ first bits of X are equal to σ. Similarly, for two strings σ and
τ , we say that σ ⪯ τ if ∣σ∣ ≤ ∣τ ∣ and if the ∣σ∣ first bits of τ are equal to σ. If we want the
extension to be strict we write σ ≺ τ . If two strings σ and τ are such that σ â τ and τ â σ,
we say that σ and τ are incomparable, and we write σ ⊥ τ . Conversely, if σ and τ are
comparable we will write σ ∥ τ . For a string σ, a sequence X, any n with 0 ≤ n < ∣σ∣ and
any m, we write σ(n) and X(m) to denote respectively the value of the n-th bit of σ and
the value of the m-th bit of X (starting at position 0). For two strings σ, τ , we denote the

1

1.1. BASIC SPACES AND STRUCTURES

concatenation of σ to τ by σˆτ . Finally, for an integer n, a string σ and a sequence X,
we denote by X ↾n and σ↾n, respectively the n first bits of X and the n first bits of σ.

Computable bijection

We will very often use computable bijections from N × N to N or more generally from
Nn to N. We denote such bijections by ⟨, . . . , ⟩ and we write for example ⟨a, b⟩ for the
result of the binary bijection on a and b. We give a first example of a the use of ⟨, ⟩ by
introducing for sequences {Xi}i∈N, the notation ⊕i∈NXi, which denotes the sequence Z
such that Z(⟨i, j⟩) = Xi(j). We also write X ⊕ Y to denote the sequence Z such that
Z(2i) =X(i) and Z(2i + 1) = Y (i).

The topology

The Cantor space is endowed with the usual topology (the product topology). For a string
σ, we call cylinder the set of all the sequences extending σ, and we denote it by [σ]. The
topology is the one generated by the set of all the cylinders [σ]. We introduce a notation
that will often be used to deal with open sets:

Definition 1.1.1. For a set W ⊆ 2<N we write [W]≺ to denote the open set ⋃σ∈W [σ].

Note that the cylinders form a basis of the topology, as any non-empty intersection of
two cylinders is still a cylinder. We now a few basic properties of this topological space:

� The Cantor space is a compact space. In particular a subset of 2N is closed iff it is
compact.

� The Cantor space is completely metrizable with the Cantor distance:

d(x, y) = 2−min{i ∶ (x(i)≠y(i))}

� The Cantor space is 0-dimensional, i.e., has a basis of clopen sets. Indeed, each
cylinder is both open and closed (clopen). This is also true of finite unions of
cylinders and indeed, these are exactly the clopen sets of 2N.

Different interpretations of the Cantor space

There is another canonical way to give meaning to elements of the Cantor space, by
viewing them as subsets of N. So for X ∈ 2N, the corresponding subset of N is the one
containing the natural number n iff X(n) = 1. Here again it is clear that this provides a
canonical one-to-one map between elements of 2N and subsets of N, that we will from now
on consider as well, as elements of 2N.

A last way we can view elements of the Cantor space, is as binary representations of the
elements of [0,1] ⊆ R. However, one should notice that the real 0,010000 . . . is the same
as the real 0,001111 . . . , whereas the sequence 010000 . . . is different from the sequence
001111 The topology of both spaces is indeed different, as [0,1] is not 0-dimensional.
In practice, this difference won’t matter for our purposes.

2

1.1. BASIC SPACES AND STRUCTURES

1.1.2 The Baire space

Basic vocabulary

As for the Cantor space, we call string a finite sequence of natural numbers (including the
empty word ε), sequence an infinite one, and we define N<N to be the set of strings and
NN to be the set of sequences. In practice it will be in general clear when strings/sequences
are meant to be strings/sequences of the Baire space rather than of the Cantor space, and
when it might be ambiguous, we will always give precisions.

Elements of N<N will be usually denoted by σ,τ or ρ and elements of NN will be usually
denoted by f, g or h. For an integer n, a sequence f and strings σ,τ, the notions of length
∣σ∣, extension/prefix σ ≺ X, σ ⪯ τ, σ ≺ τ, comparability σ ⊥ τ, σ ∥ τ, n-th value σ(n),
f(n), concatenation σˆτ, and restrictions f ↾n, σ↾n, are as in the Cantor space.

The topology

Just as for the Cantor space, we define for each string σ the cylinder [σ] as the set of
all sequences extending σ. The topology is then the one generated by all the cylinders,
and the cylinders form a basis for the topology. The main topological difference with the
Cantor space is that the Baire space is not compact.

Different interpretations of the Baire space?

Elements of the Baire space can also be viewed as total functions from N to N. So for
f ∈ NN, the corresponding function is equal to m on input n if f(n) = m. It is clear that
this provides a canonical one-to-one map between elements of NN and total functions from
N to N, that we will from now on consider as well, as elements of NN.

1.1.3 Trees

The trees over N<N will play a very important role in this thesis, because they are a
convenient tool to work with things as different as ordinals, closed sets and analytic sets.
We also briefly present a generalization of the notion of tree, over any partial order.

Basic vocabulary

A tree T of NN is a subset of N<N closed under the prefix relation: if σ ∈ T and τ ⪯ σ

then τ ∈ T . Elements of T are called nodes of T . By convention, we assume that any tree
contains at least the element ε which corresponds to the empty word. The node ε will be
also called the root of the tree. An infinite path of T is a sequence f so that f ↾n∈ T for
every n. The body of T , denoted by [T] is the set of infinite paths of T .

For σ a node of T we call children of σ the nodes of the form σˆn for some n ∈ N,
whereas we say that σ is the father of its children (obviously). We call descendants of
σ the nodes τ of T so that σ ≺ τ. A tree T is said to be pruned is every node σ of T has a
child. A node σ having at least two distinct children σ1,σ2 is said to be branching. For
a tree T with at least one branching node we denote by stem(T) the first branching node
of T . For a tree T and a string σ, we write T ↾σ the subtree of T obtained by keeping
only strings compatible with σ. Also for a tree T and a node σ of T , we write T ↿σ to
denote, informally, the shifting to the left of every string of T ↾σ by ∣σ∣, which becomes,
so to speak, the new root the T . Concretely we remove from T ↾σ every prefix of σ and
we replace every other nodes σˆτ (they all follow this pattern) by τ. Finally for a tree T

3

1.2. BASIC COMPUTABILITY NOTIONS

and a string σ we denote by σˆT the ‘shifting to the right’ of every string of T by σ, that
is, we put all prefixes of σ in the tree and we replace each node τ of T by σˆτ.

1.2 Basic computability notions

We assume that general notions of computability on N are known. Elements of N will
be denoted by a, b, c, d, e, i, j, k, l,m,n, with e more specifically used for ‘codes’. We just
recall here some standard notation which will be used in this thesis.

1.2.1 Computability on the Cantor space

For any e we denote by ϕe ∶ N → N the computable function of code e. If we allow a
‘computable process’ to access infinite objects as oracle, we then speak of computable
functional. So for any e ∈ N, we will denote by Φe ∶ 2

N×N→ N the computable functional
of code e. Sometimes it will happen that we want our functionals to have more than one
oracle in input, with possibly some of them from the Baire space. When it is so we will
always give precisions. For a given fixed oracle X ∈ 2N, we denote by ΦX

e ∶ N → N the
curryfication of Φe applied to oracle X. We write ΦX

e (n) ↓ or sometimes Φe(X,n) ↓ if
the computation converges with oracle X and input n. We write ΦX

e (n) ↑ or sometimes
Φe(X,n) ↑ otherwise. Also for any e ∈ N, we denote by We the computably enumerable
set of code e, that is the domain of ϕe. The notion relativizes and for X ∈ N, we denote
WX
e the domain of ΦX

e . Note that we will not make any difference between We and W 0∞
e

(where 0∞ denotes the sequence corresponding to the empty set of natural numbers).

We will often consider functionals Φe ∶ 2N × N → N as functions from 2N to NN, or as
functions from 2N to 2N. In this case we write Φe ∶ 2N → NN (respectively Φe ∶ 2N → 2N)
and we write Φe(X) to denote the image of Φe on the sequence X. Such a function Φe is
defined on X when ∀n Φe(X,n) ↓ (respectively when ∀n Φe(X,n) ↓∈ {0,1}).

Quite often we will have to consider the running time of a given computation. So for
a functional Φe, an oracle X and an integer n, we denote by Φe,t(X,n) or by Φe(X,n)[t]
the result of the computation up to time t. If a given functional Φe halts on some oracle
X and some input n, then it necessarily uses only finitely many bits of the oracle. The
smallest prefix σ of X so that the functional Φe does not access values bigger than ∣σ∣
will be called the use of X on input n and will be denoted by useXe (n). Note that this
definition is a bit non standard, as in the literature, the use often refers to the size of σ
rather than to σ itself.

1.2.2 The fixed point theorem

The fixed point theorem, also called the second recursion theorem has been proved by
Kleene in [37], the same paper in which the constructive ordinals are introduced (see
Section 1.4.3). In some sense the theorem and the proof are quite simple, but it is not
necessarily obvious to understand its implications, that we shall detail below.

Theorem 1.2.1 (Kleene’s fixed point theorem):
If f is a total computable function, there exists an integer e so that Φf(e) = Φe.

4

1.2. BASIC COMPUTABILITY NOTIONS

Proof: Let a be a code for a total function which takes n in parameter and returns a code
for the function which on m returns the result of Φf(Φn(n))(m). Formally: ΦΦa(n)(m) =

Φf(Φn(n))(m). We then have that ΦΦa(a)(m) = Φf(Φa(a))(m) which makes Φa(a) the
desired fixed point.

Note that for a given function f , the fixed point can be obtain effectively. A first
obvious interpretation of the fixed point theorem, is that for any computable function
which modifies programs, there is always a program which has the same behavior before
and after the modification. In practice we will always use the fixed point theorem as a
tool which allows us to say that a program can ‘access its own code’. So when you have a
program M using some integer n, you can define the total computable function f taking n
in parameter and outputting the code for the version Mn of the program that uses integer
n. But by fixed point theorem, there is a version Me of this program that uses its own
code, that is e is a code for Me.

It is no accident that Kleene gave a proof of the fixed point theorem in the same paper
in which he introduced a coding system for ordinal, as we will see it with Section 1.4.3
and most particularly with Example 1.4.2.

1.2.3 Reductions

We now give the main notions of reduction between oracles X,Y . For all of them, the
intuition is that when X is reduced to Y , sufficient knowledge of Y is enough to get the
knowledge we need about X.

Many-one reductions

The strongest notion of reduction of this thesis is the so called many-one reduction
introduced by Post in [75]. For two elements X,Y ∈ 2ω we say that X is many-one-
reducible to Y and we write X ≤m Y if there exists a total computable function f ∶ N→ N
such that n ∈X ↔ f(n) ∈ Y . So to know any bit of X we can ask only one question to Y
to have the answer. Moreover we cannot change that answer, as Y (f(n)) has to be equal
to X(n). If X ≤m Y and Y ≤m X we write X ≡m Y . It is clear that ≡m is an equivalence
relation, which leads us to notion of equivalence classes for this relation, that will be called
many-one degrees. The notion of many-one reduction is important for its connection
with the arithmetical and hyperarithmetical hierarchy, developed in Section 1.6

Turing reductions

A more general reduction notion in computability theory is the so-called Turing reduc-
tion, introduced by Turing in his PhD thesis (see [93]). Turing reduction is also the most
used and studied in the literature nowadays. We say that X is Turing reducible to Y and
we write X ≤T Y if there exists a functional Φe ∶ 2

N×N→ N so that ΦY
e is the characteristic

function of X. We also define the equivalence relation X ≡T Y which occurs if X ≤T Y
and Y ≤T X and we call Turing degrees the equivalence classes of this relation.

Truth-table reductions

There are three equivalent ways to define truth-table reductions. Perhaps we want to give
first the one making clear what such a reduction has to do with truth-tables. A truth-table
reduction is a uniform infinite computable sequence of truth-tables {tn}n∈N, so that each
tn associates to every possible Boolean combination of a given length (the length depends

5

1.2. BASIC COMPUTABILITY NOTIONS

on n), a Boolean value 0 or 1. We then say that X ≤tt Y if there exists a truth table
reduction so that for each n, the value of X(n) is the one decided by the truth-table tn
when taking the first bits of Y as the input of the Boolean combination. We define X ≡tt Y
and truth-table degrees analogously to what we did for Turing reducibility.

In practice we will often use another equivalent and maybe simpler definition, that is
X ≤tt Y if there exists a total computable function Φe ∶ 2

N → 2N so that ΦY
e =X. It is clear

that a truth-table reduction can always be transformed into a total Turing reduction, as
each truth-table tn covers the whole Cantor space. One can also transform a total Turing
reduction into a truth-table reduction, by building each truth-table tn with the use of
every oracle. More formally, for a given n we can compute the smallest length l so that for
every string σ of size l we have that Φσ

e (n) ↓∈ {0,1}. The corresponding truth-table is then
built by associating the result of the computation on each string of size l. We can argue
that such a length l always exists, and can be found computably: If there were strings σ of
arbitrarily long length so that Φσ

e (n) ↑, then also we would have by compactness, a limit
point X for this set of strings, for which ΦX

e (n) ↑, and this would contradict the totality
of Φe.

We finally give a last equivalent definition for truth-table reduction. We say that
X ≤tt Y if there is a computable functional Φe ∶ 2

N → 2N so that ΦY
e = X and so that the

computation time that ΦY
e takes to halt on n, is bounded by a total computable function of

n. More formally we have a computable function f ∶ N→ N so that ΦY
e (n)[f(n)] ↓=X(n).

Suppose so, then it is easy to make such a function Φe total without damaging the result
of Φe on Y , as for each n we can simply wait f(n) step of computation and then decide
arbitrary values on strings σ for which Φσ

e (n)[f(n)] ↑. Conversely, with a total computable
function Φe ∶ 2N → 2N, uniformly in n, we can as before compute the smallest length l
so that the computation halts on every string σ of length l. The supremum of all the
computation steps used so far is computable.

Weak truth-table reductions

We say that X ≤wtt Y if there is a functional Φe ∶ 2N × N → N so that ΦY
e = X and so

that the length of the use of Y is bounded by a total computable function f , that is, for
every n we have ∣useYe (n)∣ ≤ f(n). As for the truth-table reduction, the interpretation
is that we have to ask in advance which bit of the oracle we want to use (unlike in the
full Turing reduction, where new requests to the oracle may depend on the answer of
previous requests). But unlike the truth-table reductions, the functional doesn’t have to
be total. We define X ≡wtt Y and weak-truth-table degrees analogously to what we
did for Turing reducibility and truth-table .

Relations between reductions

It is clear from the definition we gave of the different reductions that:

X ≤m Y →X ≤tt Y →X ≤wtt Y →X ≤T Y

For a proof that all those implications are strict, one can refer for example to [73].

1.2.4 The arithmetical hierarchy

Within his work about first incompleteness theorem (see [26]), Gödel made a very clever
use of the Chinese remainder theorem, leading to the well-known theorem saying that
the domains of computable functions are exactly the sets of integer one can define by a

6

1.2. BASIC COMPUTABILITY NOTIONS

formula of arithmetic using only existential unbounded quantifiers, called Σ0
1 formulas. At

the time the notion of computable function was yet to be introduced by Herbrand in [28],
and Gödel’s work only dealt with primitive recursive functions.

This equivalence led to precise definitions in order to capture ‘being computable’ or
‘being computably enumerable’ in term of definability by arithmetical formulas. Also if Σ0

1

formulas are exactly those which define sets of the form We, what to say about the more
complex formula, when we add for example unbounded universal quantifiers? The study
of those questions has been conduct, with success, mainly by Kleene, roughly between
1940-1955 (see ‘Historical remarks’ sections of [65]). He introduced in 1943 (see [38]) a
hierarchy (discovered independently by Mostowsky in 1946 [66]) called nowadays ‘arith-
metical hierarchy’, or ‘Kleene hierarchy’.

Definition 1.2.1. for this definition, for any i, the formula ψ(n1, . . . , ni) denotes a for-
mula of arithmetic so that n1, . . . , ni are the only free variable of ψ. For any i, a formula
of arithmetic ψ(n1, . . . , ni) is defined by induction to be:

� ∆0, Π0 or Σ0 if ψ(n1, . . . , ni) only has bounded quantifiers (‘∃x < t’ or ‘∀x < t’, for
t an arithmetical term which may involve the variables ni but no other variable).

� Σn+1 if it is of the form ∃m ψ(n1, . . . , ni,m) for ψ(n1, . . . , ni,m) a Πn formula.

� Πn+1 if it is of the form ∀m ψ(n1, . . . , ni,m) for ψ(n1, . . . , ni,m) a Σn formula.

It is clear that if a formula ψ(n) is Σn, then the formula ¬ψ(n) does not match the
definition of Πn formulas, but it is ‘morally’ Πn, in the sense that it is logically equivalent
to a Πn formula. We then extend the definition:

Definition 1.2.2. For any i, the formula Ψ(n1, . . . , ni) is Σ0
n (respectively Π0

n) if it is
logically equivalent to a Σn (respectively Πn) formula ψ(n1, . . . , ni), under the axioms of
Peano arithmetic. That is, the formula:

∀n1, . . . , ni Ψ(n1, . . . , ni)↔ ψ(n1, . . . , ni)

is provable in Peano arithmetic. If a formula is both Σ0
n and Π0

n, then it is said to be ∆0
n.

Any formula of arithmetic is Σ0
n or Π0

n for some n, because any predicate calculus
formula is logically equivalent to a formula in ‘prenex normal form’ (that is starting with
a quantifier part, followed by a quantifier-free part).

It is worth saying that since Matiyasevich proved in [60] his famous theorem, generally
called the MRDP theorem (in reference of the earlier work of Julia Robinson, Martin
Davis and Hilary Putnam), we know that bounded quantifiers are not necessary in the
previous definitions, that is, a Σ0

1 formula is provably equivalent in Peano arithmetic to a
Σ1 formula with no bounded quantifiers.

Not only the MRDP theorem provided of solution to Hilbert 10th problem, but it also
has the ‘philosophical consequence’ that the undecidability of a formula does not depend
on its complexity. Already Gödel proved that there are undecidable Σ0

1 statements, but
one could have argued that their undecidability depends on an intensive use of bounded
quantification. By the MRDP theorem, we now know that their undecidability only

Digression

7

1.3. ORDINALS

depends on the property of numbers, with respect to addition and multiplication.

Also we could not resist giving the following example of Verena Dyson, James Jones
and John Sheperdson (see [19]), that illustrates the mystery of undecidability, which
seems deeply connected to the structure of integers, and certainly in that respect, is to
be meditated...

Theorem 1.2.2 (Dyson, Jones, Sheperdson [19]):
Let T be any axiomatizable ω-consistent theory containing Robinson Arithmetic.
Then there is an n (different for different theories) such that the following sentence
is undecidable in T:

∃a, b ∀i ≤ n ∃s,w, p, q, j, v, e, g
{(s +w)2 + 3w + s = 2i ∧ ([j = w ∧ v = q] ∨ [j = 3i ∧ v = p + q]
∨[j = s ∧ (v = p ∨ (i = n ∧ v = q + n))] ∨ [j = 3i + 1 ∧ v = pq]
→ a = v + e + ejb ∧ v + g = jb)}

The purpose of the two previous definitions then lies in the following one, which estab-
lishes the arithmetical hierarchy as a classification of sets according to their complexity.

Definition 1.2.3. A set X ⊆ ω is said to be Σ0
n (respectively Π0

n, ∆0
n) if there is a Σ0

n

(respectively Π0
n, ∆0

n) formula Ψ so that n ∈X ↔ N ∣= Ψ(n).

What Gödel ‘essentially proved’, is that the sets of the form We are exactly the Σ0
1

sets. Keeping this in mind, one can also notice easily the correspondence between logical
operations and set-theoretical operations: The existential quantification corresponds to
union of sets, the universal one to intersection of sets and the negation to complement of
sets.

One can then equivalently define the Σ0
1 sets as the sets We for some e, then the Π0

n

sets as complements of Σ0
n sets, and the Σ0

n+1 sets as effective unions of Π0
n sets. So for

example a set is Σ0
4 if there exists a code e so that:

⋃
n1∈We

⋂
n2∈Wn1

⋃
n3∈Wn2

W c
n3

This point of view will be necessary in particular to extend the arithmetical hierarchy to
the hyperarithmetic one, where we will define sets that cannot necessarily be defined by
first order formulas of arithmetic.

1.3 Ordinals

1.3.1 Well-founded relations and ordinals

The concept of well-order has been introduced by Cantor in 1883 (see [52], page 38), who
defined a totally ordered set A to be well-ordered if any subset of A, bounded in A, has
an immediate successor in A. It can be seen to be equivalent to the modern definition,
that we shall now give:

8

1.3. ORDINALS

Definition 1.3.1. An order relation (strict or non strict) R ⊆ A ×A is said to be well-
founded if every subset of A admits a minimal element in the sense of R. Formally:

∀B ⊆ A B ≠ ∅→ ∃a ∈ B ∀b ≠ a ∈ B ¬(b, a) ∈ R

If R is also total, that is, for any two elements x, y of A we have (x, y) ∈ R or (y, x) ∈ R,
then R is said to be a well-order.

This notion revealed itself to be essential in mathematical logic, as it is the backbone
of both proofs and definitions by induction. Also it naturally led mathematicians to the
attempt of capturing the notion of ordinals, this is to say, not just specific well-orders, but
their order-types: Two orders defined on {1,2,3} respectively by 1 ≤ 2 ≤ 3 and by 2 ≤ 1 ≤ 3,
are ‘structurally the same’, they have the same order-type, that is, we can find an order
isomorphism between the two. So the notion of ordinals was first a notion of equivalence
classes of sets having the same order-type. This was then modernized by Von Neumann
who proposed some canonical well-ordered sets as the definition of ordinals themselves.
The simple definition he gave remains today the one that everyone uses, informally: “each
ordinal is the well-ordered set of all smaller ordinals”.

Example 1.3.1:
The set of ordinals smaller than the first of them is empty, and then the first ordinal is
naturally equal to ∅. The second one is {∅}, the set containing the empty set, the third
one is {∅,{∅}}, and we can then continue to define all finite ordinals inductively. The
first non finite ordinal is denoted by ω and is by definition the set of all finite ordinals.
It is the first ordinal bigger than ∅ which does not have any predecessor. Such an
ordinal is called a limit ordinal, by opposition to the others which are called successor
ordinals. ♢

The trained logician certainly noticed that the informal definition of ordinals that
is given in the previous example, is done by induction over... the ordinals themselves.
To avoid such a loop, we provide now the official definition, which is more obscure, but
necessary:

Definition 1.3.2. A set α is an ordinal if α is well-ordered with respect to set membership
and if every element of α is also a subset of α.

The reader can see [52], page 52, where the author, Azriel Levy, credits Von Neumann
in [94], and Zermelo (unpublished work) for this definition. One can prove that the formal
definition is equivalent to the informal one. Ordinals will be denoted by α,β and γ. We
now give a few basic properties of ordinals.

To denote finite ordinals, we sometimes use the notations for natural numbers, that is,
0 for the first ordinal, 1 for the second one, etc.... Also every ordinal α has a successor
(a smallest ordinal strictly bigger than α) that we denote by α+ or α + 1.

Every set A of ordinals has a smallest strict upper bounded (according to the first
definition of well-ordered, given by Cantor). We will denote it by sup+(A), which is equal
to sup{α+ 1 ∶ α ∈ A}, where sup(A) denotes the smallest non-strict upper bound of a set
of ordinals A, that is, the smallest ordinal bigger or equal than all the ordinals in A. If
A = ∅, by convention sup+(A) = 1.

9

1.3. ORDINALS

The class of all ordinals is itself well-ordered by the set membership relation. It is clear
that any set (or class) of ordinals is well-ordered. Then for a class of ordinals having a
given property, we can always argue that there is a smallest of them.

We shall now argue that Von Neumann’s definition of ordinal really captures every
possible well-order, that is, up to isomorphism, every well-order is also the set membership
relation of an ordinal.

Theorem 1.3.1 (Mostowsky collapse):
Let R be a well-order on a set A. For all a ∈ A we define:

∣a∣o = {∣b∣o ∶ (b, a) ∈ R with b ≠ a}

We have that ∣a∣o is an ordinal which is order-isomorphic to the set {b ≠ a ∶ (b, a) ∈ R}

endowed with the order relation R restricted to it. We also have that the supremum
of ∣a∣o for all a ∈ A is an ordinal, order-isomorphic to R.

One can see for example Kunen’s book [43], for a proof of the Mostowsky collapse
theorem. For each a ∈ A, the ordinal ∣a∣o will be called the order-type of a. The ordinal
corresponding to the supremum of ∣a∣o for all a ∈ A will be called the order-type of A,
which will be denoted by ∣A∣o.

1.3.2 Ordinal arithmetic

The main theorem of this section, that we will occasionally reuse in this thesis, is a version
of the euclidean division for ordinals. But first we should make explicit a version of addition
and multiplication for ordinals.

Definition 1.3.3 (Addition). The addition is defined on the ordinals by induction over
its second parameter:

α + 0 = α
α + β+ = (α + β)+

α + sup{β ∶ β < γ} = sup{(α + β) ∶ β < γ}

The following example provides an equivalent way to define addition on well-orders.

Example 1.3.2:
For two well-ordered sets A and B, we define a well-order on A⊔B, the disjoint union of
A and B, by putting A ‘at the left of’ B, that is, elements of A are smaller than elements
of B. We have that the resulting order is a well-order, with ∣A ⊔B∣o = ∣A∣o + ∣B∣o. ♢

Definition 1.3.4 (Multiplication). The multiplication is defined on the ordinals by in-
duction over its second parameter:

α × 0 = 0
α × β+ = (α × β) + α
α × sup{β ∶ β < γ} = sup{(α × β) ∶ β < γ}

10

1.4. COMPUTABLE ORDINALS

As for the addition, we can provide an equivalent way to define multiplication on well-
orders.

Example 1.3.3:
For two well-ordered sets A and B, we define a well-order on A × B, the cartesian
product of A and B, by simply taking the lexicographic order, that is (a1, b1) < (a2, b2)
if a1 < a2 or if a1 = a2 and b1 < b2. We have that the resulting order is a well-order, with
∣A ×B∣ = ∣A∣ × ∣B∣. ♢

The reader should note that addition and multiplication over ordinal are not commu-
tative (for example ω + 3 is different from 3 + ω which is equal to ω). We now state the
ordinal version of the Euclidean division:

Proposition 1.3.1 (left division for ordinals):
For all α ≥ β > 0, there are unique γ1 ≤ α and γ2 < β, such that α = β × γ1 + γ2.

1.4 Computable ordinals

1.4.1 Introduction to computable ordinals

In this thesis, we will exclusively be interested in countable ordinals, which are those we
can represent by well-orders of N. Among them, we will take a particular interest to
those that we can computably represent, in a way we shall make precise. The computable
ordinals are of great importance to study the effectively Borel sets, and the effectively
analytical and co-analytical sets.

Definition 1.4.1. A computable ordinal is the order-type of a well-ordered non-strict
relation R ⊆ N × N such that there is a code e with (n,m) ∈ R ↔ ⟨n,m⟩ ∈ We. For X
a sequence, we define X-computable ordinals as the obvious relativized notion. We
denote the set of codes for computable ordinals by W.

The reason we take non-strict relation is to have a way to encode the ordinal 1. So
we have that 0 is encoded by any empty enumeration and that 1 is encoded by any
enumeration outputting ⟨n,n⟩ for a unique n.

In the context of computable ordinals, ∣We∣o will denote the order-type of the relation
coded by We. Also we will call domain of We the integers which are in an enumerated
pair of We. The study of computable ordinals should be credited first to Kleene and
Church, who conceived in the 30’s a system of notation for ordinals, leading to the notion
of constructive ordinal (see [37]). The notion of constructive ordinal provides a coding
system for ordinals, in a restricted way, so we can get more information about n ordinal
by just knowing its code (for example we can know from a constructive code a if a codes
for a limit or a successor ordinal, whereas this requires the double jump to be decided on a
computable ordinal ’s code). The presentation we will give of them in Section 1.4.3 differs
a bit from the one invented by Kleene, but the underlying ideas are exactly the same. It

11

1.4. COMPUTABLE ORDINALS

was not clear at first that the constructive ordinals were the same than the computable
ordinals. It was solved by the affirmative a couple of years following Kleene and Church’s
definition, by Markwald in [56] (credited in [39]).

It is clear from the definition of the computable ordinals that they form an initial
segment of the countable ordinal. Indeed if e ∈ W codes for α, then for each ordinal
smaller than α there is an a so that the set of {b ∶ ⟨b, a⟩ ∈ We} endowed with the
order relation of We, codes for α. Of course, as there are uncountably many countable
ordinals, this initial segment is strict. Kleene and Church then defined the supremum of
the computable ordinals:

Definition 1.4.2. The smallest non-computable ordinal will be denoted by ωck1 which
stands for Church-Kleene omega one. For a sequence X, the smallest non X-
computable ordinal will be denoted by ωX1 .

Note that any countable ordinal is computable from its own representation as an oracle,
and therefore we have sup

X∈2N
{ωX1 ∶ X ∈ 2ω} = ω1, where ω1 is the least non countable ordinal.

1.4.2 Computable ordinals and trees

We shall now introduce computable well-founded trees of the Baire space, as they are
a convenient way to represent computable ordinals. This can be done inductively by
mapping each node σ of a well-founded tree T to the smallest strict upper bound of all
ordinals associated to children of σ:

Definition 1.4.3. A tree T ⊆ NN is well-founded if [T] is empty. For T a well-founded
tree and for a node σ of T we define ∣σ∣o by induction, to be ∣σ∣o = sup+{∣σˆn∣o ∶ σˆn ∈ T}.
We then define ∣T ∣o = ∣ε∣o where ε is the root of T .

Example 1.4.1:
If T = ∅ then ∣T ∣o = 0. If T = ε then ∣T ∣o = 1. If T has only nodes of length n of shorter
than ∣T ∣o is smaller than or equal to n + 1. ♢

By abusing notation, in what follows we can write ∣T ∣o for a tree T ill-founded, in which
case we consider that ∣T ∣o is bigger than any ordinal ∣T ∣o for any well-founded c.e. tree.
We now argue that the computable ordinals are exactly those that can be represented this
way by a computably enumerable tree T . Consider a code e ∈W and let us build a tree
T so that ∣We∣o = ∣T ∣o. For each element ⟨a, b⟩ enumerated in We with a ≠ b, we enumerate
a as a child of the root in T , and for each element a enumerated in T , we continue to
enumerate recursively as the children of the node a, all the nodes aˆn for each n which is
witnessed to be strictly smaller than a at some point in We. The tree T is well-founded
because We codes for a well-founded relation. By induction, it is easy to prove that for
any a in the domain of We we have ∣a∣o = sup+{∣b∣o ∶ ⟨b, a⟩ ∈We with a ≠ b}, and then that
the tree ∣T ∣o is equal to ∣We∣o.

For the other direction, we introduce another way to encode an ordinal by a well-
founded tree, known as the Kleene-Brouwer ordering. This ordering for tree T looks like

12

1.4. COMPUTABLE ORDINALS

the lexicographic order of its nodes, with the difference that a string prefix is bigger than
the string itself. So σ is smaller than τ if σ is a suffix (a descendant in the tree) of τ or if
σ is at the left of τ in the tree.

Another way to define the Kleene-Brouwer ordering is by assigning to each node the
supremum for n ∈ N of the finite sums of the ordinals assigned to its n first children:

Definition 1.4.4. For T a well-founded tree and a node σ of T we define by induction:

∣σ∣KB = sup+n∈N

⎧⎪⎪
⎨
⎪⎪⎩
∑i≤n ∣σˆmi∣KB ∶ σˆmi the i-th child of σ

⎫⎪⎪
⎬
⎪⎪⎭

We then define ∣T ∣KB = ∣ε∣KB where ε is the root of T .

Suppose now we have a c.e. well-founded tree T . The goal is to define a code e
so that ∣We∣o ≥ ∣T ∣o. Then, as the computable ordinals form an initial segment of the
countable ordinals, we would then also have that ∣T ∣o is a computable ordinal. If T were
computable we could, with an appropriate coding for strings of the Baire space, enumerate
its Kleene-Brouwer ordering and get the result, as it is clear from the previous definition,
that ∣T ∣KB ≥ ∣T ∣o. But as T is only c.e. we have to enumerate a variation of it, where a
node σ1 is smaller than its sibling node σ2 if σ2 appears latter than σ1 in the enumeration.
It is still clear that even with this modification we have a resulting ordinal bigger or equal
to ∣T ∣o.

We now define:

Definition 1.4.5. We call T the set of codes e so that We enumerates the nodes of a well-
founded tree. For any a ∈ T coding for T we write ∣a∣o to denote ∣T ∣o. For any computable
ordinal α we write T <α to denote the elements a ∈ T so that ∣a∣o < α, we write T ≤α to
denote the elements a ∈ T so that ∣a∣o ≤ α and we write T =α to denote the elements a ∈ T
so that ∣a∣o = α.

We now give a few technical but easy lemmas that will be useful to work with well-
founded trees. The first one is about the existence of a total computable function OR ∶

N × N → N which we named this way because it can be seen as a Boolean “or” between
trees, when “being well-founded” is interpreted as the value “true”. So OR(T1, T2) is a
code for a c.e. well-founded tree iff T1 is well-founded, or T2 is well-founded. Furthermore,
we show that it is possible to achieve ∣OR(T1, T2)∣o = min(∣T1∣o, ∣T2∣o):

Lemma 1.4.1 There is a total computable function OR ∶ N × N → N, which on any two
codes for c.e. trees T1, T2, returns the code of a c.e. tree T so that T is well-founded iff T1

or T2 is well-founded. Also in case T is well-founded we have ∣T ∣o = min(∣T1∣o, ∣T2∣o).

Proof: In what follows, we use a pairing function over pairs of strings of N<N

of the same size, defined by applying the integer binary pairing function on each
pair of elements that are at the same position on the two strings. Formally:
⟨σ1,σ2⟩ = ⟨σ1(0),σ2(0)⟩ˆ . . . ˆ⟨σ1(n − 1),σ2(n − 1)⟩, where n = ∣σ1∣ = ∣σ2∣.

The definition of T is rather simple: We enumerate a node σ in T if σ = ⟨σ1,σ2⟩ where
for i ∈ {1,2}, each string σi has been enumerated in Ti. We easily verify that T is a c.e

13

1.4. COMPUTABLE ORDINALS

tree. Furthermore it is clear that we have an infinite path in T iff we have an infinite path
in both T1 and T2. We now prove by induction that ∣T ∣o = min(∣T1∣o, ∣T2∣o).

For any two c.e. trees T1, T2 let us denote min(∣T1∣o, ∣T2∣o) by γ. Consider now two
c.e. trees T1, T2 so that γ = ∅. It is clear that we also have ∣T ∣o = ∅. Suppose that for
any c.e. trees T1, T2 with γ < α we have ∣T ∣o = γ. Consider now c.e. trees T1, T2 with
γ ≤ α and let us prove that ∣T ∣o = γ. By definition we have that σ is a node of T iff
there is a node n1 of T1 and a node n2 of T2 (with ∣n1∣ = ∣n2∣ = 1), so that σ is a node
of the tree ⟨n1, n2⟩ˆOR(T1 ↿n1 , T2 ↿n2). As we have for any sequence of ordinals that
sup+n,mmin(αn, βm) = min(sup+n αn, sup+n βn), then using the induction hypothesis, we also
have that ∣T ∣o = min(∣T1∣o, ∣T2∣o) = γ.

We now prove a similar lemma, but this time we want an infinite Boolean OR, that
is, we now have a code for a computable infinite sequence of trees {Ti}i∈ω and we want
that OR(T1, T2, . . .) is well-founded iff for at least one i we have that Ti is well-founded.
In this case, we cannot have a bound as accurate as before:

Lemma 1.4.2 There is a total computable function OR ∶ N → N, which on any code for
an infinite computable enumeration of c.e. trees {Ti}i∈N, possibly ill-founded, returns a
code for a c.e. tree T , so that if at least one Ti is well-founded we have:

∣T ∣o < min{∣Ti∣o ∶ Ti is a well-founded tree } + ω

and if every Ti is ill-founded, we have that T is ill-founded as well.

Proof: We define a sequence of trees {Ui}i∈N, by U0 = T0 and if Ui is defined, Ui+1 is
obtained by putting in Ui+1 all nodes σ of length i + 1 that are in Ui and their prefixes,
and by adding for each of those σ, the nodes that are in the tree σˆOR(Ti+1, Ui ↿σ), where
OR ∶ N × N → N is the function of the previous lemma. Our function returns a code for
the tree T = limiUi.

It is clear by definition that limiUi exists because for any i and any j ≥ i, the nodes of
length less than i + 1 are the same in each Uj . The limit is equal to the tree described by
the union over i of the set of nodes of length i + 1 that are in Ui. As each Ui is a c.e. tree
uniformly in i, we also have that the limit is a c.e. tree.

For i so that ∣Ti∣o is minimal we have that ∣Ui∣o ≤ ∣Ti∣o+ i. Indeed, every node in Ui is in
a tree σˆOR(Ti, Ui−1 ↿σ) for some σ of length i, and ∣OR(Ti, Ui−1 ↿σ)∣o ≤ ∣Ti∣o. Also for any
i we have that ∣Ui+1∣o ≤ ∣Ui∣o and that ∣T ∣o = infi ∣Ui∣o. Therefore, we have ∣T ∣o < ∣Ti∣o + ω.

Similarly, we can define a function AND ∶ N × N → N as well as an infinite AND
working with infinite computable sequence of c.e. trees. It is much easier than for the OR,
as we can just put any tree of the sequence into a bigger tree to obtain the result:

Lemma 1.4.3 There is a total computable function AND ∶ N×N→ N, which on any two
codes for c.e. trees T1, T2, return the code of a c.e. tree T so that T is well-founded iff T1

and T2 are well-founded. Also in case T is well-founded we have ∣T ∣o = sup(∣T1∣o, ∣T2∣o).

Proof: We simply define T to be the disjoint union of T1 and T2, that is, for every n > 0
and every σ of length n in T1 we put ⟨0,σ(0)⟩ˆ . . . ˆ⟨0,σ(n − 1)⟩ in T , and for every σ of
length n in T2 we put ⟨1,σ(0)⟩ˆ . . . ˆ⟨1,σ(n− 1)⟩ in T . It is clear by the definition of ∣T ∣o
that ∣T ∣o = sup(∣T1∣o, ∣T2∣o).

14

1.4. COMPUTABLE ORDINALS

Lemma 1.4.4 There is a total computable function AND ∶ N→ N, which on any code for
an infinite computable enumeration of c.e. trees {Ti}i∈N, returns a code for a c.e. tree T ,
so that if every Ti is well-founded we have:

∣T ∣o = sup+{∣Ti∣o}

and if at least one Ti is ill-founded, we have that T is ill-founded as well.

Proof: We define T like in the previous lemma, but with the infinite disjoint union of
every tree Ti.

1.4.3 Transfinite recursion over the computable ordinals

We will need in this thesis to build several computable functions by transfinite recursion
over the ordinals. To do so we use a generalization of the recursion scheme for primitive
recursive functions. Informally, to define a computable function f on the value n, we can
safely reuse the values of f on every m < n. So to compute f(n) we need to compute first
f(n− 1), f(n− 2), etc... until we need to compute the value f(0) in a computation which
should not use any other value of f .

This works along ω (for because ω is well-founded, and it can be generalized to any
well-founded relation. So to define f(n), we can require the knowledge the values of f(m)

first, for any m smaller than n in the well-order we use. Of course, to keep f computable,
we need some restrictions on our well-order:

1. For an element n of the well-order, we should be able to computably enumerate
elements which are smaller than n, so at least we can ask the required previous
values of f .

2. We should be able to recognize ‘a halting criterion’, that is, we should be able to
know in a computable way when nothing is smaller than the current element n.

The use of codes for computable ordinals as defined so far does not ensure that the
second condition is satisfied, because a code for the smallest ordinal is a code for an empty
relation, and we can never decide in finite time if something will be enumerated or not in
an empty relation. Perhaps the best way to overcome this difficulty is by using Kleene’s
coding system for constructive ordinals, because this coding system satisfies the above two
and has two more useful properties:

3. We can decide if n codes for a limit ordinal or for a successor ordinal.

4. If n codes for α + 1, a successor ordinal, we can effectively find a code for α, and if
n codes for α, a limit ordinal, we can effectively enumerate a sequence of codes for
ordinals α0 < α1 < . . . so that α = supn αn.

Originally, Kleene’s coding system works with integers. We present here a slightly
different system (all the underlying ideas are exactly the same, only the presentation
differs) using well-founded computable trees.

15

1.4. COMPUTABLE ORDINALS

The constructive ordinals

We now impose some restrictions on the c.e. well-founded trees we are going to use. The
trees which match each condition of this restriction are called constructive trees, and
they code for the constructive ordinals using the coding system introduced previously
(A well-founded tree T codes for the ordinal ∣T ∣o). We now give the definition:

Definition 1.4.6. A tree is constructive if it matches the following conditions:

� The first condition to be a constructive tree is to be well-founded and computable,
that is for a given string σ ∈ N<N we should be able to decide if σ is in the tree or
not. Furthermore, it also should be decidable given a code of a constructive tree T if
T equals the empty set or not.

� The second condition is that every node σ should be either a leaf (in which case
T ↿σ= ε codes for 1), or have exactly one child (in which case T ↿σ codes for a
successor ordinal), or have countably many children (in which case T ↿σ codes for a
limit ordinal).

� For every node, we should be able to computably tell the difference between the three
cases of the second condition. To do so, the third condition is that every node is
‘tagged’, with 0 if it is a leaf, with 1 if it has exactly one child and with 2 if it has
countably many children.

� For every node σ tagged with 2, we should make sure that σ really codes for a limit
ordinal. To ensure that, the fourth condition is that for every node σ with infinitely
many children {σi}i∈ω ordered lexicographically, we have ∣σ0∣o < ∣σ1∣o <

The restriction from c.e. well-founded trees to constructive trees might seem drastic,
but we shall soon see that any computable ordinal can still be coded by a constructive
tree. We shall now define the codes for well-founded trees:

Definition 1.4.7. Let us fix an element e0 such that We0 = ∅. We call O the set of codes
e so that e = e0 or such that We enumerates the tagged nodes of a non-empty constructive
tree, in a way that for any siblings σ1 < σ2, we have that σ1 is enumerated before σ2 (This
way the tree is computable, and note that every constructive tree has a corresponding code).

For any a ∈O coding for a tree T we write ∣a∣o to denote ∣T ∣o. Also for any computable
ordinal α we write O<α to denote the elements a ∈ O so that ∣a∣o < α, we write O≤α to
denote the elements a ∈O so that ∣a∣o ≤ α and we write O=α to denote the elements a ∈O
so that ∣a∣o = α

Also we will always be interested in constructive trees up to isomorphism. So if the
children of a node σ are all odd natural numbers or all even natural numbers, there is
no difference for us so far. If T1 is isomorphic to T2 we will write T1 ≃ T2. Also for two
constructive trees T1 ≃ T2, note that we can compute the isomorphism uniformly in codes
for T1 and T2. We say that T1 and T2 are computably isomorphic.

In practice, when we describe a computable function by induction over constructive
ordinals, we will describe it by induction over elements of O. But Let us first introduce
some notation.

16

1.4. COMPUTABLE ORDINALS

If a ∈ O codes for a finite ordinal n, we sometimes write a = n instead of ∣a∣o = n. If
a ∈O codes for a successor ordinal we can clearly obtain, in a canonical and computable
way, a code b for the predecessor of a. We will write in this case a = succ(b). On the other
hand, when we have a ∈ O coding for a tree T , if we want a code for the successor of a,
there is no unique way to get it. So we decide arbitrarily that in this case, the successor
is a code for the constructive tree 0ˆT . The reader should note that as two isomorphic
constructive trees are computably isomorphic, this decision does not really matter, and in
this case also we will denote the successor of a by succ(a).

The same phenomenon happens for limit ordinals. If a ∈ O codes for a limit ordinal
we can clearly enumerate a list of codes b0, b1, . . . so that ∣b0∣o < ∣b1∣o < . . . and so that
∣a∣o = supn ∣bn∣o. We will write in this case a = supn(bn). On the other hand, when
we have an effective enumeration b0, b1, . . . of codes for constructive trees T0, T1, . . . with
∣b0∣o < ∣b1∣o < . . . , we also don’t have a unique way to build the limit tree. So we decide
that in this case, the limit code is a code for the tree consisting of the union of nˆTn, for
every n. Here again we keep the same notation and denote by supn(bn) the code for this
resulting tree.

To make things more concrete we should maybe give an example of a computable
function that we define by induction over elements of O:

Example 1.4.2:
We define an addition function +o, which takes a, b ∈O and returns (a+o b) ∈O so that
∣a∣o + ∣b∣o = ∣a +o b∣o:

a +o b = a If b = 0
= succ(a +o c) If b = succ(c)
= supn(a +o cn) If b = supn(cn)

. ♢

The function of the previous example might seem a bit obscure at first. We try here to
explicit what happens. First the reader should remember that succ(a) and supn(bn) are
notations for codes (elements of O) and not for the constructive trees themselves. Also
when we have to return the code succ(a+oc), we can just wait for the computation of a+oc
to return and then return succ(a+o c). But when we have to return the code supn(a+o cn),
we cannot wait for each computation a+o cn to return because there are infinitely many of
them. Fortunately supn(a+o cn) is merely a code and this is a typical case where Kleene’s
fixed point theorem is necessary: To return the code supn(a +o cn), we can use a code for
the function +o inside the function +o itself.

Instead of considering that the function +o takes as input codes a, b and outputs a code
for a+o b, we could consider that it takes as input the corresponding enumerations Wa,Wb

(as oracles that we enumerate) and outputs an enumeration of the resulting tree. Such a
function might be easier to conceptualize and does not required the use of Kleene’s fixed
point theorem. However if at the end we want to obtain the code corresponding to the
resulting enumeration, we still need the fixed point theorem, to make the function output
its own code applied to the two codes it has in input.

We shall now briefly prove that the function +o works as expected:

17

1.4. COMPUTABLE ORDINALS

Proposition 1.4.1:
For a, b ∈O we have a +o b ∈O and ∣a∣o + ∣b∣o = ∣a +o b∣o.

Proof: We shall prove the proposition by induction over the second parameter of the
function +o. Fix any a ∈O. The proposition is clear for a and b when b = 0.

Suppose now that for every b ∈ O≤α we have that a +o b ∈ O and ∣a∣o + ∣b∣o = ∣a +o b∣o.
Consider a +o b for any b = succ(c) for some c ∈ O=α. By definition we have a +o b =

succ(a+o c), but by the induction hypothesis we have a+o c ∈O and then succ(a+o c) ∈O.
Still by the induction hypothesis we have ∣a∣o + ∣c∣o = ∣a +o c∣o and then by definition of
‘succ’ we have succ(a +o c) = (∣a∣o + ∣c∣o)

+ = ∣a∣o + ∣c∣+o = ∣a∣o + ∣b∣o.

Take now α limit and suppose that for every b ∈ O<α we have that ∣a +o b∣o ∈ O and
∣a∣o + ∣b∣o = ∣a +o b∣o. Consider a +o b for any b such that b = supn cn with ∣c0∣o < ∣c1∣o < . . .
and with supn ∣cn∣o = α. By definition, we have a +o b = supn(a +o cn), but by induction
hypothesis we have a+ocn ∈O and ∣a∣o+∣cn∣o = ∣a+ocn∣o for every n, and therefore ∣a+oc0∣o <

∣a +o c1∣o < ∣a +o c2∣o < Then supn(a +o cn) ∈ O. Still using induction hypothesis, by
definition of ‘sup’, we have supn(a+o cn) = supn(∣a∣o + ∣cn∣o) = ∣a∣o + supn(∣cn∣o) = ∣a∣o + ∣b∣o.

The constructive ordinals and the computable ordinals coincide

We shall now prove as announced that any computable ordinal can be encoded by a
constructive tree. From any c.e. well-founded tree T , we will build a computable well-
founded tree U whose code is in O and so that ∣T ∣o ≤ ∣U ∣o. If we can do that, it will then
be enough to argue that the constructive ordinals are closed downward to see that the
constructive ordinals are the same as the computable ordinals.

We first start by defining a tree T ′ obtained by adding to each node of T countably
many children that we tag as leaves. All the other nodes of T ′ are (rightfully) tagged to
have countably many children. The resulting tree T ′ is still only c.e. and furthermore, for
a given node of T ′ with countably many children σ0 < σ1 < . . . , we probably do not have
∣σ0∣o < ∣σ1∣o < This is where the function +o will be helpful. We define a computable
function G on nodes of T ′, in order to inductively transform T ′ into a constructive tree,
with the help of the function +o:

G(σ) = a If σ is tagged as a leaf, where a ∈O codes for 1.

= supn (∑i≤nG(σi)) If σ is tagged to have countably many children
{σi}i∈ω (given in order on their enumeration). The
finite sum that we use is of course to be understood
using the function +o.

One can easily prove by induction that G applied to the root of T ′ produces a code
of O for a computable tree U , so that ∣T ′∣o ≤ ∣U ∣o. As we surely have ∣T ∣o ≤ ∣T ′∣o, this
proves that as long as the constructive ordinals are closed downwards, all of them can be
represented by a constructive tree.

18

1.5. DESCRIPTIVE COMPLEXITY OF SETS OF SEQUENCES

We shall now prove that the constructive ordinals are closed downwards. We prove so
in an effective way, that is, given the constructive code of an ordinal α, we can uniformly
enumerate constructive codes for every ordinal β < α.

Proposition 1.4.2:
There is a total computable function q ∶ ω → ω so that for any computable α and any
a ∈O=α, we have that Wq(a) enumerates elements in O corresponding to all ordinals
smaller than α. Formally: Wq(a) ⊆ O<α and ∀β < α, there exists b ∈ Wq(a) with
∣b∣o = β. Note that we can have repetitions.

Proof: On a code a ∈ O for a tree T , the function q simply creates an index which
enumerates a code for 0, and for every σ ∈ T , a code for T ↿σ. We shall prove by induction
that the function q satisfies the proposition. If the tree only contains ε it enumerates
nothing as expected. Suppose now that for every code a ∈O so that ∣a∣o ≤ α we have that
Wq(a) satisfies the proposition. Then surely for any a = succ(b) with ∣b∣o = α we have that
Wq(a) enumerates b and also everything that Wq(b) would enumerate. Thus by induction
hypothesis we have that Wq(a) satisfies the proposition. Suppose now for α limit and for
every code a ∈O<α, we have that Wq(a) satisfies the proposition. Consider a = supn bn for
∣b0∣o < ∣b1∣o < . . . with supn ∣bn∣o = α. We clearly have that Wq(a) enumerates every bn and
also everything that Wq(bn) would enumerate. As the sequence ∣bn∣o is unbounded in α,
we have by induction hypothesis that Wq(a) satisfies the proposition.

1.5 Descriptive complexity of sets of sequences

We give in this section basic notions on descriptive complexity of sequences. A large part
of this thesis will deal with the descriptive complexity of various sets. Informally, this
section deals with the general philosophical question of ‘what sets can be described?’.

We provide with the Borel and the effectively Borel hierarchy a well-known framework
to study the complexity of sets. The way we will present things is now standard, resulting
from the work of many mathematicians during the beginning of the 20th century. Inter-
esting historical remarks can be found in the section 1H of “Descriptive set theory” by
Moschovakis (see [65]): It seems that this study first arose from the study of the complex-
ity of functions, with the Baire classes of functions from Rn to R, defined by Baire in [2].
Lebesgue then derived from the Baire hierarchy of functions (see [48]), the hierarchy of
complexity of sets, known today as the Borel hierarchy.

1.5.1 The Borel hierarchy

Definitions

We give in this section a description of the Borel hierarchy in the Baire space. It will be
clear that the following description can be applied to any topological space.

We say that a set B ⊆ NN is Σ0
1 if it is open, i.e., if there exists a countable set of

strings {σn}n∈N so that A = ⋃n[σn]. We then say that a set B ⊆ NN is Π0
1 if it is closed,

i.e., its complement is Σ0
1.

19

1.5. DESCRIPTIVE COMPLEXITY OF SETS OF SEQUENCES

We can now iterate the definition by induction over the natural numbers. Suppose
that the class of sets which are Π0

n has been defined, we then say that a set B ⊆ NN is
Σ0
n+1 if it is the union of countably many Π0

n sets. We then say that a set B ⊆ NN is Π0
n+1

if its complement is Σ0
n+1.

We can even iterate the definition by induction over the ordinals. Suppose that the
classes of sets which are Π0

α have been defined for any ordinal α < β. We then say that
a set B ⊆ NN is Σ0

β
if it is the union of countably many sets which are Π0

α for β < α. We

then say that a set B ⊆ NN is Π0
β

if its complement is Σ0
β

. It can also be the case that a

set is both a Σ0
α and Π0

α, in which case we say that it is ∆0
α.

We can maybe now give a quick sum up of the previous definitions:

Definition 1.5.1. The Borel hierarchy is defined by induction over ordinals as follow:

� A set is Σ0
1 if it is open.

� A set is Π0
1 if it is closed.

� A set is Σ0
α if it is a countable union of sets which are Π0

β
for β < α.

� A set is Π0
α if its complement is a Σ0

α set.

� A set is ∆0
α if it is both a Σ0

α set and a Π0
α set.

We also say that a set is Σ0
<α (resp. Π0

<α) if it is Σ0
<β (resp. Π0

<β) for some β < α.

It is clear that at ordinal step ω1, no new set is added in the hierarchy, because a
countable set of countable ordinals is bounded in ω1. More formally, a Σ0

ω1
set is also a

Σ0
α set for α < ω1, and we easily prove by induction that any Σ0

β
set for β ≥ ω1 is also a

Σ0
α set for α < ω1. We will see later that the hierarchy is strict below ω1.

Closure properties of the Borel hierarchy

We shall state here various closure properties of Borel sets, without the proofs, that can
be found for example in [65]. For any countable ordinal α, for Γ meaning Π or Σ, we have
the three following straightforward closure properties for the Borel sets of any topological
spaces:

� The class of Σ0
α sets is closed under countable union.

� The class of Π0
α sets is closed under countable intersection.

� The class of Γ0
α sets is closed under finite union and finite intersection.

The last one is to be proved by induction, starting with the fact that the class of open
sets is closed by finite intersection.

The Borel sets are mainly studied in Polish topological spaces, that is, separable
completely metrizable topological spaces. A detailed study of such spaces can be found
in [65] or in [34]. In such spaces, the Borel sets have the following very nice closure
property, that is easily seen to be true on the Cantor space or on the Baire space:

� A Γ0
α set is also both Π0

α+1 and Σ0
α+1.

20

1.5. DESCRIPTIVE COMPLEXITY OF SETS OF SEQUENCES

It is clear by definition that a Σ0
α set is always a Π0

α+1 set. The fact that it is also a
Σ0
α+1 set requires a bit of work. Also we shall see in Section 6.4 an example of hierarchy

where this does not hold anymore. Finally we have a last straightforward property, which
is useful to study the connections between Borel sets and logical formulas. For any two
topological spaces A1,A2, with B1 the class of Borel sets of A1 and B2 the class of Borel
sets of B2 we have:

� For a total continuous function f ∶ A1 → A2 and B ∈ B2 a Γ0
α set of B2, we have that

f−1(B) is a Γ0
α set of B1.

In Moschovakis’ book, this property is called being closed under continuous sub-
stitution. We will see an example of how this closure property is helpful, with Proposi-
tion 1.6.1 and Example 1.6.1.

1.5.2 The effective Borel hierarchy

We give in this section a description of the effective Borel hierarchy in the Baire space.
It will be clear that the following description can be applied to the Cantor space. First
we describe the effective arithmetical Borel hierarchy. We will later iterate the definition
through the ordinals.

The finite effective Borel hierarchy

We say that a set B ⊆ NN is Σ0
1 if it is effectively open, i.e., if there exists a code e such

that B = ⋃σ∈We
[σ]. We then say that a set B ⊆ NN is Π0

1 if it is effectively closed, i.e.,
its complement is Σ0

1. In the context of Σ0
1 sets, if we have that B = ⋃σ∈We

[σ] we say that
e is in index for B, whereas in the context of Π0

1 sets, e will be considered to be an index
for Bc, the complement of B.

We can now iterate the definition by induction over the natural numbers. Suppose that
the class of Π0

n sets has been defined, we then say that a set B ⊆ NN is Σ0
n+1 if B = ⋃mBm

for Π0
n sets {Bm}m∈N, where the i-th element enumerated in We is an index for the Bi.

Then we say that a set B ⊆ NN is Π0
n+1 if its complement is Σ0

n+1.

The transfinite effective Borel hierarchy

It is a bit less easy to extend the effective hierarchy in the transfinite setting, than it was
in the finite setting. With the finite effective Borel hierarchy, an index does not need to
encode more than the enumeration of indices at the lower level. But in the transfinite
case, there is no canonical way to know at which level we are. For example an index for
a Σ0

ω set should enumerate indices of Π0
ni sets with ni unbounded in N. But how do we

know an index would be for a Π0
3 set rather than a Π0

7 set? In particular we should be
able to determine when we have reached indices for Σ0

1/Π
0
1 sets.

In order to work this out, we now decide that an index for a Σ0
1 sets is a pair ⟨0, e⟩

where e is so that We enumerates a set of strings describing the Σ0
1 set. An index for a

Π0
α set is a pair ⟨1, e⟩ where e is an index for a Σ0

α set, and finally an index for a Σ0
α set,

for α > 1, is a pair ⟨2, e⟩ where We enumerates a set of indices for Π0
β sets, with β < α. We

sum up this in the following definition:

Definition 1.5.2. The effective Borel hierarchy is defined by induction over ordinals as
follows:

21

1.5. DESCRIPTIVE COMPLEXITY OF SETS OF SEQUENCES

� A Σ0
1-index is given by a pair ⟨0, e⟩. The set corresponding to this Σ0

1-index is given
by ⋃σ∈We

[σ].

� A Π0
α-index is given by a pair ⟨1, e⟩ where e is a Σ0

α-index. The set corresponding
to this Π0

α-index is given by Bc where B is the set corresponding to the index e.

� A Σ0
α-index is given by a pair ⟨2, e⟩ where We is not empty and enumerate only

Π0
βn

indices, with sup+n(βn) = α. The set corresponding to this Σ0
α-index is given by

⋃nBn where Bn is the set corresponding to the n-th index enumerated by We.

We say that a set B is Σ0
α (resp. Π0

α) if for some Σ0
α-index (resp. Π0

α-index) e, B is the
set corresponding to e. We say that a set B is ∆0

α if it is both Σ0
α and Π0

α. Finally we say
that a set is Σ0

<α (resp. Π0
<α) if it is Σ0

β (resp. Π0
β) for some β < α.

For the non-effective Borel hierarchy we have that no new set is added at step α ≥ ω1,
and similarly we argue now that for the effective Borel hierarchy, no new set is added at
step α ≥ ωck1 . The reason is that an index for such a set is essentially a code for a c.e.
well-founded tree. Given an index e for an effectively Borel set, we build the corresponding
tree by first enumerating e as the root of the tree. Then recursively, on each node σˆn
enumerated so far in the tree we apply the following algorithm:

� If n = ⟨2, n′⟩ we enumerate as children of σˆn the nodes σˆnˆe for e ∈Wn′ .

� If n = ⟨1, n′⟩ we enumerate σˆnˆn′ as the only child of σˆn.

� If n = ⟨0, n′⟩ then σˆn is a leaf and therefore no child is enumerated.

It is clear from the definition of indices that such a tree is well-founded. We can then
show by induction that for a Σ0

α-index, we have α ≤ ∣T ∣o where T is the corresponding
tree.

We can also define the relativized version of the effective Borel hierarchy:

Definition 1.5.3. For an oracle X ∈ 2N, The X-effective Borel hierarchy is defined by
induction over ordinals as follows:

� A Σ0
1(X)-index is given by a pair ⟨0, e⟩. The set corresponding to this Σ0

1(X)-index
is given by ⋃σ∈WX

e
[σ].

� A Π0
α(X)-index is given by a pair ⟨1, e⟩ where e is a Σ0

α(X)-index. The set corre-
sponding to this Π0

α(X)-index is given by Bc where B is the set corresponding to the
index e.

� A Σ0
α(X)-index is given by a pair ⟨2, e⟩ where WX

e is not empty and enumerate only
Π0
βn

(X) indices, with sup+n(βn) = α. The set corresponding to this Σ0
α(X)-index is

given by ⋃nBn where Bn is the set corresponding to the n-th index enumerated by
WX
e .

We say that a set B is Σ0
α(X) (resp. Π0

α(X)) if for some Σ0
α(X)-index (resp. Π0

α(X)-
index) e, B is the set corresponding to e. We say that a set B is ∆0

α(X) if it is both Σ0
α(X)

and Π0
α(X). Finally we say that a set is Σ0

<α(X) (resp. Π0
<α(X)) if it is Σ0

β(X) (resp.

Π0
β(X)) for some β < α.

22

1.5. DESCRIPTIVE COMPLEXITY OF SETS OF SEQUENCES

Similarly, at step α ≥ ωX1 , no new set is added in the X-effective Borel hierarchy.

We should emphasize that in practice, we won’t consider an effective Borel set the way
it is given by its index, that is, for example of the form ⋃(⋃(⋃W c

e)
c)c; but we will rather

replace the complements by intersections and work with : ⋃⋂⋃W c
e . It should be clear

how to decide, given an index e and a sub-index ⟨2,Wa⟩ of e, if ⟨2,Wa⟩ corresponds to a
union, or to an intersection.

Closure properties of the effective Borel hierarchy

The properties we gave in Section 1.5.1 are easily seen to be have effective counterparts.
For any computable ordinal α and for Γ denoting Σ or Π we have:

� The class of Σ0
α sets is closed under effective countable union.

� The class of Π0
α sets is closed under effective countable intersection.

� The class of Γ0
α sets is closed under finite union and finite intersection.

� A Γ0
α set is also both Π0

α+1 and Σ0
α+1.

We said in the preamble of this section that the definition of the effective hierarchy can
be converted straightforwardly to the Cantor space. It can also be converted to the space
of natural numbers, which will be studied in the next section. But also we can extend the
definition of those hierarchies to finite products of any of the spaces NN,2N or N, without
any difficulty, as those new spaces still have a canonical countable basis that can be put in
bijection with the natural numbers, and then on which we can therefore apply the notion
of computable enumerability.

So we define A to be the smallest class of topological spaces such that 2N,NN,N are in
A and such that for A1,A2 in A we have A1 ×A2 is in A. Then for any two topological
spaces A1,A2 ∈ A, with B1 the class of effective Borel sets of A1 and B2 the class of effective
Borel sets of B2 we have the following closure property which is also called closure under
computable substitution:

� For a total computable function f ∶ A1 → A2 and B ⊆ B2 a Γ0
α set of B2, we have

that f−1(B) is a Γ0
α set of B1.

This last property is important in order to still be able to use the powerful counterpart
between logical formulas and Borel sets, even when we work in the effective transfinite
hierarchy. In particular Proposition 1.6.1 is a consequence of the closure properties of
Borel sets that are stated here, including the closure under computable substitution.

1.5.3 Borel hierarchies are strict

We provide in this section a proof that both effective and non-effective hierarchies do not
collapse. It seems that the argument we will give (essentially a diagonal argument) should
be credited to Lusin (see [55], credited in section 1H of [65]). What we prove now is
probably a bit stronger (but surely known), since at the time, effectivity aspects were not
a concern:

23

1.5. DESCRIPTIVE COMPLEXITY OF SETS OF SEQUENCES

Theorem 1.5.1:
For every α ≤ ωck1 , there is a set A ⊆ 2ω which is Σ0

α but not Π0
α. Also the theorem

relativizes, that is, for every X ∈ 2ω and every α ≤ ωX1 , there is a set A ⊆ 2ω which is
Σ0
α(X) but not Π0

α.

Proof: This theorem says that the boldface hierarchy does not collapse in a strong sense,
since we can even find a lightface ‘non collapsing witness’. We provide a proof for the
hierarchy in the Cantor space. It will be clear that the proof works the same way in the
Baire space.

In order to conduct the proof, we need to make a non-trivial use of computable ordinals,
and in particular the fixed point theorem will be needed. We prove first the theorem for Σ0

1

sets (even though it is obvious in this case, this gives the first step of the diagonalization
that will be reused inductively).

Fix a computable enumeration {σn}n∈N of every string of 2<N. Let u0 be a code so that
for every X, the set WX

u0 enumerates σi iff X(i) = 1. This index u0 has two important
properties:

� For any Σ0
1 set U , there is a X so that ⟨0, u0⟩ is a Σ0

1(X)-index for U

� For any X, ⟨0, u0⟩ is the Σ0
1(X)-index.

We now consider the following set:

A = {X ∶ X belongs to the Σ0
1(X) set of Σ0

1(X)-index ⟨0, u0⟩}

First it is clear that this set is Σ0
1, because if WX

e enumerates a prefix of X, this is witnessed
already with a finite part of X. We shall now prove that the complement of A cannot be
Σ0

1. Suppose otherwise, then also there is a X so that ⟨0, u0⟩ is a Σ0
1(X)-index for the

complement of A. But is X in A or in the complement of A? In either case we arrive at
a contradiction, because if X ∈ A then X ∉ Ac and therefore X does not belong to the set
of Σ0

1(X)-index ⟨0, u0⟩ which contradicts that X is in A. Also if X ∉ A then X belongs
to the set of Σ0

1(X)-index ⟨0, u0⟩ which contradicts the fact that X ∉ A. So Ac is not Σ0
1

and then A is not Π0
1.

We shall now iterate the proof by defining indices for more and more complex sets
by induction through the computable ordinals. It appears that the constructive trees are
very close to the codes for effectively Borel sets, once they are expanded into a tree. First
we should describe a computable function G ∶ 2N ×O → N, which uniformly in an oracle
X and in the code a ∈O=α, gives the index of a Σ0

α(X) set. The function G uses the total
computable function q described in Proposition 1.4.2 (The function q is so that on a ∈O
we have that Wq(a) enumerates a list of codes for all the ordinals smaller than ∣a∣o and
only for those ordinals).

24

1.5. DESCRIPTIVE COMPLEXITY OF SETS OF SEQUENCES

G(X,a) = ⟨0, u0⟩ if a = 1, where WX
u0 enumerates σ iff X(σ) = 1.

= ⟨2, e⟩ if a = succ(b), where WX
e enumerates the set of pairs

⟨1,G(Xi, b)⟩ with X = ⊕i∈NXi

= ⟨2, e⟩ if a is limit, where WX
e enumerates the set of pairs

⟨1,G(Xi+1, ci)⟩ with X = ⊕i∈NXi. The sequence {ci} is ob-
tained the following way: Let {bi} be the sequence of codes
enumerated by Wq(a). Then {ci} is the subsequence obtained
by keeping the elements bi so that X0(i) = 1.

To build the function G we should use the fixed point theorem, so we can use a code
for G inside G itself. Also we should maybe say a word on what it means to split the
oracle X and pass only pieces of it to recursive calls of G.

We shall now prove by induction that:

1/ For any α, any a ∈O=α and any X, we have that G(X,a) is a Σ0
α(X)-index.

2/ For any α, any a ∈O=α and any total computable function f we have that the set
{X ∶ X ∈ G(f(X), a)} is a Σ0

α set. (We make a slight abuse of notation with
X ∈ G(f(X), a), which means that X belongs to the set of index G(f(X), a)).

3/ For any Σ0
α set, and any a ∈O=α, there is a X such that G(X,a) returns a Σ0

α(X)-
index for it.

For α = 1 we have that 1/, 2/ and 3/ are obvious.

Successor step:

Suppose now that 1/, 2/ and 3/ are true up to ordinal α and let us prove that 1/,
2/ and 3/ are true at ordinal α + 1. First to prove 1/, take any X and any a = succ(b)
with some b ∈ O=α. By induction hypothesis we have for any i that G(Xi, b) returns a
Σ0
α(Xi)-index. Then ⟨1,G(Xi, b)⟩ is a Π0

α(Xi)-index, and by definition of G we have that
G(X,a) returns a Σ0

α+1(X)-index.

Let us now prove 2/. Fix any computable function f . We have that {X ∶ X ∈

G(f(X), a)} = {X ∶ ∃i X ∉ G(f(X)i, b)} (where f(X) = ⊕if(X)i). By induction
hypothesis we have for each i that {X ∶ X ∉ G(f(X)i, b)} is Π0

α (using the computable
function g which associates f(X)i to X). Thus {X ∶ X ∈ G(f(X), a)} = ⋃i∈N{X ∶ X ∉

G(f(X)i, b)} is a Σ0
α+1 set and we have 2/.

To prove 3/, consider any Σ0
α+1 set A. By definition we have that A = ⋃nAn for An

some Π0
α sets. By induction hypothesis we have a sequence {Xn}n∈N so that for some

a ∈ O=α we have that G(Xn, a) returns a Σ0
α(Xn)-index for Acn. But then ⟨1,G(Xn, a)⟩

is a Π0
α(Xn)-index for An and by definition of G we have that G(X, succ(a)) returns a

Σ0
α+1(X)-index for A where X = ⊕n∈NXn.

Limit step:

Consider now α limit, suppose that 1/, 2/ and 3/ are true for every ordinal β < α,
and let us prove that 1/, 2/ and 3/ are true for α. First to prove 1/, consider any X,

25

1.5. DESCRIPTIVE COMPLEXITY OF SETS OF SEQUENCES

any a ∈ O=α, the c.e. sequence Wq(a) = {bi}i∈N and {ci}i∈N, the subsequence, c.e. in X0,
as defined above. By induction hypothesis we have for each i that G(Xi, ci) returns a
Σ0
∣ci∣o

(Xi)-index. Then ⟨1,G(Xi, ci)⟩ is a Π0
∣ci∣o

(Xi)-index, and by definition of G we have

that G(X,a) is a Σ0
α(X)-index.

Let us now prove 2/. Fix any computable function f . We have that {X ∶ X ∈

G(f(X), a)} is equal to the union over all strings σ and every code ci ∈ Wq(a) that are
selected by σ, of the sets [σ] ∩ {X ∶ X ∉ G(f(X)i+1, ci)}, with f(X) = ⊕if(X)i. By
induction hypothesis we have for each i that {X ∶ X ∉ G(f(X)i+1, ci)} is Π0

∣ci∣o
(using the

computable function g which associates f(X)i+1 to X). Thus {X ∶ X ∈ G(f(X), a)} is a
Σ0
α set and we have 2/.

To prove 3/, consider any Σ0
α set A. By definition we have that A = ⋃nAn with

each An a Π0
βn

sets with βn < α for each n. By induction hypothesis we have a se-

quence {Xn}1≤n∈N and a sequence {an}1≤n∈N with an ∈ O=βn , such that G(Xn+1, an+1) is
a Σ0

βn+1(Xn+1)-index for Acn. But then ⟨1,G(Xn+1, an+1)⟩ is a Π0
βn+1(Xn+1)-index for An.

We can now take any code a ∈ O=α and use the reserved space X0 to select codes for
the ordinals βi in the c.e. sequence Wq(a). We then have by definition of G that G(X,a)
returns a Σ0

α(X)-index for A, where X = ⊕n∈NXn.

It is now easy to prove that for each α and any a ∈ O=α, the set {X ∶ X ∈ G(X,a)}
is not Π0

α (but is Σ0
α, as already proved). The proof works exactly as for the Σ0

1 case.

Corollary 1.5.1:
For every X ∈ 2N and every α < ωX1 :

1. There is a Π0
α(X) set which is not Σ0

α (and a Σ0
α(X) set which is not Π0

α).

2. There is a ∆0
α(X) set which is neither Σ0

<α nor Π0
<α.

Proof: The first item is a direct consequence of the previous theorem. We prove the
second one without any oracle. It is then easy to see that the proof can be relativized.

Consider first α = β + 1, and a Σ0
β set A which is not Π0

β
. We define B0 = {X ∶ X =

0ˆY ∧ Y ∈ A} and B1 = {X ∶ X = 1ˆY ∧ Y ∉ A}. The function f ∶ 2N → 2N which
on iˆX returns X is computable and then B0 = f−1(A) ∩ {X ∶ X(0) = 0} is Σ0

β (by
the computable substitution closure property, followed with the finite intersection closure
property). Also it is easily seen not to be Π0

β
, as otherwise A = g−1(B0), where g ∶ 2N → 2N

is the computable function which on X returns 0ˆX, would be Π0
β

.

Symmetrically the set B1 is Π0
β and not Σ0

β
. Therefore B0 ∪B1 is a ∆0

α set, as both B0

and B1 are Σ0
β+1 and Π0

β+1. Also it is clear that if this set were Π0
β

then also B0 would be

Π0
β

. Symmetrically if it was Σ0
β

then also B1 would be Σ0
β

.

For α limit, consider a code a ∈ O=α with a = supn bn. Let βn = ∣bn∣o. In the proof of
Theorem 1.5.1 we saw that uniformly in bn, we can define a Σ0

βn
-index for a set Bn which

26

1.5. DESCRIPTIVE COMPLEXITY OF SETS OF SEQUENCES

is not Π0
βn

. We define the set:

B = {X ∶ ∃n X = 0nˆ1ˆY ∧ Y ∈ Bn}

Just like before we can easily prove that B is a Σ0
α set which is neither Σ0

<α nor Π0
<α. But

the set 2N −B also has a Σ0
α-index, because every X ≠ 0∞ is actually of the form 0nˆ1ˆY

for some n and some Y , and because {0∞} is Π0
1:

2N − B = {X ∶ ∃n X = 0nˆ1ˆY ∧ Y ∉ Bn} ∪ {0∞}

and then B is ∆0
α, and neither Σ0

<α nor Π0
<α.

1.5.4 Effectively closed and open sets

We will often deal in this thesis with open or closed sets which have some degree of
definability. Generally the open sets we deal with are merely Σ0

1 subsets of 2N, and the
closed sets Π0

1 subsets of 2N, but this is not always the case. Also we make the following
definition:

Definition 1.5.4. A Σ0
α-open set (resp. Π0

α-open set) is a an open set which can be
described by a Σ0

α (resp. Π0
α) set of strings. A Π0

α-closed set (resp. Σ0
α-closed set) is

a closed set whose complement is a Σ0
α-open set (resp. Π0

α-open set).

We give a proposition establishing a connection between Σ0
α-open sets and the effective

Borel hierarchy:

Proposition 1.5.1:
A Σ0

α-open set U is also a Σ0
α set uniformly in an index for U . A Π0

α-open set U is
also a Σ0

α+1 set uniformly in an index for U .

Proof: We actually prove the two following statements:

1. One can find uniformly in any string σ and any Σ0
α set of strings U , an index for a

Σ0
α set Uσ which is equal to [σ] if σ ∈ U and equal to the empty set otherwise.

2. One can find uniformly in any string σ and any Π0
α set of strings U , an index for a

Π0
α set Uσ which is equal to [σ] is σ ∈ U and equal to the empty set otherwise.

If U is a Σ0
1 set of strings it is obvious. If U is a Π0

1 set of strings we return the Π0
1 set

equal to [σ] as long as σ is in U[t], and equal to the empty set if σ gets out of U at some
stage. Note that everything is uniform.

If U is a Σ0
α set of strings ⋃nUn where each Un is a Π0

<α set of strings uniformly in
α, by induction hypothesis, for each Un we can find a Π0

<α set Un,σ uniformly in n and σ
such that σ ∈ Un implies Un,σ = [σ] and σ ∉ Un implies Un,σ = ∅. Therefore ⋃n Un,σ is a Σ0

α

set such that σ ∈ Un implies Un,σ = [σ] and σ ∉ Un implies Un,σ = ∅.

If U is a Π0
α set of strings ⋂nUn where each Un is a Σ0

<α set of strings uniformly in α,
by induction hypothesis, for each Un we can find a Σ0

<α set Un,σ uniformly in n and σ such

27

1.6. EFFECTIVE COMPLEXITY OF SETS OF INTEGERS

that σ ∈ Un implies Un,σ = [σ] and σ ∉ Un implies Un,σ = ∅. Therefore ⋂n Un,σ is a Π0
α set

such that σ ∈ Un implies Un,σ = [σ] and σ ∉ Un implies Un,σ = ∅.

Now given any Σ0
α set of strings U , using (1) it is clear that the union of Uσ over σ is

a Σ0
α set equal to [U]≺, and given any Π0

α set of strings U , using (2) it is clear that the
union of Uσ over σ is a Σ0

α+1 set equal to [U]≺.

We shall now see a small proposition which will be useful for Proposition 4.5.1:

Proposition 1.5.2:
If a sequence X is the only element of a Π0

1 subset of 2N, then X is Turing computable.

Proof: Given a Π0
1 subset of 2N that contains only one element X, we can enumerate

a set of string W describing its complement. Then by compactness, for any n there is
necessarily a stage at which the finite set of strings W [s] covers every string of length n
but one, which is then necessarily a prefix of X.

We will see an analogue of this proposition for the Baire space with Example 3.4.1.

1.6 Effective complexity of sets of integers

1.6.1 Definition and closure properties

In this section we generalize Definition 1.2.3 for Σ0
n sets of integers, where n can now be a

countable ordinal. The definition is similar to the one of effectively Borel sets of the Baire
space:

Definition 1.6.1. The effective Kleene’s hierarchy is defined by induction over the ordi-
nals as follows:

� A Σ0
1-index is given by a pair ⟨0, e⟩. The set A corresponding to ⟨0, e⟩ is given by

A =We.

� A Π0
α-index is given by a pair ⟨1, e⟩ where e is a Σ0

α-index. The set A corresponding
to ⟨1, e⟩ is given by A = N −B where B is the set corresponding to e.

� A Σ0
α-index is given by a pair ⟨2, e⟩ where We is not empty and enumerates only

Π0
βn

-indices for βn < α, with sup+n(βn) = α. The set A corresponding to ⟨2, e⟩ is
given by ⋃nAn, where An is the set corresponding to the n-th index enumerated by
We.

We say that a set A is Σ0
α (resp. Π0

α) if for some Σ0
α-index (resp. Π0

α-index) e, A is
the set corresponding to e. We say that a set A is ∆0

α if it is both Σ0
α and Π0

α. Finally we
say that a set is Σ0

<α (resp. Π0
<α) if it is Σ0

β (resp. Π0
β) for some β < α.

As for the effective Borel hierarchy, it is clear that no new set is added at step ωck1 .
We saw in Section 1.5.2 some closure properties for the effective Borel hierarchy and we
argued that they apply also to the effective Kleene’s hierarchy. We now state one of their

28

1.6. EFFECTIVE COMPLEXITY OF SETS OF INTEGERS

consequences, that will be used a lot in this thesis without explicit reference. We consider
the language of arithmetic, with a range of element variables v1, v2, . . . and a range of set
variables V1, V2, We also add the binary symbol ∈ which can only be used between
elements and sets in logical formulas.

Proposition 1.6.1:
Let Ψ(v, V) be a Σ0

1 formula of arithmetic which contains no instance of ¬(x ∈ V) in
Ψ for x any variable. Then for any Σ0

α set X ⊆ N, the set {n ∈ N ∣ N ∣= Ψ(n,X)} is
also a Σ0

α set.

In particular, if such a formula contains both instances of ¬(x ∈ V) and x ∈ V , we can
always consider the disjoint union of X with its complement and modify Ψ into a formula
Ψ′ that contains no instance of ¬(x ∈ V), and such that {n ∈ N ∣ N ∣= Ψ(n,X)} = {n ∈

N ∣ N ∣= Ψ′(n,X ⊕Xc)}. As for X a Σ0
α set, the set X ⊕Xc is Σ0

α+1, the set defined this
way is also a Σ0

α+1 set. We can use this and the previous proposition to prove that Π0
n

such formulas for n ≥ 1 gives us Π0
α+n sets for X a Σ0

α set and Σ0
n such formulas for n ≥ 2

give us Σ0
α+n sets for X a Σ0

α set.

We don’t give a proof of Proposition 1.6.1 and the reader can refer to [65] to see how this
works. We however give an example of how to build a Σ0

α+1-index for A′ = {e ∶ e ∈WA
e }

assuming A has a Σ0
α-index. This shows what kind of techniques we would need to prove

Proposition 1.6.1:

Example 1.6.1:
We have:

n ∈ A′ iff ∃σ (∀i < ∣σ∣ (σ(i) = 0 ∧ i ∉ A) ∨ (σ(i) = 1 ∧ i ∈ A)) ∧ n ∈W σ
n

As A has a Σ0
α-index, then also for any σ the set {i < ∣σ∣ ∶ σ(i) = 1∧i ∈ A} has a Σ0

α-index
uniformly in σ: It is the index corresponding to the intersection of {i < ∣σ∣ ∶ σ(i) = 1}
with A. Similarly the set {i < ∣σ∣ ∶ σ(i) = 0 ∧ i ∉ A} has a Π0

α-index uniformly in σ. It
follows that the set:

Bσ = {i ∶ (σ(i) = 0 ∧ i ∉ A) ∨ (σ(i) = 1 ∧ i ∈ A)}

has a Σ0
α+1-index uniformly in σ. Now uniformly in σ and in i < ∣σ∣ we can define the

computable function fi ∶ N → N which on any n returns i. Also for any i < n the set
f−1
i (Bσ) has a Σ0

α+1-index (by the computable substitution closure property). Also if
i ∈ Bσ the set f−1

i (Bσ) = N and if i ∉ Bσ the set f−1
i (Bσ) = ∅. It follows that the set

Cσ = ⋂
i<∣σ∣

f−1
i (Bσ)

is equal to N if ∀i < ∣σ∣ (σ(i) = 0∧ i ∉ A)∨ (σ(i) = 1∧ i ∈ A) and is equal to ∅ otherwise.
Also by the finite intersection closure property, it has a Σ0

α+1-index uniformly in σ.

We can now intersect Cσ with the set Jσ = {n ∶ n ∈ W σ
n } which has a Σ0

1-index
uniformly in σ. We then have that ⋃σ Cσ ∩ Jσ has a Σ0

α+1-index, by the effective
countable union closure property. We easily verify that this set is equal to A′. ♢

29

1.6. EFFECTIVE COMPLEXITY OF SETS OF INTEGERS

1.6.2 The Kleene hierarchy and the computable trees

As in Theorem 1.5.1, which says that the Borel hierarchy is strict, we now should show
that the Kleene hierarchy is strict. Recall what we did in the proof of Theorem 1.5.1.
What would be an analogous diagonal argument for the Kleene hierarchy? A natural
candidate for a Σ0

α set which is not Π0
α could be:

{e ∶ e is a Σ0
≤α-index of corresponding set P with e ∈ P}

Unfortunately, we will show in Section 1.6.5 that for some ordinal α, the set of Σ0
≤α-indices

is not itself a Σ0
α set. We will see for example that for α = ωω, the set of corresponding

indices is Π0
ωω+1 but not Σ0

ωω+1. We now start a detailed analysis of this, by first giving
the precise complexity of various sets of codes for c.e. well-founded trees.

Proposition 1.6.2:
For any ordinal α = 0 or α limit and for any k, p ∈ ω we have:

� The set T <ω(α+k) is Σ0
α+2k uniformly in k and in any code of O=α.

� The set T ≤ω(α+k)+p is Π0
α+2k+1 uniformly in k, p and in any code of O=α.

Proof: For any p ∈ ω, the set T ≤p is Π0
1 uniformly in p, because T ≤p is the set of codes

which enumerates trees of height less than p, which is a Π0
1 condition, uniformly in p.

Suppose that for α = 0 or α limit, for some k ∈ ω and for any p ∈ ω we have that
T ≤ω(α+k)+p is Π0

α+2k+1 uniformly in p, in k and in any code of O=α. Then it is clear by
induction hypothesis that T <ω(α+k+1) is a Σ0

α+2(k+1) set, uniformly in k+1 and in any code
of O=α, as T <ω(α+k+1) = ⋃p T ≤ω(α+k)+p.

Suppose that for α = 0 or α limit, for every k ∈ ω, we have that T ≤ω(α+k) is Π0
α+2k+1

uniformly in k and in any code of O=α. Then consider any code of a ∈ O=α+ω with
∣a∣o = supn αn. One can uniformly obtain for each αn some codes for ordinal βn and kn ∈ ω
so that βn = 0 or βn limit, and so that αn = βn+kn. As we have T <ω(α+ω) = ⋃k T ≤ω(βn+kn),
we have that T <ω(α+ω) is a Σ0

α+ω set, uniformly in a code of Oα+ω. We can conduct a
similar induction to prove that T <ω(α) is a Σ0

α set uniformly in a code of O=α, for α a
limit of limit ordinals.

Suppose now that for α = 0 or α limit, for k ∈ ω we have that T <ω(α+k) is Σ0
α+2k

uniformly in k and in any code of O=α. For p = 0 it is clear that T ≤ω(α+k)+p is a Π0
α+2k+1

set, because T ≤ω(α+k)+p is the set of codes for c.e. trees T so that for every node n
enumerated in T , a code for T ↿n belongs to T <ω(α+k), which is by induction hypothesis
a Π0

α+2k+1 condition, uniformly in p, k and in any code of O=α. Then we can iterate to
p+1 and say that T ≤ω(α+k)+p+1 is the set of codes for c.e. trees T so that for every node n
enumerated in T , a code for T ↿n belongs to T ≤ω(α+k+p), which is by induction hypothesis
a Π0

α+2k+1 condition uniformly in p, k and in any code of O=α.

In practice we will often use rougher bounds, that cannot be improved in the general
case, as we will argue in Section 1.6.5:

30

1.6. EFFECTIVE COMPLEXITY OF SETS OF INTEGERS

Porism 1.6.1:
For any computable ordinal α we have:

1. The set T <α is Σ0
α+1 uniformly in any code of O=α.

2. The set T ≤α is Π0
α+1 uniformly in any code of O=α.

3. The set O<α is Σ0
α+1 uniformly in any code of O=α.

4. The set O≤α is Π0
α+1 uniformly in any code of O=α.

Proof: Without uniformity, (1) and (2) are direct consequences of the previous propo-
sition. To get uniformity in (1) and (2) we can simply perform the same proof but with
rougher bounds.

To get (3) and (4) (formally proved by induction by induction), we have more things
to verify. It is Π0

1 to check that a node σ tagged as a leaf is really a leaf, ∆0
2 to check

that a node σ tagged to have exactly one child really has exactly one child. Also it is Π0
2

to check if a node σ tagged to have countably many children, really has countably many
children. In this last case, if {σi}i∈N is an enumeration of the children of σ, we shall also
check that ∣σi∣o < ∣σi+1∣o. Let ai be an index for the tree T ↿σi . We can simply ask for
each ai to be a member of O<∣ai+1∣o , which is a Π0

1 condition over sets which are all simple
enough to keep the proposition true.

The sets of the form T <ω(α+k) and T ≤ω(α+k) for α limit or 0 and k ∈ ω will be used a lot
in this section. We will prove that there are universal sets, at every level of the hierarchy,

in a sense that will be made precise. So for each α we create the set ∅(α) in such a way
that it should be a Σ0

α set, according to Proposition 1.6.2.

Definition 1.6.2. In the following, β is 0 or limit, and k ∈ ω:

� For α = β + 2k we define ∅(α) to be T <ω(β+k).

� For α = β + 2k + 1 we define ∅(α) to be N − T ≤ω(β+k).

Also for any X ∈ 2ω:

� For α = β + 2k we define X(α) to be T X
<ω(β+k).

� For α = β + 2k + 1 we define X(α) to be N − T X
≤ω(β+k).

For α a limit ordinal, we also need to define sets which are universal for all Σ0
<α sets.

Unfortunately we don’t have here a coding-independent definition, but in practice this will
not matter.

Definition 1.6.3. For any ordinal α, we define ∅(<α) to be ∅(β) if α = β +1. If α is limit,

the set ∅(<α) is defined up to a coding a ∈ O=α. For a given such code with a = supn bn,
we can suppose with loss of generality that bn = cn + 2k for cn limit or 0 and k ∈ ω. Let

βn = ∣bn∣o. We then define ∅(<α) with respect to the coding a to be ⊕n∅(βn). For X ∈ 2ω,
we define X(<α) similarly.

31

1.6. EFFECTIVE COMPLEXITY OF SETS OF INTEGERS

In practice every use we will make of ∅(<α) for α limit will be independent of the
corresponding code of a ∈O=α. So we will make a slight abuse of notation and only write

∅(<α) without specifying which code the set corresponds to.

Also we emphasize that for ∅(<α) = ⊕n∅(βn) we have ∅(βn) ⊆ ∅(βn+1) for every n, because

each βn is equal to γn + 2k for γn = 0 or γn limit, and k ∈ ω; and then each ∅(βn) is equal

to T <ω(γn+k). However the set ∅(<α) is very different from the set ∅(α), because ∅(<α) is

a disjoint union of the sets T <ω(γn+k), whereas ∅(α) is a non disjoint union of those sets.

This will be clear with the next proposition, together with the later proof that ∅(α) is not
a ∆0

α set.

Proposition 1.6.3:
For each α, the set ∅(<α) is ∆0

α.

Proof: If α = β + 1, the set ∅(β) is certainly ∆0
β+1. For α limit with α = supn βn, the

set ∅(<α) = ⊕n∅(βn) is a uniform union of Π0
βn+1 sets, but as the union is disjoint, the set

N−∅(<α) = ⊕nN−∅(βn) is also a uniform union of Π0
βn+1 sets. Therefore ∅(<α) is a ∆0

α set.

1.6.3 Complete sets and many-one reductions

We shall now prove that each set ∅(α) is a universal Σ0
α set. To do so we introduce the

well-known notion of α-completeness. Informally, a Σ0
α set if α-complete if it is powerful

enough to “know” in a strong way every other Σ0
α set:

Definition 1.6.4. A subset B ⊆ N is Σ0
α-complete or α-complete, if it is Σ0

α, and if for
each Σ0

α set A, we have that A is many-one reducible to B, that is, there exists a total
computable function f depending on A so that n ∈ A↔ f(n) ∈ B.

The notion of many-one reduction, and then the notion of completeness, are strongly
linked to the effective complexity of sets. It is easily seen that for two sets A,B, if A ≤m B,
then B is at least as complex as A. Indeed, the set A is then equal to f−1(B), and we
can then easily transform any Σ0

α-index (resp. Π0
α-index) for B into a Σ0

α-index (resp.
Π0
α-index) for A.

We shall now prove that each set ∅(α) is Σ0
α-complete in a strong sense:

Theorem 1.6.1:
There exists a computable function f ∶ N ×N ×N → N such that for any computable
ordinal α, any a ∈ O=α, any β ≤ α and any Σ0

β-index e of a set Se, or any β < α and

any Π0
β-index e of a set Se, the function n↦ f(a, e, n) is total, and for any n we have

n ∈ Se iff f(a, e, n) ∈ ∅(α).

32

1.6. EFFECTIVE COMPLEXITY OF SETS OF INTEGERS

Proof: We will actually prove that there exists a computable function f1 ∶ N ×N→ N so
that for any ordinal α = ∅ or α limit and for any k ∈ ω we have:

� For any Σ0
α+2k-index e of a set Se, the function n → f1(e, n) is total and for any n,

we have n ∈ Se iff f1(e, n) ∈ T <ω(α+k) = ∅
(α+2k)

.

� For any Σ0
α+2k+1-index e of a set Se, the function n→ f1(e, n) is total and for any n,

we have n ∈ Se iff f1(e, n) ∈ T <ω(α+k+1) = ∅
(α+2k+2)

.

� For any Π0
α+2k-index e of a set Se, the function n → f1(e, n) is total and for any n,

we have n ∈ Se iff f1(e, n) ∈ T ≤ω(α+k) = N − ∅(α+2k+1)
.

� For any Π0
α+2k+1-index e of a set Se, the function n → f1(e, n) is total and for any

n, we have n ∈ Se iff f1(e, n) ∈ T ≤ω(α+k) = N − ∅(α+2k+1)
.

and a computable function f2 ∶ N×N→ N so that for any ordinal α = ∅ or α limit and
for any k ∈ ω we have:

� For any Σ0
α+2k-index e of a set Se, the function n → f2(e, n) is total and for any n,

we have n ∈ Se iff f2(e, n) ∈ N − T ≤ω(α+k) = ∅
(α+2k+1)

.

� For any Σ0
α+2k+1-index e of a set Se, the function n→ f2(e, n) is total and for any n,

we have n ∈ Se iff f2(e, n) ∈ N − T ≤ω(α+k) = ∅
(α+2k+1)

.

� For any Π0
α+2k-index e of a set Se, the function n → f2(e, n) is total and for any n,

we have n ∈ Se iff f2(e, n) ∈ N − T <ω(α+k) = N − ∅(α+2k)
.

� For any Π0
α+2k+1-index e of a set Se, the function n → f2(e, n) is total and for any

n, we have n ∈ Se iff f2(e, n) ∈ N − T <ω(α+k+1) = N − ∅(α+2k+2)
.

The function f(a, e, n) then returns f1(e, n) if a codes for an ordinal of the form α+2k
and returns f2(e, n) otherwise. We only prove the existence of the function f1, the proof
of the existence of the function f2 being similar.

Let us first note that according to the definition of Σ0
α sets, if ⟨2, e⟩ is a Σ0

α-index,
We needs to be non-empty, but not necessarily infinite. However, to do this proof, due
to technical reasons related to the function OR of Lemma 1.4.2, we need such sets We to
be infinite. This can always be achieved by adding to the enumeration of We infinitely
many indices coding for the empty set. We can continue to inductively transform each
index ⟨2,Wa⟩, resulting from a previous enumeration, by adding to Wa infinitely many
indices for the empty set, or infinitely many indices for 2N, depending on whether ⟨2,Wa⟩

corresponds to a union or an intersection of the set whose indices are enumerated by Wa.

The function f1 is defined on its first parameter by induction over indices of effective
Borel sets. First if e is the code of the Π0

1 set W c
a ⊆ N, then f1(e, n) returns the code for a

c.e. tree which is empty as long as n ∉Wa and which becomes ill-founded if n is witnessed
to be in Wa at some point.

If e is the code of the Σ0
1 set Wa ⊆ N, then f1(e, n) returns the value of f1(e

′, n), where
e′ is a Σ0

2-index describing the same set that e describes.

If e is a code for the Σ0
α set ⋃i Fai where each Fai is a Π0

<α set of code ai, the function
f1(e, n) returns the value of the function OR of Lemma 1.4.2, applied to the computable
sequence of trees {f1(ai, n)}i∈N.

33

1.6. EFFECTIVE COMPLEXITY OF SETS OF INTEGERS

If e is a code for the Π0
α set ⋂i Fai where each Fai is a Σ0

<α set of code ai, the function
f1(e, n) returns the value of the function AND of Lemma 1.4.4, applied to the computable
sequence of trees {f1(ai, n)}i∈ω.

We now verify by induction that such a function f1 satisfies the proposition. Let us
start the induction with α = 0 and k = 1. Consider W c

a a Π0
1 set. We clearly have that

n ∈ W c
a implies f1(e, n) ∈ T ≤∅ and n ∉ W c

a implies f1(e, n) ∉ T . Consider now Wa a Σ0
1

set. The function f1 returns a recursive call on an index for an equivalent Σ0
2 set. So this

case will be handled in the case α = 0, k = 2, that we deal with now.

Suppose now that the theorem is true up to α + 2k + 1 and let us show that it is true
for α + 2k + 2. Consider a Σ0

α+2k+2-index e coding for Se = ⋃i Fai where ai are Π0
βi

-indices
with supi(βi +1) = α+2k+2. By induction hypothesis, for each ai we have n ∈ Fai implies
f1(ai, n) ∈ T ≤ω(α+k) and n ∉ Fai implies f1(ai, n) ∉ T . Therefore by the properties of the
function OR of Lemma 1.4.2, we have that n ∈ ⋃i Fai implies f1(e, n) ∈ T <ω(α+k+1) and
n ∉ ⋃i Fai implies f1(e, n) ∉ T .

Consider a Π0
α+2k+2-index e coding for Se = ⋂i Fai where ai are Σ0

βi
-indices with

supi(βi + 1) = α + 2k + 2. By induction hypothesis, for each ai we have n ∈ Fai implies
f1(ai, n) ∈ T <ω(α+k+1) and n ∉ Fai implies f1(ai, n) ∉ T . Therefore by the properties of
the function AND of Lemma 1.4.4, we have that n ∈ ⋂i Fai implies f1(e, n) ∈ T ≤ω(α+k+1)

and n ∉ ⋂i Fai implies f1(e, n) ∉ T .

Suppose now that the theorem is true up to ordinals smaller than α = supi αi and
let us show it is true for α. Consider a Σ0

α-index e coding for Se = ⋃i Fai where ai are
Π0
βi

-indices with supi(βi + 1) = α. By induction hypothesis, for each ai we have n ∈ Fai
implies f1(ai, n) ∈ T ≤ω(βi) and n ∉ Fai implies f1(ai, n) ∉ T . Therefore by the properties
of the function OR of Lemma 1.4.2, we have that n ∈ ⋃i Fai implies f1(e, n) ∈ T <ω(α) and
n ∉ ⋃i Fai implies f1(e, n) ∉ T .

Consider a Π0
α-index e coding for Se = ⋂i Fai where ai are Σ0

βi
-indices with supi(βi +

1) = α. By induction hypothesis, for each ai we have n ∈ Fai implies f1(ai, n) ∈ T <ω(α)

and n ∉ Fai implies f1(ai, n) ∉ T . Therefore by the properties of the function AND of
Lemma 1.4.4, we have that n ∈ ⋂i Fai implies f1(e, n) ∈ T ≤ω(α) and n ∉ ⋂i Fai implies
f1(e, n) ∉ T .

Corollary 1.6.1:
For each α, any Σ0

α set A is Σ0
1(∅
(<α)

), uniformly in an index for A and a code of O=α.

Proof: We have to decompose into two cases, the first one, when α = β+1 and the second
one, when α is limit. Suppose first α = β + 1. The set A is a union of Π0

β sets ⋃nAn. Also

using Theorem 1.6.1, each set An is many-one reducible to N− ∅(β) uniformly in n and in

a code of O=β. Therefore A is Σ0
1(∅
(β)

).

Suppose now α is limit with α = supm βm, ∅(<α) = ⊕m∅(βm) and ∅(βm) ⊆ ∅(βm+1) for
every m. The set A is a union of Π0

<α sets ⋃nAn. Also using Theorem 1.6.1, for each n,

34

1.6. EFFECTIVE COMPLEXITY OF SETS OF INTEGERS

the set An is many-one reducible to ∅(βm) for m large enough, uniformly in n and in a

code of O=βm . But by the definition of ∅(<α) and by the proof the previous theorem, there

is actually a function fn ∶ N→ N which reduces each An to ∅(βm) for m large enough, and
independently of any code of O=βm (the code is actually only useful to decide if we want

ill-founded or well-founded tree, but each ∅(βm) is a set of codes for well-founded trees).

As we have ∅(βm) ⊆ ∅(βm+1) for any m, it follows that e ∈ An iff ∃m fn(e) ∈ ∅(βm), which

is c.e. in ∅(<α) uniformly in n. Then A is Σ0
1(∅
(<α)

).

We shall now see how the α-complete sets behave with Turing reductions. Shoenfield
proved in [81] that a set is ∆0

2 iff it is Turing reducible to ∅′. He also proved a lemma,
known as the Shoenfield’s limit lemma, which is very useful in computability theory. We
will study in this thesis (in particular in Section 5.4) a lot of different possible counterpart
of this lemma, for higher computability.

Theorem 1.6.2 (Shoenfield’s limit lemma):
A set X is ∆0

α iff as a sequence, X is Turing computable from ∅(<α). In particular we

have the three following statements are equivalent for a X ∈ 2N:

1. As a set, X is ∆0
2.

2. As a sequence, X is Turing computable from ∅′.

3. There is a computable sequence (of sequences) {Xs}s∈N such that X = lims∈NXs.

Proof: Suppose a set X is ∆0
α. Then it is Σ0

α and therefore Σ0
1(∅
(<α)

). Also N−X is Σ0
α

and therefore Σ0
1(∅
(<α)

). It follows that X is Turing computable from ∅(<α).

Now suppose that a sequence X is Turing computable from ∅(<α). In particular, as a

set, X is Σ0
1(∅
(<α)

) and then (using Proposition 1.6.1) it is Σ0
α, as ∅(<α) is ∆0

α. Similarly,

N −X is Σ0
1(∅
(<α)

) and then it is Σ0
α. Therefore X is ∆0

α.

We now prove that (1) ↔ (2) ↔ (3). We already proved (1) → (2). Let us prove (2)
→ (3). Suppose a sequence X is Turing computable from ∅′ via the functional Φ. We
have that ∅′ is a computably enumerable set. In particular ∅′ = lims∈N ∅′s where ∅′s is the
enumeration of ∅′ up to stage s. We define for each s the sequence Xs, by defining for
each n the bit Xs(n) = Φ(∅′s, n)[s] if Φ(∅′s, n)[s] halts and Xs(n) = 0 otherwise. We shall
prove that X = lims∈NXs. For every n there exists a m such that X ↾n= Φ(∅′ ↾m). Also
there is a stage t such that ∅′s ↾m= ∅

′
↾m for every s ≥ t and then for a stage s large enough

we have X ↾n= Φ(∅′s)[s].

Finally let us prove (3) → (1). If there is a computable sequence {Xs} such that
X = lims∈NXs, the set X can be defined by the predicate n ∈ X iff ∃t ∀s ≥ t n ∈ Xt,
which makes X a Σ0

2 set. Also the set N−X can be defined by the predicate n ∈ N−X iff
∃t ∀s ≥ t n ∉Xt, which makes N −X a Σ0

2 set. Then the set X is a ∆0
2 set.

We now give a definition for a restriction of being ∆0
2, which is interesting for its

counterpart in higher computability, that we will study in Section 4.4.3:

35

1.6. EFFECTIVE COMPLEXITY OF SETS OF INTEGERS

Definition 1.6.5. A sequence X is ω-computably approximable if there is a computable
sequence (of sequences) {Xs}s∈N such that X = lims∈NXs and if there is a computable
function f ∶ N → N such that for any n, the cardinality of the set {s ∶ Xs(n) ≠ Xs+1(n)}
is bounded by f(n).

We don’t prove now the following proposition, as a proof of its higher counterpart,
which works similarly, will be given in Section 4.4.3.

Proposition 1.6.4:
For a sequence X the following are equivalent:

1. X is ω-computably approximable.

2. X is wtt-reducible to ∅′.

3. X is tt-reducible to ∅′.

And we finally give a restriction of being ω-computably approximable which will some-
times be useful:

Definition 1.6.6. A sequence X is approximable from below, or left-c.e. if there is
a computable sequence (of sequences) {Xs}s∈N such that for each s we have Xs ≤ Xs+1,
when Xs,Xs+1 are seen as real numbers, and such that X = lims∈NXs.

A left-c.e. sequence is always ω-computably approximable because for any n > 0 when
Xs ↾n≠ Xs+1 ↾n then Xs+1 ↾n if bigger than Xs ↾n in the lexicographic order. Also as there
are only 2n strings of length n, the cardinality of the set {s ∶ Xs ↾n≠Xs+1 ↾n} is bounded
by 2n and then also the cardinality of the set {s ∶ Xs(n − 1) ≠ Xs+1(n − 1)} is bounded
by 2n

Example 1.6.2:
Any non-empty Π0

1 set F contains a sequence, which as a real is smaller than any
other sequence of F . This sequence is generally called the leftmost path of F and is
left-c.e. ♢

1.6.4 The jump and the H-sets

In the literature, see for example [73] or [11], the canonical Σ0
n-complete sets for n finite

are denoted by ∅n and have a rather different definition:

Definition 1.6.7. The set ∅′ is defined to be {e ∶ e ∈We}. We relativize this to any set

X by defining X ′ = {e ∶ e ∈WX
e }. Then the set ∅1

is defined to be ∅′ and the set ∅n+1
is

inductively defined to be (∅n)′. For an oracle X, the set X ′ is called the jump of X.

One can easily prove that ∅n is Σ0
n-complete. Following this idea, this notion of iterated

jump has been extended through the computable ordinal. The successor step is the same

36

1.6. EFFECTIVE COMPLEXITY OF SETS OF INTEGERS

as for the jump in the natural numbers, but what should be for example ∅ω? An idea,
to make it more powerful than any ∅n, is to define it as the disjoint union of every ∅n.
To continue through the computable ordinals, we should rely on some coding for ordinals.
Also in the literature, only a definition along coding for constructive ordinal has been
made:

Definition 1.6.8. For any a ∈O with a = 1, the set Ha is defined to be the empty set. For
any a ∈O with a = succ(b) we define Ha to be the jump of Hb. Finally for any a ∈O with
a = supn bn, we define Ha to be the disjoint union of Hbn, that is, ⟨k,n⟩ ∈ Ha iff k ∈ Hbn.
The sets Ha for a ∈O are called the H-sets.

We shall now see that for each α > 0 and each a ∈O=α, the set Hsucc(a) is a Σ0
α-complete

set.

Proposition 1.6.5:
For any α > 0 and any a ∈O=α, the set Hsucc(a) is a Σ0

α set.

Proof: It is done by induction. For a start if a = 1 we have Ha is the empty set and then
that Hsucc(a) = ∅

′
is a Σ0

1 set.

If a code for a successor ordinal we have n ∈ Hsucc(a) iff n ∈ WHa
n which is a Σ0

1(Ha)

condition. By induction hypothesis, the set Ha together with its complement, is a ∆0
∣a∣o

set, and then the set Hsucc(a) is a Σ0
∣a∣o

set.

If a is limit, by induction hypothesis the set Ha is the disjoint union of Σ0
<∣a∣o

sets. But

as the union is disjoint, then N −Ha is a disjoint union of Π0
<∣a∣o

sets. Therefore Ha is a

∆0
∣a∣o

set. Then like in the previous paragraph we have that Hsucc(a) is a Σ0
∣a∣o

set.

We now prove that any H-set is also a complete set, for its class of complexity:

Theorem 1.6.3:
For each computable α and any a ∈O=α, the set ∅(α) is many-one reducible to Hsucc(a)

uniformly in a.

Proof: We prove that there exists a computable function f ∶ N ×N ×N → N so that for
any ordinal α = ∅ or α limit and for any k, p ∈ ω we have:

� For any code a ∈O=α+2k, the function n↦ f(a,n, p) is total and for any n, we have
n ∈ T <ω(α+k) iff f(a,n, p) ∈Hsucc(a).

� For any code a ∈ O=α+2k+1, the function n ↦ f(a,n, p) is total and for any n, we
have n ∈ N − T ≤ω(α+k)+p iff f(a,n, p) ∈Hsucc(a).

37

1.6. EFFECTIVE COMPLEXITY OF SETS OF INTEGERS

The reduction, uniform in a, is then given by n↦ f(a,n,0). Let us define the function f .

First it is easy to check whether a = α + 2k or whether a = α + 2k + 1, for α limit or 0,
and k ∈ ω, as well as to determine what is α and what is k.

In case a = 1, the function f(a,n, p) returns some e such that e ∈We iff n enumerates a
tree of height strictly bigger than p. We clearly have n ∈ N−T ≤p iff f(a,n, p) ∈Hsucc(a) = ∅

′
.

In case a = α + 2k with a = succ(b) (and then k ≠ 0), we want the function f(a,n, p)
to return an element of Hsucc(a) iff there is some p for which n ∈ T ≤ω(α+k−1)+p, which is

true by induction iff ∃p f(b, n, p) ∉ Hsucc(b). As Hsucc(a) = H
′
succ(b), one can easily find in

an effective way such a value for f(a,n, p).

In case a = α + 2k with a = supm bm (and then k = 0), we can suppose without loss of
generality that each bm is of the form cm+2km with ∣cm∣o limit and ∣km∣o finite (If not then
H ′
cm+2km

= Hbm and Hbm >m Hcm+2km). Then we want the function f(a,n, p) to return
an element of Hsucc(a) iff there is some m for which n ∈ T <ω(∣cm∣o+∣k∣o), which is true by
induction iff ∃m f(bm, n,0) ∈ Hsucc(bm). Also Hsucc(bm) is Σ0

1(Hbm) and as Ha = ⊕mHbm ,

it is then Σ0
1(Ha). As Hsucc(a) = H

′
a, one can easily find in an effective way a value for

f(a,n, p) such that n ∈ T <ω(α) iff f(a,n, p) ∈Hsucc(a).

In case a = α + 2k + 1 with a = succ(b) and any p, we want the function f(a,n, p) to
return an element of Hsucc(a) iff there exists a node σ of length p+1 enumerated in the tree
T described by n, such that T ↿σ does not belong to T <ω(α+k), which is true by induction
iff ∃σ of length p + 1 such that f(b, n(σ),0) ∉ Hsucc(b), where n(σ) is a code for T ↿σ. As

Hsucc(a) =H
′
succ(b), one can easily find in an effective way such a value for f(a,n, p).

Corollary 1.6.2:
For any a ∈O=α, the set Hsucc(a) is Σ0

α-complete.

It is interesting to note that for α a limit ordinal, we do not always have Ha =m Hb

for a, b ∈O=α. In fact Moschovakis proved in [64] that either α is successor or of the form
β+ω, in which case for a, b ∈O=α we have Ha =m Hb, or that α is not of this form, in which
case the partial ordering of the many one degrees of the sets Ha for a ∈ O=α contains a
well-ordered chain of length ω1, as well as incomparable elements.

1.6.5 Kleene’s hierarchy is strict

Theorem 1.6.4:
For any α, there is a Σ0

α set which is not Π0
α.

Proof: For each α and each a ∈ O=α, the set Hsucc(a) is a candidate. Suppose for
contradiction that Hsucc(a) is a Π0

α set. We then want to prove that Hsucc(a) is a Π0
1(Ha)

38

1.6. EFFECTIVE COMPLEXITY OF SETS OF INTEGERS

set. From this we can easily derive a contradiction, because N−Hsucc(a) is then a Σ0
1(Ha)

set and there is then some e such that WHa
e = N −Hsucc(a). But then e ∈ N −Hsucc(a) iff

e ∈Hsucc(a) which is a contradiction.

So suppose Hsucc(a) has a Π0
α-index with Hsucc(a) = ⋂mAm. We have by definition

that Hsucc(a) is Σ0
1(Ha). Also ∅(α) is many-one reducible to Hsucc(a) and then ω − ∅(α) is

Π0
1(Ha). From Theorem 1.6.1, each set Am is many-one reducible to N−∅(α) uniformly in

an index for Am. So there is a function f ∶ N×N→ N such that n ∈ Am iff f(m,n) ∈ N−∅(α).
Then n ∈ ⋂mAm iff ∀m f(m,n) ∈ N − ∅(α), and as N − ∅(α) is Π0

1(Ha), then also Hsucc(a)

is Π0
1(Ha).

Corollary 1.6.3:
For any computable α:

1. There is a Σ0
α set which is not Π0

α.

2. There is a Π0
α set which is not Σ0

α.

3. There is a ∆0
α set which is neither Σ0

<α nor Π0
<α.

Proof: For the third one, the argument is similar to the proof of Corollary 1.5.1. For
α = β + 1, consider any a ∈ O=β. Then Hsucc(a) ⊕ (ω −Hsucc(a)) is easily seen to be ∆0

α

but neither Σ0
β nor Π0

β. For α limit, each set Ha for a ∈ O=α is easily seen to be ∆0
α but

neither Σ0
β nor Π0

β.

We shall now argue as promised that the set of Σ0
≤α-indices is not always a Σ0

α set. In
particular, the set of Σ0

≤ωω -indices is a Π0
ωω+1 set which is not Σ0

ωω+1. To do so, we simply
argue that the set T ≤α is many-one equivalent to the set of Σ0

≤α-indices.

Proposition 1.6.6:
For any α ≥ ω, the set of Π0

≤α-indices is many-one equivalent to the set of Σ0
≤α-indices,

which is itself many-one equivalent to T ≤α.

Proof: First to reduce the set of Π0
≤α-indices to the set of Σ0

≤α-indices, we define the total
computable function f which on e = ⟨1, n⟩ for some n, outputs n, and on e ≠ ⟨1, n⟩ for any
n, outputs ⟨1, e⟩. We have that e is a Π0

≤α-index iff f(e) is a Σ0
≤α-index. The reduction of

the set of Σ0
≤α-indices to the set of Π0

≤α-indices is similar.

We now reduce the set of Σ0
≤α-indices to T ≤α. For this purpose we describe two total

computable functions h1 ∶ N→ N and h2 ∶ N→ N, obtained by fixed point.

If e = ⟨2, n⟩, the function h1(e) returns the tree which enumerates all the nodes that
are in the tree aˆh2(a) for any a enumerated in Wn, and if e is of a different form, h1(e)

39

1.7. CONNECTION BETWEEN THE EFFECTIVE KLEENE’S AND BOREL’S
HIERARCHIES

returns the code of an ill-founded tree. If e = ⟨1, n⟩ then h2(e) returns h1(n), if e = ⟨0, n⟩
then h2(e) returns a tree with only one node, and if e is of a different from then h2(e)
returns an ill-founded tree.

We also need to check that for any index of the form ⟨2, n⟩, the set Wn is not empty.
This is a Π0

2 condition which is then reducible to T≤ω. The reduction is then given by an
index for the tree corresponding to the disjoint union of the tree coded by the result of
h1, together with the tree resulting from checking this Π0

2 condition. One can prove by
induction that for α ≥ ω, an integer e is a Σ0

≤α-index iff f(e) ∈ T ≤α.

The idea to many-one reduce T ≤α to the set of Σ0
≤α-indices is similar. The only problem

is that for a given c.e. tree T we cannot decide if a node of T is a leaf. However, we should
be able to transform any leaf into an index of the form ⟨0, e⟩. To overcome this problem,
we add a leaf to every node in T , and perform the reduction from this new tree. In case
T was coding for an ordinal α ≥ ω, we easily see that the new tree will code for the same
ordinal.

Then as T ≤ωωω is Π0
ωω+1-complete, and as ωωω = ωω, also using the previous proposi-

tion, the set of Σ0
≤ωω -indices is Π0

ωω+1-complete, and then as there is a Π0
ωω+1 set which is

not Σ0
ωω+1, also the set of Σ0

≤ωω -indices is not Σ0
ωω+1.

1.7 Connection between the effective Kleene’s and Borel’s
hierarchies

We now make a connection between the effective Borel hierarchy and the effective Kleene’s
hierarchy.

Theorem 1.7.1:
A set A ⊆ 2N is Σ0

α iff there exists an integer e such that A = {X ∈ 2N ∶ e ∈ X(α)}.
Furthermore if A is Σ0

α, such an integer e can be found uniformly in a Σ0
α-index for

A.

Proof: Let us prove that for any e the set {X ∈ 2N ∶ e ∈X(α)} is Σ0
α. Proposition 1.6.2

is easily seen to relatize, that is, the set T X
<ω(α+k) is Σ0

α+2k(X) uniformly in X, in k and

in any code of O=α, and the set T X
≤ω(α+k) is Π0

α+2k+1(X) uniformly in X, in k and in any

code of O=α. Then one can prove by induction that for any set BX ⊆ N which is Σ0
α(X)

uniformly in X and for any e, the set {X ∶ e ∈ BX} is Σ0
α.

Let us prove that for any A a Σ0
α set, we can find uniformly some e with A = {X ∈ 2N ∶

e ∈X(α)}. To do it, we should first prove that can uniformly find some a, a Σ0
α(X)-index

uniformly in X, such that 0 belongs to the Σ0
α(X) set coded by a iff X ∈ A. This is easily

achieved by transforming, uniformly in X, the index for the tree corresponding to A into
the Σ0

α(X)-index of the same tree, except that every leaf corresponding to a Σ0
1 set Wb

is replaced by a leaf which enumerates 0 if a prefix of X is enumerated in Wb, and which
enumerates nothing otherwise; and every leaf corresponding to a Π0

1 set W c
b is replaced by

a leaf corresponding to a Π0
1 set equals to {0} if no prefix of X is enumerated in Wb, and

equal to the empty set otherwise.

40

1.8. BACKGROUND ON MEASURES

We can then use a relativized version of Theorem 1.6.1 to have that X ∈ A iff f(0) ∈
X(α) for a computable function f that we can find uniformly in a. The integer e is then
given by f(0).

We finally give a version of Porism 1.6.1, but for sets of sequences:

Theorem 1.7.2:
For a computable ordinal α, and any e:

1. The set {X ∈ 2N ∶ e ∈ T X
<α} is Σ0

α+1 uniformly in e and in any code of O=α.

2. The set {X ∈ 2N ∶ e ∈ T X
≤α} is Π0

α+1 uniformly in e and in any code of O=α.

3. The set {X ∈ 2N ∶ e ∈OX
<α} is Σ0

α+1 uniformly in e and in any code of O=α.

4. The set {X ∈ 2N ∶ e ∈OX
≤α} is Π0

α+1 uniformly in e and in any code of O=α.

Proof: We use a uniform relativization of Porism 1.6.1. Then we can prove by induction
that for any set BX ⊆ N which is Σ0

α(X) uniformly in X and for any e, the set {X ∶ e ∈ BX}

is Σ0
α.

1.8 Background on measures

1.8.1 Classical facts on measures

Measures an probability measures

If X is a space, we say the a set B ⊆ P (X) (the set of subset of X) is a σ-algebra on X if:

� ∅ ∈ B

� B is closed under countable union

� B is closed under complementation

Example 1.8.1:
For X a topological space, the Borel hierarchy on X is a σ-algebra. It is clear that it is
the smallest σ-algebra containing the open sets of X . We will only use such σ-algebras
in this thesis. ♢

We can now give the formal definition of a measure, concept introduced by Borel in the
last years of the 19th century, and then developed by Lebesgue.

Definition 1.8.1. Let X be a set and B a σ-algebra on X . Then a function µ ∶ B → R is
a measure if

� µ(B) ≥ 0 for all B ∈ B

41

1.8. BACKGROUND ON MEASURES

� µ(∅) = 0

� For all countable family (Bi)i∈N of pairwise disjoint sets, we have µ (⋃iBi) =

∑i µ(Bi)

If additionally we have that µ(X) = 1, then the measure is called a probability measure,
and if the σ-algebra is the Borel sets of X , the measure is called a Borel measure, and
a Borel set is also said to be a Borel measurable set.

All the measures we use in this thesis are probability measures defined on the Borel
sets of the Cantor space, so we will simply call them measures, and denote them by µ, ν
or ξ. The third property in the definition of measures is called countable additivity.
It is clear that for a measure µ and a family (Bi)i∈N of sets which are not necessarily
pairwise disjoints, we also have µ (⋃iBi) ≤ ∑i µ(Bi). This property is called countable
subadditivity. So every measure satisfies countable subadditivity for any countable
family of sets, but if this family is formed of pairwise disjoint sets, we have more, that is,
countable additivity.

Complete measures

Sometimes it will not be enough for the purpose of this thesis to have a measure only
defined on the Borel sets of the Cantor space. We will need a little bit more than that to
study randomness on analytical and co-analytical sets (see Section 3.7). In fact we will
need what is called a complete measure.

One can notice that once a measure is well-defined on the σ-algebra B of a set X , it is
‘morally’ possible to extend it to any set A, with A not necessarily in the σ-algebra, but
at least with A included in a set B of the σ-algebra, that has measure 0. In this case the
measure of A can safely be assigned to 0 as well, and such a set A is said to be negligible.
Formally we have:

Definition 1.8.2. Let X be a set, B a σ-algebra on X and µ a measure on B. Then the
set B defined by

B = {B ∪A ∶ B ∈ B and A is negligible }

is still a σ-algebra on X , called the completed σ-algebra. Moreover the measure µ can
be extended into a measure µ ∶ B → R by setting µ(B ∪A) = µ(B). The measure µ is then
said to be complete and any set in the completed σ-algebra is said to be a Lebesgue-
measurable set.

Probability measure descriptions

We now describe more concretely how to build a measure. First, if we want to define a
measure µ on the Borel sets of the Cantor space, we should define it on every cylinder
[σ] (or at least on sufficiently many cylinders so that the measure is uniquely defined on
all of them). And actually, that is it. A theorem of Carathéodory says that if a function,
defined from the cylinders to the reals, does not violate yet the definition of a probability
measure, then it can be uniquely extended to a probability measure on all the Borel sets1.

1The result is more general, one can see for example [1] for a statement of the theorem and its proof

42

1.8. BACKGROUND ON MEASURES

In particular, the only way to extend the probability measure, once it is defined on every
cylinder, is by doing so inductively on Borel sets, by defining µ(⋃nAn) = supn µ(⋃m≤nAm)

and µ(⋂nAn) = infn µ(⋂m≤nAm), for any Borel sets {An}n∈N.

There is a measure on the Cantor space, whose uniformity makes it canonical. This is
the measure denoted by λ and defined by λ([σ]) = 2−∣σ∣ for every cylinder [σ], and known
as the Lebesgue measure. One convenient way to consider this measure is to see λ([σ]),
as the probability that one obtains exactly the sequence σ by tossing a fair coin ∣σ∣ times
(with head corresponding to 0 and tail to 1).

Measures in product spaces

We discuss here a common way to create a measure on a product space of two spaces
endowed with σ-algebras and measures on their σ-algebras. First for B1 a σ-algebra on
X1 and B2 a σ-algebra on X2, let us denote by B1 ⊗B2 the σ-algebra on X1 ×X2 which is
generated by sets A1 ×A2 for A1 ∈ B1 and A2 ∈ B2.

Definition 1.8.3. Let X1, X2 be sets, B1, B2 some σ-algebras on respectively X1 and X2

and let µ1, µ2 be probability measures respectively on B1, B2. The product measure ν on
B1 ⊗ B2 is defined to be the unique measure generated by ν(A1 ×A2) = µ1(A1) × µ2(A2),
where A1 and A2 are elements of respectively B1 and B2.

Existence and unicity in the previous definition is again given by the Carathéodory
theorem.

Example 1.8.2:
We extend the Lesbegue measure to 2N × 2N by defining λ([σ1] × [σ2]) to be
λ([σ1])λ([σ2]) for any strings σ1, σ2. Again we can prove that λ is then uniquely
defined on every Borel set of 2N × 2N, and we can then prove that for any Borel set B
of 2N × 2N we have:

λ(B) = λ({X ⊕ Y ∶ (X,Y) ∈ B})

1.8.2 Measures and computability

The Lebesgue measure has the interesting property of being computable, that is, we can
compute the value of λ([σ]) uniformly in any string σ. The theory of algorithmic random-
ness is generally studied with respect to the Lebesgue measure, λ. Also the computability
of λ is intensively used in the field, to obtain a large variety of theorem, like for example
the ‘first of them’ in some sense, that is, the existence of a universal Martin-Löf test (see
Theorem 2.1.1). The study of algorithmic randomness with respect to different measures
has been done, and the results are quite different depending on whether or not the used
measure is computable. This is why we now introduce this notion:

Definition 1.8.4. A Borel probability measure µ on the Borel sets of 2N is said to be
computable if we have a total computable function f ∶ 2<N → [0,1] which returns µ([σ])
on σ.

So given a computable measure µ, the measure of each clopen set is computable, and
the more complex the description of a set, the more complex the description of its measure.

43

1.8. BACKGROUND ON MEASURES

We will now see that the measure of Σ0
α sets is a Σ0

α real number, uniformly in the measure
and in an index for the Σ0

α set.

Proposition 1.8.1:
For µ a computable Borel probability measure and A ⊆ 2N a Σ0

α set, the predicate
µ(A) > q is Σ0

α, uniformly in µ, in an index for A, and in q a positive rational number.

Proof: The proof goes by induction on computable ordinals. If A is a Σ0
1 set, the

predicate µ(A) > q is equivalent to ∃t µ(A[t]) > q, which is Σ0
1 as A[t] is a clopen set with

then a computable measure. Everything is clearly uniform.

Suppose that for an ordinal α, any Σ0
<α set A and any q, the predicate µ(A) > q is Σ0

<α

uniformly in an index for A and in q. Consider the Σ0
α set A = ⋃nBn where each Bn is

Π0
<α uniformly in n. The predicate µ(A) > q is equivalent to ∃m µ(⋃n≤mBn) > q.

By induction hypothesis, we have that µ(2ω−⋃n≤mBn) > 1−q is a Σ0
<α predicate, which

is equivalent to the predicate µ(⋃n≤mBn) ≤ q. But then the negation of this is the predicate
µ(⋃n≤mBn) > q which is then Π0

<α and which makes the predicate ∃m µ(⋃n≤mBn) > q a
Σ0
α predicate.

In particular, the measure of a Σ0
1 set is a left-c.e. real, and more generally, the measure

of a ∆0
2 set is a ∆0

2 real, which, by the Shoenfiled limit lemma, can then be approximated.
We then introduce the following notation:

Definition 1.8.5. For a computable measure µ and a ∆0
2 set A, we write µ(A)[s] to

denote the approximation of µ(A) at stage s.

We now should see an important tool, for the purpose of algorithmic randomness. Fol-
lowing the work of Lebesgue, it was well-known that any Borel set of arbitrary complexity
was approximable from above by Π0

2 sets of the same measure, and from below by Σ0
2 sets

of the same measure. This was effectivized later in the thesis of Kurtz [44] and Kautz [32],
for the arithmetical hierarchy and it is well-known that the effectivization can be extended
to the whole effective hyperarithmetical hierarchy.

Theorem 1.8.1:
For any Σ0

α set A ⊆ 2N, any positive rational q and any computable Borel probability
measure µ, there are:

� A Σ0
α-open set U with A ⊆ U such that µ(U −A) ≤ q

� A Π0
<α-closed set F with F ⊆ A such that µ(A −F) ≤ q

Moreover an index for U can be found uniformly in q and in an index for A, and an

index for F can be found uniformly in q, in an index for A and in ∅(α).

44

1.8. BACKGROUND ON MEASURES

Proof: The proof goes by induction on computable ordinals. For a Σ0
1 set A, the Σ0

1 set
U is trivially A itself for any q. The Π0

0 set F is U[t] for t the smallest integer such that
µ(U−U[t]) ≤ q. As U−U[t] is a Σ0

1 set, from Proposition 1.8.1 we have that µ(U−U[t]) ≤ q

is a Π0
1 predicate, making t computable in ∅(1), in function of q and an index for U . This

makes U[t] a Π0
0 set whose index can be uniformly obtained in an index for A, in q and

in ∅(1).

Suppose that the theorem is true below ordinal α and let us prove that it is true at
ordinal α. Let A = ⋃nBn be a Σ0

α set, with each Bn a Π0
<α set. By induction hypothesis,

for each Bn and any positive rational q, we can find a Σ0
<α-open set Un ⊇ Bn uniformly in

q, in an index for A and in ∅(<α) such that µ(Un − Bn) ≤ q. Still by induction hypothesis,
for each Bn and any positive rational q, we can find a Π0

<α-closed set Fn ⊆ Bn uniformly
in q, and in an index for A, such that µ(Bn −Fn) ≤ q.

For any q, fix a computable sequence {qn}n<ω such that ∑n qn ≤ q. The desired Σ0
α

open set U is then the union of Σ0
<α-open sets Un ⊇ Bn such that µ(Un − Bn) ≤ qn. Each

open set Un is Σ0
1(∅
(<α)

) uniformly in an index for Bn, in qn and in ∅(<α), making their

union a Σ0
1(∅
(<α)

) set and then a Σ0
α set, uniformly in an index for Bn and in qn.

Still using the computable sequence {qn}n<ω such that∑n qn ≤ q, the desired Π0
<α-closed

set F is equal to ⋃n<mFn where m is the smallest integer such that µ(A −⋃n≤mBn) ≤ q0

and with Fn ⊆ Bn and µ(Bn −Fn) ≤ qn+1. As each closed set Fn is Π0
<α and as there are

only finitely many of them, then their union is still a Π0
<α closed set. Besides A−⋃n≤mBn

is a Σ0
α set uniformly in m and therefore, using Proposition 1.8.1, the integer m can be

found uniformly in ∅(α), in q and in an index for A. We also have that A−F ⊆ ⋃n<m(Bn−

Fn) ∪ (A −⋃n≤mBn) and therefore µ(A −F) ≤ ∑n<m µ(Bn −Fn) + µ(A −⋃n≤mBn) ≤ q.

We can deduce an interesting corollary from this, which is a particular case of what
is known as the Lebesgue density theorem. Before proving it, we need the following
definition:

Definition 1.8.6. For a Borel set A ⊆ 2N, a Borel probability measure µ and a cylinder
[σ] such that µ([σ]) > 0, we write µ(A ∣ [σ]) to denote the measure of A inside [σ], and
relatively to [σ]:

µ(A ∣ [σ]) = µ(A ∩ [σ])/µ([σ])

We now prove a weak version of the Lebesgue density theorem

Corollary 1.8.1 (Lebesgue density theorem, weak version):
For any Borel set A ⊆ 2N and any Borel probability measure µ, if µ(A) > 0, then the
measure of A can be made as close as we want to 1, inside a cylinder. Formally, for
every ε > 0, there exists a cylinder σ such that µ(A ∣ [σ]) ≥ 1 − ε.

Proof: Let A be a Borel set and fix ε > 0. From the previous theorem, for any δ, there
exists an open set U ⊇ A such that µ(U −A) < δ. Picki δ = εµ(A) and let U be such an
open set. Let W be a set of strings σ0, σ1, . . . all pairwise incomparable and such that
[W]≺ = U .

45

1.8. BACKGROUND ON MEASURES

Suppose that for every string σ ∈ W we have µ(A ∣ [σ]) < 1 − ε. Then we have
µ(A ∩ [σ]) < (1 − ε)µ([σ]) and therefore:

µ(A) = ∑
σ∈W

µ(A ∩ [σ]) ≤ (1 − ε) ∑
σ∈W

µ([σ]) = (1 − ε)µ(U)

Also µ(U) − µ(A) < εµ(A) ≤ εµ(U) and then µ(A) > µ(U) − εµ(U) = (1 − ε)µ(U) which
is a contradiction with µ(A) ≤ (1 − ε)µ(U) obtained above. Therefore there is a cylinder
such that µ(A ∣ [σ]) ≥ 1 − ε.

Lebesgue proved a stronger version, roughly saying that for any Borel set A of positive
measure, the set of elements X ∈ A such that limn µ(A ∣ [X ↾n]) = 1 is a (Borel) set of
measure µ(A).

1.8.3 Fubini’s theorem

Fubini’s theorem says something about the behavior of a measure in a product space, with
respect to the two underlying measures it is built with.

Theorem 1.8.2 (Fubini’s theorem):
For any integrable function f ∶ 2N × 2N → R we have:

∫2N×2N f(X,Y) dλ(X,Y) = ∫2N (∫2N f(X,Y) dλ(X)) dλ(Y)
= ∫2N (∫2N f(X,Y) dλ(Y)) dλ(X)

We prove here a corollary of Fubini’s theorem, that we are going to use later in the
context of algorithmic randomness (see Theorem 4.3.3). If A is a subset of 2N × 2N, we
write

AX = {Y ∶ (X,Y) ∈ A}

so AX is a ‘section’ of A along X. We first mention something which should be intuitive.
Suppose λ(A) = 0. Then maybe for some X’s we have λ(AX) > 0, but the set of X’s such
that this is so, should be small, and in fact it should be of measure 0. We generalize this
in the following theorem (which could directly be proved with Fubini’s theorem):

Theorem 1.8.3:
For any Borel set A ⊆ 2N × 2N and any Borel probability measure µ we have:

µ({X ∣ µ(AX) >
√
µ(A)}) ≤

√
µ(A)

Proof: We first prove the case where A ⊆ 2N × 2N is an open set. For more clarity we
denote

√
µ(A) by mA. We have that A = ⋃(σ1,σ2)∈W [σ2] × [σ2] for some set of pairs of

strings W .

Also the set {X ∣ µ(AX) > mA} is an open set and it can then be described by
a pairwise disjoint set of strings A. We then have µ(A) ≥ ∑σ∈A µ([σ])µ(Aσ), where

46

1.9. CATEGORY

Aσ = ⋃{[τ] ∶ [σ]×[τ] ⊆ A}, and as µ(Aσ) >mA for σ ∈ A we have µ(A) ≥mA∑σ∈A µ([σ]).
But if we suppose now that ∑σ∈A µ([σ]) > mA we then have µ(A) > m2

A = µ(A) which is
a contradiction.

Now suppose that A is any Borel set, then by Theorem 1.8.1 (modified for the product
space), for any n there exists an open set U ⊇ A such that µ(U −A) ≤ 2−n−2. For more
clarity we denote

√
µ(U) by mU . We already proved that µ({X ∣ µ(UX) > mU}) ≤ mU ,

and certainly we have:

{X ∣ µ(AX) >mU} ⊆ {X ∣ µ(UX) >mU}

But then µ({X ∣ µ(AX) >mU}) ≤
√
µ(U). Also {X ∣ µ(AX) >mA + 2−n} ⊆ {X ∣ µ(AX) >

mU} and then µ({X ∣ µ(AX) > mA + 2−n}) ≤ mU ≤ mA + 2−n. Therefore, for any n we
have µ({X ∣ µ(AX) >mA + 2−n}) ≤mA + 2−n, and as

{X ∣ µ(AX) >mA} =⋂
n
{X ∣ µ(AX) >mA + 2−n}

we then have µ({X ∣ µ(AX) >mA}) = infn µ({X ∣ µ(AX) >mA + 2−n}) ≤ infnmA + 2−n ≤
mA.

1.9 Category

In his doctoral thesis ([2]), Baire introduced in 1899, the notion of ‘Baire category’. This
provides a powerful tool in general topology and functional analysis, but also constitutes
the premises of the celebrated Cohen’s technique of forcing, who could achieve, using in
a very clever way some ideas behind the notions of Baire category, a proof that both the
negation of continuum hypothesis and a negation of the axiom of choice are both consistent
with ZF (see [9]). This major breakthrough in set theory completed the work initiated by
Gödel, who proved earlier that the continuum hypothesis and the axiom of choice are also
both consistent with ZF (see [27]), making the two statements independent from ZF .

We briefly introduce in this section the basics about Baire category, and especially the
effective version of the fact that every Borel set has the Baire property.

Definition 1.9.1. A Baire space is a topological space such that any countable inter-
section of dense open sets is dense.

Recall that the space NN is called ‘the Baire space’, rightfully, as it is straightforward
to verify that it is indeed a Baire space. We examine here an effective version of that:

Proposition 1.9.1 (effective Baire theorem):
In NN, any dense Π0

2 set A contains densely many computable points, that is, for any
interval σ one can find uniformly in σ a computable point in A ∩ [σ].

Proof: With A = ⋂n Un where each Un is dense, given σ, we can search for the first
extension σ0 in U0, then for the first extension of σ0 in U1, and so on. By construction

⋂n[σn] ⊆ ⋂n Un contains only one computable point.

47

1.9. CATEGORY

Similarly we can verify that Proposition 1.9.1 also works in the Cantor space. Con-
versely we then have that the countable union of closed set with empty interior also has
empty interior.

Definition 1.9.2. In a Baire space, a set is said to be meager, or of first category, if
it is contained in a Σ0

2 set of empty interior. A set is said to be co-meager, if it contains
a Π0

2 dense set. A set is of second category is it is not meager.

One can view the notion of being meager as ‘being small’, and the notion of being
co-meager as ‘being big’.

.

Fact 1.9.1.

The notion of being meager is closed under subset and by countable union. The notion
of being co-meager is closed under superset and countable intersection. This follows
from the definition of a Baire space.

.
We now define the most important notion for this section, the notion of having the

Baire property. It is the notion which is behind the idea of forcing, that Cohen developed
later. The very general idea is that we do not want to deal with sets which are too complex
to describe. Also up to a set that is considered ‘small’ (here meager), we would like any
‘complex set’ to be equal to a simple set, here, an open set. Therefore, if we can find a
way so that ‘small set’ do not matter in some sense, it will be much easier to deal with
complex sets, as they can be considered as open sets.

Definition 1.9.3. In a Baire space, a set A has the Baire property if there is an open
set U and a meager setM such that A = U△M, where U△M is the symmetric difference
of A and M, equals to (U −M) ∪ (M − U).

We now show that any Borel set has the Baire property. As usual, we will prove an
effective version of it and before we do so we prove a small proposition. Recall Defini-
tion 1.5.4 of Σ0

α or Π0
α-open sets and of their complement.

Proposition 1.9.2:
For any Π0

α-closed set A ⊆ 2N, the interior of A is a Π0
α-open set and the boundary of

A is a Π0
α+1-closed set. Also they can be obtained uniformly.

For any Σ0
α-closed set A ⊆ 2N, the interior of A a Π0

α+1-open set and the boundary
of A is a Σ0

α+1-closed set. Also they can be obtained uniformly.

Proof: Recall that a Π0
1-closed set is the complement of a Σ0

1-open set. Following this
definition, consider any set of strings A intended to describe a Π0

1-closed set A (whose
complement is then equal to [Ac]≺), the interior U of A is described by the set {τ ∣ ∀σ ⪰

τ σ ∈ A}, and the boundary F of A, is equal to A − U .

If A is a Π0
α-closed set, U is clearly a Π0

α-open set, and as the complement of F ,
described by Ac ∪ U is a ∆0

α+1-open set, the set F is then a ∆0
α+1-closed set, and then a

Π0
α+1-closed set.

48

1.9. CATEGORY

Similarly, if A is a Σ0
α-closed set, U is clearly a Π0

α+1-open set and F clearly a Σ0
α+1-

closed set.

We recall here a few equalities about symmetric difference, that are needed below, and
are easy to verify. First U △ F ⊆ U ∪F . Also if A = U △ F then Ac = Uc △ F . Then we
have that A△ (B△A) = B, and we have that (⋃nAn)△ (⋃nBn) ⊆ ⋃n(An△Bn). Finally,
if U and F are disjoint we have (U ⊔F)△ B = U △ (F △ B).

Theorem 1.9.1 (Effective Baire property theorem):
For any Σ0

α set A ⊆ 2N, one can find uniformly in an index for A a Σ0
α-open set U and

uniformly in n a Π0
<α-closed set Fn such that A = U △ B for some set B included in

⋃n ∂Fn, where ∂Fn is the boundary of Fn.

For any Π0
α set A ⊆ 2N, one can find uniformly in an index for A a Π0

α-open set U
and a uniformly in n a Π0

α-closed set Fn such that A = U △B for some set B included
in ⋃n ∂Fn, where ∂Fn is the boundary of Fn.

Proof: We show the result by induction over computable ordinals. If A is Σ0
1 take U = A

and each Fn = ∅. Suppose the theorem is true for every Σ0
α set and let us prove it is true

for every Π0
α set. Consider a Π0

α set A. By induction we have a Σ0
α set U and a sequence

of Π0
<α closed sets Fn such that Ac = U △ B for some set B ⊆ ⋃n ∂Fn.

Then we haveA = Uc△B. Let us denote the Π0
α closed set Uc by F . By Proposition 1.9.2

the interior of F is a Π0
α open set V and we have F = V⊔∂F . Therefore as A = (V⊔∂F)△B

we also have A = V △ (∂F △ B). Furthermore ∂F △ B ⊆ ∂F ∪ B ⊆ ∂F ∪⋃n ∂Fn.

Suppose now that the theorem is true for any Π0
β set with β < α and let us prove it

is true for any Σ0
α set. Consider the Σ0

α set A = ⋃nAn where each An is Π0
βn

for βn < α.

By induction hypothesis, for each n there is a Π0
βn

open set Un and uniformly in m a Π0
βn

closed set Fm such that An = Un △ Bn for some set Bn ⊆ ⋃m ∂Fm,n.

Using the fact thatA△(B△A) = B for any setsA and B, we have that ⋃nAn = ⋃n Un△B
where B is equal to (⋃nAn△⋃n Un). We also have B = (⋃nAn△⋃n Un) ⊆ ⋃n(An△Un) =

⋃nBn. Then B is included in ⋃n⋃m ∂Fn,m. Also note that ⋃n Un is a Σ0
α open set and

that uniformly in n and m, the set Fm,n is Π0
<α.

49

Chapter 2
Algorithmic randomness and Cohen
genericity

Toutes les théories qui se rattachent à la mesure des ensembles peuvent donc être
considérées comme une contribution à la théorie des nombres inaccessibles ; si nous
ne pouvons étudier individuellement aucun de ces nombres nous pouvons étudier
des problèmes de probabilité qui sont relatifs, soit à l’ensemble de ces nombres, soit
à certains sous-ensembles. La réponse à certaines questions se trouve être ainsi un
coefficient de probabilité. Une telle réponse peut avoir souvent un grand intérêt
dans bien des questions scientifiques.

Les nombres inaccessibles, Émile Borel

In this chapter, we present the basic notions of algorithmic randomness and Cohen
genericity. Each of those field provides a way to study an aspect of the general notion of
‘being typical’, for an element of the Cantor space. Algorithmic randomness is the study of
the sequences which are typical with respect to measure theory, whereas Cohen genericity
is the study of the sequences which are typical with respect to Baire categoricity.

2.1 Algorithmic randomness

Let us start with algorithmic randomness. Intuitively a random sequence of 0’s and 1’s
should not have any atypical property. Here, a property is considered atypical if the set
of sequences having it is of measure 0. First we have to specify what measure to consider.
Unless we explicitly say otherwise, we always consider the Lebesgue measure, denoted by
λ.

Then we have to make a selection among all the possible sets of measure 0. Indeed,
any X has the property of being in the set {X}, thus if we consider every set of measure
0, nothing would be random. Actually, if we want the definition to make sense, we should
select up to countably many sets of measure 0. By the countable subadditivity property of
measures, the corresponding set of random sequences is then of measure 1. But what set
should we select? Effective descriptive set theory provides a hierarchy of natural answers
to that question: We can select some α and decide that something is random if it is in no
Π0
α set of measure 01.

1 We could also adopt a stronger definition and say that something is random if it belongs to no Π0
α

set of measure 0 for every computable α. We then obtain ∆1
1-randomness, a notion studied in Section 3.7

51

2.1. ALGORITHMIC RANDOMNESS

2.1.1 Martin-Löf randomness

Definitions

It appears that the Π0
2 sets give us enough description power to capture most of the

‘natural’ atypical properties, as illustrated in the next example:

Example 2.1.1:
One would expect that the average frequency of 0’s and 1’s among the first bits of a
random sequence, has a limit and that this limit is 1/2. Also the set A of sequences so
that the superior limit of the frequency of 0′s is above 1/2 + ε is a Π0

2 set of measure 0
for any ε. Formally we can decompose A the following way:

A =⋂
n
Un with Un = ⋃

m≥n
Cm and Cm = {σ ∈ 2m ∶

#{i ≤m ∶ σ(i) = 0}

m
−

1

2
> ε}

where #X denotes the cardinality of the set X. It is clear that A is Π0
2. We should

now prove it is of measure 0, by sketching a proof of a particular case of the law
of large numbers: Using Hoeffding’s inequality (see [31]) we have for each m that

λ(Cm) ≤ e−2mε2 . For the reading clarity we now set am = e−2mε2 . Then for each n, using
measures’ subadditivity we have λ(Un) ≤ ∑m≥n am = ∑m≥n am = an × (1 + a1

1 + a
2
1 + . . .).

The geometric series convergence gives us λ(Un) ≤ an/(1 − a1). As n goes to infinity,
the sequence an/(1 − a1) clearly converges to 0. ♢

In the above example, we have that the Π0
2 set is proved to be of measure 0 in a strong

sense, that is the function which to each n associates the measure of Un is bounded by a
computable function converging to 0. We will see later that this is not possible for every
Π0

2 set of measure 0. It was Martin-Löf, in 1966 who had the brilliant idea of making the
distinction in [58]:

Definition 2.1.1. An intersection of measurable sets ⋂nAn is said to be effectively
of measure 0 if the function which to n associates the measure of An is bounded by a
decreasing computable function whose limit is 0. A Martin-Löf test is a Π0

2 set ⋂n Un
effectively of measure 0. We say that Z ∈ 2N is Martin-Löf random if it is in no
Martin-Löf test.

Why did Martin-Löf make the distinction between Π0
2 sets effectively of measure 0 and

just Π0
2 sets of measure 0? The reason is described in the 1966 paper: There exists a

universal Martin-Löf test, i.e., a test containing all the others. Before proving this, we
should give a few general facts. First we should argue that we can require without loss of
generality that a set ⋂An is effectively of measure 0 if λ(An) ≤ 2−n.

.

Fact 2.1.1.

If ⋂nAn is a set so that λ(An) ≤ f(n) with f ∶ N→ N a computable function such that
f goes to 0, one can always find in a computable way, for every n, the first index m so
that λ(Am) ≤ 2−n. Formally there is a total computable function g ∶ ω → ω which to n
associate the first value m so that f(m) ≤ 2−n. As we then have ⋂nAn = ⋂nAg(n) and
λ(Ag(n)) ≤ 2−n, we can require without loss of generality that a set ⋂An is effectively
of measure 0 if λ(An) ≤ 2−n.

52

2.1. ALGORITHMIC RANDOMNESS

.
We now make an easy but important remark. When enumerating the set of strings W

describing a Σ0
1 set U , at each time t of the enumeration, [Wt]

≺ is a clopen set. In particular
a Σ0

1 set can always be described with an enumeration of pairwise incomparable strings
(such a set of strings is also said to be prefix-free, as we will see with Definition 3.7.8): At
each enumeration step t + 1, instead of enumerating τ in W at step t + 1, we enumerate a
pairwise incomparable finite set of strings describing the clopen set [τ] −W [t].

This will not be the case anymore when dealing with higher randomness.
We will see with Theorem 7.1.1 that an open set described by a Π1

1 set of strings cannot
necessarily be described by a Π1

1 set pairwise incomparable of strings. We now give a fact
about Π0

2 sets in general.
.

Fact 2.1.2.

Given a Π0
2 set ⋂n Un, we can always suppose that the strings we enumerate to describe

Un are pairwise incomparable. Furthermore we can always suppose that the Π0
2 set is

decreasing, that is Un+1 ⊆ Un. Indeed, we can simply consider that Un is ⋂m≤nUm .
Similarly a Σ0

2 set can always be considered increasing, and more generally any Π0
α

set can be considered decreasing and any Σ0
α set can be considered increasing.

.

Universal Martin-Löf randomness test

We now prove that there is a universal Martin-Löf test:

Theorem 2.1.1:
There is a universal Martin-Löf test, i.e., a Martin-Löf test (Vn)n∈N such that for any
sequence X, we have that X is not Martin-Löf random iff X ∈ ⋂n Vn.

Proof: Let {Pn}n∈ω be the canonical computable enumeration of the Π0
2 sets, where n

is the index of the set Pn. To build the universal Martin-Löf test, we simply diagonalize
against all possible tests. To do so, we should first argue that we can enumerate all Martin-
Löf tests. It is of course not possible to determine in advance in a computable way if an
open set has measure smaller than some ε. However it is always possible to transform a
Π0

2 set A into a Martin-Löf test A′, in a way that keeps A unchanged if it is already a
Martin-Löf test.

Formally, we have a total computable function f ∶ N → N so that for every n, first
Pf(n) is always a Martin-Löf test, and then if n is already the index of a Martin-Löf test,
we have Pn = Pf(n). To do so, given a Π0

2 set ⋂n Un, we simply enumerate for each Un,
its corresponding set of strings Un as long as λ([Un]

≺)[t] ≤ 2−n. If there is a first stage
t such that λ([Un]

≺)[t] > 2−n, we stop the enumeration at stage t − 1. It is clear that
applying this technique we can have a computable enumeration of the Martin-löf tests,
that contains them all.

So let Un,m be the m-th Σ0
1 set of strings corresponding to the m-th component of

the n-th Martin-Löf test. We simply define Vn to be the open set described by the set
of strings ⋃k Uk,k+n+1. It is clear that each Vn is a Σ0

1 set, uniformly in n. Also by

53

2.1. ALGORITHMIC RANDOMNESS

countable subadditivity we have λ(Vn) ≤ ∑k λ([Uk,k+n+1]
≺) ≤ ∑k 2−n−k−1 ≤ 2−n. Thus

⋂n Vn is a Martin-Löf test. We then already have that X ∈ ⋂n Vn implies that X is not
Martin-Löf random. All we have to prove is the converse. But we clearly have for any
e that ⋂m[Ue,m]≺ ⊆ ⋂n⋃k[Uk,k+n+1]

≺. Also if X is not Martin-Löf random it belongs to

⋂m[Ue,m]≺ for some e and then it belongs to ⋂n Vn.

The fact that there is a universal Martin-Löf test can be used to provide a canonical
example of a definable Martin-Löf random sequence.

Example 2.1.2:
Let ⋂n Un be a universal Martin-Löf test. In particular the complement of each Un
is a Π0

1 set containing only Martin-Löf random sequences. Also the leftmost path of
such a Π0

1 set is a left-c.e. Martin-Löf random sequence. Initially, the first example of a
definable Martin-Löf random sequence was made by Chaitin in [5], who proved that the
probability that a computer program halts (in a sense that we don’t make precise here)
is both Martin-Löf random and Turing complete (it can Turing compute ∅′). Such a
number is called a Chaitin’s Ω number.

Later, Kučera and Slaman proved in [46] that a Martin-Löf random sequence is a
Chaitin’s Ω number iff it is left-c.e. iff it is the leftmost path of a Π0

1 set containing only
Martin-Löf random sequences. ♢

Generally, dealing with Martin-Löf randomness, we assumed that a universal Martin-
Löf test is fixed, and we refer to it as the universal Martin-Löf test.

Martin-Löf randomness relatively to some oracle

One can easily relatizive the notion of Martin-Löf randomness to any oracle X, by defining
that a sequence is Martin-Löf random relatively to X if it is in no Π0

2(X) set effectively
of measure 0. Similarly we can prove the existence of an X-universal Martin-Löf test, and
the use of the oracle for those universal tests can actually be made continuous in a sense
that we now make precise:

Definition 2.1.2. An oracle Σ0
1 set U is a Σ0

1 subset of 2<N × 2<N. Given any oracle
X we then write UX to denote the Σ0

1(X) set described by the set of strings {σ ∶ ∃τ ≺

X (τ, σ) ∈ Un}.

Definition 2.1.3. An X-Martin-Löf test is a uniform sequence of oracle Σ0
1 sets

{Un}n∈N such that for any n we have λ(UXn) ≤ 2−n. A sequence Z is X-Martin-Löf
random if it is in no X-Martin-Löf test. An oracle Martin-Löf test is a uniform
sequence of oracle Σ0

1 sets {Un}n∈N which is an X-Martin-Löf test for every oracle X.

Theorem 2.1.2:
There is a universal oracle Martin-Löf test {Un}n∈N, that is, for every oracle X and

every X-Martin-Löf test {Vn}n∈N, we have ⋂n V
X
n ⊆ ⋂n U

X
n .

54

2.1. ALGORITHMIC RANDOMNESS

We only sketch a proof of the theorem: The delicate part is to make sure that given an
oracle Σ0

1 set U and an integer n, we can uniformly transform U in a way that λ(UXn) is
bounded by 2−n for every X, without damaging UX on oracles X for which we already had
λ(UXn) bounded by 2−n in the first place. This being mentioned, there is then no difficulty
to prove the existence of a universal oracle Martin-Löf test. We shall see that this does
not hold anymore using continuous relativization with Π1

1-Martin-Löf randomness.

2.1.2 Notions of n-randomness and α-randomness

One can iterate this idea of Martin-Löf randomness by considering Π0
n sets effectively of

measure 0 for any n ≥ 2. Martin-Löf randomness is also called 1-randomness, the use of
Π0

3 sets effectively of measure 0 gives us 2-randomness, Π0
4 sets give us 3-randomness,

and so on:

Definition 2.1.4. A n-Martin-Löf test is a Π0
n+1 set ⋂nAn effectively of measure 0.

We say that Z ∈ 2N is n-random if it is in no n-Martin-Löf test.

It is of course possible to extend the notion of n-randomness through the computable
ordinals. In the following definition, ω-randomness corresponds to Π0

ω+1 sets effectively of
measure 0, (ω + 1)-randomness to Π0

ω+2 set effectively of measure 0, and so on. Note that
we have no name for the notion of being in no Π0

n set effectively of measure 0 for any n, or
for the notion of being in no Π0

ω set effectively of measure 0. The reason is that we do not
have universal tests for those notions. Consider for example ⋃nAn, a Σ0

ω set effectively of

measure 1. For some n we have that An contains a Π0
1(∅
(m)

) set of positive measure for
some m ≥ n. Also the leftmost-path of such a set is ∆0

m+2 and can then be captured by a
Π0
ω test.

Definition 2.1.5. For α ≥ ω, a α-Martin-Löf test is a Π0
α+1 set ⋂nAn effectively of

measure 0. We say that Z ∈ 2N is α-random if it is in no α-Martin-Löf test.

The descriptive set theorist might find the two previous definitions rather strange,
because more description power can be used for each set in the intersection, but in the
mean time we keep the same notion for ‘being effectively of measure 0’. Instead it could
seem normal, for example for 2-randomness, to only require for the function which to n
associates the measure of An to be bounded by a decreasing ∆0

2 function converging to 0
(instead of ∆0

1). We shall actually see now that this does not matter.

Lemma 2.1.1 The following are equivalent for any computable ordinal α and any X ∈ 2N:

1. X is in no Π0
2(∅
(<α)

) set of measure 0, effectively in ∅(<α).

2. X is in no Π0
2(∅
(<α)

) set effectively of measure 0.

3. X is in no set ⋂n Un where each Un is a Σ0
1(∅
(<α)

) set uniformly in n, of measure
smaller then 2−n.

4. X is in no Π0
α+1 set effectively of measure 0.

5. X is in no Π0
α+1 set of measure 0, effectively in ∅(<α).

55

2.1. ALGORITHMIC RANDOMNESS

Proof: (1) Ô⇒ (2) ∶ Let ⋂n Un be a Π0
2(∅
(<α)

) set of measure 0, effectively in ∅(<α), that

is with a ∅(<α)-computable function f ∶ N→ N whose limit is 0, and such that λ(Un) ≤ f(n).

We can define the ∅(<α)-computable function g ∶ N→ N which to n associates the smallest

m such that f(m) ≤ 2−n. We can build the new test ⋂n Ug(n), which is a Π0
2(∅
(<α)

) set
effectively of measure 0 and equal to ⋂n Un.

(2) Ô⇒ (3) ∶ Let ⋂n Un be a Π0
2(∅
(<α)

) set effectively of measure 0. We now have

to make an equivalent test ⋂n Vn where each Vn is Σ0
1(∅
(<α)

) uniformly in n, that is we

cannot use ∅(<α) anymore to find the index of the n-th open set. We simply define Vn to

be the Σ0
1(∅
(<α)

) open set which first uses ∅(<α) to compute the index of Un, and then is
equal to Un.

(3) Ô⇒ (4) ∶ Let ⋂n Un be such that each Un is a Σ0
1(∅
(<α)

) set uniformly in n, of

measure smaller then 2−n. As ∅(<α) is ∆0
α, the set of strings Wn that describes Un is a

Σ0
α set of strings. Also by Proposition 1.5.1, each Un is then a Σ0

α set, and then their
intersection is a Π0

α+1 set.

(4) Ô⇒ (5) ∶ Trivial.

(5) Ô⇒ (1) ∶ Consider a Π0
α+1 set ⋂An, of measure 0 effectively in ∅(<α), where each

An is a Σ0
α set. From Theorem 1.8.1 one can find uniformly in q and in an index for An a

Σ0
α-open set Un ⊇ An with λ(Un−An) ≤ q. Also using Corollary 1.6.1, the Σ0

α set of strings

describing Un is Σ0
1(∅
(<α)

), uniformly in q and in an index for An. But then we can easily

build a Π0
2(∅
(<α)

) set of measure 0, effectively in ∅(<α), which contains ⋂An. For each n
we simply find Un ⊇ An such that λ(Un−An) ≤ 2−n and we then have λ(Un) ≤ λ(An)+2−n.

Then the measure of Un also goes to 0, effectively in ∅(<α).

The previous lemma is interesting also because it shows that the notion of
n-randomness or α-randomness actually corresponds to the notion of Martin-Löf random-
ness, but relatively to some oracle. We extract this important part of Lemma 2.1.1 into
the following theorem:

Theorem 2.1.3:
The following are equivalent for any computable ordinal α and any Z ∈ 2N.

1. Z is in no Π0
2(∅
(<α)

) set effectively of measure 0.

2. Z is in no Π0
α+1 set effectively of measure 0 (i.e. Z is α-random).

Corollary 2.1.1:
For any computable α, there is a universal α-Martin-Löf test, that is, a Π0

2(∅
(<α)

) set
effectively of measure 0, that contains every α-Martin-Löf test.

56

2.1. ALGORITHMIC RANDOMNESS

Proof: From Theorem 2.1.2 there is a universal oracle Martin-Löf test, which can then
be used with an appropriate oracle as a universal α-test for any α.

Most of the time, the α-Martin-Löf tests will be considered to be Π0
2(∅
(<α)

) sets effec-
tively of measure 0 instead of Π0

α+1 sets effectively of measure 0.

2.1.3 Notions of weak-n-randomness

The case of what happens if we drop the ‘effectively of measure 0’ condition is also inter-
esting. Indeed, the corresponding notion of randomness is more natural in the sense that
it is simpler to describe. However, many nice properties of Martin-Löf randomness, such
as the existence of a universal test, disappear when we drop the ‘effectively of measure 0’
condition.

Definition 2.1.6. A Π0
2 nullset is also called a weak-2-test. We say that X ∈ 2ω is

weakly-2-random if it is in no weak-2-test.

We shall now see an equivalent way to define weak-2-tests, that will help us to get
a better understanding of weakly-2-randomness. As we saw in the previous section with
Theorem 2.1.3, the notion of 2-randomness is equivalent the notion of 1-randomness, where

∅(1) can be used to both pick the index of the n-th component of the Martin-Löf test and
to enumerate this n-th component. We shall now prove that weakly-2-randomness is

equivalent to the notion of Martin-Löf randomness, where ∅(1) can be used to pick the
index of the n-th component of the Martin-Löf test, but where each of these components

is still Σ0
1 and not Σ0

1(∅
(1)

). A higher randomness analogue of this notion of randomness,

characterized by this special use of ∅(1) will be studied in Section 5.2.

Theorem 2.1.4:
Let {Un}n∈ω be a canonical enumeration of the Σ0

1 sets. A sequence X is weakly-2-
random iff X is in no test ⋂n Uf(n) where λ(Uf(n)) ≤ 2−n and where f ∶ N → N is a

total ∅(1)-computable function.

Proof: If X is in a Π0
2 nullset ⋂n Un, then one can use ∅(1) to find uniformly in n the first

m so that λ(Um) ≤ 2−n. For the converse, notice that if f is a ∅(1)-computable function,
then ⋂n Uf(n) = ⋂n,t⋃s≥t Ufs(n).

We saw with Example 2.1.2 that there is a left-c.e. Martin-Löf random sequence. We
shall see that this does not hold anymore for weak-2-randomness.

Proposition 2.1.1:
No ∆0

2 sequence is weakly-2-random.

57

2.1. ALGORITHMIC RANDOMNESS

Proof: Using the equivalent test notion of Theorem 2.1.4, one can easily put a weak-2-

test on any ∅(1)-computable sequence X. We simply build the ∅(1)-computable function
f which to n associates an index of the Σ0

1 set [X ↾n].

Corollary 2.1.2:
There is no universal weakly-2-test.

Proof: For any weak-2-test ⋂n Un, the leftmost path of the complement of each Un is a
left-c.e. sequence (hence ∆0

2) and therefore not weakly-2-random.

Liang Yu actually proved in [96] much more that the non existence of a universal
weakly-2-test: The set of weakly-2-randoms is not even a Σ0

3 set (and therefore not a Σ0
2

set). This implies that the exact Borel complexity of the weakly-2-randoms is Π0
3, as the

complement of the union of all weak-2-tests.

From Proposition 2.1.1 we have that the set of weakly-2-randoms is strictly included
in the set of 1-randoms. It is also clear from Theorem 2.1.4 that the set of 2-randoms is
included in the set of weakly-2-randoms. Also Liang Yu’s theorem imply that this inclusion
is strict, as the set of 2-randoms is Σ0

2. We shall see in Section 2.2.2 a direct proof of that.

We shall now mention a theorem of Downey, Nies, Weber and Yu (see [16]) which will
have some interesting counterpart in Higher randomness:

Theorem 2.1.5:
For a Martin-Löf random sequence Z, the following are equivalent:

1. Z is weakly-2-random.

2. Z does not compute any non-computable ∆0
2 sequence.

3. Z does not compute any non-computable c.e. sequence.

In order to prove that no sequence Z which Turing computes a non computable ∆0
2

sequence is weakly-2-random, we use a theorem from Sacks which appears first in [76], but
which is also a direct consequence of a similar theorem from de Leeuw, Moore, Shannon,
and Shapiro [14]:

Theorem 2.1.6 (de Leeuw, Moore, Shannon, and Shapiro):
Given a set X ⊆ N which is not Σ0

1, the set of oracles Y such that X is Σ0
1(Y) has

measure 0.

58

2.1. ALGORITHMIC RANDOMNESS

Proof: Suppose that for some X, we have λ({Y ∶ ∃e X = W Y
e }) > 0. Then by the

countable additivity of a measure, already for some e we have λ({Y ∶ X = W Y
e }) > 0.

Also by the Lebesgue density theorem, there exists a cylinder [σ] such that λ({Y ∶ X =

W Y
e } ∣ [σ]) > 1/2.

We then claim that X is actually already Σ0
1. For any integer n, we can enumerate

the open set of oracles Y such that n ∈W Y
e . Also the measure inside [σ], of this open set,

goes above 1/2 iff n ∈ X, in which case when we witness it (which always happens), we
can actually enumerate n in X.

From this, we can deduce Sacks theorem:

Corollary 2.1.3 (Sacks):
If a set X is not computable, then the set of oracles which computes X has measure
0.

With a bit of work, we can then prove that the set of sequences which Turing compute
a ∆0

2 set via a given Turing functional is a Π0
2 set. Also this Π0

2 set has measure 0, by Sacks
theorem, and then no sequence Z which Turing computes a non computable ∆0

2 sequence
is weakly-2-random.

For the converse, one should prove that if Z is Martin-Löf random, but not weakly-
2-random, it can Turing compute a non computable c.e. set. The proof is similar to its
higher analogue that we will give with Theorem 6.3.1, but using Π1

1-randomness instead
of weakly-Π1

1-random (the higher analogue of weak-2-randomness).

2.1.4 More on Martin-Löf randomness

Solovay tests

We now give an equivalent notion of test for Martin-Löf randomness, which will reveal
itself to be often useful:

Definition 2.1.7. A Solovay test is a computable sequence of effectively open sets
(Sn)n∈N such that ∑n∈N λ(Sn) < +∞. We say that Z ∈ 2N passes the test if Z
belongs only to finitely many Sn. We say that a Solovay test (Sn)n∈N is c-bounded if

∑n∈N λ(Sn) ≤ c.

We shall now see how to turn Solovay tests into Martin-Löf tests, along with the notion
of ‘being captured’ by a Solovay test.

Theorem 2.1.7 ([86];[80]):
Let Z ∈ 2ω. The following statements are equivalent:

1. Z passes each Solovay test

2. Z passes each 1-bounded Solovay test

3. Z is Martin-Löf random

59

2.1. ALGORITHMIC RANDOMNESS

Proof: (1) Ô⇒ (2): Trivial.

(2) Ô⇒ (3): Suppose that there is a Martin-Löf test (Un)n∈N such that Z ∈ ⋂n Un.
Then (Un)n∈N is also a 1-bounded Solovay test and so Z fails this Solovay test.

(3) Ô⇒ (1): Suppose that there is a Solovay test (Un)n∈N such that Z belongs to
infinitely many Un. As ∑n∈N λ(Un) is finite, there exists m such that ∑n≥m λ(Un) ≤ 1.
Without loss of generality we can remove the m first Σ0

1 sets from the enumeration and
still have that Z is in infinitely many of them. So we now consider that ∑n λ(Un) ≤ 1.

Let Gm be the Σ0
1 set of strings defined by {σ ∶ [σ] ⊆ [Un] for at least 2m many n}.

Since Z belongs to infinitely many Un, then also there is a prefix of Z in eachGm. Therefore
Z is in the Π0

2 set ⋂n Gn where each Gn is the Σ0
1 set corresponding to the set of strings Gn.

Let us now prove that λ(Gn) ≤ 2−n. Suppose otherwise, as Gn is included in 2n distinct
sets Uk, we have ∑n λ(Un) > 2−n2n ≥ 1, which is a contradiction.

The randomness deficiency

We can easily prove the following fact:
.

Fact 2.1.3.

The Martin-Löf randomness of a sequence remains unchanged by adding, removing or
switching finitely many bits of the sequence.

.
Also given a Martin-Löf random sequence Z, the sequence obtained by adding ten

billions of 0’s in front of Z is still Martin-Löf random. However it is in some sense less
random. Also there is a way to formalize this, by assigning to each random sequence Z
an integer value, that measures its randomness deficiency.

Definition 2.1.8. The randomness deficiency of a sequence X is given by smallest
integer c such that X ∉ Uc, where ⋂n Un is a the universal Martin-Löf test. For a given
computable ordinal α, the α-randomness deficiency of a sequence X is given by smallest
integer c such that X ∉ Uc, where ⋂n Un is the universal α-Martin-Löf test.

Proposition 2.1.2:
For any computable α, any α-random sequence Z and any α-Martin-Löf test ⋂n Un
of index e, one can find uniformly in an upper bound c for the randomness deficiency
of Z and in e, an integer m such that Z ∉ Um.

Proof: Recall that the universal α-Martin-Löf test is given by a Π0
2(∅
(<α)

) set ⋂n Vn,
effectively of measure 0, which is equal to ⋃k Uk,k+n+1, where ⋂n Uk,n is the α-Martin-Löf
test of index k. Also given an upper bound c for the randomness deficiency of Z and an
index e for the α-Martin-Löf test ⋂n Un , we easily see that Z is not in Ue+c+1.

60

2.2. GENERICITY

2.2 Genericity

2.2.1 Cohen genericity

Cohen introduced in [9] his general technique of forcing, starting with the simple example of
forcing with all dense open sets of the Cantor space in a countable model of ZFC from which
he proved the independence of the continuum hypothesis and the independence of the
axiom of choice. Forcing revealed itself to be an extraordinary powerful tool of set theory
to prove a large variety of independence results. In addition, the study of the effectivization
of various forcing notions also appeared to be a powerful tool in computability theory, and
also algorithmic randomness.

We discuss here various effective versions of ‘being Cohen-generic’. In some sense,
Cohen genericity is to categoricity what algorithmic randomness is to measure theory.
Roughly, something is random if it belongs to every set of measure 1, whereas something
is Cohen generic if it belongs to every dense open set. In [9] Cohen generalized this notion
by considering elements which are in every dense open set of a topological space generated
by a given partial order. However, most of the time we write ‘generic’ instead of ‘Cohen
generic’ and if there might be a confusion, we will always precise. In particular, we will see
that randomness can be considered to be a type of genericity for some topological space.

Generic sequences have been introduced mainly to be able to speak of their properties
without requiring a full knowledge of them. More precisely, if G is generic there is then a
way to write “Φ(G) is true” without fully using G. The “essence” of forcing lies in this
stunning property that generic sets have, and which is already described in Theorem 1.9.1
: Every Borel set is equal to an open set, up to a meager set. Also we can study sequences
which are in every Σ0

n-open set, for a given n:

Definition 2.2.1 (Kurtz). For n ∈ N, we say that G is weakly-n-generic if it belongs
to all dense Σ0

n-open sets.

Let n be fixed. Theorem 1.9.1 says that any Σ0
n set A is equal to a Σ0

n open set U ,
up to a meager set B included in ⋃m ∂Fm, where each Fm is Π0

n−1 uniformly in m. Also
using Proposition 1.9.2 we have that 2N − ∂Fm is a dense Σ0

n-open set. Therefore any
weakly-n-generic set G is in A iff it is in U and there is a prefix σ of G with [σ] ⊆ U
such that every weakly-n-generic sequence extending σ is in A, which is in the language
of forcing is : ‘σ forces A’. Note that the previous definition can be generalized to any
computable α.

Definition 2.2.2. For α computable, we say that G is weakly-α-generic if it belongs to
all dense Σ0

α-open sets.

Jockusch introduced earlier the notion of n-genericity, in order to force not only every
Σ0
n statement, but also every Π0

n statement:

Definition 2.2.3 (Jockusch). For n ∈ ω, We say that G is n-generic if for any Σ0
n-

open set U , either G belongs to U or G belongs to a cylinder [σ] disjoint from U . We
generalize this to any computable ordinal α, and we say that G is α-generic if for any
Σ0
α-open set U , either G belongs to U or G belongs to a cylinder [σ] disjoint from U .

Another way to say that G is α-generic, is to say that for any Σ0
α-open set U , the

61

2.2. GENERICITY

sequence G belongs to U or to the interior of the complement of U . It is clear that any
weakly-α-generic is also α-generic. We now prove the following theorem:

Theorem 2.2.1:
If G is weakly-α-generic then for any Σ0

α set A we have G is in A iff there is σ ≺ G
such that any weakly-α-generic extending σ is in A.

If G is α-generic then for any Π0
α set A we have G is in A iff there is σ ≺ G such that

any α-generic extending σ is in A.

Proof: Fix G a weakly-α-generic sequence. Let A be a Σ0
α set. From Theorem 1.9.1 we

have a Σ0
α open set U and uniformly in n we have Π0

<α-closed set Fn such that A = U △ B

with B ⊆ ⋃n ∂Fn. Using Proposition 1.9.2 we have that each ∂Fn is a Π0
α closed set and

then no weakly-α-generic is in B.

Suppose now that G is in A. Then as it is weakly-α-generic it is in U and then there
is a prefix σ of G such that [σ] ⊆ U , but then also any weakly-α-generic extending σ is
in A. Conversely if we have a prefix σ of G such that any α-generic extending σ is in A,
then in particular we have G in A since G is α-generic.

Let A now be a Π0
α set. From Theorem 1.9.1 we have a Π0

α open set U and uniformly
in n we have Π0

α closed set Fn such that A = U △ B with B ⊆ ⋃n ∂Fn. But then any
α-generic is in Fn iff it is in the interior of Fn. Therefore any α-generic is in A iff it is in
U and we can continue the proof like in the previous case.

There is for categoricity, a theorem which is similar to Fubini’s Theorem (Theorem 1.8.3)
and known as the Kuratowski-Ulam theorem. It roughly says that a Borel set A ⊆ 2N×2N

is co-meager iff {X ∣ AX is co-meager} is co-meager. One can refer for example to
Kechris’ book (see [34]) for the general statement of Kuratowski-Ulam theorem, and its
proof.

Effective versions of the Kuratowski-Ulam theorem can be used, for example to
prove that X ⊕ Y is 1-generic iff X is 1-generic and Y is 1-generic relatively to X
(proved by Liang Yu in [95]), which is an analogue of van Lambalgen’s theorem (see
Theorem 4.3.2), but for genericity. This can be made much more general, and extended
to various notions of set theoretical forcing. One can see for example Theorem 1.4 in
Chapter VIII of Kunen’s book (see [43]) for a general such theorem, that is then useful
to study iterated forcing.

Digression

2.2.2 Randomness as a genericity notion

The Cantor space, endowed with the topology generated by Π0
1 sets is clearly a Baire

space, because a decreasing intersection of non-empty closed sets is also not empty. Several
notions of genericity related to this topology have been studied in [63], and in particular

62

2.2. GENERICITY

their connection with domination properties. We give here a genericity notion related to
this topology in order to prove a separation of weak-2-randomness from 2-randomness.

Definition 2.2.4. Let {Gi}i∈ω be the collection of all Σ0
2 sets G such that for any Π0

1 set
F of positive measure we have λ(G ∩F) > 0. Then we say that a sequence X is weakly-
Π0

1-Solovay-generic if it belongs to ⋂i Gi.

This notion is called weak-Π0
1-Solovay-genericity by analogy with Cohen weak-1-

genericity, whereas the analogue of Cohen 1-genericity can be defined to be the sequences
X such that for any Σ0

2 set G, either X is in G, or there exists a Π0
1 set F of positive

measure and disjoint from G such that X is in F .

It is clear that the set of weakly-Π0
1-Solovay-generic is not empty and contained in the

set of weakly-2-random. We shall however prove now that this is a set of measure 0, and
in particular none of those sequences is 2-random:

Theorem 2.2.2:
No weakly-Π0

1-Solovay-generic sequence is 2-random.

Proof: We construct uniformly in n a Σ0
2 set intersecting with positive measure all Π0

1 sets
of positive measure, and with measure smaller than 2−n. Let {Fe}e∈ω be an enumeration
of the Π0

1 sets. For each e we initialize σe to the first string (using lexicographic order) of
length n + e + 1. Our Σ0

2 set will consist of a computably enumerable set A of indices of
Π0

1 sets. We now describe the algorithm to enumerate elements of A: At stage t, for each
substage e < t in increasing order, if the index of Fe∩[σe] has not already been enumerated
into A, then enumerate it. After that, if λ(Fe ∩ [σe])[t] = 0 then reset σe to be the string
of length n + e + 1 following σe in the lexicographic order. If σe is already the last such
string, leave it unchanged.

Let us prove that the measure of the Σ0
2 set represented by A is smaller than 2−n. For

each e, if λ(Fe ∩ [σe]) = 0 then by compactness λ(Fe ∩ [σe])[t] = 0 for some t. Thus at
most one string σe of length n+ e+ 1 such that λ(Fe ∩ [σe]) > 0 has been enumerated into
A, and then the measure of the set represented by A is bounded by ∑e 2−n−e−1 ≤ 2−n. Now
our Σ0

2 set intersects with positive measure every Π0
1 set of positive measure, because if

λ(Fe) > 0 then there exists a string σe of length n + e + 1 such that λ(Fe ∩ [σe]) > 0 and
then the set represented by A will intersect Fe with positive measure.

From this we can then construct a Π0
3 set effectively of measure 0 and containing all

the weakly-Π0
1-Solovay-generic sequences.

Corollary 2.2.1:
We have 1-randomness ← weak-2-randomness ← 2-randomness ← weakly-3-
randomness ← . . . , and all those implications are strict.

63

2.2. GENERICITY

Proof: The fact that 1-randomness is strictly implied by weakly-2-randomness is a conse-
quence of Proposition 2.1.1, whereas the fact that weakly-2-randomness is strictly implied
by 2-randomness is a consequence of Theorem 2.2.2. Then those proofs relativize to the

oracle ∅(α) for any α.

64

Chapter 3
Beyond the Borel hierarchy

Higher recursion theory (HRT) has been one of my two major obsessions for the
last twenty years. Nonetheless my interest has not waned. Perhaps because, as
Browning claimed:

“The best is yet to be.”

I was talked into the subject, skittish all the way, by G. Kreisel. The old devil
insisted, in several conversations beginning in 1961, on the existence of golden gen-
eralizations of recursion theory in which infinitely long computations converged. I
listened for hours, without understanding a word, to his tales of the mother lode of
recursion theory hidden far below the peaks of effective descriptive set theory.

Higher recursion theory, Gerald Sacks

3.1 The complexity of sets

We should now go beyond the Borel hierarchy and study the Π1
1 and Σ1

1 sets. We said
previously that the arithmetical sets of integers or reals are the one that can be defined
using first-order formulas of arithmetic. We slightly abuse here of the use of the word
‘real’, by which we mean either elements of the Baire space or of the Cantor space.

We also define hyperarithmetical sets of integers, and we define hyperarithmetical sets
of reals, as an effective version of the Borel sets. Also, starting from the Σ0

ω or Π0
ω sets,

there is no longer a way to define them with first-order formulas of arithmetic. They are
however definable (since we defined them...). But to do so, still with formulas of arithmetic,
we need second order quantification, that is, quantification over infinite objects, such as
functions or sequences of 0’s and 1’s.

We shall see that allowing second order quantification in formulas of arithmetic gives us
much more power than what we need to just define sets of the hyperarithmetical hierarchy.
We actually will use a very small part of the power that second order quantification could
give us, and we will use in this thesis only universal second order quantification, or only
existential second order quantification without ever mixing the two.

Definition 3.1.1. A subset of NN or of N is Σ1
1 if it is definable by a formula of arithmetic

with quantification over integers or elements of NN, such that the quantifications over

65

3.1. THE COMPLEXITY OF SETS

elements of NN are only existential (and not preceded by a negation). Similarly we define
the Π1

1 sets as those corresponding to formulas containing only universal quantifications
over elements of NN.

Example 3.1.1:
We can easily see that the set W of codes of computable ordinals is Π1

1. Indeed, we
can define the set of codes of linear orders by a Π0

2 formula: for all distinct integers
n1, n2, we have that n1 < n2 is enumerated in the order described by We and n2 < n1 is
never enumerated, or n2 < n1 is enumerated and n1 < n2 is never enumerated. The only
thing that remains to check is the absence of infinite backward sequence in the order
described by We, which can be expressed with a universal quantification over functions:
∀f ∃n ¬f(n + 1) <e f(n), where <e denotes the order described by e. ♢

We shall see that the Π1
1 set of computable ordinals, described in the previous example,

cannot be Σ0
α for any α. Similarly we will see that some Π1

1 subsets of NN cannot be Borel
(and therefore neither their Σ1

1 complement). We will actually see that a set is effectively
Borel iff it is both Π1

1 and Σ1
1.

As explained in the introduction of ‘Descriptive set theory’ by Moschovakis (see [65]),
the study of Σ1

1 sets probably starts with Suslin, who spotted a mistake in a proof of
Lebesgue, who was wrongly assuming that the image of a Borel set of the Baire space by
a continuous function is also a Borel set.

Suslin proved that this was not necessarily the case and called analytic sets the sets
that could be described as images of Borel sets by continuous functions. We shall see that
Σ1

1 sets are actually an effective version of the notion of analytic sets. For this reason we
define:

Definition 3.1.2. A subset of NN is Σ1
1 or analytic if it is the range of a total continuous

function f ∶ NN → NN. A subset NN is Π1
1 or co-analytic if its complement is Σ1

1.

We shall see that a set is Σ1
1 iff it is Σ1

1(X) for some X, and therefore Π1
1 iff it is

Π1
1(X) for some X. But first, let us show that there exists a convenient normal form for

Π1
1 and Σ1

1 sets. To deal at the same time with both subsets of NN and subsets of N, we
directly consider subsets of NN ×N.

Theorem 3.1.1 (Kleene, [39]):
A subset A of NN ×N is Σ1

1 iff there is a computable functional Φ such that

(f,m) ∈ A↔ ∃g Φ(g, f,m) ↑

Similarly a subset A of NN ×N is Π1
1 iff there is a computable functional Φ such that

(f,m) ∈ A↔ ∀g Φ(g, f,m) ↓

66

3.1. THE COMPLEXITY OF SETS

Proof: Consider any Σ1
1 predicate which we can suppose to be in prenex normal form

(starting with only quantifiers, followed by a quantifier-free part). For any existential
quantifier over an integer variable n, we can obtain an equivalent formula by replacing it
with an existential quantifier over a function f , and by modifying any other instance of n
by f(0) in the formula. Once this is done for any existential quantification over integers,
we now transform this new formula into an equivalent one where existential quantifiers over
functions come first, then universal quantifiers over integers, followed by a quantifier-free
part.

To do so, we should see that for any Σ1
1 predicate Q(n, f), where n and f are free

variables, we have:

∀n ∃f Q(n, f)↔ ∃f ∀n Q(n, ⟨f⟩n)

Where ⟨f⟩n is the n-th inverse of a pairing function from (NN)
N

to NN. We can first
easily prove this with the axiom of choice. Indeed if ∀n ∃f Q(n, f) then in every set
An = {f ∣ Q(n, f)}, we can pick one function and then prove the existence of the function
resulting of the infinite pairing between each of them. It follows also that ∃f ∀n Q(n, ⟨f⟩n)
is true (the converse being obvious).

Now, using the fact that each set An = {f ∣ Q(n, f)} is Σ1
1, it is possible to remove the

use of the axiom of choice. This is a consequence the developments of Section 3.2, roughly
saying that any non-empty Σ1

1 contains in some sense a ‘leftmost path’, that we can then
pick uniformly in each An, without the use of choice.

We can then transform the formula into an equivalent formula (equivalent over ZF)
where existential quantifiers over functions come first, then universal quantifiers over in-
tegers, followed by a quantifier-free part. All that remains to do is to merge all the
existential quantifications over functions into one existential quantification, and all the
universal quantifications over integers into one universal quantification, and this can be
done using the fact that for any predicate Q we have:

∃f1, . . . , f2 Q(f1, . . . , fn)↔ ∃f Q(⟨f⟩1, . . . , ⟨f⟩n)

and

∀x1, . . . , xn Q(x1, . . . , xn)↔ ∀x Q(⟨x⟩1, . . . , ⟨x⟩n)

Finally the function Φ is created from the universal quantifier over the integers, from the
quantifier-free part of the final formula. The normal form theorem for Π1

1 sets is then a
consequence of the one for Σ1

1 sets.

It follows that there is a canonical enumeration of the Σ1
1 and Π1

1 sets, given by the
indices of their corresponding functionals:

Definition 3.1.3. In the context of Π1
1 subsets of NN × N, any e ∈ N is a Π1

1-index
whose corresponding set is given by {(f,m) ∶ ∀g Φe(g, f,m) ↓}. Similarly, in the context
of Σ1

1 subsets of NN × N, any e ∈ N is a Σ1
1-index whose corresponding set is given by

{(f,m) ∶ ∃g Φe(g, f,m) ↑}.

We shall now separate the notions of Π1
1 and Σ1

1. We start with a separation for sets
of integers. Later, the proof that a set is Σ0

α for some computable α iff it is both Π1
1 and

Σ1
1, will imply that also some sets of integer are Π1

1 or Σ1
1, but not Σ0

α for any α.

67

3.2. THE Σ1
1 SETS

Proposition 3.1.1:
There is a set of integers which is Π1

1 but not Σ1
1.

Proof: We proceed by a standard diagonalization. Let {Pe}e∈ω be an enumeration of the
Π1

1 sets. Let A be the Π1
1 set {e ∶ e ∈ Pe}. Suppose N−A is Π1

1. Then for some e we have
N −A = Pe and e ∈ A↔ e ∈ Pe ↔ e ∈ N −A which is a contradiction.

We now separate Π1
1 from Σ1

1, for sets of reals. As for sets of integers, we will prove
later that a set of reals is Borel iff it is both Π1

1 and Σ1
1. This will then imply that some

Π1
1 set is not Borel.

Proposition 3.1.2:
There is a set of reals which is Π1

1 but not Σ1
1.

Proof: We proceed by a standard diagonalization. Let e be an integer such that on oracle
1nˆ0ˆY , it becomes a 1nˆ0ˆY -index for the set {X ∶ ∀g Φn(Y, g,X) ↓}. Proposition 3.2.1
will make clear that a set is Π1

1 iff it is Π1
1(Y) for some oracle Y . Therefore, for any Π1

1
set A, there exists an oracle Y such that e is a Y -index for A.

Consider the Π1
1 set A = {1nˆ0ˆX ∶ ∀g Φn(X,g,1

nˆ0ˆX) ↓}. Suppose that 2ω −A
is Π1

1. Then there is an oracle 1nˆ0ˆY such that 2ω −A = {X ∶ ∀g Φn(Y, g,X) ↓}. But
then 1nˆ0ˆY ∈ A↔ ∀g Φn(Y, g,1

nˆ0ˆY) ↓↔ 1nˆ0ˆY ∈ 2ω −A which is a contradiction.

3.2 The Σ1
1 sets

There is a convenient way to represent Σ1
1 subsets of NN (or of 2N). Consider A ⊆ NN

defined by A(f)↔ ∃g Φ(f, g) ↑. Let us define the computable tree:

T = {σ1 ⊕ σ2 with t = ∣σ1∣ = ∣σ2∣ ∶ Φ(σ1,σ2)[t] ↑}

We have that ∃g g⊕f ∈ [T] iff f ∈ A: If for some function g we have Φ(g, f) ↑ then clearly
g ⊕ f ∈ [T]. For the converse, if for every function g we have Φ(g, f) ↓, then also for all g
there is some t large enough to have Φ(g↾t, f ↾t)[t] ↓ and thus such that g↾t ⊕f ↾t∉ T .

One can similarly represent any Σ1
1 subset of 2N as the set of infinite paths of a

computable tree T of the Baire space, where for f ∈ T , the corresponding element X
is coded by X(n) = 0 if f(n) is even and X(n) = 1 otherwise.

We can now fix the missing part of the proof of Theorem 3.1.1: Using those trees, it
follows that the axiom of choice is not needed to pick elements in a sequence of Σ1

1 sets, as
we can pick in each of them the element coded by the leftmost path of its corresponding
tree.

We shall now see why the Σ1
1(X) predicates for some oracle X, are exactly those that

can be defined as the range of a continuous function.

68

3.3. THE Π1
1 SETS

Proposition 3.2.1:
A subset of NN is the range of a total continuous function F ∶ NN → NN iff it is Σ1

1(X)

for some oracle X.

Proof: Let F ∶ NN → NN be a total continuous function. We have that g ∈ F (NN) iff
∃h g = F (h), which is a Σ1

1(X) predicate, where X is an oracle coding for F .

Consider now the non-empty Σ1
1(X) set A defined by h ∈ A ↔ ∃g Φ(X,g, h) ↑, and

its corresponding X-computable tree T , as described above. Let T ′ be the pruned tree
obtained by removing all dead nodes from T . We still have that f ∈ A iff there exists a
function g such that g ⊕ f ∈ [T ′].

Let G ∶ NN → [T ′] be the continuous function which to f associates the element g of
[T ′] the following way. First, g(0) is the f(0)-th node of T ′ of length 1 if it exists, or the
last node of T ′ of length 1 otherwise. Then inductively, g(n + 1) is the f(n + 1)-th node
of T ′ of length n + 2 that extends g(n), if it exists, or the last node of T ′ of length n + 2
that extends g(n) otherwise.

The function G is clearly continuous with range [T ′]. We then define the continuous
function F by F (h) to be the second half of G(h). We clearly have that F is continuous
and that F (NN) = A.

3.3 The Π1
1 sets

The Π1
1 sets are strongly connected to the notion of being well-founded, in the sense that,

informally, the set of well-founded objects is a universal Π1
1 set. This is made precise with

the following proposition:

Proposition 3.3.1:
For A ⊆ NN×N a Π1

1 set, one can define uniformly in an index for A a total computable

function h ∶ N→ N such that A(f, n)↔ h(n) ∈ T f . Recall that T f is the set of codes
for c.e. well-founded trees relatively to the oracle f .

Proof: Consider A ⊆ NN × N defined by A(f, n) ↔ ∀g Φ(g, f, n) ↓. We can define
uniformly in n and f the f -computable tree:

T fn = {σ with t = ∣σ∣ ∶ Φt(σ, f ↾t, n) ↑}

We define the function h by associating to n a code for the ‘oracle tree’, which on oracle
f becomes a code for T fn . We should now prove that (f, n) ∈ A iff T fn is well-founded. But
this is clear because we have that (f, n) ∈ A iff ∀g ∃t Φt(g↾t, f ↾t, n) ↓ iff ∀g ∃t g↾t∉ T

f
n iff

T fn is well-founded.

69

3.3. THE Π1
1 SETS

Corollary 3.3.1:
For A ⊆ NN a Π1

1 set, One can find uniformly in an index for A and in any representa-
tion X of a countable ordinal α, a code for a Π0

α+1(X) set Aα, such that A = ⋃α<ω1
Aα.

If α is a computable ordinal, then the representation X can simply be a code of O=α,
which makes Aα a Π0

α+1 set.

Proof: From the previous proposition we have an integer e such that f ∈ A ↔ e ∈ T f .
Consider the set Aα = {f ∶ e ∈ T f

≤α}. From Theorem 1.7.2, we have that Aα is a Π0
α+1(X)

set uniformly in any X representing the ordinal α; and a Π0
α+1 set uniformly in a code of

O=α if α is computable. Then by design we have A = ⋃αAα.

We now give an example of a Π1
1 set of reals which will be important in order to study

higher randomness, and especially the different notions of randomness that lie between
∆1

1-randomness and Π1
1-randomness.

Proposition 3.3.2:
The set {X ∣ ωX1 > ωck1 } is a Π1

1 set.

Proof: The set {X ∣ ωX1 > ωck1 } can be defined by the following predicate: “There exists
a code e ∈WX such that for every integer n coding for a linear order, for every f ∶ ω → ω,
the function f is not an isomorphism from the order coded by e into the one coded by n”.
It is easy to check that this is a Π1

1 predicate.

If ωX1 > ωck1 then there exists an integer e ∈WX such that ∣e∣Xo ≥ ωck1 . Therefore, for
any n coding for a linear order, either n is well-founded in which case ∣e∣Xo > ∣n∣o and we
do not have an isomorphism, or n is ill-founded in which case we also do not have an
isomorphism.

Now if ωX1 = ωck1 , then for every integer e ∈WX , there is an integer n ∈W such that
∣e∣Xo = ∣n∣o, and therefore such that we have an isomorphism between the two.

An important example of Π1
1 set of integers is the one described in Example 3.1.1. One

can equivalently consider the Π1
1 set W of codes for computable ordinals, the set T of

codes for c.e. well-founded trees, or the set O of codes for constructive ordinals. All those

sets can play for Π1
1 sets the same role ∅(1) plays for Σ0

1 sets, that is, they are Π1
1-complete

sets.

Theorem 3.3.1:
The sets O, W , T are Π1

1-complete sets. In particular, they are not Σ1
1.

70

3.3. THE Π1
1 SETS

Proof: We argued in Example 3.1.1 that W is Π1
1. The set T is also easily seen to be

Π1
1, as a c.e. tree T is well-founded iff “for all f , the function f is not an element of [T]”.

It is a bit more difficult for the set O. The non-trivial part is to check that for every limit
node, the sequence of ordinals coded by its children is strictly increasing. For a sequence
of nodes {σn}n∈ω of a tree T , this can be expressed by the predicate : “for all f , the
function f is not an injective morphism from the tree T ↿σn+1 into the tree T ↿σn”.

Now for completeness, for any Π1
1 set A ⊆ ω, using Proposition 3.3.1, we can find

uniformly in an index for A, a total computable function f such that n ∈ A↔ f(n) ∈ T .
This makes T a Π1

1-complete set.

Then using the Kleene-Brouwer ordering (see Section 1.4.2), the set of T is many-one
reducible to the set W which makes W a Π1

1-complete set.

Also using the technique described in Section 1.4.3, the set T is many-one reducible
to the set O, which then makes O a Π1

1-complete set.

It then follows from the existence of a Π1
1 set which is not Σ1

1 (Proposition 3.1.1) that
O, W and T are not Σ1

1 sets.

We can deduce an important corollary from this, that will be referred to as Spector’s
Σ1

1-boundedness principle, whose consequences will be used a lot in this thesis.

Corollary 3.3.2 (Spector, Σ1
1-boundedness principle):

Any Σ1
1 set of codes for computable ordinals is bounded below ωck1 . Formally for

A ⊆ T or A ⊆W or A ⊆O a Σ1
1 set, there exists a computable ordinal α such that for

any e ∈ A we have ∣e∣o < α. Furthermore, one can find uniformly in an index for A a
code a ∈O for such an ordinal α.

Proof: Consider a Σ1
1 set of integers A in either T ,W or O. Using the technique

described in Section 1.4.2 we can suppose without loss of generality A ⊆ T . It is interesting
to see first a non constructive argument that there exists some computable α such that
A ⊆ T <α. Suppose otherwise, then the predicate n ∈ T can be expressed by the Σ1

1 formula:

“There exists e ∈ A and a function f which is an injective morphism from the tree
coded by n into the tree coded by e”.

But by Theorem 3.3.1, the set T is not Σ1
1 and we then have a contradiction. So there

is some α such that A ⊆ T <α.

Now to get uniformity we need a constructive argument. Suppose a Σ1
1 set A is

included in T . In order to find an ordinal α such that A ⊆ T <α, we can use the func-
tion OR of Lemma 1.4.1 that combines two trees T1, T2 into one tree with order-type
min(∣T1∣o, ∣T2∣o), together with the function AND of Lemma 1.4.4, that combines a se-
quence of trees {Tn}n∈N into one tree with order-type sup+n(∣Tn∣o).

As A is Σ1
1, we have a ∈ A iff some tree Ta, computable uniformly in a, is ill-founded.

All we have to do is apply the function AND to the sequence of trees {OR(a, ta)}a∈N

71

3.4. THE ∆1
1 SETS

where ta is a code for the tree Ta. Either a ∈ A and then a codes for a well-founded tree, in
which case OR(a, ta) is well-founded with order-type ∣a∣o, or a ∉ A and then Ta codes for a
well-founded tree, in which case OR(a, ta) is well-founded with order-type ∣ta∣o. It is clear
that the result e of the function AND is such that A ⊆ T <∣e∣o . We can then transform e
into an element of O.

Corollary 3.3.3 (Spector, Σ1
1-boundedness principle for sets of reals):

For any Σ1
1 set A ⊆ 2N such that for some e ∈ N, either X ∈ A → e ∈ T X or X ∈ A →

e ∈WX or X ∈ A → e ∈ OX , there is a computable ordinal α such that for any X in
A we have ∣e∣Xo < α. Furthermore, one can find uniformly in an index of A, a code
a ∈O for such an ordinal α.

Proof: As in the previous corollary, we can suppose that for any X in A we have e ∈ T X .
We directly give here a constructive argument. As A is Σ1

1, one can find uniformly in an
index for A, a code a such that X ∉ A iff a ∈ T X . In particular, using the function OR of
Lemma 1.4.1 that combines two trees T1, T2 into one tree with order-type min(∣T1∣o, ∣T2∣o),
we have, arguing like in the previous corollary, that OR(a, e) is a code of T X for any
X ∈ 2N.

All we have to do is combine all those trees into a single one. Let TX be the X
computable tree coded by OR(a, e). We define the c.e. tree T to be the downward closure
of the following c.e. set of nodes:

{σ ⊕ τ ∶ ∣τ∣ = ∣σ∣ and τ is a node of T σ}

The tree T is clearly well-founded. Suppose otherwise, then there would be an infinite
path f in TX for some X. Also it is clear that for any X, there is an injective morphism
f from TX into T : Given σ ∈ TX , the function f(σ) returns σ ⊕X ↾∣σ∣. It implies that

∣T ∣o ≥ ∣TX ∣o for any X. We can then transform a code of T into a code of O.

3.4 The ∆1
1 sets

Definition 3.4.1. A set A of reals or of integers is ∆1
1 if it is both Π1

1 and Σ1
1. A set A

of reals or of integers is ∆1
1 if it is both Π1

1 and Σ1
1. A ∆1

1-index is given by a pair of
integers ⟨e1, e2⟩, such that e1 is a Σ1

1-index for A and e2 a Π1
1-index for A.

We now give a small example of where to find ∆1
1 set of integers, that can be considered

as a higher counterpart of Proposition 1.5.2 saying that if a Π0
1 set contains only one

element, then this element is computable:

Example 3.4.1:
If a Σ1

1 set A ⊆ 2N contains only one element X, then X is ∆1
1. Indeed, we can define

X with a Σ1
1 formula:

n ∈X iff ∃Y Y ∈ A ∧ n ∈ Y

72

3.4. THE ∆1
1 SETS

But we can also define X with a Π1
1 formula:

n ∈X iff ∀Y Y ∉ A ∨ n ∈ Y

Proposition 3.4.1:
For any computable α and any m, the set ∅(α) and the set {X ∶ m ∈ X(α)} are ∆1

1.
Furthermore their ∆1

1-index can be obtained uniformly in a code of O=α.

Proof: Let us prove that for any computable ordinal α and any m, the sets T <α, T ≤α,
{X ∶ m ∈ T X

<α} and {X ∶ m ∈ T X
≤α} are ∆1

1 and that their ∆1
1-indices can be obtained

uniformly in a code of O=α.

Consider any e ∈ O=α. The predicate n ∈ T <α can be described by the Σ1
1 formula:

“There exists an injective morphism between the tree coded by n and a strict subtree of
the tree coded by e.”

The predicate n ∈ T ≤α can be described by the Σ1
1 formula: “There exists an injective

morphism between the tree coded by n and the tree coded by e.”

The predicate n ∈ T <α can also be described by the Π1
1 formula: “There exists no

infinite path in the tree coded by n and no injective morphism from the tree coded by e
into the one coded by n.”

The predicate n ∈ T ≤α can be described by the Π1
1 formula: “There exists no infinite

path in the tree coded by n and no injective morphism from the tree coded by succ(e)
into the one coded by n.”

Now given a code a ∈O=α, we can identify b and k such that ∣b∣o is 0 or limit, ∣k∣o ∈ ω,

and such that ∣a∣o = ∣b∣o + 2∣k∣o or ∣a∣o = ∣b∣o + 2∣k∣o + 1. In the first case ∅(α) = T <ω(∣b∣o+∣k∣o)

and in the second case ∅(α) = N − T ≤ω(∣b∣o+∣k∣o). In any case we can easily compute a code

of O=ω(∣b∣o+∣k∣o) from a and then compute the appropriate index for ∅(α).

The proof for sets of reals is similar.

We now prove the famous equivalence between ∆1
1 and hyperarithmetic. Due to Kleene,

it is an effective version of the equivalence between ∆1
1 and Borel, proved earlier by

Suslin [91].

Theorem 3.4.1 (Kleene):
A set of reals or of integers is ∆1

1 iff it is Σ0
α for some computable ordinal α. Further-

more, uniformly in a ∆1
1-index for it, one can obtain a Σ0

α-index for the same set, and
uniformly in a Σ0

α-index for it, and in a code of O=α, one can obtain a ∆1
1-index for

the same set.

73

3.4. THE ∆1
1 SETS

Proof: Suppose first that a set of integers A is Σ0
α for some computable ordinal α. Then

by Theorem 1.6.1 the set A is many-one reducible to ∅(α) uniformly in an index for A and
in a code of O=α. We can conclude using the previous proposition.

For a Σ0
α set of reals A, by Theorem 1.7.1 we can find uniformly in a Σ0

α-index for A
and in a code of O=α, an index e such that A = {X ∶ e ∈ X(α)}. Again, we can use the
previous proposition to conclude that such a set is ∆1

1.

Suppose now that we have a ∆1
1 set of integers A. In particular it is Π1

1 and by
Proposition 3.3.1, uniformly in a ∆1

1-index for A, one can find a total computable function
f such that n ∈ A iff f(n) ∈ T . Also, as A is Σ1

1, the range of f is a Σ1
1 subset of T , but

the Spector Σ1
1-boundedness principle, we can uniformly find a code of O=α for some α

such that the set of ordinals coded by elements of this set is bounded by α. Therefore we
have n ∈ A iff f(n) ∈ T <α, which makes A a Σ0

α+1 set uniformly in a ∆1
1-index for A.

Finally, suppose that we have a ∆1
1 set of reals A. In particular, it is Π1

1 and by
Proposition 3.3.1 we can find uniformly in a ∆1

1-index for A, an integer e such that X ∈ A

iff e ∈ T X . Also as A is Σ1
1, by the Σ1

1-boundedness principle for sets of reals, we can
find uniformly in an index for A and in e, a code a ∈ O such that X ∈ A iff e ∈ T X

<α

where α = ∣a∣o, which makes A a Σ0
α+1 set, whose index can be obtained uniformly in its

∆1
1-index.

The previous theorem is easily seen to relativize, and we then have:

Corollary 3.4.1:
For any X ∈ 2N, a set of reals is ∆1

1(X) iff it is Σ0
α(X) for some α < ωX1 . In particular,

a set of reals is ∆1
1 iff it is Σ0

α for some α < ω1.

Finally, we can define a hyperarithmetic analogue of the notion of Turing reduction:

Definition 3.4.2. For two sequences X,Y ∈ 2N we say that Y is hyperarithmetically
reducible to X, and we write X ≥h Y if Y is ∆1

1(X).

We emphasize that from a topological point of view, hyperarithmetic reductions behave
much differently than Turing reductions. In particular, we no longer have anymore the
finite use property, and hyperarithmetic reductions are not continuous on their domain of
definition. We will study in Section 4.1 a version of hyperarithmetic reduction for which
we force continuity. For now we give the complexity of the hyperarithmetical reduction:

Proposition 3.4.2:
The set {X ⊕ Y ∶ X ≥h Y } is a Π1

1 set.

Proof: Using a relativized version of Theorem 3.3.1 we have for any X that the set T X

is Π1
1(X)-complete uniformly in X. Also using a relativized version of Porism 1.6.1 and

74

3.5. FURTHER STUDY OF KLEENE’S O

Theorem 1.6.1 we have for any α < ωX1 , that T X
<α and OX

<α are Σ0
α+1(X)-complete sets

uniformly in X.

For any X, and any Y , we then have that Y is ∆1
1(X) iff there exists α < ωX1 such

that Y is many-one reducible to T X
<α. Therefore the set {X ⊕ Y ∶ X ≥h Y } is equal to:

{X ⊕ Y ∶ ∃a ∈OX T X
<∣a∣ ≥m Y }

which is then clearly a Π1
1 set.

We now prove a theorem from Sacks, which is an analogue to Corollary 2.1.3 (also
from Sacks) with respect to hyperarithmetical reducibility.

Theorem 3.4.2 (Sacks):
If X is not ∆1

1, then λ({Y ∶ Y ≥h X}) = 0.

Proof: Suppose λ({Y ∶ Y ≥h X}) > 0. We shall see later with Theorem 4.2.3 that
for a Π1

1-random sequence Y , we have Y ≥h X iff there exists a computable α such that

Y ⊕ ∅(α) ≥T X. Also as the set of Π1
1-randoms has measure 1, and by countable measure

subadditivity, we have for some computable α that the measure of the set {Y ∶ Y ⊕∅(α) ≥T

X} is positive. But then relativizing Corollary 2.1.3 we have that X is already Turing

computable in ∅(α) and then that it is ∆1
1.

3.5 Further study of Kleene’s O
In this section we shall say a little bit more about Π1

1-complete sets. We pick Kleene’s O
for this study, which is in the literature the Π1

1 complete set of reference. Note however
that we everything we say here about Kleene’s O is valid for any other Π1

1-complete set,
such as T or W .

Theorem 3.5.1 (Spector [87]):
For a sequence X we have X ≥h O iff ωX1 > ωck1 .

Proof: Let us suppose that ωX1 > ωck1 . We have that O = ⋃α<ωck1
O≤α and that O≤α is

Π0
α+1 uniformly in an code of O=α. A mere relativization of Porism 1.6.1 gives us also that

for any X, the set OX
≤α is Π0

α+1(X) uniformly in an code of O=α. Also, if there is a code
a ∈ OX such that ∣a∣Xo = ωck1 , it is then clear that O is a Σ0

ωck1
(X) set and then a ∆1

1(X)

set.

For the converse, we first prove that for any two sequences X,Y , if X ≥h Y then
ωX1 ≥ ωY1 . Suppose for contradiction that X ≥h Y but that ωX1 < ωY1 . Then given any code
a ∈OY with ∣a∣Yo = ωX1 , the set OX can be defined by the following Σ1

1(X ⊕ Y) formula:

75

3.5. FURTHER STUDY OF KLEENE’S O

“n ∈ OX iff there exists a function f which is an injective morphism from the order
X-coded by n into the order Y -coded by a”

Also as X ≥h Y the set OX would actually be Σ1
1(X), which is a contradiction with

the fact that OX is not Σ1
1(X) (the relativized version of the fact that O is not Σ1

1).

Also we easily prove ωO1 > ωck1 . Indeed, one can easily build a well-founded tree,
computably enumerable in O, which codes for the ordinal ωck1 : Simply take the union
of each well-founded tree coded by elements of O. It then follows that X ≥h O implies
ωX1 ≥ ωO1 > ωck1 .

We have a somehow puzzling corollary of the previous theorem:

Corollary 3.5.1:
For any ∆1

1 well-founded tree T , there exists a computable well-founded tree T ′ with
∣T ∣o = ∣T ′∣o.

Proof: As T does not hyperarithmetically compute O we then have ωT1 = ωck1 and then
there must exists a computable tree T ′ with ∣T ∣o = ∣T ′∣o.

So for ordinals, having the whole ∆1
1 definability power is useless to get anything else

that what could be defined with simply ∆0
1 formulas. We shall now prove two very useful

basis theorems for Σ1
1 sets. The second one will strengthen the first one:

Theorem 3.5.2:
A non-empty Σ1

1 set of reals contains a sequence X such that O ≥T X.

Proof: Recall the representation of a Σ1
1 set as the infinite paths of a computable tree of

the Baire space. We claim that the leftmost path of such a tree T is Turing computable
by Kleene’s O. With the help of O, a Π1

1-complete set, we simply search for the first node
σ1 of length 1 such that T ↿σ1 is an ill-founded tree. Then we search for the first node σ2

of length 2 and extending σ1 such that T ↿σ2 is an ill-founded tree. We continue and at
convergence we have found the leftmost path of T , which encodes an element of our Σ1

1

set.

We now give a theorem known as the Gandy basis theorem, which is a very useful
tool to find some example of sets preserving ωck1 .

Theorem 3.5.3 (The Gandy Basis theorem):
A non-empty Σ1

1 set of reals contains a sequence X such that O ≥T X and such that

ωX1 = ωck1 .

76

3.6. Π1
1 AS A HIGHER ANALOGUE OF C.E.

Proof: Given a non-empty Σ1
1 set A, we create the set A′ such that X ⊕Y is in A′ iff X

is in A and X does not hyperarithmetically computes Y . Using Proposition 3.4.2 the set
A′ is Σ1

1. We know that for every X ∈ A there are uncountably many sequences Y such
that X ⊕ Y is in A′, because for any X, only countable many sequences are ∆1

1(X).

Then we perform the computation of an element X ⊕ Y of A′ by O, as described in
the previous theorem. We clearly have that O Turing computes both X and Y . However
X cannot hyperarithmetically compute O, as otherwise it would also hyperarithmetically
compute Y .

Corollary 3.5.2:
The set {X ∶ ωX1 > ωck1 } is not Σ1

1, and actually contains no non-empty Σ1
1 subset.

However, the set {X ∶ ωX1 > ωck1 } is easily seen to be a Borel set. We shall prove its
exact Borel complexity in Section 6.7.

3.6 Π1
1 as a higher analogue of c.e.

3.6.1 Motivation

We should start this section by citing a section of Sack’s book ([78] V.3.3) that we could
not write in a better way:

“Post in a celebrated paper ([75]) liberated classical recursion theory from formal ar-
guments by presenting recursive enumerability as a natural mathematical notion safely
handled by informal mathematical procedures. He also stressed what may be called a dy-
namic view of recursion theory. For example, he proves the existence of a simple set S
by giving instructions in ordinary language for the enumeration of S and then verifying
that the instructions do in fact produce a simple set. A formal approach to S would refer
to formulas or equations from some formal system. A static approach would attempt to
define S by some explicit formula. The advantages of Post’s informal, dynamic method
are considerable. Without it arguments in classical recursion theory would be lengthy and
hard to devise. His method, and its advantages, lift to metarecursion theory.”

Metarecursion theory attacks the problem of transposing notions of classical recursion
theory, that takes place in the world of integers, into the world of computable ordinals,
where elements of the Cantor space are now replaced by functions from ωck1 to {0,1}
(sequences of “length” ωck1) and where a computational time is now a computable ordinal;
and we shall see that such a computational time provides a way to naturally deal with the
power of Π1

1 predicates.

We will not deal with Metarecursion theory in this thesis, as we still want to work
with sequences of the Cantor space, however we will do it with ordinal computational
time just like in Metarecursion theory. It might seem rather odd to mix things that at
first glance seem not meant to be mixed. By this we mean the mixing of computational
time bounded by ωck1 , and of sequences of ‘length’ ω rather than sequences of ‘length’ ωck1 ,
as it is done in Metarecursion theory. But this actually arises naturally in the study of

77

3.6. Π1
1 AS A HIGHER ANALOGUE OF C.E.

higher randomness (see Section 3.7), where we consider various kinds of ∆1
1 or Π1

1 nullsets
of the Cantor space.

We will now make precise a general method to deal with Π1
1, Σ1

1 or ∆1
1 sets, in a natural

way, safely handled by informal mathematical procedures, just like Post did for classical
recursion theory. This will help us to conduct several proofs, that would be otherwise very
difficult to deal with, in a more formal (but not more rigorous) way.

The construction of a c.e. set A is often done step by step, by describing As at com-
putational step s, where As possibly depends on the values of At for t < s, and by then
defining A = ⋃s<ωAs. A formal description of A can then be given by n ∈ A↔ ∃s n ∈ As.
As each set As is ∆0

1 uniformly in s, the description can then be formally written as a Σ0
1

predicate.

We argue that we can similarly build a Π1
1 set A by describing As for each ordinal

computational step s < ωck1 , where As possibly depends on the values of At for t < s, and
then by defining A = ⋃s<ωck1

As. But for A to be Π1
1, we need to use codes for ordinals

and not ordinals themselves. Also infinitely many codes corresponds to a given ordinal.
A solution which is commonly used to overcome this difficulty, is to use a unique set of
codes for ordinals:

Theorem 3.6.1 (Feferman and Spector [21]):
There is a Π1

1 set O1 ⊆ O of codes for ordinals, such that for every computable α
there is a unique e ∈ O1 such that ∣e∣o = α. Furthermore, if e = succ(n) ∈ O1 then
n ∈O1 and if e = supn(en) ∈O1 then each en ∈O1.

Using this, one can define, inductively over codes of O1, a ∆1
1 function F mapping

elements ofO1 to ∆1
1 sets. If for every a1, a2 ∈O1 with ∣a1∣o < ∣a2∣o we have F (a1) ⊆ F (a2),

the sequence A = lima∈O1 F (a) = As can be defined by the predicate n ∈ A↔ ∃a ∈O1 n ∈

As, which makes X a Π1
1 set.

However, we would like to stress that as the informal definition we can make of As do
not depend on specific code for s, then the formal one also should not depend on such a
code. Sometimes, codes can be used to encode information that is obviously not meant to
be encoded. We give here an example which is slightly beyond of the scope of this thesis,
but interesting:

For a given c.e. theory T containing PA, that we suppose consistent, we can define the
c.e. theory T ′ to be T together with the axiom CONS(T), saying that T is consistent.
This way we can define T0 = T for some theorey T and then Tn+1 = T ′n. We can then
continue such a definition through the computable ordinals, by defining Tα+1 = T

′
α and

Tα = ⋃β<α Tβ if α is limit. But of course, if one want to keep each Tα computably
enumerable, one should use codes for each ordinal α. But this introduces undesired
side effects. Indeed, Turing proved the following theorem (the original theorem is more
general) :

Digression

78

3.6. Π1
1 AS A HIGHER ANALOGUE OF C.E.

Theorem 3.6.2 (Turing completness theorem, [93]):
For T0 = PA and any true Π0

1 sentence Φ, there is a code a ∈ O=ω+1 such that Ta
proves Φ.

Actually the fact that Ta proves Φ for a ∈ O=ω+1 does not rely at all on the new
power that we gained from the knowledge of the inductive consistencies of previous
theories. It is simply done by a trick in the encoding of ω by a: Given Φ ≡ ∀n Ψ(n),
we define a to be the code supn an where an ∈ O=n if ∀m ≤ n Ψ(m) and an = succ(a)
otherwise (this definition uses the fixed point theorem).

Now because Φ is true, we have that a ∈ O=ω. But also PA can prove that if Φ is
false, then for n large enough we have an = succ(a), and therefore that Tan = Tsucc(a).
But then already Tan contains the statement CONS(Ta) which implies that Ta can
prove CONS(Ta), which by Gödel’s theorem implies that Ta is inconsistent. Therefore
also PA can prove that CONS(Ta) implies that Φ is true, but then as Tsucc(a) contains
the statement CONS(Ta), the theory Tsucc(a) can prove that Φ is true...

3.6.2 Enumerating Π1
1 sets

In this thesis, the inductive definition that will be made over computable ordinals, will
be independent from ordinal notations. We rely on the following theorem to make those
inductive definitions. We simply have to give an effective version of the basic set-theoretical
argument that definitions by induction over ordinals can be made.

The main theorem

In the next theorem, we make a slight abuse of notation by writing things like f ∶O<α → N.
The underlying representation for such a function f is made by a function g ∶ N→ N such
that on O<α, we have g = f , and on N −O<α, we have g = 0 (or any other value, the
goal is not to have two distinct representations for the same function). Also for a function
f ∶O<α → N and β < α we write f ↾β to denote the restriction of f to O<β.

Theorem 3.6.3:
Let F ⊆ N × NN × N be a Σ1

1 set such that for any computable α, any function f ∶

O<α → N, any a ∈O=α, there exists a unique n such that F (a, f, n), which is also the
same n for any a ∈O=α. Then there exists a unique Π1

1 function f ∶O → ω such that
for any a ∈ O we have f(a) = n iff F (a, f ↾∣a∣o , n). Furthermore for a1, a2 ∈ O=α we
have f(a1) = f(a2), and each restriction f ↾α is ∆1

1 uniformly in a code of O=α.

Proof: For any α and any a ∈O=α, let Ba be the following Σ1
1 set, uniformly in a:

{f ∶O≤α → N ∣ ∀b ∈O≤α F(b, f ↾∣b∣o , f(b))}

Let us first argue that this set is a Σ1
1 set, uniformly in a. We have that O≤α is Σ1

1

uniformly in a, and f ↾∣b∣o , the restriction of f to O<∣b∣o , is also Σ1
1 uniformly in b.

79

3.6. Π1
1 AS A HIGHER ANALOGUE OF C.E.

We should prove that for every a ∈O, the set Ba contains exactly one element, and for
a1, a2 ∈O=α, we have Ba1 = Ba2 . For each a ∈O=α, the set Ba is then denoted by Bα and
its element by fα.

For any a ∈ O=∅, the set Ba obviously contains only the unique function f∅, which
to a ∈ O=∅ associates the unique n such that F (a,∅, n), where ∅ is the unique empty
function. We easily see that by hypothesis, the function f∅ is independent from a ∈O=∅.

Suppose now that for any β < α and any a1, a2 ∈ O=β, the set Ba1 is equal to the set
Ba2 , now denoted by Bβ. Suppose also that for any β < α the set Bβ contains exactly one
element fβ. Let us prove that for any a ∈ O=α, the set Ba contains exactly one element,
independent from the code of O=α.

Consider any two ordinals β1 < β2 < α. By definition of Bβ1 and Bβ2 we clearly have
that f ↾β2 extends f ↾β1 . We can then define f<α to be ⋃β<α fβ. Finally we can define
fα to be f<α, to which we add the mapping of any a ∈ O=α to the unique value n such
that F (a, f<α, n). By definition of fα and Ba, we have that fα is an element of Ba for any
a ∈O=α. Also by induction hypothesis it is the only such element for any a, as otherwise
we would have n1 ≠ n2 such that F (a, f<α, n1) and F (a, f<α, n2), which contradicts the
hypothesis.

As a Σ1
1 singleton, each element of Ba is a ∆1

1 function, uniformly in a. Furthermore,
those functions extend each other, and we can then define f ∶ O → ω by f(a) = n to be
a ∈O ∧ ∀g ∈ Ba g(a) = n.

The previous theorem not only justifies definitions by induction over codes for com-
putable ordinals, but it also justifies that we don’t need to worry about which code we use
for a given ordinal, as long as our inductive definition appears to be coding independent,
which is normally the case if the inductive definition is written in a set theoretical fashion,
using ordinals rather than codes.

Then we will think of each ordinal to be a computational time, just like in classical
recursion theory. When ordinals are viewed as computation time, we will write s, t or r to
denote them. Inside our ‘higher algorithm’, where computational times are now ordinals,
it should be clear that any ∆1

1 operation is now allowed, as long as this operation is done
uniformly in the current computational stage. Also things like ‘at stage s, if Φe is a total
function then . . . ’ can be written safely.

Substages

In practice we will often use the previous theorem to define functions from O into 2ω

rather than ω. This can be done easily still using the previous theorem, by dividing each
stage s into ω substages, so that at each substage n we output the first n bits of our
sequence.

Quite often in classical computability theory we see things like ‘at stage s, at substage
n ≤ s’. We should quickly argue that dealing with ordinals, it is now natural to have at a
given computation step, infinitely many substages. Recall Proposition 1.3.1 of left division
for ordinal: For any ordinal s there are unique ordinal t and n < ω such that s = ω × t + n.
Also when we will write things like, for example, ‘At stage t, and substage n < ω...’, it is
an informal way to say ‘at stage s, find t, n such that s = ω × t + n...’. Finding such t, n
uniformly in s is certainly a ∆1

1 operation and then can be done safely.

80

3.6. Π1
1 AS A HIGHER ANALOGUE OF C.E.

The projectum function

Quite often, we will need to use what is called in admissibility theory, a projectum function,
in our case, an injection p ∶ ωck1 → ω. Also recall the construction of our Σ1

1 set F ⊆ N×NN×N
of Theorem 3.6.3. We should prove that there is an injection p, for which given any α, we
can use p(α) into the definition of F and keep it meanwhile Σ1

1 and coding independent.
The following definition propose a natural candidate for the projectum function:

Definition 3.6.1. The projectum function denoted by p ∶ ωck1 → ω is given by

p(α) = min{a ∶ a ∈O=α}

We easily verify that it defines an injection from ωck1 to ω, which is coding independent.
Also as O=α is ∆1

1 uniformly in any code of O=α, then also F remains Σ1
1.

An example

We give an example of the construction of a higher simple set, that is a co-infinite Π1
1 set

of integers which intersects every infinite Π1
1 set of integers.

Example 3.6.1:
Let {Pe}e∈ω be an enumeration of the Π1

1 sets of integers. We build a simple Π1
1 set A

by describing for each step s a ∆1
1 set As that should be considered as the enumeration

of the set A up to computational step s. During the enumeration, we keep track of a
Boolean value Re for each e, initialized to false, and that will be set to true at stage s
when an element of Pe is enumerated into A at stage s.

At stage 0, set A0 = ∅. At successor stage s+ 1, for each substage e, if Re is marked
as false at stage s and if some element n bigger than 2e is into Pe[s] then we put n into
A at stage s, that is, we define As+1 to be As ∪ {n}, and we mark Re as true at stage
s + 1. At limit stage s, we define As to be ⋃t<sAt. We then define A = ⋃s<ωck1

As. The
verification that A is a higher simple set is like in the lower case. ♢

In the previous example, everything happens as in the lower case, and the proof is
transfered without any particular problem. This is however not always the case, and there
is indeed something which differs greatly: the existence of limit computational steps. In
the previous example, this does not pose any problem, but we will see many examples in
which it does.

Getting a nice enumeration of Π1
1 sets

We argued that we can define a Π1
1 set by enumerating it along the computable ordinals.

We shall argue here that the converse is true, that is, if we are given a Π1
1 set, we can

consider that it is enumerated along computable ordinals. Also it is often convenient to
consider that at each successor stage at most one new element is enumerated, and nothing
new is enumerated at a limit stage.

We already have with Corollary 3.3.1 that a Π1
1 set A is equal to ⋃s<ωck1

As where each

As is ∆1
1 uniformly in a code of O=s. We can simply define a Σ1

1 predicate F ⊆ N×NN ×N
in the style of Theorem 3.6.3 which performs the following:

81

3.7. HIGHER RANDOMNESS

“At limit stage we enumerate nothing, and at stage ω × s + n for n > 0 we enumerate
the n-th element of As −As−1 if it exists.”

Note that F is supposed to define only total functions. In practice we can always
decide for a value corresponding to ‘nothing is enumerated’.

Vocabulary for Π1
1 approximations

We finish by introducing a bit of vocabulary that we will use in our different Π1
1 approxi-

mations

Definition 3.6.2. For s1, s2 some stages (computable ordinals), we say that a sequence
of objects {at}s1≤t<s2 is stable is for any stage t with s1 ≤ t < s2 we have at = as1.

Definition 3.6.3. For s1, s2 some stages (computable ordinals), we say that a sequence
of objects {at}s1≤t<s2 changes finitely often if for some n, there are at most n stages
s1 ≤ t1 < t2 < ⋅ ⋅ ⋅ < tn < s2 such that ati ≠ ati+1. Otherwise we say that {at}s1≤t<s2 changes
infinitely often.

3.7 Higher randomness

3.7.1 Overview of the different classes

We now would like to extend the usual randomness notions, but using now the descriptive
power that the restricted use of second order predicates (only Π1

1 and Σ1
1) gives us. Maybe

the simplest thing we can do is first to say that a sequence is random iff it is in no ∆1
1 set

of measure 0. The equivalence between hyperarithmetic sets and ∆1
1 sets makes it clear

that any ∆1
1 set is measurable, as it is a Borel set.

Definition 3.7.1 (Sacks). We say that Z ∈ 2ω is ∆1
1-random if it is in no ∆1

1 nullset.

Martin-Löf was actually the first to promote this notion (see [59]), suggesting that
it was the appropriate mathematical concept of randomness. Even if his first definition
undoubtedly became the most successful over the years, this other definition got a second
wind recently on the initiative of Hjorth and Nies who started to study the analogy between
the usual notions of randomness and theirs higher counterparts. In order to do so they
created in [30] a higher analogue of Martin-Löf randomness.

Definition 3.7.2. An open set U is a Π1
1-open set if there is a Π1

1 set of strings W such
that U = [W]≺. A closed set F is a Σ1

1-closed set if it is the complement of a Π1
1-open

set.

Definition 3.7.3 (Hjorth, Nies). A Π1
1-Martin-Löf test is given by an effectively null

intersection of open sets ⋂n Un (with λ(Un) ≤ 2−n), each Un being Π1
1 uniformly in n. A

sequence X is Π1
1-ML-random if it is in no Π1

1-Martin-Löf test.

82

3.7. HIGHER RANDOMNESS

Here also, as our tests are Π0
2 sets, there are all measurable and the previous definition

makes sense. It will be sometimes convenient to use a higher version of Solovay tests:

Definition 3.7.4. A Π1
1-Solovay test is given by a sequence {Un}n∈N of uniformly (in

n) Π1
1-open sets such that ∑n∈N λ(Un) is finite. A sequence X passes the Π1

1-Solovay test
if it belongs to only finitely many Un.

The proof that X is Π1
1-Martin-Löf random iff it passes all the Solovay tests works

as in the lower setting. An interesting possibility with Π1
1-Solovay test, that will be used

sometimes, is that we can index each open set with a computable ordinal instead of
indexing it with an integer. Formally, given a sequence of Π1

1-open sets {Us}s<ωck1
, we can

build the Π1
1-Solovay test Vn where each Vn starts with an empty enumeration, until n is

witnessed to be a code for the ordinal s, in which case Vn becomes equal to Us. It is clear
that the notion of being captured in unchanged between {Us}s<ωck1

and {Vn}n∈N.

We now discuss the relationship between Π1
1-Martin-Löf randomness and ∆1

1 random-
ness. Theorem 1.8.1 implies that the set of Π1

1-Martin-Löf randoms is included in the set
of ∆1

1 randoms. In other words, the notion of Π1
1-Martin-Löf randomness is stronger or

equal than the notion of ∆1
1 randomness.

Proposition 3.7.1:
If Z is Π1

1-Martin-Löf random, then Z is ∆1
1-random.

Proof: Suppose Z is in a ∆1
1 nullset A. This nullset is Σ0

α for some computable α. Now
using Theorem 1.8.1, we can find uniformly in n a Σ0

α-open set of measure less than 2−n,
and containing A. Also a Σ0

α-open set is clearly a Π1
1-open set and we can then build a

Π1
1-Martin-Löf test capturing Z.

We shall see now that Π1
1-Martin-Löf randomness is strictly stronger than ∆1

1-
randomness. This was proved by Chong, Nies and Yu in [7] using the notion of higher
Kolmogorov complexity that we will introduce in Section 3.7.2. The proof they gave
can be seen as a higher analogue of the separation between computable randomness and
Martin-Löf randomness. We give here a similar proof, without using higher Kolmogorov
complexity, but rather a mix between higher priority method and forcing with closed
sets of positive measure. A similar technique will be reused in this thesis, for both
Theorem 5.3.3 and Theorem 6.4.4.

Theorem 3.7.1:
There is a sequence X which is ∆1

1-random and not Π1
1-Martin-Löf random.

Proof: Let {As}s<ωck1
be an enumeration of the ∆1

1 sets of measure 1. To get this enu-

meration, recall that the ∆1
1 sets are the Σ0

α sets, and that the measure of a Σ0
α set is ∆1

1,
uniformly in α. Recall that p ∶ ωck1 → ω is the projectum function, let O1

≤s = {p(t) ∶ t ≤ s},
and for m ∈O1

≤s let O1
≤s ↾m= {n ∈O1

≤s ∶ n <m}.

83

3.7. HIGHER RANDOMNESS

The construction:

We can suppose without loss of generality that A0 = 2N. At stage 0 we define for each n
the set Fn0 to be 2N and the string σn0 to be the string consisting of 2n 0’s.

Suppose that at every stage t < s we have defined for each n ∈ N a ∆1
1 closed set Fnt

and a string σnt such that σnt ≺ σ
n+1
t and with ∣σnt ∣ = 2n. Suppose also that for each m we

have λ(⋂n≤mF
n
t ∩ [σmt]) > 0 and that if m ∈O1

≤t we have Fmt ⊆ Ap−1(m).

Suppose first that s is successor and let us define Fns and σns for each n ∈ N. For each
n < p(s) we define σns = σ

n
s−1 and Fns = Fns−1.

For each m ∈ N in increasing order, and starting with m = p(s), if m ∈ O1
≤s with

t = p−1(m), let us compute an increasing union of ∆1
1 closed sets ⋃nFn ⊆ At with λ(At −

⋃nFn) = 0. Let Fms be the first closed set of the union ⋃nFn such that λ(⋂n<mF
n
s ∩F

m
s ∩

[σm−1
s]) > 0. If m ∉O1

≤s, let Fms = 2N.

Then we let σms be the first string of length 2m which extends σm−1
s , such that

λ(⋂n≤mF
n
s ∩ [σms]) > 0.

Finally, for a stage s limit we define for each n the string σns to be the limit of the
sequence {σns }t<s and the closed set Fns to be the limit of the sequence {Fns }t<s. We shall
argue that later that such a limit always exists.

The verification:

For every m there is a stage s such that {O1
≤t ↾m}s≤t<ωck1

is stable. Furthermore, for each

m, the sequence {O1
≤t ↾m}t<ωck1

can change at most m times, because at most m values
can be enumerated in O ↾m. It follows that at every limit stage s and for every m, the
sequences {σms }t<s and {Fms }t<s also can change at most m times, and then converges.

Also by design for every s ≤ ωck1 , the unique limit point Xs of {[σns]}n∈O1≤s
belongs to

⋂t≤sAt. In particular the limit X of the sequence {Xs}s<ωck1
belongs to ⋂t≤ωck1

At and is

then ∆1
1-random.

We should now prove that it is not Π1
1-Martin-Löf random. We argued already that

{σmt }t<ωck1
can change at most m times. Then we can put each string σms of length 2m, into

the m-th component of a Π1
1-Martin-Löf test which has measure smaller than m × 2−2m ≤

2−m.

The higher analogue of weak-2-randomness has also been studied by Chong and Yu
in [8]. We call this notion weak-Π1

1-randomness, because as we will prove it in Section 6.1,
this notion can be seen as a weak form of Π1

1-randomness; it is however not obvious from
the definition that we now give:

Definition 3.7.5. We say that Z is weakly-Π1
1-random if it belongs to no uniform in-

tersection of Π1
1-open sets ⋂n Un, with λ(⋂n Un) = 0.

It is clear that the notion of weak-Π1
1-randomness is stronger than the notion of Π1

1-
Martin-Löf randomness. We shall see later that it is a strictly stronger notion.

84

3.7. HIGHER RANDOMNESS

So far, the full descriptive power of Π1
1 or Σ1

1 predicates has not been used, because all
our tests are still only Π0

2 sets. Also Sacks gave earlier an even stronger definition, where
tests are now Π1

1 nullsets. This definition is made possible by a theorem of Lusin saying
that even though Π1

1 sets are not necessarily Borel, they remain all Lebesgue-measurable,
that is, measurable for a complete measure. Recall that from Corollary 3.3.1, any Π1

1 set
A is a uniform union of Borel sets Aα, over α < ω1, with each Aα = {X ∶ e ∈ T X

<α} for
some e.

Theorem 3.7.2 (Lusin):
There is an ordinal γ and a Borel set B of measure 0 such that for any Π1

1 set A =

⋃α<ω1
Aα, the set A −Aγ is contained in B. In particular any Π1

1 set is measurable.

Proof: Fix some integer e. For any α, consider the set of sequences X for which e is an
X-code of a well-founded X-c.e. tree coding for α. Formally Be,α = {X ∶ e ∈ T X

∣=α∣}. For

each rational q > 0 we can only have finitely many β such that λ(Be,β) > q, otherwise, as
Be,α1∩Be,α2 = ∅ for α1 ≠ α2, we would have λ(2N) > 1, by countable additivity of measures.
Therefore, there is a smallest countable ordinal γe such that α ≥ γe → λ(Be,α) = 0.

Let γ = supe γe and B = ⋃eBe,γ . By the definition of γ and countable additivity of
measures, we have that λ(B) = 0. Consider now any Π1

1 predicate A = ⋃α<ω1
Aα. It is

clear that A −Aγ ⊆ B, because if X ∈ A −Aγ , it means that e ∈ T X
=β for some e and some

β ≥ γ; but then also, some other X-code can enumerate a well-founded tree coding for γ.
Therefore A ∖Aγ ⊆ B.

Sacks proved later that the ordinal γ of the previous theorem can actually be equal to
ωck1 , making the set {X ∶ ωX1 > ωck1 } a Π1

1 set of measure 0:

Theorem 3.7.3 (Sacks):
The set {X ∶ ωX1 > ωck1 } has measure 0. This set is in fact a Borel set B of measure 0
such that for any Π1

1 set A = ⋃α<ω1
Aα, we have that A −Aωck1

is contained in B.

We do not yet give a proof of λ({X ∶ ωX1 > ωck1 }) = 0, as we will later prove something
slightly stronger later, in Theorem 6.1.1. Also we argued already that the set of sequences
which do not preserve ωck1 is not a Σ1

1 set. It is however not hard to prove that it is Σ1
1(O)

and then Borel. The exact Borel complexity of this set will be studied in Section 6.7. For
now we simply prove an interesting corollary of this theorem, proved independently by
Tanaka [92] and Sacks [77].

Corollary 3.7.1:
The ∆1

1 sequences are a basis for the Π1
1 sets of positive measure.

85

3.7. HIGHER RANDOMNESS

Proof: If a Π1
1 set A = ⋃α<ω1

Aα is of positive measure. From the previous theorem and
by countable additivity of the Lebesgue measure, already for some computable ordinal α
we should have that the set ⋃β<αAβ is of positive measure. Also this set is a ∆1

1 set of
positive measure, and contains then a ∆1

1 closed set of positive measure. Also the leftmost
path of such a closed set is a ∆1

1 sequence.

We now give the definition of randomness corresponding to Π1
1 nullsets.

Definition 3.7.6 (Sacks). We say that Z ∈ 2N is Π1
1-random if it is in no Π1

1 nullset.

This last notion is very interesting for many reasons. One of them is that no X such
that ωX1 > ωck1 is Π1

1-random, and we shall see now that this is the best we can do, as
any randomness notion weaker than Π1

1-randomness contains elements that make ωck1 a
computable ordinal. This is achieved through the following beautiful theorem of Chong,
Nies and Yu (see [7]):

Theorem 3.7.4 (Chong, Yu, Nies):
A sequence Z is Π1

1-random iff it is ∆1
1-random and ωZ1 = ωck1 .

Proof: Suppose that Z is ∆1
1-random. If ωZ1 > ωck1 then by Theorem 3.7.3, Z is not

Π1
1-random.

Suppose now that Z is not Π1
1-random and then captured by a Π1

1 set A = ⋃α<ω1
Aα

of measure 0. If there is a computable α such that Z ∈ Aα then Z is not ∆1
1-random as

Aα is a ∆1
1 set of measure 0. Otherwise Z ∈ A −⋃α<ωck1

Aα and then ωZ1 > ωck1 .

Another important property of Π1
1-randomness is certainly the existence of a universal

Π1
1 nullset, in the sense that it contains all the others. Kechris was the first to prove

this, in [33], and he actually proved a more general result, implying for example also the
existence of a largest Π1

1 thin set (a largest Π1
1 set which contains no perfect subset). Later,

Hjorth and Nies gave in [30] an explicit construction of this Π1
1 nullset.

Theorem 3.7.5 (Kechris, Hjorth, Nies):
There is a largest Π1

1 nullset.

Proof: Let {Pe}e∈ω = ⋃α<ω1
Pe,α be an enumeration of the Π1

1 sets. Recall from above
that each set Pe−⋃α<ωck1

Pe,α is always null and contained in the nullset {X ∣ ωX1 > ωck1 }. Let
us argue that uniformly in e, one can transform the set ⋃α<ωck1

Pe,α into a set ⋃α<ωck1
Qe,α

(where each Qe,α is ∆1
1 uniformly in e and a code of O=α) such that λ(⋃α<ωck1

Qe,α) = 0,

and such that if λ(⋃α<ωck1
Pe,α) = 0 then ⋃α<ωck1

Qe,α = ⋃α<ωck1
Pe,α.

To do so we simply set Qe,α = Pe,α if λ(Pe,α) = 0 (recall that the measure of a ∆1
1 set

is uniformly ∆1
1) and Qe,α = ∅ otherwise. Then we define Q to be ⋃e⋃α<ωck1

Qe,α together

with the set {X ∣ ωX1 > ωck1 }. The set Q is clearly Π1
1, and by construction it is a nullset

containing every Π1
1 nullset.

86

3.7. HIGHER RANDOMNESS

Chong and Yu proved in [8] that weak-Π1
1-randomness is strictly stronger than Π1

1-
Martin-Löf-randomness. We will prove later that Π1

1-randomness is strictly stronger than
weak-Π1

1-randomness.

One could also define the randomness notion obtained by considering Σ1
1 nullsets, but

this turns out to be equivalent to ∆1
1-randomness.

Theorem 3.7.6 (Sacks):
A ∆1

1-random sequence is in no Σ1
1 nullset. Therefore Σ1

1-randomness coincides with
∆1

1-randomness.

Proof: Let A = ⋂α<ω1
Aα be a Σ1

1 nullset. Note that we can suppose that the intersection
is decreasing. By Theorem 3.7.3 we have that ⋂α<ωck1

Aα is already of measure 0. Then

we can define the Π1
1 function f ∶ ω → ωck1 which associates to n the smallest ordinal such

that λ(Aα) ≤ 2−n. As f is total, it is actually a ∆1
1 function, and then its range is a ∆1

1

set of computable ordinals, which is then bounded by some computable ordinal β, by the
Σ1

1-boundedness principle. Therefore we have λ(⋂α<βAα) = 0 and then A is contained in
a ∆1

1 set of measure 0.

3.7.2 Higher Kolmogorov complexity

In this section, we introduce a higher version of the notion of Kolmogorov complexity,
which is a fundamental notion of classical randomness. For a very complete survey on
the subject of lower Kolmorogov complexity, the reader can refer to Li and Vitany’s book
(see [54]), which also provides some interesting historical overview of the different notions
of algorithmic complexity.

Background on Kolmogorov complexity

Informally, the Kolmogorov complexity of a finite object, in our case strings, is a measure
of the computability resources needed to specify that object. It is named after Andrey
Kolmogorov, who first published on the subject in [40], following earlier work of Solomonoff
(see [84]).

Definition 3.7.7. A machine is a partial computable function M ∶ 2<N → 2<N. The
Kolmorogov complexity of a string σ with respect to the machine M , denoted by CM(σ),
is the length of the smallest string τ such that M(τ) = σ if such a string τ exists, and by
convention ∞ otherwise.

As credited in [54], it is Solomonoff who first defined, in [85], the notion of ‘Kolmogorov
complexity’ as we know it today, and he proved in particular the universal machine theo-
rem, which was soon after, also proved independently by Kolmorogov in [41].

Theorem 3.7.7 (Universal machine theorem):
There exists a universal Machine U , that is, for any machine M there exists a constant
cM such that CU(σ) ≤ CM(σ) + cM for every string σ.

87

3.7. HIGHER RANDOMNESS

It then makes sense to speak of the Kolmogorov complexity of a string, independently
of a specific machine, as we can then consider the Kolmorogov complexity with respect to
a universal machine U . Already in [41], Kolmogorov saw the connection between this new
notion of algorithmic complexity and algorithmic randomness. Also he emphasized that
the complexity of a string could be used as the measure of its ‘degree of randomness’. This
gave rise to the vast field of algorithmic information theory, amusingly described by Chaitin
to be “the result of putting Shannon’s information theory and Turing’s computability
theory into a cocktail shaker and shaking vigorously.”

However, a satisfactory notion of randomness for infinite objects using the notion of
Kolmogorov complexity was still missing. And it could only be done after was designed
the notion of prefix-free Kolmorogov complexity, which is said in [54] to have appeared
independently and almost simultaneously in the work of Levin ([51]), Gács ([24]) and
Chaitin ([5]).

Definition 3.7.8. A set of strings W is said to be prefix-free if any two strings σ1, σ2 in
W are incomparable, that is, σ1 ⊥ σ2.

Definition 3.7.9. A prefix-free machine is a partial computable function M ∶ 2<N →
2<N whose domain of definition is a prefix-free set of strings. The Kolmorogov complexity
of a string σ with respect to the machine M , denoted by KM(σ), is the length of the
smallest string τ such that M(τ) = σ, and is by convention ∞ is no such string exists.

Just like for usual Kolmogorov complexity, there exists a universal prefix-free machine,
and it then makes sense to speak of the prefix-free Kolmogorov complexity of a string.

Theorem 3.7.8 (Universal prefix-free machine theorem):
There exists a universal prefix-free machine U , that is, for any prefix-free machine M
there exists a constant cM such that KU(σ) ≤KM(σ) + cM for every string σ.

This new notion could then be used to define randomness for infinite objects, here
binary sequences X, by saying that X is random if it has maximal prefix-free Kolmorogov
complexity on each of its prefixes. So a sequence X is random if no prefix of X can be
compressed, up to a constant. We could roughly say that the only way for a program to
output a prefix σ of X is by explicitly writing σ. We then have the following theorem
for which slightly different versions, using different notions of complexity, have been first
proved simultaneously an independently by Levin in [50] and Schnorr in [79] (credited
in [54]):

Theorem 3.7.9:
The following are equivalent for a sequence Z:

1. The sequence Z is Martin-Löf random.

2. There exists a constant c such that for every n, the prefix-free Kolmorogov
complexity of Z ↾n is bigger than n − c.

88

3.7. HIGHER RANDOMNESS

We emphasize that a similar definition of randomness using plain (non prefix-free)
Kolmogorov complexity does not work, as there is no sequence X such that all of its
prefixes are incompressible, with respect to plain Kolmogorov complexity. Informally, the
length of a prefix can be used to encode some information to compress prefixes.

Also the requirement of prefix-freeness is justifiable: Given a universal prefix-free ma-
chine U , one can consider that each string on which U is defined is a program, that is
then executed on U . In this context, Chaitin calls those strings self-delimiting programs.
Also this point of view matches what happens in the real world of computer programming:
Any binary file executed by a computer comes with a ‘end-of-file’ tag, indicating where
the file ends. Also seen as a binary string σ, no string τ ≻ σ corresponds to a valid file, as
there can be nothing after an ‘end-of-file’ tag.

Higher Kolmogorov complexity

While defining the notion of Π1
1-Martin-Löf randomness in [30], Hjorth and Nies also

defined the notion of Π1
1-Kolmorogov complexity, in order to study higher analogies of

theorems occurring in classical randomness. Here we don’t make the distinction anymore
between prefix-free Kolmogorov complexity and plain Kolmogorov complexity, as only the
prefix-free version will be used. Also we simply call it Kolmorogov complexity.

Definition 3.7.10. A Π1
1-machine M is a Π1

1 partial function M ∶ 2<N → 2<N. A Π1
1-

prefix-free machine M is a Π1
1 partial function M ∶ 2<N → 2<N whose domain of defini-

tion is a prefix-free set of strings. We denote by hKM(σ) the Π1
1-Kolmorogov complexity

of a string σ with respect to the Π1
1-machine M , defined to be the length of the smallest

string τ such that M(τ) = σ, if such a string exists, and by convention, ∞ otherwise.

We now prove a universal Π1
1-prefix-free machine theorem:

Theorem 3.7.10 (Universal Π1
1-p.-f. machine theorem, Hjorth and Nies):

There is a universal Π1
1-prefix-free machine U , that is, for each Π1

1-prefix-free machine
M , there exists a constant cM such that hKU(σ) ≤ hKM(σ) + cm for any string σ.

Proof: We first have to make sure that we can enumerate the Π1
1-prefix-free machines:

we have a total computable function such that for any e, the integer f(e) is always an
index for a Π1

1-prefix-free machine, and if e is already an index for a Π1
1-prefix-free machine,

then f(e) is an index for the same machine.

Recall that we can suppose without loss of generality that a Π1
1-machine Me enumerates

new pairs at successor stages only, and at most one pair per stage. Given the machine
Me, suppose that (σ, τ) is enumerated in Me at successor stage s. If Mf(e),s−1 contains
(σ′, τ ′) such that σ′ is compatible with σ, then we enumerate nothing in Mf(e) at stage s.
Otherwise we enumerate (σ, τ) in Mf(e) at stage s. At limit stage s, we define Mf(e),s to
be the union of {Mf(e),t}t<s.

Then we simply define U to be the machine which enumerates (0eˆ1ˆσ, τ) for each e,
σ and τ such that (σ, τ) is enumerated in Mf(e).

For each machine M of index f(e), the constant cM is given by e + 1.

89

3.7. HIGHER RANDOMNESS

Definition 3.7.11. For a string σ, we define hK(σ) to be hKU(σ) for a universal Π1
1-

prefix-free machine U , fixed in advance.

We now give a general technique, used to build prefix-free machines. For this purpose
we need the following definitions.

Definition 3.7.12. Given a set A ⊆ N × 2<N, the weight of A, denoted by wg(A), refers
to the quantity ∑(l,σ)∈A 2−l if this quantity is finite, and refers to ∞ otherwise. A set

A ⊆ N × 2<N such that wg(A) ≤ 1 is called a bounded request set.

In classical randomness, given a computably enumerable bounded request set A, we
can effectively build a prefix-free machine M such that as long as (l, σ) ∈ A, then also
M(τ) = σ for some string τ of length l. We include here an extract of the Downey and
Hirschfeldt’s book [17] about the credits for the next theorem:

“This result is usually known as the Kraft-Chaitin Theorem, as it appears in
Chaitin [5], but it appeared earlier in Levin’s dissertation [49], as stated in Levin [51],
where it is proved using Shannon-Fano codes (giving slightly weaker constants). There
is also a version of it in Schnorr [79], Lemma 1, p. 380. In Chaitin [5], where the
first proof explicitly done for prefix-free complexity seems to appear, the key idea of that
proof is attributed to Nick Pippinger. Thus perhaps we should refer to the theorem by the
rather unwieldy name of Kraft-Levin-Schnorr-Pippinger-Chaitin Theorem. Instead, we
will refer to it as the KC Theorem. Since it is an effectivization of Kraft’s inequality, one
should feel free if one wishes to regard the initials as coming from Kraft’s inequality
(Computable version).”

A higher version of the KC theorem has then been proved by Hjorth and Nies in [30]:

Theorem 3.7.11 (Higher KC Theorem, Nies and Hjorth):
For any Π1

1-bounded request set A, there is a Π1
1-prefix-free machine M such that for

any string σ, if (l, σ) ∈ A, then for a string τ of length l we have M(τ) = σ.

Proof: The prefix-free machine M can be found uniformly in A. However, handling the
case where A is a finite set such that wg(A) = 1 makes the proof slightly more complicated.
To keep things as simple as possible, we assume wg(A) < 1 (see below how this hypothesis
is used). Except for the sake of uniformity (which again can be achieved with a bit more
work), such an assumption is harmless, because if wg(A) = 1, by the Σ1

1-boundedness
principle, there exists a computable stage s at which wg(As) = 1 already, and we can then
directly define a Π1

1-prefix-free machine M that matches the conditions of the theorem
with respect to the ∆1

1 bounded request set As.

At each stage s, for each length l ≥ 1 we define some strings σls either of length l or
equal to ε, and a sequence rs ∈ 2N. The strings σls that will be different from the empty
word, will correspond to the strings available for a mapping at stage s + 1. The role of rs
is double. First, the real number represented by rs in a binary form, will be equal to the
weight of As, which is also the measure of the set of strings that is mapped to something
in Ms. Then, if the (n − 1)-th bit of rs is 0 (starting at position 0), it will also mean that

90

3.7. HIGHER RANDOMNESS

the string σns is different from ε and available for a future mapping. We need to ensure at
each stage s that:

1. The set of strings currently mapped in Ms, together with each σls different from the
empty word, forms a prefix free set of strings.

2. rs is a binary representation of the weight of As, which is also the measure of the
set of strings mapped to something in Ms.

3. If rs(n−1) = 0, the string σns is a string of length n. Otherwise it is the empty word.

At stage 0, we define σl0 = 0l−1ˆ1 and r0 to be only 0’s. We have that (1), (2) and (3)
are verified at stage 0.

At successor stage s suppose (l, τ) enters As. If rs−1(l−1) = 0 we put (σls−1, τ) into Ms,
we set σls to the empty word and rs(l−1) to 1. For i ≠ l and i ≥ 1 we set rs(i−1) = rs−1(i−1)
and σis = σ

i
s−1. We can easily verify by induction that (1), (2) and (3) are true at stage s.

Otherwise, if rs−1(l−1) = 1, let n be the largest integer bigger than 0 and smaller than
l such that rs−1(n − 1) = 0. We should argue that such an integer always exists. Suppose
otherwise, then either rs−1 = 1000 . . . , l = 1 and wg(As−1)+2−l = 1, which is not possible by
our special assumption, or wg(As−1)+2−l > 1, which is not possible because A is a bounded
request set. Thus such an integer n exists. We then set σns to be the empty string and
rs(n − 1) = 1. Then for every n < i ≤ l, we set σis to σns−1ˆ0i−n−1ˆ1 and rs(i − 1) = 0. Then
we map σns−1ˆ0l−n−1ˆ0 to τ in Ms. For 1 ≤ i < n and i > l we set rs(i− 1) = rs−1(i− 1) and
σis = σ

i
s−1. We can easily verify by induction that (1), (2) and (3) are true at stage s.

At limit stage s we set rs to the pointwise limit of {rt}t<s. Then we set each σns to
the convergence value of the sequence {σns }t<s. We shall argue that those convergence
values always exist. When for some n and some stage s we have rs ↾n≠ rs+1 ↾n, then rs+1 ↾n
is bigger than rs ↾n in the lexicographic order, but as there are at most 2n−1 strings of
length n − 1, the sequence {rs ↾n}s<ωck1

can change at most 2n−1 time. Then for any s, a

convergence value for {rt}t<s always exists.

Also when for some n and some s we have σns+1 ≠ σ
n
s , then also rs+1 ↾n≠ rs ↾n. But by

the previous paragraph, we then also have that {σns }s<ωck1
can change at most 2n times.

We can easily verify by induction that (1), (2) and (3) are true at stage s.

Because (1) is true at every stage s, we then have that M is a Π1
1-prefix-free machine,

also by construction we clearly have that if (l, σ) ∈ A, then M(τ) = σ for a string τ of
length l.

3.7.3 Higher discrete semi-measures

The Π1
1-prefix-free machines will be used to characterize Π1

1-Martin-Löf randomness. We
shall consider here another notion that can also be used to characterize Π1

1-Martin-Löf
randomness:

Definition 3.7.13. A left-Π1
1 function M ∶ N→ R is a Π1

1 subset of N×Q, where M(σ)
is defined to be sup{q ∣ (σ, q) ∈ M} (with sup{∅} = 0). The weight of M , denoted by
wg(M), is defined by ∑n∈NM(n) if it is finite, and ∞ otherwise.

91

3.7. HIGHER RANDOMNESS

Definition 3.7.14. A Π1
1-discrete semi-measure M is a left-Π1

1 function M ∶ 2<N → R,
such that wg(M) ≤ 1. A Π1

1-discrete semi-measure U is universal if for any other Π1
1-

discrete semi-measure M , there is a constant cM such that U(σ) ≥ M(σ) × cM for any
σ.

Proposition 3.7.2:
For any Π1

1-discrete semi-measure M , there is a constant cM such that M(σ) ≤

2−hK(σ) × cM for any string σ.

Proof: We build a Π1
1-bounded request set A from our semi-measure M . At successor

stage s, for every string σ such that Ms(σ) ≠ 0, we simply put into A the pair (m,σ) for
m = ⌈− log(Ms(σ))⌉+1 (as long as (m,σ) is not already in As). At limit stage s, we define
as usual As to be ⋃t<sAt.

For a given σ suppose that M(σ) = r for r a real number and let n be the smallest
integer such that 2−n ≤ r. By construction the weight corresponding to σ in A is of at
most of ∑m≥n 2−m−1 = 2−n ≤ r. Also because ∑σM(σ) ≤ 1 we have that A is a bounded
request set for which we can build a prefix-free machine N . Also for each string σ with
M(σ) = r and 2−n the greatest power of 2 such that 2−n ≤ r, we have that (n + 1, σ) is
enumerated in A and then that M(σ) ≤ 2−n+1 ≤ 2−n−1 × 4 = 2−hKN (σ) × 4 ≤ 2−hK(σ) × cM for
cM a constant depending on M .

Corollary 3.7.2:
There is a universal Π1

1-discrete semi-measure.

Proof: We easily verify that M(σ) = 2−hK(σ) is a Π1
1-discrete semi-measure, thus is

universal by Proposition 3.7.2.

For a given Π1
1 prefix-free machine M , we can consider the probability that M outputs

a given string σ. One can imagine the following process : We flip a fair coin to get a bit,
either 0 or 1, and we repeat the process endlessly. So we get bigger and bigger strings
σ1 ≺ σ2 ≺ σ3 ≺ In the meantime we test each of our strings σi available so far, as an
input for our machine M . If at some point M(σi) halts for one i (and it can be at most
one i), then we stop the process.

It is clear that following the previous protocol, the probability that we output a given
string τ is given by ∑{2−∣σ∣ ∶ M(σ) = τ}. Note that this all make sense, thanks to the
prefix-free requirement we have for our machine.

Definition 3.7.15. For a Π1
1 prefix-free machine M , we denote by PM(σ) the probability

that M outputs σ, that is, ∑{2−∣τ ∣ ∶ M(τ) = σ}. Note that PM is a Π1
1-discrete semi-

measure.

92

3.7. HIGHER RANDOMNESS

Theorem 3.7.12 (Coding theorem):
For any Π1

1-prefix-free machine M , we have a constant cM such that PM(σ) ≤ 2−hK(σ)×

cM for any σ.

Proof: This follows directly from Proposition 3.7.2.

3.7.4 Higher continuous semi-measures

Finally we consider one last notion, that will also be used to characterize Π1
1-Martin-Löf

randomness.

Definition 3.7.16. A Π1
1-continuous semi-measure µ is a left-Π1

1 function µ ∶ 2<N → R,
such that µ(σˆ0) + µ(σˆ1) ≤ µ(σ) and such that µ(ε) ≤ 1.

Proposition 3.7.3:
Uniformly in any Π1

1-discrete semi-measure M , we can define a Π1
1-continuous semi-

measure µ such that on any σ we have µ(σ) ≥M(σ).

Proof: We simply define µ(σ) to be ∑τ⪰σM(τ). We clearly have that µ ∶ 2<N × R is a
left-Π1

1 function. Also for any σ we have ∑τ⪰σM(τ) ≥ ∑τ⪰σˆ0M(τ)+∑τ⪰σˆ1M(τ) which
imply also that µ(σ) ≥ µ(σˆ0)+µ(σˆ1). Finally as M is a discrete semi-measure we have
µ(ε) ≤ 1.

The randomness literature often deals with continuous semi-measures by considering
the dual notion of martingale. A martingale is, in our context, a function M ∶ 2<N → R
such that 2M(σ) =M(σˆ0) +M(σˆ1) for any σ. The interesting intuition behind this
is to consider M as a the betting strategy that a gambler, say John, might adopt at
a casino’s roulette table, betting each turn some money on either red (that we denote
0) or black (that we denote 1). John starts with a capital of M(ε). If M(1) = M(0)
it means that John decides not to bet for the first turn. If M(1) > M(0) it means
John decide to bet (M(1) −M(0))/2 on 1, and reversely if M(0) >M(1). Then M(1)
corresponds to the new capital John has if the first outcome is 1, after winning twice
his bet or loosing it; and similarly for M(0). The game then continues and John can
decide what to bet next with the knowledge of the previous outcomes.

A sequence X is then considered to not be random with respect to a martingale
M , if M(σ) is unbounded when σ ranges over the prefixes of X. Also we easily verify
that for any martingale M , the function defined by µ(σ) = M(σ) × 2−∣σ∣ is a measure
on the Cantor space (Recall Section 1.8.1 in which we argued that the measure µ can
then be uniquely extends to all the Borel sets). Furthermore if M(ε) = 1, the function

Digression

93

3.7. HIGHER RANDOMNESS

µ is then a probability measure. Similarly, for any measure µ, the function defined by
M(σ) = µ(σ)×2∣σ∣ is a martingale. Continuous semi-measures only give us what is called
supermartingales, that is, functions M ∶ 2<N → R such that 2M(σ) ≥M(σˆ0)+M(σˆ1).

We can then consider the randomness notion defined by saying that X is random
if it is random with respect to any computable martingale (provably equivalent to be
random with respect to any computable supermartingale). This definition of random-
ness, referred in the literature as computable randomness, follows the paradigm that
a random sequence, when seen as the sequence of outcomes in a fair game, should be
chaotic enough to make impossible the design of a strategy that makes money with it.

An overview on martingales and computable randomness can be found for example
in Nies’ book [70], Chapter 7, where it is in particular proved that computable random-
ness is strictly weaker than Martin-Löf randomness, the correct analogue of Martin-Löf
randomness being obtained by considering left-c.e. martingale instead of computable
martingale.

It is of interest to notice that betting strategies in a real casino, are much more re-
strictive, as there is both a minimal and a maximal bet. The corresponding randomness
notions have been studied by Bienvenu, Stephan, and Teutsch in [4].

Proposition 3.7.4:
There is a universal Π1

1-continuous semi-measure µ, that is, for any Π1
1-continuous

semi-measure ν, there is a constant cν such that we have µ(σ) ≥ ν(σ) × cν for any σ.

Proof: The proof is similar to the one of the existence of a universal Martin-Löf test, or
to the one of the existence of a universal prefix-free machine. It is enough to prove that
for any left-Π1

1 function M ∶ 2<N × R, one can define uniformly in M a left-Π1
1 function

M ′ ∶ 2<N × R such that M ′ always describes a Π1
1-continuous semi-measure, and if M

describes a Π1
1-continuous semi-measure then M =M ′. There is no particular difficulty to

conduct this.

Then let f ∶ N → N be the computable function performing the operation described
above, on indices of left-Π1

1 functions, and let {Me}e∈N be an enumeration of all the left-Π1
1

functions. We then define µ = ∑eMf(e) × 2−e, and we verify easily that µ is a universal
Π1

1-continuous semi-measure.

3.7.5 Equivalent characterizations of Π1
1-Martin-Löf randomness

We shall now see an important lemma. It is clear that any Σ0
1 set can be described by

a Σ0
1 prefix-free set of strings. We shall see with Theorem 7.1.1 that this does not hold

anymore in the higher setting. For now we simply prove that from a measure theoretical
point of view, a Π1

1 open set can be described by a set of strings which is as close as we
want from being prefix-free.

Definition 3.7.17. We say that a set of strings W is ε-prefix-free if ∑σ∈W λ([σ]) ≤

λ([W]≺) + ε.

94

3.7. HIGHER RANDOMNESS

Lemma 3.7.1 For any Π1
1-open set U , one can obtain uniformly in ε and in an index for

U , a ε-prefix-free Π1
1 set of strings W with [W]≺ = U .

Proof: We use here the projectum function p ∶ ωck1 → ω. Let U be a Π1
1 set of strings

describing U . At successor stage s, if σ enters U , we find a finite prefix-free set of strings
Cs, each of them extending σ, such that [σ] ⊆ [Ws−1]

≺ ∪ [Cs]
≺ and such that λ([Ws−1]

≺ ∩

[Cs]
≺) ≤ 2−p(s) × ε (and if nothing enters U we define Cs = ∅). To find Cs we can search

for the first finite set (in some pre-defined order) which satisfies the ∆1
1 condition stated

above. We then add each string of Cs to Ws. At limit stage s we define Ws to be ⋃t<sWt.

It is clear by construction that we have U = [W]≺. Moreover, we have ∑σ∈W λ([σ]) ≤
λ(U) +∑s<ωck1

[Ws−1]
≺ ∩ [Cs]

≺ ≤ λ(U) + ε∑s<ωck1
2−p(s) ≤ λ(U) + ε.

Theorem 3.7.13:
Let M be a universal Π1

1-discrete semi-measure and µ a universal Π1
1-continuous semi-

measure. Given a sequence Z, the four following statements are equivalent.

1. The sequence Z is Π1
1-Martin-Löf-random.

2. There is a constant c such that for every n we have µ(Z ↾n) ≤ 2−n × 2c.

3. There is a constant c such that for every n we have M(Z ↾n) ≤ 2−n × 2c.

4. There is a constant c such that for every n we have hK(Z ↾n) ≥ n − c.

Proof: (1) Ô⇒ (2): Uniformly in c ∈ N we define Uc = {X ∣ ∃n µ(X ↾n) > 2−n2c}.
Each Uc is a Π1

1-open set and ⋂c Uc contains all the sequences that do not verify (2).
It remains to prove λ(Uc) ≤ 2−c to deduce that none of them is Π1

1-Martin-Löf random.
Suppose for contradiction that λ(Uc) > 2−c and let W be the (non effective) prefix-free
set of strings which describes Uc and which is minimal under the prefix ordering. We
have µ(ε) ≥ ∑σ∈W µ(σ) ≥ ∑σ∈W 2−∣σ∣2c ≥ λ(Uc)2

c > 1, which contradicts that µ is a Π1
1-

continuous semi-measure.

(2) Ô⇒ (3): It is clear as from Proposition 3.7.3, any Π1
1-discrete semi-measure is

bounded by a Π1
1-continuous semi-measure.

(3) Ô⇒ (4): It is clear as well, as 2−hK is a Π1
1-discrete semi-measure and M is

universal.

(4) Ô⇒ (1): Consider now a Π1
1-Martin-Löf-test ⋂n Un and let us build a Π1

1-prefix-
free machine M such that for every X ∈ ⋂n Un and every c we have some n with hKM(X ↾n
) < n− c. Using Lemma 3.7.1, we can get a Π1

1 set of strings Wn, uniformly in n, such that
Un = [Wn]

≺ and such that ∑σ∈Wn
λ([σ]) ≤ λ(Un) + 2−n.

Then to define M , we first define the Π1
1-bounded request set A by enumerating

(∣σ∣ − n,σ) for each n and each σ ∈ W2n+2. We have that A is a bounded request set
because wg(A) ≤ ∑n∑σ∈W2n+2 2−∣σ∣+n ≤ ∑n 2n∑σ∈W2n+2 2−∣σ∣ ≤ ∑n 2n(λ(U2n+2) + 2−2n−2) ≤

∑n 2n2−2n−1 ≤ ∑n 2−n−1 ≤ 1. Also we have for any X ∈ ⋂n Un and any n, a prefix of X in
W2n+2 which is compressed by at least n, with the Π1

1 prefix-free machine defined from A.
Therefore for every c there is an n such that hK(X ↾n) < n − c.

95

Chapter 4
Continuity and higher randomness

Let us suppose that we are supplied with some unspecified means of solving number-
theoretic problems: a kind of oracle as it were. We shall not go any further into the
nature of this oracle apart from saying that it cannot be a machine. With the help
of the oracle we could form a new kind of machine (call them o-machine), having as
one of its fundamental processes that of solving a given number-theoretic problem.

Systems of logic based on ordinals, Alan Turing

Joint work with Noam Greenberg and Laurent Bienvenu.

In this chapter we will deal with the use of continuous reduction and continuous rel-
ativization in the theory of higher randomness. As a first motivating example, let us
consider the fact that strong randomness notions are downward closed in the Turing de-
grees of Martin-Löf random sequences. For example, Miller and Yu [62] showed that if
X Turing computes Y for two Martin-Löf-randoms X and Y , and if in addition X is
weakly-2-random, then Y too is weakly-2-random (a full version of the theorem, which is
much more general, will be given in Section 4.3.4).

If we want to study a higher analogue of this theorem, we should first define a higher
analogue of the Turing reduction, and the hyperarithmetic reduction seems to be a natural
first candidate, but then a higher version of Miller and Yu’s theorem does not hold any-
more. Indeed, we will prove with Theorem 5.3.3 that there exists a weakly-Π1

1-random X
which is not Π1

1-random, also using Theorem 3.7.4, we then have ωX1 > ωck1 and therefore
X ≥h O. Also, Ω, the leftmost path of a Σ1

1-closed set containing only Π1
1-Martin-Löf

randoms, is Turing reducible to O and then hyperarithmetically reducible to X. But we
will see in Theorem 5.3.1 that Ω is not weakly-Π1

1-random.

The insight that randomness and traditional relative hyperarithmetic reducibility do
not interact well goes back to Hjorth and Nies [30], who defined another notion of reduc-
tion, in order to study a higher analogue of the notion of ‘base for randomness’, that will
be studied in Section 4.5.3. A celebrated result of Nies (together with Hirschfeldt) in [68],
following some work by Downey, Hirschfeldt, Nies, and Stephan in [15] and together with
some other work of Hirschfeldt, Nies, and Stephan in [29], is the coincidence of a number
of classes, each formalizing a notion of distance from randomness, or a notion of weakness
as oracle in detecting randomness: the K-trivials. We give here a non-exhaustive list of
the known characterizations of this class:

97

4.1. THE HIGHER TURING REDUCTION

� The class of K-trivial sequences, that is, the class of sequences which are in some
sense the opposite of randoms: A sequence X is K-trivial if for every n we have
K(X ↾n) smaller than K(n), up to a constant.

� The class of low-for-K sequences, that is, the class of sequences which when used as
oracle in a universal prefix-free machine, do not help to get any better compression
on any string, up to a constant.

� The class of low for Martin-Löf randomness sequences, that is, the class of sequences
which when used as oracle in a Martin-Löf test, do not help to capture any Martin-
Löf random.

� The class of base for randomness sequences, that is, the class of sequences X which
are Turing reducible to an X-Martin-Löf random sequence.

All those class coincide, and contain strictly the set of computable sequences. As we
saw in Section 3.7.2, a higher notion of Kolmogorov complexity has been defined by Hjorth
and Nies in [30], who also proved the existence of non ∆1

1 hK-trivial sets. Also if we want
to compare the notion of hK-trivial with higher versions of the notion of Low-for-K or of
the notion of Low for Martin-Löf randomness, we need to define what it means to use an
oracle to help with a Π1

1 enumeration.

Again, the obvious way to use an oracle X in a Π1
1 description of an open set, is to

allow a Π1
1(X) description of this open set. However, we shall see that with this relativiza-

tion, only ∆1
1 sets are Low-for-hK or Low-for-Π1

1-Martin-Löf randomness. Therefore the
equivalences that we have in classical randomness would not hold anymore in the higher
world, with this notion of relativization.

To overcome those problems we introduce the notion of both higher continuous re-
ductions and higher continuous relativization. We will see that forcing continuity in both
higher reduction and higher relativization, makes everything works similarly in the higher
world and in the lower world.

4.1 The higher Turing reduction

Beyond the inherent interest in higher notions, the study of generalizations of computabil-
ity sheds light on familiar notions by separating concepts which “accidentally” coincide in
usual computability. An example of such a phenomenon will appear in the definition of
higher Turing reducibility.

The goal in defining higher Turing reducibility, is to keep the descriptional power of
Π1

1 predicate, but in the meantime to keep continuous reductions, that is, to get finitely
many bits of the output, we should require only finitely many bits of the input. One way
of defining standard Turing reductions is to consider them as c.e. mappings of strings to
strings, with certain restrictions. Also we can consider a similar definition, but replacing
c.e. by Π1

1.

In the definition of Turing reductions via a c.e. map Φ, one restriction is usually to
require the consistency of the set Φ: If (τ, σ) ∈ Φ and (τ ′, σ′) ∈ Φ, and if τ and τ ′ are
comparable, then σ and σ′ should be comparable. Of course, if X computes Y with a
functional Φ, it is normal to require that Φ is consistent on the prefixes of X, as those
should only be mapped to prefixes of Y . However, the compatibility is generally required
everywhere.

98

4.1. THE HIGHER TURING REDUCTION

Another requirement, sometimes made in the definition of Turing reduction via a c.e.
map Φ, is that the mapping should be closed by prefixes, that is, if (σ, τ) ∈ Φ, then also
any σ′ ≺ σ should be mapped to some string τ ′. It is well-known that making those
assumptions in the definition of Turing reductions via a c.e. mapping is harmless:

Proposition 4.1.1:
For two sequences X,Y the following are equivalent:

1. There is a c.e. partial map Φ ∶ 2<N → 2<N, consistent on prefixes of X, such that
Φ(X) = Y .

2. There is a c.e. partial map Φ ∶ 2<N → 2<N, consistent everywhere, such that
Φ(X) = Y .

3. There is a c.e. partial map Φ ∶ 2<N → 2<N, consistent everywhere and closed
under prefixes, such that Φ(X) = Y .

4.1.1 The fin-h reduction

In [30] Hjorth and Nies introduced a continuous higher reducibility notion, which corre-
sponds to the most restrictive of the three notions of Proposition 4.1.1:

Definition 4.1.1. A fin-h reduction Φ is a Π1
1 partial map from 2<N to 2<N which is:

� Consistent: If (X ↾n1 , τ1) ∈ Φ and (X ↾n2 , τ2) ∈ Φ, then τ1 is compatible with τ2.

� Closed under prefixes: If (σ, τ) ∈ Φ then also for every σ′ ≺ σ we have (σ′, τ ′) ∈ Φ
for some τ ′.

We write Φ(σ) = τ for τ the longest string prefixes of σ are mapped to in Φ. Also for a
given sequence X, if we the set:

⋂{[σ] ∶ ∃n Φ(X ↾n) = σ}

contains exactly one sequence Y , we write Φ(X) = Y . Otherwise the functional Φ is said
to be undefined on X. If Φ(X) = Y for some fin-h reduction Φ we write X ≥fin−h Y .

A first application of the fin-h reduction is a higher version of a theorem proved inde-
pendently by Kučera [42] and a bit later by Gács [25].

Theorem 4.1.1 (Kučera-Gács):
For any sequence X and any Π0

1 set F ⊆ 2N of positive measure, there exists Z ∈ F

which Turing computes X. In particular any sequence X can be Turing computed by
a Martin-Löf random.

For any perfect closed set F , there is a canonical bijection between F and the Cantor
space. But for such a bijection to be computable, we need to identify the splitting points

99

4.1. THE HIGHER TURING REDUCTION

of F , seen as a tree, or at least sufficiently many of those splitting points. Also for a Π0
1

perfect set F , it is not always possible to do so. For example Cole and Simpson proved
in [10] (credited in [35] by Kent and Lewis) that for any Π0

1 set F with no computable
point, there is a perfect Π0

1 set such that none of its members can Turing compute any
member of F . For example there is a perfect Π0

1 set such that none of its members Turing
computes a Martin-Löf random sequence.

However when in addition the set F has positive measure, there is a way to handle
this. We only prove here the higher version of the Kučera-Gács theorem, which works
in a similar way than its lower counterpart. Also we emphasize that the reduction we
obtain is a fin-h reduction, and not just a higher Turing reduction, as it will be defined
later. First we need to prove an interesting lemma, which will also be useful to separate
weak-Π1

1-randomness from Π1
1-randomness:

Lemma 4.1.1 let σ be a string and F a closed set so that λ(F ∣ [σ]) ≥ 2−n. Then there
are at least two extensions τ1, τ2 of σ of length ∣σ∣ + n + 1 so that for i ∈ {1,2} we have
λ(F ∣ [τi]) ≥ 2−n−1.

Proof: Let C be the set of strings of length ∣σ∣ + n + 1 that extend σ. We have that
λ(F ∩ [σ]) = ∑τ∈C λ(F ∩ [τ]). Suppose that for strictly less than two extensions of length
∣σ∣ + n + 1 we have λ(F ∩ [τi]) ≥ 2−∣τi∣−n−1. Then we have:

∑τ∈C λ(F ∩ [τ]) ≤ 2−∣σ∣−n−1 + (2n+1 − 1)2−∣τi∣−n−1

≤ 2−∣σ∣−n−1 + 2n+12−∣σ∣−2n−2 − 2−∣σ∣−2n−2

≤ 2−∣σ∣−n−1 + 2−∣σ∣−n−1 − 2−∣σ∣−2(n+1)

< 2−∣σ∣−n

which contradicts λ(F ∣ [σ]) ≥ 2−n.

We now prove the higher Kučera-Gács theorem:

Theorem 4.1.2 (higher Kučera-Gács):
For any sequence X and any Σ1

1 closed set F ⊆ 2N of positive measure, there exists
Z ∈ F which fin-h computes X. In particular any sequence X can be fin-h computed
by a Π1

1-Martin-Löf random.

Proof: Consider a Σ1
1 closed set F ⊆ 2N with λ(F) ≥ 2−c and a sequence X. According

to what Lemma 4.1.1 tells us, we define some length m0 = 0 and inductively mn+1 =

mn + c + n + 1.

We define σ0 = ε. Assuming σn of length mn is defined with λ(F ∣ [σn]) ≥ 2−c−n, we
will define an extension σn+1 of σn with the same property. From Lemma 4.1.1 there are at
least two extensions τ of σn of length mn+c+n+1 =mn+1 such that λ(F ∣ [τ]) ≥ 2−c−(n+1).
Also if X(n) = 0 let σn+1 be the leftmost of those extensions and if X(n) = 1 let σn+1 be
the rightmost of those extensions.

The unique limit point Z of {[σn]}n∈N is our candidate. We shall now show how we
use it to fin-h compute X, by describing the fin-h reduction Φ ⊆ 2<N × 2<N.

100

4.1. THE HIGHER TURING REDUCTION

At stage 0, we enumerate (ε, ε) in Φ. Then at successor stage s, and substage n + 1,
for each string σ of length mn which is mapped to τ in Φs−1, if there are distinct leftmost
and a rightmost extensions σ1, σ2 of σ of length mn+1 such that λ(F ∣ [σi])[s] ≥ 2−c−(n+1)

for i ∈ {0,1}, we map the leftmost one and all of its unmapped prefixes to τ ˆ0 in Φ at
stage s; then we map the rightmost one and all of its unmapped prefixes to τ ˆ1 in Φ at
stage s. At limit stage s we let Φs to be the union of Φt for t < s.

By design, the functional Φ is consistent everywhere because for any two strings σ2 ≻ σ1

which are mapped to something in Φ, the string σ2 is always mapped to an extension of
what the string σ1 is mapped to. Also by design the mapping is closed by prefixes.

Now we clearly have Φ(Z) = X, because for any prefix σ1 of Z of length mn which is
mapped to X ↾n, there is always a stage at which the prefix σ2 of Z of length mn+1 will be
witnessed to be either the leftmost or the rightmost path of F that extends σ1 and such
that λ(F ∣ [σ2])[s] ≥ 2−c−(n+1), in which case it will be mapped to X ↾n+1.

4.1.2 The higher Turing reduction

Unlike in the classical world, it is not true anymore that the higher analogues of the
three notions of reduction coincide. Also we will show in Chapter 7 that if the two last
coincide, the two first are distinct. Also we now make the following reduction definition,
corresponding to the less restrictive of the three notions of Proposition 4.1.1:

Definition 4.1.2. A higher Turing reduction Φ is a Π1
1 partial map from 2<N to 2<N.

For a string σ, if Φ is consistent on prefixes of σ, we write Φ(σ) = τ for τ is the longest
string prefixes of σ are mapped to in Φ; otherwise Φ(σ) is said to be undefined. Also in
case for a given sequence X we have that the set:

⋂{[σ] ∶ ∃n Φ(X ↾n) = σ}

contains exactly one sequence Y , we write Φ(X) = Y . Otherwise the functional Φ is said to
be undefined on X. If Φ(X) = Y for some higher Turing reduction Φ we write X ≥hT Y .

In this thesis we will only use the higher Turing reducibility, because it is the one which
fits the best with the general theory of higher computability and randomness. We will see
for example in Chapter 7 that the higher analogue of:

‘Y is computable in X iff both Y and its complements are c.e. in X’

does not hold with fin-h reducibility, but hold with higher Turing reducibility, as we will
see, right after introducing a continuous higher version of being c.e.:

Definition 4.1.3. An oracle-continuous Π1
1 set of integers is given by a set W ⊆

2<N × N. For a string σ we write W σ to denote the set {n ∶ ∃τ ⪯ σ (τ, n) ∈ W}. For
a sequence X we write WX to denote the set {n ∶ ∃τ ≺ X (τ, n) ∈ W}. The set WX

is then called an X-continuous Π1
1 set of integer. We denote by {hWe}e∈N a canonical

enumeration of the oracle-continuous Π1
1 sets of integers.

Definition 4.1.4. We say that a set X is Y -continuously Π1
1 if X = hWY

e for some e.

101

4.1. THE HIGHER TURING REDUCTION

Proposition 4.1.2:
The following are equivalent for X,Y ∈ 2N:

1. X ≤hT Y

2. Both X and its complement are Y -continuously Π1
1.

Proof: Suppose that Φ(Y) = X for a higher Turing reduction Φ, then we define the Π1
1

set W ⊆ 2<N × N by enumerating (σ,n) in Ws when (σ, τ) ∈ Φs with τ(n) = 1. We have
that n ∈X iff n ∈W Y . We can do the same for 2N −X.

Now suppose that X = hWY
e1 and 2N −X = hWY

e2 . At stage s, and at substage n, for
every string σ of length n, if σ is not already mapped in Φ, but if Φ is consistent on σ so
far, let τ be the longest string with ∣τ ∣ ≤ ∣σ∣ and such that for every i < ∣τ ∣, τ(i) = 1 implies
i ∈ hWσ

e1[s] and τ(i) = 0 implies i ∈ hWσ
e2[s]. If ∣τ ∣ is bigger than the length of the longest

string a prefix of σ is mapped to so far in Φ, we then map σ to τ in Φ at stage s and
substage n. Otherwise we go to the next substage.

We will see in Chapter 7 that the previous proposition fails if we replace higher Turing
reducibility by either of its two stronger versions. What goes wrong in the higher setting?
In the lower setting, to turn a functional, not necessarily consistent everywhere, into a
functional consistent everywhere, without damaging the good computations, we proceed
as follow : when a mapping (σ, τ) enters the functional at some stage s, we consider all
extensions of σ of length s, and we map to τ those among them for which this mapping
does not introduce an inconsistency.

This argument uses what we call a time trick: the fact that the number of stages is
the same as the length of the oracle, namely ω. This equality fails in the higher setting,
in which we still use oracles of length ω but effective constructions have ωck1 many stages.
Thus any argument that relies on a time trick cannot be simply copied in the higher
setting.

In some cases, a proof uses a time trick because it is convenient to do so, but a time
trick is actually not essential. Perhaps a good example is the proof that no ∆0

2 set is
weakly-2-random. The proof of this (see Proposition 2.1.1) uses a time trick. Also it is
possible to remove the time trick, like it is done in a higher version of this proof (where a
convenient higher analogue of the notion of ∆0

2 has to be picked carefully), in Section 5.3.

In other cases, such as the equivalence of the three definitions of Turing reducibility,
the higher analogue of the theorem fails.

4.1.3 The continuous higher jump

The sets hWe give rise to a higher Turing jump operator:

Definition 4.1.5. We define the operator Y → hJY by hJY = {e ∶ e ∈ hWY
e }.

102

4.2. HIGHER TURING AND CONTINUOUSLY Π1
1 ON WEAK AND STRONG

ORACLES

We verify easily that hJ∅ is Π1
1 complete and thus that O is many-one equivalent to

hJ∅. We also easily verify that, like for any ‘jump’ notion, the higher Turing jump has no
fixed point in the higher Turing degrees:

Proposition 4.1.3:
For any X, we have hJX >hT X.

Proof: The proof works just like for the regular Turing jump. To show that hJX ≥hT X
we can find uniformly in n, an index e such that hWX

e enumerate everything if X(n) = 1
and nothing if X(n) = 0. We then have e ∈ hJX iff n ∈X.

Now suppose that Φ(X) = hJX for some Π1
1 functional Φ and some X. Then in

particular {n ∶ n ∉ hJX} is X-continuously Π1
1 and is equal to hWX

e for some e. But then
e ∉ hJX iff e ∈ hWX

e iff e ∈ hJX which is a contradiction.

4.2 higher Turing and continuously Π1
1 on weak and strong

oracles

Before we discuss randomness we investigate the notions of oracle continuous reducibility
and enumeration, in particular when they coincide with familiar notions. With strong
oracles they collapse to the familiar notions of Turing reducibility and relative computable
enumerability. With weak oracles they coincide with relative ∆1

1 and relative Π1
1.

4.2.1 On strong oracles

We saw with Proposition 4.1.3 that we have hJX >hT X for any X. It is also not hard to
see that the proof actually also gives us hJX >T X. It is also easy to prove that the higher
jump operator is uniformly Turing degree invariant, that is, if X ≡T Y , then hJX ≡T hJY ,
and furthermore, a Turing reduction from hJX to hJY (resp. from hJY to hJX) can be
obtained uniformly from a Turing reduction from X to Y (resp. from Y to X). Also
Slaman and Steel [83] and Steel [89] proved that such operators should coincide with the
Turing jump, or with iterations of the Turing jump, on a cone of Turing degrees (i.e., on
every degree above one specific degree). We will soon provide more details on this. For
now we show that it is indeed the case for the higher Turing jump, on a code above O:

Proposition 4.2.1:
A set is O-continuously Π1

1 if and only if it is Σ0
1(O); thus a set is higher Turing re-

ducible toO if and only if it is Turing reducible toO. Furthermore, these equivalences
are uniform and holds when O is replaced by any oracle Y ≥T O.

Proof: For a given Π1
1 set A ⊆ 2<N ×N, the point is that A is many-one reducible to O.

Therefore the predicate ∃σ ≺O (σ,n) ∈ A is Σ0
1(O), but then also Σ0

1(X) for any X ≥T O.
Conversely, it is clear by definition that for any oracle X, a Σ0

1(X) set is also a X-
continuously Π1

1 set.

103

4.2. HIGHER TURING AND CONTINUOUSLY Π1
1 ON WEAK AND STRONG

ORACLES

By Proposition 4.1.2 we then have that being higher Turing computable in O is equiv-
alent to being Turing computable in O.

Proposition 4.2.2:
The set hJO is many-one equivalent to O′. Also for any X ≥T O, the set hJX is
many-one equivalent to X ′

Proof: It is clear as by the previous proposition, as a O-continuously Π1
1 set is also a

Σ0
1(O) set, uniformly.

It would be too bad to mention Slaman and Steel’s work without placing it into its
context, which is out of the scope of this thesis, but which is also linked to one of the
oldest and deepest open problems on the global structure of the Turing degrees: Martin’s
conjecture.

We cite here the introduction of Downey and Shore’s paper [18] which constitute a good
sum up of the history behind Martin’s conjecture:

“A striking phenomena in the early days of computability theory was that every de-
cision problem for axiomatizable theories turned out to be either decidable or of the
same Turing degree as the halting problem ∅′ the complete computably enumerable set).
Perhaps the most influential problem in computability theory over the past fifty years
has been Post’s problem [75] of finding an exception to this rule, i.e., a noncomputable
incomplete computably enumerable degree. The problem has been solved many times
in various setting and disguises but the solutions always involve specific constructions
of strange sets, usually by the priority method that was first developed (Friedberg [23]
and Muchnik [67]) to solve this problem. No natural decision problems or sets of any
kind have been found that are neither computable nor complete. The question then be-
comes how to define what characterizes the natural computably enumerable degrees and
show that none of them can supply a solution to Post’s problem. Steel [89] suggests
that a natural degree should be definable and its definition should relativize to an arbi-
trary degree (and so, in particular, be defined on degrees independently of the choice of
representative).

Along these lines an old question of Sacks’ [76] asks whether there is a degree invari-
ant solution to Post’s problem, i.e., a computably enumerable degree invariant operator
W such that A <T W (A) <T A′. ([. . .] Any function f ∶ 2N → 2N is degree invariant
if for every A and B, A ≡T B implies that f(A) ≡T f(B)). Such an operator would
clearly be a candidate for a natural solution to Post’s problem. Lachlan [47] proved that
if we require the degree invariance to be uniform in the sense that there is a function h
that takes the (pairs of) indices of reductions between A and B to (pairs of) indices of
reductions between W (A) and W (B) then there is no such operator. [. . .]

In the setting of the Axiom of Determinacy (where, by Martin [57] there is a 0-1
valued countably complete measure defined on all the subsets of the Turing degrees for

Digression

104

4.2. HIGHER TURING AND CONTINUOUSLY Π1
1 ON WEAK AND STRONG

ORACLES

which being of measure 1 is equivalent to containing a cone), Martin made a sweeping
conjecture [. . .] that would entirely characterize the natural degree operators:

Conjecture 4.2.1 (Martin) Assume ZF + AD + DC. Then

I If f ∶ 2N → 2N is degree invariant then either f is degree increasing on a cone or is
constant (up to degree) on a cone.

II The relation ⪯ on degree invariant functions defined by f ⪯ g iff f(X) ≤T g(X) on
a cone is a prewellordering in which the immediate successor of any f is its jump
f ′ defined by f ′(A) = f(A)′.

Thus Martin’s Conjecture can be seen as asserting that the only natural operators
on degrees are the jump operators and their iterates.”

Slaman and Steel proved Martin’s conjecture in case the operator is uniformly Turing
degree invariant, which is the case of the higher Turing jump operator.

We will see later, after defining Π1
1-Martin-Löf randomness continuously relatively to

some oracle, that Proposition 4.2.1 implies that O-continuous Π1
1-Martin-Löf randomness

coincides with mere Martin-Löf randomness relatively to O.

4.2.2 On weak oracles

Proposition 4.2.3:
Suppose that Y preserves ωck1 , that is, ωY1 = ωck1 . Then for all X,Y we have that
X ≤hT Y if and only if X ≤T Y ⊕H for some hyperarithmetic sequence H.

Proof: If H is hyperarithmetic and X ≤T Y ⊕H then we can easily devise a hyperarith-
metic functional Φ such that Φ(Y) =X, and then X ≤hT Y .

For the other direction, suppose that Φ(Y) = X with some Π1
1 functional Φ. Suppose

also that ωY1 = ωck1 . Let {Φs}s<ωck1
be an effective enumeration of Φ. We define the Π1

1(Y)

function f ∶ω → ωck1 by letting f(n) be the smallest stage s < ωck1 such that Φs(Y ↾m) ⪰X ↾n
for some m. As f is total it is also ∆1

1(Y) and then by the Σ1
1-boundedness principle, its

range is bounded by some computable ordinal s < ωY1 = ωck1 . Then already at stage s we
have Φs(Y) =X and then X ≤T Y +Φs, where Φs can be represented by a ∆1

1 sequence.

For X ∈ 2N we let ∆1
1 ⊕X be the set of sequences Turing reducible to H ⊕X where

H is any hyperarithmetic sequence. Thus Proposition 4.2.3 says that if X preserves ωck1
then ∆1

1 ⊕X is the set of sequences higher Turing reducible to X. We argue now, by a
descriptive set-theoretical argument that the converse is not true.

Let A be the set of sequences X for which something is in ∆1
1⊕X iff it is higher Turing

reducible to X. We can easily see that A has a fairly low Borel rank: It is arithmetic in
X and a higher Turing functional Φ, to decide whether Φ(X) is defined, and it is also

arithmetic in X and in O to decide whether there exists some ordinal α such that X⊕∅(α)
Turing computes Φ(X). Thus A is Σ0

ω(O). Also we shall see in Section 6.7 that the set
of sequences which preserves ωck1 is not Σ0

ω+2. Therefore, as the set A contains all the

sequences which preserve ωck1 , it also contains some sequences which do not preserve ωck1 .

105

4.2. HIGHER TURING AND CONTINUOUSLY Π1
1 ON WEAK AND STRONG

ORACLES

4.2.3 On generic oracles for various forcing notions

Higher computability and relative Π1
1

For Y sufficiently Cohen generic or sufficiently random, we will see that ∆1
1(Y) = ∆1

1 ⊕Y .
Thus, using Proposition 4.2.3 we have X ≤h Y if and only if X ≤hT Y for any X,Y
sufficiently random or sufficiently generic.

Definition 4.2.1. Let Y ∈ 2N. We say that ∆1
1(Y) = ∆1

1 ⊕ Y uniformly in Y if there
is a Turing functional Φ and a higher Y -continuously higher Turing computable function

g ∶ ωck1 → ωck1 such that for all α < ωck1 we have Y (α) = Φ(Y,∅(g(α)), α).

Proposition 4.2.4:
The following are equivalent for Y ∈ 2N:

1. A set is Y -continuously Π1
1 if and only if it is Π1

1(Y).

2. ∆1
1(Y) = ∆1

1 ⊕ Y uniformly in Y .

Proof: Assume (1). Note first that if every Π1
1(Y) set is Y -continuously Π1

1 then ωY1 =

ωck1 . Suppose otherwise, then Y (ω
ck
1 +1) is certainly Π1

1(Y) and even ∆1
1(Y). Also the set

hJY is easily seen to be Σ0
1(Y

(ωck1)) and then both hJY and its complement are many-one

reducible to Y (ω
ck
1 +1). Also any enumeration of Y (ω

ck
1 +1) can then Turing compute hJY and

it particular if Y (ω
ck
1 +1) was Y -continuously Π1

1 then also Y could higher Turing compute
hJY , which is impossible by Proposition 4.1.3.

Note now that since there are universal Π1
1(Y) and Y -continuously Π1

1 sets, the equiv-
alence is uniform: there are computable functions translating between indices of Π1

1(Y)

sets and indices of Y -continuous Π1
1 sets. Given this, for any α < ωck1 the set Y (α) and its

complement are both Π1
1(Y) and then both Y -continuously Π1

1, uniformly in α. Then we
have Φ(Y) = Y (α) for some higher Turing functional Φ, which is obtained uniformly in
α. Also just like in the proof of Proposition 4.2.3 we can find a stage s such that Φs(Y)

is defined already and equal to Y (α). Then Φs ⊕ Y already Turing compute Y (α), which

means ∅(s) ⊕ Y already Turing compute Y (α).

Assume (2), and let g witness the uniformity. Here again we should notice that (2)

implies that Y preserves ωck1 . Suppose otherwise, then Y (ω
ck
1 +1) is certainly ∆1

1(Y) and
it can Turing compute hJY (even many-one compute hJY , as argued in the previous
paragraph). Therefore using Proposition 4.1.3 we have that Y cannot higher Turing

compute Y (ω
ck
1 +1) and in particular that Y ⊕ ∅(α) cannot higher Turing compute Y (ω

ck
1 +1)

for any computable α.

Uniformly in α < ωck1 we can get a ∆1
1(Y)-index for the set OY

<α. Also OY = ⋃α<ωck1
OYα

because Y preserves ωck1 . Using g and varying over α < ωck1 we see how to enumerate OY

in a Y -continuously Π1
1 fashion.

We now discuss Proposition 4.2.4 in the context of Cohen genericity and randomness.

106

4.2. HIGHER TURING AND CONTINUOUSLY Π1
1 ON WEAK AND STRONG

ORACLES

Cohen generics

Theorem 4.2.1:
For a given computable ordinal α, if G is α-generic, then G(α) ≡T G ⊕ ∅(α), and the
equivalence is uniform in α.

Proof: We have for any n that the sets A1 = {X ∶ n ∈ X(α)} and A2 = {X ∶ n ∉ X(α)}
are respectively Σ0

α and Π0
α sets, uniformly in α and n. Also using Theorem 1.9.1 there is

a Σ0
α open set U1 and a Π0

α open set U2, together with Π0
<α closed sets F1,m and Π0

α closed
sets F2,m such that A1 = U1△B1 and A2 = U2△B2 with B1 ⊆ ⋃m ∂F1,m and B2 ⊆ ⋃m ∂F2,m.

If X is α-generic it belongs to each F1,m or each F2,m iff it belongs to their interior.
Therefore it belongs to A1 or A2 iff it belongs respectively to U1 and U2. Then using

∅(α) we search for a prefix σ of X that is included in either to U1 or U2. If [σ] ⊆ U1 then
n ∈X(α) and if [σ] ⊆ U2 then n ∉X(α)

We will see in Theorem 6.6.2 that G is Σ1
1-generic iff it is ∆1

1-generic and ωG1 = ωck1 .
For G a Σ1

1-generic sequence we then have ∆1
1(G) = ∆1

1 ⊕G uniformly in G and therefore
from Proposition 4.2.4 we have the following theorem:

Theorem 4.2.2:
If G is Σ1

1-generic then a set is Π1
1(G) if and only if it is G-continuously Π1

1.

Randoms

In [8], Chong and Yu observed that ∆1
1(Z) = ∆1

1 ⊕ Z uniformly for any ∆1
1-random se-

quence Z which preserves ωck1 . In what follows we calculate precise bounds.

Proposition 4.2.5:
For any α, if Z is (α+1)-random, we have Z(α) ≡T Z⊕∅(α). Moreover, an index for the
reduction can be found effectively from α and an upper bound on the α-randomness
deficiency of Z.

Proof: For any e the set A = {X ∶ e ∈ X(α)} is Σ0
α uniformly in e. Also from Theo-

rem 1.8.1 we can find uniformly in n and in ∅(α) a Π0
<α-closed set Fn ⊆ A and a Σ0

α-open

set Un ⊇ A such that λ(Un−Fn) ≤ 2−n. Each set Un−Fn is a Σ0
1(∅
(<α)

) open set uniformly

in n and in ∅(α), and their intersection is therefore a Π0
2(∅
(α)

) set effectively of measure
0. Also if Z is (α+1)-random, uniformly in a (α+1)-randomness deficiency for Z one can
find some n such that Z ∈ A iff Z ∈ Fn.

We now repeat the operation for the Π0
<α-closed set Fn. Again, one can find uniformly

in ∅(α) a sequence of clopen set Cm ⊇ Fn such that λ(Cm − Fn) ≤ 2−n, making each set

107

4.3. CONTINUOUS RELATIVIZATION AND RANDOMNESS

Cm −Fn a uniformly Σ0
1(∅
(α)

) set and therefore making their intersection a Π0
2(∅
(α)

) set
effectively of measure 0. Now still using the (α + 1)-randomness deficiency of the (α + 1)-
random sequence Z, we can find some m such that Z ∈ Fn iff Z ∈ Cm, which implies that
Z ∈ A iff Z ∈ Cm. But now, once we have Cm, it is computable in Z to decide whether
Z ∈ Cm. Also we have e ∈ Z(α) iff Z ∈ Cm where Cm can be found uniformly in e and in

∅(α), therefore Z ⊕ ∅(α) ≥T Z
(α).

The previous theorem is tight. Lewis, Montalbán and Nies [53] showed that there is a

weakly-2-random sequence Z which fails Z ⊕ ∅(1) ≥T Z
(1).

Theorem 4.2.3:
If Z is Π1

1-random, we have ∆1
1(Z) = ∆1

1 ⊕Z uniformly (and therefore a set is Π1
1(Z)

if and only if it is Z-continuously Π1
1).

Proof: Suppose the a set Y is ∆1
1(Z) for a Π1

1-random sequence Z. In particular we saw
in Theorem 3.7.4 that if Z is Π1

1-random then ωZ1 = ωck1 . Also the set Y is then Turing
computable in Z(α) for some computable α.

Now also Z is Π1
1-Martin-Löf random. From the hyperarithmetic index of a Martin-Löf

test relative to some hyperarithmetic oracle we can effectively find an index for this test
as a sequence of uniformly Π1

1 open sets. Hence from the randomness deficiency for Z as
a Π1

1-Martin-Löf random sequence, we can uniformly in α < ωck1 find an upper bound on
the α-randomness deficiency for Z. Consequently, ∆1

1(Z) = ∆1
1 ⊕ Z uniformly. Hence by

Proposition 4.2.4, if Z is Π1
1-random, then a set is Π1

1(Z) if and only if it is Z-continuously
Π1

1.

4.3 Continuous relativization and randomness

4.3.1 Continuous relativization for open sets

We now define the notion of higher continuous relativization and we show that various
theorems of classical randomness hold in this setting. On the other hand, we will emphasize
here and in Chapter 7 that various other theorems, like the existence of a universal X-
Martin-Löf test, fail with continuous relativization.

Definition 4.3.1. An open set U is X-continuously Π1
1 if there is an X-continuous

Π1
1 set of strings W such that U = [WX]≺. An oracle-continuous Π1

1-open set U , is
a family of open sets {UX}X∈2N such that for any X, the open set UX is X-continuously
Π1

1 uniformly in X. Formally there is an oracle-continuous Π1
1 set of strings W such that

UX = [WX]≺ for every oracle X.

When we don’t need to know a specific set of pairs of strings W ⊆ 2<N × 2<N describing
an oracle-continuous open set U , we sometimes blur the distinction between the two, using
U as if it was W .

108

4.3. CONTINUOUS RELATIVIZATION AND RANDOMNESS

Definition 4.3.2. An X-continuous Π1
1-Martin-Löf test is given by a uniform se-

quence of oracle-continuous Π1
1 open sets {Un}n∈N, such that for any n we have λ(UXn) ≤

2−n. If in addition, for every oracle Y and every n we have λ(UYn) ≤ 2−n, then {Un}n∈N is
said to be an oracle-continuous Π1

1-Martin-Löf test. Finally, a sequence Z is said to
be X-continuously Π1

1-Martin-Löf random if it is in no X-continuous Π1
1-Martin-Löf

test.

Note that with any X-continuous Π1
1-open sets UX with λ(UX) ≤ 2−n, implicitly comes

a Y -continuous Π1
1-open set UY for any sequence Y . However UY need not to have its

measure bounded by 2−n. We have here a big difference with the notion of relativization
in the classical case, where it is always possible to trim a X-Martin-Löf test ⋂UXn , in such
a way that ⋂UYn becomes an Y -Martin-Löf test for every Y , without changing it if ⋂UYn
was already a Martin-Löf test in the first place. However, we shall see in Section 7.3 that
we cannot do that anymore in the higher setting.

From the definition of continuous randomness relativization, we have from Proposi-
tion 4.2.1 the interesting following fact:

.

Fact 4.3.1.

The set of O-continuously Π1
1-Martin-Löf randoms coincides with the set of Martin-Löf

randoms relatively to O.

.

4.3.2 Continuous relativization for semi-measures

We now define continuous relativization for higher discrete semi-measures, and first for
higher prefix-free machines.

Definition 4.3.3. An A-continuous Π1
1-prefix-free machine M is a Π1

1 set M ⊆

2<N × 2<N × 2<N such that MA = {(σ1, σ2) ∶ ∃τ ≺ A (τ, σ1, σ2) ∈ M} is a prefix-free
machine. If M is also an X-continuous Π1

1-prefix-free machine for every X then it is an
oracle-continuous-Π1

1-prefix-free machine.

Definition 4.3.4. An A-continuous Π1
1-discrete semi-measure M is a Π1

1 set M ⊆

2<N × 2<N × Q such that MA = {(σ1, q) ∶ ∃τ ≺ A (τ, σ1, q) ∈ M} is a discrete semi-
measure. If M is also an X-continuous Π1

1 discrete semi-measure for every X then it is
an oracle-continuous Π1

1-discrete semi-measure.

Definition 4.3.5. An A-continuous Π1
1-continuous semi-measure µ is a Π1

1 set µ ⊆

2<N × 2<N × Q such that µA = {(σ1, q) ∶ ∃τ ≺ A (τ, σ1, q) ∈ µ} is a continuous semi-
measure. If µ is also an X-continuous Π1

1 continuous semi-measure for every X then it is
an oracle-continuous Π1

1-continuous semi-measure.

With continuous relativization of Π1
1-prefix-free machines, naturally comes a continu-

ous relativization of Π1
1-Kolmogorov complexity:

109

4.3. CONTINUOUS RELATIVIZATION AND RANDOMNESS

Definition 4.3.6. Given an A-continuous Π1
1-prefix-free machine M , the A-continuous

Π1
1-Kolmogorov complexity with respect to the machine M and the oracle A is given

by hKA
M(σ) = min{∣τ ∣ ∶ MA(τ) = σ}.

Unfortunately, it is not clear anymore that the randomness notions defined from contin-
uously relativized measures, coincide with the continuous relativization of Π1

1-Martin-Löf
randomness. We give here the obvious implications.

Theorem 4.3.1:
Given sequences X,A, consider the four following propositions.

1. The sequence X is A-continuously Π1
1-Martin-Löf random.

2. For any A-continuous Π1
1-continuous semi-measure µ, there exists a c such that

µ(X ↾n) ≤ 2−n2c for every n.

3. For any A-continuous Π1
1-discrete semi-measure M , there exists a c such that

M(X ↾n) ≤ 2−n2c for every n.

4. For any A-continuous Π1
1-prefix-free machine M , there exists a c such that

hKA
M(X ↾n) ≥ n − c for every n.

We have (1)→ (2)→ (3)→ (4).

Proof: Each of the implications is a continuous relativization of the proof of Theo-
rem 3.7.13.

(1) Ô⇒ (2): It is enough to see that given an A-continuous Π1
1-continuous semi-

measure µ, the set Uc = {(τ, σ) ∣ µτ(σ) ≥ 2−∣σ∣2c} is a oracle continuous Π1
1-open set such

that λ(UAc) ≤ 2−c.

(2) Ô⇒ (3): It is enough to see that given an A-continuous Π1
1-discrete semi-measure

M , the function µτ(σ) = ∑ρ⪰σM
τ(ρ) is a an A-continuous Π1

1-continuous semi-measure

such that µA dominates MA.

(3) Ô⇒ (4): It is enough to see that given an A-continuous Π1
1-prefix-free machine

M , the function 2−hKAM is an A-continuous Π1
1-discrete semi-measure.

The non-relativized implication (4) Ô⇒ (1), proved with Theorem 3.7.13, uses the
fact that we can always assume that a Π1

1-open set U can be described with an ε-prefix-
free set of string, uniformly in ε. It is not clear anymore that this can be done with the
continuous relativization. It also uses the higher KC-theorem, but here again, it is not
clear that the higher KC theorem remains true with the continuous relativization. For this
reason it is also not clear that we have (4) Ô⇒ (3). Basically, each of the other possible
implication remains open. This will be discussed in Section 7.3.6.

4.3.3 The van Lambalgen theorem

The van Lambalgen theorem can be seen as an effective version of Fubini’s theorem. For
classical randomness we have:

110

4.3. CONTINUOUS RELATIVIZATION AND RANDOMNESS

Theorem 4.3.2 (van Lambalgen):
The sequence X ⊕ Y is Martin-Löf random iff X is Martin-Löf random and Y is
Martin-Löf random relatively to X.

Note that this implies that Y is Martin-Löf random relatively to X iff X is Martin-Löf
random relatively to Y . The theorem holds in the higher setting, where relativization is
understood as continuous relativization. However, the proof needs to be twisted a little
bit to work in the higher setting. The proof of the direction “X is Martin-Löf random and
Y is Martin-Löf random relatively to X implies X ⊕Y is Martin-Löf random” is the same
in both the higher and the lower setting. But the other direction uses the existence of a
universal oracle-continuous Martin-Löf test. We will prove in Section 7.3 that there is no
universal oracle-continuous Π1

1-Martin-Löf test. We will even prove that for some oracle
X, there is no universal X-continuous Π1

1-Martin-Löf test. Fortunately we can get rid of
this hypothesis to prove a higher version of van Lambalgen, and this will be achieved with
the help of the following lemma:

Lemma 4.3.1 Given an oracle-continuous Π1
1-open set U ⊆ 2<N × 2<N one can define

uniformly in n ∈ N and in ε ∈ Q+ an oracle-continuous Π1
1-open set V ⊆ 2<N × 2<N such

that:

� If λ(UX) ≤ 2−n then UX = VX .

� λ({X ∶ λ(VX) > 2−n}) ≤ ε.

Proof: Let n be fixed. Recall that p ∶ ωck1 → ω is the projectum function. At stage 0 we
set V0 = ∅. At successor stage s, suppose that (σ, τ) is enumerated in U . Let us consider
the ∆1

1-open set W = {X ∶ λ(VXs−1 ∪ [τ]) > 2−n}. Let us find a finite set of strings B such
that [B]≺ ∪W = [σ] and such that λ([B]≺ ∩W) ≤ ε×2−p(s). For any string ρ in B we then
add (ρ, τ) in V at stage s. At limit stage s we define Vs to be the union of Vt for t < s.

It is obvious that if λ(UX) ≤ 2−n, then UX = VX . Also by construction, at successor
stage s, we add in {X ∶ λ(VX) > 2−n} something of measure at most ε× 2−p(s). It follows
that λ({X ∶ λ(VX) > 2−n}) ≤ 2−n.

We can now prove the higher van Lambalgen theorem:

Theorem 4.3.3 (Higher van Lambalgen):
The sequence X ⊕ Y is Π1

1-Martin-Löf random iff X is Π1
1-Martin-Löf random and Y

is X-continuously Π1
1-Martin-Löf random.

Proof: Suppose first that some sequence X ⊕Y is captured by some Π1
1-Martin-Löf test

⋂n Un. For Un = ⋃[σ1 ⊕ σ2], note that we clearly have λ(⋃[σ1 ⊕ σ2]) = λ(⋃[σ1] × [σ2]).
Also we can consider that the pair (X,Y) is not Π1

1-Martin-Löf random in the product
space 2N × 2N.

111

4.3. CONTINUOUS RELATIVIZATION AND RANDOMNESS

Let ⋂n Un be a uniform intersection of Π1
1-open sets of 2N × 2N with λ(Un) ≤ 2−n and

(X,Y) ∈ ⋂n Un. We are going to use Theorem 1.8.3 saying that for any Borel set B of
2N × 2N we have λ({X ∶ λ(BX) >

√
λ(B)}) ≤

√
λ(B). For a string σ and an integer n, let

us denote by Uσn the Π1
1-open set {Y ∶ ∀X ≻ σ (X,Y) ∈ Un}.

Let Vn be the X-continuously Π1
1-open set containing Y and equal to ⋃σ≺X U

σ
2n. Sup-

pose that for all but finitely many n we have λ(Vn) ≤ 2−n. Then Y is not X-continuously
Π1

1-Martin-Löf random. Otherwise there are infinitely many n such that λ(Vn) > 2−n. Also
consider now for each n the Π1

1-open set Sn = {Z ∶ λ(UZ2n) > 2−n}. We have for infinitely

many n that X ∈ Sn and as Sn ⊆ {Z ∶ λ(UZ2n) >
√
λ(U2n)} we have by Theorem 1.8.3 that

λ(Sn) ≤
√
λ(U2n) ≤ 2−n. Also {Sn}n∈N is a Π1

1-Solovay test capturing X, which is then not
Π1

1-Martin-Löf random.

Conversely, suppose that X is not Π1
1-Martin-Löf random or that Y is not X-

continuously Π1
1-Martin-Löf random. It is enough to deal with the last case, as if X is not

Π1
1-Martin-Löf random it is certainly not Y -continuously Π1

1-Martin-Löf random either.

So suppose that Y is in some X-continuous Π1
1-Martin-Löf test ⋂n U

X
n where each Un

can be seen as a Π1
1 subset of 2<N × 2<N. From Lemma 4.3.1 we can consider that each Un

is such that λ({Z ∶ λ(UZn) > 2−n} ≤ 2−n) still with Y ∈ ⋂n U
X
n . It is clear that the set

⋃τ∈2<N [τ] ×Uτn is a Π1
1-open subset of 2N × 2N, defined uniformly in n and which contains

(X,Y). Let us prove that it has measure smaller than 2−n+1.

Since for τ ⪯ τ ′ we have Uτn ⊆ Uτ
′

n , we then have λ(⋃τ∈2<N [τ]×Uτn) = supm∑∣τ ∣=m λ([τ]×
Uτn). Also for each m, the measure of the set of strings τ of length m such that λ(Uτn) > 2−n

is of εm ≤ 2−n, whereas on other strings τ of length m we have λ(Uτn) ≤ 2−n. We then have:

∑
∣τ ∣=m

λ([τ] × Uτn) ≤ (1 − εm)2−n + εm ≤ 2−n+1

It follows that λ(⋃τ∈2<N [τ]×Uτn) ≤ 2−n+1 and we then have a Π1
1-Martin-Löf test capturing

(X,Y).

4.3.4 The XYZ theorem

In classical randomness, we have the following theorem from Miller and Yu [62]:

Theorem 4.3.4 (XYZ theorem):
Suppose that X,Y are Martin-Löf random and that X ≥T Y . Suppose also that X is
Martin-Löf random relatively to Z. Then Y is also Martin-Löf random relatively to
Z.

Proof: Let Φ be the functional such that Φ(X) = Y . We first use the fact that µ([σ]) =
λ(Φ−1([σ])) is a left-c.e. continuous semi-measure. It follows from a lower equivalent to
Theorem 3.7.13 that for prefixes σ of Y , we have some constant c such that µ([σ]) ≤ 2−∣σ∣2c.

Now, given some uniform intersection of oracle Σ0
1-open sets UZn of measure less than

2−n and with Y ∈ ⋂n U
Z
n , for any (σ, τ) ∈ Un, for any string ρ enumerated in a set of strings

112

4.3. CONTINUOUS RELATIVIZATION AND RANDOMNESS

describing Φ−1([τ]), we enumerate (σ, ρ) in some set Vn, but stopping the enumeration
when λ(Φ−1([τ]))[s] becomes bigger than 2−∣τ ∣2c.

Because Y is random, we are sure that X ∈ ⋂n V
Z
n : For τ ≺ Y and σ ≺ Z such that

(σ, τ) ∈ Un, the open set Φ−1([τ]) never has to be trimmed and then Φ−1([τ]) ⊆ Vσn . Also
we have λ(VZn) ≤ 2−n2c for every n. Therefore, the function n → λ(VZn) goes to 0 with a
computable bound and X is not Martin-Löf random relatively to Z.

The previous theorem says that we have a randomness inheritance by Turing reduction.
Of course a random sequence X can always compute something which is not random. But
if it computes a random sequence Y , then Y needs to be ‘as random as’ X. In particular,
a direct consequence of the previous theorem is that if an α-random sequence X computes
a Martin-Löf random sequence Y , then Y is also α-random. It is not very hard to check
that the proof also works with weak-α-randomness, for any computable α.

We shall now prove that the same theorem hold with Π1
1-Martin-Löf randomness. The

difficulty is however that if X higher Turing computes Y via some higher Turing func-
tional Φ, the function λ(Φ−1[σ]) is not necessarily a Π1

1 continuous semi-measure anymore,
because Φ might be inconsistent on some oracles. According to later Corollary 7.3.2, the
inconsistency cannot be completely removed. However, it can be ‘reduced’ as much as we
want, from a measure-theoretical point of view.

Lemma 4.3.2 From any higher functional Φ one can obtain effectively in ε a higher
functional Ψ so that:

1. The correct computations are unchanged in Ψ: For all X,Y such that Φ(X) = Y , we
also have Ψ(X) = Y

2. The measure of the Π1
1-open set on which Ψ is inconsistent is smaller than ε:

λ({X ∣ ∃n1, n2 ∃τ1 ⊥ τ2 (X ↾n1 , τ1) ∈ Ψ ∧ (X ↾n2 , τ2) ∈ Ψ}) ≤ ε

Proof: Let us build Ψ uniformly in Φ and ε. Recall that p ∶ ωck1 → ω is the projectum
function. We can assume that at most one pair enters Φ at each stage. At stage s, if
(σ1, τ1) enters Φ[s], we compute the ∆1

1 set of strings:

Us = {σ2 ∶ σ2 is compatible with σ1 and (σ2, τ2) ∈ Ψ[< s] for some τ2 ⊥ τ1)}

We then find uniformly in Us and s a finite set of strings C with [C]≺ ⊆ [σ1], such that
[C]≺ ∪ Us covers [σ1] and such that λ([C]≺ ∩ Us) ≤ 2−p(s)ε. Then we put in Ψ[s] all the
pairs (σ, τ1) for σ ∈ C.

We shall prove that (1) and (2) are satisfied. Suppose Φ(X) = Y and that (X ↾n1 , Y ↾n2)

enters Φ[s] at stage s. By definition of Φ(X) = Y , we have no m and no τ ⊥ Y ↾n2 such
that (X ↾m, τ) is in Φ[< s]. Then also we have no m and no τ ⊥ Y ↾n2 such that (X ↾m, τ)
is in Ψ[< s], because (X ↾m, τ) ∈ Ψ implies (X ↾n, τ) ∈ Φ for n ≤ m. Therefore X ∉ Us
and as Us ∪C covers X ↾n1 , we then have a prefix of X that is mapped to Y ↾n2 in Ψ[s].
Then we have (1). Also by construction, at stage s, we add a measure of at most 2−p(s)ε
of inconsistency. Then the total inconsistency is at most of ε, which gives us (2).

We can now prove:

113

4.4. REFINEMENT OF THE NOTION OF HIGHER ∆0
2

Theorem 4.3.5 (higher XYZ theorem):
Suppose that X ≥hT Y for two Π1

1-Martin-Löf randoms X,Y . Suppose also that X is
Z-continuously Π1

1-Martin-Löf random. Then also Y is Z-continuously Π1
1-Martin-Löf

random.

Proof: Suppose we have a higher Turing functional Φ such that Φ(X) = Y . Using
Lemma 4.3.2, uniformly in ε we can build a functional Φε with Φε(X) = Y and such that
the open set of oracles on which Φε is not consistent is smaller than ε.

Let {Un}n∈N be a uniform sequence of oracle-continuous Π1
1-open sets such that λ(UZn) ≤

2−n and such that Y ∈ ⋂n Un. Let us fix a function q ∶ 2<N → Q+ such that ∑σ∈2<N q(σ) ≤ 1.

Let us define the left-Π1
1 function ν to be ν([σ]) = λ(Φ−1

q(σ)([σ])). We have that

ν(σ) + q(σ) ≥ ν(σˆ0) + ν(σˆ1). It follows that:

ν(σ) + ∑
τ⪰σ

q(τ) ≥ (ν(σˆ0) + ∑
τ⪰σˆ0

q(τ)) + (ν(σˆ1) + ∑
τ⪰σˆ1

q(τ))

We define the left-Π1
1 function µ by µ([σ]) = ν([σ]) + ∑τ⪰σ q(τ). As we have ν(ε) +

∑τ⪰ε q(τ) ≤ 2, the function µ/2 is then a Π1
1-continuous semi-measure.

It follows that since Y is Π1
1-Martin-Löf random, we have by Theorem 3.7.13 some

constant c such that µ(Y ↾n) ≤ 2−n2c for every n. We can now do as in the proof of
Theorem 4.3.5: For (σ, τ) enumerated in Un, we enumerate (σ, ρ) in Vn, for any string ρ
enumerated in a set of string describing Φ−1

q(s)([σ]), as long as λ(Φ−1
q(s)([σ]))[s] is smaller

than 2−∣σ∣2c. The verification is then similar.

We can adapt the proof of the previous theorem for many different notions of tests. In
particular, we have for example:

Porism 4.3.1 (Variant of the higher XYZ theorem):
Suppose that X ≥hT Y for two Π1

1-Martin-Löf randoms X,Y . Suppose also that X is
weakly-Π1

1-random. Then also Y is weakly-Π1
1-random.

4.4 Refinement of the notion of higher ∆0
2

In this section we discuss the higher analogue of the notion of being ∆0
2. After discussing

the difference between higher ∆0
2 and merely ∆0

2, we will give different various restrictions
of the former notion, each of them arising naturally from the study of higher randomness.
This study will then allow us to separate in Section 5.3.2 the notion of weak-Π1

1-randomness
and Π1

1-randomness. We first give a higher version of Shoenfield’s limit lemma:

114

4.4. REFINEMENT OF THE NOTION OF HIGHER ∆0
2

4.4.1 The higher limit lemma

Proposition 4.4.1:
Let A ∈ 2N. The following are equivalent for f ∈ NN.

1. f ≤hT hJA.

2. There is a A-continuously higher Turing computable sequence {fs}s<ωck1
of func-

tions from N to N with lims→ωck1
fs = f .

Proof: Recall that p ∶ ωck1 → ω is the projectum function.

(2)Ô⇒ (1). Let m ∶ ω → ωck1 be the modulus of the sequence {fs}s<ωck1
: The value m(n)

is the least s such that for all t ≥ s we have ft(n) = fs(n). Let W = {(n, p(s)) ∶ s <m(n)};
the set W is A-continuously Π1

1 : to enumerate (n, p(s)) into W , what we need from A
is the value fs(n) and a different value ft(n) for some t > s; both can be found with
using a finite prefix of A. So W ≤hT hJA. Now, from one pair (n, p(s)) ∉ W , we output
f(n) = fs(n). So f ≤hT W ≤hT hJA.

(1)Ô⇒ (2). Let Ψ be a higher Turing functional such that Ψ(hJA) = f . Note that the
sequence {hJAs }s<ωck1

is not necessarily A-continuously Turing computable. To help us, we

have to use the projectum function p ∶ ωck1 ↦ ω. For s < ωck1 let fs = Ψ(hJ
A↾p(s)
s)[s]. For

all n there is some t < ωck1 such that p(s) ≥ n for all s ≥ t, which ensures that {fs}s<ωck1
converges to f .

It follows, using the fact that hJ∅ is many-one equivalent to O and using Proposi-
tion 4.2.1 that a function f is Turing computable by Kleene’s O, iff it is the limit of a
higher Turing computable sequence {fs}s<ωck1

:

Corollary 4.4.1:
Let f ∈ NN. Then the following are equivalent:

1. f ≤T O

2. f ≤hT O

3. There is a higher Turing computable sequence {fs}s<ωck1
of functions from N to

N with lims→ωck1
fs = f .

Such a function is said to be higher ∆0
2 function. There is a topological difference

between a ∆0
2 approximation {fs}s<ω and a higher ∆0

2 approximation {gs}s<ωck1
. In the

first case the set {f} ∪ {fs ∶ s < ω} is a closed set, whereas in the second case, the
set {g} ∪ {gs ∶ s < ωck1 } needs not to be closed. Also we study in this section various
restrictions of the notion of higher ∆0

2 functions, that are built around this crucial point.
We will explain why each of them makes sense (in particular in relation with higher

115

4.4. REFINEMENT OF THE NOTION OF HIGHER ∆0
2

randomness), why there are used and how they relate to each other. We will pursue a full
study of higher ∆0

2 functions in Section 5.4 and a picture on how all those notions interact
with each other is given in Section 5.4.6.

4.4.2 Higher left-c.e. approximations

We start by the strongest restriction of higher ∆0
2, which can be seen as a higher analogue

of left-c.e.

Definition 4.4.1. A higher left-c.e. approximation is a higher Turing computable
sequence {fs}s<ωck1

such that for any stage s1 < s2 we have fs1 smaller than fs2 for the lex-

icographic order. Note that this implies that for any n, the sequence {fs(n)}s<ωck1
changes

at most 2n times and then that {fs}s<ωck1
converges. A function f is higher left-c.e. if

there is a higher left-c.e. approximation converging to f .

Just like left-c.e. binary sequences are exactly the leftmost path of Π0
1 sets, it is not

hard to see that higher left-c.e. binary sequences are the leftmost path of Σ1
1-closed sets.

4.4.3 Higher ω-computable approximations

We continue with the second strongest restriction of higher ∆0
2, which can be seen as a

higher analogue of ω-computably approximable.

Definition 4.4.2. A higher ω-computable approximation is a higher Turing com-
putable sequence {fs}s<ωck1

such that for any n, the sequence {fs(n)}s<ωck1
changes at most

h(n) times, where h is a hyperarithmetic function of n. Note that this implies the conver-
gence of {fs}s<ωck1

. A function f is higher ω-computably approximable if there is a
higher ω-computable approximation converging to f .

In the classical case we have that a function f is ω-computably approximable iff it

is weakly-truth-table reducible to ∅(1). If furthermore f is {0,1}-valued, then also f is

weak-truth-table reducible to ∅(1) iff it is truth-table reducible to ∅(1). We will now see
that the same holds here, with a higher analogue of weakly-truth-table reducibility, where
the use of O is bounded by a hyperarithmetic function; and with a higher analogue of
truth-table reducibility, where the functional is a higher Turing functional, total on every
oracle.

Proposition 4.4.2:
A function f is higher ω-computably approximable iff it is higher weakly-truth-table
reducible to O. If f is {0,1}-valued, then f is higher ω-computably approximable iff
it is higher truth-table reducible to O.

Proof: The proof is similar to the one in the classical case. Let us first prove that
a {0,1}-valued and higher ω-computably approximable function f is higher truth-table
reducible to O. Let h ∶ N → N be the hyperarithmetic bound on the number of changes.
To compute f(n) using O, we ask O the question: ‘Will f(n) change more than 1 time
during the approximation?’ If the answer is yes we ask : ‘Will f(n) change more than

116

4.4. REFINEMENT OF THE NOTION OF HIGHER ∆0
2

2 times during the approximation?’. We can continue until the answer is no or until we
have asked h(n) times. At the end of the process we know the number of times f(n) will
change. Also we can always assume that the first value of f(n) is 0. Thus if the number
of times f(n) will change is even then f(n) = 0, otherwise f(n) = 1. It is clear that this
terminates for any oracle, therefore f is higher truth-table reducible to O.

Let us now assume that f is higher ω-computably approximable, but not necessarily
{0,1}-valued. Let us prove it is higher weakly-truth-table reducible to O. The process is
similar except that once we have the value m of the number of times f(n) will change we
then compute the actual approximation, until we reach m changes. The value of f(n) is
then the current one in the approximation. Also as the number of question we ask to O
is bounded by h(n), then also we have an hyperarithmetic bound on the use of O.

Let us now suppose that f is higher weakly-truth-table reducible to O via the func-
tional Φ, with bound h(n) and let us show that f is higher ω-computably approximable.
For every n < ω and every stage s < ωck1 we simply set fs(n) = Φ(O↾h(n))[s] (if Φ returns
no value on O↾h(n) [s] at stage s we set fs(n) = 0). As the approximation of O is higher
left-c.e., the number of changes in the approximation {fs(n)}s<ωck1

of f(n) is bounded by

2h(n).

4.4.4 Higher closed and compact approximations

Definition 4.4.3. A higher compact approximation is a converging higher Turing
computable sequence {fs}s<ωck1

such that {f}∪{fs ∶ s < ωck1 } is a compact set. A function

f ∈ NN is higher compact approximable if there is a higher compact approximation
converging to f .

In particular, any approximation {fs}s<ωck1
where the number of changes of

{fs(n)}s<ωck1
is finite for each n, is a compact approximation (see later Fact 5.4.1). This

implies in particular that any ω-computably approximable function also has a compact
approximation. We shall see that the converse does not hold in Section 5.4.

The notion of compact approximation is very important because it could be considered
as the true counterpart of the lower notion of ∆0

2 functions, because the lower ∆0
2 functions

are exactly those with a ‘compact approximation’. However, we then don’t have anymore

the counterpart with ‘being computable by ∅(1)’. We shall see in Section 5.4 refinements
of the notion of having a compact approximation that have an analogue in term of higher
computability and O.

Also, working in the Baire space rather than the Cantor space, we need to make a
distinction between closed and compact approximations.

Definition 4.4.4. A higher closed approximation is a converging higher Turing com-
putable sequence {fs}s<ωck1

such that {f} ∪ {fs ∶ s < ωck1 } is a closed set. A function

f ∈ NN is higher closed approximable if there is a higher closed approximation con-
verging to f .

117

4.4. REFINEMENT OF THE NOTION OF HIGHER ∆0
2

The notion of compact approximation will mainly be used in Section 5.3 to study
weak-Π1

1-randomness.

4.4.5 Higher self-unclosed approximations

We shall now see an even weaker restriction of higher ∆0
2, which will lead us to a separation

of Π1
1-randomness from weak-Π1

1-randomness:

Definition 4.4.5. A higher self-unclosed approximation of a function f is a higher
Turing computable sequence {fs}s<ωck1

converging to f and such that for every stage s,

the function f is not in the closure of {ft ∶ t < s} unless it is already an element of
{ft ∶ t < s}. Such a function f is then said to be higher self-unclosed approximable.

The purpose of self-unclosed approximations is to find a criterion as weak as possible,
for higher ∆0

2 functions to collapse ωck1 (to make ωck1 computable in X):

Theorem 4.4.1:
If f ∈ NN is not ∆1

1 and has a self-unclosed approximation then ωf1 > ωck1 . In particular

if X ∈ 2N has a self-unclosed approximation, then X is not Π1
1-random.

Proof: Suppose f has a self-unclosed approximation {fs}s<ωck1
. We can define the Π1

1(f)

total function g ∶ ω → ωck1 which to n associates the smallest ordinal sn so that fsn ↾n= f ↾n.
Then we have that f is in the closure of {ft}t<s for s = sup sn. Therefore we have sup sn =
ωck1 . Also as g is Π1

1(f) and total it is also ∆1
1(f). Then we can define a ∆1

1(f) sequence

of computable ordinals, unbounded in ωck1 which implies ωf1 > ωck1 , by the Σ1
1-boundedness

principle.

It is clear that a closed approximation is also a self-unclosed approximation. We shall
see in Section 5.3.2 that the converse does not hold, by building an element with a self-
unclosed approximation, which is weakly-Π1

1-random. By later Theorem 5.3.1 such an
element cannot have a closed approximation.

The self-unclosed approximable elements are also well-behaved with respect to the
continuity issues that might occur in the higher setting. We shall prove later with Theo-
rem 7.4.1 that higher Turing computations and fin-h computations coincide for elements
having a self-unclosed approximation. Also the self-unclosed approximable elements are
well behaved with respect to continuous relativization of randomness as we will see in
theorem 7.4.4.

On the other hand, we will prove with Corollary 7.3.2 that there are some higher ∆0
2

sequence Y,X such that Y ≥hT X but Y /≥fin−h X. We will also prove with Theorem 7.3.2
that there are some higher ∆0

2 sequence X such that there is no X-continuous universal
Π1

1-Martin-Löf test.

118

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

4.5 Continuously low for Π1
1-Martin-Löf randomness

The sequences which are low for Martin-Löf randomness have been extensively studied.
We shall transpose in this section the main results of the lower setting to the higher setting,
using continuous relativization.

4.5.1 hK-trivial sequences

Definition 4.5.1. A sequence A is hK-trivial if for some constant d, hK(A ↾n) ≤

hK(n) + d.

It is obvious that any ∆1
1 sequence is hK-trivial, because up to an index for such a

sequence A, the information about the length of a prefix of A is enough to retrieve that
prefix. We shall see that just like for the lower setting, there are non ∆1

1 and hK-trivial
sequences. Solovay was the first in [86] to build an incomputable K-trivial sequence. Later,
Hjorth and Nies showed that similarly, there are incomputable hK-trivial sequences. Both
proofs are similar in the lower and in the higher setting.

Theorem 4.5.1 (Hjorth, Nies [30]):
There is a hK-trivial which is not ∆1

1.

Proof: The construction :

We want to build a Π1
1 hK-trivial sequence X which is co-infinite and which intersect any

infinite Π1
1 set. Let {Pe}e∈N be an enumeration of the Π1

1 sets and let U be a universal Π1
1-

prefix-free machine. We enumerate X and build at the same time a Π1
1-bounded request

set M such that inf{m ∶ (m,X ↾n) ∈M} ≤ hKU(n)+1. We keep track of a set of Boolean
values Re, initialized to false and meaning that X does not intersect Pe yet.

At successor stage s, at substage e for which Re is false, if there is n ∈ Pe,s with n ≥ 2e
and such that the weight of M at stage s and substage e−1, restricted to strings of length
bigger than n, is smaller than 2−e−1, then we enumerate n in X at stage s, we set Re to
true, and for every pair (l,Xs−1 ↾m) in M at stage s and substage e− 1, for m ≥ n, we put
(l,Xs ↾m) in M at stage s and substage e.

After all substages e, if (σ,n) is enumerated in U at stage s, we enumerate (∣σ∣+1,Xs ↾n)

in M at stage s.

The verification :

We should prove that wg(M) ≤ 1. The weight of all the pairs we enumerate in M because
of some (σ,n) in U , is bounded by 1/2. Then for each e, the additional weight we put in
is bounded by 2−e−1. Therefore the weight of M is bounded by 1.

We should now prove that X is not ∆1
1. It is clearly co-infinite, as for each e we add

in X at most one integer bigger than 2e. Suppose that Pe is infinite. Then at some stage
s it is already infinite, by the Σ1

1-boundedness principle. Also at any stage t we have

119

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

wg(M) ≤ 1. Therefore there is a smallest length n such that the weight of M at stage
s, restricted to strings of length bigger than n, is smaller than 2−e−1. At this point, the
integer n is enumerated in X if Re is still false. So X intersects every infinite Π1

1 set.

Also by construction it is clear that inf{m ∶ (m,X ↾n) ∈M} ≤ hKU(n) + 1. Therefore
X is hK-trivial.

Chaitin proved in [6] that there are only countable many K-trivial sequences. With a
similar proof, we also have that there are only countably many hK-trivial sequences.

Theorem 4.5.2 (Hjorth, Nies [30]):
There is a constant c, such that for each constant d and each n, there are at most

c × 2d many strings σ of length n such that hK(σ) ≤ hK(∣σ∣) + d.

Proof: Let M be the machine which on a string τ outputs ∣U(τ)∣. If τ is a short
description for any string of length n via U , then τ is a short description for n, via the
machine M . Also by the coding theorem (Theorem 3.7.12) we have PM(n) < 2−hK(n) × cM
for some constant cM (recall PM from Definition 3.7.15). We now claim that for any length
n and any d, there are at most cM × 2d strings of length n such that hK(σ) ≤ hK(n) + d.
Suppose otherwise for a given length n. Then PM(n) ≥ cM ×2d ×2−hK(n)−d = cM ×2−hK(n),
which is a contradiction.

Corollary 4.5.1:
There is a constant c, such that for each constant d there are at most c × 2d many
sequences X such that hK(X ↾n) ≤ hK(n) + d for every n. In particular there are at
most countably many hK-trivial sequences.

Proof: With c the constant of the previous theorem, if there are more than c × 2d many
sequences X such that hK(X ↾n) ≤ hK(n) + d for every n, then also for n large enough,
there are more than c × 2d many strings σ of length n such that hK(σ) ≤ hK(∣σ∣) + d.

The previous theorem will allow us to determine that hK-trivial sets are actually fairly
simple to describe: They are all higher ∆0

2. Also we can even put them in a sharper class,
which will be useful for the notion of higher randomness, continuously relativized to an hK-
trivial sequence: The class of self-unclosed approximable sequences (see Definition 4.4.5):

Proposition 4.5.1:
Every hK-trivial sequence A has a self-unclosed approximation {As}s<ωck1

such that
every As looks hK-trivial at stage s, that is, for every stage s and every n we have
hKs(As ↾n) ≤ hKs(n) + d where d is the hK-triviality constant of A. In particular,
every hK-trivial sequence is higher ∆0

2.

120

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

Proof: Suppose that A is hK-trivial with constant d. For each stage s < ωck1 , let Ts =
{σ ∶ ∀τ ⪯ σ hKs(τ) ≤ hKs(∣τ ∣) + d}, where hKs is the approximation of hK at stage s.
Each tree Ts is ∆1

1 uniformly in s. Let us prove the following convergence claim:

Convergence claim: At any limit stage s and for any string σ, if σ ∈ Ts then also there
is a stage t < s such that for all stages t ≤ r < s the string σ is in Tr. Similarly if σ ∉ Ts
then also there is a stage t < s such that for all stages t ≤ r < s the string σ is not in Tr.

We only argue the case where σ ∈ Ts, the other one being similar. Suppose σ ∈ Ts.
Then also every prefix of σ is in Ts. By induction suppose the claim is true for every strict
prefix of σ. In particular as there are finitely many of them, there is a stage t1 < s such
that for every stage t1 ≤ r < s, every strict prefix of σ is in Tr. Also the approximation
{hKs}s<ωck1

is pointwise decreasing and always above 0, in particular it is a higher ω-
computable approximation and it is harmless to suppose limt<s hKt = hKs for every limit
stage s (see the notion of partial continuous approximation in Section 5.4). It implies
that the truth value of the assertion ‘hKr(σ) ≤ hKr(∣σ∣) + d’ can change at most finitely
often over stages r < ωck1 . It follows that as hKs(σ) ≤ hKs(∣σ∣) + d there is a stage t2 < s
such that for every stage t2 ≤ r < s, we have hKr(σ) ≤ hKr(∣σ∣) + d. Then at every stage
max(t1, t2) ≤ r < s we have σ ∈ Tr and the convergence claim is true for σ.

It follows that at limit stage s, the tree Ts is the ‘pointwise limit’ of the sequence
{Tt}t<s, each ‘point’ of the pointwise limit being the truth value of an assertion ‘σ ∈ Tt’ for
some σ. We now define T to be the pointwise limit tree of {Ts}s<ωck1

and we have similarly

that T = {σ ∶ ∀τ ⪯ σ hK(τ) ≤ hK(∣τ ∣) + d}. In particular we have A ∈ [T] and as [T] has
only finitely many elements, there is a prefix σ of A such that A is the only elements of
[T] ∩ [σ].

We now build a Π1
1 function g ∶ ωck1 ↦ ωck1 such that for any stage g(s), there are at

most c × 2d sequences which looks hK-trivial at stage g(s), where c is the constant of the
previous theorem. Let g(0) = 0. At successor stage s + 1 we define g(s + 1) the following
way: Let t0 = s and for any n, let tn+1 be the smallest stage bigger than tn such that
for every i ≤ n + 1, there are at most c × 2d strings of length i in Ttn+1 . We know that
such a stage always exists by the convergence claim and because in T we actually have
at most c × 2d strings of length i for every i ≤ n + 1. By the Σ1

1-boundedness principle we
have supn tn < ω

ck
1 and then we can let g(s + 1) = supn tn. By the convergence claim, the

sequence of trees {Tt}t<g(s+1) converges ‘pointwise’ to Tg(s+1) which implies that at stage

g(s+ 1), for every n there are at most c× 2d strings of length n in Tg(s+1). Finally at limit
stage s we define g(s) = supt<s g(t). Note that by the convergence claim, we then also
have at most c× 2d strings of length n in Tg(s), for every n. We call g-stage a stage of the
form g(s) for some s. Note that the supremum of a set of g-stages is also a g-stage (or
equal ωck1).

Recall that σ is a prefix of A such that [T] ∩ [σ] contains only A. We now build a Π1
1

function h ∶ ωck1 ↦ ωck1 which looks for g-stages s for which [Ts] ∩ [σ] is not empty. Let
h(0) = g(0). At successor stage s + 1 we define h(s + 1) the following way: Let t0 = h(s)
and for every n, let tn+1 be the smallest g-stage bigger than tn such that there is a string
of length n+ 1 compatible with σ in Ttn+1 . Again we know that such a stage always exists
by the convergence claim and because there exists such a string in T . Also by the Σ1

1-
boundedness principle we have supn tn < ωck1 and then we can let h(s + 1) = supn tn. As
h(s+1) is a supremum of g-stages then also h(s+1) is a g-stage. Also by the convergence
claim, there are strings of longer and longer length extending σ in Th(s+1), which implies

121

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

that [Th(s+1)] ∩ [σ] is non-empty, by compactness. Finally at limit stage s we define
h(s) = supt<s h(t). Here again by the convergence claim and by compactness, the set
[Th(s)] ∩ [σ] is non-empty. We call h-stages the stages of the form h(s) for some s. It is
clear that each h-stage is a g-stage and that the supremum of a set of h-stages is also a
h-stage (or equal ωck1).

We now build an approximation {As}s<ωck1
of A only along h-stages: At stage s we

simply let As be the leftmost path of [Th(s)]∩[σ]. As [T]∩[σ] contains only one path, and
using the convergence claim, it is clear that lims<ωck1

As converges to A. By design, it is

also clear that for each s we have hKs(As ↾n) ≤ hKs(n)+d for every n. We also claim that
as long as A is not ∆1

1, the approximation is self-unclosed. Suppose otherwise, that is, for
some lengths n1 < n2 < . . . and some stages s1 < s2 < . . . such that s = supi h(si) < ω

ck
1 , we

have A ↾ni≺ Ah(si) for each i ∈ N. We have by the convergence claim that A ∈ [Ts]. Also

as s is a g-stage, the ∆1
1 tree Ts contains at most c × 2d many paths and then A is ∆1

1.

Corollary 4.5.2 (Hjorth, Nies [30]):
If X is hK-trivial and X is not ∆1

1, then ωX1 > ωck1 .

Proof: By Theorem 4.4.1 a non ∆1
1 sequence with a self-unclosed approximation does

not preserve ωck1 .

4.5.2 Low for hK and low for Π1
1-Martin-Löf randomness

Definition 4.5.2. A sequence X is continuously low for hK if for any X-continuous Π1
1

prefix-free machine M we have a constant cM such that hK(σ) ≤ hKX
M(σ) + cM .

Definition 4.5.3. A sequence X is continuously low for Π1
1-Martin-Löf randomness if

the A-continuous Π1
1-Martin-Löf randoms coincide with the Π1

1-Martin-Löf randoms.

Proposition 4.5.2:
If a sequence X is continuously low for hK, then it is hK-trivial.

Proof: Let U be a universal Π1
1-prefix-free machine and let M be the Π1

1 set of triples
where we enumerate {σ, τ, σ} in M at stage s if U(τ) = ∣σ∣ at stage s. We have for every
oracle X that {(τ, σ) ∶ ∃ρ ≺ X (ρ, τ, σ) ∈M} is a prefix-free set of strings such that for
any σ ≺X we have hKX

M(σ) = hK(n).

Now because X is low for hK we have hK(X ↾n) ≤ hKX
M(X ↾n) + cM = hK(n) + cM

which makes X hK-trivial as well.

122

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

We can deduce using the fact that hK-trivial sequences have a self-unclosed approxima-
tion, that also the continuously low for hK sequences have a self-unclosed approximation.
We can then use this to prove that being continuously low for hK implies being con-
tinuously low for Π1

1-Martin-Löf randomness. We shall prove later with Corollary 4.5.5
that if a sequence A is continuously low for Π1

1-Martin-Löf randomness, then also it is
continuously low for hK.

Corollary 4.5.3:
If a sequence A is continuously low for hK then it is continuously low for Π1

1-Martin-Löf
randomness. Also if A is continuously low for hK there are:

1. A A-universal oracle-continuous Π1
1-prefix-free machine.

2. A A-universal oracle-continuous Π1
1-discrete semi-measure.

3. A A-universal oracle-continuous Π1
1-continuous semi-measure.

4. A A-universal oracle-continuous Π1
1-Martin-Löf test.

Proof: If A is continuously low for hK it is hK-trivial and then by Proposition 4.5.1 it
has a self-unclosed approximation. Also we shall prove in Section 7.4.1 that if a sequence
A has a self-unclosed approximation, then any nullset B corresponding to a A-continuous
Π1

1-Martin-Löf test is included in a nullset corresponding to a A-continuous Π1
1-prefix-free

machine M , that is:

B ⊆ {X ∶ ∀c ∃n hKA
M(X ↾n) ≤ n − c}

But as A is low for hK we have

{X ∶ ∀c ∃n hKA
M(X ↾n) ≤ n − c} = {X ∶ ∀c ∃n hK(X ↾n) ≤ n − c}

which is a Π1
1-Martin-Löf test containing B. Then A is continuously low for Π1

1-Martin-Löf
randomness.

We also prove in Section 7.4.1 that in case A has a self-unclosed approximation, there
is a universal oracle continuous object for the four notions mentioned above.

We also have the following corollary, proved by Nies and Hjorth in [30]. We say that
a sequence X is Π1

1(A)-Martin-Löf random if X is in no uniform intersection of Π1
1(A)

open sets effectively of measure 0. We say that a sequence A is low for Π1
1-Martin-Löf

randomness with full relativization if Π1
1(A)-Martin-Löf randomness coincides with Π1

1-
Martin-Löf randomness.

Corollary 4.5.4:
A sequence A is low for Π1

1-Martin-Löf randomness, with full relativization, iff it is
∆1

1.

123

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

Proof: Suppose A is not continuously low for Π1
1-Martin-Löf randomness, then it is

certainly not low for Π1
1-Martin-Löf randomness using full relativization. Now if it is

low for Π1
1-Martin-Löf randomness it is then hK-trivial. If furthermore it is not ∆1

1, by
Corollary 4.5.2 we then have ωA1 > ωck1 . Also then by Theorem 3.5.1 we have A ≥h O and
then Ω, the leftmost path of a Σ1

1 closed set containing only Π1
1-Martin-Löf randoms, is

hyperarythmetically reducible to A, and then not Π1
1(A)-Martin-Löf random. So A is not

low for Π1
1-Martin-Löf randomness, with full relativization.

Our next theorem is the hard part of this section. Nies proved (with Hirschfeldt)
in [68] that for classical randomness, the class of K-trivials coincides with the class of
low-for-K. The theorem remains the same in the higher setting, however, as often, the
proof needs some adaptation (in the higher setting). There are basically two differences :
In the classical proof, we need several times to pick a number bigger than any number used
so far in the algorithm. This cannot be done anymore here, and this should be replaced by
picking a number different than any number picked so far in the algorithm. This number
should however also be ‘large enough’. This will be made precise in the proof. The second
difference is that in the classical proof, we need to work at special stages, stages at which
the current approximation of our sequence ‘looks’ K-trivial for longer and longer prefixes.
Here we can actually have stages for which the sequence looks K-trivial everywhere.

Theorem 4.5.3:
If a sequence A is hK-trivial, then it is continuously low for hK.

The rest of this section is dedicated to the proof of Theorem 4.5.3. Let Mu be a
universal Π1

1-discrete semi-measure. Suppose that A is hK-trivial, namely there is some
c such that Mu(A ↾n) > Mu(n) × 2−c for any n. We will prove that A is then low for
hK. Recall that by Corollary 4.5.3, since A is hK-trivial, there exists a A-universal oracle-
continuous Π1

1-discrete semi-measure MA. Then to prove that A is low for hK, we should
prove that there exists a Π1

1-discrete semi-measure M̃ such that M̃ >∗ MA.

The general idea

The universal Π1
1-discrete semi-measure Mu is given by a Π1

1 subset of 2<N × Q and the
A-universal oracle-continuous Π1

1-discrete semi-measure MA is given by a Π1
1 set M ⊆

2<N × 2<N ×Q with:

MA(x) = sup{q ∣ ∃σ ⪯ A s.t. (σ,x, q) ∈M}

Note that we have ∑xM
X(x) ≤ 1 for any oracle X.

As A is hK-trivial, we know it has a self-unclosed approximation. Also the principle is
to try to match the A-continuous Π1

1-discrete semi measure with an oracle-free Π1
1-discrete

semi-measure, using the approximation of A. First we wait to see the oracle-continuous
Π1

1-discrete semi-measure put weight on some integer e using the first m bits of some
approximation As of A. But first we don’t trust that the m first bits of As are the
final approximation and then we don’t want our measure M̃ to match it yet. First this
approximation has to prove itself ‘solid’ over time. This is done with the help of another
Π1

1-discrete semi-measure denoted by Md which will put some weight q on some n >m and

124

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

wait for the universal Π1
1-discrete semi-measure Mu to match the weight q on some At ↾n

for t ≥ s. Because A is hK-trivial, as long as Md is truly a Π1
1-discrete semi-measure, we

know that this will necessarily happen, at least when we have the correct approximation of
A (there are some details to handle with the hK-triviality constant, this is done accurately
later). If during this process the first m bits of As don’t change, then those bits have proven
themselves solid and we can let M̃ match M on the integer e. Otherwise we wait for the
next approximation of A to be used to put some weight on e. Of course, even when As ↾m
has proven itself worthy it does not mean that these m bits won’t ever change. But we will
show that they cannot change too many times without making ∑nMu(n) bigger than 1.

We borrow the word ‘process’ from computer engineering, which fits well to the present
situation: A process is an instance of a computer program that is being executed. Here our
process will be ‘running’ Π1

1 predicates. In the construction we will have infinitely many
of them, all trying to match MA with their own Π1

1-discrete semi-measure M̃ , however
all those processes will be involved in the enumeration of the same shared Π1

1-discrete
semi-measure Md, whose role has been discussed above. Also, they will all be linked in an
infinitely branching tree (but of finite depth) of recursive calls of processes, with a unique
father process. Let d denote a code for the Π1

1 description of the set Md ⊆ 2<N ×Q. We
have a hK-triviality constant c such that Mu(A ↾n) >Md(n) × 2−d × 2−c for every n. Let
k be an integer such that k × 2−d × 2−c > 2. By the fixed point theorem, we can suppose
that the Π1

1 description of the set Md ⊆ 2<N ×Q can ‘access’ its own code and then can
also ‘access’ an integer k such that k × 2−d × 2−c > 2. The integer k will be a parameter of
the Π1

1 predicate Md.

The notion of i-sets

We introduce the notion of i-set. We say E ⊆ N×Q is an i-set at stage s if for all (n, η) ∈ E
we have that (n, η) has been enumerated in Md at some stage t ≤ s and if we have i
distinct approximations Ar ↾n of the n first bits of A with t ≤ r ≤ s which are such that
Mu,r(Ar ↾n) > η×2−d×2−c. In addition of that, we require that (n1, η1) ∈ E and (n2, η2) ∈ E
implies n1 ≠ n2. We call weight of an i-set the value ∑(n,η)∈E η, also denoted by wg(E).

Each of our processes will create some i-sets for some i ≤ k (where k is the integer
described above, such that k × 2−d × 2−c ≥ 2). The starting point of the future golden run
argument lies in the following lemma, about the weight of a k-set:

Lemma 4.5.1 If E is a k-set, then wg(E) < 1
2 .

Proof: For any (n, η) ∈ E there are then k distinct strings σ of length n such that
Mu(σ) > η × 2−d × 2−c, but then ∑σMu(σ) ≥ k × 2−d × 2−c × 1

2 > 1, which contradicts that
Mu is a discrete semi-measure.

To achieve the creation of i-sets, we now give the informal description of k distinct
processes P1, . . . , Pk. Each process Pi has three parameters. The first one p, a rational
smaller than 1, is a goal to reach, that is, the process Pi will try to enumerate a i-set Fi
of weight p. The second one, a rational δ smaller than p, corresponds to ‘how fast’ we
try to make wg(Fi) reach its goal p, that is, we will enumerate in Fi some pairs (n, δ) for
some integers n. For this reason also, p should be a multiple of δ. We briefly explain the
idea of the parameter δ, and the reason it has to be chosen carefully. By definition of an
i-set, in order to enumerate (n, δ) into Fi, we first need to enumerate (n, δ) into Md. One
problem is that for technical reasons explained later, the weight δ put on n in Md might
be ‘lost’. In order not to lose too much weight, the parameter δ has to be small enough,

125

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

so that the procedure Pi fills Fi step by step, with a potential ‘loss’ of at most δ. For this
reason, the parameter δ is also called the garbage parameter. Finally the last parameter
of each Pi corresponds to some length that will have to increase at each recursive call.
This mechanism will clarified itself later.

The tree of processes

The algorithm will consist of a dynamic tree of processes, where each node corresponds
to a process with the relation that P is a child of Q if the process P has been called by
the process Q. Each node stays in the tree as long as its corresponding process is being
executed, and disappears (with all its children) when the process ends, or is ‘killed’, as we
will see in details later.

Recall that k is chosen so that k × 2−d × 2−c ≥ 2. The algorithm starts by executing the
process Pk, corresponding to the root of our tree of processes. Then Pk will call infinitely
many ‘child processes’ Pk−1, and so on, inductively for any node of the tree of depth i < k
that corresponds to a process Pk−i. Also, nodes of the tree of depth k, corresponding to
processes P1 will remain leaves of the tree of processes.

Each process Pi will be in charge of enumerating an i-set with the help of every process
it has called. So each process P1 starts the enumeration of a 1-set F1. When the weight
of F1 reaches the required goal, the process P1 stops, and the 1-set enumerated by P1

is then intended to be ‘emptied’ into the 2-set enumerated by the father of P1. After
P1 has stopped, it is the father of P1 which decides when it is time to transfer the 1-set
enumerated by P1, into its own 2-set, because it is the father of P1 which knows at what
stage elements of the 1-set of P1 can now be ‘upgraded’ into elements of a 2-set (We will
see that elements of the 1-set can be upgraded into a 2-set when the approximation of
some prefix of A has changed). The same happens then for any process Pi and its father.
This back and forth recursion is pursued, with as final target, the enumeration of the k-set
Fk enumerated by the one process Pk.

The dispatcher process and the notation s∗

In the algorithm, we will need to use several times ‘an integer that has not been used yet’.
In classical computability we can always pick an integer bigger than any other integer
used so far. In higher computability this can be achieved with the use of the projectum
function p ∶ ωck1 → ω.

However, one difficulty is that we have infinitely many processes that will be run in a
dynamic tree of processes, where some process will be killed and some other will be born
along the ‘ordinal times of computation’.

Also, each process P will be described independently as an algorithm running through
all the computable ordinal stages, but it should be clear that each of them is meant to be
ruled by a unique ‘dispatcher process’, which allocates some ordinal computational time
to each process of our recursive tree, in such a way that all of them are ‘executed until
the end’ (meaning we assign them some ordinal time of computation cofinally below ωck1),
and also such that one action of one process corresponds to one stage.

So inside a process P , the notation s∗ refers to the current global stage, rather than
the current stage s of P , and s∗ will then be used with the projectum function, in order
to get ‘a number that has no been used so far’.

126

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

A Π1
1 description of the unique ‘dispatcher process’ would be very tedious to give, and

we hope that the paragraph of Section 3.6.2 on the formal way to handle ordinal substages
will convince the reader that this Π1

1 description can be derived from the description we
will give of the recursive call of each process of the tree of processes.

The golden run

The heart of the proof consists in a clever idea to which Andre Nies gave the elegant James
Bond-ish name:

The golden run1.

Each procedure Pi will try to enumerate the description of a discrete semi-measure M̃ ,
such that M̃ >∗ MA. We saw that the purpose of building k-sets is that Pk cannot reach
its goal of 3

4 . A first idea is to try to show that if Pk does not reach its goal, this implies

M̃ >∗ MA. However it is possible that Pk does not reach its goal simply because some of
its children Pk−1 do not return, which prevent us from saying anything, because then a
change in the approximation of A can never prove itself worthy. But as we will see, there
must exist a node of tree of processes, called the golden run, which does not reach its goal
but which is such that all the its children processes return at some point (or are canceled
as we will see in the details).

The special stages of computation

Before giving a description of a standard process P , we need to introduce a last notion,
which actually presents a simplification compared to the same proof in the lower setting.
We need to identify some stages s such that A looks hK-trivial at stage s, that is, such
that for all n we have Mu,s(As ↾n) > Mu,s(n) × 2−c. Such a thing could not be achieved
for every n in the lower setting, leading to some complications. However, in the higher
setting, we can prove:

Lemma 4.5.2 Cofinally below ωck1 , there are some stages s < ωck1 such that for every n we
have Mu,s(As ↾n) >Mu,s(n)× 2−c. Furthermore, we can effectively enumerate those stages
in order, along the computable ordinals.

Proof: It follows directly from Proposition 4.5.1, which says that if A is hK-trivial with
constant d, then it has a self-unclosed approximation {As}s<ωck1

such that at every stage s

we have hKs(As ↾n) ≤ hKs(n) + d for every n. We can always consider that our universal
semi-measure Mu is equal to 2−hK (see Corollary 3.7.2).

We will call special stages, the stages of this form. Also we should now consider that
any stage of the whole algorithm is actually a special stage, that is at stages for which
A does not look hK-trivial we do nothing, and we will do something only at stages for
which A looks hK-trivial. As we will work only with those special stages, we will simply
call them stages. Why do we do this? Once some (n, η) has been enumerated into Md,
instead of waiting for Mu(A ↾n) to be bigger than η × 2−c × 2−d, we will wait for Mu(n)
to be bigger than η × 2−d on some stage s. Then, because s is a stage, we know that also
we have Mu,s(As ↾n) > η × 2−c × 2−d, but also for any stage t > s we have Mu,t(At ↾n) >
Mu,t(n) >Mu,s(n) > η × 2−c × 2−d. Also once we have Mu,s(As ↾n) > η × 2−c × 2−d, it then
remains true even after As ↾n changes; this will be useful to upgrade a i-set into a i+1-set.

1Andre Nies assured the author of this thesis that this name has nothing to do with the famous fictional
British secret agent; the underlying idea behind this appellation thus remains a mystery...

127

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

Description of the algorithm

Recall that we have an A-universal oracle-continuous Π1
1-discrete semi-measure given by

a Π1
1-predicate M ⊆ 2<N × N ×Q. Each process of the tree tries to match it with its own

local Π1
1-discrete semi-measure M̃ . Similarly, every set Fi is local to the current process.

On the contrary, recall that the description of Md is shared among all of them (the leaves
of the tree of processes being the only nodes that enumerate things in Md). We start by
executing the process Pk(

3
4 ,

1
4 × 2−p(0),0) described below, and we let the tree of processes

build itself inductively.

128

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

Process Pi,e,q for 1 < i ≤ k

Input : The goal p, The garbage δ and some length w
for all stage s do

for substage (e, q) with e, q ∈ N ×Q do
if (e, q) is marked available then

if ∃ σ ⪯ As s.t. (σ, e, q) is enumerated at some stage below s in M then
Set σe,q to be the smallest prefix of As of length strictly bigger than w, such
that this is so. If needed, we extend the length of the largest such prefix by
taking as many bits as we need in As to make it strictly longer than w.

Set we,q to be the length of σe,q (i.e. the use of As such that MAs(e) ≥ q).

Let δ′ be the biggest rational smaller than 1
4
× 2−p(s

∗) such that q × δ is a

multiple of δ′ and call the process Pi−1,e,q(q × δ, δ′,we,q).

Mark (e, q) as unavailable.

end

end

if (e, q) is marked unavailable after the call of some process Pi−1,e,q then
if the process Pi−1,e,q has returned then

enumerate (e, q × δ
p+δ) into M̃ .

end

if As ↾we,q is different from σe,q then
Mark (e, q) as available.

If the process Pi−1,e,q has not returned, cancel it and recursively cancel all
its sub-processes.

Put Fi−1,e,q into Fi.

if wg(Fi) ≥ p then
Stop the current process and recursively stop all its sub-processes.

end

end

end

end

end

Procedure P1,e,q

Input : The goal p, The garbage δ and a length w

for all stage s do

Let m be the smallest number such that p(ω × s∗ +m) > w and let n = p(ω × s∗ +m).

Enumerate (n, δ) into Md.

Wait for some stage t such that Mu,t(n) > δ × 2−d.

Put (n, δ) into F1.

if wg(F1) ≥ p then
Stop the process.

end

end

129

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

We now turn to the formal verification:

Let us prove that each Fi is a i-set:

Let us prove that each F1 is a 1-set at each stage. We should first argue that we never
have (n, η1) and (n, η2) into some F1 for η1 ≠ η2. If P1 enumerates (n1, η1) in Md and
later enumerates (n2, η2) in Md, it does it at two distinct stages s∗1 ≠ s∗2 . Also then
n1 = p(ω × s

∗
1 +m1) and n2 = p(ω × s

∗
2 +m2) for some m1,m2, which implies that n1 ≠ n2.

Note that this argument holds even for two distinct 1-sets.

Now suppose that (n, η) enters into F1 at some stage s. Then by construction, at some
stage t < s we have put (n, η) into Md, and that at stage s we have Mu,t(n) > η ×2−d. But
because t, s are stages we have that Mu,s(As ↾n) > η × 2−d × 2−c.

Suppose now that each Fi associated to a process Pi corresponding to a node of depth
k − (i) of the tree of processes, is a i-set at each stage. Suppose that at stage s we have
(n, η) which enters into some Fi+1. First, by the above argument, we cannot already have
(n, η′) in Fi+1 at stage s for η ≠ η′. Also by construction we have:

� There is a stage t < s and an integer m < n such that At ↾m≠ As ↾m.

� At some stage r with t < r < s the couple (n, η) goes in some 1-set F1.

� At some stage between r and s the couple (n, η) goes in some i-set Fi.

We have that Mu,s(As ↾n) ≥ η × 2−d × 2−c because s is a stage and because s > r. So
As ↾n is a good candidate to make n the element of the i+1-set Fi+1, but we need to verify
that As ↾n is different from all the other strings σ1, . . . , σi−1 of length n that makes (n, η)
the element of Fi. Indeed, it is possible that prefixes in the approximation of A come back
to previous values. It is enough to prove that At shares the same first m bits with each
σj for 1 ≤ j ≤ i, because as we have At ↾m≠ As ↾m, then As ↾n is different from each σj for
1 ≤ j ≤ i. So suppose this is not the case. By definition of a i-set, and by construction,
we then have a stage r′ with t < r < r′ < s such that Mu(Ar′ ↾n) ≥ η × 2−d × 2−c with also
Ar′ ↾m≠ At ↾m. Here Ar′ ↾n corresponds to one of the strings σj . But then if Ar′ ↾m≠ At ↾m,
we have by construction that the process Pi is canceled by its father at stage r′, before
(n, η) could enter Fi, which is a contradiction. In order for this argument to be valid, we
need to assume that every process is being taken care of, with a priority corresponding to
its depth in the tree of processes (nodes of lower depth have higher priority), which is a
harmless hypothesis.

Let us prove that Md is a discrete semi-measure:

The total weight which is put in Md by some process P1(p, δ) creating a 1-set F1 is bounded
by wg(F1) + δ. Indeed, by construction, for every (n, δ) that P1 enumerates in Md, also
(n, δ) is enumerated into F1, except maybe for one (n, δ), in case the procedure is canceled
before it finds a stage t such that Mu,t(n) > δ × 2−d.

In addition to that, note that all the 1-sets enumerated in the whole algorithm are pair-
wise disjoint along theirs first components, because if in one instance of P1 we enumerate
(n1, δ1) in Md and in another instance of P1 we enumerate (n2, δ2) in Md (possibly with
δ1 = δ2), we do so at stages s∗1 ≠ s

∗
2 . Also then n1 = p(ω × s

∗
1 +m1) and n2 = p(ω × s

∗
2 +m2)

which implies that n1 ≠ n2.

130

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

Now let Pi(p, δ) be a process enumerating an i-set Fi. Let Ci−1 be the (disjoint) union
of all the i-1-sets Fi−1 that are enumerated by a process Pi−1 which is called by Pi at some
point. We denote by Ci−1 − Fi the elements which are in Ci−1 at some point, but never
enter Fi. Let us prove that wg(Ci−1 − Fi) ≤ δ. Note first that we have wg(Ci−1 − Fi) ≤
sups<ωck1

wg(Ci−1,s − Fi,s). It would then be enough to prove that at any stage s we have

wg(Ci−1,s − Fi,s) ≤ δ ×wg(MAs), and this is what we now prove.

First, by construction, for any stage s, any i-1 set Fi−1,s enumerated by a child of Pi,
corresponds to an enumeration of some (At ↾m, e, q) in Mt for some m,e, q and a stage
t ≤ s. Now suppose that As ↾m≠ At ↾m, then by construction we have that everything
which is in the i-1-set corresponding to the enumeration of (At ↾m, e, q) in Mt will be put
into Fi. Therefore the weight of (Ci−1,s −Fi,s) is bounded by the sum of the weight of the
i-1-sets corresponding to enumerations (As ↾m, e, q) in Ms, for some m,e, q. Also for each
of those enumerations, the corresponding i-1-set has its weight bounded by δ × q because
by construction we fill it with quantities of the form (δ × q)/m for some integer m until
it reaches the value δ × q. But then we have wg(Ci−1,s − Fi,s) ≤ δwg(MAs), which implies
that wg(Ci−1 − Fi) ≤ δ.

Now combining this with the fact that all 1-sets are pairwise disjoint, and therefore
also all i-sets for any i, it follows that the total weight which is put in Md is bounded by
the weight of the unique k-set Fk plus the sum of all the garbage parameters 1

4 × 2−p(s
∗).

Also as the goal of Pk is of 1/2 and as the goal of a process is never exceeded (or by at
most the garbage parameter), we have wg(Fk) <

3
4 ; and by definition of s∗ we have that

the sum of all garbage parameters 1
4 ×2−p(s

∗) is smaller than 1
4 . It follows that wg(Md) ≤ 1

and Md is a discrete semi-measure.

End of the proof : The Golden run

We should now prove that there is one process Pi(p, δ,w) for 1 < i ≤ k such that Pi is never
canceled, never reaches its goal p (and then never returns) and such that every process it
calls returns, unless canceled. Such a process is called the golden run.

We know that Pk cannot be canceled by any other process, as it is the root of the tree,
and we also know that it never reaches its goal p, by Lemma 4.5.1. Also if any process
Pk−1 that it calls returns unless canceled, then Pk is the golden run. Otherwise, at least
one process Pk−1 called by Pk is never canceled and never returns. In particular Pk−1 never
reaches its goal. We can then continue the induction starting from Pk−1 : Either it is the
golden run, or it calls a process Pk−2 which is never canceled and never reaches its goal.
Also either the induction will stop when we find a golden run Pi for 2 < i ≤ k, or it will
reach a process P2, which is never canceled and never reaches its goal. But then such a
process P2 is necessarily the golden run, because by construction, any process P1 reaches
its goal, unless canceled.

So let Pi(p, δ,w) be the golden run. We should now prove that the predicate M̃ which
is enumerated by the golden run is a discrete semi-measure such that M̃ >MA × δ

p+δ .

Let us first prove that wg(M̃) ≤ 1. When (e, q × δ
p+δ) enters M̃ , it is because some

(σ, e, q) is enumerated in M . Also let C1 be the set containing all pairs (e, q) such that
(e, q× δ

p+δ) is enumerated in M̃ because of some (σ, e, q) is enumerated in M for σ ⊀ A, and

let C2 be the set containing all pairs (e, q) such that such that (e, q × δ
p+1) is enumerated

in M̃ because of some (σ, e, q) enumerated in M for σ ≺ A. We have that wg(M̃) ≤

131

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

δ
p+δ (wg(C1) +wg(C2)).

We have wg(C1) ≤ p
δ because if (e, q) is in C1, the corresponding called process has

stopped and reached its goal of q × δ, and the corresponding i-1-set will then be put in
the i-set of the golden run. Also, as we are in the golden run, this i-set never reaches
its goal of p, implying wg(C1) ≤

p
δ . Also we clearly have wg(C2) ≤ wg(MA) ≤ 1. Then

wg(C1) +wg(C2) ≤
p+δ
δ and then wg(M̃) ≤ 1 and M̃ is a discrete semi-measure.

Let us now prove that M̃ ≥MA × δ
p+δ . If (σ, e, q) is enumerated in M for σ ≺ A, then

the corresponding called process will never be canceled, as A↾∣σ∣= σ. Also because we are

in the golden run it will return, and therefore we will enumerate (e, q × δ
p+δ) in M̃ . Then

M̃ ≥MA × δ
p+δ , which concludes the proof.

4.5.3 Base for randomness

We now deal with another notion, that is equivalent to K-triviality in the lower setting,
and whose higher analogue turns out be equivalent to hK-triviality in the higher setting.

Definition 4.5.4. The sequence A is a base for continuous Π1
1-Martin-Löf ran-

domness if there is some A-continuous Π1
1-Martin-Löf random sequence Z such that

Z ≥hT A.

We can first observe that any sequence which is continuously low for hK is also a base
for continuous Π1

1-Martin-Löf randomness.

Proposition 4.5.3:
If A is continuously low for hK, then A is a base for continuous Π1

1-Martin-Löf ran-
domness.

Proof: If is pretty clear, as being continuously low for hK is the same as being contin-
uously low for Π1

1-Martin-Löf randomness, and as by Theorem 4.1.2, for any sequence A,
there is a Π1

1-Martin-Löf random Z such that Z ≥hT A. Also as A is continuously low for
Π1

1-Martin-Löf randomness, then also Z is A-continuously Π1
1-Martin-Löf random.

Hirschfeldt, Nies and Stephan proved in [29] that the two notions actually coincide in
the lower setting. The result can be transfered in the higher setting, but again, the proof
needs to be modified due to the usual topological issues of higher computability.

Theorem 4.5.4:
If A is a base for continuous Π1

1-Martin-Löf randomness, then A is continuously low
for hK.

Before proving the theorem, we deduce the following corollary:

132

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

Corollary 4.5.5:
If a sequence A is continuously low for Π1

1-Martin-Löf randomness, then also it is
continuously low for hK.

Proof: Suppose A is continuously low for Π1
1-Martin-Löf randomness. By the higher

Kučera-Gács theorem (Theorem 4.1.2), there is a Π1
1-Martin-Löf random sequence Z which

higher Turing computes A. But Z is also A-continuously Π1
1-Martin-Löf random, making

A a continuous base for Π1
1-Martin-Löf randomness. Therefore A is low for hK.

The rest of the section is dedicated to the proof of Theorem 4.5.4. Suppose that Z
is A-continuously Π1

1-Martin-Löf random and suppose that Φ(Z) = A for some higher
Turing functional Φ. We can assume that if (τ, σ) is in Φ then Φ also contains (τ, σ′) for
each σ′ ⪯ σ. Let M be any higher A-continuous Π1

1-discrete semi-measure. We have that

∑x sup{q ∣ ∃σ ⪯ A M(σ,x, q)} ≤ 1, but M needs not describe a semi-measure on other
oracles. We can assume without loss of generality that the q’s in M are only powers of
2. We also can assume that each triple (τ, σ, q) is enumerated ωck1 -cofinally many times
in M . For each integer d we will describe an algorithm having d as a parameter. Each
instance of the algorithm will enumerate some Π1

1 set of strings Cσ,x,q for each triple
(σ,x, q) ∈ 2<N ×N ×Q (so called ‘hungry sets’ by Hirschfeldt, Nies and Stephan) and will
enumerate a Π1

1-discrete semi-measure described by a predicate N ⊆ N ×Q.

The algorithm for a parameter d

Before giving the algorithm, let us first fix for each triple (σ,x, q) a rational δσ,x,q such
that ∑σ,x,q δσ,x,q ≤ 1. Recall also that p ∶ ωck1 → ω is the projectum function.

At the beginning of the algorithm, for each triple (σ,x, q) we set C0
σ,x,q = ∅. Then

at successor stage s of the algorithm, let (σ,x, q) be the new triple enumerated in Ms.
Look at all pairs (τ, σ) enumerated in Φ at stage t < s until two conditions are met:
First the string τ should not be marked as used (as defined below). Then we must have
λ([Csσ,x,q]

≺) + 2−∣τ ∣ ≤ 2−dq. If no such pair (τ, σ) is found then we go to the next stage.

Otherwise we want to add τ to Csσ,x,q. But we also want to keep all the open sets
described by each Csσ,x,q pairwise disjoint. Since it is not be always possible, we keep
them ‘mostly disjoint’. Let U s be the set of all the strings in any of the Csσ,x,q which
are compatible with τ . It is possible that [τ] − [U s]≺ is not an open set. To remedy
this, just like in the proof of Lemma 3.7.1, let Bs be a finite set of strings such that
[Bs]≺ ∪ [U s]≺ = [τ] and such that λ([Bs]≺ ∩ [U s]≺) ≤ 2−p(s)δσ,x,q. Note that it is ∆1

1

uniformly in s to find such a set Bs. Then we mark τ and all strings extending τ as ‘used’
and we set Cs+1

σ,x,q = C
s
σ,x,q ∪B

s. Then (and this is important), if λ([Cs+1
σ,x,q]

≺) > 2−d−1q we

enumerate the pair (x, q × 2−d−1) into N .

Finally, at limit stage s we set each Csσ,x,q to be ⋃t<sC
t
σ,x,q.

Verification : Semi-measure

We have to prove that for each d, the predicate N created by the instance of the algo-
rithm with parameter d, describes a discrete semi-measure. In other words we have to

133

4.5. CONTINUOUSLY LOW FOR Π1
1-MARTIN-LÖF RANDOMNESS

prove that wg(N) = ∑x sup{q ∣ N(x, q)} ≤ 1. Also it is clear that we have wg(N) ≤
1
2 ∑σ,x,q λ([Cσ,x,q]

≺) because each [Cσ,x,q]
≺ has measure at most 2−d × q, and for each of

them we enumerate at most once some (e,2−d−1 × q) into N . So it is enough to prove that

∑σ,x,q λ([Cσ,x,q]
≺) ≤ 2. Let

E = ⋃
(σ′,x′,q′)≠(σ,x,q)

([Cσ,x,q]
≺ ∩ [Cσ′,x′,q′]

≺)

and let Eσ,x,q be the set of strings which enter Cσ,x,q after it has enter some Cσ′,x′,q′ for
(σ′, x′, q′) ≠ (σ,x, q). Let E′

σ,x,q be the set of strings in E which enter Cσ,x,q before it
enters any other Cσ′,x′,q′ for (σ′, x′, q′) ≠ (σ,x, q). We have:

∑
σ,x,q

λ([Cσ,x,q]
≺) ≤ ∑

σ,x,q

λ([Cσ,x,q]
≺ −E) + ∑

(σ,x,q)

λ(E′
σ,x,q) + ∑

(σ,x,q)

λ(Eσ,x,q)

Clearly ∑σ,x,q λ([Cσ,x,q]
≺ − E) + ∑(σ,x,q) λ(E

′
σ,x,q) ≤ 1 because all the sets involved are

pairwise disjoint, by the definition of E and E′
σ,x,q. Let us prove that ∑(σ,x,q) λ(Eσ,x,q) ≤ 1.

We have:

∑
(σ,x,q)

λ(Eσ,x,q) ≤ ∑
(σ,x,q)

∑
s<ωck1

λ([Bs]≺ ∩ [U s]≺)

≤ ∑
(σ,x,q)

∑
s<ωck1

2−p(s) × δσ,x,q

≤ 1

Therefore N describes a discrete semi-measure.

Verification : Martin-Löf test

Let Cdσ,x,q be the set of strings Cσ,x,q created by an instance of the algorithm

with d as parameter. Let CAd = ⋃Cdσ⪯A,x,q. By construction we have that

λ([CAd]≺) ≤ ∑σ⪯A,x,q λ([Cσ,x,q]
≺) ≤ ∑x,q{q ∣ MA(x) > q} × 2−d. As MA is an A-

continuous Π1
1-discrete semi-measure and as the q’s are only powers of 2 we have that

∑x,q{q ∣ MA(x) > q} ≤ 2 and then λ([CAd]≺) ≤ 2−d+1. Then ⋂d[C
A
d]≺ is a A-continuous

Π1
1-Martin-Löf test. This implies by hypothesis that there is some d such that Z ∉ [CAd]≺.

Verification : Low for hK

We now only consider the algorithm with d as a parameter where Z ∉ [CAd]≺. We pretend
that if (σ,x, q) is enumerated in M for σ ⪯ A then (x, q × 2−d−1) will be enumerated in N .
Suppose not, then it means that λ([Cσ,x,q]

≺) ≤ 2−d−1 × q. Let τ ⪯ Z be large enough so
that λ([Cσ,x,q]

≺) + 2−τ < 2−d × q. There exists s such that (σ,x, q) is enumerated in M at
stage s and such that for some t ≤ s we have (τ, σ) which is enumerated in Φ at stage t
(or (τ ′, σ) for τ ′ extending τ). At this stage, if τ was marked as used it means that some
prefix of τ was already enumerated in another Csσ′,x,q for σ′ ≺ A, and so that Z is in [CAd]≺

which is a contradiction. If τ was not marked as used then some Bs has been created such
that τ = [Bs]≺ ∪ [U s]≺. If a prefix of Z is in Bs then Z is in [Cs+1

σ,x,q]
≺ otherwise Z was

already in some [Csσ,x,q]
≺. In either case it is a contradiction. Therefore (x, q × 2−d−1) will

be enumerated in N , and we have N ≥MA × 2−d−1. As this can be achieved for any M we
have that A is continuously low for hK.

134

Chapter 5
Further studies on higher randomness

Est-il possible de raisonner sur des objets qui ne peuvent pas être définis en un
nombre fini de mots ? Est-il possible même d’en parler en sachant de quoi l’on
parle, et en prononçant autre chose que des paroles vides ? Ou au contraire doit-on
les regarder comme impensables ? Quant à moi, je n’hésite pas à répondre que ce
sont de purs néants.

Dernières Pensées, Henri Poincaré

5.1 Higher difference randomness

Franklin and Ng defined in [22] a notion of test in classical randomness, which exactly
captures the sequences which are either not Martin-Löf random, or Turing compute the
halting problem. They called difference randomness this notion of randomness, which
has been very useful to prove various theorems.

Something analogous can be done in higher randomness, to capture exactly the Π1
1-

Martin-Löf random sequences which higher Turing compute O.

Definition 5.1.1. A sequence X is not higher difference random if there is a Σ1
1-closed

set F and a uniform sequence of Π1
1-open sets {Un}n∈N such that λ(Un∩F) ≤ 2−n and such

that X ∈ ⋂n(Un ∩F).

Theorem 5.1.1 (Yu):
Given X a Π1

1-Martin-Löf random sequence, we have that X is not higher difference
random iff X higher Turing computes O.

Proof: Suppose that X higher Turing compute O. Then also X can higher Turing
computes Ω, the leftmost path of a Σ1

1-closed set containing only Π1
1-martin-Löf random

sequences. Let Φ be such that Φ(X) = Ω. From Lemma 4.3.2, uniformly in ε, we can find
a functional Φε such that the open set of sequences on which Φ is not consistent is smaller

135

5.2. Π1
1-MARTIN-LÖF[O]-RANDOMNESS

than ε. Just like in the proof of Theorem 4.3.5, we fix a function q ∶ 2<N → Q+ such that

∑σ∈2<N q(σ) ≤ 1.

Then, similarly we have can define µ([σ]) = λ(Φ−1
q(σ)([σ])) + ∑τ⪰σ q(τ) and we have

that µ/2 is a Π1
1-continuous semi-measure, and then that there is a constant c such that

µ(Ω ↾n) ≤ 2−n2c for every n. Therefore also λ(Φ−1
q(Ω↾n)

([Ω ↾n])) ≤ 2−n2c. In what follows,

the notation Φ−1([σ]) implicitly means Φ−1
q(σ)([σ]).

For every n, we define the Π1
1 open set Un to be ⋃s<ωck1

Φ−1([Ωs ↾n]). Then we define

the Π1
1-open set V to be ⋃n<N⋃s<ωck1

{Φ−1([Ωs ↾n]) ∶ Ωs ↾n≠ Ωs+1 ↾n}.

Because Ω is higher left-c.e. we clearly have X ∈ ⋂n(Un ∩V
c). Also Un ∩V

c is actually
equal to Φ−1([Ω↾n]) and therefore its measure is smaller than 2−n2c for every n. Thus X
is not difference random.

For the converse, suppose that a Π1
1-Martin-Löf random X belongs to ⋂n(Un∩F) with

λ(Un ∩F) ≤ 2−n. We build a Π1
1-Solovay test {Vm}m∈N. If m enter O at stage s, we search

for the smallest ordinal t > s such that λ(Um,t ∩Ft) ≤ 2−m and we set Vm = Um,t ∩Bt with
Bt ⊇ Ft a clopen set such that λ(Um,t ∩ Bt) < 2−m+1. Note that we can find Bt uniformly
in Um,t, Ft and m.

As X is Π1
1-Martin-Löf random, there is some n such that for all m ≥ n, the sequence

X is not in Vm. Also to know if m ≥ n is in O, with the help of X, we search for the
smallest stage s such that X ∈ Um,s. We claim that m ∈O iff m ∈Os. Suppose otherwise,
that is, m ∈O but m ∉Os. Note that for every stage t ≥ s we have X ∈ Um,t ∩Ft, because
otherwise X could not be in Um ∩F . Now for t the smallest stage bigger than s such that
m ∈ Ot and such that λ(Um,t ∩ Ft) ≤ 2−m, we then have that Um,t ∩ Bt is enumerated in
Vm. But then X ∈ Vm which is a contradiction.

Corollary 5.1.1:
Higher difference randomness is strictly stronger than Π1

1-Martin-Löf randomness.

Proof: It is clear that a Π1
1-Martin-Löf test is also a higher difference test. So the set of

higher difference randoms is included in the set of Π1
1-Martin-Löf randoms.

Also using the higher Kučera-Gács theorem (see Theorem 4.1.2), there is some Π1
1-

Martin-Löf random sequence which higher Turing computes O and which is then not
higher difference random, so the inclusion is strict.

5.2 Π1
1-Martin-Löf[O]-randomness

Recall Theorem 2.1.4 saying that the two following statements are equivalent :

1. X is weakly-2-random.

136

5.2. Π1
1-MARTIN-LÖF[O]-RANDOMNESS

2. X is in no set ⋂n Uf(n) with f ∶ N → N a ∅(1)-computable function and with
λ(Uf(n)) ≤ 2−n.

Also recall the proof (1) Ô⇒ (2), in which we transform the set ⋂n Uf(n) into the
set ⋂n,t⋃s≥t Ufs(n). This proof uses a ‘time trick’. Indeed, the fact that the time of
computation is in ω implies that the set ⋂n,t⋃s≥t Ufs(n) is a Π0

2 set, but if now the time of

computation is in ωck1 (assuming that f is now higher ∆0
2), each open set of the intersection

is now indexed by a computable ordinal, and we do not have anymore an intersection of
Π1

1-open sets uniformly in n ∈ ω.

We shall indeed prove that the notion of Π1
1-Martin-Löf randomness, where Kleene’sO

can be used for the index of each component is much stronger than weak-Π1
1-randomness,

and even stronger than Π1
1-randomness. We call this notion Π1

1-Martin-Löf[O]-randomness
(to be pronounced, for a mysterious reason: Π1

1-Martin-Löf ‘plop O’ randomness).

Definition 5.2.1. A sequence X is Π1
1-Martin-Löf[O]-random if X is in no set ⋂n Uf(n)

with f higher Turing computable by O and with λ(Uf(n) ≤ 2−n for each n.

So as we will see, we don’t have the equivalence between Π1
1-Martin-Löf[O]-randomness

and weak-Π1
1-randomness. Nevertheless there is a way to remove O from this definition,

in order to get a better understanding of it:

Proposition 5.2.1:
The following are equivalent for a sequence X ∈ 2N:

1. X is Π1
1-Martin-Löf[O]-random.

2. X does not belong to any test (Us)s<ωck1
not necessarily nested where each Us is

a Π1
1-open set uniformly in s, and such that λ(⋂s Us) = 0.

Proof: Let us show that (2) implies (1). Let ⋂n Uf(n) be an Π1
1-Martin-Löf[O] test. Re-

call that p ∶ ωck1 → ω is the projectum function and let us define Vs = ⋂n<p(s)⋃t>s Uft(n). It is
clear that ⋂n Uf(n) ⊆ ⋂s Vs. To prove that λ(⋂s Vs) = 0, let us prove that ⋂s Vs ⊆ ⋂n Uf(n).
For each n there exists s large enough such that n ≤ p(s) and ∀m ≤ n ⋃t>s Uft(m) = Uf(m).
Then we have for that n and s that Vs ⊆ ⋂m≤n Uf(m) and then ⋂s Vs ⊆ ⋂n Uf(n).

Let us show that (1) implies (2). Suppose now that we have a test (Us)s<ωck1
with

λ(⋂s Us) = 0. Then using O we can higher Turing compute the measure of each Us
uniformly in s. Then for each n, O can higher Turing compute sn such that λ(Usn) ≤ 2−n

and then we can find an equivalent Π1
1-Martin-Löf[O] test, by setting Vn = Usn .

We shall now see that Π1
1-Martin-Löf[O]-randomness is strictly stronger than Π1

1-
randomness. For this we first prove:

Proposition 5.2.2:
If X ∈ 2N higher Turing computes a non ∆1

1 higher ∆0
2 sequence Y , then X is not

Π1
1-Martin-Löf[O]-random.

137

5.3. WEAK-Π1
1-RANDOMNESS

Proof: The set A = ⋂n,s⋃t≥sΦ−1(Yt ↾n) is also equal to the set ⋂nΦ−1(Yt ↾n). Also by
Sack’s theorem (Theorem 3.4.2), as Y is not ∆1

1, the set of sequences which higher Turing
compute Y is a nullset. However the function Φ can also be inconsistent. Therefore
the measure of the set A is bounded by the measure of the Π1

1-open set on which Φ is
inconsistent. Also by Lemma 4.3.2 we can transform Φ uniformly in any ε so that the
measure of this open set is smaller than ε, without damaging the right computations of Φ.
But then uniformly in n we can define the set An like above, but with the measure of An
bounded by 2−n. Also by Proposition 5.2.1, we then have that ⋂nAn is a Π1

1-Martin-Löf[O]
test, and by design, it contains X.

Theorem 5.2.1:
Π1

1-Martin-Löf[O]-randomness is strictly stronger than Π1
1-randomness.

Proof: By the proposition above we have that Π1
1-Martin-Löf[O]-randomness is either in-

comparable with Π1
1-randomness, or strictly stronger than Π1

1-randomness: Indeed, by the
Gandy basis theorem, there is a higher ∆0

2 sequence which is Π1
1-random. All that remains

to be proved is that Π1
1-Martin-Löf[O]-randomness is stronger than Π1

1-randomness.

By Theorem 6.1.2, proved later, if X is ∆1
1-random but not Π1

1-random, then there
exists a uniform intersection of Π1

1-open sets ⋂n Un such that X ∈ ⋂n Un but X is in no Σ1
1-

closed set F with F ⊆ ⋂n Un. Let us argue that there is an effective enumeration {Fs}s<ωck1
of the Σ1

1-closed sets included in ⋂n Un. For a given Σ1
1-closed set F , we can build the

Π1
1 function f ∶ ω → ωck1 which to n associates the least t such that Ft ⊆ ⋂m≤n Um,t. If we

really have F ⊆ ⋂n Un then f is total and then its range is bounded by some computable
ordinal t, for which we already have Ft ⊆ ⋂n Un,t ⊆ ⋂n Un.

So if a Σ1
1-closed set is included in ⋂n Un we will know at some computable ordinal

stage. Then we can easily get an effective enumeration {Fs}s<ωck1
of the Σ1

1-closed sets

included in ⋂n Un by checking at each stage t and for each index of a Σ1
1-closed set F if we

have Ft ⊆ ⋂n Un,t. Also we have that X is in ⋂n Un ∩⋂s<ωck1
Fcs which is a set of measure

0 and therefore, by Proposition 5.2.1 a Π1
1-Martin-Löf[O] test.

This theorem yields a natural question, which is still open at the moment. We have
that no sequence computing a higher ∆0

2 sequence is Π1
1-Martin-Löf[O]-random. Does the

converse hold on Π1
1-Martin-Löf random sequences? Using Theorem 6.3.1 proved later,

we already know that the Π1
1-Martin-Löf randoms which are not Π1

1-random can higher
Turing computes higher ∆0

2 sequences (even Π1
1 sequences). But what about the sequences

which are Π1
1-random but not Π1

1-Martin-Löf[O]-random?

Question 5.2.1 Is there some X which is Π1
1-random, not Π1

1-Martin-Löf[O]-random,
and which does not higher Turing compute any higher ∆0

2 sequence?

5.3 weak-Π1
1-randomness

5.3.1 An equivalent test notion

We develop here a new type of test whose corresponding notion of randomness turns out
to be weak-Π1

1-randomness, thus giving a better understanding of this notion. We start

138

5.3. WEAK-Π1
1-RANDOMNESS

by generalization of a result from Liang Yu and C.T. Chong (see [8]) which says that
every higher left-c.e. sequence can be captured by a weak-Π1

1-randomness test. Recall
Definition 4.4.3 and Definition 4.4.4 of compact and closed approximations. Note also
that as we now work in the Cantor space, those two notions coincide.

Theorem 5.3.1:
No sequence X ∈ 2N with a higher closed approximation is weakly-Π1

1-random.

Proof: Let {Xs}s≤t be a closed approximation of X. Let us denote the closed set
{Xs}s≤ωck1

by C. Let Un = ⋃s<ωck1
[Xs ↾n] and let us prove that ⋂n Un ⊆ C. If an ele-

ment is in Un then its distance to the closed set C is smaller than 2−n (it shares the same
first n bits with an element of C). Thus if it is in all the Un, its distance to the closed set
C is null and thus it is an element of C. Therefore we have ⋂n Un ⊆ C and as C is countable
it has measure 0. Therefore we have that ⋂n Un is a weak-Π1

1-randomness test containing
X.

Corollary 5.3.1:
weak-Π1

1-randomness is strictly stronger than higher difference randomness.

Proof: Let us first argue that the set of weakly-Π1
1-randoms is included in the set of

higher difference randoms. Consider the leftmost path Ω of a Σ1
1 closed set containing

only Π1
1-Martin-Löf randoms. In particular Ω is higher left-c.e. and then it is Turing

computable by O. Also if Z higher Turing computes O it also higher Turing computes
Ω. From the previous theorem, Ω can be captured by a weak-Π1

1-randomness test, and
using a variant of the higher XY Z theorem (see Porism 4.3.1), we then also have that Z
is captured by a weak-Π1

1-randomness test.

Now to prove that the inclusion is strict. Let Ω1,Ω2 be the two halves of Ω, that is,
Ω = Ω1 ⊕Ω2. By the higher van Lambalgen theorem, we have that Ω1 is Ω2-continuously
Π1

1-Martin-Löf random. In particular Ω2 does not higher Turing computes Ω1 (despite
possible inconsistency, we still have that if X higher Turing computes Y , then Y is not
X-continuously Π1

1-Martin-Löf random, see Fact 7.3.1). A fortiori Ω2 does not higher
Turing compute O. It follows that Ω2 is higher difference random. However Ω2 still has
a higher closed approximation (actually even a higher finite-change approximation, see
Definition 5.4.2). Therefore it is not weakly-Π1

1-random.

We now bring the technique of Theorem 5.3.1 to its full generalization, by giving
an equivalent notion of weak-Π1

1-randomness test, that uses compact approximations of
elements of the Baire space. This is done by giving another notion of weak-Π1

1-randomness
test, in the style of Π1

1-Martin-Löf[O]-randomness. The idea is simple: instead of using a
∆0

2 function f to find the indices of open components of a test, we now allow only functions
with a compact approximation.

139

5.3. WEAK-Π1
1-RANDOMNESS

Theorem 5.3.2:
Let {Ue}e∈ω be a standard enumeration of the Π1

1-open sets. For a sequence X we
have that the following is equivalent :

1. X is in no uniform intersection of Π1
1-open sets ⋂n Uf(n) where f has a compact

approximation and with λ(Uf(n)) ≤ 2−n.

2. X is weakly-Π1
1-random.

3. X is in no uniform intersection of Π1
1-open sets ⋂n Uf(n) where f has a finite

change approximation and with λ(Uf(n)) ≤ 2−n.

Proof: (1) Ô⇒ (3) : Trivial

(2) Ô⇒ (1) : Consider a set ⋂n Uf(n) with {fs}s<ωck1
a compact approximation of f ,

with λ(Uf(n)) ≤ 2−n and with X ∈ ⋂n Uf(n). Let us prove that X is not weakly-Π1
1-random.

To do so consider the set A = ⋃s≤ωck1 ⋂n<ω
Ufs(n) and the set B = ⋂n<ω⋃s<ωck1 ⋂m≤n Ufs(m).

Let us prove that B ⊆ A. Suppose that Y ∈ B. Then for all n there is a smallest stage
sn so that Y ∈ ⋂m≤n Ufsn(m). As f has a closed approximation we have that every limit

point of {fsn} is equal to ft for some t ≤ ωck1 . And as the approximation is also compact, at
least one limit point exists. Fix fs such a limit point. For any k there is i ≥ k be such that
fsi ↾k= fs ↾k and then such that ⋂m≤k Ufsi(m) = ⋂m≤k Ufs(m). Now we have by definition of
the {sn}n∈ω that Y ∈ ⋂m≤i Ufsi(m) and therefore we have that Y ∈ ⋂m≤k Ufs(m). Since this
holds for any k, this shows that Y belongs to ⋂k Ufs(k) and thus we have Y ∈ A.

Let us prove that λ(B) = 0. By measure countable subadditivity we have

λ(A) ≤ ∑
s≤ωck1

λ(⋂
n
Ufs(n))

And for each s ≤ ωck1 we have λ(⋂n Ufs(n)) = 0 and then that λ(A) = 0 (for this, note that
we can suppose λ(Ufs(n)) ≤ 2−n for every s, as we can always trim the open set otherwise).
But then as B ⊆ A we have λ(B) = 0.

Let us prove that X ∈ B. For all n, there is some stage sn such that fsn ↾n= f ↾n. Then
at stage sn we have X ∈ ⋂m≤n Ufsn(m). As this is true for all n, we have X ∈ B. We can

then conclude that B is in a weak-Π1
1-randomness test containing X.

(3) Ô⇒ (2) : Suppose now that X is not weakly-Π1
1-random in order to prove that it is

in some set ⋂n Uf(n) where f has a finite change approximation. Suppose that X ∈ ⋂n Vn
with λ(⋂n Vn) = 0. We define f(n) to be the smallest m such that λ(Vm) ≤ 2−n. We
have for every n that λ(Vf(n)) ≤ 2−n and X ∈ Vf(n). All we need to prove is that f has a
finite change approximation {fs}s∈ωck1

. We simply let fs(n) be the smallest m such that

λ(Vm[s]) ≤ 2−n. Then we clearly have for each n that the set {s ∶ fs(n) ≠ fs+1(n)} is
finite.

The previous theorem can also be used to provide another proof of Yu and Chong’s
result [8], saying that for any hyperdegree above O, there is a Π1

1-Martin-Löf random in
that degree, which is not weakly-Π1

1-random.

140

5.3. WEAK-Π1
1-RANDOMNESS

Now, recall Theorem 2.1.5 of classical randomness: For a sequence X Martin-Löf
random we have that the three following properties are equivalent:

1. X is weakly-2-random.

2. X does not compute any non-computable ∆0
2 sequence.

3. X does not compute any non-computable c.e. set.

The higher counterpart of (1) ↔ (2) cannot work, as by the Gandy basis theorem,
there is a sequence which is both higher ∆0

2 and Π1
1-random. We shall see that a higher

counterpart of (1)↔ (3) also fails. It will be a consequence of Theorem 6.3.1 which says
that Π1

1-randomness is actually the right randomness notion for the equivalence (1)↔ (3).
Then the separation of weak-Π1

1-randomness and Π1
1-randomness will allow us to conclude.

5.3.2 Separation of weak-Π1
1-randomness and Π1

1-randomness

We now separate the notion of weak-Π1
1-randomness and the notion of Π1

1-randomness.
This is actually done by building a self-unclosed approximable sequence X which is weakly-
Π1

1-random (recall Section 4.4 about refinements of the notion of higher ∆0
2 approximation).

In practice, we will use a refinement for the notion of self-unclosed approximation. We
say that a sequence Y has a ω-self-unclosed approximation if the number of changes in
the approximation above a correct prefix of Y is finite. Formally:

Definition 5.3.1. A higher ∆0
2 approximation {fs}s<ωck1

of a function f is said to be ω-
self-unclosed if for any n, there is no infinite sequence of ordinals s0 < s1 < . . . such that
f ↾n= fsi ↾n and such that fsi(n) ≠ fsi+1(n).

It is clear that an ω-self-unclosed approximation is also a self-unclosed approximation:
Suppose that Y has a ∆0

2 approximation such that Y is in the closure of {Yt ∶ t < s} for
some smallest stage s. We can suppose that Y is not the only limit point of {Yt ∶ t < s} as
otherwise Y would be ∆1

1. But then there are several limit points and this implies infinitely
many changes above some prefix of Y . We now show that there is a weakly-Π1

1-random
with a ω-self-unclosed approximation.

Theorem 5.3.3:
There is a weakly-Π1

1-random X with a ω-self-unclosed approximation. In particular,
there is a weakly-Π1

1-random X that is not Π1
1-random.

The rest of the section is dedicated to the proof of theorem 5.3.3. Let {Si}i∈ω be an
enumeration of all the higher Σ0

2 sets. For each Si and each j let us define the Σ1
1 closed

set Fi,j so that Si = ⋃j Fi,j .

Sketch of the proof:

We will build X as a limit point of some {Xs}s<ωck1
. Each Xs is built as the unique limit

point of a sequence {[σns]}n<ω, where σ1
s ≺ σ

2
s ≺

At each stage we will ensure that Xs is in some sense weakly-Π1
1-random at stage s.

What do we mean by this? For some s and some n, as long as λ(Sn[s]) = 1, we believe

141

5.3. WEAK-Π1
1-RANDOMNESS

that Xs should belong to Sn[s]. If at some point we have λ(Sn[s]) < 1 (which is by
the Σ1

1-boundedness principle equivalent to λ(Sn) < 1) then n is removed from the set of
indices that we use to make Xs weakly-Π1

1-random at stage s.

Concretely we have at each stage s a set of indices {en}n∈ω which are initialized at
stage 0 with en = n. Suppose that at stage s we have for each n that λ(Sen[s]) = 1. Then
it is easy to build a ∆1

1 sequence Xs in ⋂n Sen[s]:

We can suppose that e0 is such that Fe0,i = 2N for all i. So for d0 = 0 and σ0 =

ε we have λ(Fe0,d0 ∣ [σ0]) ≥ 1. Then, inductively, assuming that for some n we have
λ(⋂k≤nFek,dk ∣ [σn]) ≥ 2−n, we then continue recursively the construction as follows:

Step 1: We find one strict extension σn+1 of σn so that λ(⋂k≤nFek,dk ∣ [σn+1])[s] ≥ 2−n.

Step 2: We find some index dn+1 such that λ(⋂k≤n+1Fek,dk ∣ [σn+1])[s] ≥ 2−n−1.

This way we have an intersection of closed sets containing at most one point Xs. Also
by the measure requirement, this intersection is not empty at each step and then we really
have Xs ∈ ⋂n Sen[s]. Note that for the actual construction we will need different lower
bounds for the measure requirements, due to some technicality, explained in the next
paragraphs.

We only try here to give the general idea. To have that the Xs converge to some X,
we have to keep the chosen strings and closed sets at stage s+ 1 equal if possible to those
of stage s. When do we have to change them? Three things can happens :

1. We might have λ(Sen)[s] = 1 for all s < t but λ(Sen)[t] < 1.

2. We might have a smallest n such that (3) does not happen up to n−1 and such that
the measure of ⋂k≤nFek,dk inside [σn+1] drops below 2−n at stage t.

3. We might have a smallest n such that (2) does not happen up to n and such that
the measure of ⋂k≤n+1Fek,dk inside [σn+1] drops below 2−n−1 at stage t.

If (1) happens then the index en is set to some fixed index a so that λ(Sa) = 1, therefore
each index en can change at most once. If (2) happens, it is the responsibility of the string
σn+1 to change, and if (3) happens it is the responsibility of the index dn+1 to change.

For (2), we are sure that there exists one extension σn+1 of σn of length ∣σn∣ + 1 such
that the measure inside [σn+1] does not drop below 2−n. So as long as the construction
is stable ‘below the choice of σn+1’, the string σn+1 can change at most once. We will see
that in practice we will need extensions of length ∣σn∣ + 2n, but for the same reason, the
string σn+1 can then change at most finitely often.

For (3), as long as λ(Sen+1) = 1, we are sure that we will change only finitely often
of index dn+1. However if λ(Sen+1) < 1 it can happen that dn+1 will change infinitely
often at stages s1 < s2 < . . . , and that t = supn sn is the first stage for which we witness
λ(Sen+1)[t] < 1 (then at stage t the integer en+1 is set to a the fixed index such that
λ(Sa) = 1).

There is nothing we can do to prevent those infinitely many changes, which could lead
as well to infinitely many changes of the string σn+2. However we can still ensure that
if this happens, the string σn+1 will then change, and its previous value will be banished
forever, so that the approximation of the sequence X is still ω-self-unclosed.

142

5.3. WEAK-Π1
1-RANDOMNESS

To do so, we need to take extensions sufficiently long, so that the current closed set
still has positive measure inside at least two of them. That way we can afford to banish
one of them. So before the formal proof, we recall here Lemma 4.1.1 that helps us to
achieve this:

Lemma 5.3.1 let σ be a string and F a closed set so that λ(F ∣ [σ]) ≥ 2−n. Then there
is at least two extensions τ1, τ2 of σ of length ∣σ∣ + n + 1 so that for i ∈ {1,2} we have
λ(F ∣ [τi]) ≥ 2−n−1.

Before the construction:

Let {Si}i∈N be an enumeration of all the higher Σ0
2 sets, with Si = ⋃j∈NFi,j where each

Fi,j is a Σ1
1 closed set. We can assume that each union is increasing.

We start by deciding in advance the length mn of each extension. We set m0 = 0 and
then recursively we set mn+1 =mn + (2n+ 1). Finally, let a be an integer so that Fa,i = 2N

for every i.

For each stage s and each n we will define indices ens and dns for the closed set Fens ,dns ,
as well as strings σns . Also to simplify the reading, we define three predicates:

A(n, s) means λ(⋂k≤nFeks ,dks ∣ [σns])[s] ≥ 2−2n

A(n, s, σ) means λ(⋂k≤nFeks ,dks ∣ [σ])[s] ≥ 2−2n−1

A(n, s, σ, d) means λ(⋂k≤nFeks ,dks ∩Fen+1s ,d ∣ [σ])[s] ≥ 2−2n−2

The construction:

At stage 0 we define for each n the set Pn0 to be the set of strings of length mn, ordered
lexicographically. We initialize each string σn0 to be the first string of Pn0 (so they are all
a range of 0), we initialize e0

0 to a and en+1
0 to n. Then we initialize to 0 each index dn0 of

the sets Fen0 ,dn0 .

At successor stage s + 1 and substage 0, we set e0
s+1 = e0

s = a, σ0
s+1 = σ0

s = ε and
d0
s+1 = d

0
s = 0. Now assume that at substage n we have defined eks+1, dks+1 and σks+1 for k ≤ n

and that we have A(n, s + 1). Let us now define en+1
s+1 , dn+1

s+1 and σn+1
s+1 at substage n + 1.

Def. of en+1
s+1 : If λ(Sen+1s

)[s + 1] = 1, set en+1
s+1 = en+1

s and Pn+1
s+1 = Pn+1

s , otherwise set

en+1
s+1 = a and Pn+1

s+1 = Pn+1
s − {σn+1

s }.

Def. of σn+1
s+1 : If A(n, s + 1, σn+1

s) and σn+1
s extends σns+1, set σn+1

s+1 = σn+1
s . Otherwise

set σn+1
s+1 to be the first string of Pn+1

s+1 extending σns+1 such that A(n, s + 1, σn+1
s+1).

Def. of dn+1
s+1 : If A(n, s + 1, σn+1

s+1 , d
n+1
s) set dn+1

s+1 = dn+1
s . Otherwise set dn+1

s+1 to be the
smallest integer such that A(n, s + 1, σn+1

s+1 , d
n+1
s+1).

Finally after every substage, define Xs+1 to be the unique element in ⋂n[σ
n
s+1].

At limit stage s, for each n ≥ 0 set ens to be the convergence value of {ent }t<s and set
Pns to be the convergence value of {Pnt }t<s. (among other things we will have to prove
that we always have convergence).

143

5.3. WEAK-Π1
1-RANDOMNESS

At substage n, if {σnt }t<s does not converge, set σns to be the first string of Pns extending
σn−1
s , otherwise set σns to be the convergence value. If {dnt }t<s does not converge, set dns

to 0, otherwise set it to its convergence value.

Finally after every substage, define Xs to be the unique element in ⋂n[σ
n
s].

The verification:

Claim 1: For every n the sequence {ens }s<ωck1
can change at most once. In particular, for

every s and every n we have that {ent }t<s converges:

It is clear because ens+1 ≠ e
n
s only if λ(Sens [s + 1]) < 1. Also when this happens we have

ens+1 = a and then it can happen only once.

Claim 2: For every stage s, any string τ of size mn and any closed set F such that
λ(F ∣ [τ]) ≥ 2−2n, there is a string σ ∈ Pn+1

s which extends τ so that λ(F ∣ [σ]) ≥ 2−2n−1.

Suppose that λ(F ∣ [τ]) ≥ 2−2n for ∣τ ∣ = mn. Using Lemma 4.1.1 we have two strings
τ1 and τ2 of length mn + 2n + 1 so that for i ∈ {1,2} we have λ(F ∣ [τi]) ≥ 2−2n−1. Also
mn+1 =mn + 2n + 1 and then τ1, τ2 ∈ P

n+1
0 . By construction and by Claim 1, at any stage

s we have that Pn+1
0 contains at most one more string than Pn+1

s . Then at any stage s we
have at least one string σ ∈ Pn+1

s which extends τ and so that λ(F ∣ [σ]) ≥ 2−2n−1.

Claim 3: The construction converges, in particular the sequence {Xs}s<ωck1
converges to

X:

There is no difficulty here.

Claim 4: The sequence Xs is ω-self-unclosed:

Let D(s, n) be the sentence : “There is an infinite sequence of ordinal s0 < s1 < . . .
with supi si = s, such that Xsi ↾n=Xsi+1 ↾n, and such that Xsi(n) ≠Xsi+1(n)”.

For {Xs}s<ωck1
to be self-unclosed, it is enough to prove that for any s and any n, if

D(s, n) is true, then X ↾n≠Xs ↾n.

Let s be the smallest stage such that D(s, n) is true for some n. Let n be the smallest
integer such that D(s, n) is true, and let s0 < s1 < . . . be a sequence of ordinals making
D(s, n) true.

Let us prove that there is some i such that {Xt ↾n}si≤t<s is stable. If n = 1 it is clear
because Xt ↾1= 0 for every t < ωck1 . If n > 1, then by minimality of n, we necessarily have
that {Xt ↾2}t<s converges, otherwise D(s,1) would be true. So for some i we have that
{Xt ↾2}si≤t<s is stable. We continue inductively to prove that there is some i such that
{Xt ↾n}si≤t<s is stable.

Let us now identify m such that {σmt }si≤t<s is stable, and such that σm+1
sj ≠ σm+1

sj+1 for
j ∈ N. We shall now prove that for at least one k ≤m (presumably for k =m), the sequence
{dkt }si≤t<s does not converge. Suppose otherwise, that is, the sequence {dkt ∣ k ≤ m}si≤t<s
converges, then there is some j ≥ i such that {dkt ∣ k ≤m}sj≤t<s is stable. But then for all t
with sj ≤ t < s we have A(m, t) and then we also have A(m,s). Then using Claim 2 with

⋂k≤mFeks ,dks [s] as the closed set F , we have at least one string σ in Pm+1
s extending σms

144

5.4. FURTHER STUDIES ON HIGHER ∆0
2 APPROXIMATIONS

such that A(m,s, σ) is true and then such that A(m, t, σ) is true for every t with sj ≤ t < s.
Also this contradicts that {σm+1

t }si≤t<s does not converge.

So let k ≤m be the smallest integer such that {dkt }si≤t<s does not converge, equivalently
limt<s d

k
t = ∞. In particular we have A(k − 1, s, σks), but there is no d large enough such

that A(k − 1, s, σks , d). This is only possible if λ(Seks)[s] < 1. Then at stage s + 1 we have

that σks ⪯ σ
m
s ≺Xs ↾n is banished, that is, removed from P ks .

It follows that we have X ↾n≠ Xs ↾n, but also that for any other n′ > n such that
D(s, n′) is true, we have X ↾n′≠ Xs ↾n′ . Indeed, if D(s, n′) is true for n′ > n, with stages
s′0 < s′1 < . . . , by minimality of s we have supi s

′
i = s and then, as {σmt }si≤t<s is stable,

also {σmt }s′j≤t<s is stable for some j, which implies σms ≺ Xs′i ↾n
′ for every i and then that

X ↾n′≠Xs ↾n′ .

We can then continue inductively with the smallest stage s′ > s such that D(s′, n) is
true for some n, and then with the smallest n such that D(s′, n) is true.

Claim 6: The sequence X is weakly-Π1
1-random:

It is clear that if λ(Sn) = 1, then en+1 = lims<ωck1
en+1
s is equal to n. Therefore any

sequence in ⋂n Sen is weakly-Π1
1-random. We shall then simply prove that we have X ∈

⋂n Sen .

Let sn be the smallest ordinal such that {(ekt , d
k
t) ∣ k ≤ n}sn≤t<ωck1

is stable and equal

to {(ek, dk) ∣ k ≤ n}. In particular we have that A = {Xsn}n∈N ∪ {X} is a closed set and
that ⋂k≤nFek,dk ∩A is not empty because it contains Xsn . Then also ⋂k≤ω Fek,dk ∩A is
not empty and it then contains X, as it is the only non ∆1

1 point of A.

5.4 Further studies on higher ∆0
2 approximations

We started in Section 4.4 a study of different restrictions of the notion of higher ∆0
2, and

we introduced later Definition 5.3.1 that appeared naturally in the separation of weak-
Π1

1-randomness and Π1
1-randomness. We shall pursue here the study of all the defined

notions, as well as the study of new notions. In particular, we will establish the separation
between all of them. For this study, we introduce the notion of partial continuity of a ∆0

2

approximation:

Definition 5.4.1. We say that a higher ∆0
2 approximation {fs}s<ωck1

is partially con-

tinuous if for any limit stage s, whenever {ft}t<s converges to some function f ′, we have
fs = f

′.

It is easy to check that without loss of generality, we can consider that any higher ∆0
2

approximation is partially continuous:

Lemma 5.4.1 For any higher ∆0
2 approximation {fs}s<ωck1

that converges to f , there is a

partially continuous higher ∆0
2 approximation {f ′s}s<ωck1

that converges to f .

Proof: For each successor stage s we define f ′s = fs. For each limit stage s, in case {ft}t<s
converges to some function f ′, we define fs = f

′, and otherwise we define f ′s = fs. It is
easy to check that if {fs}s<ωck1

converges to f , then also {f ′s}s<ωck1
converges to f .

145

5.4. FURTHER STUDIES ON HIGHER ∆0
2 APPROXIMATIONS

Quite often in this section we will also use uniform enumerations of (possibly non-
converging) ∆0

2 approximations, which contains all the converging ∆0
2 approximations.

Let us argue that such an object exists: given the code for a sequence of partial function
{fs}s<ωck1

, we can always assume that each fs is total without damaging the possible

convergence of {fs}s<ωck1
: If fs is not total we can replace it by f ′s where each bit of f ′s(n)

is equal to the convergence value of {f ′t(n)}t<s if it exists, and 0 otherwise. If by keeping
only stages at which fs was total we have convergence of {fs}s<ωck1

to f , then also we have

convergence of {f ′s}s<ωck1
to f .

5.4.1 Higher finite change approximations

Just like the ω-self-unclosed approximations are the self-unclosed approximation such that
the number of change of any value above a correct prefix of the function is finite, we define
the higher finite-change approximations to be the closed approximations such that the
number of change of any value is finite:

Definition 5.4.2. A function f has a higher finite-change approximation if it has
a ∆0

2 approximation {fs}s<ωck1
such that for any n, the value fs(n) can change at most

finitely often, that is, the set {s ∶ fs(n) ≠ fs+1(n)} is finite.

.

Fact 5.4.1.

A function f has a finite-change approximation iff f has an approximation {fs}s<ωck1
so that for any limit ordinal s we have fs = limt<s ft.

.

Suppose that f has a finite-change approximation. Without loss of generality, we can
consider that the approximation is partially continuous. Now because the approximation
is a finite-change approximation, for every n and s we have that {ft(n)}t<s converges, we
then have fs = limt<s ft. The other direction is similar.

We already know that a function is higher ∆0
2 iff it is higher Turing computable by O.

We also have that a function if higher ω-c.a. iff it is higher truth-table-computable by O.
We should establish here an equivalence in terms of higher Turing computability, of the
notion of finite-change approximable functions:

Proposition 5.4.1:
Let f be function. Then the following are equivalent:

1. The function f has a finite change approximation.

2. The function f is higher Turing computable by O with a higher functional Φ
which is defined on any subset of O.

Proof: Suppose that f is higher Turing reducible to O with a higher functional Φ which
is defined on any subset of O, then as Os ⊆ O we can define fs = Φ(Os). Also because
Φ is continuous we have fs = Φ(limt<sOt) = limt<sΦ(Ot) = limt<s ft. Thus we have that
each value fs(n) changes at most finitely often.

146

5.4. FURTHER STUDIES ON HIGHER ∆0
2 APPROXIMATIONS

Let us now suppose that f has a ∆0
2 approximation {fs}s<ωck1

such that for each n,

the number of change of f(n) is finite. In order to compute f we can ask to O, for any
(n,m) if the value of fs(n) will change at least m times. This is a Π1

1 question and then
the answer is yes iff some bit of O is 1. As in the proof of Proposition 4.4.2 we continue to
ask the question until the answer is no. It is clear that on every subset of O, the process
will halt, and that the final answer we get on the number of change of f(n), denoted by
m, is always smaller than or equal to its actual number of changes. Therefore the process
of approximating f until we get m changes, always stops, on any subset of O.

By definition, every higher ω-computable approximation of a function f is also a higher
finite-change approximation of f . It is easy to prove, by transposing a well-known tech-
nique of classical computability to the higher setting, that the converse does not hold.

Proposition 5.4.2:
There is a function f with a higher finite-change approximation, but no higher ω-c.a.
approximation.

Proof: There is a classical trick in computability theory which can be used to enumerate
a uniform list of the approximations of every ω-c.a. function. That is, we can compute a
c.e. sequence {fn,t}n,t<ω such that for every n, the sequence {fn,t}t<ω converges to some
fn with the number of changes of each fn(m) bounded by a computable function of m;
and such that every ω-c.a. function is listed. This is done by listing all pairs (h,{gt}t<ω)
where h is a partial computable function and {gt}t<ω a sequence of computable function,
that we can without loss of generality suppose total. Now given a pair (h,{gt}t<ω), we
can uniformly define the ω-c.a. function f , whose approximation is equal on the input m,
to 0 as long as h(m) does not halt, and is equal to the successive versions of gt(m), with
up to h(m) changes otherwise.

We can apply the same technique with all the pairs (h,{gt}t<ωck1
) where h is a partial

Π1
1 function and {gt}t<ωck1

a sequence of total ∆1
1 functions. Then a mere diagonalization

can be used to build f with a higher finite-change approximation, but with no higher
ω-computable approximation.

5.4.2 Higher closed unbounded approximations

We now investigate a new notion, which on elements of the Baire space is incomparable
with higher ∆0

2, but which lies between ω-self-unclosed and self-unclosed approximations
once restricted to {0,1}-valued functions. We use a well-known tool of set theory: the
notion of closed unbounded set of ordinals, also called club sets. Here by unbounded,
we mean unbounded below ωck1 , and closed means topologically closed for the order topol-
ogy on ordinals, that is, if a sequence of ordinals s1 < s2 < s3 < . . . is in our set, then the
ordinal supn sn is also in our set.

Definition 5.4.3. A sequence {fs}s<ωck1
is said to be a closed unbounded approxima-

tion of f if for any n, the set {s ∶ fs ↾n= f ↾n} is closed unbounded.

147

5.4. FURTHER STUDIES ON HIGHER ∆0
2 APPROXIMATIONS

With this definition, {fs}s<ωck1
does not need to converge. It is however straightforward

to verify that the defined function f is unique because for σ1 ≠ σ2 we cannot have that
both sets {s ∶ fs ↾n= σ1} and {s ∶ fs ↾n= σ2} are closed unbounded, as otherwise their
intersection would be non-empty (actually closed unbounded) which is a contradiction.
Also we will see that when f is {0,1}-valued, it is possible to transform closed unbounded
approximations of f into higher ∆0

2 approximations of f . On the other hand, if f can take
its values in ω, it needs not even be ∆0

2. However, we still have that any function with a
closed unbounded approximation collapses ωck1 .

Proposition 5.4.3:
If f is not ∆1

1 and has a closed unbounded approximation, then ωf1 > ωck1 .

Proof: The proof is almost exactly the same as the one of Theorem 4.4.1. We can define
the Π1

1(f) total function g ∶ ω → ωck1 which to n associates the smallest ordinal sn so
that fsn ↾n= f ↾n. If s = supn sn < ωck1 then fs = f and f is then ∆1

1. Therefore we have
supn sn = ωck1 . Also as g is Π1

1(f) and total, it is also ∆1
1(f). Then we have defined a

∆1
1(f) sequence of computable ordinals, unbounded in ωck1 which implies that ωf1 > ωck1 .

In particular, as the set of Π1
1-randoms is a Σ1

1 set whose every element is not ∆1
1

and preserves ωck1 , by the Gandy basis theorem we can find a higher ∆0
2 sequence which

is not ∆1
1 and preserves ωck1 , which proves the existence of higher ∆0

2 functions with no
closed unbounded approximation. We shall now prove that the two notions are incompa-
rable, by building a function with a closed unbounded approximation, but no higher ∆0

2

approximation:

Proposition 5.4.4:
There is some f with a closed unbounded approximation, but no higher ∆0

2 approxi-
mation.

Proof: Recall that p ∶ ωck1 → ω is the projectum function. Let {fn,s}n<ω,s<ωck1
be a list

of all (possibly non-converging) ∆0
2 approximations. We will build an ‘approximation’

{gs}s<ωck1
of a function g such that for any n, if {fn,s(n)}s<ωck1

converges to fn(n) then

g(n) ≠ fn(n); and for any n, the set {s ∶ gs(n) = g(n)} is closed unbounded. It will follow
that for any n the set {s ∶ gs ↾n= g↾n} is closed unbounded.

The construction:

At stage 0 we set g0(n) to be 0. At successor stage s, for any n, if gs−1(n) = 0 and
fn,s(n) = 0 we set gs(n) to be equal to p(s). If gs−1(n) = m ≠ 0 and fn,s(n) = m we set
gs(n) to be equal to 0. Otherwise we set gs(n) = gs−1(n).

At limit stage s, for any n, if {gt(n)}t<s converges then we set gs(n) to be the conver-
gence value. Otherwise we set it to 0.

148

5.4. FURTHER STUDIES ON HIGHER ∆0
2 APPROXIMATIONS

The verification:

Let us prove that for every n, there is an m such that {s ∶ gs(n) =m} is closed unbounded.
It is clear because oscillations of gs(n) are only between 0 and other values, and because
at limit stage s, if we do not have convergence of {gs(n)}t<s, then gs(n) is always 0. So
either we have oscillations between 0 and something else, unboundedly below ωck1 (or we
have gs(n) = 0 for every stages s ≥ t for some t) in which case we take m = 0, and both the
unbounded and the closed requirement for the set {s ∶ gs(n) =m} are satisfied; or there
is a smallest stage s such that gs(n) = p(s) and such that gt(n) = p(s) for every t ≥ s, in
which case m = p(s). This implies for this case that the unbounded requirement is satisfied.
Also as in this case s is the first ordinal such that gs(n) = m, the closed requirement is
satisfied, as the set {t < s ∶ gt(n) =m} is empty and the set {t ≥ s ∶ gt(n) =m} is equal
to everything. The function g is then defined by taking for each n this corresponding
value m.

It is clear by construction that as long as fn,s(n) converges, we have g(n) ≠ fn(n).

5.4.3 (ω + 1)-self-unclosed approximations

If a function with a closed unbounded approximation is {0,1}-valued, it is possible to
transform it into higher ∆0

2 approximations of f , where the number of changes in the
approximation above any prefix (including the correct one) can be infinite, but just once.
We call such approximations (ω + 1)-self-unclosed approximations:

Definition 5.4.4. A function f has a (ω + 1)-self-unclosed approximation {fs}s<ωck1
if for any n, if there is an infinite sequence of ordinals s0 < s1 < . . . such that fsi ↾n= σ and
such that fsi(n) ≠ fsi+1(n) for all i, then for any stage t ≥ supi si = s such that ft ↾n= σ,
we have ft(n) = fs(n).

Proposition 5.4.5:
A {0,1}-valued function f that has a closed unbounded approximation, also has a
(ω + 1)-self-unclosed approximation.

Proof: Let {fs}s<ωck1
be a closed unbounded approximation of a {0,1}-valued function f .

We can suppose without loss of generality that each fs is {0,1}-valued. We transform the
sequence {fs}s<ωck1

into a (ω+1)-self-unclosed approximation {gs}s<ωck1
of the same function

f . We keep track of a set of ‘banished’ strings, which is empty at first. In what follows,
for a set of ordinals A, we say that s is limit in A if there is no largest ordinal strictly
smaller than s in A. Otherwise s is successor in A.

The construction:

At stage s, inductively for every n, let As be the set of stages t smaller than s such that
gt ↾n= gs ↾n.

If As is empty we set gs(n) = fs(n). If s is successor in As and if gs ↾n ˆi is banished
for i = 0 or i = 1, we then set gs(n) to be the unbanished value. Otherwise, if gs ↾n= fs ↾n,

149

5.4. FURTHER STUDIES ON HIGHER ∆0
2 APPROXIMATIONS

we set gs(n) = fs(n), and if gs ↾n≠ fs ↾n we set gs(n) to be gt(n) where s is the successor
of t in As. If s is the first such stage, then we set gs(n) = 0.

If s is limit in A, if {gt(n)}t∈A converges, we set gs(n) to be the convergence value.
Otherwise we set gs(n) to be fs(n) and we banish the string gs ↾n ˆi for i ≠ fs(n).

The verification:

The use of the set of banihsed strings in the construction clearly ensures that {gs}s<ωck1
is

(ω + 1)-self-unclosed. We should now prove that {gs}s<ωck1
converges to f .

Let us first prove the following: If a string σ is banished at stage s then σ ⊀ f . So
suppose that σˆi is banished at stage s where σ is possibly the empty word. In particular
s is the smallest stage such that {gt(n)}t∈As does not converge (recall that As be the set of
stages smaller than s such that gt ↾n= gs ↾n= σ). Let t1 be the smallest stage of As, then t2
be the smallest stage of As bigger than t1 such that gt1(n) ≠ gt2(n), and let ti be defined
analogously for any i ∈ N. We have by minimality of s that supi ti = s, and by construction
and minimality of ti, each ti is necessarily successor in As. Also by minimality of each ti
we have gti(n) ≠ gt′i(n) where t′i is the predecessor of ti in As. This implies by construction
that fti(n) = gti(n) and fti ↾n= gti ↾n= σ for any i. But then also we have a set of stages
B ⊆ As, unbounded in As such that ft ↾n= σ for t ∈ B and such that {ft(n)}t∈B does not
converges. Therefore f ↾n+1≠ σˆi where i ≠ fs(n).

We can then prove by induction on n that for every n there is a stage r such that that
gt ↾n= f ↾n for any stage t ≥ r. Suppose gt ↾n= f ↾n for any t bigger than some stage r
and let us prove that gt ↾n+1= f ↾n+1 for t bigger than some stage r′ ≥ r. Either at some
stage r′, some string gr ↾n ˆi for i ∈ {0,1} is banished in which case gt ↾n+1= f ↾n+1 for any
t ≥ sup(r, r′), or it is not, which means that gt(n) changes only finitely often for t ≥ r and
then that gt(n) is stable for any t ≥ r′ ≥ r. Also this necessarily imply that gt ↾n+1= f ↾n+1.

It is clear that every ω-self-unclosed approximation is also (ω + 1)-self-unclosed. We
should see later that the converse does not hold. For now, we prove that (ω + 1)-self-
unclosed approximations are also self-unclosed approximations:

Proposition 5.4.6:
An (ω+1)-self-unclosed approximation of a function f , is also a self-unclosed approx-
imation of the function f .

Proof: Let us suppose that a function f , not ∆1
1, has a (ω + 1)-self-unclosed approx-

imation {ft}t<s. Suppose for contradiction that this approximation {ft}t<s of f is not
self-unclosed. Then there is a smallest stage s such that f is in the closure of {ft}t<s. As
f is not ∆1

1, there is a largest n such that fs ↾n= f ↾n, with an infinite set of stages smaller
than s, denoted by A, such that for any t ∈ A we have ft ↾n= f ↾n, but {ft(n)}t∈A switches
between f(n) and another value unboundedly often below s. But then as fs(n) ≠ f(n),
and as the sequence {fs}s<ωck1

is (ω + 1)-self-unclosed, it cannot converge to f , which is a
contradiction.

150

5.4. FURTHER STUDIES ON HIGHER ∆0
2 APPROXIMATIONS

5.4.4 Separation of (ω + 1)-self-unclosed and ω-self-unclosed approxima-
tions

We prove here that the converse of Proposition 5.4.6 does not hold, that is, (ω + 1)-self-
unclosed approximations give us strictly more power than just ω-self-unclosed approxi-
mations. But first let us argue that we have a uniform enumeration of (possibly non
converging) ∆0

2 approximations, that contains all the ω-self-unclosed approximations.

As we did after Lemma 5.4.1, given the code for a sequence of partial function {fs}s<ωck1
,

if fs is not total we can replace it by f ′s where each bit of f ′s(n) is equal to the convergence
value of {f ′t(n)}t<s is it exists, and 0 otherwise. We easily verify that if by keeping
only stages at which fs is total, {fs}s<ωck1

is an ω-self-unclosed approximation, then also

{f ′s}s<ωck1
is an ω-self-unclosed approximation of the same function. We can now prove:

Proposition 5.4.7:
There is some {0,1}-valued function f with a (ω+1)-self-unclosed approximation, but
no ω-self-unclosed approximation.

Proof: Let {fn,s}n<ω,s<ωck1
be a list of all (possibly non-converging) {0,1}-valued ∆0

2

approximations and containnig all the ω-self-unclosed approximations. We build an (ω+1)-
self-unclosed {0,1}-valued approximation of a function g such that for every n, as long
as {fn,s}n<ω,s<ωck1

is an ω-self-unclosed approximation of a function fn, we have g ↾n+1≠

fn ↾n+1. We keep track of a set of banished strings that is initialized to the empty set.

The construction:

We start by setting g0(n) ≠ fn,0(n) for every n. At stage s, inductively for every n, if
gs ↾n ˆ1 is banished then set gs(n) = 0. Otherwise let As be the set of stages t < s such
that gt ↾n= gs ↾n. We say that any stage r is successor in As if there is a largest stage t < r
in As. Otherwise we say that r is limit in As.

If As is empty let gs(n) ≠ fn,s(n). If s is successor in As let t be the predecessor of s
in As. If gs ↾n ˆgt(n) ≠ fn,s ↾n+1 let gs(n) = gt(n). Otherwise let gs(n) ≠ fn,s(n). If s is
limit in As and if {gt(n)}t∈As does not converge we set gs(n) = 0 and we banish gs ↾n ˆ1.
Otherwise let i be the convergence value of {gt(n)}t∈As . If gs ↾n ˆi ≠ fn,s ↾n+1 let gs(n) = i,
otherwise let gs(n) ≠ fn,s(n).

The verification:

It is clear by construction (with the system of banished strings) that {gs}s<ωck1
is an (ω+1)-

self-unclosed approximation of a function g. We should now prove that for any n, as long
as {fn,s}s<ωck1

is an ω-self-unclosed approximation of a function fn, we have g↾n+1≠ fn ↾n+1.

Let us suppose that {fn,s}s<ωck1
is an ω-self-unclosed approximation of a function fn.

In the construction, at any stage s, if gs ↾n ˆ1 is not banished at stage s of before stage s,
it is clear that we always have gs ↾n+1≠ fn,s ↾n+1. Also it would be enough to prove that if
a string σˆ1 is banished for any σ of length n, then fn ↾n≠ σ. So suppose that a string σ
is banished at stage s. In particular, s is the smallest stage such that gs ↾n= σ and such
that {gt(n)}t∈As does not converge. But by construction, this can happen only if there are

151

5.4. FURTHER STUDIES ON HIGHER ∆0
2 APPROXIMATIONS

infinitely many stages r0 < r1 < . . . in As with fn,ri ↾n= σ and with fn,ri+1(n) ≠ fn,ri(n),
which implies fn ↾n≠ σ.

5.4.5 Separation of (ω + 1)-self-unclosed and closed approximations

We will now show that the notion of (ω + 1)-self-unclosed approximation and the notion
of closed approximation are incomparable. Theorem 5.3.3, that constructs a weakly-Π1

1-
random sequence with an ω-self-unclosed approximation, together with Theorem 5.3.1
saying that no sequence with a closed approximation is weakly-Π1

1-random, implies that
there is a (ω + 1)-self-unclosed function f that does not have a closed approximation. It
remains to show that there is a function with a closed approximation that does not have
a (ω + 1)-self-unclosed approximation. We will do so with a {0,1}-valued such function.

It does not seem possible to obtain a uniform list of the (possibly non-converging)
{0,1}-valued ∆0

2 approximations that contains every (ω + 1)-self-unclosed approximation,
because at limit stage s, when a bit has changed infinitely often above some prefix, we need
to decide for a value of that bit at stage s if it does not have one yet, but doing so we might
pick the wrong one. However we easily see how to obtain (like we did after Lemma 5.4.1)
a uniform list of the (possibly non-converging) {0,1}-valued ∆0

2 approximations such that
for any (ω + 1)-self-unclosed approximation, the list contains a (ω + 2)-self-unclosed ap-
proximation of the same function, where the notion of (ω+2)-self-unclosed approximation
is defined analogously to the one of (ω + 1)-self-unclosed approximation, but where a bit
can change once more after it has changed infinitely often above some prefix. Also we
shall now see that those approximations can be listed:

Proposition 5.4.8:
One can uniformly transform a (possibly non-converging) {0,1}-valued ∆0

2 approxi-
mation {fs}s<ωck1

into a {0,1}-valued (ω + 2)-self-unclosed approximations {gs}s<ωck1
such that each fs = gs if {fs}s<ωck1

was already an (ω+2)-self-unclosed approximation.

Proof: We keep track of a set of banished strings, as well as a set of warned strings
(strings which are about to be banished).

The construction:

At stage s, we define gs(n) inductively for every n the following way: Let As be the set
of stages t < s such that gt ↾n= gs ↾n. If gs ↾n ˆi is banished for i ∈ {0,1}, then we set gs(n)
to be j ≠ i. Otherwise we set gs(n) to be fs(n). Furthermore if s is limit in As and if
{gt(n)}t∈As does not converge, we put a warning on the string gs ↾n+1. If s is successor in
As (we denote its predecessor in As by s − 1), if gs(n) ≠ gs−1(n) and if gs−1 ↾n+1 has been
warned, we banish gs−1 ↾n+1.

The verification:

The system of banished strings ensures that {gs}s<ωck1
is (ω + 2)-self-unclosed. Also it is

clear that if σ is the first string to be banished at some stage s, then it is because for
infinitely many stages r1 < r2 < ⋅ ⋅ ⋅ < rω < s we have fri ↾n= σ but fri(n) ≠ fri+1(n) and

152

5.4. FURTHER STUDIES ON HIGHER ∆0
2 APPROXIMATIONS

frω(n) ≠ fs(n) . Then if {fs}s<ωck1
is (ω+2)-self-unclosed, for no stage t ≥ s we have σ ≺ ft.

We can continue by induction on stages to show that for no string σ banished at stage s
we have σ ≺ ft for t ≥ s (as long as the approximation {fs}s<ωck1

is (ω + 2)-self-unclosed).

Using the previous proposition we can obtain a uniform list of (ω + 2)-self-unclosed
approximations such that for any (ω + 1)-self-unclosed approximation of a function f , the
list contains a (ω+2)-self-unclosed approximation of the same function. using this we now
prove:

Proposition 5.4.9:
There is some {0,1}-valued function f with a closed approximation, but no (ω + 1)-
self-unclosed approximation.

Proof: Let {fn,s}n,ω,s<ωck1
uniform list of (ω + 2)-self-unclosed approximations such that

for any (ω + 1)-self-unclosed approximation of a function f , the list contains a (ω + 2)-
self-unclosed approximation of the same function. The goal is to build a function g with
a closed approximation, such that for each n there exists a k with g(k) ≠ fn(k).

The construction:

At stage 0, for each n we set kn0 = n. Then we define g0(k
n
0) ≠ fn,0(k

n
0). At successor stage

s, we look for the smallest n so that fn,s(k
n
s) is equal to gs−1(k

n
s). If such a n does not

exists, then for every i ∈ N we set gs(i) = gs−1(i) and kis = k
i
s−1. Otherwise for every i ≤ n

we set kis = k
i
s−1 and for every i < kns we set gs(i) = gs−1(i). Then we set gs(k

n
s) to be

another value than fn,s(k
n
s), among {0,1}. Then for every i > n we set kis = k

i
s−1 + 1, we

set gs(k
i
s) to be a value different from fi,s(k

i
s) among {0,1} and for every kis < j < k

i+1
s we

set gs(j) = gs−1(j).

At a limit stage s, we look for the largest n so that {knt }t<s converges to some k.
Note that we always have convergence of {k0

t }t<s. If no largest such n exists, we set each
gs(i) and kis to be the convergence value of the sequences {gt(i)}t<s and {kit}t<s. Among
other things, we will verify later that in this case, those convergence values always exist.
Otherwise, if a largest such n exists, then for every i ≤ n we set kis to be the convergence
value of {kit}t<s and for every i > n we set inductively kis = k

i−1
s + 1. Then for every i < kns

we set gs(i) to be the convergence value of {gt(i)}t<s, we set gs(k
n
s) = 0 and for every

i > kns we set gs(i) to be the convergence value of {gt(i)}t<s. Among other things, we will
verify later that in this case, those convergence values always exist. Then at stage s + 1
we keep the exact sames values, except for gs+1(k

n
s) which is set to 1. We then continue

the algorithm directly at stage s + 2.

The verification:

First, let us notice that the approximation of g is partially continuous. In particular
if {gt(m)}t<s does not converge for some limit stage s, it is because of what happens
at previous successor stages. That is, we have stages r < s unbounded in s, so that
gr(m) ≠ gr+1(m).

Let us prove that at any limit stage s and for any n, if {knt }t<s converges to k, then
{gt(m)}t<s converges for any m < k. Let us suppose that {knt }t<s converges to k and that

153

5.4. FURTHER STUDIES ON HIGHER ∆0
2 APPROXIMATIONS

{gt(m)}t<s does not converges for m < k. By hypothesis, we have stages r < s unbounded
in s, so that gr(m) ≠ gr+1(m). Also by construction gr(m) ≠ gr+1(m) only for m = kir+1

for some i. But we also have that kit < k
i+1
t for any i and any t. In particular for all those

stages r we have m = kir+1 < knr+1 = k. But then, by construction we have that knr+1 > knr
(Note that it is independent of whether or not kir = kir+1). In particular we have that
{knt }t<s does not converges, which is a contradiction.

Let us prove that at any limit stage s, if there exists a largest n so that {knt }t<s converges
to k, then {gt(i)}t<s converges for every i different from k, and diverges for i = k. By the
previous paragraph, we already have that {gt(i)}t<s converges for any i < k. Now if we
suppose for contradiction that {gt(k)}t<s converges, then we also have by construction
that {kn+1

t }t<s converges, which contradicts the maximality of n. Therefore there are
some stages r, unbounded in s such that gr(k) ≠ gr+1(k). Now let p be the smallest stage
so that kit and gt(j) do not change for p ≤ t < s, i ≤ n and j < k. Let r0 ≤ s be the
smallest stage bigger than p so that {gt(k)}t<r0 does not converge. If r0 < s we continue
by defining similarly r1 ≤ s to be the smallest stage bigger than r0 such that{gt(k)}t<r1
does not converge, and so on, defining rm+1 for m ∈ ω, as long as rm < s. Let us prove that
for some m < ω, the stage rm = s. Suppose that r2k−1 < s. By construction, at stage r2k ,
the value fn(k) have moved infinitely often above all the strings of length k. But then g
can move at most once above all the strings of length k after stage r2k and then r2k = s.
Therefore, there is some m < ω such that rm = s. Then for every j < m we have that
{gt(i)}rj≤t<rj+1 converges for i > k, because after the i-th time that gt(k) has changed, the
values of gt(i) is fixed because kn+1

t is then bigger than i. Also as this is true for every
j ≤ m and as there are only finitely many of them, it follows that {gt(i)}t<rm converges
for i > k.

We should now prove that at each stage s+1 for s limit, we have that {gt ∶ t ≤ s+1} is a
closed set. Suppose by induction that for any r < s limit stage we have that {gt ∶ t ≤ r+1}
is a closed set, by the previous paragraph, we have that the set {gt ∶ t < s} has at most
two limit points which are not limit points of any set {gt ∶ t ≤ r + 1} for r limit below s.
And also by construction, we have that gs is the first of those limit points, and gs+1 the
second of those limit points, if it exists. Therefore we have that {gt ∶ t ≤ s+1} is a closed
set.

By a classic finite injury argument, we have that each sequence {knt }t<ωck1
and

{gt(n)}t<ωck1
converges respectively to numbers kn and g(n). Let {sn}n<ω be a sequence

of computable ordinals with supn sn = ω
ck
1 . By the previous paragraph we have that each

{gt ∶ t ≤ sn + 1} is also a closed set. As limn<ω gsn converges to g, we also have that
{gt ∶ t ≤ ωck1 } is a closed set.

Also by construction, we have that g(kn) is different from limt<ωck1
fn,t(k

n) and the
proof is complete.

5.4.6 A summary

We now sum up the different notions of being higher ∆0
2 for elements of the Baire space:

154

5.4. FURTHER STUDIES ON HIGHER ∆0
2 APPROXIMATIONS

(1) ω-c.a. (2) finite-change (3) closed

(4) ω-self-unclosed

(5) (ω + 1)-self-unclosed

(6) self-unclosed

(7) ∆0
2(8) closed unbounded

All the implications are straightforward, except maybe for (5) → (6) which is proved
in Proposition 5.4.6. All the implications are also strict.

� (2) /→ (1) is proved in Proposition 5.4.2.

� (3) /→ (5) is prove in Proposition 5.4.9 and implies that (3) /→ (2), (3) /→ (4) and
(6) /→ (5).

� (5) /→ (4) is proved in Proposition 5.4.7.

� (4) /→ (3) is a consequence of Theorem 5.3.3, together with Theorem 5.3.1. It implies
that (5) /→ (3) and (6) /→ (3).

� (7) /→ (6) is a consequence of Gandy Basis theorem, used to find Π1
1-random which is

higher ∆0
2, combined with Theorem 4.4.1. It implies that (7) implies nothing smaller

than (6).

� (8) /→ (7) is proved in Proposition 5.4.4. It implies that (8) implies nothing else.

� (7) /→ (8) is a consequence of Gandy Basis theorem, used to find Π1
1-random which

is higher ∆0
2, combined with Proposition 5.4.3.

155

Chapter 6
Π1

1-randomness and Σ1
1-genericity

Prenons par exemple la tâche de démontrer un théorème qui reste hypothétique (à
quoi, pour certains, semblerait se réduire le travail mathématique). Je vois deux ap-
proches extrêmes pour s’y prendre. L’une est celle du marteau et du burin, quand le
problème posé est vu comme une grosse noix, dure et lisse, dont il s’agit d’atteindre
l’intérieur, la chair nourricière protégée par la coque. Le principe est simple : on pose
le tranchant du burin contre la coque, et on tape fort. Au besoin, on recommence
en plusieurs endroits différents, jusqu’à ce que la coque se casse - et on est content.
Cette approche est surtout tentante quand la coque présente des aspérités ou pro-
tubérances, par où “la prendre”. Dans certains cas, de tels “bouts” par où prendre
la noix sautent aux yeux, dans d’autres cas, il faut la retourner attentivement dans
tous les sens, la prospecter avec soin, avant de trouver un point d’attaque. Le cas
le plus difficile est celui où la coque est d’une rotondité et d’une dureté parfaite et
uniforme. On a beau taper fort, le tranchant du burin patine et égratigne à peine la
surface - on finit par se lasser à la tâche. Parfois quand même on finit par y arriver,
à force de muscle et d’endurance.
Je pourrais illustrer la deuxième approche, en gardant l’image de la noix qu’il s’agit
d’ouvrir. La première parabole qui m’est venue à l’esprit tantôt, c’est qu’on plonge
la noix dans un liquide émollient, de l’eau simplement pourquoi pas, de temps en
temps on frotte pour qu’elle pénètre mieux, pour le reste on laisse faire le temps.
La coque s’assouplit au fil des semaines et des mois - quand le temps est mûr, une
pression de la main suffit, la coque s’ouvre comme celle d’un avocat mûr à point !
Ou encore, on laisse mûrir la noix sous le soleil et sous la pluie et peut-être aussi
sous les gelées de l’hiver. Quand le temps est mûr c’est une pousse délicate sortie de
la substantifique chair qui aura percé la coque, comme en se jouant - ou pour mieux
dire, la coque se sera ouverte d’elle-même, pour lui laisser passage.

Récoltes et Semailles, Alexandre Grothendieck

6.1 The Borel complexity of the set of Π1
1-randoms

We saw in Section 2.2.2 that classical randomness notions can be seen as genericity notions
for a different topology. Similarly we will give here two equivalent genericity notions for
respectively weak-Π1

1-randomness and Π1
1-randomness. This will allow us to conclude that

the Borel complexity of the set of Π1
1-randoms is Π0

3, and this will help us to answer later
(see Section 6.5) the longstanding open question of what is lowness for Π1

1-randomness.

157

6.1. THE BOREL COMPLEXITY OF THE SET OF Π1
1-RANDOMS

Also our proof, together with a result of Liang Yu (see [71] and [96]), will imply that Π0
3

is the exact complexity of the set of Π1
1-randoms.

Definition 6.1.1. We say that X is weakly-Σ1
1-Solovay-generic if it belongs to all sets

of the form ⋃nFn which intersect with positive measure all the Σ1
1-closed sets of positive

measure, where each Fn is a Σ1
1-closed set uniformly in n.

Definition 6.1.2. We say that X is Σ1
1-Solovay-generic if for any set of the form

⋃nFn where each Fn is a Σ1
1-closed set uniformly in n, either X is in ⋃nFn or X is in

some Σ1
1-closed set of positive measure F , disjoint from ⋃nFn.

Proposition 6.1.1:
A sequence X is weakly-Σ1

1-Solovay-generic iff it is weakly-Π1
1-random.

Proof: Note first that X is weakly-Π1
1-random iff it is in every uniform union of Σ1

1-closed
sets of measure 1. We shall prove that a uniform union of Σ1

1-closed sets is of measure 1
iff it intersects with positive measure every Σ1

1-closed set of positive measure.

Let us prove that a uniform union of Σ1
1 closed sets of measure less than 1 cannot

intersect all Σ1
1-closed sets of positive measure. Let ⋃nFn be a uniform union of Σ1

1-closed
sets of measure strictly smaller than 1. Let ⋂n Un be its complement. We shall prove that
already for some computable s we have that ⋂n Un,s is of positive measure. We actually
have that A = ⋂n Un − ⋃s<ωck1 ⋂n

Un,s ⊆ {X ∶ ωX1 > ωck1 }. Indeed, if X ∈ A then the

Π1
1(X) total function which to n associates the smallest s such that X ∈ ⋂m≤n Um,s has its

range unbounded in ωck1 , implying that ωX1 > ωck1 . Also using Theorem 3.7.3 saying that
λ({X ∶ ωX1 > ωck1 }) = 0 we then have λ(⋂n Un) = λ(⋃s<ωck1 ⋂n

Un,s), and as λ(⋂n Un) > 0,

there exists then some s such that λ(⋂n Un,s) > 0. Also ⋂n Un,s is a ∆1
1 set of positive

measure, and then by Theorem 1.8.1 there exists a ∆1
1-closed set of positive measure

F ⊆ ⋂n Un,s ⊆ ⋂n Un. Thus ⋃nFn does not intersect all Σ1
1-closed sets of positive measure.

Conversely a uniform union of Σ1
1-closed sets of measure 1 obviously intersects with

positive measure any Σ1
1-closed set of positive measure. Then the weakly-Σ1

1-Solovay-
generics are exactly the weakly-Π1

1-randoms.

We shall now prove that the notion of Σ1
1-Solovay-genericity coincides with the notion

of Π1
1-randomness. We already know from Theorem 3.7.4 that if X is weakly-Π1

1-random
but not Π1

1-random, then ωX1 > ωck1 . We first should prove that if X is Σ1
1-Solovay-generic

then ωX1 = ωck1 (this is the difficult part of the equivalence).

Note first that ωX1 > ωck1 iff there is a ∈OX such that ∣a∣Xo = ωck1 . In particular, ωX1 > ωck1
iff there is a Turing functional Φ ∶ 2<N×N→ N such that for any n we have Φ(X,n) ∈OX

<ωck1

and with supn ∣Φ(X,n)∣Xo = ωck1 . We should show that if X is Σ1
1-Solovay-generic and if we

have some Φ such that Φ(X,n) ∈OX
<ωck1

for all n, then supn ∣Φ(X,n)∣Xo < ωck1 . To show this

we need an approximation lemma, which can be seen as an extension of Theorem 1.8.1,

158

6.1. THE BOREL COMPLEXITY OF THE SET OF Π1
1-RANDOMS

saying that any ∆1
1 set can be approximated from below by a uniform union of ∆1

1-closed
sets of the same measure. We cannot extend this to all Σ1

1 sets, but we can for a restricted
type of Σ1

1 set:

Lemma 6.1.1 For a Σ1
1 set S = ⋂α<ωck1

Sα where each Sα is ∆1
1 uniformly in α, one can

find uniformly in an index for S and in any n, a Σ1
1 closed set F ⊆ S with λ(S −F) ≤ 2−n.

Proof: Recall that p ∶ ωck1 → ω is the projectum function. Using Theorem 1.8.1, one can
find uniformly in α < ωck1 a ∆1

1-closed set F ⊆ Sα such that λ(Sα − Fα) ≤ 2−p(α)2−n. We
now define the Σ1

1-closed set F to be ⋂αFα. We clearly have F ⊆ S and we have:

λ(S −F) = λ(S −⋂α<ωck1
Fα)

= λ(⋃α<ωck1
(S −Fα))

≤ λ(⋃α<ωck1
(Sα −Fα))

≤ ∑α<ωck1
λ(Sα −Fα) ≤ 2−n.

We can now prove the desired theorem:

Theorem 6.1.1:
If Y is Σ1

1-Solovay-generic then ωY1 = ωck1 .

Proof: Suppose that Y is Σ1
1-Solovay-generic. For any functional Φ, consider the set

P = {X ∣ ∀n ∃α < ωck1 Φ(X,n) ∈OX
α }

Let Pn = {X ∣ ∃α < ωck1 Φ(X,n) ∈ OX
α } and Pn,α = {X ∣ Φ(X,n) ∈ OX

α }, so P = ⋂nPn
and Pn = ⋃α<ωck1

Pn,α.

Note that the complement of each Pn is a restricted type of Σ1
1 set, on which we can

then apply Lemma 6.1.1. So we can find uniformly in n a uniform union of Σ1
1-closed sets

included in Pcn with the same measure as Pcn. From this we can find a uniform union of
Σ1

1-closed sets included in Pc with the same measure as Pc. Suppose that Y is in P. As
it is Σ1

1-Solovay-generic we have a Σ1
1-closed set F of positive measure containing Y which

is disjoint from Pc up to a set of measure 0, formally λ(F ∩Pc) = 0. In particular for each
n we have λ(F ∩ Pcn) = 0 and then λ(Fc ∪ Pn) = 1. Then let f be the Π1

1 total function
which to each pair ⟨n,m⟩ associates the smallest computable ordinal α < ωck1 such that:

λ(Fcα ∪Pn,α) > 1 − 2−m

where {Fcα}α<ωck1
is the co-enumeration of Fc. Let α∗ = supn,m ∣f(n,m)∣. As f is total and

Π1
1, we have by Spector boundedness principle that α∗ < ωck1 . Also

∀n λ(Fcα∗ ∪⋃α<α∗ Pα,n) = 1
→ ∀n λ(Fα∗ ∩⋂α<α∗ P

c
α,n) = 0

→ ∀n λ(F −⋃α<α∗ Pα,n) = 0
→ λ(F −⋂n⋃α<α∗ Pα,n) = 0

As Y is Σ1
1-Solovay-generic it is in particular weakly-Σ1

1-Solovay-generic and then
weakly-Π1

1-random. Thus by Theorem 3.7.6 it belongs to no Σ1
1 set of measure 0. Then as

F −⋂n⋃α<α∗ Pα,n is a Σ1
1 set of measure 0 we have that Y belongs to ⋂n⋃α<α∗ Pα,n and

then supn ∣Φ(Y,n)∣Yo ≤ α∗ < ωck1 .

159

6.1. THE BOREL COMPLEXITY OF THE SET OF Π1
1-RANDOMS

We can now prove the equivalence:

Theorem 6.1.2:
The set of Σ1

1-Solovay-generics coincides with the set of Π1
1-randoms.

Proof: Using Theorem 3.7.4 combined with the previous theorem, we have that the
Σ1

1-Solovay-generics are included in the Π1
1-randoms. We just have to prove the reverse

inclusion.

Suppose Y is not Σ1
1-Solovay-generic. If ωY1 > ωck1 then Y is not Π1

1-random. Otherwise
ωY1 = ωck1 and also there is a sequence of Σ1

1-closed sets ⋃nFn of positive measure such that
X is not in ⋃nFn and such that any Σ1

1-closed set of positive measure which is disjoint
from ⋃nFn does not contain Y . Let ⋂n Un be the complement of ⋃nFn. As ωY1 = ωck1 we
have that Y ∈ ⋂n Un,s for some computable ordinal s (the proof of this is like in the proof
of Proposition 6.1.1). Also as ⋂n Un,s is a ∆1

1 set, either it is of measure 0 and then Y is
not ∆1

1-random, or it is of positive measure and can then be approximated from below,
using Theorem 1.8.1 by a uniform union of ∆1

1-closed sets, of the same measure. Also as
Y is in none of them it is in their complement in ⋂n Un,s, which is a ∆1

1-set of measure 0.
Then Y is not ∆1

1-random.

The previous theorem gives a higher bound on the Borel complexity of the Π1
1-randoms,

and then on the Borel complexity of the biggest Π1
1 nullset.

Corollary 6.1.1:
The set of Π1

1-randoms is Π0
3.

The following result of Liang Yu (see [71]) can be used to prove that the set of Π1
1-

randoms is not Σ0
3.

Theorem 6.1.3 (Yu):
Let ⋂n Un be a Π0

2 set containing only weakly-Π1
1-randoms. Then the set

{F ∣ F is a Σ1
1-closed set and ⋂

n
Un ∩F = ∅}

intersects with positive measure any Σ1
1-closed set of positive measure.

It follows that the set of weakly-Π1
1-randoms cannot be Σ0

3 but also that the set of
Π1

1-randoms cannot be Σ0
3, and more generally:

160

6.2. RANDOMS WITH RESPECT TO (PLAIN) Π1
1-KOLMOGOROV COMPLEXITY

Corollary 6.1.2:
No set A containing the set of Π1

1-random sequences and contained in the set of
weakly-Π1

1-random sequences is Σ0
3.

Proof: Suppose that such a set A is equal to ⋃n⋂m Un,m each Un,m being open. For
each n let Bn = ⋃{F ∣ F is a Σ1

1-closed set and ⋂m Un,m ∩ F = ∅}. We have ⋂nBn ∩

⋃n⋂m Un,m = ∅. Also each set ⋂m Un,m is a Π0
2 set containing only weakly-Π1

1-randoms.
Therefore by Theorem 6.1.3 we have that ⋂nBn contains some Solovay-Σ1

1-generic elements
(some Π1

1-random element), which contradicts that A = ⋃n⋂m Un,m contains all of them.

6.2 Randoms with respect to (plain) Π1
1-Kolmogorov com-

plexity

We can deduce from Corollary 6.1.2 another interesting corollary. Before stating it, we
need to introduce a few notions. In classical randomness, we can define a non prefix-free
Kolmogorov complexity C ∶ 2<N → N, also called plain complexity. Also Miller [61]
together with Nies, Stephan, and Terwijn [72] proved that a sequence X is 2-random iff
infinitely many prefixes of X have maximal plain Kolmogorov complexity. We can make
a similar definition in the higher setting:

Definition 6.2.1. A Π1
1-machine M is a Π1

1 partial function M ∶ 2<N → 2<N. We denote
by hCM(σ) the Π1

1-Kolmorogov complexity of a string σ with respect to the Π1
1-machine

M , defined to be the length of the smallest string τ such that M(τ) = σ, if such a string
exists, and by convention, ∞ otherwise.

Just like we proved that there exists a universal Π1
1-prefix-free machine (see Theo-

rem 3.7.10) we can prove that there is a universal Π1
1-machine (we leave the proof to the

reader, as it is very similar to the proof of Theorem 3.7.10):

Theorem 6.2.1 (Universal Π1
1-machine theorem):

There is a universal Π1
1-machine U , that is, for each Π1

1-machine M , there exists a
constant cM such that hCU(σ) ≤ hCM(σ) + cm for any string σ.

We can then give a meaning to the Π1
1-Kolmorogov complexity of a string:

Definition 6.2.2. For a string σ, we define hC(σ) to be hCU(σ) for a universal Π1
1-

machine U , fixed in advance.

Let us now define the set A of sequences which have infinitely many prefixes of maximal
Π1

1-Kolmogorov complexity:

A = {X ∣ ∃c ∀n ∃m ≥ n hC(X ↾m) ≥m − c}

161

6.3. EQUIVALENT TEST NOTIONS FOR Π1
1-RANDOMNESS

It is clear that A is a Σ1
1 set. It is also easy to prove that it is of measure 1. In particular

it contains the set of Π1
1-randoms, and we can also prove that it is contained in the set of

Π1
1-Martin-Löf random. However it follows directly from Corollary 6.1.2 that it does not

coincide with the set of Π1
1-randoms or with the set of weakly-Π1

1-randoms:

Corollary 6.2.1:
The set A strictly contains the set of Π1

1-randoms. The set A is not contained in the
set of weakly-Π1

1-randoms.

Proof: The set A is easily seen to be Σ0
3. The results follows then from Corollary 6.1.2.

The following question remains open:

Question 6.2.1 Does the set A contain the weakly-Π1
1-randoms?

6.3 Equivalent test notions for Π1
1-randomness

We will now use Theorem 6.1.2 to give several equivalent definitions of Π1
1-randomness.

6.3.1 First equivalence

Recall Theorem 2.1.5 of classical randomness: For a sequence Z Martin-Löf random the
following are equivalent:

1. Z is weakly-2-random.

2. Z forms a minimal pair with ∅(1).

3. Z does not compute any non-computable c.e. set.

A first higher counterpart of (1)↔ (2) of Theorem 2.1.5 would be: ‘For Z Π1
1-Martin-

Löf random, Z is weakly-Π1
1-random iff Z forms a higher Turing minimal pair with Kleene’s

O’. But this cannot be true, as by the Gandy Basis theorem, there is a Π1
1-random, and

therefore a weakly-Π1
1-random, which is Turing computable by Kleene’s O.

A higher counterpart of (1)↔ (3) of Theorem 2.1.5 would be: ‘For Z Π1
1-Martin-Löf

random, Z is weakly-Π1
1-random iff Z does not higher Turing compute a Π1

1 set which is
non ∆1

1’. Here again, we will see that this does not hold. One can easily see that the proof
of direction (1)Ô⇒ (3) of theorem 2.1.5 does not work in the higher setting, as it uses a
‘time trick’. We will indeed prove that this cannot be fixed, by proving that the correct
higher counterpart of Theorem 2.1.5 is obtained by replacing weak-Π1

1-randomness by Π1
1-

randomness. Thus the separation of the two notions, achieved in Section 5.3.2 implies in
particular that there are some weakly-Π1

1-random sequences which higher Turing computes
Π1

1 sets which are non ∆1
1.

Theorem 6.3.1:
For a set Z Π1

1-Martin-Löf random, the following are equivalent:

162

6.3. EQUIVALENT TEST NOTIONS FOR Π1
1-RANDOMNESS

1. Z is Π1
1-random.

2. Z does not higher Turing compute a Π1
1 sequence which is not ∆1

1.

Proof: (1)Ô⇒ (2): This is the easy direction. Suppose that Z higher Turing computes
a Π1

1 sequence A which is not ∆1
1. As A is Π1

1, we have an approximation {As}s<ωck1
of A

such that for any limit ordinal s we have limt<sAt = As. As A is not ∆1
1 it cannot be equal

to As for some computable s. We can now define the Π1
1(A) total function f ∶ ω → ωck1

by sending f(n) to the smallest ordinal s such that As ↾n= A ↾n. Therefore we have
supn f(n) = ω

ck
1 . Also as A is higher Turing below Z we also have that f is Π1

1(Z), and as
f is total it is also ∆1

1(Z) and therefore the range of f is a ∆1
1(Z) set of ordinals, cofinal

in ωck1 , which implies that ωZ1 > ωck1 .

(2)Ô⇒ (1): Suppose that Z is Π1
1-Martin-Löf random but not Π1

1-random. Then from
Theorem 6.1.2 there is a uniform intersection of Π1

1-open sets ⋂n Un so that Z ∈ ⋂n Un
and so that no ∆1

1-closed set F ⊆ ⋂n Un of positive measure contains Z. Then as Z is
∆1

1-random we actually have that no ∆1
1 closed set F ⊆ ⋂n Un contains Z. Let {We}e<ω

be an enumeration of the Π1
1 subsets of ω. We will construct a Π1

1 sequence A which is
not ∆1

1 and such that Z ≥hT A. The usual way to make A not ∆1
1, is by meeting each

requirement:

Re ∶We infinite → A ∩We ≠ ∅

making sure in the meantime that A is co-infinite.

Construction of A:

At stage s, at substage ⟨e,m, k⟩, if Re is actively satisfied, go to the next substage, other-
wise if m ∈We[s] with m > 2e, then consider the ∆1

1 set ⋂n Un[s] and compute an increas-
ing union of ∆1

1-closed sets ⋃nFn with ⋃nFn ⊆ ⋂n Un[s] and λ(⋃nFn) = λ(⋂n Un[s]).

If λ(Um[s] − Fk) ≤ 2−e then enumerate m into A at stage s, mark Re as ‘actively
satisfied’ and let V⟨m,e⟩ = Um[s] −Fk.

This ends the algorithm. The sets V⟨m,e⟩ are intended to form a higher Solovay test.

Verification that A is not ∆1
1:

A is co-infinite because for each e at most one m is enumerated into A and this m is bigger
than 2e. Now suppose that We is infinite. By the Σ1

1-boundedness principle there exists
s < ωck1 so that We[s] is infinite. Then there exists t ≥ s so that λ(⋂n Un −⋂n Un[t]) < 2−e.
Then there is a ∆1

1-closed set Fk ⊆ ⋂n Un[t] so that λ(⋂n Un − Fk) < 2−e. Then there
exists an integer a such that for all b ≥ a we have λ(Ub − Fk) < 2−e and in particular
λ(Ub[r] −Fk) < 2−e for any stage r. But as We[t] is infinite we have some m ∈We[t] with
m > 2e such that λ(Um[t] −Fk) < 2−e. Then at stage t and substage ⟨e,m, k⟩, the integer
m is enumerated into A good, if Re is not met yet.

Verification that {V⟨m,e⟩}m,e∈ω is a higher Solovay test:

Note that each V⟨m,e⟩ is well-defined uniformly in m and e. We implicitly have that V⟨m,e⟩
enumerates nothing until the algorithm decides otherwise, which can happen at most once

163

6.3. EQUIVALENT TEST NOTIONS FOR Π1
1-RANDOMNESS

for a given pair (m,e), and even at most once for a given e, as when it happens, Re
is actively satisfied. Also as each Vm,e has measure smaller than 2−e, we have a higher
Solovay test.

Computation of A from Z:

We now just describe the algorithm to compute A from Z. The verification that the
algorithm works as expected is given in the next paragraph. Let p be the smallest integer
so that for any m ≥ p, the set Z is in no V⟨m,e⟩ for any e, which exists because Z passes
the Solovay test V⟨m,e⟩. To decide whether m ≥ p is in A, we look for the smallest s such
that Z ∈ Um[s]. Then decide that m is in A iff m is in A[s].

Verification that Z computes A:

Let p be the smallest integer so that for any m ≥ p the set Z is in no V⟨m,e⟩ for any

e. Suppose for contradiction that we have m ≥ p and s < ωck1 such that Z ∈ Um[s] and
m ∉ A[s], but m ∈ A[t] for t > s. By construction, it means that we have some e and some
∆1

1-closed set Fk ⊆ ⋂n Un with λ(Um[t] −Fk) < 2−e and V⟨m,e⟩ = Um[t] −Fk.

As Z does not belong to V⟨m,e⟩ and does not belong to Fk, it does not belong to Um[t]
which contradicts the fact that it belongs to Um[s] ⊆ Um[t].

Corollary 6.3.1:
Some weakly-Π1

1-random computes a Π1
1 set which is not ∆1

1.

Proof: This follows from the previous theorem and from Theorem 5.3.3 saying that the
set of Π1

1-randoms is strictly included in the set of weakly-Π1
1-randoms.

6.3.2 Second equivalence

Theorem 6.3.1 can now be used to give another equivalent notion of test for Π1
1-randomness,

in the same spirit as the definition of higher difference randomness.

Theorem 6.3.2:
For a sequence X, the following are equivalent:

1. X is captured by a set F ∩⋂n Un with λ(F ∩⋂n Un) = 0 where F is a Σ1
1 set and

each Un is a Π1
1-open set uniformly in n.

2. X is not Π1
1-random.

3. X is captured by a set F ∩⋂n Un with λ(F ∩⋂n Un) = 0 where F is a Σ1
1-closed

set and each Un is a Π1
1-open set uniformly in n.

164

6.3. EQUIVALENT TEST NOTIONS FOR Π1
1-RANDOMNESS

Proof: (1)Ô⇒ (2): Suppose first that X is captured by a set F ∩ ⋂n Un of measure 0.
Then either ωX1 > ωck1 , in which case X is not Π1

1-random, or there exists some stage s
for which X ∈ ⋂n Un[s]. As also X ∈ F we then have X ∈ Un[s] ∩F , which is a Σ1

1 set of
measure 0. Therefore X is not ∆1

1-random and thus not Π1
1-random.

(2)Ô⇒ (3): Suppose now that X is not Π1
1-random. Then by Theorem 6.3.1, either

it is not Π1
1-Martin-Löf random, in which case we have (3) with F = 2N and {Un}n<ω a

Π1
1-Martin-Löf test, or it higher Turing computes a Π1

1 set Y which is not ∆1
1, via a higher

functional Φ. We define Un = ⋃sΦ−1(Ys ↾n). We now define a Σ1
1-closed set by defining its

complement Fc: We put in Fc at successor stage s+1, the open set Φ−1(Ys ↾n) for every n
as soon as we witness Ys ↾n≠ Ys+1 ↾n. It follows that ⋂n Un ∩F contains only the sequences
which higher Turing computes Y with the functional Φ, or some sequences on which Φ is
not consistent. In particular, by Theorem 3.4.2, the set of sequences which higher Turing
compute Y has measure 0. Therefore the measure of ⋂n Un∩F is bounded by the measure
of the inconsistency set of Φ.

Also recall Lemma 4.3.2 saying that uniformly in ε, we can obtain a version of Φ for
which the inconsistency set of Φ has measure smaller than ε. We can then uniformly in ε
define a uniform intersection of Π1

1-open sets ⋂n U
ε
n such that λ(⋂n U

ε
n∩F) ≤ ε. Note that

we can keep the same set F for any ε. Then we have λ(⋂ε,n U
ε
n∩F) = 0 and X ∈ ⋂ε,n U

ε
n∩F .

(3)Ô⇒ (1) is immediate.

6.3.3 Third equivalence

We now give a notion of test for Π1
1-randomness, which has the same flavour as the

notion of test defined in Theorem 5.3.2, proved to characterize weak-Π1
1-randomness. Just

like Theorem 5.3.2 generalizes the fact that no sequence with a closed approximation is
weakly-Π1

1-random, the following test notion generalizes the fact that no sequence with a
self-unclosed approximation is Π1

1-random.

Theorem 6.3.3:
For a sequence X, the following is equivalent:

1. X is not Π1
1-random.

2. X is captured by a set ⋂n Uf(n) with λ(Uf(n)) ≤ 2−n, where f has a higher ∆0
2

approximation {fs}s<ωck1
such that for every n, the set X is in at most finitely

many versions Ufs(n).

Proof: (2)Ô⇒ (1): This is the easy direction. Let ⋂n Uf(n) be a test which captures some
X following the hypothesis of (2). Note that we can always suppose that the approximation
of f is partially continuous, that is for s limit, if the limit of {ft}t<s exists, then it is also
equal to fs. We can also always suppose that λ(Ufs(n)) ≤ 2−n for any s and n, as it is
harmless to trim Ufs(n) if its measure becomes too big. Let us define the total Π1

1(X)

function g ∶ ω → ωck1 by:

g(0) = 0

g(n + 1) = min{s > g(n) ∣ X ∈ ⋂m≤n Ufs(m)[s]}

165

6.3. EQUIVALENT TEST NOTIONS FOR Π1
1-RANDOMNESS

As the function g is total it is ∆1
1(X). Suppose that we have supn g(n) = ω

ck
1 then the range

of g is a ∆1
1(X) set of ordinals cofinal in ωck1 , and therefore we have ωX1 > ωck1 , implying

(1). Suppose now that supn g(n) = s < ω
ck
1 . Also for each m, there exists some n such that

fg(n)(m) = fg(k)(m) for any k ≥ n, as otherwise X would be in infinitely many versions
of Ufs(m). Therefore limn fg(n) exists and as the approximation is partially continuous,
this limit is equal to fs. But then X ∈ ⋂m Ufs(m) and therefore it is not Π1

1-Martin-Löf
random.

(1)Ô⇒ (2): Suppose that X is not Π1
1-random. If also X is not Π1

1-Martin-Löf random
then we have (2). Otherwise, by Theorem 6.3.1, the sequence X higher Turing computes
some strictly Π1

1 sequence A, via some functional Φ. Also the set ⋂nΦ−1(A ↾n) contains
only sequences which higher Turing computes A or sequences on which Φ is not consistent.
By Theorem 3.7.3 the measure of the set ⋂nΦ−1(A↾n) is then bounded by the measure of
the inconsistency set of Φ. Also recall that we showed in Lemma 4.3.2 that the measure
of this set can be made as small as we want. For the rest of the proof we denote this set
by B.

Construction of f :

Let us define for each s < ωck1 , each n and each m the Π1
1-open set:

Un,m,s = {Φ−1(As ↾m) ∣ with a version of Φ used so that λ(B) ≤ 2−n}

Then let us define for each s, each n and each m the Π1
1 open set Vn,m,s to be equal to

U2n,m,s truncated if necessary so that λ(Vn,m,s) ≤ 2−n. We then define uniformly in s < ωck1
a ∆1

1 function gs ∶ ω → (ω × ωck1). In what follows, if gs(n) = (m, t) then g1
s(n) refers to m

and g2
s(n) refers to t.

g0(n) = (0,0)

g1
s+1(n) = g1

s(n) if Vn,g1s(n),g2s(n)[s + 1]

is not truncated so far.
= g1

s(n) + 1 otherwise

g2
s+1(n) = g2

s(n) if Ag2s(n) ↾g1s(n)= As+1 ↾g1s(n)
= s + 1 otherwise

The computation of gs(n) at limit stage s needs a more complex definition. The reason for
this more complex definition is that we do not want g to be able to ‘come back to a previous
value’ (see further Claim 2). At limit stage s we check whether supt<s g

1
t (n) < ω. If so

we first compute As = limt<sAt (the limit is well defined as A has a Π1
1 approximation),

then we look for the smallest stage t > s so that ∃m At ↾m≠ As ↾m and we look for
the smallest such m. Such a stage t necessarily exists as A is not ∆1

1. Then we set
g1
s(n) = m and g2

s(n) = t. Otherwise, if supt<s g
1
t (n) < ω we set g1

s(n) = supt<s g
1
t (n) and

g2
s(n) = supt<s g

2
t (n).

We finally define uniformly in s < ωck1 a function fs ∶ ω → ω by mapping fs(n) to the
index of the open set Vn,g1s(n),g2s(n). The sequence {fs}s<ωck1

is intended to be a ∆0
2 approx-

imation that maches the hypothesis of (2). But first we have to prove the convergence of
f :

166

6.3. EQUIVALENT TEST NOTIONS FOR Π1
1-RANDOMNESS

Verification of the convergence of {fs}s<ωck1
:

Claim 1: The sequence of pairs {gs(n)}s<ωck1
converges to a value g(n) so that

Vn,g1(n),g2(n) does not need to be truncated to have its measure smaller than 2−n and so
that Ag2(n) ↾g1(n)= A↾g1(n).

Fix some n. There exists some smallest integer m so that we have λ(Φ−1(A↾m)) ≤ 2−n

as long as the version of Φ used is such that λ(B) ≤ 2−2n. Let um be the smallest ordinal
so that A ↾m= Aum ↾m. Note that um is necessarily a successor ordinal. Suppose first
that we have g1

um−1(n) <m. Then by definition of g, and by minimality of um and m, for
s ≥ um, the value g2

s(n) will never move anymore and the value g1
s(n) will move up to m.

Suppose now that g1
um−1(n) ≥ m. Then by definition of g, and by minimality of um and

m, for s ≥ um, the value g1
s(n) will never move anymore (because by minimality of um we

then have g2
um(n) = um) and the value g2

s(n) will move until A↾g1s(n)= Ag2s(n) ↾g1s(n).

We can deduce that the sequence of functions {fs}s<ωck1
converges to some function f .

Verification that X ∈ ⋂n Uf(n):

Immediate from Claim 1.

Verification that for every m the set X is in finitely many versions of Ufs(m):

Claim 2: The sequence {gs(n)}s<ωck1
‘never comes back to a previous value’. Formally if

for a smallest stage t > s we have gs(n) ≠ gt(n) then for any u ≥ t we have gs(n) ≠ gu(n).

If g2
s(n) ≠ g

2
t (n) the Claim is immediate because the value g2(n) only increases. Oth-

erwise, if g1
s(n) ≠ g

1
t (n) but g2

s(n) = g
2
t (n), then by minimality of t, definition of g(n) and

the fact that g2
s(n) = g

2
t (n), we necessarily have that t is successor and g1

t (n) = g
1
s(n) + 1.

We can then prove by induction on stages u bigger than t that at least g1
s(n) < g

1
u(n) or

g2
s(n) < g

2
u(n) (Note that the definition of g at limit stages is here important).

Claim 3: For any n and any sequence s1 < s2 < . . . such that supm sm = s < ωck1 and
such that for all i we have gsi(n) ≠ gsi+1(n), we have that X is in only finitely many
Vn,g1si(n),g

2
si
(n).

Suppose that Claim 3 is false for some n and that there exists a sequence s1 < s2 < . . .
such that supm sm = s < ωck1 and such that for all i we have gsm(n) ≠ gsm+1(n), with X
in infinitely many Vn,g1sm(n),g2sm(n). Then using Claim 2, we can suppose without loss of

generality that X ∈ Vn,g1sm(n),g2sm(n) for every sm (still having gsm(n) ≠ gsm+1(n) for each

m).

Let us first suppose for contradiction that the sequence {g1
sm(n)}i∈ω is bounded. Then

we must have infinitely many g1
sm(n) which are equal to some integer k. But then using

Claim 2, their corresponding values g2
sm(n) must be all pairwise distinct. However by

construction we have that g2
si(n) ≠ g

2
sj(n) while g1

si(n) = g
1
sj(n) = k implies that Ag2si(n)

↾k≠

Ag2sj
↾k. But the biggest set of pairwise distinct strings of length k is finite, which gives a

contradiction.

Then for all k there is a i with g1
si(n) bigger than k. In particular there is an infinite

subsequence {ti}i∈ω of the {si}i∈ω so that g1
ti(n) < g

1
ti+1(n). Let t = supi g

2
ti(n). We have

that At = supiAg2ti(n)
because A has a Π1

1 approximation. Also as X belongs to all the

167

6.4. A HIGHER HIERARCHY OF COMPLEXITY OF SETS

Vn,g1ti(n),g
2
ti
(n) we have for each i that X ∈ Φ−1(Ag2ti(n)

↾g1ti(n)
). But for any k there exists i

so that for all j ≥ i we have both g1
tj(n) ≥ k and At ↾k= Ag2tj (n)

↾k. But then for any k we

have X ∈ Φ−1(At ↾k) and then Φ(X) = At. Also as A is not ∆1
1 we have that A ≠ At and

then Φ(X) ≠ A which is a contradiction.

From claim 3 we can deduce that for each n the sequence X is in only finitely many
versions of the open set indexed by {fs(n)}s<ωck1

, which concludes the proof.

6.4 A higher hierarchy of complexity of sets

The notion of weak-Π1
1-randomness deals with uniform intersection of Π1

1-open sets, the
uniformity being along the natural numbers. Also one could think of iterating this notion.
We could consider for example uniform union of uniform intersections of Π1

1 open sets.
Recall that we proved in Section 5.3.2 that weak-Π1

1-randomness is strictly weaker than Π1
1-

randomness, that is, uniform intersections of Π1
1-open sets, of measure 0, are not enough

to cover the largest Π1
1 nullset.

We shall see in this section that if we just allow a little bit more descriptional power to
define our nullsets, that is allowing more successive intersection and union operations over
Π1

1-open sets, we can then define nullsets that capture every non Π1
1-random sequence. We

start by defining formally the new hierarchy on the complexity of sets, that we will use.

Definition 6.4.1. A set is Σ
ωck1
1 if it is a Π1

1-open set. It is Π
ωck1
1 if it is a Σ1

1-closed set.

It is Σ
ωck1
n+1 if it is an effective union over ω of a sequence of Π

ωck1
n sets and it is Π

ωck1
n+1 if it

is an effective intersection over ω of a sequence of Σ
ωck1
n sets.

We did not iterate the definition through the computable ordinal, first because we will

not use it, and then because it is not clear what should be the meaning of Σ
ωck1
ω . Indeed,

this new hierarchy has the unusual property that a Π
ωck1
1 set is not necessarily a Π

ωck1
2

set; more generally, a Π
ωck1
n set is not necessarily Π

ωck1
n+p for p odd, and a Σ

ωck1
n set is not

necessarily Σ
ωck1
n+p for p odd. Indeed, Π

ωck1
n sets for n odd and Σ

ωck1
n for n even are all Σ1

1 sets,

but Π
ωck1
n sets for n even and Σ

ωck1
n for n odd are all Π1

1 sets. We give here an illustration
of this new hierarchy:

Σ
ωck1
1 Σ

ωck1
2 Σ

ωck1
3 Σ

ωck1
4 Σ

ωck1
5 . . .

Π
ωck1
1 Π

ωck1
2 Π

ωck1
3 Π

ωck1
4 Π

ωck1
5 . . .

Figure 6.1: The higher hierarchy of complexity of sets.
The blue complexities correspond to Π1

1 sets.
The green complexities correspond to Σ1

1 sets.

168

6.4. A HIGHER HIERARCHY OF COMPLEXITY OF SETS

Example 6.4.1:
Consider a Σ1

1-closed set containing only higher Martin-Löf randoms. Such a set can

be neither Π
ωck1
2 , nor Σ

ωck1
3 , etc..., because all those complexities characterizes Π1

1 sets,
and by Corollary 3.7.1, hyperarithmetic sequences form a basis for Π1

1 sets of positive
measure. ♢

.

Fact 6.4.1.

The same phenomenon happens classically if one consider the Borel sets defined on some
non Polish topological space. For example, let T(2N) be the set of open sets of 2N and
consider the topology on T(2N) generated by the subbasis [[σ]] = {U ∈ T(2N) ∶ [σ] ⊆ U}
for any string σ. Consider the closed set F = {U ∈ T(2N) ∶ [σ] − U ≠ ∅} for a given
string σ. Now as any open set in this topology contains the element [ε] = 2N, also any
intersection of open set contains [ε], which is not an element of F .

.

With this higher complexity notion, we have by definition that any sequence is weakly-

Π1
1-random iff it is in no null Π

ωck1
2 set. The question we study here is :

What randomness notions do we obtain by considering null Π
ωck1
n sets or null Σ

ωck1
n sets?

Definition 6.4.2. We say that X is Σ
ωck1
n -random, respectively Π

ωck1
n -random, if X is in

no Σ
ωck1
n nullset, respectively in no Π

ωck1
n nullset.

6.4.1 On the Σ1
1 randomness notions in the higher hierarchy

It is clear that complexities corresponding to Σ1
1 sets will give us a notion at least weaker

than Σ1
1-randomness and then than ∆1

1-randomness. Concretely, the notion of being in no

null Σ
ωck1
2 sets, or no null Π

ωck1
3 sets, etc... gives us a notion of randomness at least weaker

than Σ1
1-randomness. The notion of Π

ωck1
1 -randomness has been studied by Kjos-hanssen,

Nies, Stephan, and Yu in [36], under the name of ∆1
1-Kurtz randomness. In particular

they studied lowness for various notions of randomness, defined similarly to ∆1
1-Kurtz

randomness.

The notion of ∆1
1-randomness where the Borel complexity of the null sets is restrained

has also been studied by Chong, Nies and Yu in [7]. In particular, they observed that
uniform intersection of ∆1

1 open sets, effectively of measure 0, are enough to capture any
non ∆1

1-random. What we consider here is different, as we start our successive unions and
intersections with Σ1

1 closed sets.

Theorem 6.4.1:
We have:

Π
ωck1
1 -randomness ↔ Σ

ωck1
2 -randomness ← Π

ωck1
3 -randomness = ∆1

1-randomness.

169

6.4. A HIGHER HIERARCHY OF COMPLEXITY OF SETS

The reverse implication is strict. Also it follows from Π
ωck1
3 -randomness = ∆1

1-

randomness that Π
ωck1
3+p-randomness and Σ

ωck1
2+p-randomness for p even are all equivalent

to ∆1
1-randomness.

Proof: It is clear that Π
ωck1
1 -randomness is the same as Σ

ωck1
2 -randomness, because in both

cases the non random sequences are those which are in the union of all Σ1
1-closed null sets.

Let us prove that Π
ωck1
3 nullsets are enough to cover any ∆1

1 nullsets. Using Theo-
rem 1.8.1 we can approximate from above any ∆1

1 set by a uniform intersection of ∆1
1-open

sets ⋂n Un. Also as each Un is ∆1
1 uniformly in n, the predicate σ ⊆ Un and the predicate

σ ⊈ Un are both ∆1
1 which implies that we can easily define uniformly in n a ∆1

1 total
function hn ∶ ω → 2<ω such that ⋃m[hn(m)] = Un. We then define uniformly in (n,m) the
∆1

1-closed set Fnm to be [hn(m)]. We then have ⋂n⋃mF
n
m = ⋂n Un.

Let us prove that Π
ωck1
1 -randomness is strictly weaker than ∆1

1-randomness. The proof
is similar to the one that Kurtz-randomness (being in no Π0

1 sets of measure 0) is strictly
weaker than Martin-Löf randomness. We use here some Baire category notions: The set of

Π
ωck1
1 -randoms is a countable intersection of open sets of measure 1. Also it is clear that an

open set of measure 1 is necessarily dense. But then this intersection contains some Cohen
generic sequences for any notion of genericity which is strong enough. Also any X which
is generic for even the weakest notion of genericity generally studied, namely weakly-1-
generic, is not Martin-Löf random (because each open set of a universal Martin-Löf test
is dense), and therefore certainly not ∆1

1-random.

Now, as Π
ωck1
3+p nullsets and Σ

ωck1
2+p nullsets are all Σ1

1 nullsets for p even, the corresponding

randomness notions are all equivalent to Σ1
1-randomness = ∆1

1-randomness.

6.4.2 On the Π1
1 randomness notions in the higher hierarchy

We know that the weakly-Π1
1-randoms are exactly the elements which are Π

ωck1
2 -random.

Also it is clear that this notion coincides with Σ
ωck1
3 -randomness, as in both case the non

random elements are the unions of all the Π
ωck1
2 null sets. We shall now prove that Π

ωck1
4 -

randomness coincide with Π1
1-randomness.

To do so, we will use Π1
1 functionals Φ from 2N into sequences of computable ordinals,

that is, (ωck1)N. Concretely such a functional Φ is given by a Π1
1 subset of 2<N ×N × ωck1 .

We then say that Φ is defined on X, if for every n, there exists a unique α such that for
some m we have (X ↾m, n,α) ∈ Φ.

Note that just like for usual higher Turing reductions, we cannot guarantee that such a
functional is consistent everywhere. Also if along some oracle X, some n is mapped to at
least two distinct ordinals, then the functional is said to be inconsistent on X. It follows
from the work of Chapter 7 that the inconsistency set cannot be completely removed,
however, as in Lemma 4.3.2, it can be made of measure as small as we want. We will
prove this formally in Lemma 6.4.1, but first we give a few notations.

170

6.4. A HIGHER HIERARCHY OF COMPLEXITY OF SETS

The set of elements on which Φ is defined (and consistent) will be denoted by Cdom(Φ).
If for some X and n there is some α (not necessarily unique) such that (X ↾m, n,α) ∈ Φ for
some m, we write Φ(X,n) = α. One can consider ΦX as a multivalued function. Note that
the equality symbol ‘=’ used in the expression Φ(X,n) = α does not mean that Φ(X,n) is
equal to α in the strict sense of equality, but more than Φ(X,n) is mapped to α. Then
the set of elements X such that for any n we have Φ(X,n) = α for at least one α will be
denoted by dom(Φ). Formally:

dom(Φ) =⋂
n

{X ∶ ∃m,αn (X ↾m, n,αn) ∈ Φ}

One nice thing about dom(Φ) is that it is a Π
ωck1
2 set, whereas Cdom(Φ) is more compli-

cated. We now prove, as a consequence of Theorem 6.3.1 (a sequence Z is Π1
1-Martin-Löf

random but not Π1
1-random iff it higher Turing computes a strictly Π1

1 sequence) that the
measure of the inconsistency set of a functional Φ can be made as small as we want:

Lemma 6.4.1 If Z is Π1
1-Martin-Löf random and not Π1

1-random, one can define uni-
formly in ε ∈ Q a Π1

1 functional Φ ⊆ 2<N ×N × ωck1 such that:

� Φ is defined (and consistent) on Z, and supnΦ(Z,n) = ωck1 .

� The measure of the Π1
1 open set on which Φ is not consistent is smaller than ε.

Formally:

λ({X ∶ ∃n,m1,m2 ∃α1 ≠ α2 Φ(X ↾m1 , n) = α1 and Φ(X ↾m2 , n) = α2}) ≤ ε

Proof: From 6.3.1 we have a higher Turing functional Ψ so that Ψ(Z) = A for A a Π1
1

set which is not ∆1
1. From Lemma 4.3.2, the measure of the inconsistency set of Φ can be

made smaller than ε, uniformly in ε.

To define Φ, we enumerate (σ,n,α) in Φ if there exists τ of length bigger than n and
α such that (σ, τ) ∈ Ψ and α is the first ordinal for which we have τ ↾n= Aα ↾n. We verify
easily that such a functional Φ has the desired properties.

Using those Π1
1 functionals, we now state the following theorem, which is the heart of

the proof that Π
ωck1
4 -randomness coincide with Π1

1-randomness.

Theorem 6.4.2:
For any Π1

1 functional Φ ⊆ 2<N ×N×ωck1 , One can define, uniformly in an index for Φ,

a Π
ωck1
4 nullset A such that {X ∈ Cdom(Φ) ∶ supnΦ(X,n) = ωck1 } ⊆ A.

Before proving Theorem 6.4.2 we see some of its consequences, in particular using

Lemma 6.4.1, it implies that Π
ωck1
4 -randomness coincides with Π1

1-randomness:

Theorem 6.4.3:
We have:

171

6.4. A HIGHER HIERARCHY OF COMPLEXITY OF SETS

Π
ωck1
2 -randomness ↔ Σ

ωck1
3 -randomness ← Π

ωck1
4 -randomness = Π1

1-randomness.

The reverse implication is strict. Also it follows from Π
ωck1
4 -randomness = Π1

1-

randomness that Π
ωck1
4+p-randomness and Σ

ωck1
3+p-randomness are all equivalent to Π1

1-

randomness for p even and all weaker than Π1
1-randomness for p odd.

Proof: Let us first prove that Theorem 6.4.2 implies that Π
ωck1
4 -randomness = Π1

1-

randomness. One direction is obvious as the largest Π1
1 nullset covers any Π

ωck1
4 nullset.

For the other direction, suppose that Z is not Π1
1-random. If Z is not Π1

1-Martin-Löf

random it is by definition covered by a Π
ωck1
2 nullset. Otherwise we can define using

Lemma 6.4.1 a Π1
1 functional Φ ⊆ 2<N ×N × ωck1 defined on Z, with supnΦ(Z,n) = ωck1 . It

follows using Theorem 6.4.2 that Z can be captured by a Π
ωck1
4 nullset.

It follows that Π
ωck1
2 -randomness, corresponding to weak-Π1

1-randomness, is strictly

weaker than Π
ωck1
4 -randomness, using Theorem 5.3.3 that separates weak-Π1

1-randomness

from Π1
1-randomness. The fact that Σ

ωck1
3 -randomness coincide with Π

ωck1
2 -randomness is

clear.

The rest of the proposition follows: For any n the null Σ
ωck1
n or Π

ωck1
n sets are either also

null Π1
1 sets, or covered by some null Π1

1 sets.

Corollary 6.4.1:
The set of Π1

1-randoms is Π
ωck1
5 .

Proof: We actually have an effective listing {Φe}e∈N of the Π1
1 functionals Φe ⊆ 2<N ×N×

ωck1 , as it is simply the listing of all the Π1
1 subsets of 2<N×N×ωck1 (recall that inconsistency

is allowed). Then using Theorem 6.4.2, we can define uniformly in e a Π
ωck1
4 null set Ae

which captures:
{X ∈ Cdom(Φ) ∶ sup

n
Φe(X,n) = ω

ck
1 }

Also using Lemma 6.4.1 we know that as long as Z is not Π1
1-random and Π1

1-Martin-Löf
random, it will be captured by some of those set Ae. Therefore, the uniform union of all

the sets Ae, itself joined with the universal Π1
1-Martin-Löf test, is a Σ

ωck1
5 nullset containing

the biggest Π1
1 nullset. And as a Σ

ωck1
5 set is itself Π1

1, it actually coincides with the biggest
Π1

1 nullset.

The rest of this section is dedicated to the proof of Theorem 6.4.2. So consider a Π1
1

functional Φ ⊆ 2<N ×N × ωck1 . Let us fix some ε and let us assume that the inconsistency
set of Φ has measure smaller than ε. From now on, the construction will remain uniform
in Φ and then in ε.

172

6.4. A HIGHER HIERARCHY OF COMPLEXITY OF SETS

The strategy:

The strategy is to define uniformly in each version of Φ that have an inconsistency set of

measure smaller ε, a Π
ωck1
4 set C such that:

� {X ∈ Cdom(Φ) ∶ supnΦ(X,n) = ωck1 } ⊆ C ⊆ dom(Φ).

� {X ∈ Cdom(Φ) ∶ supnΦ(X,n) < ωck1 } ⊆ 2N − C.

In particular, it will follow that C contains either some element X such that ωX1 > ωck1 ,
or some element X ∈ dom(Φ) such that Φ is not consistent on X. As by Theorem 3.7.3
the measure of the set of X such that ωX1 > ωck1 is null, it follows that the measure of C is
bounded by ε, the measure of the inconsistency set of Φ. Also uniformly in ε we can define

the Π
ωck1
4 set Cε containing {X ∈ Cdom(Φ) ∶ supnΦ(X,n) = ωck1 } and of measure smaller

than ε. It follows that the intersection over ε of the sets Cε is a Π
ωck1
4 nullset containing

{X ∈ Cdom(Φ) ∶ supnΦ(X,n) = ωck1 }.

Some notations:

In what follows, we denote by Re the e-th c.e. subset of N × N, that is, (n,m) ∈ Re ↔
⟨n,m⟩ ∈ We, where We is the usual e-th c.e. subset of N. We will consider such a set as
a c.e. binary relation. Also for a computable ordinal α we denote by Rα the c.e. binary
relation coded by the smallest integer a ∈W such that ∣a∣o = α. Recall the notation W
from Definition 1.4.1, denoting the set of codes for computable ordinals.

We also denote by Re ↾k, the binary relation Re restricted to elements ‘smaller’ than
k in the sense of R, that is, the pair (n,m) is in Re ↾k iff the pair (m,k) and (n,m) are
both in Re ((n,m) ∈ Re is intended to be understood as n < m in the sense of Re). Note
that Re ↾k is well defined for any e, but the underlying idea really makes sense when Re
represents an order, and we actually intend to use it only when Re represents a linear
order.

Finally, we say that a function f ∶ N → N is a morphism from a linear order coded by
a binary relation Re1 to another linear order coded by a binary relation Re2 , if f is total
on domRe1 , with f(domRe1) ⊆ domRe2 and if (x, y) ∈ Re1 → (f(x), f(y)) ∈ Re2 . Here
domRe denotes the set of integer a such that (a, b) ∈ Re or (b, a) ∈ Re for some b.

Definition of the Π
ωck1
4 set C

We now do the proof of Theorem 6.4.2. Let us define uniformly in each integer e the sets
Ae and Be:

Ae =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

X ∈ 2N ∶
∃n ∃αn Φ(X,n) = αn and

∀f f is not a morphism from Rαn to Re

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

and

Be =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

X ∈ 2N ∶
∃m ∀n ∃αn Φ(X,n) = αn and

∀f f is not a morphism from Re ↾m to Rαn

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

Let us now define the Π0
2 set G of integers e such that Re is a linear order of N. We

finally define:

173

6.4. A HIGHER HIERARCHY OF COMPLEXITY OF SETS

C = ⋂
e∈G

(dom(Φ) ∩ (Ae ∪ Be))

Proof that C is Π
ωck1
4 :

We have that dom(Φ) is Π
ωck1
2 , that Ae is Σ

ωck1
1 uniformly in e and that Be is Σ

ωck1
3 uniformly

in e. Then the set dom(Φ)∩ (Ae ∪Be) is Σ
ωck1
3 uniformly in e. As G has a Π0

2 description,

we then have that C is a Π
ωck1
4 set.

Proof that C captures enough:

We should prove that {X ∈ Cdom(Φ) ∶ supnΦ(X,n) = ωck1 } ⊆ C. Fix some Z ∈ Cdom(Φ)

and suppose that supnΦ(Z,n) = ωck1 . Let us prove for any e ∈ G that Z ∈ Ae ∪ Be. It will
follow that Z ∈ C.

Suppose first that Re is a well-founded relation. As e is already in G we have that Re is
a c.e. well-ordered relation with ∣Re∣ < ω

ck
1 . But then there is some n so that Φ(Z,n) = αn

with ∣αn∣ > ∣Re∣ and we cannot have a morphism from Rαn to Re. Then Z ∈ Ae.

Suppose now that Re is an ill-founded relation. There is then some m so that Re ↾m
is already ill-founded. But as Rαn is well-founded for every αn = Φ(Z,n), then for every
n we cannot have a morphism from Re ↾m to Rαn , and then Z ∈ Be.

Proof that C does not capture too much:

Let us now prove that for any X ∈ Cdom(Φ), if supnΦ(X,n) < ωck1 then X ∉ C. Consider
such a sequence X with supnΦ(X,n) = α < ωck1 . In particular there exists some integer
e ∈ G so that Re is a well-order of order-type α. For this e we certainly have for all
αn = Φ(X,n) a morphism from Rαn into Re and then X ∉ Ae.

Let us now prove that X ∉ Be. For any m we have ∣Re ↾m ∣ < α. But because
α = supnΦ(X,n) there is necessarily some n so that Φ(X,n) = αn > ∣Re ↾m ∣. Thus there is
a morphism from Re ↾m into Rαn . Then X ∉ Be, and therefore X ∉ C. This ends the proof.

6.4.3 A lower bound on the higher complexity of randomness notions

We saw with Corollary 6.4.1 that the set of Π1
1-randoms is Π

ωck1
5 . Can it be made simpler?

We will prove here that the set of weakly-Π1
1-randoms and the set of Π1

1-randoms both

cannot be Π
ωck1
3 . The question of whether the set of Π1

1-randoms is Σ
ωck1
4 remains open,

and the question of whether the set of weakly-Π1
1-randoms is somewhere in the higher

hierarchy also remains open.

Theorem 6.4.4:
For any Π

ωck1
3 set A = ⋂n⋃mFn,m of measure 1, there is a sequence X ∈ A that has a

finite change approximation.

Proof: The proof can be considered to be a simpler version of the proof of the separation
of Π1

1-randomness from weak-Π1
1-randomness.

174

6.4. A HIGHER HIERARCHY OF COMPLEXITY OF SETS

Overview:

Let A = ⋂n⋃mFn,m be of measure 1. Without loss of generality, we can suppose that for
each n, the union ⋃mFn,m is increasing. The goal is to find for each n some integer dn and
a string σn with σ0 ≺ σ1 ≺ σ2 ≺ . . . such that for any n we have λ(⋂m≤nFm,dm ∩ [σn]) > 0.
It will follow that the limit point of {[σn]}n∈N will be in ⋂m≤nFm,dm and then in A.

The construction:

We can consider without loss of generality that F0,m = 2N for any m. For any stage s we
let S0

s = F0,0 and σ0
s = ε, the empty word. Note that we have λ(S0

0) = λ(S
0
0 ∣ [σ0

0]) = 1.

Then at stage 0, for any n ≥ 1 we set each σn0 to be a range of n zeros and dn0 to be
0. At successor stage s, at substage n+ 1, let us suppose that we have already defined the
set Sns and the string σns such that λ(Sns ∣ [σns])[s] ≥ 2−n. Let us define Sn+1

s and σn+1
s .

λ(Sns ∩Fn+1,dn+1s−1
∣ [σns])[s] ≥ 2−n−1

we set dn+1
s = dn+1

s−1 . Otherwise we set dn+1
s to be the samllest integer d such that:

λ(Sns ∩Fn+1,d ∣ [σns])[s] ≥ 2−n−1

Note that as by induction we have λ(Sns ∣ [σns])[s] ≥ 2−n, such an integer d exists, because
λ(⋃mFn,m) = 1 for every n. Then we set Sn+1

s to be Sns ∩Fn+1,dn+1s
. Then if

λ(Sn+1
s ∣ [σn+1

s−1])[s] ≥ 2−n−1

we set σn+1
s = σn+1

s−1 , otherwise we set σn+1
s to be σns ˆi where i ∈ {0,1} is such that:

λ(Sn+1
s ∣ [σns ˆi])[s] ≥ 2−n−1

Note that as by induction we have λ(Sn+1
s ∣ [σns])[s] ≥ 2−n−1, we easily verify that such an

i always exists.

At limit stage s we set dns to be the limit of {dnt }t<s for every n and σns to be the limit
of {σnt }t<s for every n. Among other things we should prove that the limit always exists.

The verification:

We should prove that at limit stage s, each {σnt }t<s and {dnt }t<s converges. It is true for
n = 0 as σns = σ

n
0 and dns = d

n
0 . Suppose it is true up to n and let us show it is true for n+1.

Let us first show that {dn+1
t }t<s converges. Let r be the smallest stage such that for

any r ≤ t < s we have σnt = σ
n
r and dkt = d

k
r for any k ≤ n. It follows that we have Snt = Snr for

r ≤ t < s. Let us argue that λ(Snr ∣ [σnr])[s] ≥ 2−n. Suppose otherwise, then by compactness,
there is a smallest successor stage t with r < t < s such that λ(Snr ∣ [σnr])[t] < 2−n. But
then by construction we have that dkt ≠ d

k
r or σkt ≠ σ

k
r for some k ≤ n, which contradicts the

hypothesis. Therefore λ(Snr ∣ [σnr])[s] ≥ 2−n and because λ(⋃mFn+1,m) = 1, there exists
some d such that:

λ(Snr ∩Fn+1,d ∣ [σnr])[s] ≥ 2−n−1

175

6.4. A HIGHER HIERARCHY OF COMPLEXITY OF SETS

This implies that dn+1
t is bounded by d for any r ≤ t < s and as dn+1

t only increases, we
have that {dn+1

t }t<s converges.

We now prove similarly that {σn+1
t }t<s converges. Let r be the smallest stage such that

for any r ≤ t < s we have σnt = σ
n
r and dkt = d

k
r for any k ≤ n + 1. Also we have Sn+1

t = Sn+1
r

for r ≤ t < s. Then by compactness again and by construction we have λ(Sn+1
r ∣ [σnr])[s] ≥

2−n−1. Therefore, for at least i = 0 or i = 1 we have λ(Sn+1
r ∣ [σnr ˆi])[s] ≥ 2−n−1. It follows

that σn+1
t can change at most once after stage r, to be equal to σnr ˆi. Therefore {σn+1

t }t<s
converges.

It follows that for any n and any stage s, there is no infinite sequence r1 < r2 < . . . with
supi ri = s < ω

ck
1 such that σnri ≠ σ

n
ri+1 . Also by the Σ1

1-boundedness principle we cannot

have an infinite sequence r1 < r2 < . . . with supi ri = ω
ck
1 such that σnri ≠ σ

n
ri+1 . It follows

that each sequence Xs, defined as the unique limit point of {[σns] ∣ n ∈ N}, converges to a
sequence X and also that {Xs}s<ωck1

is a finite change approximation of X.

Similarly we prove that each sequence {dns }s<ωck1
converges to an integer dn and then

that each {Sns }s<ωck1
converges to a Σ1

1-closed set Sn with ⋂n Sn ⊆ A and with λ(Sn∩[X ↾n
]) > 0 for each n. As each Sn is a closed set we have X ∈ ⋂n S

n ⊆ A.

Corollary 6.4.2:
The set of Π1

1-randoms and the set of weakly-Π1
1-randoms are not Π

ωck1
3 .

Proof: It is clear, as no sequence with a finite change approximation is weakly-Π1
1-random

(or Π1
1-random).

6.4.4 Open questions on higher complexity

It is tempting to try relaxing in Theorem 6.4.4 the hypothesis that the Π
ωck1
3 set A is of

measure 1, by just considering that A is of positive measure. This indeed would imply

that the set of weakly-Π1
1-randoms and the set of Π1

1-randoms are both not Σ
ωck1
4 .

However, the measure 1 hypothesis seems crucial to conduct the proof of Theorem 6.4.4,
and it does not seems that this technique could be used to prove that the sequences with

a higher finite-change approximation are a basis for the Π
ωck1
3 sets of positive measure. On

the other hand it also seems difficult to define a Σ
ωck1
3 set of measure less than 1 capturing

every sequence which has a finite-change approximation. So we pose here the two following
questions:

Question 6.4.1 Is the set of Π1
1-random Σ

ωck1
4 ?

Question 6.4.2 Is the set of weakly-Π1
1-randoms somewhere in the higher hierarchy?

176

6.5. LOWNESS FOR Π1
1-RANDOMNESS

6.5 Lowness for Π1
1-randomness

6.5.1 Characterization of lowness for Π1
1-randomness

Theorem 6.1.2 helps us here to solve the question of lowness for Π1
1-randomness, which

as been asked in [70] (question 9.4.11). We do not use here continuous relativization,
but full relativization. So the question is, is there some sequence A which is not ∆1

1 and
such that the largest Π1

1(A) set equals the largest Π1
1 set? We answer the question by the

negative, in a strong sense, as we prove that if A is not ∆1
1, then some Π1

1(A)-Martin-Löf
test already captures some Π1

1-random sequence Z.

In what follows, for some X and some Π1
1(X)-open set U of measure less than δ, we

define the Π1
1(X)-open set U2 the following way: First, using Lemma 3.7.1 relativized to X,

let W be a Π1
1(X) set of strings such that [W]≺ = U and such that ∑σ∈W λ([σ]) ≤ λ(U)+ε

for some ε that we pick to satisfy ε + δ < 1. Then let W 2 denote the Π1
1(X) set of strings

{σ1ˆσ2 ∣ σ1, σ2 ∈W}, and let U2 denotes the open set described by W 2. In particular we
have λ(U2) ≤ (λ(U) + ε)2:

λ(U2) ≤ ∑σ1,σ2∈W λ([σ1ˆσ2])

≤ ∑σ1∈W ∑σ2∈W λ([σ1])λ([σ2])

≤ (∑σ1∈W λ([σ1]))(∑σ2∈W λ([σ2]))

≤ (λ(U) + ε)2

We then define inductively Un+1 to be the Π1
1(X)-open set described by the Π1

1(X) set
of strings Wn+1 = {σ1ˆσ2 ∣ σ1 ∈W

n, σ2 ∈W}. Similarly we have λ(Un+1) ≤ (λ(U) + ε)n+1

and thus the value λ(Un) goes to 0 with a computable bound, as n goes to infinity.

Lemma 6.5.1 For any sequence A not ∆1
1, we have some Π1

1(A)-open set U of measure
less than 1, such that for any Π1

1-open set V of measure less than 1, the set U is not
contained in V, that is, U ∩ Vc ≠ ∅.

Proof: Suppose that for any Π1
1(A)-open set U of measure less than 1, there exists a

Π1
1-open set V of measure less than 1 with U ⊆ V, and let us prove that A is ∆1

1.

Consider the universal Π1
1(A)-Martin-Löf test ⋂n Un, with full relativization, that is

each Un is Π1
1(A) uniformly in n. By hypothesis we have some Π1

1-open set V of measure
less than 1 so that ⋂n Un ⊆ V. As explained above, let W be a Π1

1 set of strings describing
V such that limn λ(V

n = [Wn]≺) = 0. We claim that also ⋂n Un ⊆ ⋂n V
n.

Suppose not, that is, some X ∈ ⋂n Un but X ∉ ⋂n V
n. In particular, there is a n ≥ 1 so

that X ∈ Vn but X ∉ Vn+1. As X ∈ Vn there is some σ ∈Wn and some Y so that X = σˆY .
Also X ∈ ⋂n Un and as ⋂n Un contains all the non Π1

1(A)-Martin-Löf random, it is closed
under the operation of removing finite initial segments: As X = σˆY is in ⋂n Un then
also Y ∈ ⋂n Un ⊆ V. But then by definition of Vn+1 we also have σˆY ∈ Vn+1 which is a
contradiction.

So we have ⋂n Un ⊆ ⋂n V
n and also the function which to n associates λ(Vn) goes to

0 with a computable bound. Thus the universal Π1
1(A)-Martin-Löf test is covered by a

Π1
1-Martin-Löf test which means that A is low for Π1

1-Martin-Löf randomness, with full
relativization. Also by Corollary 4.5.4 A is then ∆1

1.

177

6.5. LOWNESS FOR Π1
1-RANDOMNESS

Theorem 6.5.1:
Suppose A is not ∆1

1. There is a Π1
1-random X which is captured by a Π1

1(A)-Martin-
Löf test.

Proof: We have by Theorem 6.1.2 that the set of Π1
1-randoms coincide with the set

of Solovay-Σ1
1-generic. In particular it can be described as an intersection of unions of

Σ1
1-closed set ⋂m⋃nFm,n, such that for each n we have λ(⋃nFm,n) = 1. Without loss

of generality we can also suppose that each Fm,n contains only Π1
1-Martin-Löf random

sequences (we can just replace each Fm,n by the uniform union of Fm,n intersected with
each Σ1

1-closed component of the universal Π1
1-Martin-Löf test). We can also suppose

without loss of generality that each union ⋃nFm,n is increasing.

By Lemma 6.5.1 we have that if A is not ∆1
1, there is some Π1

1(A)-open set U of
measure less than 1, such that for any Π1

1-open set V of measure less than 1 we have
U ∩ Vc ≠ ∅. As explained above, let W be a Π1

1(A) set of strings describing U such that
limn λ(U

n = [Wn]≺) = 0. The goal is to create an element Z into ⋂k U
k, which is also in

every ⋂m⋃nFm,n. We do it by defining strings σ1 ≺ σ2 ≺ σ3 ≺

The construction is a forcing which does not have to be effective. For a start, take
the first integer n1 so that F1,n1 has positive measure. By Lemma 6.5.1 we have that
U ∩F1,n1 ≠ ∅. Also as F1,n1 contains only Π1

1-Martin-Löf random sequences, we actually
have λ(U ∩ F1,n1) > 0. Indeed, suppose otherwise, then for some cylinder [σ] ⊆ U we
have λ([σ] ∩ F1,n1) = 0 and [σ] ∩ F1,n1 ≠ ∅, which contradicts that F1,n1 contains only
Π1

1-Martin-Löf random sequences. Therefore, for some σ ∈W we have λ(F1,n1 ∣ [σ]) > 0.
We set σ1 = σ.

Suppose that at step m ≥ 1 we have some string σm ∈Wm and some integers n1, . . . , nm
such that λ(⋂1≤i≤mFi,ni ∣ [σm]) > 0. To ease the reading we now denote ⋂1≤i≤mFi,ni by F .
We should define an extension σm+1 of σm such that σm+1 ∈W

m+1 with still λ(F ∣ [σm+1]) >

0. Then, as ⋃nFm+1,n = 1, there is some nm+1 such that λ(F ∩ Fm+1,nm+1 ∣ [σm+1]) > 0,
and we can continue the construction inductively.

Let σmˆW denotes the set of string {σmˆτ ∣ τ ∈ W}. Suppose for contradiction
that [σmˆW]≺ ∩ F = ∅, that is, [σmˆW]≺ is covered by Fc. Let V be a Π1

1 set of
strings describing Fc ∩ [σm]. Then also U = [W]≺ is covered by the Π1

1-open set Fc ↿σm ,
described by removing each prefix σm from all the strings enumerated in V . Furthermore
as λ(F ∣ [σm]) > 0, the set Fc does not have full measure inside [σm] and therefore
λ(Fc ↿σm) < 1, which contradicts Lemma 6.5.1. Therefore we have [σmˆW]≺ ∩F ≠ ∅ and
then by the same argument as above we have λ([σmˆW]≺ ∩ F) > 0. Then there is some
string τ ∈W so that λ(F ∣ [σmˆτ]) > 0. Set σm+1 = σmˆτ . We have σm+1 ∈W

m+1.

We define Z to be the unique limit point of {[σm]}m∈N. We have by construction
that Z ∈ ⋂n U

n which implies that it is not Π1
1(A)-Martin-Löf random. We also have by

construction that Z ∈ ⋂m⋃nFm,n, which implies that it is Π1
1-random.

178

6.6. HIGHER GENERIC SEQUENCES

Corollary 6.5.1:
A sequence A is low for Π1

1-randomness iff A is ∆1
1.

6.5.2 Further discussion

Chong, Nies and Yu, together with Harrington and Slaman proved in [7] a theorem making
an interesting connection between lowness for Π1

1-randomness, lowness for ∆1
1-randomness.

Definition 6.5.1. A sequence A is Π1
1-random cuppable if there is some Π1

1-random
sequence Z such that ωA⊕Z1 > ωck1 .

The equivalence between ωX1 > ωck1 and X ≥h O (see Theorem 3.5.1) allows us to see
this notion as a higher counterpart of the notion of Martin-Löf random cuppability:

Definition 6.5.2. A sequence A is Martin-Löf random cuppable if there is some

Martin-Löf random sequence Z which does not Turing computes ∅
′
, and such that A⊕ Z

Turing compute ∅
′
.

Kuĉera asked in 2004 during a talk (see [69]) if Martin-Löf random cuppability could
coincide with non K-triviality. The question has recently been answered by the affirma-
tive in [13] by Day and Miller. Going back now to Π1

1-random cuppablility, here is the
connection we announced above:

Theorem 6.5.2 (Chong, Nies and Yu ; Harrington and Slaman):
A sequence Z is low for Π1

1-randomness iff it is low for ∆1
1-randomness and non Π1

1-
random cuppable.

Also still in [7] it is proved that some non ∆1
1 sequences are low for ∆1

1-randomness.
However, by Corollary 6.5.1, all of them should then be Π1

1-random cuppable. Also a
characterization of this class is still open:

Question 6.5.1 Does Π1
1-random cuppablility coincide with non ∆1

1?

6.6 Higher generic sequences

Joint work with Noam Greenberg.

We study in this section higher genericity notions, and we will compare them with
some higher randomness notions.

179

6.6. HIGHER GENERIC SEQUENCES

6.6.1 Definitions

After defining α-genericity for any computable ordinal α in Section 2.2, the simplest higher
genericity notion we can give is certainly the one of being α-generic for any α. So just like
we defined ∆1

1-randomness in Section 3.7, we define here ∆1
1-genericity.

Definition 6.6.1. A sequence G is ∆1
1-generic if G is in every dense ∆1

1-open set.

.

Fact 6.6.1.

A sequence G is ∆1
1-generic iff G is weakly-∆1

1-generic, that is, for any ∆1
1-generic

sequence and any ∆1
1-open set U , either G is in U or G is in some [σ] disjoint from

U . This comes from the fact that for any ∆1
1-open set U , the set U together with the

interior of 2N − U is a dense open set, which is still ∆1
1.

.

Just like we defined Π1
1-Martin-Löf randomness as a higher counterpart of Martin-Löf

randomness, we define here weak-Π1
1-genericity and Π1

1-genericity as higher counterparts
of weak-1-genericity and 1-genericity. We shall see however later that the notion of weak-
1-genericity is in some sense comparable with the one of Σ1

1-randomness, as it will be seen
to coincide with ∆1

1-genericity, whereas the notion of Π1
1-genericity does not seem to have

a counterpart in algorithmic randomness.

Definition 6.6.2. A sequence G is weakly-Π1
1-generic if G is in every dense Π1

1-open
set. It is Π1

1-generic if for any Π1
1-open set U , either G is in U or G is in some [σ]

disjoint from U .

For an open set U such that G is not in the interior of Uc, we also say that U is dense
along G, because U can then be described by a set of string W such that for any σ ≺ G,
there is some τ extending σ in W .

Feferman has proved in [20] that if G is sufficiently Cohen generic, then ωG1 = ωck1 . We
give in this thesis the exact genericity notion that is required for G so that G preserves
ωck1 : It is obtained by considering Σ1

1-open sets instead of Π1
1-open sets.

Definition 6.6.3. An open set U is Σ1
1 if U can be described as a Σ1

1 set of strings W ,
that is, U = [W]≺. A sequence X is weakly-Σ1

1-generic if X is in every dense Σ1
1-open

set. It is Σ1
1-generic if for any Σ1

1-open set U , either X is in U or X is in some [σ]
disjoint from U .

The notion of (weakly-)Σ1
1-genericity can be considered as a higher counterpart of the

notion of (weakly-)Π0
1-genericity, defined by considering open sets described by Π0

1 set
of strings. In particular Jockusch noticed (see [44] and [45]) that weak-Π0

1-genericity is
equivalent to 2-genericity. Such an equivalence cannot work in the higher setting, when
replacing 2-genericity by Π1

1(O)-genericity. However we will find another equivalence, and
we will see in particular that weak-Σ1

1-genericity coincides with Σ1
1-genericity.

We give here an illustration of the connections between the different higher genericity
notions. we will prove that each implication of the following picture is correct and strict.

180

6.6. HIGHER GENERIC SEQUENCES

weakly-Σ1
1-generic

Σ1
1-generic

∆1
1-generic ∧ ωX1 = ωck1

Π1
1-generic weakly-Π1

1-generic ∆1
1-generic

Figure 6.2: Higher genericity

6.6.2 Π1
1-genericity

We start by showing the following: just like Σ1
1-randomness coincides with ∆1

1-randomness,
weak-Π1

1-genericity coincides with Π1
1-genericity.

Proposition 6.6.1:
A sequence G is ∆1

1-generic iff it is weakly-Π1
1-generic.

Proof: If G is weakly-Π1
1-generic then G is clearly ∆1

1-generic. For the other direction,
let us prove that for any Π1

1 dense set of strings, there exists a ∆1
1 dense set of strings

contained it it. It will follow that if G is in all the dense ∆1
1-open sets, it is already in all

the dense Π1
1-open sets.

Suppose we have a Π1
1 dense set of strings W . Let us define the Π1

1 function f ∶ 2<ω →
2<ω as follow: The function associates to the string σ the smallest string τ extending σ
which is in W . By hypothesis W is dense and then the function is total and therefore ∆1

1.
Then also its range is ∆1

1.

The next proposition is a mere higher analogue for the existence of a left-c.e. weakly-
1-generic sequence.

Proposition 6.6.2:
There is a higher left-c.e. weakly-Π1

1-generic sequence G.

Proof: We will buid G left-c.e. and weakly-Π1
1-generic with a classic finite injury con-

struction. Let Me ⊆ 2<ω be the e-th Π1
1 set of strings. Recall that we can consider each

Me to be enumerated along computable ordinal stages, such that at most one string is
enumerated at each successor stages, and none of them is enumerated at limit stages.

We want to ensure that for each e, the requirement Re : “If Me is dense then G
extends a string in Me” is satisfied. During the construction, at any stage s we define
strings σe,s ≺ σe+1,s ≺ . . . with Gs defined as the unique limit point of {[σe,s]}e∈N.

181

6.6. HIGHER GENERIC SEQUENCES

The construction:

We start at stage 0 by letting σ0,0 = 0 and σe+1,0 = σe,0ˆ0. So X0 is juste an infinite
range of 0. Then we define by induction the values of each {σe,s}e∈N assuming the values
{σe,t}e∈N have been defined for all t < s:

At substage 0 of the stage s, we start by checking if any string τ extending 1 has been
enumerated in M0 up to stage s. If so we define σ0,s to be the first of those strings τ , in
the order of their enumeration along stages, otherwise σ0,s is equal 0. Now assuming that
all the strings σe,s have been defined up to substage e, we define σe+1,s at substage e + 1.
We check if a string τ extending σe,sˆ1 has been enumerated in Me+1 up to stage s. If so
we set σe+1,s to the first of those strings τ , in the order of their enumeration along stages.
Otherwise we set σe+1,s to be σe,sˆ0.

The verification:

The construction stabilizes by a classic finite-injury argument. It is clear that the approx-
imation of G is left-c.e., because a string σn,s changes only if one of its prefix σm,s for
m ≤ n goes from σˆ0ˆτ to σˆ1ˆτ ′. Also it is clear that each requirement is satisfied: The
requirement Re is satisfied, since if Me is dense it contains some string extending σe−1ˆ1,
and after {σe−1,s}s<ωck1

has stabilized to σe−1ˆ0, the sequence {σe,s}s<ωck1
will eventually

stabilize to some string σe ⪰ σe−1ˆ1 in Me.

We shall now separate weak-Π1
1-genericiy from Π1

1-genericity, by proving that no Π1
1-

generic sequence is higher left-c.e., in a strong sense, as we actually prove that no Π1
1-

generic sequence can higher Turing compute a higher left-c.e., which is not ∆1
1. Note the

following fact:
.

Fact 6.6.2.

No ∆1
1-generic sequence is ∆1

1. Indeed, for X a ∆1
1 sequence, the open set 2N − {X} is

dense and ∆1
1.

.
The same technique can be used in the lower setting to separate 1-genericity from

weak-1-genericity.

Proposition 6.6.3:
No Π1

1-generic sequence G higher Turing computes a non ∆1
1 higher left-c.e. sequence

A.

Proof: Suppose that G higher Turing computes a higher left-c.e. sequence A which is
not ∆1

1, via the functionnal Φ. Let us show that for any σ ≺ G there exists τ ≻ σ such that
Φ maps τ to a string strictly at the left of A. We will then use this to prove that G is not
Π1

1-generic.

Suppose that there exists σ ≺ G such that any τ ≻ σ is mapped either to a string
strictly at the right of A, or to a prefix of A. Then we claim that A is also right-c.e. which
would make it ∆1

1. We define an approximation of A by a sequence A′
s from the right the

following way:

182

6.6. HIGHER GENERIC SEQUENCES

The construction:

Let σ ≺ G having the property stated above. We start at stage 0 by setting each A′
0(n) = 1

for each n. Suppose that A′
t has been defined for all t < s. Then at stage s and substage

n, we check if there exists a string extending σ which is mapped in Φs to some string
extending A′

s ↾n ˆ0. If so we set A′
s(n) = 0, otherwise we set A′

s(n) = 1.

The verification:

It is clear by construction that {As}s<ωck1
is right-c.e., as As is different from As+1 only if

As = τ ˆ1ˆB for some τ,B and As+1 = τ ˆ0ˆB′ for some B′. Also as {As}s<ωck1
is right-c.e.

it necessarily converges to some sequence A′.

We claim that A′ = A. Recall that by hypothesis, the strings extending σ can only
be mapped to strings at the right of A or to a prefix of A. Also, as Φ(G) = A, we know
that for infinitely many prefixes τ of A there is at least one string extending σ which
is mappped to τ by Φ. Then for each n, there exists some stage s such that we have
A′
s ↾n= A↾n. As the approximation cannot move on the n first bits after stage s, we then

have A′ = A.

The conclusion:

It follows that if A is higher left-c.e. and not ∆1
1 and if for some sequence G we have

Φ(G) = A, then we can define the Π1
1 set of all strings W which are mapped via Φ to some

string which is strictly at the left of As ↾n for any s and any n. By definition no string in
W is mapped to a prefix of A and therefore G ∉ [W]≺. However by the above argument,
for any prefix σ of G, there is an extention of σ in [W] and therefore [W]≺ is dense along
G. Therefor G is not Π1

1-generic. Note that we never need to require the functional Φ to
be consistent somewhere, except on G.

Corollary 6.6.1:
If G is Π1

1-generic, then G does not higher Turing compute O, or any non Π1
1 set

which is not ∆1
1.

We now see that there are still some Π1
1-genreric sequences which are quite easy to

define, and in particular, Π1
1-genrericity is not enough to ensure preservation of ωck1 .

Proposition 6.6.4:
There is a higher ω-c.a. Π1

1-generic sequence G.

Proof: The proof is essentially the same than the one of Proposition 6.6.2. We want to
ensure that for each e, the requirement Re : “If Me is dense along G then G extends a
string in Me” is satisfied. Recall that we can consider each Me to be enumerated along
computable ordinal stages, such that at most one string is enumerated at each successor
stages, and none of them is enumerated at limit stages.

183

6.6. HIGHER GENERIC SEQUENCES

During the construction, at any stage s we define strings σe,s ≺ σe+1,s ≺ . . . with Gs
defined as the unique limit point of {[σe,s]}e∈N. After the construction we will show that
{Gs}s<ωck1

is an ω-c.a. approximation of some sequence G satisfying all the requirements
Re.

The construction:

We start at stage 0 by letting σ0,0 = 0 and σe+1,0 = σe+1,0ˆ0. So X0 is just a range of 0’s.
Then we define by transfinite induction the values of each σe,s assuming the values σe,t
have been defined for all t < s:

At substage 0 of the stage s, we start by checking if any string τ different from ε (the
empty word) has been enumerated in M0,s. If so we define σ0,s to be the first of those
strings, in the order of their enumeration along stages, otherwise σ0,s is equal 0. Now
assuming that all the strings σe,s have been defined up to substage n, we will define σe+1,s

at substage e + 1. We check if a string τ strictly extending σe,s has been enumerated in
Me+1,s. If so we set σe+1,s to the first of those strings τ , in the order of their enumeration
along stages. Otherwise we set σe+1,s to be σe,sˆ0.

The verification:

We claim that each string σe can change at most 2e times. As R0 is injured by no previous
requirement, the approximation {σ0,s}s<ωck1

can change at most once, going from 0 to

some string different from ε. Suppose that {σe,s}s<ωck1
can change at most 2e time, by

construction, for each σe,s there is two possible values for σe+1,s. The first one being equal
to σe,sˆ0 and the second one strictly extending σe,s. Then {σe+1,s}s<ωck1

can change at

most 2e+1 time. We can deduce that the sequence {Gs}s<ωck1
is an ω-c.a. approximation

of some sequence G.

We claim that each requirement is satisfied. The requirement R0 is satisfied since if
M0 is dense along any path, it is not empty and then σ0 will eventually stabilize to its
first enumerated string. Also as the number of changes for each {σe,s}s<ωck1

is finite, there

is a stage s such that {σe,t}t≥s is stable. Then if Me+1 is dense along G, there is a first
enumerated string in it, strictly extending σe = σe,s and then {σe+1,s}s<ωck1

will eventually
stabilize to this element of Me+1. Then each requirement is satisfied.

Corollary 6.6.2:
For some Π1

1-generic sequence G we have ωG1 > ωck1 .

We say that G higher Turing computes a total function f ∶ ω → ωck1 if there is a
Π1

1 functional Φ ∶ 2<N × N × N such that for any n, there is a unique value a such that
Φ(G,n) = a, and furthermore a ∈ O. One can easily prove that if G higher Turing
computes a Π1

1 sequence which is not ∆1
1, then also G higher Turing computes a function

f ∶ ω → ωck1 with supn f(n) = ω
ck
1 . We can show here that the converse does not hold.

184

6.6. HIGHER GENERIC SEQUENCES

Corollary 6.6.3:
There is a sequence G which higher Turing computes a function f ∶ ω → ωck1 with

supn ∣f(n)∣ = ωck1 , but such that G does not higher Turing compute a Π1
1 sequence

which is not ∆1
1.

Proof: Let G be a higher ω-c.a. and Π1
1-generic. We can define Φ by enumerating

(σ,n, s) in Φ for ∣σ∣ = n if s is the first stage such that σ = Gs ↾n. We easily prove that this
is a higher Turing computation from G, of a function f ∶ ω → ωck1 with supn ∣f(n)∣ = ωck1 .
Also as G is Π1

1-generic, we can conclude with Corollary 6.6.1.

Note that we have a difference here with randomness. Indeed, we saw with Theo-
rem 6.3.1 that if a sequence is ∆1

1-random but does not preserves ωck1 (equivalently is not
Π1

1-random), then it can higher Turing compute a Π1
1 sequence which is not ∆1

1. This is
not the case for a sequence which is ∆1

1-generic, and which does not preserve ωck1 .

6.6.3 Σ1
1-genericity

We now study Σ1
1-genericity and we shall see that it is the exact level of genericity we

need in order to preserve ωck1 . We start with a lemma extending Theorem 1.9.1, which can
be seen as a categorical version of its measure theoretical analogue, Lemma 6.1.1, which
similarly extends Theorem 1.8.1.

Lemma 6.6.1 Let P be a Π1
1 set of the form P = ⋃α<ωck1

Pα where each Pα is a Π0
α set

uniformly in α. Then we can find uniformly in an index for P a Π1
1-open set U and a

countable union of Σ1
1-closed sets of empty interior ⋃nFn, such that P = U △ B for some

set B ⊆ ⋃nFn. Note that the union itself is not effective in n.

Proof: Using Theorem 1.9.1 one can define uniformly for each α a Π0
α-open set Uα and

an effective union of ∆0
α+1-closed set of empty interior ⋃nFn,α such that Pα = Uα△Bα for

some set B included in ⋃nFn,α.

Just like in the last part of the proof of Theorem 1.9.1, we verify that P = (⋃α Uα)△B

where B is equal to ⋃αPα△⋃α Uα, and we then verify that B ⊆ ⋃α⋃nFn,α. We have that
U is a Π1

1-open set and that each Fn,α is a Σ1
1-closed set of empty interior.

Recall the proof of Theorem 6.1.1 that Σ1
1-Solovay-genericity preserves ωck1 . The proof

that Σ1
1-genericity also preserves ωck1 is very similar. For any X, we have that ωX1 > ωck1 iff

there is a Turing functional Φ ∶ 2<N ×N×N such that for every n we have Φ(X,n) ∈OX
<ωck1

and such that supn ∣Φ(X,n)∣Xo = ωck1 . We use this to prove:

Theorem 6.6.1:
If G is Σ1

1-generic then ωG1 = ωck1 .

185

6.6. HIGHER GENERIC SEQUENCES

Proof: We prove that for any Turing functional Φ ∶ 2<N ×N ×N, if G is Σ1
1-generic and

if for every n we have Φ(G,n) ∈ OG
<ωck1

, then supn ∣Φ(G,n)∣Go < ωck1 . So consider such a

Turing functional Φ and the set:

P = {X ∣ ∀n ∃α < ωck1 Φ(X,n) ∈OX
≤α}

Let Pn be the Π1
1 set {X ∣ ∃α < ωck1 Φ(X,n) ∈ OX

≤α} and Pn,α be the ∆1
1 set

{X ∣ Φ(X,n) ∈OX
≤α}, uniform in α, so that Pn = ⋃α<ωck1

Pn,α and P = ⋂nPn.

Suppose now that G is Σ1
1-generic with G ∈ ⋂nPn. From Lemma 6.6.1, uniformly in

n, we can define a Π1
1-open set Un such that Pn = Un △ B for B included in a union of

Σ1
1-closed sets of empty interior. Also each complement of those Σ1

1-closed sets contains a
∆1

1 dense open set (see Proposition 6.6.1 for the details), and as G is ∆1
1-generic, it follows

that G ∈ Pn iff G ∈ Un for every n.

Let us now prove that there is a prefix σ of G such that every Un is dense in [σ].
Suppose otherwise. Then for any prefix σ of G, there is an n and an extension τ of σ such
that [τ] is in the interior of the Σ1

1-closed set Ucn, the complement of Un. Also the interior
of any Σ1

1-closed set F is a Σ1
1-open set, uniformly in an index for F . Indeed, it can be

described by the set of strings {σ ∶ ∀τ ⪰ σ, τ ∉ Fc} which is a Σ1
1 predicate uniformly in

an index for F .

It follows that the union of the interior of each Ucn is also a Σ1
1-open set. But then this

Σ1
1-open set is dense along G which contradicts that G is Σ1

1-generic. It follows that for
some prefix σ of G, each Un is dense in [σ]. But then we can define the Π1

1 total function
f ∶ ω → ωck1 which to n associates the smallest computable ordinal α such that Uα, the
enumeration of U up to stage α, is already dense in [σ] (see Proposition 6.6.1 for the proof
that such an α exists). As f is total it is ∆1

1 and then its range is a ∆1
1 set of computable

ordinals, which is then bounded by some α < ωck1 , by the Σ1
1-boundedness principle. It

follows that Un,α is dense in [σ] for every n and also that G is in Un,α for every n, because
otherwise, the set Un,α together with 2N − [σ] is a dense ∆1

1-open set which would not
contain G.

Also we used Lemma 6.6.1 to prove that G is in Pn iff G is in Un, and similarly, we can
prove that G is in Pn,α iff it is in Un,α, as it is easily seen, by slightly modifying the proof
of Lemma 6.6.1, that Pn,α = Un,α △ B for some B included in a union of Σ1

1 closed sets of
empty interior. Then also G ∈ ⋂nPn,α and we then have supn ∣Φ(G,n)∣Go ≤ α < ωck1 .

Corollary 6.6.4:
The set {X ∶ ωX1 > ωck1 } is meager.

We can now deduce a result which can be considered to be an analogue of Theo-
rem 3.7.4, which states that a sequence Z is Π1

1-random (Σ1
1-Solovay-generic) iff it is

∆1
1-random (∆1

1-Solovay-generic) and ωZ1 = ωck1 .

186

6.6. HIGHER GENERIC SEQUENCES

Theorem 6.6.2:
A sequence G is Σ1

1-generic iff it is ∆1
1-generic and ωG1 = ωck1 .

Proof: We already have that if G is Σ1
1-generic, then G is ∆1

1-generic and ωG1 = ωck1 . Let
us now suppose that G is not Σ1

1-generic, but ∆1
1-generic, in order to prove ωG1 > ωck1 .

So we have a Σ1
1 set of strings which is dense along G and which contains no prefix

of G. Let W be the complement of this set of strings. We define the Π1
1(G) function

f ∶ ω → ωck1 which to n associates the smallest s such that G↾n is enumerated in Ws. As
W contains every prefix of G we have that f is total and then its range is a ∆1

1(G) set of
ordinals. Also it cannot be the case that the range of f is bounded by s < ωck1 , because
then 2<N −Ws would be a ∆1

1 set of strings, dense along G and not containing G, which
would make G not ∆1

1-generic. It follows that ωG1 > ωck1 .

In many regards, Σ1
1-genericity can be seen as a categorical analogue of Σ1

1-Solovay-
genericity (Π1

1-randomness). In some sense we could also consider that weak-Σ1
1-genericity

is a categorical analogue of weak-Σ1
1-Solovay-genericity (weak-Π1

1-randomness). However,
weak-Σ1

1-Solovay-genericity has been proved to be different from Σ1
1-Solovay-genericity.

We shall see that at the contrary, weak-Σ1
1-genericity coincides with Σ1

1-genericity.

We will actually give an equivalent definition of weak-Σ1
1-genericity, and we will see

that this definition implies Π1
1-genericity. We will then prove that if weak-Σ1

1-genericity
together with Π1

1-genericity implies Σ1
1-genericity. We could give a more direct proof that

weak-Σ1
1-genericity implies Π1

1-genericity. However we believe that this new notion of
genericity we introduce might reveal itself useful for other purposes (for example, maybe
the question of lowness for Σ1

1-genericity).

In the lower setting, we have that weak-Π0
1-genericity implies 2-genericity and then

both Π0
1-genericity and 1-genericity (see [44] and [45]). The proof however uses a time

trick, and it is anyway clear that weak-Σ1
1-genericity does not imply Π1

1(O)-genericity,
because one can easily prove that O higher Turing computes a Σ1

1-generic sequence, just
like O higher Turing computes a Π1

1-random sequence.

So we shall consider a restricted way to use O in the enumerations of our open sets.
Also here again, the notion of finite-change approximation appears to be useful.

Definition 6.6.4. An open set U is dense higher finite-change if there is a finite-
change approximable function f ∶ 2<N → 2<N with σ ⪯ f(σ) for any σ, and such that
U = ⋃σ[f(σ)].

Theorem 6.6.3:
A sequence X is weakly-Σ1

1-generic iff X is in every dense higher finite-change open
set.

187

6.6. HIGHER GENERIC SEQUENCES

Proof: Consider a dense Σ1
1-open set U and let us define a finite-change dense open set

V = U . We build a finite-change approximation {fs}s<ωck1
of a function f . Let W be a

Π1
1 set of strings such that U = [2<ω −W]≺. At stage 0 we let f0(σ) = σ for every σ. At

successor stage s, for each σ, we let fs(σ) = fs−1(σ) if fs−1(σ) ∉Ws and we let fs(σ) be the
first string extending σ which is not in Ws otherwise. As limit stage s we let fs = limt<s ft.
As U is dense, it is clear that the approximation of f is higher finite-change. We now
prove the converse.

Let U be a dense higher finite-change open set and let us prove that there is a dense
Σ1

1-open set V ⊆ U . We define the set V by enumerating a Π1
1 set of strings W , and by

letting the set V be equal to [2<ω −W]≺.

The construction:

At stage 0 we start with W0 = ∅. At stage s, we set As,0 = ∅. At substage n, let m be
the length of the longest string in As,n. For each string σ of length m which extends (or
coincides with) no string in As,n, we compute τ = fs(σ). Then we set As,n+1 to be As,n
together with such strings τ and all of their prefixes. We define As to be ⋃n<ωAs,n. The
set W is then given by ⋃s<ωck1

As.

The verification:

We say that a set of strings A is strongly dense if for any string σ, there is an extension
τ of σ such that τ and every extension of τ is in A.

Claim 1 : For each stage s, the set 2<N −As is strongly dense.

It is clear, because at each substage n, each set As,n is finite, and if a string σ is in
As,n, no extension of σ will be enumerated anymore in As,m for m > n.

Claim 2 : If A1,A2 are two strongly dense sets of strings, then A1 ∩A2 is also strongly
dense.

Suppose A1,A2 strongly dense. For any string σ, there is an extension τ1 of σ such
that every extension of τ1 is in A1. Then there is an extension τ2 of τ1 such that every
extension of τ2 is in A2, and then in A1 ∩A2.

Claim 3 : For any limit ordinal s ≤ ωck1 and any string σ, there is an extension τ of σ
and a stage t < s such that for any stage t ≤ r < s, the string τ and all its extensions are
in 2<N −Ar.

Claim 3 can be easily proved by a finite injury argument, using the fact that the
approximation of f is a finite-change approximation. In particular, this implies that for
any n there is a stage t < s such that for any stage t ≤ r < s, each set Ar has the same
strings of length smaller than n. Claim 3 then follows.

Claim 4 : For any ordinal s ≤ ωck1 , the set of strings ⋂t<s(2
<N −At) is a strongly dense

set of strings.

We prove Claim 4 by induction on stages. Suppose that the claim is true for every
stage t < s and let us prove it is true at stage s. If s is successor then by induction
hypothesis, by Claim 1 and Claim 2, Claim 3 is then true at stage s. Suppose that s is

188

6.6. HIGHER GENERIC SEQUENCES

limit and consider any string σ. By Claim 3, there is a stage t < s and an extension τ
of σ such that every extension of τ is in 2<N − Ar for any stage r with t ≤ r < s. Also
by induction hypothesis, Claim 4 is true at stage t and in particular ⋂r<t(2

<N − Ar) is
strongly dense. Therefore there is then an extension ρ of τ such that all its extensions are
in ⋂t<s(2

<N −At). As this is true for any string σ, Claim 4 is true at stage s.

It follows that the set V = [2<N −W]≺ = [⋂s<ωck1
(2<N −As)]

≺ is a dense open set. We
should now prove that V ⊆ U . Also suppose X ∉ U and let us show that every σ ≺ X is
enumerated in W . Consider σ ≺ X. There is a stage s such that {ft}s≤t<ωck1

is stable on

every string of length smaller than ∣σ∣ and also stable on every string of length smaller
than m = max{∣f(τ)∣ ∶ τ of length smaller than ∣σ∣}. In particular, as X is not in U ,
on every prefix of X ↾m, the function f returns a string incomparable with X. Then by
construction we will necessarily have σ in As.

Corollary 6.6.5:
If a sequence G is weakly-Σ1

1-generic then it is Π1
1-generic.

Proof: Consider a Π1
1-open set U = [W]≺. We claim that U together with the interior of

its complement is a finite-change dense open set. At stage 0 we define f0(σ) to be σ. At
successor stage s, for any string σ, let fs(σ) be the smallest (in the lexicographic order)
extension of σ which is in Ws, and fs(σ) be σ if no such string exists. At limit stage s let
fs = limt<s ft.

It is clear that {fs}s<ωck1
is a finite-change approximation and that the corresponding

finite-change open set is equal to U together with the interior of its complement.

Theorem 6.6.4:
A sequence G is weakly-Σ1

1-generic iff it is Σ1
1-generic.

Proof: Suppose that G is not Σ1
1-generic and consider a Σ1

1 set of strings S, dense along
G. Suppose first that for some prefix σ of G, the set [S]≺ is dense in [σ]. Then [S]≺ ∩ [σ]
together with the complement of [σ] is a dense Σ1

1 set of strings not containing G, then
G is not weakly-Σ1

1-generic.

Suppose now that for all prefixes σ of G, the set [S]≺ is not dense in [σ], that is, there
is an extention τ of σ such that no extension of τ is in S. Let W be the Π1

1 set of all the
strings σ such that every extension of σ is enumerated in 2<N −S (by the Σ1

1-boundedness
principle, if this happens, it happens at some computable ordinal stage). This set contains
no prefix σ of G because as S is dense along G, there is some string extending σ which
is in S. Also this set is dense along G because for any prefix σ of G, there is a string τ
extending σ such that every string extending τ is enumerated in 2<N −S, implying that τ
is in W .

189

6.6. HIGHER GENERIC SEQUENCES

It follows that G is not Π1
1-generic, and then by the previous corollary it is not weakly-

Σ1
1-generic.

6.6.4 Further discussion about lowness for higher genericity notions

We shall mainly discuss here the lowness notions for various notions of genericity. We
define the relatized notion of genericity using full relativization, that is, considering ∆1

1(A),
Π1

1(A) or Σ1
1(A) open sets, for a given sequence A.

Definition 6.6.5. We say that A is low for ∆1
1-genericity if any ∆1

1-generic is also
∆1

1(A)-generic. We define similarly lowness for Π1
1-genericity and lowness for Σ1

1-
genericity.

Considering the lower analogues, Greenberg and Miller proved (unpublished), together
with Yu [95] that only computable sequences are low for 1-genericity. A proof that low for
Π1

1-genericity is ∆1
1 works analogously. It uses a higher analogue of an important theorem

of Posner and Robinson [74], whose interesting consequences are discussed below.

Theorem 6.6.5 (Higher Posner-Robinson theorem):
For any two sequences A,X such that A is not ∆1

1, there is a Π1
1-generic sequence G

such that G⊕A higher Turing computes X.

Proof: We can suppose that A is not Π1
1 (otherwise consider the complement of A). In

particular for any Π1
1 set of integers, we have either some n which is in A but not in W ,

or some n which is in W but not in A.

Let us denote by Wn the n-th Π1
1 set of strings. We will define a sequence of strings

σ1 ≺ σ2 ≺ . . . such that for any n, if there is an extension of σn in Wn, then σn+1 ∈Wn. It
will follow that G, the unique limit point of {[σn]}n∈N, will be Π1

1-generic. Also we will
do it in such a way that G⊕A higher Turing computes X.

The construction:

Start with σ0 to be X(0). Suppose that σn is defined and let us define σn+1. Consider the
Π1

1 set:
Vn = {m ∶ there exists τ ∈Wn extending σnˆ0mˆ1}

Let m be the smallest integer such that either m is in Vn but not in A or m is in A but
not in Vn. If we are in the first case, then we define σn+1 to be the first string τ of Wn (in
order of the enumeration), extending σnˆ0mˆ1, concatenated with the bit X(n+1). If we
are in the second case, define σn+1 to be σnˆ0mˆ1, concatenated with the bit X(n + 1).

Verification:

It is clear that G is Π1
1-generic. We verify that G⊕A higher Turing computes X. To do so

we retrieve the construction with the help of A. The description we give below can easily
be converted into a Π1

1 functional Φ ⊆ 2<N × 2<N with Φ(G⊕A) =X. Note however that Φ
might not be consistent on other oracles.

190

6.6. HIGHER GENERIC SEQUENCES

Let σ0 be the first bit of G. We have σ0 = X(0). Now assuming the higher Turing
computation has identified σn together with X ↾n+1, let us identify σn+1 together with
X ↾n+2. To do so, we first count the number of 0’s of G which follows its prefix σn. Let m
be that number. If m ∉ A we deduce that m ∈ Vn. In this case we look for the first string τ
of Vn which extends σnˆ0mˆ1, we set σn+1 to be τ ˆG(∣τ ∣) and X ↾n+2 to be X ↾n+1 ˆG(∣τ ∣)
(note that we necessarily have τ ≺ G). If m ∈ A we deduce that m ∉ Vn. Then we set σn+1

to be σnˆ0mˆ1ˆG(∣σn∣ +m + 1), and let X ↾n+2 be X ↾n+1 ˆG(∣σn∣ +m + 1).

A lower version of the previous theorem can be used to prove the Posner-Robinson
theorem, which states that for any non computable sequence A, there is a 1-generic se-
quence G such that A⊕G ≥T G

′. This is done by finding G such that A⊕G ≥T ∅′, and as
we have for any 1-generic G that G⊕∅′ ≥T G

′, we then have A⊕G ≥T G
′. This interesting

consequence can be interpreted the following way: The ‘Turing computational distance’
between a sequence and its jump can take arbitrarily small ‘values’.

It is noticeable that this technique does not work anymore to prove that for any non ∆0
2

set A, there is a 2-generic sequence G such that A⊕G ≥T G
′′. It was a much harder work,

performed by Shore and Slaman in [82], to identify a different forcing, the Kumabe-Slaman
forcing, in order to make the Posner-Robinson theorem relativize to any computable α:

Theorem 6.6.6 (Shore, Slaman):
For any computable α and any sequence A, not computable in ∅(β) for β < α, there is

a sequence G such that A⊕G ≥T G
(α).

Later, Day and Dzhafarov showed [12] that the Kumabe-Slaman forcing is indeed
necessary, as for some non ∆0

2 sequence A, there exists no 2-generic sequence G such that
A⊕G ≥T G

′′.

Coming back to lowness, we now easily derived from Theorem 6.6.5 that only ∆1
1

sequences are low for Π1
1-genericity.

Corollary 6.6.6:
For any non ∆1

1 sequence A, there is a Π1
1-generic sequence G which is not Π1

1(A)-
generic.

Proof: Suppose first that ωA1 > ωck1 . Then in particular A ≥h O and therefore, any ω-c.a.
approximable sequence is ∆1

1(A). It follows from Proposition 6.6.4 that some Π1
1-generic

is not Π1
1(A)-generic.

Suppose now that ωA1 = ωck1 . Then in particular we have that O is not ∆1
1(A). Also

Proposition 6.6.3 is easily seen to relativize the following way: if G ⊕ A higher Turing
computes a left-c.e. sequence which is not ∆1

1(A), then G is not Π1
1(A)-generic. Also by

Theorem 6.6.5 there is a Π1
1-generic G such that G⊕A higher Turing compute O, a higher

left-c.e. sequence which is not ∆1
1(A). It follows that G is not Π1

1(A)-generic.

191

6.7. STEEL FORCING : THE BOREL COMPLEXITY OF THE SET OF
SEQUENCES WHICH COLLAPSE ωCK1

The question of lowness for ∆1
1-genericity has not been directly studied. However

Kjos-Hanssen, Nies, Stephan and Yu have characterized in [36] lowness for ∆1
1-Kurtz ran-

domness, which turns out to be the exact higher analogue of lowness for Kurtz-randomness,
and weak-1-genericity (see Stephan and Yu [90]). Also it is very likely that the notion of
lowness for ∆1

1-Kurtz randomness coincides with the one of lowness for ∆1
1-genericity.

The question of lowness for Σ1
1-genericity has not been studied. Could it be different

from ∆1
1? The technique used in Theorem 6.6.5 does not seem to work if one now tries to

build a Σ1
1-generic sequence.

Question 6.6.1 Is lowness for Σ1
1-genericity different from ∆1

1?

As every Σ1
1-generic sequence preserves ωck1 , we can also ask the question of cuppability,

defined analogously here, than it was defined for Π1
1-randomness in Section 6.5.2:

Question 6.6.2 Is Σ1
1-generic cuppability different from non ∆1

1?

6.7 Steel forcing : The Borel complexity of the set of se-
quences which collapse ωck1

6.7.1 Motivation

We proved in Corollary 6.1.1 that the Borel complexity of the Π1
1-randoms, a subset

of {X ∈ 2N ∶ ωX1 = ωck1 }, is Π0
3. We also proved in Proposition 3.3.2 that the set

{X ∈ 2N ∶ ωX1 = ωck1 } is Σ1
1 and the Gandy basis theorem implies that it is contained in

no Π1
1 set, except 2N. In particular, it is itself not a Π1

1 set. It is however easy to see that
this set is Borel:

Proposition 6.7.1:
The set {X ∈ 2N ∶ ωX1 = ωck1 } is Π0

ωck
1
+2

.

Proof: For a given e and a given n, the set:

Ae,n = {X ∶ ∀α < ωck1 Φe(X,n) ∉O<α}

is Π0
ωck

1

. Also for a given e the set:

Be = {X ∶ ∃α < ωck1 ∀n Φe(X,n) ∈O<α}

is Σ0
ωck

1

. Then the set {X ∶ ωX1 = ωck1 } is equal to ⋂e((⋃nAe,n) ∪ Be)) which is clearly a

Π0
ωck

1
+2

set.

The goal of this section is to prove that the complexity of {X ∈ 2N ∶ ωX1 = ωck1 }

cannot be simplified. To do this we are going to use Steel forcing. In [88], Steel introduced
his forcing notion for the purpose of studying countable ∆1

1 subsets of NN, as well as
independence results for subsystems of analysis.

192

6.7. STEEL FORCING : THE BOREL COMPLEXITY OF THE SET OF
SEQUENCES WHICH COLLAPSE ωCK1

In his paper, Steel also noticed, but without giving an actual proof, that his forcing
notion can also be used to prove that Borel complexity of the set {X ∈ 2N ∶ ωX1 = ωck1 } is
not Σ0

ωck
1
+2

. Following a work of [3], we will give an exposition of Steel’s proof in terms

of Baire category rather than in terms of forcing. We will then give a proof that the set
{X ∈ 2N ∶ ωX1 = ωck1 } is not Σ0

ωck
1
+2

.

6.7.2 The forcing notion

The trees

Let T be the set of trees of the Baire space, both finite and infinite. Let us fix a computable
bijection b ∶ N → N<N. We say that an element X ∈ 2N represents a tree T if n ∈ X iff
b(n) ∈ T . We easily observes that the set of sequences representing elements of T is a
closed subset of 2N. Indeed, the condition for X to represent a tree is Π0

1: “For every n,
if X(n) = 1 then for every prefix τ of b(n) we should have X(b−1(τ)) = 1”.

It is clear that any tree is uniquely represented by a sequence this way. Also sometimes
we will blur the distinction between an element of T and its representation in the Cantor
space. We use on T the topology of the Cantor space induced on the set of representations
of elements of T . We easily verify that the set of representations of elements in T has no
isolated point, therefore its elements are the paths of a perfect subtree of 2<N. It follows
that topologically, we have that T is essentially the same space as the Cantor space1.

Also we will denote by F the set of ‘finite trees’ that correspond to a cylinder in the
set of representation for elements of T , that is, an element p ∈ F specifies a set of nodes
that are in the tree, and also a set of nodes that are not in the tree. That way we ensure
that a sequence p1 ≺ p2 ≺ . . . defines a unique tree. Given an element p ∈ F , we denote by
[p] the set of all trees of T that extend p. Also if T ∈ T extends p we write p ≺ T , and if
another finite tree q extends p we write p ⪯ q. It is clear that for any cylinder [p], there
are two finite sets of strings {σ1, . . . ,σn,τ1 . . . ,τm} such that any tree T is in [p] iff for
i ≤ n we have σi ∈ T and for i ≤m we have τi ∉ T .

Recall that for a well-founded tree T , we write ∣T ∣o to denote the ordinal coded by T
(with ∣σ∣o = supi(∣σˆni∣o + 1)) where {σˆni}i∈N are all the children of σ). Also for every
countable ordinal α, we denote by Tα the set of trees T in T so that for every node σ ∈ T
which is not the root of T , either ∣σ∣o < α or the subtree of the nodes compatible with σ is
ill-founded, in which case we write ∣σ∣o =∞. So for any tree T ∈ Tα we have either ∣T ∣o =∞

or ∣T ∣o ≤ α.

The tagging

We now define the set P to be the set of elements p in F , paired with a valid tagging
function h which assigns to each node of p a countable ordinal, or the value ∞. A tagging
is said to be valid if for any σ1 ≺ σ2 ∈ p, we have h(σ1) > h(σ2). By convention, ∞ is
considered greater than any countable ordinal, and also greater than itself.

So an element of P is given by a pair (p, h) where p ∈ F and where h is a valid tagging
of p. Also for a given (p, h) ∈ P , we write [(p, h)] to denote the set of trees in [p] such
that for every node σ ∈ p, we have ∣σ∣o = h(σ), where ∣σ∣o is taken in T . For (p, h) ∈ P and

1One can easily prove it directly by constructing the homeomorphism, or use Brouwer’s theorem, saying
that any compact, metrisable, perfect, 0-dimensional space is homeomorphic to the Cantor space, see [34]
for details.

193

6.7. STEEL FORCING : THE BOREL COMPLEXITY OF THE SET OF
SEQUENCES WHICH COLLAPSE ωCK1

(q, g) ∈ P , we say that (p, h) ⪯ (q, g) if p ⪯ q and h ⪯ g (the taggings g and h coincide on
elements of p).

For any countable α, we then let Pα denotes the set of elements (p, h) ∈ P such that h
assigns to nodes in p distinct from the root, only values strictly smaller than α, or the value
∞. Also for a given (p, h) ∈ Pα, we write [(p, h)]α to denote the set [(p, h)] intersected
with the set Tα (so if T ∈ [(p, h)]α, for every node σ ∈ T distinct from the root, we have
either ∣σ∣o < α or ∣σ∣o =∞).

The forcing relation

For any countable α,β, we now define the forcing relation between Σ0
α or Π0

α subsets of
T and elements of Pβ. For some β, some (p, h) ∈ Pβ and some Borel set A, the relation
(p, h) ⊩β A is intended to “more or less” means “A is co-meager in [(p, h)]β” (for some
topology, given later). Why “more or less”? We shall see that if (p, h) ⊩β A then A is
co-meager in [(p, h)]β, but the converse however is not necessarily true. Also one could
easily add some complexity in the forcing relation to make the converse true, but as we
don’t need it, and as we would like to keep the relation as simple as possible, we don’t do
it.

For (p, h) ∈ Pβ and (q, g) ∈ P , we say that (p, h) ⪯β (q, g) if (p, h) ⪯ (q, g) and if in
addition we have (q, g) ∈ Pβ. Let (p, h) ∈ Pβ and let us define the relation ⊩β by induction
on the Borel complexity of sets.

� If A is ∆0
1 (a finite union of cylinders) we say that (p, h) ⊩β A iff [p] ⊆ A.

� If A is Σ0
α with A = ⋃nAn, we say that (p, h) ⊩β A iff ∃n (p, h) ⊩β An.

� If A is Π0
α, we say that (p, h) ⊩β A iff ∀(q, g) ⪰β (p, h) (q, g) ⊮β A

c.

Note that the forcing relation that we gave might depend on the presentation of a given
Borel set. Also for two different ways to write A = ⋃nAn or A = ⋃nA

′
n, we might have that

some (p1, h1) ⊩β ⋃nAn but (p1, h1) ⊮β ⋃nA
′
n. In practice this will have no consequence,

because on the other hand, we necessarily have in this case some (q, g) ⪰β (p1, h1) with
(q, g) ⊩β ⋃nA

′
n, which will be sufficient. Also one can prove by induction that as long

as our unions are increasing, the forcing relations then does not depend anymore on the
presentation of a given Borel set.

To simplify the reading, instead of writing (p, h) for elements of P , we sometimes
simply write p, the tagging function being implicit. When we do so, we will always precise
it, so that there is no ambiguity. This slight abuse of notation starts with the next lemma,
for which the tagging function is implicit:

Lemma 6.7.1 For a Π0
α set A = ⋂nAn, any countable β and any (p, h) ∈ Pβ, we have

p ⊩β A iff ∀n ∀q ⪰β p ∃r ⪰β q r ⊩β An

Proof: Suppose p ⊩β A, then by definition, ∀q ⪰β p q ⊮β ⋃nA
c
n. Still following the rules

of forcing we then have ∀q ⪰β p ∀n q ⊮β A
c
n with Acn a Π0

γ set for some γ < α, and then
∀n ∀q ⪰β p ∃r ⪰β q r ⊩β An.

Suppose p ⊮β A, then by definition, ∃q ⪰β p q ⊩β ⋃nA
c
n. Still following the rules

of forcing we have ∃q ⪰β p ∃n q ⊩β A
c
n with Acn a Π0

γ set for some γ < α, and then
∃n ∃q ⪰β p ∀r ⪰β q r ⊮β An.

194

6.7. STEEL FORCING : THE BOREL COMPLEXITY OF THE SET OF
SEQUENCES WHICH COLLAPSE ωCK1

The β-topology:

For any ordinal β, we call β-topology, the topology on Tβ generated by the subbasis
[(p, h)]β for any (p, h) ∈ Pβ. We would like to study genericity with respect to the β-
topology, that is, elements of Tβ which are in ‘sufficiently many’ dense open sets of this
topological space.

But this study can make sense only after we proved that generic elements actually
exist, that is, we should make sure that Tβ endowed with the β-topology is a Baire space:

Proposition 6.7.2:
For any β, the set Tβ, together with the β-topology is a Baire space.

Proof: Suppose that we have a sequence {Un}n∈N of subsets of Tβ which are open in the
β-topology. Each of them is a union of cylinders, so that for any n and any (p, h) ∈ Pβ,
there is some cylinder [(q, g)]β ⊆ Un so that [(q, g)]β ⊆ [(p, h)]β.

Consider any condition (p, h) ∈ Pβ. There must exist some [(p0, h0)]
β ⊆ U0 which is

such that [(p0, h0)]
β ⊆ [(p, h)]β. Then inductively for any n, assuming (pn, qn) is defined,

we define (pn+1, qn+1). We define a pair (q, g) extending (pn, qn) the following way: we
start by putting in (q, g) all tagged nodes of (pn, qn). Then for any node σ in pn with
tagging α+1, we add (σˆk,α) in (q, g) for some σˆk so that no string τ ⪰ σˆk is mentioned
in pn or in q so far.

For any node σ in pn with tagging α limit, if no sequence {αm}m∈N is assigned to σ

yet, we assign one so that α = supm αm. Then we put (σˆk,αn) in (q, g) for some σˆk so
that no string τ ⪰ σˆk is mentioned in pn or in q so far.

Finally for every node σ in pn with tagging ∞, we add (σˆk,∞) in (q, g) for some σˆk
so that no string τ ⪰ σˆk is mentioned in pn or in q so far. Then as q should correspond
to a cylinder in the set of representations of trees, we might need to actively specify that
some nodes are not in q (and then not in any extension of q). If needed we do so.

Then (q, g) is a valid extension of (pn, hn) and then there must exists a cylinder
[(pn+1, hn+1)]

β ⊆ Un+1 such that [(pn+1, hn+1)]
β ⊆ [(q, g)]β.

It is clear by construction that ⋂n[(pn, qn)]
β ⊆ ⋂n Un. We should now prove that

⋂n[(pn, qn)]
β is not empty. Because p0 ⪯ p1 ⪯ p2 ⪯ . . . and h0 ⪯ h1 ⪯ h2 ⪯ . . . we have that

⋂n[pn] contains a unique element T and ⋂n[hn] contains a unique element H tagging
every node in T (and saying nothing on nodes which are not in T).

It is clear by construction (and can be prove formally by induction) that for any node
σ ∈ T we have H(σ) ≤ ∣σ∣o. Also suppose H(σ) < ∣σ∣o for some node σ. Then we can
recursively look for a child node σ such that H(σ) < ∣σ∣o but such that H(τ) = ∣τ∣o for
all children τ of σ. Also necessarily finitely many of those children are enough to witness
H(σ) < ∣σ∣o, implying that hn is an invalid tagging of pn already for some n, which is a
contradiction.

195

6.7. STEEL FORCING : THE BOREL COMPLEXITY OF THE SET OF
SEQUENCES WHICH COLLAPSE ωCK1

We shall now prove that if (p, h) ⊩β A ⊆ T , then A ∩ Tβ is comeager in [(p, h)]β for
the β-topology (we will simply say that A is comeager in [(p, h)]β). In particular, if an
element is generic enough for the β-topology (belongs to sufficiently many dense open sets
of the β-topology), and if it belongs to [p, h]β, then it belongs to A.

Lemma 6.7.2 Let A be any Σ0
α or Π0

α set and let (p, h) ∈ Pβ. If (p, h) ⊩β A then A∩Tβ
is comeager in [(p, h)]β for the β-topology.

Proof: Consider A a ∆0
1 set and suppose that for any β and (p, h) ∈ Pβ we have (p, h) ⊩β

A. Then [p] ⊆ A and then also [(p, h)]β ⊆ A, so clearly A is comeager in [(p, h)]β.

The tagging function is now implicit. Consider A = ⋂nAn a Π0
α set and suppose that

for any β and p ∈ Pβ we have p ⊩β A = ⋂nAn. Then ∀n ∀q ≥β p ∃r ≥β q r ⊩β An.
Therefore, for all n, by induction hypothesis, the set An is comeager in a dense open
subset of [p]β. Therefore it is also comeager in [p]β. Also as every An is co-meager in
[p]β, then ⋂nAn is co-meager in [p]β.

Consider A = ⋃nAn a Σ0
α set and suppose that for any β and p ∈ Pβ we have p ⊩β A.

Then p ⊩β An for some n. By induction hypothesis we have that An is comeager in [p]β

and then that ⋃nAn is comeager in [p]β.

Just a small step now remains to prove the Baire property of any Borel A, for the
β-topology, that is, any Borel set A is equal to an open set, up to a meager set. The
tagging function is implicit in the following lemma.

Lemma 6.7.3 For any Σ0
α or Π0

α set A and any β, the set {[p]β ∶ p ∈ Pβ ∧ (p ⊩β
A ∨ p ⊩β A

c)} is dense in Tβ, for the β-topology.

Proof: Let A be Σ0
α. Consider any p ∈ Pβ. Then either p ⊩β A

c or p ⊮β A
c, in which

case ∃q ⪰β p q ⊩β A.

For a fixed β, the more dense open sets (for the β-topology) T belongs to, the more
generic it is. We argue that for any β and any countably many Borel sets {An}n∈ω, if a
tree T ∈ Tβ is generic enough, we have for any n that T ∈ An iff there is a prefix p of T
such that (p, ∣T ∣o ↾p) ⊩β An. In what follows, the tagging function ∣T ∣o ↾p is implicit.

Pick some n and suppose that for some prefix p of T we have p ⊩β An. Then using
Lemma 6.7.2 we have that An is co-meager in [p]β and then if T is generic enough it
belongs to An. Suppose now that T ∈ An. In particular if T is generic enough, it is in the
dense open set {[p]β ∶ p ∈ Pβ ∧ p ⊩β An ∧ p ⊩β A

c
n}. Also we cannot have that p ⊩β A

c

for some p ≺ T , as we just proved that in this case T ∈ Ac. Therefore, for some prefix p of
T we have p ⊩β An.

6.7.3 The retagging lemma

We now prove the main lemma of Steel forcing. For any ordinal α, any two ordinals
β1, β2 ≥ ωα, and (p, h1) ∈ Pβ1 , (p, h2) ∈ Pβ2 , we write (p, h1) ∼ωα (p, h2) if for every node
σ in p we have h1(σ) < ωα iff h2(σ) < ωα iff h1(σ) = h2(σ).

Lemma 6.7.4 (The retagging tool) Let β,α be countable ordinals with β < α. Let
β1, β2 ≥ ωα and p ∈ F with (p, h1) ∈ Pβ1, (p, h2) ∈ Pβ2 and suppose (p, h1) ∼ωα (p, h2).
Then for any (q, g1) ⪰β1 (p, h1), there exists a retagging g2 of q such that (q, g2) ⪰β2 (p, h2)

and with (q, g1) ∼ωβ (q, g2).

196

6.7. STEEL FORCING : THE BOREL COMPLEXITY OF THE SET OF
SEQUENCES WHICH COLLAPSE ωCK1

Proof: We simply build g2. On nodes σ of p we set g2(σ) = h2(σ), so the tagging g2 will
extend the tagging h2. Also as (p, h1) ∼ωα (p, h2) then also (p, g1 ↾p) ∼ωα (p, g2 ↾p).

Also because (p, h1) ∼ωα (p, h2) and because ωβ + ω ≤ ωα, for every other node σ of q
that is not in p and such that g1(σ) < ωβ + ω, we can set g2(σ) = g1(σ) and have that g2

is still a valid tagging so far.

Let M be the largest integer such that every node σ in q and not in p is tagged by
something smaller than ωβ +M by g2 so far. Now for every other node σ in q and not in p
such that g1(σ) ≥ ωβ +ω, we have infinitely many values between ωβ +M and ωβ +ω that
we can use to tag them in a valid way by g2. It is then easy to check that (q, g1) ∼ωβ (q, g2)

and that (q, g2) ⪰β2 (p, h2).

Lemma 6.7.5 (The retagging lemma) For any Π0
α or Σ0

α+1 set A, any countable or-
dinal β1, β2 ≥ ωα and any p ∈ F with (p, h1) ∈ Pβ1 and (p, h2) ∈ Pβ2, if (p, h1) ∼ωα (p, h2),
then (p, h1) ⊩β1 A iff (p, h2) ⊩β2 A.

Proof: Suppose that A is a Π0
1 set. Let us suppose that (p, h1) ⊮β1 A in order to show

that (p, h2) ⊮β2 A. The converse is then be similar. If (p, h1) ⊮β1 A then ∃(q, g1) ⪰β1
(p, h1) (q, g1) ⊩β1 A

c. Also Ac is given by a union of clopen set ⋃nAn and we have by
definition that [q] ⊆ An for some n. Also, for any other valid tagging g2 of q, whose range
lies in β2 ∪ {∞}, we have (q, g2) ⊩β2 An. If such a valid tagging exists, with in addition
that (q, g2) ⪰β2 (p, h2), it would then follow that (p, h2) ⊮β2 A. Also by the retagging tool
with α = 1 and β = 0, such a tagging exists.

Suppose now that A is a Π0
α set. Let us suppose that (p, h1) ⊮β1 A, to prove that

(p, h2) ⊮β2 A. The converse is then similar. We have an extension (q, g1) ⪰β1 (p, h1) such
that (q, g1) ⊩β1 A

c. Also let ⋃nAn be the complement of A. Then for some n we have
(q, g1) ⊩β1 An. Also An is a Π0

β
set for some β < α. Also by the retagging tool we have a

tagging g2 with (q, g2) ∼ωβ (q, g1) and such that (q, g2) ⪰β2 (p, h2).

Now by induction hypothesis, as we have (q, g2) ∼ωβ (q, g1) we then have (q, g2) ⊩β2 An.
Also as (q, g2) ⪰β2 (p, h2), it follows that (p, h2) ⊮β2 A.

Suppose now that the lemma is true for any Π0
α set. For any Σ0

α+1 set A = ⋃nAn,
with (p, h1), (p, h2), β1, β2 under the condition of the lemma, we have (p, h1) ⊩β1 A iff
(p, h1) ⊩β1 An for some n iff (p, h2) ⊩β2 An iff (p, h2) ⊩β2 A.

6.7.4 Preservation of ωck1

We should bring some effectivity in the forcing relation. To do so, for β < ωck1 , we can
represent the tagging of elements of Pβ by elements of O<β. It is clear that the set of all
representations for elements in Pβ is ∆1

1, uniformly in any element of O=β.

Lemma 6.7.6 For any α < ωck1 , any Σ0
α or Π0

α set A, and any β < ωck1 , the set {p ∈ Pβ ∶

p ⊩β A} is ∆1
1 uniformly in an index of A, and a code for β.

Proof: Suppose A = ⋃nAn is a Σ0
1 set, with each An a clopen set. Then for any β < ωck1

and any (p, h) ∈ Pβ we have (p, h) ⊩β A iff [p] ⊆ An for some n, which is a Σ0
1 condition

197

6.7. STEEL FORCING : THE BOREL COMPLEXITY OF THE SET OF
SEQUENCES WHICH COLLAPSE ωCK1

uniformly in (p, h) and in A. Then the set {(p ∈ Pβ ∶ p ⊩β A} is ∆1
1 uniformly in an

index of A and a code for β.

Suppose the lemma is true for any Σ0
α sets with α < ωck1 and any β < ωck1 , and let us

argue that the lemma is true for any Π0
α sets and any β < ωck1 . Let A be a Π0

α set and let
β < ωck1 . In what follows, the tagging function is implicit.

For any p ∈ Pβ we have that p ⊩β A iff ∀q ⪰β p q ⊮β A
c. Also by induction hypothesis,

the set {q ∈ Pβ ∶ q ⊮β A
c} is ∆1

1 uniformly in an index for Ac, and a code for β. Then it
is also the case for a restriction of this set to elements that extends p.

Suppose now that the lemma is true for any Π0
<α set with α < ωck1 and any β < ωck1 ,

and let us show that the lemma is true for any Σ0
α set and any β < ωck1 . Let A = ⋃nBn

be a Σ0
α sets with each Bn a Π0

<α set. We have p ⊩β A iff ∃n p ⊩β Bn. Also by induction
hypothesis, the set {p ∈ Pβ ∶ p ⊩β Bn} is ∆1

1 uniformly in an index for Bn and a code for
β. Therefore also the set {p ∈ Pβ ∶ p ⊩β A} is ∆1

1 uniformly in an index for Bn and a
code for β.

Theorem 6.7.1:
If T ∈ Tωck1

is generic enough, then ωT1 = ωck1 .

Proof: Consider a functional Φ ∶ T × ω → ω and the set

A = {T ∶ ∀n ∃α < ωck1 Φ(T,n) ∈OT
<α}

Let An = {T ∶ ∃α < ωck1 Φ(T,n) ∈OT
<α} and An,α = {T ∶ Φ(T,n) ∈OT

<α}. Note that from
Porism 1.6.1, for each α < ωck1 and each e the set {X ∶ e ∈ OX

<α} is Σ0
α+1 uniformly in e

and a code for α. It follows that the set An,α is Σ0
α+1 uniformly in n and a code for α.

Suppose that for some T ∈ Tωck1
we have T ∈ A. Suppose also that T is generic enough,

so that T belongs to some [(p, h)]ω
ck
1 such that (p, h) ⊩ωck1

A. In particular there is a

smallest α0 < ω
ck
1 so that (p, h) ∈ Pα0 . In what follows the tagging is implicit.

Let us now define the Π1
1 function f ∶ ωck1 → ωck1 which to each α < ωck1 gives the

smallest ordinal β ≥ ωα such that:

∀n ∀q ⪰ωα p ∃r ⪰β q r ⊩β ⋃
γ<β

An,γ

The fact that f is Π1
1 is a direct consequence of Lemma 6.7.6. We should argue that f is

defined on every ordinal α ≥ α0. As we have p ⊩ωck1 ⋂n⋃γ<ωck1
An,γ , then also we have:

∀n ∀q ⪰ωck1
p ∃r ⪰ωck1

q r ⊩ωck1 ⋃
γ<ωck1

An,γ

So consider any n and any q ⪰ωα p. In particular there must exist some r ⪰ωck1
q such

that r ⊩ωck1 ⋃γ<ωck1
An,γ . Therefore, by the definition of the forcing relation we must have

198

6.7. STEEL FORCING : THE BOREL COMPLEXITY OF THE SET OF
SEQUENCES WHICH COLLAPSE ωCK1

r ⊩ωck1
An,γ already for some γ < ωck1 . Also let β be the smallest ordinal bigger than

max(ωγ,ωα) such that r ∈ Pβ. Then by the retagging lemma, as An,γ is a Σ0
γ+1 set, we

must have r ⊩β An,γ and then r ⊩β ⋃γ<βAn,γ . As we can find such a β for any n and
any q ⪰ωα p, then by the Σ1

1-boundedness principle, the supremum of all those β is still a
computable ordinal. So the function is f is defined everywhere.

It is straightforward to check that the function f is continuous, that is, f(supn αn) =
supn f(αn). Therefore if we define α1 = f(α0) and αn+1 = f(αn) for each n, we then have
that αω = supn αn is a fixed point of f . Note that also ωαω = αω. It follows that we have:

∀n ∀q ⪰αω p ∃r ⪰αω q r ⊩αω ⋃
γ<αω

An,γ

But then by the forcing definition we have p ⊩αω ⋂n⋃γ<αω An,γ . We now have to prove
that p ⊩ωck1 ⋂n⋃γ<αω An,γ . Note that we cannot apply the tagging lemma directly because

⋂n⋃γ<αω An,γ is only a Π0
αω+1 set. This is here that we need to use the possibility for a

tagging to be ∞. Using this, we shall argue that we actually already have:

∀n ∀q ⪰ωck1
p ∃r ⪰ωck1

q r ⊩ωck1 ⋃
γ<αω

An,γ (*)

Consider any n and any q ⪰ωck1
p, and let q∗ be a retagging of q, so that every node in q that

is tagged by something bigger or equal to αω is retagged by ∞ in q∗. Then we have some
r∗ ⪰αω q

∗ with r∗ ⊩αω ⋃γ<αω An,γ . In particular for some β < αω we have r∗ ⊩αω An,β.
Also by the retagging tool, as q ∼ωαω q

∗, we have some r ⪰ωck1
q with r ∼ωβ r

∗ and then,

by the retagging lemma, we have r ⊩ωck1
An,β, as An,β is a Σ0

β+1 set. It follows that

r ⊩ωck1 ⋃γ<αω An,γ and then that (*) is actually true. Then we have p ⊩ωck1 ⋂n⋃γ<αω An,γ .

It follows that supn ∣Φ(T,n)∣To ≤ αω < ωck1 . As we have this for every functional Φ for
T generic enough, we then have ωT1 = ωck1 .

6.7.5 The Borel complexity of {X ∶ ωX1 > ω
ck
1 }

Theorem 6.7.2:
The set {X ∈ 2N ∶ ωX1 = ωck1 } is not Σ0

ωck
1
+2

.

Proof: We shall prove that the set of representations of elements of T which preserve
ωck1 is not Σ0

ωck
1
+2

. As this set is a closed subset of the Cantor space, it follows that also

the set {X ∈ 2N ∶ ωX1 = ωck1 } is not Σ0
ωck

1
+2

. In what follows, the tagging functions are

implicit.

Suppose that {T ∈ T ∶ ωT1 = ωck1 } = ⋃m⋂nAn,m where each An,m is a Σ0
ωck

1

set. Then

using Theorem 6.7.1, there must be some m such that the set ⋂nAn,m contains some tree
T which is generic enough for Steel forcing over Pωck1

, so that ωT1 = ωck1 . In particular we

have p ⊩ωck1 ⋂nAn,m for some p ≺ T with (p, ∣T ∣o ↾p) ∈ Pωck1
.

199

6.7. STEEL FORCING : THE BOREL COMPLEXITY OF THE SET OF
SEQUENCES WHICH COLLAPSE ωCK1

So also we have ∀n ∀q ⪰ωck1
p ∃r ⪰ωck1

q r ⊩ωck1
An,m. Let ωck2 be the smallest ordinal

bigger than ωck1 , and of the form ωX1 for some oracle X (we can actually take X =O). We
should now prove that we actually have:

∀n ∀q ⪰ωck2
p ∃r ⪰ωck2

q r ⊩ωck2
An,m (*)

Consider now any n and any q ⪰ωck2
p and let q∗ be a retagged version of q where each

ordinal bigger or equal to ωck1 in q is retagged by ∞ in q∗. Then q∗ ⪰ωck1
p and in particular

we have some r∗ ⪰ωck1
q∗ such that r∗ ⊩ωck1

An,m. Let An,m = ⋃k∈NAn,m,k with each An,m,k

is Π0
<ωck

1

set. In particular for some β < ωck1 we have r∗ ⊩ωck1
An,m,k where An,m,k is a Π0

β

set. Also by the retagging tool, as q ∼ωωck1
q∗, we have some r ⪰ωck2

q with r ∼ω(β) r
∗ and

then, by the retagging lemma, we have r ⊩ωck2
An,m,k, as An,m,k is a Π0

β
set. It follows

that r ⊩ωck2
An,m and then that (*) is actually true. Then we have p ⊩ωck2 ⋂nAn,m.

It follows that any q ⪰ωck2
p also forces ⋂nAn,m. Take such an extension q with a node

tagged by the ordinal ωck1 . For any T ∈ [q]ω
ck
2 we have ωT1 > ωck1 . Also as q ⊩ωck2 ⋂nAn,m,

the set ⋂nAn,m contains some generic tree that is in [q]ω
ck
2 . Then ⋃m⋂nAn,m contains

an element which collapses ωck1 , which is a contradiction.

200

Chapter 7
The badly-behaved oracles

On peut dire des divers procédés que nous avons décrits et de ceux qui pourront
être imaginés par les futurs mathématiciens ce que nous avons dit des entiers :
le nombre de ces procédés est, en fait, fini et nous pouvons tout au plus le con-
sidérer comme dénombrable, si nous ne fixons aucune limite supérieure à la durée
de l’espèce humaine et au nombre total des hommes à venir. Comme chacun de ces
procédés ne peut utiliser effectivement qu’un nombre limité d’entiers (ou de nom-
bres accessibles précédemment définis), le nombre total des nombres ainsi accessibles
sera dénombrable, c’est-à-dire ne représentera qu’une partie infime de l’ensemble des
nombres incommensurables qui resteront inaccessibles.

Les nombres inaccessibles theory, Émile Borel

Joint work with Noam Greenberg and Laurent Bienvenu.

7.1 Time tricks : example with Π1
1-open sets

In classical computability, we sometimes use the fact that the time of computation lies
in the same space as the lengths of the sequences we use: ω. We call any use of this
equality a time trick. Also sometimes, the use of a time trick is just done because it is
convenient, but can actually be avoided. An example can be found in the proof that no
left-c.e. sequence is weakly-2-random. This is done in the proof of Proposition 2.1.1, using
a time trick, and a higher version of it is done in the proof of Theorem 5.3.1, without a
time trick. Also it is clear that the proof in the higher setting, also works in the lower
setting.

We shall now see an example where the use of a time trick cannot be removed: Any
open set with a Σ0

1 description also has a ∆0
1 description. Indeed, for any Σ0

1 set of strings
W , we can define the Σ0

1 set V by enumerating σ in V at stage ∣σ∣ iff some prefix of σ is
enumerated in W∣σ∣. It is clear that [W]≺ = [V]≺. Also 2<ω − V is Σ0

1 because σ ∉ V iff
σ ∉ V∣σ∣.

The proof of the previous paragraph clearly uses a time trick. We shall now see that
there are some open sets with a Π1

1 description that do not have a ∆1
1 description. To do

so, we start by proving that there are some Π1
1 open sets U such that for any prefix-free

Π1
1 set of strings W , we have U ≠ [W]≺. This also justifies the necessity of Lemma 3.7.1

to prove several results of this thesis. Recall that the lemma says that for any Π1
1-open

201

7.1. TIME TRICKS : EXAMPLE WITH Π1
1-OPEN SETS

set U , uniformly in ε, one can find a Π1
1 set of strings W with [W]≺ = U , which is ‘almost

disjoint’ in the sense that ∑σ∈W 2−∣σ∣ ≤ λ(U) + ε. We now show that in some cases, we
cannot have ∑σ∈W 2−∣σ∣ = λ(U):

Theorem 7.1.1:
There is a Π1

1-open set U such that for any prefix-free Π1
1 set of strings W , we have

U ≠ [W]≺.

Proof: Let We be a list of all Π1
1 set of strings. Let {σe}e∈N be a sequence of pairwise

disjoint strings. We define the enumertion of a Π1
1 set of strings V such that if We is

prefix-free, then [V]≺ ≠ [We]
≺.

For any string σe, we define a computable set of strings Ae = {τe,n ∶ n ∈ N} such that
Ae is dense along σeˆ0∞, but such that no prefix of σeˆ0∞ is in Ae. For any e we put Ae
in V at stage 0. Then for any stage s, and substage e, we check if both [Ae]

≺ ⊆ [We,s]
≺

but σeˆ0∞ ∉ [We,s]
≺. If so, then we enumerate σe in V at stage s.

We now claim that ifWe is prefix-free, then [V]≺ ≠ [We]
≺. If [V]≺ = [We]

≺, in particular
we have [Ae]

≺ ⊆ [We]
≺. If so, then by compactness, for each string τ in Ae, there are only

finitely many strings in We whose union of corresponding cylinders covers [τ]. Also by
the Σ1

1-boundedness principle, as Ae is computable, there is a smallest stage s < ωck1 at
which we already have [Ae]

≺ ⊆ [We,s]
≺.

Also at stage s, if σeˆ0∞ ∈ [We,s]
≺, by construction, σeˆ0∞ ∉ [Vt]

≺ for t ≥ s, and then
[V]≺ ≠ [We]

≺.

On the other hand, if at stage s, we have σeˆ0∞ ∉ [We,s]
≺, then σe is enumerated in

V at stage s, and either σeˆ0∞ ∉ [We]
≺, in which case, also we have [V]≺ ≠ [We]

≺; or a
prefix τ of σeˆ0∞ will be enumerated in We after stage s. But then, as already at stage
s we have that [We]

≺ covers [Ae]
≺ without containing σeˆ0∞, and as Ae is dense along

σeˆ0∞, there is necessarily an extension of τ which is already in We at stage s. Therefore
We is not prefix-free.

Corollary 7.1.1:
There is a Π1

1-open set U such that for any ∆1
1 set of strings W , we have U ≠ [W]≺.

Proof: It is clear, because for any ∆1
1 set of strings W , there is a prefix-free ∆1

1 set of
strings V with [W]≺ = [V]≺:

V = {σ ∈W ∶ ∀τ ≺ σ, τ ∉W}

202

7.2. HIGHER TURING COMPUTATION AND FIN-H COMPUTATION

7.2 Higher Turing computation and fin-h computation

We defined in Section 4.1 the notion of higher Turing reduction, as well as the notion of
fin-h reduction. Also we announced that given X,Y , among the following notions, the
first two are different, and the last two coincide:

1. There is a c.e. partial map Φ ∶ 2<N → 2<N, consistent on prefixes of X, such that
Φ(X) = Y .

2. There is a c.e. partial map Φ ∶ 2<N → 2<N, consistent everywhere, such that Φ(X) = Y .

3. There is a c.e. partial map Φ ∶ 2<N → 2<N, consistent everywhere and closed under
prefixes, such that Φ(X) = Y .

Replacing c.e. by Π1
1, we defined higher Turing reduction as in (1) and fin-h reductions

as in (3). We shall prove here only that (2) is equivalent to (3), but in a non uniform
way (using the fixed point theorem and the ‘treeshbone’ technique described in the next
section, it is possible to prove that the equivalence has to be non-uniform). The proof
that (1) is different from (2) will be done in Corollary 7.3.2.

Theorem 7.2.1:
If we have a functional Φ, consistent everywhere such that Φ(X) = Y , then there
exists a fin-h functional Ψ such that Ψ(X) = Y .

Proof: For any stage s, we define a fin-h functional Ψs. Unlike the way it is usually
done, the functional Ψs+1 is not an extension of the functional Ψs. They are all unrelated
for different stages. So let us define Ψs; for this, consider the set of strings σ such that at
stage s, some extensions of σ are mapped to strings of bigger and bigger length:

As = {σ ∶ ∀n ∃τ ⪰ σ ∣Φs(τ)∣ ≥ n}

Now for every string σ in lexicographic order, if σ ∈ As then consider the longest string
τ which is compatible with the mapping of every extension of σ by Φs (note that τ can
always be ε, the empty string). If there is no longest such string, that is, Φs(σ) = Z already
for some Z, then let τ = Z ↾∣σ∣. Then put (σ, τ) in Ψs.

Each functional Ψs is clearly closed by prefixes because As is. Let us show that it is
consistent. Suppose Ψs(σ1) is defined and let us suppose Ψs(σ2) is defined for σ2 ≻ σ1.
In particular we have σ1, σ2 ∈ As. For any σ, let Wσ be the set of strings extending σ,
which are mapped to something via Φs. Also by definition it is not possible to have two
incomparable strings which are both compatible with the mapping of each string in Wσ1

(or Wσ1). Therefore as we have Wσ2 ⊆ Wσ1 , we also have Ψs(σ1) ⪯ Ψs(σ2). So Ψs is
consistent.

Let us suppose that Φ(X) = Y and that every prefix of X is in As in order to prove
that Ψs(X) = Y . For any σ ≺ X the set Wσ is dense along X. Also as Φ(X) is defined
and as Φ is consistent, for longer and longer prefixes σ of X, there are longer and longer
prefixes τ of Y , compatible with the mapping of every string in Wσ. Therefore Ψs(X) = Y .

There is one last case to handle, when Φ(X) = Y and there is no stage s such that
every prefix of X is in As. We now define a last fin-h functional Ψ to handle this: At stage

203

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

s, if σ ∈ As −A<s we search for the longest string τ such that a prefix of σ is mapped to τ
in Φs, and we then map σ to τ in Ψs.

It is clear that Ψ is consistent, as Φ is. Also as As is closed under prefixes, then Ψ
is (we can prove by induction that if σ ∈ As − A<s and if we have τ ≺ σ with τ ∈ A<s

then Ψ already maps τ to something before stage s). Now suppose Φ(X) = Y and that
there is no stage s such that every prefix of X is in As. However, by the Σ1

1-boundedness
principle, if Φ is defined on X, then every prefix of X enters As at some computable stage
s. Consider any n such that Φ(σ) = Y ↾n for σ ≺ X . Let s be the smallest stage such
that Φs(σ) = Y ↾n. Then by hypothesis we have τ with σ ⪯ τ ≺ X and t ≥ s such that
τ ∈ At −A<t. Then by construction we have Ψt(τ) ⪰ Y ↾n. As this is true for any n, we
then have Ψ(X) = Y .

7.3 Non-universality in continuous relativization

7.3.1 The perfect treesh-bone

For a tree T ⊆ 2<N, recall that σ ∈ T is a branching node of T is σˆ0 and σˆ1 are both
in T , and recall that the stem of T , denoted by stem(T), is the smallest branching node
of T . We describe here a construction that will be performed on various perfect trees, to
conduct two proofs of this chapter. The idea is simple: Given a perfect tree T , we want
to obtain a perfect subtree T ′ (that we will call Nar(T)), together with countably many
nodes {σi}i∈N of T which do not belong to T ′, but which are dense along any path of T ′.
We now formally describe how we achieve this.

For a perfect tree T ⊆ 2<N, we will now describe, uniformly in T , a dense Σ0
1(T) open

subset of [T] whose complement in [T] is perfect. Let ψT ∶2
<N → T be the map which

induces the natural isomorphism between 2N and [T]; ψT (ε) = stem(T) and for all σ ∈ 2<N

and i ∈ {0,1}, ψT (σˆi) is the next splitting node in T above ψT (σ)ˆi. So the strings
ψT (σ) are exactly the splitting nodes of T .

Let σ0(T), σ1(T), . . . be an enumeration of all strings of the form ψT (σˆ1) for strings
σ of odd length, such that the elements of the enumeration form an antichain, and are
minimal under prefix ordering. We let Nar(T) (the narrow subtree of T) be the result
of removing the strings σk(T) and their extensions from T . Also for any k we let T [[k]]
denote T ↾ψT (σk), that is, the collection of strings of T comparable with σk(T). We now
give a picture to illustrate these definitions:

204

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

Figure 7.1: The treeshbone
The blue nodes correspond to nodes σk(T).

The red subtree corresponds to Nar(T)

Let us make a few remarks which will be widely used without explicit mention in what
follows.

1. For any tree T and any k we have σk(T) = stem(T [[k]])

2. For any tree T and any k we have stem(T) ≺ stem(T [[k]])

3. For any tree T we have stem(T) = stem(Nar(T))

7.3.2 The tree of trees

We now describe a general construction that will be used in two proofs of this chapter.
What we build can be seen as a tree of trees. We define a subset T of the set of trees of
the Cantor space.

Let T0 = {2<ω}. Let us define Tn+1 = {T [[k]] ∣ T ∈ Tn, k ∈ N}∪ {Nar(T) ∣ T ∈ Tn}. Then
T is defined to be the union of all the trees in Tn for some n. For two trees T1, T2 in T , we
say that T2 extends T1 or also T1 ⪯ T2 if T2 ⊆ T1. In addition if T1 ≠ T2 we write T1 ≺ T2.
We illustrate the tree of trees by the following picture:

205

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

T

Nar(T) T [[i]] ...

Nar() [[i]] ... Nar() [[i]] ...

Nar() [[i]] ... Nar() [[i]] ... Nar() [[i]] ... Nar() [[i]] ...

Figure 7.2: The tree of trees

We say that a sequence of trees T0 ≺ T1 ≺ T2 ≺ . . . , where each Ti ∈ T , is a path of T .
If in addition, for infinitely many n we have Tn+1 ≻ Tn [[k]] for some k, the path is called
a shrinking path, and in this case ⋂n[Tn] contains exactly one sequence.

During the different constructions, we will pick at each stage s a shrinking path T0 ≺

T1 ≺ . . . in the tree of trees. To do so, we will use what we will call a strategy. A strategy
indicates which tree Tn+1 we have to pick at some given stage to extend the current tree
Tn. Also for each of the following construction, the number of time the tree Tn+1 can
change, assuming that the tree Tn does not change, will be bounded by ω + 2. For this
reason, we define a strategy to be an element of (ω + 2)<N, that is, a finite sequence of
ordinals all strictly smaller than ω + 2.

Along with strategies, we use a function F ∶ (ω+2)×T → T such that for any o ≤ ω+2
and any T ∈ T we have T ≺ F (o, T). The function F will depend on each construction.
For the proof of Theorem 7.3.2, the function F will be partial Π1

1 and for the proof
of Theorem 7.3.1 it will be total computable. We then define by induction the function
G ∶ (ω+2)<N×T by G(ε) = 2<ω and G(αˆo) = F (o,G(α)). Note that for any α,β ∈ (ω+2)<N

we have α ≺ β iff G(α) ≺ G(β). To emphasize that G(α) is a tree we will then write Tα
instead of G(α).

7.3.3 No A-universal oracle continuous Π1
1-Martin-Löf tests

.

Fact 7.3.1.

If A higher Turing computes X, then X is not A-continuously Π1
1-Martin-Löf random.

The n-th oracle continuous Π1
1-open set of the test is simply the enumeration of Φ,

restricted to pairs with a second component of length longer than n.

.

Theorem 7.3.1:
Let U be an oracle continuous Π1

1-open set such that for all sequences B, we have

UB ≠ 2ω. There is a higher ∆0
2 sequence A such that X ∉ UA for some higher left-c.e.

sequence X which is higher Turing computable in A.

206

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

Proof: The strategies for this construction will be elements of (ω+1)<N, together with the
function F ∶ (ω+1)<N×T → T defined by F (k, T) = T [[k]] for k < ω and F (ω,T) = Nar(T).
Let U be an oracle-continuous Π1

1-open set and let us suppose that for any B we have
UB ≠ 2ω.

The construction:

At each stage s < ωck1 we define strategies α0,s ≺ α1,s ≺ . . . and approximation Xs for X as
follows:

At substage n, assuming α = αn,s and Xs ↾n have been defined, we define αn+1,s and
Xs ↾n+1. We search for the least k such that for no σ ∈ Tα extending σk(Tα), we have
[Xs ↾n ˆ0] ⊆ Uσs . If a least such k exists, we let αn+1,s = αn,sˆk (so Tαn+1,s = Tα [[k]]) and
Xs(n) = 0. Otherwise αn+1,s = αn,sˆω (so Tαn+1,s = Nar(Tα)) and Xs(n) = 1.

The verification: Convergence

For a given stage s, let ξs be the unique limit point of {[αn,s]}n∈N. Note that by construc-
tion, the sequence {ξs}s<ωck1

is higher left-c.e. Therefore, by Σ1
1-boundedness principle, it

reaches a limit sequence ξ and in particular, for any n, there is a stage s < ωck1 such that
for every s ≤ t < ωck1 we have ξt ↾n= ξ ↾n.

Also we then have for every n that the sequence {Tαn,s}s<ωck1
converges to some tree

Tαn , and that {Xs}s<ωck1
converges to some sequence X. Also as {ξs}s<ωck1

is higher left-c.e.,

it implies that {Xs}s<ωck1
is also higher left-c.e. Let A ∈ ⋂n[Tn].

The verification: X ∉ UA

We now prove that X ∉ UA. By induction on n, we show that:

[X ↾n] ⊈ U
B for all B ∈ [Tαn] (*)

The base case n = 0 holds by the assumption on U . Suppose that this has been shown for
n and let us show it for n + 1. If ξ(n) = k < ω then by construction, for all B ∈ [Tαn+1]
we have [X ↾n ˆ0] ⊈ UB, and also X(n) = 0 which proves (*) for n + 1 in case ξ(n) = k.
Suppose now that ξ(n) = ω and X(n) = 1. In particular, by construction, for every k there
is σ extending σk(Tαn) such that [X ↾n ˆ0] ⊆ Uσ.

Also suppose that there is some C ∈ [Tαn+1] = [Nar(Tαn)] such that [X ↾n+1] = [X ↾n
ˆ1] ⊆ UC . By compactness, there is some σ ∈ Tαn+1 such that [X ↾n ˆ1] ⊆ Uσ. Also there
is some k < ω such that σk(Tαn) extends σ, and there is some B ∈ [Tαn [[k]]] ⊆ [Tαn] such
that [X ↾n ˆ0] ⊆ UB. Therefore [X ↾n] ⊆ U

B, contradicting the induction hypothesis at
level n.

The verification: A higher Turing computes X

We now prove that A higher Turing computes the sequence X. Let us define the Π1
1 set

of pairs of strings Φ = {(stem(Tαn,s),Xs ↾n) ∶ n ∈ N, s < ωck1 }.

Certainly for all n, we have stem(Tn) ≺ A. So to show that Φ(A) = X, it remains
to show that Φ is consistent on prefixes of A, that is, for all s and n, if Xs ↾n⊀ X,
then stem(Tαn,s) ⊀ A. This is done by induction on n. Suppose this is known for n
and all stages s and let us suppose that Xs ↾n+1⊀ X in order to show stem(Tαn+1,s) ⊀ A.

207

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

Either Xs ↾n⊀ X in which case, by induction hypothesis we have that stem(Tαn+1,s) ⊀ A
because stem(Tαn,s) ⪯ stem(Tαn+1,s), or Xs ↾n= X ↾n and Xs(n) ≠ X(n). In particular
ξ ↾n+1≠ ξs ↾n+1.

Let m be the smallest such that ξ(m) ≠ ξs(m), let α = ξ ↾m. If m < n, as Xs ↾n= X ↾n,
the only possibility is that X(m) = Xs(m) = 0 and ξ(m) and ξs(m) are both smaller
than ω. Also in this case we have Tαˆξs(m) = σi(Tα) ≠ σj(Tα) = Tαˆξ(m) which implies
stem(Tαˆξs(m)) ⊀ A.

If m = n, as X is higher left-c.e., the only possibility is that Xs(n) = 0 and X(n) = 1.
But then we have Tαˆξs(m) = σi(Tα) and A ∈ Nar(Tα) for some i. Therefore we have
stem(Tαn,s) ⊀ A.

Corollary 7.3.1:
For some higher ∆0

2 sequences A, there is no A-universal oracle-continuous Π1
1-Martin-

Löf test.

We can also use Theorem 7.3.1 to separate higher Turing computations from consistent
higher Turing computations. This is done through the following proposition:

Proposition 7.3.1:
There is an oracle-continuous Π1

1-Martin-Löf test ⋂n Un such that for any oracle A
and any X, if A higher Turing computes X with some functional Φ which is consistent
everywhere, then X ∈ ⋂n U

A
n .

Proof: First let us notice that we can enumerate the functionals which are consistent
everywhere. For any Π1

1 set Φe ⊆ 2<N × 2<N, we can build the Π1
1 set Φf(e) which just

copies Φe as long as everything is consistent, and stop the copy when some inconsistency
if found, without copying the inconsistency itself.

Then let {Φe}e∈ω be an enumeration of the higher Turing functionals which are con-
sistent everywhere. We define:

Un = {(σ, τ) ∶ ∃e Φe(σ) ⪰ τ with ∣τ ∣ = n + e + 1}

We then have UAn = {τ ∶ ∃σ ≺ A (σ, τ) ∈ Un}. Also for each e there is at most one
string τ of length n+ e+1 in UAn , because each Φe is consistent everywhere. We then have
λ(UAn) ≤ 2−n. So ⋂n Un is an oracle continuous Π1

1-Martin-Löf test and by design, for any
A,X, if Φe(A) =X, we then have X ∈ ⋂n U

A
n .

Combining Theorem 7.3.1 with the previous proposition we can then deduce a sepa-
ration between higher Turing computations and consistent higher Turing computations,
that we mentioned in Section 7.2.

208

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

Corollary 7.3.2:
There is some higher ∆0

2 sequence A and a higher left-c.e. sequence X, such that A
higher Turing computes X, but cannot higher Turing compute X with a functional Φ
which is consistent everywhere.

7.3.4 No A-universal A-continuous Π1
1-Martin-Löf tests

We now strengthen Theorem 7.3.1 by proving that for some oracles A, there is no A-
universal A-continuous Martin-Löf test.

Theorem 7.3.2:
There exists a higher ∆0

2 oracle A such that for all oracle continuous Π1
1-open set Ue we

have either UAe = 2N or there exists some higher ∆0
2 non A-continuously Π1

1-Martin-Löf
Xe such that Xe ∉ U

A
e .

Ordering the requirements:

In the proof of Theorem 7.3.1, each strategy α of length e > 0 is used to determine the
value X(e−1) such that X will defeat the oracle-continuous Π1

1-open set U . Here we have
infinitely many sequences Xe to build, so for every pair ⟨e, d⟩, we need to decide the value
of Xe(d).

To do so, the obvious thing is to use a bijection between ⟨⟩ ∶ N×N→ N, so the strategies
α of length n = ⟨e, d⟩ are used to determine the value Xe(d) such that Xe will defeat the
oracle open set Ue. Also the bijection should be made in a way such that ⟨e, d⟩ < ⟨e, d+1⟩,
so that for every e we decide each bit of Xe in increasing order. This is what we are
going to do, but for some reasons that will be clarified later, we also need to have a lots
of consecutive strategies’ length, which decide for consecutive bits of the same Xe.

We now precisely define the bijection. We split N into blocks of consecutive integers
in the following way: We define b0 = 0 and bn+1 = 5bn + n + 1. The first values are b0 = 0,
b1 = 1, b2 = 7, b3 = 38, We then define the block number n to be [bn, bn+1 − 1]. So the
first blocks are [0,0], [1,6], [7,37],

To each block [bi, bi+1 − 1] we assign a number e such that each number e is assigned
to infinitely many blocks. A block to which the number e is assigned is called an e-block.
The bijection ⟨, ⟩ ∶ N ×N → N is given by ⟨e, d⟩ = n if n is in some e-block and if n is the
(d − 1)-th value (using the order of integers) that appears in any e-block. It is easy to
verify that the next two properties are met:

1. For any e and any d such that ⟨e, d⟩ and ⟨e, d⟩ + 1 are in the same block, we have
⟨e, d + 1⟩ = ⟨e, d⟩ + 1.

2. For any e and d1, d2 with d1 < d2 we have ⟨e, d1⟩ < ⟨e, d2⟩.

209

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

The strategies:

In the proof of Theorem 7.3.1, the strategies were elements of (ω + 1)<N: if densely along
any path in Nar(T) we could find some strings τ ⪰ σk(T) for any k such that Uτe covers
[0], we could then continue the construction in Nar(T), and we knew that for no path
A ∈ Nar(T) we could have UAe covering [1], as otherwise UBe would have covered the whole
space for some other oracle B.

Here for every e the set UBe is allowed to cover the whole space on some oracles B. Also
if densely along any path in Nar(T) we can find some strings τ ⪰ σk(T) for any k such
that Uτe covers [0], we still move the current tree to Nar(T), however, it is then possible
that for some τ ∈ Nar(T) to have that Uτe covers [1]. In this case we cannot change the
value of Xe(0) anymore in order to defeat Ue. However, we still can move back the current
tree to some tree T [[k]] such that τ ⪯ σk(T), so we are sure that for any oracle A in this
tree, the set UAe covers the whole space. It follows that Ue is still defeated as it cannot be
the first component of an A-continuous Π1

1-Martin-Löf test.

So the strategies for this construction will now be elements of (ω + 2)<N, where the
value ω + 1 corresponds to having the approximation of the oracle coming back into some
tree T [[k]] (actually some tree T [[k]] [[l]] as explained below). This simple idea requires
a lot of technical complications that will be sketched in the paragraph “Removing noise”.
Also we now describe strategies as precisely as we can do it at this point.

The strategies come with the function F ∶ (ω + 2)<N × T → T defined by F (k, T) =

Nar(T [[k]]) for k < ω and F (ω,T) = Nar(T). The value of F cannot be given now on
ω + 1, and depends on what will happens in the construction. Also for some tree T , it is
possible that F (ω +1, T) will never be defined. However, if it is defined, it is always equal
to T [[i]] [[j]] for some i, j ∈ N. The choice of i and j will be determined at the first stage
of computation at which the value F (ω + 1, T) is required.

We say that α ∈ (ω+2)<N is an (e, d)-strategy if the last bit of α is at a position ⟨e, d⟩,
that is, ∣α∣ = n+ 1 and ⟨e, d⟩ = n. An (e, d)-strategy will help to determine the bit number
d of the sequence Xe. Sometimes we do not need to know what d is, and in this case we
simply write e-strategy to denote an (e, d)-strategy for some d. Also by extension, we
call strategy path an element ξ ∈ (ω + 2)N.

Inputs and outputs

The algorithm takes as inputs all the oracle-continuous Π1
1-open sets Ue. At each stage

s < ωck1 the algorithm outputs:

� A strategy path ξs ∈ (ω + 2)<N.

� For each e, one sequence Xe,s.

Also for each e such that UAe ≠ 2N, and uniformly in every integer j (but not in e)
we will define some oracle-continuous Π1

1-open set Ve,j . We will prove that {ξs}s<ωck1
and

{Xe,s}s<ωck1
converge respectively to a strategy path ξ and a sequence Xe. The strategy

path ξ will always be such that {Tα}α≺ξ is a shrinking path in T , and then it defines a
unique sequence A ∈ ⋂α≺ξ Tα. For each e such that UAe ≠ 2N we shall prove:

� For each n = ⟨e, d⟩ we have [Xe ↾d+1] ⊈ UAe .

210

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

� For each n = ⟨e, d⟩, if n is the last value of the block number j, then the string Xe ↾d+1

is enumerated into the A-continuous Π1
1-open set VAe,j .

� For any j we have λ(VAe,j) ≤ 2−j .

Understanding the tree of trees:

It is obvious that for T1, T2 ∈ T , if T1 ≺ T2, then stem(T1) ⪯ stem(T2). The converse is
not true as stem(Nar(T)) ≺ stem(T [[k]]) but Nar(T) ⊀ T [[k]]. It is however true in some
special case, that is, if stem(T1) ≺ stem(T2) and if in addition we have stem(T2) ∈ T1 (then
we have T1 ≺ T2). Before we prove that, we give two facts that shall use several times in
the proof:

.

Fact 7.3.2.

For any T,T ′ ∈ T and any σ ∈ Nar(T) such that stem(T) ⪯ σ, if T ′ extends T [[k]] for
some k then we have stem(T ′) â σ.

.

Proof: Suppose for contradiction that stem(T ′) ⪯ σ. As a tree is closed by initial segment
we have stem(T ′) ∈ Nar(T) and then σk(T) ∈ Nar(T). But by definition of Nar(T) we
cannot have σk(T) in Nar(T). So we have a contradiction.

.

Fact 7.3.3.

For any T,T ′ ∈ T , if T ′ ⪰ Nar(T) and if for some k, we have σk(T) comparable with
stem(T ′), then stem(T ′) ≺ σk(T).

.

Proof: By Fact 7.3.2 we have σk(T) â stem(T ′). Therefore stem(T ′) ≺ σk(T).

Lemma 7.3.1 For T1, T2 ∈ T , if stem(T2) ∈ T1 and stem(T1) ≺ stem(T2), then T1 ≺ T2.

Proof: Suppose that T2 does not strictly extend T1. We have four possibilities.

� Either T1 extends T2, then we have stem(T2) ⪯ stem(T1) which means stem(T1) ⊀

stem(T2).

� Or there is a tree T ∈ T and two integers k1 ≠ k2 such that T1 extends T [[k1]] and
T2 extends T [[k2]], but then as k1 ≠ k2 we have σk1(T) ⊥ σk2(T) which implies
stem(T1) ⊥ stem(T2) and then stem(T1) ⊀ stem(T2).

� Or there is a tree T ∈ T and a k such that T1 extends Nar(T) and T2 extends T [[k]].
In this case, we clearly have stem(T2) ∉ T1.

� Or there is a tree T ∈ T and a k such that T2 extends Nar(T) and T1 extends T [[k]].
If stem(T2) ∈ T1 then σk(T) is comparable with stem(T2) which implies using Fact
7.3.3 that stem(T2) ≺ σk(T) ⪯ stem(T1) and then that stem(T1) ⊀ stem(T2).

211

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

Removing noise:

We now come to a construction lemma. One of the difficulty of the construction lies in the
value ω + 1 that can be taken by bits of a strategy and which introduce complications to
build our A-continuous Martin-Löf tests, capturing sequences Xe. Also one difficulty is to
make sure that our final oracle A does not extend too many strings of the type stem(Tα)
for some strategy α ≺ ξs, where s is a stage of the construction.

The reason is that our A-continuous Martin-Löf tests will try to capture some sequences
Xe with the knowledge of A. Also the knowledge of A is given to us in a higher ∆0

2 way,
as the unique elements of a shrinking path of T , that evolves through time. Concretely, as
for the proof of Theorem 7.3.1, at stage s, for the (e, d)-strategy αs, we map stem(Tαs) to
the current value of X ↾d+1, but it might happen that strings comparable with stem(Tαs)
are already mapped to some strings incomparable with X ↾d+1:

As sketched in the paragraph “The strategies”, if αˆ(ω + 1) is an (e,0)-strategy, then
Ue is defeated. However Ue is defeated, by moving back stem(Tαˆ(ω+1)) so that it extends
stem(Tα [[k]]) for some k. Doing so, it might happen that other (e′, d)-strategies β ≻

αˆ(ω + 1) are ‘badly injured’, because it is then possible that for two stage s, t we have
(e′, d)-strategies βs ≠ βt with both stem(Tβs) ≺ A and stem(Tβt) ≺ A, together with
Xe′,s(d) ≠Xe′,t(d).

For this reason we do not try to higher Turing compute each Xe using A, but simply
to put each Xe in an A-continuous Π1

1-Martin-Löf test. To do so we need to ensure
that for every (e, d)-strategy βs, there is not too many distinct versions of βs such that
stem(Tβs) ≺ A. For this purpose, we introduce the following definition:

Definition 7.3.1. Given a tree T ∈ T and a sequence A ∈ [T], we say that a string τ
cancels noise around A above T if for any T ′ ⪰ T and any k we have σk(T

′) ⊥ A
implies σk(T

′) ⊥ τ .

So when a (e, d)-strategy goes from αˆ(ω) to αˆ(ω + 1), this definition will be used
to choose both i and j, such that Tαˆ(ω+1) = Tα [[i]] [[j]]. We give here the lemma that we
are going to use in order to pick those integers i and j.

Lemma 7.3.2 Let us have a shrinking path T0, T1, . . . in T , with A ∈ ⋂n[Tn]. Suppose
that for some m we have Tm+1 = Nar(Tm). For any string σ with stem(Tm) ⪯ σ ≺ A one
can find (uniformly in {Tn}n∈N, in m and σ), an integer l such that σl(Tm) extends σ and
cancels noise around A above Tm+1.

Proof: We first construct σl(Tm). Find some integer n >m such that σ ⪯ stem(Tn) ⪯ A.
Let us effectively find a sequence B in ⋂i Nar

i(Tn). We know that the set of strings
{σk(Tm)}k<ω is dense along any path in Nar(Tm). In particular it is dense along B. But
then there must exist some τ ∈ Tn such that stem(Tm) ⪯ σ ⪯ stem(Tn) ⪯ τ ≺ B and such
that τ ˆ1 is equal to σl(Tm) for some l. The string τ ˆ1 is the candidate.

Let us show that τ ˆ1 = σl(Tm) cancels noise around A above Tm+1 = Nar(Tm). Take
any T ∈ T extending Nar(Tm) and any k such that σk(T) is not a prefix of A, in order
to show that σl(Tm) ⊥ σk(T). As σk(T) ∈ Nar(Tm) and extends stem(Tm), we can apply
Fact 7.3.2 and deduce that τ ˆ1 = σl(Tm) â σk(T). It follows that σk(T) ⊥ τ ˆ1, or that
σk(T) ⪯ τ .

212

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

Suppose for contradiction that σk(T) ⪯ τ . Since σk(T) is not a prefix of A it is not a
prefix of stem(Tn). Also recall that stem(Tn) ⪯ τ . We then have stem(Tn) ≺ σk(T) ⪯ τ .
Also as τ is a prefix of B ∈ ⋂i Nar

i(Tn) we have τ ∈ Tn and in particular σk(T) ∈ Tn. We
then have stem(Tn) ≺ stem(T [[k]]) with stem(T [[k]]) ∈ Tn, so we can apply Lemma 7.3.1
to deduce that T [[k]] strictly extends Tn.

Therefore T [[k]] extends a tree (Narj(Tn)) [[i]] for some i, j ∈ N. Also as
B ∈ ⋂i Nar

i(Tn) and as τ ≺ B we have that τ ∈ Nar(Narj(Tn)). In particular by
Fact 7.3.2 we have that σi(Nar

j(Tn)) â τ and as σk(T) ⪰ σi(Nar
j(Tn)) we also have that

σk(T) â τ which is a contradiction.

Construction claims:

Before starting the construction we make a few claims which will be seen obvious from
the construction and which are worth mentioning before, because they will needed for the
construction:

Claim 1 : At any stage s, if αˆo ≺ ξs is a (e, d)-strategy, then if o < ω we have
Xe,s(d) = 0, and otherwise we have Xe,s(d) = 1.

Claim 2 : If we have ξs ↾n= αˆω, then for each k < ω there is a stage t < s such that
ξt ↾n= αˆk.

Claim 3 : The approximation ξs is left-c.e. and partially continuous. In particular, if
{ξt ↾n}t<s converges, we have ξs ↾n= limt<s ξt ↾n.

Claim 4 : At each stage s, the sequence {Tα}α≺ξs is a shrinking path of T .

The construction:

At stage s = 0 let us start ξ0 = 0. We also set Xe = 0∞ for every e. Suppose that for all
stages t < s the strategy path ξt and the sequences Xe,t have been defined. Let us define
ξs and Xe,s for each e.

Let us first suppose that s is successor. Using Construction claim 4 the sequence
As−1 = ⋂α≺ξs−1 Tα is defined. We search for the smallest prefix αˆo of ξs−1, such that if αˆo
is an (e, d)-strategy, either o < ω and [Xe,s ↾d ˆ0] ⊆ UAs−1e,s , or o = ω and [Xe,s ↾d ˆ1] ⊆ UAs−1e,s .
Also, in case at stage s − 1, some value ξs−1(n) is equal to ω + 1 whereas ξs−2(n) is equal
to ω (it can be the case for only one n at a time), the search for α is done in priority over
e-strategies. If we find no such prefix, then we set ξs = ξs−1. Otherwise let n = ∣α∣ and do
the following:

In case o < ω we set ξs = ξs−1 ↾n ˆ(o+1)ˆ0∞. In case o = ω, let σ be the smallest prefix
of As−1 such that [Xe,s ↾d ˆ1] ⊆ Uσe,s. Using Lemma 7.3.2 we find k such that σ ⪯ σk(Tα)
cancels noise around As−1 above Nar(Tα) = Tαˆo. Using Construction claim 2 and claim
3, let t be the last stage smaller than s such that ξt ↾n+1= αˆk. Note that we have
At ∈ [Nar(Tα [[k]])] and by Construction claim 1, we have Xe,s ↾d=Xe,t ↾d and Xe,t(d) = 0.
Also because t is the last such stage, we necessarily have [Xe,s ↾d ˆ0] ⊆ UAte,s . Then take
the smallest string τ with σk(Tα) ⪯ τ ≺ At and such that [Xe,s ↾d ˆ0] ⊆ Uτe,s. Then using

213

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

Lemma 7.3.2 a second time, find l such that τ ⪯ σl(Tα [[k]]) cancels noise around At above
Nar(Tα [[k]]). We then define F (ω + 1, Tα) = (Tα [[k]]) [[l]] and we set ξs = αˆ(ω + 1)ˆ0∞.

Let us now suppose that s is limit. We search for the smallest n such that {ξt ↾n}t<s
does not converge. If no such n exists then ξs is set to the convergence value. Otherwise
let α be the convergence value of {ξt ↾n−1}t<s. We set ξs to be αˆωˆ0∞.

Now for each (e, d)-strategy αˆo ≺ ξs we set Xe,s(d) = 0 if o < ω and Xe,s(d) = 1
otherwise. This ends the construction.

Maybe only Claim 4 is not obvious. It follows from the fact that there are infinitely
many e such that Ue enumerates nothing. Then at any stage s there are infinitely many
n such that ξ(n) = 0, implying that {Tα}α≺ξs is a shrinking path of T .

The convergence:

By the Σ1
1-boundedness principle, and because {ξs}s<ωck1

is left-c.e. with the value of each

of its bit bounded by ω+2, it converges to some sequence ξ. It follows that each {Xe,s}s<ωck1
converges to some sequence Xe and that {As}s<ωck1

, where As is defined to be the unique
element of ⋂α≺ξs Tα, converges to some sequence A. We shall now prove two lemmas about
the possible use of the value ω + 1 inside bits of strategies. The first lemma basically says
that the value ω + 1 is not ‘stable’, that is, if some (e, d) strategy αs reaches the value
ω + 1 at stage s for d > 0, then at stage s + 1 we will have that αs+1 is bigger than αs in
the lexicographic order. So only strategies of the form (e,0) can keep the value ω+1 (and
when if this happens, after that strategies (e, d) may also keep this value).

Lemma 7.3.3 Suppose ξs−1(n) = ω and ξs(n) = ω + 1, and suppose ξs ↾n+1 is an (e, d)-
strategy for d > 0. Suppose also that for no e-strategy α ≺ ξs ↾n+1 we have α(∣α∣−1) = ω+1.
Then there exists m ≤ n such that ξs ↾m+1 is an (e, d′)-strategy with d′ < d, and such that
at stage s + 1 we have ξs+1(m) > ξs(m).

Proof: By construction, if ξs(n) = ω + 1, we then have [Xe,s ↾d] ⊆ Uσe,s with σ =

stem(Tξs↾n+1). Also in this case, at stage s + 1 the search in the construction is done
in priority on e-strategies. So for some m < n such that ξs ↾m+1 is an (e, d′)-strategy with
d′ < d (presumably for d′ = d − 1), we will necessarily find out that [Xe,s ↾d′+1] ⊆ U

σ
e,s+1,

forcing then ξs+1(m) > ξs(m).

Lemma 7.3.4 Let αˆ(ω + 1) ≺ ξ be an (e, d)-strategy. Then U
stem(Tαˆ(ω+1))
e = 2N.

Proof: Without loss of generality, we can suppose that αˆ(ω + 1) ≺ ξ is the smallest
(e, d)-strategy for some d, in the prefix ordering. We then claim that we necessarily have
d = 0. Suppose otherwise for contradiction. Let n = ∣α∣ and let s be the smallest stage
such that ξs ↾n+1= αˆ(ω + 1). Using Lemma 7.3.3, it follows that ξs+1 ↾n+1 is bigger
than αˆ(ω + 1) in the lexicographic order, and as {ξs}s<ωck1

is left-c.e., it contradicts that

ξ ↾n+1= αˆ(ω + 1).

Therefore αˆ(ω + 1) ≺ ξ is an (e,0)-strategy, and then we have 2N = [Xe,s ↾d] ⊆ U
σ
e

where σ = stem(Tαˆ(ω+1)).

214

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

The sequences Xe

It is clear from the construction that for any e, the sequence Xe does not belong to the
open set UAe , as long as UAe does not cover the whole space. Indeed, using Lemma 7.3.4,
if UAe does not cover the whole space, then for any (e, d)-strategy α ≺ ξ, the last bit of
α is different from ω + 1. It follows that either it is equal to k < ω in which case, by
construction, UAe does not cover [Xe ↾d ˆ0] and Xe(d) = 0, or that it is equal to ω in which
case, by construction, UAe does not cover [Xe ↾d ˆ1] and Xe(d) = 1. Since for any σ ≺ Xe

the set UAe does not cover [σ], we have Xe ∉ U
A
e .

The noise canceling lemma

We now prove a lemma, that we will use to prove that if UAe does not cover the whole
space, then Xe is not A-continuously Π1

1-Martin-Löf random.

Lemma 7.3.5 (Noise canceling lemma) Suppose that for some n, at some stage t we
have ξt(n) = o < ω+1. Suppose also that for every stage s ≥ t we have ξs ↾n+1≠ ξt ↾n ˆ(ω+1).
Then also for every stage s ≥ t, and any k < o, we have As ⊁ stem(Tαˆk) for α = ξt ↾n.

Proof: First let us emphasize that the only “bad” case is that when for some m < n, the
bit ξs(m) takes the value ω + 1 at some stage s. Let t be such that ξt(n) = o ≠ ω + 1, and
suppose that for every s ≥ t we have ξs(n) ≠ ω+1. If we already have ξt ↾n= ξ ↾n, then only
the value ξ(n) can move, it can move only forward and is never equal to ω + 1. Therefore
the lemma is obviously true.

Otherwise we can suppose without loss of generality (using Construction claim 3), that
t is a stage such that ξt ↾n≠ ξt+1 ↾n. We prove by induction on stages s ≥ t, that:

As ⊁ stem(Tαˆk) for any k < o where α = ξt ↾n (*)

The induction starts with t for which (*) is true. Suppose (*) is true for all stages
smaller than s and let us prove (*) is true at stage s. We denote ξt ↾n by α. Also we let
m < n be the biggest length such that ξt ↾m= ξs ↾m, and let β = ξt ↾m= ξs ↾m.

If ξs(m) = i < ω and ξt(m) = j < ω with i ≠ j. It is immediate that stem(Tα) â As.
Also if ξs(m) = ω and ξt(m) = o with o < ω or o = ω + 1, there exists some i such that Tα
extends Tβ [[i]]. Then by Fact 7.3.2 we have for any σ ∈ Nar(Tβ) that stem(Tα) â σ. In
particular as As ∈ [Nar(Tβ)] we have stem(Tα) â As and then (*) is true at stage s. We
decompose the rest of the induction into four cases:

� case 1 : We have ξs(m) = ω + 1 and ξt(m) = ω, so βˆω ⪯ α. In addition we suppose
that s is not the first stage such that ξs ↾m+1= βˆ(ω+1), so there is some stage s′ with
t < s′ < s such that ξs′ ↾m+1= ξs ↾m+1= βˆ(ω + 1). In particular As,As′ ∈ [Tβˆ(ω+1)]

and Tβˆ(ω+1) = (Tβ [[i]]) [[j]] for some i, j.

We have that Tα extends Nar(Tβ). Also if stem(Tα) ≺ As, the string stem(Tα) is
comparable with stem(Tβ [[i]]). Then by Fact 7.3.3 we have that stem(Tα) ≺ As iff
stem(Tα) ≺ σi(Tβ) iff stem(Tα) ≺ As′ . Therefore, by induction hypothesis, as (*) is
true at stage s′ it is true at stage s.

� case 2 : We have ξs(m) = ω+1 and ξt(m) = k < ω, so βˆk ⪯ α. In addition we suppose
that s is not the first stage such that ξs ↾m+1= βˆ(ω+1), so there is some stage s′ with
t < s′ < s such that ξs′ ↾m+1= ξs ↾m+1= βˆ(ω + 1). In particular As,As′ ∈ [Tβˆ(ω+1)]

and Tβˆ(ω+1) = (Tβ [[i]]) [[j]] for some i, j.

215

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

We have that Tα extends Nar(Tβ [[k]]). Then either k ≠ i in which case As cannot not
extend stem(Tα) and (*) is true at stage s, or k = i, in which case, if stem(Tα) ≺ As,
the string stem(Tα) is comparable with stem((Tβ [[i]]) [[j]]). Then by Fact 7.3.3 we
have that stem(Tα) ≺ As iff stem(Tα) ≺ σj(Tβ [[i]]) iff stem(Tα) ≺ As′ . Therefore, by
induction hypothesis, as (*) is true at stage s′ it is true at stage s.

� case 3 : Like in case 1, we have ξs(m) = ω + 1 and ξt(m) = ω, but s is the first such
stage. In particular ξs−1(m) = ω. So at stage s, by construction, the oracle As will
extend a string σi(Tβ) which cancels noise around As−1 above Nar(Tβ). By induction
hypothesis (*) is true at stage s − 1. Also since σi(Tβ) ≺ As cancels noise around
As−1 above Nar(Tβ), we have for any k that As−1 ⊥ σk(Tα) implies As ⊥ σk(Tα) and
then that (*) is true at stage s.

� case 4 : Like in case 2, we have ξs(m) = ω+1 and ξt(m) = k < ω, but s is the first such
stage. In particular ξs−1(m) = ω. We have that Tα extends Nar(Tβ [[k]]) and that
Tβˆ(ω+1) = (Tβ [[i]]) [[j]] for some i, j. Also if i ≠ k then (*) is clearly true at stage
s. Suppose then i = k. By construction there is a stage s′ with t ≤ s′ < s and As′

is in [Nar(Tβ [[i]])] so that σj(Tβ [[i]]) cancels noise around As′ above Nar(Tβ [[i]]).
Also by induction hypothesis we have that (*) is true at stage s′. And as for any l
we have that As′ ⊥ σl(Tα) implies As ⊥ σl(Tα), then (*) is true at stage s.

The Martin-Löf test

We now fix some e. What follows can be done for any e, but not uniformly. We denote by
α0 ≺ ξ the final (e,0)-strategy and s0 the smallest stage such that ξs0 ↾∣α0∣= α0. Also for
any n ≥ ∣α0∣, we denote by Sn the set of all the strategies α of length n such that ξs ↾∣α∣= α
for some stage s ≥ s0. We then denote by S the union of all Sn.

Lemma 7.3.6 Suppose UAe ≠ 2ω. Then for any (e, d)-strategy αˆo ⪰ α0, with αˆo ∈ S, if
stem(Tα) ≺ A, then o ≠ ω + 1.

Proof: Consider an e-strategy αˆ(ω + 1) ⪰ α0 with αˆ(ω + 1) ∈ S. Let β ≺ αˆ(ω + 1)
be the smallest such that βˆ(ω + 1) is an (e, d)-strategy with βˆ(ω + 1) ∈ S. Note that
because UAe ≠ 2ω we have that α0(∣α0∣ − 1) ≠ ω + 1, and then βˆ(ω + 1) ≻ α0. In particular
βˆ(ω + 1) is an (e, d)-strategy for d > 0.

Let s be the smallest stage such that ξs ↾∣β∣+1= βˆ(ω+1). We necessarily have ξs−1 ↾∣β∣=

ξs ↾∣β∣= β, ξs−1(∣β∣) = ω and ξs(∣β∣) = ω + 1. By Lemma 7.3.3, there is an integer m such
that ξs ↾m+1≺ βˆ(ω + 1) is an (e, d′)-strategy with d′ < d and ξs+1(m) > ξs(m).

Also we cannot have ξs(m) = ω because otherwise we would have ξs(m) = ω + 1
which would contradicts the minimality of β. Then ξs(m) = k < ω and ξs+1(m) = k + 1.
Actually, by minimality of β the strategy ξs ↾m ˆ(ω + 1) is not in S, therefore we can
apply Lemma 7.3.5: For every stage t ≥ s + 1, we have At ⊁ stem(Tξs↾mˆk). But as
stem(Tξs↾mˆk) ⪯ stem(Tα) we then have for any t ≥ s + 1 that At ⊁ stem(Tα), and then
that A ⊁ stem(Tα) which is a contradiction.

We can then deduce:

Lemma 7.3.7 Suppose UAe ≠ 2ω. For any α ≥ α0, there is at most one value o ≤ ω + 1
such that if αˆo is an e-strategy with αˆo ∈ S, then stem(Tαˆo) ≺ A.

216

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

Proof: Fix α and let o be the greatest such that αˆo is an e-strategy with αˆo ∈ S, and
such that stem(Tαˆo) ≺ A. By Lemma 7.3.6 we cannot have o = ω + 1. It follows using
Lemma 7.3.5 that stem(Tαˆk) ⊀ A for any k < o.

We also trivially have:

Lemma 7.3.8 For any n, there are at most 3n many strategies α ∈ Sn such that
stem(Tα) ≺ A.

Proof: It is clear. Given some α such that stem(Tα) ≺ A, we have at most stem(Tαˆω) ≺

A, stem(Tαˆ(ω+1)) ≺ A and stem(Tαˆk) ≺ A for some k.

Recall now the blocks from the beginning of the proof. A block will be used to build
the component of an A-continuous Π1

1-Martin-Löf test. So consider [bi, bi+1 − 1] to be the
j-th block to which e has been assigned, so bi+1 − 1 = ⟨e, d⟩ for some d. Also let {αs}s<ωck1
be the sequence {ξs ↾bi+1−1}s0≤s<ωck1

, recall that s0 is the first stage such that ξs0 ⪰ α0. We
define:

Vj = {(stem(Tαs),Xe,s ↾d+1) ∶ s < ωck1 }

Using Lemma 7.3.8, there are at most 3bi many strategies α ∈ Sbi such that stem(Tα) ≺
A. Then using Lemma 7.3.7, there are also at most 3bi many strategies α ∈ Sbi+1 such
that stem(Tα) ≺ A. Therefore, inside Vj , some prefix of A is assigned to at most 3bi

many strings of length at least (bi+1 − 1)− bi (one of them being Xe ↾d+1). Also recall that
bi+1 − 1 = 5bi + i. A simple computation shows that λ(V A

j) ≤ 3bi2−4bi−i ≤ 2−i ≤ 2−j .

It follows that ⋂j V
A
j is a A-continuous Π1

1-Martin-Löf test, which captures Xe. As

this is true for any e such that UAe ≠ 2N, the theorem is then proved.

7.3.5 Higher A-continuously left-c.e. and Π1
1-Martin-Löf randoms

Definition 7.3.2. A sequence X is higher A-continuously left-c.e. if there is an
oracle-continuous Π1

1-open set U such that UA does not cover the whole space and X is
the leftmost path of 2N − UA.

We prove here that despite the non existence of a A-universal A-continuous Π1
1-Martin-

Löf test for some oracle A, there is however always a A-continuously left-c.e. and Π1
1-

Martin-Löf random:

Theorem 7.3.3:
There is an oracle-continuous Π1

1-open set W such that for any oracle A, the set WA

does not cover the whole space, and the leftmost path of the complement of WA is
A-continuously Π1

1-Martin-Löf random.

Proof: Let {Ue}e∈N be an enumeration of the oracle-continuous Π1
1-open sets. We see Ue

as a Π1
1 subset of 2<N × 2<N. Uniformly in every strings σ, we define a Π1

1 set of string Wσ

the following way: At stage s, let us consider every possible finite lists C1,C2, . . . ,Cn of
every possible finite sets of strings such that:

217

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

1. Every string in Ck is also in Uσk,s

2. λ([Ck]
≺) ≤ 2−k−1

3. ⋃k≤n[Ck]
≺ is a clopen set equal to [0, q] for some q ∈ Q, when sequences are trans-

posed into real numbers. More formally, there is a string τ such that ⋃k≤n[Ck]
≺ is

exactly the set of sequences (not strictly) at the left of τ ˆ1∞, in the lexicographic
order.

The set Wσ is the union of all such finite sets of strings, over all stages s. The conditions
(2) and (3) ensure that for any σ we have λ(Wσ) ≤ 1/2. Also we clearly have σ1 ⪯ σ2 implies
Wσ1 ⊆Wσ2 . It follows that the set W = {(σ, τ) ∶ τ ∈Wσ} is an oracle-continuous Π1

1-open
set such that for any A we have λ(WA) ≤ 1/2. Note also that for any A, the set WA is
equal to [0,X) for some real X which is the leftmost path of the complement of WA.

We should now prove that for every A, the leftmost path X of the complement of WA

is A-continuously Π1
1-Martin-Löf random. Fix some A and suppose otherwise.

So we suppose that there is an A-continuous Π1
1-Martin-Löf test ⋂n Vn which captures

X. Also there is a computable function f ∶ N→ N which gives a code of Vn uniformly in n.
Recall that K denotes prefix-free Kolmogorov complexity. We have K(f(n)) ≤ 2 log(n)+c
for some c and any n, and therefore, for any c there is some n large enough such that
K(f(n)) < n + c. It follows that for some n there is an index a < n with Ua = Uf(n) = Vn.

We then have λ(UAa) ≤ 2−n ≤ 2−a−1. Let τ ≺X be such that τ ∈ UAa .

We shall now find a finite sequence of finite sets of strings C1,C2, . . . ,Cn with n > a
which covers an initial segment of the reals ‘almost up to X’. The goal is then to replace
Ca by Ca∪{τ} to show that X is finally covered by WA and get a contradiction. We have
to distinguish the case where X has finitely many 1’s from the case where X has infinitely
many 1’s.

Suppose first that X has finitely many 1’s. Then there is a string ρ ≺X such that WA

is the clopen set of sequences (not strictly) at the left of ρˆ0ˆ1∞, while X = ρˆ1ˆ0∞. But
by compactness, there is some σ ≺ A large enough, so that τ ∈ Uσa , and Wσ ‘contains’ a
finite sequence of finite set of strings C1,C2, . . . ,Cn for n > a, verifying (1) and (2) above
and such that ⋃k≤n[Ck]

≺ already equals WA.

Otherwise, if X has infinitely many 1’s, there is a string ρ such that τ ⪯ ρˆ1 ≺ X. In
particular we have [ρˆ0] ⊆ [Wσ]

≺ for some σ ≺ A large enough, so that also [τ] ⊆ Uσa . Also
by compactness, there is a finite sequence of finite sets of strings C1,C2, . . . ,Cn with n > a
that verifies (1) and (2) above and such that [ρˆ0] is covered by ⋃k≤n[Ck]

≺.

In both cases we have identified a string τ ≺ X and a finite sequence of finite set of
strings C1,C2, . . . ,Cn with n > a, such that ⋃k≤n[Ck]

≺ ∪ [τ] would verify (3) and cover
X. Also we know that λ(Ua) ≤ 2−a−1. Therefore whatever Ca is equal to, we can always
replace it by Ca∪{τ} without violating (1) or (2). But then X is covered by Wσ and then
by WA which contradicts the assumption that it is the leftmost path of the complement
of WA.

218

7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

7.3.6 Further study on continuous relativization

We present here a few questions that haven’t been investigated yet. For this section, we
introduce short notations for the four notions of ‘Π1

1-Martin-Löf randomness’ tests we have
presented in this thesis:

1. We write A-pfm to denote “A-continuous Π1
1-prefix-free machine”

2. We write A-dsm to denote “A-continuous Π1
1-discrete semi-measure”

3. We write A-csm to denote “A-continuous Π1
1-continuous semi-measure”

4. We write A-mlt to denote “A-continuous Π1
1-Martin-Löf test”

We also denote by A-pfm-nullset, A-dsm-nullset, A-csm-nullset and A-mlt-nullset the
corresponding nullsets notions. For example, given an A-pfm M , the corresponding A-
pfm-nullset is the set {X ∶ ∀c ∃n hKA

M(X ↾n) < n−c}. We also call A-pfm-randomness, A-
dsm-randomness, A-csm-randomness and A-mlt-randomness the corresponding random-
ness notions.

Recall that an A-pfm-nullset is always contained into an A-dsm-nullset, which is itself
always contained into an A-csm-nullset, which is itself always contained into an A-mlt-
nullset. However we could not prove that A-mlt-nullsets are contained into A-pfm-nullsets,
because of two difficulties. The first one is the problem of finding, for a given A-continuous
Π1

1-open set, an A-continuous Π1
1 ‘almost prefix-free’ set of strings that describes it. The

second one is the problem of obtaining a continuous relativization of the higher KC-
theorem. So we address the following question:

Question 7.3.1 Is any A-mlt-nullset included into an A-pfm-nullset for any oracle A?
If not is any A-mlt-nullset included into an A-dsm-nullset for any oracle A? etc... the
question extends straightforwardly to the remaining possible nullsets inclusions.

The previous question addresses the problem of equivalence between randomness no-
tions in a strong sense, by covering a nullset by another nullset. It might be the case
for example that for some oracle A, an A-mlt-nullset cannot be cover by a A-csm-nullset,
but could be cover by the union of all the A-csm-nullsets, which would show that A-csm-
randomness implies A-mlt-randomness. So we address the following question:

Question 7.3.2 Does A-pfm-randomness imply A-mlt-randomness for any oracle A? If
not does A-dsm-randomness imply A-mlt-randomness or A-csm-randomness imply A-mlt-
randomness for any oracle A? etc... the question extends straightforwardly to the remain-
ing implications.

The two previous questions might have different answers in particular because there
are some oracles A with respect to which we do not have a A-universal A-mlt notion. It
is almost certainly the case for any of the other three notions. Also we make the following
conjecture:

Conjecture 7.3.1 For some oracle A there is no A-universal A-pfm, for some oracle A
there is no A-universal A-dsm for some oracle A there is no A-universal A-csm.

We also think the following question is of interest:

Question 7.3.3 Does the existence of an A-universal A-pfm, A-dsm, A-csm or A-mlt
imply the existence of an A-universal object of any of the other type, for any oracle A?

219

7.4. ON WELL-BEHAVED ORACLES

7.4 On well-behaved oracles

We study in this section the ‘well-behaved’ oracles, and in particular the self-unclosed
approximable oracles, for which everything goes nicely.

7.4.1 Self-unclosed approximable oracles

If A is not ∆1
1 and has a self-unclosed approximation {As}s<ωck1

, we can use the fact that
for any stage t, there is a stage s ≥ t a string σ with both σ ≺ As and σ ≺ A such that no
extension of σ has been a prefix of any Ar for r < s. Furthermore there are longer and
longer such prefixes of A. We can first prove that on self-unclosed approximable oracles,
the notion of higher Turing computation coincides with the notion of fin-h computation.

Theorem 7.4.1:
If Y has a self-unclosed approximation and if X ≤hT Y , then we have X ≤fin−h Y .

Proof: Suppose Φ(Y) = X with Φ a higher Turing functional, and let {Ys}s<ωck1
be a

self-unclosed approximation of Y that we can suppose not ∆1
1. We shall build a fin-h

reduction Ψ for which the computation is unchanged on Y .

The construction:

We define Ψ0 to be the emptyset. At successor stage s > 0, and at substage n, if Ys ↾n
is currently unmapped in Ψs−1, consider the longest string τ with ∣τ ∣ ≤ n such that some
prefix of Ys ↾n is mapped to τ in Φs, and such that adding (Ys ↾n, τ) in Ψs−1 does not violate
consistency. If no such string τ is found we add (Ys ↾n, ε) in Ψ at stage s. Otherwise we
add (Ys ↾n, τ).

At limit stage s, we define Ψs as the union of Ψt for t < s.

The verification:

By construction, it is clear that Ψ defines a fin-h reduction: The pairing relation in Ψ
is functional, as we add mapping in Ψ only for strings that are not already mapped to
something. Also at each stage s, every prefix of Ys, by order of their lengths, is mapped to
something (unless already mapped). This implies that the mapping is closed by prefixes,
and the consistency requirement is explicitly satisfied at each step.

We should now show that Ψ(Y) = X. Consider any m and let t is the first stage so
that some prefix σ of Y is mapped to an extension of X ↾m in Φt. In particular we have
a string τ with ∣τ ∣ > n and σ ⪯ τ ≺ Y , and a smallest stage s ≥ t such that no extension of
τ has been a prefix of Yr for r < s. Therefore, as Φ is consistent on Y we necessarily have
by construction that τ is mapped to an extension of X ↾m in Ψ at stage s.

Similarly we can prove that if A has a self-unclosed approximation, then we can find
an ‘almost prefix-free’ A-continuously Π1

1 set of strings describing any A-continuously Π1
1-

open set:

220

7.4. ON WELL-BEHAVED ORACLES

Theorem 7.4.2:
If A has a self-unclosed approximation, then for any oracle-continuous Π1

1-open set U
and any ε, one can uniformly define an oracle-continuous set of strings W such that
[WA]≺ = UA and ∑σ∈WA 2−∣σ∣ ≤ λ(UA) + ε.

Proof: Let {As}s<ωck1
be a self-unclosed approximation of A that we can suppose not ∆1

1.

Let U ⊆ 2<ω × 2<ω describes an oracle-continuous Π1
1-open set and fix ε.

The construction:

We start by W0 = ∅. At successor stage s, we search for the smallest prefix σ of As such
that σ is not a prefix of At for t < s. If such a string does not exists then we go to the next
stage. Otherwise, we define the ∆1

1 set of string V ⊆ 2<ω to be the set Uσs , rearranged, so
that V is prefix-free.

Then for any τ ∈ V , we define a finite set of strings Bτ with [Bτ]
≺ ⊆ [τ] such that

λ([W σ
s−1]

≺ ∩ [Bτ]
≺) ≤ ε × 2−∣σ∣2−∣τ ∣ and such that [τ] ⊆ [W σ

s−1]
≺ ∪ [Bτ]

≺. Then for each
string ρ in Bτ we add (σ, ρ) in W at stage s.

Finally at limit stage s we define Ws = ⋃t<sWt.

The verification:

We should first prove that [WA]≺ = UA. By construction and by the fact that {As}s<ωck1
is a self-unclosed approximation of A, there are stages s1 < s2 < . . . with supn∈N sn = ωck1
and prefixes σ1 ≺ σ2 ≺ . . . of A, such that [WA]≺ = ⋃i[U

σi
si]

≺. Also this is clearly equal to

UA.

Let us now prove that the total overlap of what we add in W along prefixes of A,
is smaller than ε. At stage si in the construction, we create a prefix-free set of string V
describing Uσisi and for each τ in V , the overlap between what we add and WA

si−1, is smaller

than ε × 2−∣σi∣2−∣τ ∣. Then the total overlap for strings in V is smaller than ε × 2−∣σi∣. It
follows that the total overlap is bounded by ε.

If A has a higher self-unclosed approximation, it is also possible to continuously rel-
ativize the higher KC theorem (Theorem 3.7.11). An A-continuous Π1

1-bounded request
set S is a Π1

1 subset of 2<N × N × 2<N such that SA = {(l, σ) ∶ ∃τ ≺ A (τ, l, σ) ∈ S} is a
bounded request set (recall : ∑(l,σ)∈SA 2−l ≤ 1). We have:

Theorem 7.4.3:
If A has a self-unclosed approximation, then for any A-continuous Π1

1-bounded request
set S, there is a A-continuous Π1

1-prefix-free machine M such that for any string σ, if
(l, σ) ∈ SA, then for a string τ of length l we have MA(τ) = σ.

221

7.4. ON WELL-BEHAVED ORACLES

Proof: We only sketch the proof here, as the trick is similar than before. As for the
previous proof, we can suppose that A is not ∆1

1 and use the fact that it then has a self-
unclosed approximation {As}s<ωck1

such that for any stage t, there is a stage s ≥ t a string
σ with both σ ≺ As and σ ≺ A such that no extension of σ has been a prefix of any Ar for
r < s.

As for the previous proof, when at some stage s we find a smallest prefix σ of As such
that σ is not a prefix of At for t < s. We consider every pair in Sσs that has not been dealt
with yet to make our A-continuous Π1

1-prefix-free machine and we deal with each of them
in order of their enumeration, just like in the proof of the higher KC-theorem.

Corollary 7.4.1:
If A has a self-unclosed approximation, then the four notions of higher A-randomness
with continuous relativization, that is, with Π1

1-prefix-free machines, Π1
1-discrete semi-

measures, Π1
1-continuous semi-measures and Π1

1-Martin-Löf tests, coincide.

Proof: With the two previous theorems, given an A-continuous Π1
1-Martin-Löf test, we

can define an A-continuous Π1
1-prefix-free machine M such that for any X captured by

the test and for any c, there exists some n such that hKM(X ↾n) < n− c. This is done just
like in the proof of Theorem 3.7.13.

We now prove similarly that if A has a self-unclosed approximation, then there is an
oracle-continuous A-universal Π1

1-prefix-free machine. The existence of universal objects
for any of the other three notions then follows.

Theorem 7.4.4:
If A has a self-unclosed approximation, then there is an oracle-continuous A-universal
Π1

1-prefix-free machine.

Proof: Let M be a Π1
1 set of triples of strings. Let {As}s<ωck1

be a self-unclosed approx-

imation of A. We build a Π1
1 set of triples of strings N such that for any oracle X, NX is

prefix-free machine, and if MA is a prefix-free machine, then NA =MA. The construction
is uniform in an approximation of A and a code for M . Then using this we can easily build
an A-universal oracle continuous Π1

1-prefix-free machine, by diagonalizing against every
oracle-continuous Π1

1-prefix-free machine, in a similar way to the proof of Theorem 3.7.10.

The construction:

At successor stage s, we search for the smallest prefix σ of As such that for any t < s, the
string σ is not a prefix of At. If such a string does not exist, we go to the next stage.
Otherwise if Mσ

s is a prefix-free machine, then for every pair (τ, ρ) in M we add the triple
(σ, τ, ρ) in N at stage s. Otherwise we go to the next stage. At limit stage s we set Ns to
be the union of Nt for t < s.

222

7.4. ON WELL-BEHAVED ORACLES

The verification:

We prove by induction the following for any stage s ≤ ωck1 :

For any τ we have N τ
s ⊆M τ

s and N τ
s is a prefix free machine. (*)

It is clear that (*) is true at stage 0. Suppose it is true at any stage t < s. If s is limit
then (*) is also true at stage s by induction hypothesis, as if N τ is not prefix-free, it is
because of finitely many triple (σ, τ, ρ) ∈ Ns. If s is successor, we add something in N
only if σ ≺ As and σ is not a prefix of At for t < s. Consider such a string σ. If Mσ

s is
not prefix-free we do nothing and (*) is true at stage s. Otherwise for any τ ≺ σ we have
N τ
s = N τ

s−1 and then by induction hypothesis (∗) is true at stage s for each strict prefix
of σ. Also by induction hypothesis we have Nσ

s−1 ⊆M
σ
s−1. It follows by construction that

Nσ
s = Mσ

s . As Mσ
s is prefix-free, then also Nσ

s is prefix-free. Also by hypothesis on σ,
we have Nσ

s−1 = N τ
s−1 for any τ ≻ σ and then we have N τ

s ⊆ M τ
s and also that N τ

s is a
prefix-free machine for any string τ . So (*) is true at stage s.

Suppose now that MA is prefix-free. As {As}s<ωck1
is self-unclosed, there are stages

s1 < s2 < . . . with supn sn = ω
ck
1 and prefixes σ1 ≺ σ2 ≺ . . . of A with for each n that σn is

the smallest prefix of Asn which is not a prefix of At for t < sn. Also as MA is prefix-free,
we then have Nσn

sn =Mσn
sn for every n, and then NA =MA.

Corollary 7.4.2:
If A has a self-unclosed approximation, then there exist oracle-continuous A-universal
objects, for the four notions of higher A-randomness with continuous relativization,
that is, with Π1

1-prefix-free machines, Π1
1-discrete semi-measures, Π1

1-continuous semi-
measures and Π1

1-Martin-Löf tests.

7.4.2 Random oracles

We end this section by showing that Z-continuous Z-universal objects also exist when
Z is Π1

1-Martin-Löf random. However this is a bit less powerful than for oracles with
self-unclosed approximations. For example if A has a self-unclosed approximation we can
prove the existence of a A-universal oracle-continuous Π1

1-Martin-Löf test, in particular,
the test is a Π1

1-Martin-Löf test for every other oracle. If Z is random we have a Z-universal
Z-continuous Π1

1-Martin-Löf test, however, it might not be a test along other oracles:

Theorem 7.4.5:
If Z is Π1

1-Martin-Löf random, there is a Z-universal Z-continuous Π1
1-Martin-Löf test.

Proof: Using Lemma 4.3.1, given an oracle-continuous Π1
1-open set U and a rational

ε, uniformly in n ∈ N, we define an oracle-continuous Π1
1-open set Un such that for any

oracle X, if λ(UX) ≤ ε, then UXn = UX , and λ(Vn = {X ∶ λ(UXn) > ε}) ≤ 2−n. Using
this, if Z is Π1

1-Martin-Löf random, it is in no test ⋂n Vn. Furthermore, knowing the

223

7.4. ON WELL-BEHAVED ORACLES

randomness deficiency of Z, one can find uniformly for each test ⋂n Vn an index m such
that X ∉ Vm. Therefore, for a given oracle-continuous Π1

1-open set U and any ε, we can
use Um (the integer m being found uniformly) instead of U , being sure that λ(UZm) ≤ ε,
with UZm = UZ if already λ(UZ) ≤ ε. It follows that we can then diagonalize against every
uniform intersection of oracle-continuous Π1

1-open sets to get a Z-universal Z-continuous
Π1

1-Martin-Löf test, in a similar way to the proof of Theorem 2.1.1.

We can similarly obtain Z-continuous Z-universal objects for any of the three other
notions of randomness, when Z is Π1

1-Martin-Löf random. The question of the equiva-
lence of the four notions of randomness when Z is Π1

1-Martin-Löf random has not been
investigated. We finish the section by an open question:

Question 7.4.1 Is there a Π1
1-Martin-Löf random sequence Z and a sequence A such that

Z higher Turing computes A but Z does not fin-h compute A?

224

BIBLIOGRAPHY

Bibliography

[1] Robert Ash and Catherine Doléans-Dade. Probability and measure theory. ELSE-
VIER, 1999.

[2] René Baire. Sur les fonctions de variables réelles. Annali di matematica pura ed
applicata, 3(1):1–123, 1899.

[3] Howard Becker and Randall Dougherty. On disjoint Borel uniformizations. Advances
in mathematics, 146(2):167–174, 1999.

[4] Laurent Bienvenu, Frank Stephan, and Jason Teutsch. How powerful are integer-
valued martingales? Theory of Computing Systems, 51(3):330–351, 2012.

[5] Gregory J Chaitin. A theory of program size formally identical to information theory.
Journal of the ACM (JACM), 22(3):329–340, 1975.

[6] Gregory J Chaitin. Information-theoretic characterizations of recursive infinite
strings. Theoretical Computer Science, 2(1):45–48, 1976.

[7] Chi Tat Chong, André Nies, and Liang Yu. Lowness of higher randomness notions.
Israel journal of mathematics, 166(1):39–60, 2008.

[8] Chi Tat Chong and Liang Yu. Randomness in the higher setting. To appear.

[9] Paul J Cohen. Set theory and the continuum hypothesis. DoverPublications.com,
1966.

[10] Joshua A Cole and Stephen G Simpson. Mass problems and hyperarithmeticity.
Journal of Mathematical Logic, 7(02):125–143, 2007.

[11] S Barry Cooper. Computability theory. CRC Press, 2003.

[12] Adam Day and Damir Dzhafarov. Limits to joining with generics and randoms.
Proceedings of the 12th Asian Logic Conference, 2012.

[13] Adam Day and Joseph Miller. Cupping with random sets. Proceedings of the American
Mathematical Society, 142(8):2871–2879, 2014.

[14] Karel De Leeuw, Edward F Moore, Claude E Shannon, and Norman Shapiro. Com-
putability by probabilistic machines. Automata studies, 34:183–198, 1955.

[15] Rod Downey, Denis Hirschfeldt, André Nies, and Frank Stephan. Trivial reals. Elec-
tronic Notes in Theoretical Computer Science, 66(1):36–52, 2002.

[16] Rod Downey, André Nies, Rebecca Weber, and Liang Yu. Lowness and nullsets. The
Journal of Symbolic Logic, 71(03):1044–1052, 2006.

225

BIBLIOGRAPHY

[17] Rodney Downey and Denis Hirschfeldt. Algorithmic randomness and complexity.
Theory and Applications of Computability. Springer, 2010.

[18] Rodney Downey and Richard Shore. There is no degree invariant half-jump. Pro-
ceedings of the American Mathematical Society, 125(10):3033–3037, 1997.

[19] Verena H Dyson, James P Jones, and John C Shepherdson. Some diophantine forms
of Gödel’s theorem. Archive for Mathematical Logic, 22(1):51–60, 1980.

[20] Solomon Feferman. Some applications of the notions of forcing and generic sets.
Fundamenta Mathematicae, 56(3):325–345, 1964.

[21] Solomon Feferman and Clifford Spector. Incompleteness along paths in progressions
of theories. Journal of Symbolic Logic, 27(4):383–390, 1962.

[22] Johanna Franklin and Keng Meng Ng. Difference randomness. Proceedings of the
American Mathematical Society, 139(1):345–360, 2011.

[23] Richard M Friedberg. Two recursively enumerable sets of incomparable degrees of
unsolvability (solution of Post’s problem, 1944). Proceedings of the National Academy
of Sciences of the United States of America, 43(2):236, 1957.

[24] Peter Gács. On the symmetry of algorithmic information. Soviet Math. Dokl, 15:1477–
1480, 1974.

[25] Péter Gács. Every sequence is reducible to a random one. Information and Control,
70(2):186–192, 1986.

[26] Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und ver-
wandter systeme i. Monatshefte für mathematik und physik, 38(1):173–198, 1931.

[27] Kurt Gödel and George William Brown. The consistency of the axiom of choice and
of the generalized continuum-hypothesis with the axioms of set theory. Number 3.
Princeton University Press, 1940.

[28] Jacques Herbrand. Sur la non-contradiction de l’arithmétique. Journal für die reine
und angewandte Mathematik, 166:1–8, 1932.

[29] Denis Hirschfeldt, André Nies, and Frank Stephan. Using random sets as oracles.
Journal of the London Mathematical Society, 75(3):610–622, 2007.

[30] Greg Hjorth and André Nies. Randomness via effective descriptive set theory. Journal
of the London Mathematical Society, 75(2):495–508, 2007.

[31] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58(301):13–30, 1963.

[32] Steven M. Kautz. Degrees of random sets. PhD thesis, Cornell University, 1991.

[33] Alexander S Kechris. The theory of countable analytical sets. Transactions of the
American Mathematical Society, 202:259–297, 1975.

[34] Alexander S Kechris. Classical descriptive set theory, volume 156. Springer-Verlag
New York, 1995.

[35] Thomas Kent and Andrew Lewis. On the degree spectrum of a Π0
1 class. Transactions

of the American Mathematical Society, 362(10):5283–5319, 2010.

226

BIBLIOGRAPHY

[36] Bjørn Kjos-Hanssen, André Nies, Frank Stephan, and Liang Yu. Higher Kurtz ran-
domness. Annals of Pure and Applied Logic, 161(10):1280–1290, 2010.

[37] Stephen Cole Kleene. On notation for ordinal numbers. The Journal of Symbolic
Logic, 3(4):150–155, 1938.

[38] Stephen Cole Kleene. Recursive predicates and quantifiers. Transactions of the Amer-
ican Mathematical Society, 53(1):41–73, 1943.

[39] Stephen Cole Kleene. On the forms of the predicates in the theory of constructive
ordinals (second paper). American journal of mathematics, pages 405–428, 1955.

[40] Andrei N Kolmogorov. On tables of random numbers. Sankhyā: The Indian Journal
of Statistics, Series A, pages 369–376, 1963.

[41] Andrei N Kolmogorov. Three approaches to the quantitative definition of information.
Problems of information transmission, 1(1):1–7, 1965.

[42] Antońın Kučera. Measure, Π0
1-classes and complete extensions of PA. In Recursion

theory week, pages 245–259. Springer, 1985.

[43] Kenneth Kunen. Set theory. College Publ., 2011.

[44] Stuart Kurtz. Randomness and genericity in the degrees of unsolvability. Dissertation
Abstracts International Part B: Science and Engineering, 42(9):1982, 1982.

[45] Stuart Kurtz. Notions of weak genericity. The Journal of symbolic logic, 48(03):764–
770, 1983.

[46] Antońın Kučera and Theodore Slaman. Randomness and recursive enumerability.
SIAM Journal on Computing, 31(1):199–211, 2001.

[47] Alistair H Lachlan. Uniform enumeration operations. The Journal of Symbolic Logic,
40(03):401–409, 1975.

[48] Henri Lebesgue. Sur les fonctions représentables analytiquement. Journal de mathe-
matiques pures et appliquees, pages 139–216, 1905.

[49] Leonid Levin. Some theorems on the algorithmic approach to probability theory and
information theory. In Dissertation in mathematics, Moscow, 1971.

[50] Leonid Levin. The concept of a random sequence. In Dokl. Akad. Nauk SSSR, volume
212, pages 548–550, 1973.

[51] Leonid Levin. Laws of information conservation (nongrowth) and aspects of the
foundation of probability theory. Problemy Peredachi Informatsii, 10(3):30–35, 1974.

[52] Azriel Lévy. Basic set theory, 1979.

[53] Andrew Lewis, Antonio Montalbán, and André Nies. A weakly 2-random set that is
not generalized low. Computation and Logic in the Real World, page 474, 2007.

[54] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its appli-
cations. Springer, 2009.

[55] Nicolas Lusin. Sur les ensembles non mesurables B et l’emploi de la diagonale Cantor.
CR Acad. Sci. Paris, 181:95–96, 1925.

227

BIBLIOGRAPHY

[56] Werner Markwald. Zur theorie der konstruktiven wohlordnungen. Mathematische
Annalen, 127(1):135–149, 1954.

[57] Donald A Martin. Borel determinacy. Annals of Mathematics, pages 363–371, 1975.

[58] Per Martin-Löf. The definition of random sequences. Information and Control, 9:602–
619, 1966.

[59] Per Martin-Löf. On the notion of randomness. Studies in Logic and the Foundations
of Mathematics, 60:73–78, 1970.

[60] Ju V Matijasevič. Enumerable sets are diophantine. In Dokl. Akad. Nauk SSSR,
volume 191, pages 279–282. World Scientific, 1970.

[61] Joseph Miller. Every 2-random real is Kolmogorov random. The Journal of Symbolic
Logic, 69(03):907–913, 2004.

[62] Joseph Miller and Liang Yu. On initial segment complexity and degrees of random-
ness. Transactions of the American Mathematical Society, 360(6):3193–3210, 2008.

[63] Benoit Monin. Higher randomness and forcing with closed sets. In LIPIcs-Leibniz In-
ternational Proceedings in Informatics, volume 25. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2014.

[64] Yiannis Moschovakis. Many-one degrees of the predicates Ha(x). Pacific Journal of
Mathematics, 18(2):329–342, 1966.

[65] Yiannis Moschovakis. Descriptive set theory. Elsevier, 1987.

[66] Andrzej Mostowski. On definable sets of positive integers. Fundamenta mathematicae,
34(1):81–112, 1947.

[67] Albert A Muchnik. On the unsolvability of the problem of reducibility in the theory
of algorithms. In Dokl. Akad. Nauk SSSR, volume 108, page 1, 1956.

[68] André Nies. Lowness properties and randomness. Advances in Mathematics,
197(1):274–305, 2005.

[69] André Nies. Non-cupping and randomness. Proceedings of the American Mathematical
Society, 135(3):837–844, 2007.

[70] André Nies. Computability and Randomness. Oxford University Press, 2009.

[71] André Nies. Logic blog 2013. arXiv preprint arXiv:1403.5719, 2014.

[72] André Nies, Frank Stephan, and Sebastiaan A Terwijn. Randomness, relativization
and turing degrees. The Journal of Symbolic Logic, 70(02):515–535, 2005.

[73] Piergiorgio Odifreddi. Classical recursion theory: The theory of functions and sets of
natural numbers. Elsevier, 1992.

[74] David B Posner and Robert W Robinson. Degrees joining to 0′. The Journal of
Symbolic Logic, 46(04):714–722, 1981.

[75] Emil L Post. Recursively enumerable sets of positive integers and their decision
problems. Bulletin of the American Mathematical Society, 50(5):284–316, 1944.

[76] Gerald E Sacks. Degrees of unsolvability. Number 55. Princeton University Press,
1963.

228

BIBLIOGRAPHY

[77] Gerald E Sacks. Measure-theoretic uniformity in recursion theory and set theory.
Transactions of the American Mathematical Society, pages 381–420, 1969.

[78] Gerald E Sacks. Higher recursion theory. Springer Publishing Company, Incorporated,
2010.

[79] Claus P Schnorr. Process complexity and effective random tests. Journal of Computer
and System Sciences, 7(4):376–388, 1973.

[80] A. Shen. On relations between different algorithmic definitions of randomness. Soviet
Mathematics Doklady, 38:316–319, 1989.

[81] Joseph R Shoenfield. On degrees of unsolvability. Annals of mathematics, pages
644–653, 1959.

[82] Richard A Shore and Theodore A Slaman. Defining the turing jump. Mathematical
Research Letters, 6(5/6):711–722, 1999.

[83] Theodore A Slaman and John R Steel. Definable functions on degrees. In Cabal
Seminar 81–85, pages 37–55. Springer, 1988.

[84] Ray J Solomonoff. A preliminary report on a general theory of inductive inference.
Citeseer, 1960.

[85] Ray J Solomonoff. A formal theory of inductive inference. part i. Information and
control, 7(1):1–22, 1964.

[86] Robert Solovay. Draft of a paper (or series of papers) on Chaitin’s work. In Unpub-
lished notes, 1975.

[87] Clifford Spector. Recursive well-orderings. The Journal of Symbolic Logic, 20(02):151–
163, 1955.

[88] John R Steel. Forcing with tagged trees. Annals of Mathematical Logic, 15:55–74,
1978.

[89] John R Steel. A classification of jump operators. The Journal of Symbolic Logic,
47(02):347–358, 1982.

[90] Frank Stephan and Liang Yu. Lowness for weakly 1-generic and Kurtz-random. In
Theory and applications of models of computation, pages 756–764. Springer, 2006.

[91] Mikhail Suslin. Sur une définition des ensembles mesurables B sans nombres transfinis.
CR Acad. Sci. Paris, 164(2):88–91, 1917.

[92] Hisao Tanaka. A basis result for Π1
1-sets of positive measure. Commentarii mathe-

matici Universitatis Sancti Pauli, 16(2):115–127, 1967.

[93] Alan Mathison Turing. Systems of logic based on ordinals. Proceedings of the London
Mathematical Society, 2(1):161–228, 1939.

[94] John Von Neumann. Zur Einführung der transfiniten Zahlen. Acta Litterarum ac Sci-
entiarum Regiae Universitatis Hungaricae Francisco-Josephinae, sectio scientiarum
mathematicarum, 1:199–208, 1923.

[95] Liang Yu. Lowness for genericity. Archive for Mathematical Logic, 45(2):233–238,
2006.

[96] Liang Yu. Descriptive set theoretical complexity of randomness notions. Fundam.
Math, 215:219–231, 2011.

229

BIBLIOGRAPHY

List of Symbols

Chapter 1

ε the empty word, page 1

2<N the space of strings, page 1

2N the Cantor space, page 1

σ, τ, ρ elements of 2<N, page 1

X,Y,Z elements of 2N, page 1

σ ⪯ τ σ is a prefix of τ , page 1

σ ≺ τ σ is a strict prefix of τ , page 1

σ ≺X σ is a prefix of X, page 1

∣σ∣ the length of σ, page 1

σ ⊥ τ σ and τ are incomparable, page 1

σ ∥ τ σ and τ are comparable, page 1

σ(n) the value of the n-th bit of σ, page 1

σ↾n the restriction of σ to its n first bits, page 1

X ↾n the restriction of X to its n first bits, page 1

σˆτ the concatenation of τ to σ, page 1

⟨, ⟩ computable bijection from N ×N to N, page 2

X ⊕ Y the sequence Z with Z(2i) =X(i) and Z(2i + 1) = Y (i), page 2

⊕i∈NXi the sequence Z with Z(⟨i, j⟩) =Xi(j), page 2

N the set of natural numbers, page 2

[σ] the cylinder given by σ: {X ∶ σ ≺X}, page 2

[W]≺ ⋃σ∈W [σ], page 2

R the set of real numbers, page 2

N<N the space of strings of the Baire space, page 3

231

BIBLIOGRAPHY

NN the Baire space, page 3

σ,τ,ρ elements of N<N, page 3

f, g, h elements of NN, page 3

ε the empty word, page 3

[T] the set of infinite paths of the tree T , page 3

stem(T) the first branching node of the tree T , page 3

T ↾σ the subtree of T obtained by keeping strings compatible with σ,
page 3

T ↿σ the tree obtained by ‘shifting to the left’ every string of T ↾σ by
∣σ∣, page 3

σˆT the tree obtained by ‘shifting to the right’ every string of T by
σ, page 3

ϕe computable function ϕe ∶ N→ N of code e, page 4

a, b, c, d, e, i, j, k, l,m,n elements of N, page 4

Φe computable functional Φe ∶ 2
N ×N→ N of code e, page 4

ΦX
e currying of the computable functional of code e applied to X,

page 4

ΦX
e (n) ↓ the computation ΦX

e (n) halts, page 4

ΦX
e (n) ↑ the computation ΦX

e (n) never halts, page 4

We the domain of ϕe, page 4

WX
e the domain of ΦX

e , page 4

Φe(X) the image of X by Φe ∶ 2
N → NN, page 4

Φe(X,n)[t] the result of the computation up to time t, page 4

useX(n) the use of X on input n, page 4

X ≤m Y X is many-one reducible to Y , page 5

X ≡m Y X is many-one equivalent to Y , page 5

X ≤T Y X is Turing reducible to Y , page 5

X ≡T Y X is Turing equivalent to Y , page 5

X ≤tt Y X is truth-table reducible to Y , page 5

X ≡tt Y X is truth-table equivalent to Y , page 5

X ≤wtt Y X is weakly truth-table reducible to Y , page 6

X ≡wtt Y X is weakly truth-table equivalent to Y , page 6

α,β, γ ordinals, page 8

232

BIBLIOGRAPHY

∣R∣ the order-type of the well-founded relation R, page 8

α+ successor of α, page 8

α + 1 successor of α, page 8

sup+(A) least strict upper bound of A, page 8

∣R∣o the ordinal isomorphic to the well-order R, page 8

α + β sum of α and β, page 10

α × β multiplication of α and β, page 10

A ⊔B disjoint union of A and B, page 10

W the set of codes for computable ordinals, page 11

∣a∣o the ordinal coded by a ∈W , page 11

ωck1 the smallest non computable ordinal, page 11

ωX1 the smallest non X-computable ordinal, page 11

∣σ∣o the ordinal coded by the node σ of a well-founded tree T , page 12

∣T ∣o the ordinal coded by a well-founded tree T , page 12

∣σ∣KB the ordinal coded by the node σ of a well-founded tree T , by the
Kleene-Brouwer ordering, page 12

∣T ∣KB the ordinal coded by a well-founded tree T , by the Kleene-
Brouwer ordering, page 12

T the set of codes for c.e. well-founded trees, page 12

T <α the set of codes a for c.e. well-founded trees such that ∣a∣o < α,
page 12

T ≤α the set of codes a for c.e. well-founded trees such that ∣a∣o ≤ α,
page 12

T =α the set of codes a for c.e. well-founded trees such that ∣a∣o = α,
page 12

O the set of codes for constructive ordinals, page 16

O<α the set of codes a for constructive ordinals such that ∣a∣o < α,
page 16

O≤α the set of codes a for constructive ordinals such that ∣a∣o ≤ α,
page 16

O=α the set of codes a for constructive ordinals such that ∣a∣o = α,
page 16

T1 ≃ T2 T1 is isomorphic to T2, page 16

a = succ b a codes for the ordinal following the one encoded by b, page 16

233

BIBLIOGRAPHY

a = supn bn a codes for the ordinal being the supremum of the ordinals en-
coded by the bn, page 16

a +o b the sum of a and b using +o ∶O ×O →O , page 16

Σ0
α,Π

0
α,∆

0
α the level α of the Borel hierarchy, page 19

Σ0
<α Σ0

β
for β < α, page 19

Π0
<α Π0

β
for β < α, page 19

Σ0
α,Π

0
α,∆

0
α the level α of the effective Borel hierarchy, page 21

Σ0
<α Σ0

β for β < α, page 21

Π0
<α Π0

β for β < α, page 21

Σ0
α(X),Π0

α(X),∆0
α(X) the level α of the X-effective Borel hierarchy, page 21

Σ0
<α(X) Σ0

β(X) for β < α, page 21

Π0
<α(X) Π0

β(X) for β < α, page 21

Σ0
α-open set an open set described by a Σ0

α set of strings, page 27

Π0
α-open set an open set described by a Π0

α set of strings, page 27

Σ0
α-closed set complement of a Π0

α-open set, page 27

Π0
α-closed set complement of a Σ0

α-open set, page 27

∅(α) the Σ0
α-complete set, page 30

X(α) the Σ0
α(X)-complete set, page 30

∅(<α) the disjoint union of the Σ0
β-complete sets for β < α, page 30

X(<α) the disjoint union of the Σ0
β(X)-complete sets for β < α, page 30

Ha the H-set of code a ∈O, page 36

µ, ν, ξ probability measures, page 41

P (X) the set of subsets of X , page 41

λ Lebesgue measure, page 42

µ(A ∣ [σ]) the relative measure of A inside [σ], page 43

µ(A)[s] the measure of A at stage s, page 43

A△ B the symmetric difference of A and B: A −B ∪B −A, page 47

Chapter 2

U[t] enumeration of U up to stage t, page 52

234

BIBLIOGRAPHY

Chapter 3

Π1
1 analytic, page 65

Σ1
1 co-analytic, page 65

Π1
1 effectively Π1

1, page 65

Σ1
1 effectively Σ1

1, page 65

X ≥h Y Y is ∆1
1(X), page 72

hK higher Kolmogorov complexity, page 89

Chapter 4

hWe oracle-continuous e-th Π1
1 set of integers, page 101

hWσ
e σ-continuous e-th Π1

1 set of integers, page 101

hWX
e X-continuous e-th Π1

1 set of integers, page 101

hJX continuous higher jump of X, page 102

hKA
M higher Kolmogorov complexity continuously relativized to A and

with respect to the machine M , page 109

Chapter 6

Σ
ωck1
n the level Σn of the higher effective Borel hierarchy, page 168

Π
ωck1
n the level Πn of the higher effective Borel hierarchy, page 168

235

INDEX

Index

(ω + 1)-self-unclosed approximation, 149
A-Martin-Löf randomness, 54
A-Martin-Löf test, 54
A-continuous Π1

1-Kolmogorov complexity, 109
A-continuous Π1

1-continuous semi-measure, 109
A-continuous Π1

1-discrete semi-measure, 109
A-continuous Π1

1-prefix-free machine, 109
H-sets, 36
X-continuous Π1

1 set, 101
X-continuous Π1

1-Martin-Löf randomness, 108
X-continuous Π1

1-Martin-Löf test, 108
X-continuous Π1

1-open set, 108
∆1

1 set, 72
∆1

1-generic, 180
∆1

1-index, 72
∆1

1(Y) =∆1
1 ⊕ Y uniformly in Y , 106

Π0
1-Solovay-generic, 62

Π0
α set, 21

Π0
α-closed set, 27

Π0
α-index, 21

Π0
α-open set, 27

Π0
α(X) set, 21

Π0
α(X)-index, 21

Π1
1 set, 65

Π1
1-Martin-Löf randomness, 82

Π1
1-Martin-Löf test, 82

Π1
1-Martin-Löf[O]-randomness, 136

Π1
1-Solovay test, 82

Π1
1-continuous semi-measure, 93

Π1
1-discrete semi-measure, 91

Π1
1-generic, 180

Π1
1-index, 65

Π1
1-machine, 89, 161

Π1
1-open set, 82

Π1
1-prefix-free machine, 89

Π1
1-random cuppable, 179

Π1
1-randomness, 82

Σ0
α set, 21

Σ0
α-closed set, 27

Σ0
α-complete set, 32

Σ0
α-index, 21

Σ0
α-open set, 27

Σ0
α(X) set, 21

Σ0
α(X)-index, 21

Σ1
1 set, 65

Σ1
1-Solovay-generic, 157

Σ1
1-closed set, 82

Σ1
1-generic, 180

Σ1
1-index, 65

Σ1
1-open set, 180

α-Martin-Löf test, 55
α-complete set, 32
α-generic, 61
α-randomness, 55
α-randomness deficiency, 60
Π0
α set, 19

Σ0
α set, 19

Σ1
1-boundedness principle, 69

hK-trivial, 119

Π
ωck
1
n set, 168

Π
ωck
1
n -randomness, 168

Σ
ωck
1
n set, 168

Σ
ωck
1
n -randomness, 168

ω-computable approximation, 32
ω-self-unclosed approximation, 141
σ-algebra, 41
n-Martin-Löf test, 55
n-randomness, 55

approximation ((ω + 1)-self-unclosed), 149
approximation (ω-computable), 32
approximation (ω-self-unclosed), 141
approximation (change finitely often), 82
approximation (change infinitely often), 82
approximation (closed unbounded), 147
approximation (from below), 32
approximation (higher ∆0

2), 114
approximation (higher ω-computable), 116
approximation (higher A-continuously left-c.e.),

217
approximation (higher closed), 117
approximation (higher compact), 117
approximation (higher finite-change), 146
approximation (higher left-c.e.), 116
approximation (higher self-unclosed), 118
approximation (left-c.e.), 32
approximation (partially continuous), 145
approximation (stable), 82

Baire property, 47
Baire space (a Baire space), 47
Baire space (the Baire space), 3
base for continuous Π1

1-Martin-Löf randomness,
132

body (of a tree), 3

237

INDEX

Borel measurable set, 41

Cantor space, 1
child node, 3
closed unbounded approximation, 147
co-meager set, 47
coding theorem, 91
complete measure, 42
completed σ-algebra, 42
computable function, 4
computable functional, 4
computable measure, 43
computable ordinal, 11
computably enumerable, 4
constructive ordinals, 16
constructive trees, 16
continuous substitution, 20
continuously low for hK, 122
continuously low for Π1

1-Martin-Löf randomness,
122

countable additivity, 41
countable subadditivity, 41
cylinder, 2
cylinder (of the Baire space), 3

decreasing Π0
α set, 52

dense higher finite-change open set, 185
descendant node, 3

effective Borel hierarchy, 21
effectively closed set, 21
effectively of measure 0 (set), 52
effectively open set, 21

father node, 3
fin-h reduction, 99
first category (set of), 47
fixed point theorem, 4

Gandy basis theorem, 75
generic (α), 61
generic (∆1

1), 180
generic (Π0

1-Solovay), 62
generic (Π1

1), 180
generic (Σ1

1), 180
generic (Σ1

1-Solovay), 157
generic (weakly-α), 61
generic (weakly-Π0

1-Solovay), 62
generic (weakly-Π1

1), 180
generic (weakly-Σ1

1), 180
generic (weakly-Σ1

1-Solovay), 157

higher ∆0
2 function, 114

higher ω-computable approximation, 116
higher A-continuously left-c.e., 217
higher closed approximation, 117
higher compact approximation, 117
higher difference randomness, 135
higher finite-change approximation, 146
higher left-c.e. approximation, 116
higher Posner-Robinson theorem, 190
higher self-unclosed approximation, 118
higher Turing reduction, 101
hyperarithmetic reduction, 72

increasing Σ0
α set, 52

index (of a set), 21

jump (Turing), 36

KC theorem, 89
KC theorem (higher), 89
Kleene-Brouwer ordering, 12
Kolmogorov complexity, 87
Kučera-Gács theorem, 99
Kučera-Gács theorem (higher), 99

Lebesgue measurable set, 42
Lebesgue measure, 42
left-Π1

1 function, 91
left-c.e., 32
leftmost path (of a closed set), 32
low for ∆1

1-genericity, 190
low for Π1

1-genericity, 190
low for Σ1

1-genericity, 190

many-one degree, 5
many-one reduction, 5
Martin-Löf random cuppable, 179
Martin-Löf randomness, 52
Martin-Löf test, 52
meager set, 47
measure, 41
measure (complete), 42
measure (computable), 43
measure (Lebesgue), 42
measure (product), 43
Mostowsky collapse, 8

negligible set, 42
node, 3
node (branching), 3

oracle, 4
oracle Σ0

1 set, 54
oracle Martin-Löf test, 54
oracle-continuous Π1

1 set, 101
oracle-continuous Π1

1-continuous semi-measure,
109

oracle-continuous Π1
1-discrete semi-measure, 109

oracle-continuous Π1
1-Martin-Löf test, 108

oracle-continuous Π1
1-open set, 108

oracle-continuous Π1
1-prefix-free machine, 109

order-type, 8
ordinal, 8
ordinal (computable), 11
ordinal (constructive), 16
ordinal (limit), 8
ordinal (successor), 8
ordinals (left division), 10

partially continuous approximation, 145
Polish topological space, 20
prefix, 1
prefix-free (ε-prefix-free), 94
prefix-free (set of strings), 87
prefix-free (universal machine), 87
prefix-free machine, 87
probability measure, 41
product measure, 43
projectum function, 81

238

INDEX

randomness (α-randomness deficiency), 60
randomness (α-randomness), 55

randomness (Π
ωck
1
n -randomness), 168

randomness (Σ
ωck
1
n -randomness), 168

randomness (Π1
1-Martin-Löf-randomness), 82

randomness (Π1
1-Martin-Löf[O]), 136

randomness (Π1
1-randomness), 82

randomness (A-Martin-Löf), 54
randomness (n-randomness), 55
randomness (X-continuous Π1

1-Martin-Löf), 108
randomness (higher difference), 135
randomness (Martin-Löf), 52
randomness (randomness deficiency), 60
randomness (weak-Π1

1-randomness), 82
root node, 3

second category (set of), 47
semi-measure (Π1

1-continuous), 93
semi-measure (Π1

1-discrete), 91
semi-measure (A-continuous Π1

1-continuous), 109
semi-measure (A-continuous Π1

1-discrete), 109
semi-measure (oracle-continuous Π1

1-continuous),
109

semi-measure (oracle-continuous Π1
1-discrete),

109
semi-measure (universal Π1

1-continuous), 93
sequence, 1, 3
Solovay test, 59
Solovay tests, 59
Solovay tests (to pass a), 59
string, 1
string (of the Baire space), 3
strings (comparable), 1
strings (incomparable), 1
substage, 80

time trick, 101, 201
tree, 3
tree (body), 3

tree (branching node), 3
tree (child node), 3
tree (constructive), 16
tree (descendant node), 3
tree (father node), 3
tree (node), 3
tree (pruned), 3
tree (root), 3
tree (well-founded), 12
truth-table degree, 5
truth-table reduction, 5
Turing degree, 5
Turing reduction, 5

universal Π1
1-continuous semi-measure, 93

universal Π1
1-prefix-free machine, 89

use, 4

van Lambalgen theorem, 110
van Lambalgen theorem (higher), 110

weak truth-table degree, 6
weak truth-table reduction, 6
weak-Π1

1-randomness, 82
weakly-α-generic, 61
weakly-α-randomness, 57
weakly-Π0

1-Solovay-generic, 62
weakly-Π1

1-generic, 180
weakly-Σ1

1-generic, 180
weakly-Σ1

1-Solovay-generic, 157
weakly-n-randomness, 57
weight (of a bounded request set), 89
weight (of a discrete semi-measure), 91
well-founded relation, 8
well-founded tree, 12
well-order, 8

XYZ theorem, 112
XYZ theorem (higher), 112

239

	Introduction (Français)
	Aléatoirité et calculabilité d'ordre supérieur
	Résumé de la thèse

	Introduction (English)
	Higher randomness and computability
	Thesis summary

	Background
	Basic spaces and structures
	The Cantor space
	The Baire space
	Trees

	Basic computability notions
	Computability on the Cantor space
	The fixed point theorem
	Reductions
	The arithmetical hierarchy

	Ordinals
	Well-founded relations and ordinals
	Ordinal arithmetic

	Computable ordinals
	Introduction to computable ordinals
	Computable ordinals and trees
	Transfinite recursion over the computable ordinals

	Descriptive complexity of sets of sequences
	The Borel hierarchy
	The effective Borel hierarchy
	Borel hierarchies are strict
	Effectively closed and open sets

	Effective complexity of sets of integers
	Definition and closure properties
	The Kleene hierarchy and the computable trees
	Complete sets and many-one reductions
	The jump and the H-sets
	Kleene's hierarchy is strict

	Connection between the effective Kleene's and Borel's hierarchies
	Background on measures
	Classical facts on measures
	Measures and computability
	Fubini's theorem

	Category

	Algorithmic randomness and Cohen genericity
	Algorithmic randomness
	Martin-Löf randomness
	Notions of n-randomness and -randomness
	Notions of weak-n-randomness
	More on Martin-Löf randomness

	Genericity
	Cohen genericity
	Randomness as a genericity notion

	Beyond the Borel hierarchy
	The complexity of sets
	The 11 sets
	The 11 sets
	The 11 sets
	Further study of Kleene's bold0mu mumu OOsectionOOOO
	11 as a higher analogue of c.e.
	Motivation
	Enumerating 11 sets

	Higher randomness
	Overview of the different classes
	Higher Kolmogorov complexity
	Higher discrete semi-measures
	Higher continuous semi-measures
	Equivalent characterizations of 11-Martin-Löf randomness

	Continuity and higher randomness
	The higher Turing reduction
	The fin-h reduction
	The higher Turing reduction
	The continuous higher jump

	higher Turing and continuously 11 on weak and strong oracles
	On strong oracles
	On weak oracles
	On generic oracles for various forcing notions

	Continuous relativization and randomness
	Continuous relativization for open sets
	Continuous relativization for semi-measures
	The van Lambalgen theorem
	The XYZ theorem

	Refinement of the notion of higher 02
	The higher limit lemma
	Higher left-c.e. approximations
	Higher -computable approximations
	Higher closed and compact approximations
	Higher self-unclosed approximations

	Continuously low for 11-Martin-Löf randomness
	hK-trivial sequences
	Low for hK and low for 11-Martin-Löf randomness
	Base for randomness

	Further studies on higher randomness
	Higher difference randomness
	11-Martin-Löf[bold0mu mumu OOsectionOOOO]-randomness
	weak-11-randomness
	An equivalent test notion
	Separation of weak-11-randomness and 11-randomness

	Further studies on higher 02 approximations
	Higher finite change approximations
	Higher closed unbounded approximations
	(+1)-self-unclosed approximations
	Separation of (+1)-self-unclosed and -self-unclosed approximations
	Separation of (+1)-self-unclosed and closed approximations
	A summary

	11-randomness and 11-genericity
	The Borel complexity of the set of 11-randoms
	Randoms with respect to (plain) 11-Kolmogorov complexity
	Equivalent test notions for 11-randomness
	First equivalence
	Second equivalence
	Third equivalence

	A higher hierarchy of complexity of sets
	On the 11 randomness notions in the higher hierarchy
	On the 11 randomness notions in the higher hierarchy
	A lower bound on the higher complexity of randomness notions
	Open questions on higher complexity

	Lowness for 11-randomness
	Characterization of lowness for 11-randomness
	Further discussion

	Higher generic sequences
	Definitions
	11-genericity
	11-genericity
	Further discussion about lowness for higher genericity notions

	Steel forcing : The Borel complexity of the set of sequences which collapse 1ck
	Motivation
	The forcing notion
	The retagging lemma
	Preservation of 1ck
	The Borel complexity of {X : 1X > 1ck}

	The badly-behaved oracles
	Time tricks : example with 11-open sets
	Higher Turing computation and fin-h computation
	Non-universality in continuous relativization
	The perfect treesh-bone
	The tree of trees
	No A-universal oracle continuous 11-Martin-Löf tests
	No A-universal A-continuous 11-Martin-Löf tests
	Higher A-continuously left-c.e. and 11-Martin-Löf randoms
	Further study on continuous relativization

	On well-behaved oracles
	Self-unclosed approximable oracles
	Random oracles

